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Abstract

Regression testing, a critical process in software development, ensures that

the recent code changes have not adversely affected existing functionality. A

significant challenge in this domain is the existence of flaky tests—tests that

inconsistently pass or fail without any changes to the code. These flaky tests

undermine the reliability of automated testing and can lead to increased de-

bugging and decreased confidence in software stability. To tackle the issue

of flaky tests, there exists approaches that make use of machine learning and

prediction models. However, approaches that rely on analyzing test case vo-

cabulary typically face challenges like higher costs to run the tests, a tendency

to overfit, and sensitivity to different contexts.

In this research, we conduct an in-depth study on employing test smells and

four key flakiness root causes—Async Wait, Concurrency, Test Order Depen-

dency, and Resource Leak—as predictive features for identifying flaky tests.

Building upon existing research that validates the use of test smells as flaki-

ness indicators, our study focuses on enhancing the accuracy of the test smell-

based model by integrating these four additional flakiness determinants. We

rigorously assessed the augmented model’s ability to predict flaky tests in a

cross-project context and analyzed the information gain contributed by each

newly added flakiness root cause. Our findings revealed that particularly the

Async Wait and Concurrency categories demonstrated the highest information

gain, underscoring their pivotal role in predicting test flakiness. Furthermore,

we benchmarked the enhanced test smell-based model against the conventional

vocabulary-based approach and the original test smell model, specifically ex-

amining improvements in prediction accuracy for flaky tests.
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Chapter 1

Introduction

In the field of software engineering, ensuring high-quality software systems is

a fundamental objective. Central to achieving this goal is the practice of re-

gression testing, a crucial process extensively utilized by software development

teams. This testing method involves a thorough evaluation of system quality

by analyzing the test results after implementing code changes. The results

of successful tests indicate a functioning system, while failures can signal a

reduction in quality. Our research, "Advanced Test Smell-Based Approach for

Improved Flaky Test Prediction", focuses on enhancing the methodologies for

addressing flaky tests—tests that exhibit inconsistent outcomes—thereby re-

fining the accuracy of regression testing. We present an innovative approach

for predicting such flaky tests, evaluating their effectiveness, and providing in-

sights into more reliable and efficient software quality assessment.

The challenge of identifying flaky tests has received significant attention in

recent research. To address this challenge, researchers predominantly utilize

1



CHAPTER 1. INTRODUCTION 2

two methodologies: Dynamic and Static approaches. The Dynamic approach

includes executing test cases multiple times to detect inconsistent outcomes.

Despite its effectiveness, this method can be resource-intensive and error-prone,

with the added complexity of determining the ideal frequency of test execu-

tions. A significant portion of research in this domain leverages machine learn-

ing (ML) techniques to assess the probability of test case flakiness, where the

choice and analysis of specific ML features critically define each study’s unique-

ness and success rate.

On the other hand, the Static approach adopts a contrasting strategy. It

involves analyzing the test code for flakiness indicators without actual test ex-

ecution. By analyzing code structure and patterns, this method can efficiently

pinpoint potential flakiness, offering a cost-effective and rapid alternative. Nev-

ertheless, its limitation lies in the potential overlooking flakiness aspects that

are only observable during live test execution.

Both the Dynamic and Static approaches to flakiness prediction have their

respective advantages and drawbacks. The Dynamic approach, though resource-

intensive, offers direct observation of flakiness, providing clear insights into test

instability. In contrast, the Static approach is more resource-efficient, yet it

might overlook flakiness aspects that become apparent only during test exe-

cution. The selection between these approaches depends on various factors,

including resource availability, time constraints, and specific software require-

ments.

Pinto et al. [1] introduced an approach for flaky test identification using

static features to analyze test code patterns, with the aim of automated detec-
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tion. Camara et al. [2] subsequently revisited Pinto et al.’s research, focusing

on the real-world application and assessing its performance in cross-project

scenarios. Their analysis revealed a key limitation: the vulnerability of the

vocabulary-based technique to context sensitivity and overfitting in diverse

project environments.

Addressing these shortcomings, Camara et al. [3] proposed an alternative

test smell-based method, distinct in its exclusive reliance on static metrics.

This model incorporated test case size(LOC), count of test smells, and bi-

nary indicators for 19 specific test smells. Their findings indicated that this

approach, particularly when using a Random Forest classifier, demonstrated

superior performance in cross-project predictions compared to the vocabulary-

based model. However, the potential for further improvement was noted, par-

ticularly with the addition of more binary features.

Our paper advances Camara et al.’s methodology by integrating four new

binary features that represent the primary flaky test root causes: Async Wait,

Concurrency, Test Order Dependency, and Resource Leak. An empirical study

by Luo et al. [4] suggests that a significant majority of flaky tests can be at-

tributed to these root causes, impacting the Code Under Test (CUT) quality.

By expanding the feature set to 25, our study seeks to further refine the pre-

dictive accuracy of the test flakiness. Utilizing the same dataset and classifiers

as previous studies, this paper evaluates the enhanced model’s effectiveness,

aiming to set a new benchmark in flaky test prediction.



Chapter 2

Background

This Background section provides an overview of seven fundamental concepts

instrumental to our research:

1. Regression Testing

2. Flaky Tests

3. Test Smells

4. Async Wait

5. Concurrency

6. Test Order Dependency

7. Resource Leak

Each concept represents a crucial element in the field of software testing, par-

ticularly in identifying and mitigating issues that can compromise software

4



CHAPTER 2. BACKGROUND 5

application integrity. A thorough understanding of these concepts is vital to

understand the challenges in software testing and to appreciate the method-

ologies and solutions proposed in this study.

2.1 Regression Testing

Regression testing ensures that recent code changes have not adversely affected

existing features. It involves re-running functional and non-functional tests to

verify that the behavior of the software remains consistent after modifications.

For example, if a new feature is added to an email application, regression

testing would confirm that existing functions, such as sending and receiving

emails, are still working as intended.

2.2 Flaky Tests

Flaky tests refer to tests that gives inconsistent results, passing or failing in-

termittently without any changes to the code. These tests are problematic

because they can lead to false positives or negatives, undermining the reliabil-

ity of the testing process. For instance, a flaky test in a web application might

sometimes fail due to network latency issues, even though the application code

is correct. We have shared code snippets of flaky tests further in Figure 2.2,

Figure 2.3, and Figure 2.4 and Figure 2.4 to describe the 4 primary root causes

of Flaky tests i.e Async wait, Concurrency, Test Order Dependency, and Re-

source Leak as proposed by Luo et al. [4].
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2.3 Test Smells

Test smells are patterns in test code that suggest a potential issue, often indi-

cating poor design or maintainability problems. They are analogous to code

smells in production code.

Deursen et al. [5] initially identified several test smells, including Asser-

tion Roulette, Eager Test, General Fixture, and Lazy Test, which highlighted

prevalent issues in test programming. Building upon Deursen’s foundational

work, Peruma et al. [6] further extended the scope of test smells. They incor-

porated additional categories inspired by prevalent shortcomings in unit test

programming techniques, as documented in the existing literature. In subse-

quent research, Peruma and colleagues developed ’TSDetect’, an open-source

tool specifically designed for the detection of code smells. This tool, TSDetect,

has been employed in the current study to identify test smells.

Figure 2.1: Test smell example
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The code snippet in Figure 2.1 shows a method from the test class EventsS-

craperTest.java, from the open source TuCanMobile project. This example

is a flaky test extracted from the test smells examples mentioned on the

testsmell.org website maintained by Peruma et al.

The test method, testSpinner(), contains multiple control statements (i.e.

control flow statements). The success or failure of the test is based on the result

of the assertion method which is within the control flow blocks and hence not

predictable. This also increases the complexity of the test method and hence

has a negative impact on maintenance of the test.

2.4 Async Wait

In the context of asynchronous programming, ’Async Wait’ is a critical con-

cept where the execution of a program is temporarily halted until a specified

condition is fulfilled or an operation completes. In our context, it refers to a

category of tests where the tests on execution make an async call and do not

adequately wait for the result of the call to become available before using it.

Such type of test codes contributes significantly to flaky tests. For example, a

test might fail intermittently if it does not correctly wait for an asynchronous

API call to complete before asserting the outcome.

The code snippet in Figure 2.2 represents a Async Wait flaky test. This

snippet is from the HBase project, used by Luo et al. [4] to demonstrate Async

wait root cause in tests (or the CUT). The test relies on a fixed-duration

Thread.sleep(2000) to wait for an asynchronous operation to complete before

proceeding with assertions. The test assumes that two seconds is always suffi-
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Figure 2.2: Async Wait flaky test

cient time for the firstServer to initialize and respond ("ping back"). However,

if the server takes longer than two seconds due to variability in network la-

tency, load, or other environmental conditions, the assertions that follow the

sleep will execute before the server is ready, likely causing the test to fail.

This kind of flakiness arises because the test’s success is contingent upon an

asynchronous event—the server’s response—occurring within a predetermined

time window, which cannot be guaranteed under all execution circumstances.

Thus, it falls into the async wait category of flaky tests, as the timing of

the response and the test’s execution are not synchronized, leading to non-

deterministic test outcomes.

2.5 Concurrency

Concurrency in software engineering is about components or processes execut-

ing independently in parallel, which can lead to complex states and behaviors in
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an application. For testing, concurrency issues might arise when multiple pro-

cesses interact in unpredictable ways, causing flaky tests. Common problems

include race conditions, where the test result depends on the order of paral-

lel operations, other prevalent concurrency-related problems include atomicity

violations, where intended atomic sequences of operations are interrupted by

concurrent activities, and deadlocks, which occur when two or more processes

are waiting indefinitely for each other to release resources. Tests with such

root cause of flakiness fall under the concurrency category.

We next describe a code snippet of a Concurrency flaky test. This snippet

Figure 2.3: Concurrency flaky test

The code snippet in Figure Figure 2.3 is from the Hive project, used by

Luo et al. [4] to demonstrate Concurrency root cause in the CUT. The code

traverses a map that is accessed by multiple threads. Flaky test failures occur

when these threads modify the map at the same time, resulting in a Concur-

rentModificationException [2].
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2.6 Test Order Dependency

Test order dependency occurs when the outcome of a test depends on the

sequence in which tests are run, leading to inconsistent results. This typically

happens when tests share state between them. For instance, if a test for a

user login feature always passes when run after a specific user creation test

due to shared state, but fails when run independently, it exhibits a test order

dependency.

Figure 2.4: Test Order Dependency induced flaky test

The code snippet in Figure 2.4 is from the Hadoop project, used by Luo

et al. [4] to demonstrate Test Order Dependency root cause in the CUT. The

testWrite() method writes data to a file using fs, setting up the data for other

tests to read. Initially, the developers assumed that testWrite() would always

execute first. However, JUnit does not ensure a specific order of test execution.

Consequently, if JUnit runs any of the read tests before testWrite, the test

fails due to the absence of the expected data. To resolve this, the developers

modified their approach: they removed the standalone testWrite() test and

incorporated a call to testWrite() within the beforClass() method, as indicated
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in line 10. This change ensures that testWrite() executes once before any other

tests in the class, preparing the necessary data setup for subsequent tests.

2.7 Resource leak

Resource leaks occur when an application fails to properly manage system

resources, such as file handles or memory allocations. These leaks can cause

flaky tests that pass or fail unpredictably, depending on the availability and

state of the resource at the time of test execution. The next figure presents

an illustrative example of a resource leak within a test case designed to assess

resource allocation.

Figure 2.5: Resource Leak induced flaky test

The code snippet in the example Figure 2.5 is used by Lam et al. [7], to

demonstrate Resource leak root cause in the CUT. ResourceAllocation() tests
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whether the necessary resources are properly allocated for an application. The

application internally uses a third-party database to store some information.

To ensure isolation between test cases, the TestCleanup() method is designated

to delete the database file, allowing for a fresh environment for each subsequent

test. However, an issue arises due to the behavior of the third-party database

library used by the application. This library does not immediately release the

file handle upon request; it requires the garbage collector to execute before

the file handle is released. Consequently, if the garbage collector has not run

by the time File.Delete(dbPath) is invoked on Line 12, an exception is thrown

because the file is still in use, leading to a flaky test outcome.



Chapter 3

Research Objective

3.1 Motivation and Contribution

Our research builds on the work of Camara et al. [3], which showed that using

test smells can help predict when tests might be flaky. Their approach showed

promise in cross-project validations, achieving nearly the same results (55%) as

state-of-the-art vocabulary-based methods (56%). However, test smell-based

models were up to 14% less precise than vocabulary-based models in some

cases. Despite this, they performed notably well in the intra-project context,

with 17% more accuracy in the best case.

Our study aims to enhance the traditional test smell-based prediction

model by integrating new static features to improve accuracy. We strive to

significantly advance our approach’s performance in the inter-project context

and create a more dependable and generalized approach for identifying poten-

tially flaky tests.

13
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3.2 Research Questions

• RQ1: What is the predictive accuracy of the Hybrid Test Smell-

Based Model for test flakiness compared to the Traditional Test-

Smell-Only Approach?

This question seeks to evaluate the efficacy of the Hybrid Model, which

incorporates both test smells and additional features, against the con-

ventional approach that relies solely on test smells for predicting test

flakiness.

• RQ2: To what extent are the newly integrated features corre-

lated with the prediction of test flakiness?

The focus here is to quantify the association between the newly added

features and their impact on the accuracy of test flakiness predictions,

thereby determining their predictive strength and significance.

• RQ3: How do the results of the Hybrid Test Smell-Based Model

compare with the existing Vocabulary-Based Model and the Tra-

ditional Test Smell-Based Model in a cross-project validation

context?

This question aims to benchmark the performance of the Hybrid Model

in predicting flakiness across different projects, contrasting it with the

results obtained from the Vocabulary-Based Model and the Traditional

Test Smell-Based approach to understand its relative performance in a

broader context.
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Related Work

Many studies addressed challenges to software maintenance in general [8–15,

15–90,90,91,91,92,92,93,93–117], and test flakiness in particular. The issue of

flaky tests has emerged as a significant concern in software engineering, primar-

ily due to its adverse impact on developer productivity and the overall software

development lifecycle. Flaky tests, characterized by their non-deterministic na-

ture under the same conditions, undermine the reliability of test suites and lead

to increased maintenance efforts. Developers often find themselves repeatedly

re-running tests to distinguish between genuine failures and flakiness, a pro-

cess that is not only time-consuming but also diverts attention from critical

development tasks. This constant need for verification and debugging can sig-

nificantly slow down the development process, leading to delayed releases and

increased costs. Furthermore, the presence of flaky tests can erode trust in

the testing process itself, making it difficult for teams to rely on automated

tests for continuous integration and deployment. These challenges explain the

15
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sustained interest and ongoing efforts within the research community to ad-

dress flaky tests [118] [119] [120]. By developing more effective detection and

mitigation strategies, researchers aim to enhance the efficiency and accuracy

of testing processes, ultimately contributing to more stable software products

and more productive development environments.

W. Lam, R. Oei, and A. Shi [121] [122] have proposed adopting dynamic

approaches which involve running the test suite for a fixed number of times.

However, it increases the cost of execution and for large organizations, this

becomes a scaling issue.

According to Pinto et al. [1], it is possible to extract a vocabulary of pat-

terns of words from the test code that can be used to determine whether a

test is flaky or not. The authors developed a dataset of Java projects with

test cases labeled as flaky and non-flaky and then used it to train and evaluate

ML systems. Overall, all classifiers performed well, with SVM having the best

recall and Random Forest having the best precision (0.99) and F1-Score (0.92).

The top 20 features with the best information gain are also displayed in the

study. The effectiveness of the vocabulary-based strategy in Python projects

was also the subject of several research [123] [124].

Camera et al. [2] replicated the Pinto et al. [1] study. They extended the

work by using the trained classifiers to predict flaky tests using a different

test dataset. The classifiers were used for prediction in two different contexts

namely Inter and Intra project contexts. Among the trained classifiers, LDA

achieved the best results with recall of 0.75 in intra-project contexts and 0.45

in inter-project scenarios. The authors concluded that the vocabulary-based
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approach, while effective in some settings, is sensitive to context and has a

tendency to overfit.

Alshammari et al. [125] developed an approach, FlakeFlagger, to predict

test flakiness, incorporating both static and dynamic features like test smells,

test coverage, and source code management. They used a dataset of 24 open-

source Java projects to benchmark FlakeFlagger against both a vocabulary-

based [1] and a combination of both. While recall rates were comparable across

all three approaches (74%, 72%, and 74%), FlakeFlagger displayed a signifi-

cant 49% improvement in precision over the vocabulary-based approach. The

hybrid approach further improved precision by 6%. Interestingly, although

FlakeFlagger includes its own expanded test smell detector, the analysis re-

vealed a low correlation between these test smells and test flakiness.

Camera et al. [3] evaluated the performance of the traditional test smell-

based approach for prediction of flakiness. It was observed that using test

smells are potentially good predictors of flakiness. The authors also compared

their results with the vocabulary-based approach. The test smell-based models

had the precision(83%) which is 14% lower than the state-of-the-art vocabulary

based approach(97%). In the cross-project validation, the test smell-based

approach in general performed better in the intra- and inter- project contexts.

The test smell-based approach produced promising results and opened the

possibility to further add more static or dynamic features to the test smells

as indicators. We extended Camara et al. [3]study on using test smells and

explored the possibility of extending the features for predicting flaky tests.



Chapter 5

Methodology

5.1 Dataset Preparation

In our methodology, we begin with the foundational dataset utilized by Ca-

mara et al. [3], comprising 2932 flaky and 1400 non-flaky tests. Specifically, we

included 1377 flaky and 1400 nonflaky tests from the’msr4flakiness’ dataset,

while incorporating an additional 155 flaky tests from the ’idFlakies’ dataset,

both of which were previously assembled by Pinto et al. To gather the test case

class files associated with all test methods from Camara et al.’s dataset, we

cloned the GitHub repository "https://github.com/ncsu-swat/msr4flakiness".

This repository organized dataset into three distinct sections: i) flaky test

case class files from ’msr4flakiness’, ii) non-flaky test case class files from

’msr4flakiness’, and iii) flaky test case class files from ’idFlakies’.

Following the initial data collection, we followed the planned steps designed

to refine and augment the dataset for our analysis. These steps are outlined

18
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in the following subsections of our methodology.

5.1.1 Data Scraping

Our first task involved the extraction of test methods, classified as either flaky

or non-flaky, from the collected test case class files. The code snippets for each

test method were scraped and stored separately, aligning with the categoriza-

tion into the three sections: flaky test cases from ’msr4flakiness’, non-flaky test

cases from ’msr4flakiness’, and flaky test cases from ’idFlakies’.

5.1.2 Pattern Identification

Informed by the findings of Luo et al. [4], we acknowledged Async Wait, Con-

currency, and Test Order Dependency as the primary root causes of flaky tests.

To these established categories, we introduced an additional parameter: Re-

source Leak. Based on the survey of existing research on flakiness prediction

by Parry et al. [126], resource leaks were an important contributing factor to

test flakiness in a large-scale study of open-source Java projects. We devel-

oped regex patterns to identify test methods associated with these four root

causes within the code snippets. This identification process was executed sep-

arately for flaky tests in ’msr4Flakiness’, non-flaky tests in ’msr4Flakiness’,

and flaky tests in ’idFlakies’, ensuring a comprehensive analysis across varying

test scenarios.
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5.1.3 Data Merging

The result of our pattern identification phase was the derivation of four new

feature columns: “AsyncWait”, “Concurrency”, “TestOrderDependency”, and

“ResourceLeak”. These columns were then merged into the base dataset ’Sam-

pled.csv’, creating an improvised dataset that incorporated the newly iden-

tified features. This enhanced version of ’Sampled.csv’, now equipped with

additional features, forms the base of our research study.

5.2 Features

Existing Features

The dataset we utilized already comprised 21 features. Of these, 19 are specific

test smells associated with each test case, capturing a broad spectrum of po-

tential issues within the test code. The remaining two features focus on code

complexity: LOC (Lines of Code), which measures the length of the code, and

Smell Count, which aggregates the total number of test smells present. These

features provide a foundational understanding of the test environment and its

inherent complexities. [Reference: Test Smells Table]

New Features

To enhance the predictive power of our model, we have introduced four new

binary features, each addressing a critical root cause of the test flakiness:

i) Async Wait: Given the prevalence of asynchronous operations in mod-

ern software, flaky tests arising from asynchronous waits are a key area of con-
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cern. Issues such as race conditions or improper handling of async callbacks

are common. Identifying asynchronous waits is vital due to their susceptibility

to intermittent failures, which may vary with environmental changes or across

different test runs.

ii) Concurrency: Concurrency introduces complexities in testing, raising

the potential for issues like deadlocks, race conditions, and resource contention.

Tests involving concurrent executions are prone to unpredictable behavior,

especially in multi-threaded environments. Analyzing these tests sheds light

on concurrency-related issues, making it an essential feature for our study.

iii) Test Order Dependency: This feature focuses on the dependency

of a test’s outcome on the sequence of test execution. Identifying tests that

are affected by shared states or other tests’ side effects is crucial, as these are

common sources of unpredictability in test suites.

iv) Resource Leak: A Resource Leak is identified as the root cause of a

flaky test when the test’s outcome is directly influenced by the application’s

failure to properly handle resources, such as acquiring or releasing file locks.

These new features, representing the main root causes of flakiness in test

methods, have been chosen to augment our dataset. The decision is aimed at

significantly refining the model’s ability to predict flaky tests [126] [4].

5.3 Approach

Our approach in this research closely mirrors the experimental setup used by

Camara et al. [3], with some key enhancements. Initially, like Camara et al.,

we use the dataset from Pinto et al. [1] to construct our predictive models.
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For cross-project validation, we incorporate data from Lam et al. [121], which

includes flaky tests from 72 different projects.

Camara et al.’s dataset, processed through the tsDetect tool, yielded 19

test smell features plus two code complexity features: LOC (Lines of Code)

and Smell Count (total number of test smells). They created two distinct

datasets for model training and testing (with 1377 flaky and 1400 non-flaky

samples) and for cross-project validation.

Building upon this foundation, we introduce four additional features to the

existing dataset. Our enriched dataset now comprises 1377 flaky and 1400 non-

flaky samples from "msr4flakiness," and 153 flaky samples from "idFlakies,"

totaling 25 features. The "msr4flakiness" samples are designated for train-

ing the models, while the "idFlakies" samples are reserved for cross-project

validation.

In preparation for model training, we first conduct exploratory data anal-

ysis using libraries like Matplotlib. This involves data preprocessing steps like

converting feature columns to integers and transforming the dataset into a nu-

meric format. This conversion is crucial for the model to effectively interpret

the features and the ground truth. We also visualize a correlation matrix to

discern relationships between features.

An essential part of our methodology is hyperparameter tuning, performed

using GridSearchCV. This process involves systematically experimenting with

different combinations of classifier parameters to optimize performance. The

goal here is to enhance the model’s predictive ability while avoiding pitfalls

like overfitting or underfitting.
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Our models are then trained iteratively using the training set. We se-

lected a range of classifiers, including Random Forest, for their proven efficacy

in classification tasks and their suitability for handling our dataset’s specific

characteristics. Random Forest, in particular, showed the best performance in

our initial trials. The final step involves testing the model for cross-project

validation, allowing us to directly compare our results with those obtained by

Camara et al. and Pinto et al., thereby validating the effectiveness of our

enhanced approach.

5.4 Evaluation Metrics

To assess the effectiveness of our predictive models, we employed a compre-

hensive suite of evaluation metrics, each offering a unique perspective on the

model’s performance.

Precision: This metric calculates the ratio of correctly predicted flaky

tests to the total predicted flaky tests. High precision indicates a low rate of

false positives.

Recall: Also known as sensitivity, recall measures the ratio of correctly

predicted flaky tests to the actual flaky tests in the dataset. It reflects the

model’s ability to detect all relevant instances.

F1-Score: Representing the harmonic mean of precision and recall, the

F1-Score provides a balance between these two metrics, particularly useful

when the class distribution is imbalanced.

MCC (Matthews Correlation Coefficient): This coefficient offers a

comprehensive measure of the model’s quality, taking into account true and
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false positives and negatives. MCC is particularly insightful in evaluating

binary classification problems.

AUC (Area Under the ROC Curve): The AUC represents the de-

gree of separability achieved by the model. It measures the model’s ability to

distinguish between classes, with higher values indicating better classification

performance.

For a more granular analysis, we utilized tools such as confusion matrices

and ROC (Receiver Operating Characteristic) curves. These visual represen-

tations are instrumental in understanding the trade-offs between true positive

and false positive rates, thus providing a more nuanced view of the model’s

performance.

In our cross-project validation, specifically the intra- and inter-project eval-

uations, we focused on the ’idFlakies’ dataset. Given this dataset’s lack of non-

flaky test examples, recall was the primary metric used for evaluation. This

approach ensures that our assessment aligns with the dataset’s structure and

provides meaningful insights into the model’s capability to correctly identify

flaky tests.
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Analysis & Discussion

RQ1: What is the predictive accuracy of the Hybrid Test Smell-Based Model

for test flakiness compared to the Traditional Test-Smell-Only Approach?

Upon reviewing the results, the Hybrid Test Smell-Based Model [Table 6.1]

shows a clear improvement over the Traditional Test-Smell-Only approach [Ta-

ble 6.2]. For instance, with the Hybrid Model, the Random Forest classifier

achieved an accuracy, precision, and recall of approximately 85%, with the

MCC at a strong 0.71 and the AUC at 0.93. These figures represent a tangible

increase in performance metrics compared to the Traditional Model, where the

Random Forest’s precision and recall were both at 0.83, and the AUC was at

0.90.

Moreover, the Hybrid Model displayed consistently higher MCC values,

with most classifiers achieving scores above 0.60, indicating a strong correlation

between predicted and actual values. In comparison, the Traditional Model

25
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Algorithm Precision Recall F1 MCC AUC

Random Forest 0.85 0.85 0.85 0.71 0.92

Decision Tree 0.84 0.84 0.84 0.68 0.87

KNN 0.81 0.81 0.81 0.63 0.87

LR 0.81 0.81 0.81 0.62 0.88

Perceptron 0.81 0.81 0.81 0.62 N/A

LDA 0.80 0.80 0.79 0.60 0.87

SVM 0.75 0.75 0.75 0.51 0.84

Naive Bayes 0.75 0.70 0.68 0.45 0.83

Table 6.1: Hybrid Feature Based classifier’s performance

Algorithm Precision Recall F1 MCC AUC

Random Forest 0.83 0.83 0.83 0.65 0.90

Decision Tree 0.83 0.83 0.83 0.66 0.86

KNN 0.81 0.81 0.81 0.62 0.81

LR 0.79 0.79 0.79 0.59 0.87

LDA 0.78 0.78 0.78 0.56 0.86

Perceptron 0.78 0.78 0.78 0.55 0.86

SVM 0.75 0.75 0.75 0.50 0.83

Naive Bayes 0.74 0.65 0.61 0.37 0.78

Table 6.2: Test smells-based classifiers’ performance
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Figure 6.1: Curves for the best performing classifier

had lower MCC values, with the Naive Bayes classifier scoring as low as 0.37.

In Figure 6.1 we can see the ROC curve and Precision-Recall curve for the

Random Forest classifier in Hybrid approach.

In summary, the data indicates that the Hybrid Test Smell-Based Model

outperforms the Traditional Test-Smell-Only Approach. With the addition of

new features accounting for root causes of flakiness, the Hybrid Model enhances

predictive accuracy, precision, and recall, affirming the value of integrating

these additional features into the predictive framework.
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RQ2: To what extent are the newly integrated features correlated with the

prediction of test flakiness?

We’ve analyzed the information gain of each feature within our hybrid feature-

based model. As depicted in figure6, we calculated the information gain based

on each feature’s entropy, which is a measure of its predictive value regard-

ing test flakiness. The Total Occurrences column in the table quantifies the

number of times each feature appears in our dataset, while ’Total Flaky Oc-

currences’ and ’Total Non-flaky Occurrences’ columns provide a breakdown of

these occurrences across flaky and non-flaky tests, respectively.

Significantly, our new features, specifically ’Async Wait’ and ’Concurrency’,

rank within the top five for information gain among all features in our hy-

brid model. This shows a strong correlation between the new features and

the likelihood of test flakiness, highlighting their importance in improving our

model’s performance. Furthermore, it’s noteworthy that for three of the newly

added features—’Concurrency’ with 87.57%, ’Async Wait’ with 87.76%, and

’Resource Leak’ with 92%—a vast majority of the affected tests are classified

as flaky. This correlation suggests that these features are potent indicators of

flakiness.

In conclusion, our analysis confirms that the newly integrated features are

significantly associated with flaky tests. The presence of two of these features

among the top five [Fig.6.2] with the highest information gain reinforces their

predictive strength and validates their inclusion in our enhanced model.
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Figure 6.2: Top 5 features by Information gain

RQ3: How do the results of the Hybrid Test Smell-Based Model compare

with the existing Vocabulary-Based Model and the Traditional Test Smell-Based

Model in a cross-project validation context?

We engaged in a thorough examination of the models’ performance using

the idFlakies dataset for cross-validation. In the intra-project context, the

hybrid feature-based model [Table 6.4] shows superior performance with three

classifiers reaching recall values above 70%, as opposed to the traditional test

smell-based approach [Table 6.5] where only two classifiers exceed that thresh-

old. Notably, both Logistic Regression (LR) and Perceptron are the standout

classifiers in the hybrid model, each with a recall of 0.74, which is consistent

with the best-performing classifier in the traditional model.
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Moving to the inter-project context, the traditional test smell-based model

exhibits a slightly stronger performance, with its best classifier, SVM, achieving

a recall of 0.55. This contrasts with the hybrid model, where SVM shows a

slightly lower recall of 0.51.

When we compare the hybrid model [Table 6.4] to the vocabulary-based

approach [Table 6.6] within the intra-project scope, we observe that the hybrid

model’s LR and Perceptron classifiers outperform with recall values of 74%,

against the 57% recall achieved by the vocabulary approach’s best classifier,

KNN. This indicates that, generally, classifiers from the hybrid feature-based

model tend to yield better recall values in the intra-project validation.

In terms of the inter-project validation, the hybrid model’s highest recall is

51% with SVM, which is marginally lower than the 56% achieved by the LDA

classifier in the vocabulary-based model. However, a broader evaluation across

all classifiers suggests the hybrid model generally fares better in cross-project

validation than the vocabulary-based approach.

In conclusion, the hybrid feature-based approach demonstrates enhanced

performance in the intra-project context compared to both the traditional test

smell-based and vocabulary-based approaches. Conversely, in the inter-project

context, despite the best classifier from the hybrid model having a slightly

lower recall, the overall performance suggests an advantage for the hybrid

feature-based approach in cross-project validation scenarios.
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Figure 6.3: KDE Plot of LOC for Flaky and Non-Flaky Tests

Figure 6.4: Correlation Matrix of features
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Pos. Features Inf. Gain Total Flaky % Flaky

1 LOC 0.254 817 1 2775 1377 49.58

2 Assertion Roulette 0.832 619 1388 968 69.75

3 Concurrency 0.470 961 314 275 87.58

4 Smells Count 0.270 147 2653 1356 51.11

5 Async Wait 0.236 097 188 165 87.77

6 Sleepy Test 0.194 695 112 105 93.75

7 General Fixture 0.160 650 267 61 22.85

8 Duplicate Assert 0.154 864 376 269 71.54

9 Constructor Initialization 0.103 536 68 63 92.65

10 Print Statement 0.105 576 58 55 94.83

11 Sensitive Equality 0.840 032 129 95 73.64

12 Lazy Test 0.440 699 1786 817 45.74

13 Resource Optimism 0.426 438 75 17 22.67

14 Conditional Test Logic 0.419 574 356 219 61.52

15 Resource Leak 0.320 018 25 23 92.00

16 Unknown Test 0.213 505 544 234 43.01

17 Verbose Test 0.177 088 7 7 100.00

18 Magic Number Test 0.109 571 411 227 55.23

19 Mystery Guest 0.547 207 124 71 57.26

20 Eager Test 0.245 867 970 496 51.13

21 Redundant Assertion 0.827 896 8 4 50.00

22 Ignored Test 0 0 0 0.00

23 Empty Test 0 0 0 0.00

24 Default Test 0 0 0 0.00

25 TestOrderDependency 0 0 0 0.00

Table 6.3: Information gain of each feature of the models
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Algorithm
Intra-Project Inter-Project

Recall TP FN Recall TP FN

Random Forest 0.71 25 10 0.47 57 63

Decision Tree 0.65 23 12 0.35 42 78

KNN 0.48 17 18 0.40 48 72

LR 0.74 26 9 0.47 57 63

Perceptron 0.74 26 9 0.44 53 67

LDA 0.65 23 12 0.47 57 63

SVM 0.65 23 12 0.51 62 58

Naive Bayes 0.57 20 15 0.20 42 78

Table 6.4: Cross-project Hybrid Test Smell based performance

Algorithm Intra-Project Inter-Project

Recall TP FN Recall TP FN

Random Forest 0.69 24 11 0.54 65 55

Decision Tree 0.66 23 12 0.54 65 55

KNN 0.51 18 17 0.51 61 59

LR 0.74 26 9 0.48 57 63

Perceptron 0.71 25 10 0.48 57 63

LDA 0.66 23 12 0.47 57 63

SVM 0.66 23 12 0.55 66 54

Naive Bayes 0.57 20 15 0.14 17 103

Table 6.5: Cross-project Traditional Test Smell based performance
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Algorithm Intra-Project Inter-Project

Recall TP FN Recall TP FN

Decision Tree 0.31 11 24 0.39 47 73

LDA 0.29 10 25 0.56 67 53

LR 0.20 7 28 0.30 36 84

Random Forest 0.17 6 29 0.29 35 85

Naive Bayes 0.17 6 29 0.13 15 105

SVM 0.09 3 32 0.17 20 100

KNN 0.57 20 15 0.23 27 93

Perceptron 0.34 12 23 0.33 40 80

Table 6.6: Cross-project vocabulary-based performance
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Threats to Validity

Construct Validity: In some instances, tsDetect [127] might miss determining

the production class during the pre-processing of the test code to retrieve

the test smells. As a result, the smells would not be extracted, which could

compromise the outcome.

Internal Validity: When relating independent and dependent variables, it

could skew the findings. The lack of non-flaky classes in the data set between

projects can make it impossible to gather precision and other measures to use

as a reference.

External validity: As in this study, we are targeting the Java language

and a limited set of project domains, we cannot generalize the results. Also,

there could be a difference in the performance of models if there is a significant

difference in the size of the dataset for Intra-project and cross-project datasets.
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Conclusion

Regression testing plays a critical role in the continuous delivery of high-quality

software, and the presence of flaky tests poses significant challenges to both

development processes and software quality. Addressing this issue, our study

delves into the potential of using extended sets of features as predictors of

flakiness in tests along with test smells. Through comprehensive research and

analysis, utilizing standard evaluation metrics outlined in this paper, we have

assessed the efficacy of using these extended sets of features as predictors for

flaky tests. Our experiments identified that training models to identify flaky

root causes such as Async wait and Concurrency played a significant role in

further predicting the flaky tests. This approach is benchmarked against the

test smell and the vocabulary-based approach in the cross project scenario

making it a more generalized approach for cross project validation.

Our findings suggest that Async wait and Concurrency are indeed valu-

able indicators of potential test flakiness, as evidenced by the Information gain

36
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results of the flaky root causes used as predictors of flaky tests. It should

be noted especially the 4% increase in the recall rate for inter-project scenar-

ios. Looking ahead, expanding the training dataset with a greater number

of projects presents an opportunity to enhance the accuracy of this approach.

Moreover, while this study primarily focuses on static methods, future research

could benefit from exploring a combination of dynamic approaches with our

static approach, potentially offering a more holistic view of test flakiness and

its predictors.
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