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Abstract

Color appearance models can be used as an experimental design and analysis tool to
better study high-level color perception involving brightness and chromatic adapta-
tion. We investigate the experimental basis for the Helmholtz-Kohlrausch effect, the
contribution of chromatic intensity to our perception of brightness. A new exper-
imental method for measuring the brightness of chromatic colors leads to a model
of the Helmholtz-Kohlrausch effect, which we use to extend CIECAM16, the color
appearance model recommended by the Commission Internationale de l’Eclairage.
The model is tested on high-dynamic-range images. The process of building this
model also leads to several improvements in CIECAM16 itself.

We then investigate how color appearance models can similarly be used to design
experiments and model cognitive mechanisms of discounting the color of illumina-
tion. Two different experimental modalities are used to separately measure sensory
and cognitive mechanisms of chromatic adaptation to heterochromatic lighting con-
ditions. The results provide insight into this cognitive phenomenon while also setting
new benchmark processes for studies that use asymmetric color matching.
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Chapter 1

Introduction

Color appearance models seek to quantify and predict the human perception of visual stim-
uli. Whereas color spaces (i.e., CIELAB) only use physical information about the stimulus
and white point (i.e. tristimulus values) to describe color, color appearance models account
for the effect of the viewing environment in their modeling of visual perception. Their added
complexity gives color appearance models greater accuracy in mathematically describing the
perceptual experience generated by our visual system. This complexity also has its down-
sides; it discourages adoption in industrial applications compared to easier-to-use models.
Additionally, achieving the required level of rigor in these models compared to their com-
petitor color spaces is made more difficult by the complexity of the operations involved. This
thesis highlights the potential use of color appearance models (CAMs) in designing and ana-
lyzing psychophysical experiments and also shows how this application of a CAM can create
a useful feedback loop by which the results of CAM-based experiments can reveal areas of
improvement in models, such as CIECAM16, which is the current model recommended by
the Commission Internationale de l’Eclairage.

These models’ potential as tools of experiment design is especially relevant in cases where
the object of study is cognitive visual phenomena that sit downstream of the early stages
of visual processing modeled by CAMs. My thesis explores two such high-level phenom-
ena: perceptions of brightness (Chapter 3) and cognitive chromatic adaptation (Chapter 4).
Our research into brightness metrics revolves around the Helmholtz-Kohlrausch (H-K) effect,
where visual stimuli appear brighter as the chromatic saturation increases even if the stimuli
do not contain more light. This chapter begins with an example of the feedback loop men-
tioned above, where during our efforts to model the H-K effect, we found a flaw in the current
construction of equations for perceptual attributes in CIECAM16 (Section 3.1). In Section
3.2, we then report the results of an experiment that demonstrated that the discrepancy be-
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tween perceived brightness and measures of achromatic response are due to cognitive factors
related to the experimental task used to measure either brightness or luminance. Sections
3.3 and 3.4 cover our efforts to build a CAM-based model of the H-K effect, first by using
existing brightness-matching data (Section 3.3) and then by designing our own experiments
(Section 3.4). The use of color appearance modeling in our experimental design and in our
data analysis allows us to build a model of the H-K effect with more theoretical grounding
than other models, and which performs well on other recent brightness-matching data sets.
Finally, in Section 3.5, we test the performance of the model on high-dynamic-range images.

Our chromatic adaptation research focuses on how observers cognitively discount the
color of the illumination when they experience partial sensory adaptation. A preliminary
study (Section 4.2) measured baseline sensory adaptation to our chosen experimental setup of
a heterochromatic viewing environment. Section 4.3 then builds on this baseline through an
asymmetric hue matching experiment. The implementation of this experiment relied heavily
on color appearance modeling and demonstrated the benefit of using CAMs in experimental
design. The results shed light on the degree to which observers cognitively compensate for
the illuminant and highlight how further work could determine how best to model cognitive
chromatic adaptation with a CAM framework.
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Chapter 2

Background

Psychophysics is the study of the psychological effect of physical input. In our case, visual
psychophysics involves presenting observers with visual stimuli and asking them to complete
a task (e.g. “Adjust these stimuli until they are equally bright.”) or make a judgment
(e.g. “Which of these stimuli are brighter?”). The observers’ performance depends both
on the sensory neural calculations performed by the visual processing system in the brain
and higher-level cognitive functions that interpret the question and make judgments based
on the information generated by the visual system’s early stages of visual processing. This
thesis proposes that quantitative modeling of these early stages of visual color processing can
provide scaffolding on which we can better design psychophysical experiments to measure
cognitive color appearance phenomena and better model the results of such experiments.
Color appearance models provide the scaffolding that will be implemented in this thesis
to study color appearance phenomena related to chromatic adaptation and judgments of
brightness.

2.1 Early Visual Processing in Color Appearance
Models

Color appearance models are quantitative systems that seek to predict how light will be
perceived by human observers. They use information about the physical stimulus (as repre-
sented by CIE XYZ tristimulus values) alongside information about the condition in which
the stimulus is viewed in order to predict scales of perceptual attributes. To do so, the
models tend to mathematically mimic the processing that occurs in the early stages of vi-
sion, mostly in our retina. This processing can be summarized in four steps: trichromacy,
adaptation, compression, and opponency. This section provides a brief introduction to these
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visual processes, using the CIECAM16 color appearance model, which has recently been
recommended by the Commission Internationale de l’Eclairage (CIE), as an example [1].

2.1.1 Trichromacy

The first stage of visual processing is the absorption of light by three spectrally-biased classes
of cone photoreceptor cells in the retina; this is why we use tristimulus values to specify visual
stimuli. CIECAM16, like many other color appearance models, estimates cone signals—R,
G, B—from CIE XYZ tristimulus values using a matrix transform:

R

G

B

 =


0.401288 0.650173 −0.051461

−0.250268 1.204414 0.045854
−0.002079 0.048952 0.953127




X

Y

Z

 (2.1)

The effective spectral sensitivities of the CAM16 cone values are shown in Figure 2.1
alongside physiological cone fundamentals from Stockman and Sharpe [2, 3]. Note that the
CAM16 cone signals are not intended to directly replicate physical cone sensitivities. Rather,
the transformation from XYZ to RGB in CIECAM16 was optimized for performance on color
matching and color appearance data [4].

2.1.2 Adaptation

The photoreceptor cells and subsequent retinal processing cells adapt to the amount of
light in the visual field [5]. This adaptation occurs on a per-channel basis, allowing our
visual system to adjust to the color of the illumination and maintain (at least partially) the
achromatic appearance of non-spectrally selective surfaces. The white balance of a camera
mimics this process, which in human vision is called chromatic adaptation.

In most color appearance models, chromatic adaptation is modeled as a linear gain control
that applies to each channel independently. This mathematical simplification is called the
Von Kries model of chromatic adaptation. In CIECAM16, this takes the mathematical form:


Rc

Gc

Bc

 =


D YW

RW
+ (1 − D) YW R

RW R
0 0

0 D YW

GW
+ (1 − D) YW R

GW R
0

0 0 D YW

BW
+ (1 − D) YW R

BW R




R

G

B


(2.2)

The chromatic adaptation of each channel is accomplished by division by the respective cone
signal generated by a white stimulus (RW , GW , BW ), subject to the degree of adaptation, D,
(between zero and one) and normalization to the relative luminance of the white point, YW
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Figure 2.1: (solid lines) CIECAM16 RGB pseudo-cone fundamentals compared to (dashed lines)
physiologically-based cone fundamentals derived by Stockman [2, 3]

5



(typically 100). If the degree of adaptation is less than one, then the observer’s white point
deviates from the color of the illumination towards their internal resting reference white
point (RW R, GW R, BW R), which in CIECAM16 is arbitrarily and incorrectly set to the equal
energy illuminant (RW R = GW R = BW R = 100) [6]. In CIECAM16, the adaptation of the
visual system to the overall level of light in the scene is accomplished simultaneously with
compression, which is discussed next.

2.1.3 Compression

We are capable of detecting stimuli across three to four log units of light intensity within a
single scene [7, 8]. The human visual system uses a nonlinear response to light to be able
to see detail across such scenes. (Local adaptation of retinal cells also contributes to the
dynamic range of the human visual system [9].) In CIECAM16, this nonlinear response is
modeled by a piecewise function anchored by the following hyperbolic equation:

Ra = 400 ·


(

FL·Rc

100

)0.42

(
FL·Rc

100

)0.42
+ 27.13

+ 0.1 (2.3)

Rc is the chromatically-adapted cone signal from Equation 2.2 and FL is a term that nonlin-
early depends on the adapting luminance. Below cone values of 0.26 and above 150, linear
extensions of the hyperbolic function are used [1]. The relationship between stimulus lu-
minance for an achromatic stimulus and the tone-compressed cone signal, Ra, is shown in
Figure 2.2 for four luminance levels.

2.1.4 Opponency

The three chromatic channels of information from the cones are converted to an achro-
matic response channel and two opponent color channels before visual information is passed
from the retina to the rest of the brain. These opponent dimensions form the basis of the
higher level perceptual calculations performed by our visual cortex and are represented in
CIECAM16 by chromatic dimensions a and b, which roughly correspond with red vs. green
and yellow vs. blue color opponency, respectively:

a = Ra − 12 · Ga

11 + Ba

11 (2.4)

b = (Ra + Ga − 2 · Ba)
9 (2.5)
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Figure 2.2: Relationship between the luminance of achromatic stimuli and tone-compressed cone
response as modeled by CIECAM16 (Equation 2.3) at four levels of adapting luminance. Luminance
factors range from near black to scene white (five times adapting luminance).
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In CIECAM16, the adapted and tone-compressed cone signals are weighted and summed to
derive an achromatic signal term, A:

A =
(
2R

′

a + G
′

a + 0.05B
′

a − 0.305
)

· Nbb (2.6)

where AW is the achromatic signal for the reference white and Nbb is a background depen-
dency defined by:

Nbb = 0.725
(

YB

YW

)−0.2
(2.7)

YB is the luminance factor of the background and YW is the luminance factor of the reference
white.

2.2 Perceptual Attributes and Cognition

Our visual cortex takes these three channels of visual information and uses them to generate
our perceptual experience. Color scientists describe our perceptual experience of color using
the following scales:

• Brightness: the attribute by which a stimulus appears to emit or reflect more or less
light.

• Colorfulness: the chromatic intensity of a stimulus.

• Hue: the attribute of color appearance relating to color names such as red, green, blue,
purple, or yellow.

The above terms are often considered to be absolute measurements of intensity. There is a
lower bound (zero) on brightness and colorfulness, but neither has an inherent upper bound
except for the total capacity of our neural system. These absolute perceptual attributes are
often expressed relative to the scene conditions:

• Lightness: the brightness of a stimulus relative to the brightness of scene white.

• Chroma: the colorfulness of a stimulus relative to the brightness of scene white.

• Saturation: the colorfulness of a stimulus relative to its own brightness.

In the early stages of visual processing, color appearance models can mimic the well-documented
neural structure of our retina. However, we do not have a well-defined biological analog for
the calculations of perceptual attributes. Instead, we rely on color appearance data from
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Figure 2.3: A simple method to estimate perceptual attributes from opponent color channels is to
plot them on a Cartesian plane (left). Converting from rectangular to polar coordinates (right)
leads to a simple measure of chroma (the radius) and hue (the polar angle), although a color
appearance model will perform further calculations to improve these metrics’ performance.

psychophysical experiments, such as the well-known LUTCHI dataset [10, 11], to try to
determine the best mathematical approach. The methods by which CIECAM16 calculates
these perceptual attributes will be covered in a later chapter in this dissertation.

In the most basic paradigm used by simple color spaces such as CIELAB, brightness
and/or lightness can be derived directly from the achromatic signal sent to the visual cortex.
Scales of chromatic intensity and hue can be estimated by plotting the opponent chromatic
signals on a Cartesian plane and converting to polar coordinates, where the radius represents
the chromatic intensity and the polar angle represents the hue (Figure 2.3). We will see that
these simple mathematical approaches do not capture the cognitive processing that occurs on
these information channels. This is especially true in the case of brightness, which receives
input from both the chromatic and achromatic channels. Nonetheless, we will see that
these preliminary scales form a useful foundation to model these cognitive calculations as
we explore this phenomenon, known as the Helmholtz-Kohlrausch effect, in a subsequent
chapter.
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2.3 Cognitive Mechanisms of Chromatic Adaptation

Cognitive mechanisms are important in states of partial chromatic adaptation. Partial chro-
matic adaptation describes the state in which the ambient illumination does not appear
neutral. The human visual system has a natural white point and as the color of the illu-
mination changes from that preferred white point, the visual system does not completely
compensate for the color of the illumination [6, 12–17]. Under states of partial chromatic
adaptation, non-spectrally selective surfaces no longer appear neutral. For example, a piece
of paper that appears white under daylight may look slightly yellowish when illuminated by
an incandescent light. However, if an observer is asked the color of the paper, they may
answer that the paper is white because they would expect the paper to appear white un-
der illumination to which they fully adapted (which perhaps could also be called neutral
illumination). This process of cognitively accounting for the color of the illumination in
one’s perception of the color of illuminated objects is called “discounting the illuminant” by
color scientists [18, 19]. This cognitive “discounting the illuminant” is distinguished from
the so-called sensory adaptation that occurs in the retina.

Chromatic adaptation is the first step following trichromacy in color appearance mod-
els, so the models are implicitly representations of sensory retinal adaptation. There is no
provision later in the models to include cognitive adaptation nor is there any evidence of
how it should be modeled. Currently, it is possible in models like CIECAM16 to assume
that our cognitive mechanisms would follow the same path of chromatic adaptation as our
sensory mechanisms and thus one could still use a von Kries model by setting the degree of
adaptation to 1 (Equation 2.2). However, due to the inherent uncertainty in how the color
of an object will change under a different color of illumination, it is theoretically impossible
for our visual system to predict the color of an object under different illumination. Multiple
spectral reflectances (called metamers) can lead to the same cone responses under a given il-
lumination but these metamers will no longer match in color under a second illumination [20].
The potential for metameric illumination–where two different lighting technologies achieve
the same color of illumination with different spectral power distributions–only adds to the
uncertainty inherent in trying to predict the color of an object under a reference illumination
given only its apparent color under a test illumination.

Nonetheless, there is a robust field of study within experimental psychology that explores
how and if we maintain stable perceptions of object color appearance across changes in
illumination. Psychologists refer to this perceptual phenomenon as color constancy [18,
21]. The degree and accuracy of color constancy reported in the literature varies greatly
from experiment to experiment [21] and depends on the experimental design [22]. One
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common experiment to test this phenomenon is to ask observers to make color matches
across different illumination conditions (examples: [23, 24]; comprehensive list: [21]). At
times, though, these studies fail to account for the uncertainty due to metamerism [23] and
the term color constancy itself is potentially misleading for the same reasons [20]. However,
such experimental designs may potentially provide the opportunity to study discounting
the illumination since complete sensory adaptation to heterochromatic illumination is not
possible. In a later chapter of this dissertation, we will explore how color appearance models
can be employed to overcome the shortcomings of these earlier experiments and provide
insight into this cognitive mechanism of chromatic adaptation.
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Chapter 3

Brightness

This chapter begins with an analysis of how CIECAM16 predicts scales of perceptual at-
tributes (Section 3.1). We uncover significant flaws in the model and propose improvements
that will allow us to use CIECAM16’s scales of perceptual attributes as the foundation for
the rest of the experimental work in this thesis. In Section 3.2, we investigate how the cogni-
tive effects of different experimental methods of measuring brightness lead to a discrepancy
between measures of achromatic brightness and perceived brightness. This section reveals
why we need a model that accounts for the chromatic contribution to our perception of
brightness, known as the Helmholtz-Kohlrausch (H-K) effect. A model of the H-K effect
based on extant experimental data is introduced in Section 3.3. Section 3.4 then follows this
with a series of brightness matching experiments that allowed us to fit a new model of the
H-K effect with better performance and better theoretical grounding. Finally, we test an
application of the H-K model to high dynamic range images in Section 3.5.

3.1 Measures of Brightness, Lightness, and Chromatic
Intensity in the CIECAM framework

3.1.1 Background

Brightness is the perceptual attribute by which a light source or reflective surface appears
to emit or reflect more or less light [19, 25, 26]. Lightness is the brightness of a stimulus
relative to the brightness of a white-appearing stimulus in a similarly illuminated area, also
known as the reference white [19, 25, 26].

The perceptual attribute colorfulness describes the absolute chromatic intensity of a
visual stimulus. Chroma and saturation are relative measures of colorfulness; chroma is
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defined as the colorfulness of a stimulus relative to the brightness of similarly-illuminated
white and saturation is defined as the colorfulness of a stimulus relative to its own brightness
[19, 25, 26].

Much work has been done over past decades to model brightness, lightness, colorfulness,
and chroma. This section analyzes the lineage and current state of the brightness, lightness,
colorfulness, and chroma functions in two prominent color appearance models: CIECAM02
[27, 28] and CIECAM16 [1, 4]. It is worth noting that CIECAM02 and CIECAM16 are
identical after the chromatic adaptation stage. Thus, they are treated interchangeably in
this section.

As outlined in Section 2, widely used color appearance models follow a similar flow.
First, given the CIE XYZ tristimulus specification of a stimulus, a model will predict the
responses of the three types of cone cells in our retina which are the basis of color vision.
(Note that these cone spectral responses are chosen for model performance and are not
meant to represent biological cone spectral sensitivities.) The chromatic and luminance
adaptation of the cone cells will be modeled using information about the viewing conditions.
The adaptation of the cone cells represents the first nonlinearity between signal and light in
these models. The adapted and compressed cone signals will then be weighted and summed
to derive an achromatic signal, A, and opponent chromatic signals, a and b. For instance, in
CIECAM02 and CIECAM16, this relationship is represented by

A = [2R
′

a + G
′

a + 0.05B
′

a − 0.305]Nbb (3.1)

a = R
′

a − 12G
′

a/11 + B
′

a/11 (3.2)

b = 1
9(R′

a + G
′

a − 2B
′

a) (3.3)

where R
′
a, G

′
a, and B

′
a are the adapted signals of the three cone types and Nbb is a background

dependency [1, 4]. Lightness, J , and brightness, Q, are then derived from the achromatic
signal. The chromatic signals are used to calculate chroma, C, saturation, s or t, and
colorfulness, M . The equations used to calculate J , Q, C, and M are the subject of this
section.

3.1.2 Brightness and Lightness

The equations for brightness, Q, and lightness, J , in CIECAM02 and CIECAM16 originate
mostly from the Hunt appearance model, which underwent several iterations from the early
1980s to the mid-1990s [29–33]. Of particular interest is the revision to the equations for J
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and Q that Hunt made in the early 1990s [32]. The original model had linear relationships
between A, Q, and J [31]:

Q = N1(A + M) − N2 (3.4)

and
J = 100 Q

Qw

(3.5)

where M is the colorfulness of the stimuli, N1 and N2 are factors that Hunt used to account
for luminance dependencies related to work by Stevens and Bartleson [34], and Qw is the
brightness of white in the scene. Note that the use of M in the equation for Q was an
attempt by Hunt to account for the Helmholtz-Kohlrausch effect. This dependency of Q on
M was lost in the transition from the Hunt model to CIECAM97s, CIECAM02’s precursor,
and its presence or absence in the equations discussed in this section does not detract from
the overall discussion.

In 1991, Hunt revised the equations for Q and J , introducing nonlinearities in each [32]:

Q = N1

[
7
(

A + M

100

)]0.6
− N2 (3.6)

and
J = 100

(
Q

QW

)z

(3.7)

where
z = 1 +

√
YB

YW

(3.8)

with YB and YW being the luminance factors of the background and white point, respectively.
(Note: M/100 in Equation 3.6 is equal to M in Equation 3.4. Hunt changed the scaling of
that variable between the two papers.)

The first substantial change in the model is the inclusion of a 0.6 power in converting
from A to Q. Hunt offers no explicit justification for this modification, merely stating: “The
different achromatic signal A in the revised model, leads to the following expression for
Q,” and then, “These formulae lead to values of Q that, at normal photopic levels, are very
similar in the original and revised models”[32]. However, careful examination of the methods
for calculating A in each model reveals no differences that would necessitate the inclusion
of the 0.6 power nonlinearity. The only apparent nonlinearity prior to this stage in either
model is the tone compression function for the cone signals, which is identical in both models
[31, 32]:

f(I) = 40 I0.73

I0.73 + 2 (3.9)
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There is neither a clear cause for the inclusion of the 0.6 power nor any evidence of equality
in Q values between the two models, contrary to the claims made by Hunt in justification
for the equations.

Hunt also introduces a pair of background dependencies in his 1991 model [32]: a multi-
plicative factor in the formula for A (Nbb in Equation 3.1) and a nonlinearity in the formula
for deriving J from Q (z in Equation 3.7). The Nbb term predicts that the achromatic signal,
A, of a given stimulus will increase as the luminance factor of the background decreases.
This predicted increase in A is carried through to the brightness of the stimulus, Q, and the
brightness of the reference white, QW , via Equation 3.6. However, the contribution of Nbb

is canceled out in the formula for J , Equation 3.7, when Q is divided by QW . Thus Hunt
needed the z term to also increase the lightness of a stimulus as the background luminance
factor, YB, decreases. Since Q/QW varies from 0 to 1 in Equation 3.7, decreasing z as YB

decreases (Equation 3.8) causes J to increase as Hunt desired.
The addition of the z exponent to Equation 3.7 provides a possible explanation for

Hunt’s addition of the 0.6 exponent to Equation 3.6. Hunt may have wanted to maintain the
similarity between his previous model (Equations 3.4 and 3.5) and the equation for brightness
published by Bartleson [34], which Hunt claims is equivalent to his model (see Appendix II
of [31]). By including the 0.6 power in the conversion from A to Q, Hunt partially undoes
the nonlinearity introduced in going from Q to J , making the overall conversion from A to
J more similar to his original, linear relationships between these (Equations 3.4 and 3.5).
However, if this was Hunt’s motivation, there was no clear justification for separating the
two nonlinearities between two steps of the model (Equations 3.6 and 3.7) instead of just
applying them both in a single step, such as in the formula for J (Equation 3.7).

Hunt’s decision to separate these two nonlinearities in his model has been propagated
through the CIE-approved color appearance models for the past thirty years. The Hunt
model was drawn heavily upon and formed the basis for the Q and J equations when
CIECAM97s was developed to unify the various competing color appearance models of the
1980s and 1990s [19]. The two nonlinearities that are used in CIECAM97s to calculate J

from A seem to be equivalent in function to Hunt’s nonlinearities. Since CIECAM97s and
the subsequent CIE color appearance models calculate J before Q (as opposed to Q before J

in the Hunt model), both nonlinearities from Equations 3.6 and 3.7 are included in a single
step:

J = 100
(

A

AW

)c·z
. (3.10)

In CIECAM97s, c is set to either 0.525, 0.59, or 0.69 for dark, dim, or average surrounds,
respectively. Thus, c carries similar values to the 0.6 power used in the Hunt model (Equation
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3.6). Like in the Hunt model, z depends on the relative background luminance:

z = 1 + FLL
YB

YW

(3.11)

where FLL is one for stimuli smaller than 4° of visual angle and zero otherwise. Then,
deriving the calculation for Q from J from the Hunt model, CIECAM97s essentially inverts
Equation 3.7, introducing a third nonlinearity to undo the z power that the Hunt model
predicted to solely apply to J :

Q =
(1.24

c

)(
J

100

)0.67
(AW + 3)0.9 . (3.12)

The exponent in Equation 3.12, 0.67, is approximately the multiplicative inverse of z,
0.69, for a typical, mid-gray background (YB = 20), which seems to confirm our interpre-
tation that the 0.67 exponent is merely an artifact of how the formula for Q was adapted
from the Hunt model and was not based on visual data. Importantly, the derivation of
these CIECAM97s formulas did not account for the intent behind the placement of these
nonlinearities in the Hunt model. As discussed above, the z background dependency was
most likely introduced by Hunt into Equation 3.6 to compensate for the fact that J has not
been affected by Hunt’s other background dependency, Nbb, which affected Q. Thus z was
required by Hunt to only apply to J . With the order of J and Q calculation reversed in
CIECAM97s, z now affects both J and Q, so Hunt’s requirement of the placement of z in
Equation 3.6 is no longer relevant for CIECAM97s. The focus in the derivation process of
CIECAM97s on the mathematics of the Hunt model led to a literal inversion of Equation
3.6 to create Equation 3.12 without considering that the nonlinearity in Equation 3.6 is only
present because Q is calculated before J in the Hunt model.

The basic structure of these equations introduced in CIECAM97s—two nonlinearities
from A to J and then a third nonlinearity from J to Q—has been carried forward into the
model’s successors, CIECAM02 and CIECAM16 [1, 27]. In both models, the formula for J

matches Equation 3.10, although z is now slightly different:

z = 1.48 +
√

YB

YW

. (3.13)

The nonlinearity to calculate Q from J was simplified from a 0.67 power to a square root:

Q =
(4

c

)(
J

100

)0.5
(AW + 4)F 0.25

L . (3.14)
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Figure 3.1: Approximate lightness and brightness scales calculated using the CIECAM16 formulas
for J and Q (Equation 3.10 and Equation 3.14). The viewing conditions were assumed to be
“average” with a reference white of 400 cd/m2 and a white background.

There is little theoretical justification for the nonlinear relationship between lightness
and brightness. No other color appearance model that predicts both brightness and lightness
includes a nonlinear relationship between the two. A simple thought experiment highlights
the nonlinearity’s problematic nature. Imagine being shown an array of gray cards and
being asked to choose the card that is halfway between black and white in terms of lightness.
Then, you are asked to choose the card that is halfway between black and white in terms
of brightness. The two cards chosen would be the same (allowing for some small degree of
psychophysical uncertainty). But CIECAM16 claims that the same card will never be chosen,
no matter the viewing conditions: the card that CIECAM16 predicts to have middle lightness
will always be lighter than the card that CIECAM16 predicts to be middle brightness.

Practically, the nonlinear relationship between lightness and brightness seems to lead
to incorrect predictions of brightness. Figure 3.1 shows neutral scales from black to white
in equal steps of either lightness or brightness, as predicted by CIECAM16. (The viewing
conditions were assumed to be “average” with a reference white of 400 cd/m2 and a white
background.) Figure 3.1 is a direct visual description of the nonlinearities of the lightness and
brightness of CIECAM16 and it is clear from these figures that the brightness nonlinearity
is faulty.

Fortunately, this error can be simply remedied by removing the nonlinearity in the equa-
tion for Q. Additional improvements to the performance of the brightness equation can be
made by removing extraneous luminance and background dependencies in the equations for
A and Q that duplicate dependencies which already exist in the formulas. The equations for
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the achromatic signal, lightness, and brightness become:

A = 2R
′

a + G
′

a0.05B
′

a − 0.305 (3.15)

J = 100
(

A

AW

)c·z
(3.16)

Q =
(2

c

)(
J

100

)
(AW ) (3.17)

Equation 3.17 restores the linear relationship between J and Q. The removal of Nbb from
Equation 3.15 compared to Equation 3.1 achieves two ends. First of all, this background-
dependent term is redundant, given that Q depends on J , and J depends on the relative
background luminance factor via z in Equation 3.16. Hunt originally introduced Nbb in his
1991 model (Equations 3.6-3.8), where the z background dependency only applied to J , and
thus the Nbb term was necessary to give brightness a background dependency. Now that z

effects both J and Q, there is no need for Nbb. In fact, such a factor is undesirable since it
only effects Q and not J . Additionally, Nbb behaves impossibly, approaching infinity as the
relative background luminance approaches zero and producing clearly unrealistic predictions
below a background luminance factor of 6%, which is the darkest background used by Hunt
in deriving the term. Removing this explicit background dependency is consistent with the
LUTCHI data, where all brightness scaling was done against the same gray background [11].
Thus, removing the Nbb factor returns the formulas to being a representation of the LUTCHI
data, where brightness has the same background dependency as lightness.

The FL factor in the CIECAM16 formula for Q (Equation 3.14) was introduced to
CIECAM02 via a paper [35] that explored the use of a power function instead of a hyperbolic
function to represent the cone dynamic response function in CIECAM97s. The inclusion of
this FL factor was not justified by specific data nor mentioned in the text. Nonetheless, while
that paper’s main proposal for a power function to serve as the cone response function was
not adopted by CIECAM02, CIECAM02 did include this FL factor in the formula for Q. Its
inclusion was not mentioned in the papers that introduced CIECAM02 [28, 36]. It’s possible
that the factor was introduced to help the Q formula mirror the adapting luminance depen-
dency of the formula for colorfulness, M , so that saturation, which is colorfulness divided by
brightness, would remain constant across adapting luminance. However, including the FL

factor actually achieves the exact opposite, making the adapting luminance dependencies of
Q and M less similar, because Q contains an additional adapting luminance dependency in
the AW term. So no theoretical or data-based justification for the FL factor in the formula
for Q can be found. Additionally, removing the FL factor, as proposed here, significantly im-
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Figure 3.2: LUTCHI brightness scaling data [11] as predicted by (a) Q in CIECAM16 (Equation
3.14) and (b) by the proposed formula for brightness (Equation 3.17). The coefficient of determi-
nation (r2) between the two variables is 0.86 for CIECAM16 and 0.95 for the proposed formula.
Colors are approximate. Note that the absolute magnitude of the scales need not match the mag-
nitude of the observed data.

proves the performance of the proposed Q formula (Equation 3.17) on the LUTCHI data (see
below). Thus, given the performance benefits and the lack of any data-based or theoretical
downside, the FL factor must be removed.

The inverse c factor, which predicts the overall magnitude of the brightness scale to
increase as the surround darkens, is also a candidate for removal, given that the LUTCHI
data did not directly test the relationship between the surround conditions and the overall
magnitude of the brightness scale. However, we have left that factor in the formula pending
further data on the effect of surround conditions on brightness. The overall magnitude of the
Q scale has been reduced by half. Originally, Q was scaled to match the arbitrary magnitude
of the brightness scale used in the LUTCHI experiment [11]. By rescaling the Q scale, one
unit of Q is closer to one unit of reference visual difference as represented by the COMBVD
dataset used to derive the CIECAM02-UCS and CAM16-UCS uniform color spaces [4]. Q

is now roughly the same magnitude as J when white luminance LW = 100 cd/m2 since that
is the luminance of the reference white for the COMBVD data [16].

The performance of the new formula for brightness (Equation 3.17) was compared to the
brightness formula from CIECAM16 (Equation 3.14) using the LUTCHI color appearance
data set [11]. These data consist of 36 stimuli whose brightness was scaled at six luminance
levels ranging from LW = 0.4 cd/m2 to LW = 842 cd/m2 (approximately 11 stops). Hunt
relied heavily on these data in his introduction of nonlinearities to the equations for brightness
and lightness [9], thus they serve as relevant reference data for the descendants of the Hunt

19



model, including CIECAM16. The proposed, linear formula for brightness, Equation 3.17,
outperforms the CIECAM16 formula for brightness, Equation 3.14, on these data (Figure
3.2). These results lend experimental support to the theoretical justification for the proposed
modifications.

3.1.3 Chroma and Colorfulness

In CIECAM02 and CIECAM16, the first step in calculating terms of chromatic intensity is
to calculate t, which is similar to saturation, from the opponent chromatic signals a and b:

t = 50000NcNcbet

√
a2 + b2

13
(
R′

a + G′
a + 21

20B′
a

) (3.18)

In this formula, Nc is either 1, 0.9, or 0.8 for average, dim, and dark surround conditions,
respectively. R

′
a, G

′
a, and B

′
a are the adapted cone signals. The hue-dependent eccentricity

factor et is included to account for scaling differences between a and b. Ncb is a background
dependency. These terms will be discussed below. t is then used to calculate chroma, C,
colorfulness, M , and saturation, s:

C = t0.9
(

1.64 − (0.29)
YB
YW

) √
J

100 (3.19)

M = C · F 0.25
L (3.20)

s = 100
√

M

Q
(3.21)

CIECAM16’s formula for chroma has threefold dependence on the background luminance
factor, YB: via the explicit term in Equation 3.19, via J (see the z term in Equations 3.10
and 3.13), and via the Ncb factor in the formula for t (Equation 3.18). Colorfulness, as
derived from chroma in CIECAM16, is subject to these three background luminance factor
dependencies, plus the additional dependence FL on the background luminance factor. The
threefold dependence of chroma on background was an intentional choice by Hunt in his
1994 model [37]. The desired effect was for a darker background to increase the chroma and
colorfulness of medium-dark and dark colors and to decrease the chroma and colorfulness of
lighter colors [37]. However, the current background dependencies only achieve this effect
when the background luminance factor is greater than 20 (Figure 3.3). Below YB = 20,
predicted the chroma of constant stimuli increases, approaching infinity as YB approaches
zero. This implausible behavior is due to Ncb, which approaches infinity as YB approaches
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Figure 3.3: Dependence of the chroma of stimuli in CIECAM16 on the background luminance factor
relative to their chroma with a mid-gray background, for stimuli with lightness ranging from 10 to
90 in steps of 10. All lines approach infinity as the background luminance factor approaches zero.

zero:
Ncb = 0.725

(
YB

YW

)−0.2
(3.22)

Thus, the current background dependencies in the CIECAM16 formula for chroma do not
follow Hunt’s desired behavior and produce highly implausible values for realistic background
levels achieved by modern displays.

Furthermore, careful analysis of the LUTCHI data does not support Hunt’s claims about
the background dependency of chroma and colorfulness. Key sessions in the LUTCHI ex-
periment involved scaling colorfulness (and other color appearance attributes) against gray
and white backgrounds. In line with Hunt’s observations, dark colors were scaled with lower
colorfulness against the white background than against the gray background. However, the
actual colorimetry of the stimuli changed between the background conditions; the stimuli
against the white background for which Hunt observed lower colorfulness ratings were, in
fact, physically dimmer. Thus, no background dependency is necessary to predict colorful-
ness ratings across different background luminance factors from the LUTCHI experiment.

The lack of background effects on colorfulness in the LUTCHI experiment seems con-
tradictory to the high performance of CIECAM16—background dependency included—on
the LUTCHI colorfulness data. This discrepancy can be explained via the relationship be-
tween adapting luminance and background luminance factor. If the adapting luminance is
not specified by the user, CIECAM16 recommends using the background luminance factor to
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calculate the adapting luminance from the white point luminance. Unfortunately, this causes
predicted brightness and colorfulness—color appearance attributes that scale with adapting
luminance—to decrease as the background luminance decreases even if the stimulus is held
constant. So, the additional background dependencies in the brightness and colorfulness
formulas (Figure 3.3) merely offset this unintentional decrease, holding the color appearance
attributes constant for constant stimuli.

This combination of deriving adapting luminance from background luminance factor and
then undoing the effects of adapting luminance through the three background dependencies
in the equations for chroma and colorfulness is confusing for the user, overly complicated,
and misrepresents what the color appearance model is doing. A simpler and clearer formula
for colorfulness can be derived from the numerator of the formula for t (Equation 3.18):

M = 47Ncet

√
a2 + b2 (3.23)

Chroma is derived by colorfulness by dividing by the achromatic white signal to make chroma
invariant to scene luminance:

C = 35 M

Aw

(3.24)

Saturation, s, can be calculated from colorfulness and brightness using a linearized version
of the CIECAM16 formula for s:

s = 100M

A
(3.25)

The achromatic signal, A, is used in the formula for saturation in place of brightness, Q,
to help achieve partial chromaticity-constancy of the saturation metric across changes in
luminance, which is a desirable property for such metrics [36].

In addition to removing the myriad background dependencies, these formulas make the
theoretical improvement of linearizing the formulas. The many nonlinearities in the original
formulas (Equations 3.19 to 3.21) appear to have been introduced to improve the perfor-
mance of the model on the LUTCHI data without theoretical justification. As will be seen
below, linearizing the formulas improves the linearity of their chroma and colorfulness pre-
dictions. Removing the background dependencies (specifically, the

√
J

100 term in Equation
3.19) requires this restructuring of the formulas for chroma and colorfulness. An additional
reason for removing the explicit J factor from the formulas for M and C is that the factor
merely and poorly canceled out the denominator of the formula for t (Equation 3.18), leading
to incorrect predictions of chroma and colorfulness for stimuli with large values of blue cone
signal, B

′
a.

For a given reflective object, chroma—as predicted by both CIECAM16 and the proposed
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Figure 3.4: Effect of the overall luminance level on (a) colorfulness, M , and (b) brightness, Q, for
CIECAM16 and the proposed formulas. Colors from the Munsell color order system were used to
measure the relationship between colorfulness and luminance. The proposed formulas for Q and M
follow similar trends with regard to luminance, as they both scale proportional to AW . All values
were normalized relative to a white luminance of 1000 cd/m2.

model—is constant as the scene luminance changes. In both models, the colorfulness of a
reflective object increases with increasing scene luminance (Figure 3.4). In CIECAM16, this
luminance dependency is proportional to F 0.25

L . In the proposed model, the colorfulness of a
given object has the same relationship with scene luminance as the achromatic white signal,
AW , given that a, b, and AW are all proportional to the adapted cone signals R

′
a, G

′
a, and

B
′
a.

We have modified the overall magnitude of the M and C scales. In CIECAM02 and
CIECAM16, M was scaled to match the arbitrary magnitude of the colorfulness scale from
the LUTCHI experiments [11]. The proposed M formula, Equation 3.23, is scaled by 0.75
compared to the formula from CIECAM16. This was done to better match the scale of unit
visual differences from the COMBVD color difference dataset [38]. Given that the proposed
Q scale was scaled by 0.5 relative to its CIECAM16 formula, the M dimension is now 50%
larger relative to the Q dimension in the proposed formulas. This was done to minimize
STRESS on the COMBVD data [39].

The formula for C was scaled by 0.6 relative to its magnitude in CIECAM16. This scaling
provides a more accurate magnitude for chroma relative to the J dimension in the proposed
formulas, improving the uniformity of the scales and minimizing STRESS as measured by
the COMBVD color difference dataset [38, 39].

We propose to change the eccentricity function, et. The opponent chromatic signals,
a and b (Equations 3.2 and 3.3), are not guaranteed to be properly scaled in magnitude
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relative to each other. Thus, CIECAM02 and CIECAM16 use an eccentricity factor, et, to
account for differences in the scaling of a and b when calculating chroma and colorfulness.
The formula used in CIECAM16 can be traced back to values derived by Hunt for his 1982
color appearance model [29]. Hunt derived his eccentricity factors by drawing loci of constant
saturation from the NCS color order system on a u′v′ chromaticity diagram. Specifically,
he calculated the relative radii of these loci at the four unique hues from the NCS system.
While u′v′ coordinates have no concrete relationship with a and b, Hunt reasoned that the
limits of the relative radii of the loci as the saturation approached zero would be invariant
of the color coordinates used. These assumptions and calculations led to eccentricity values
of 1.45 for NCS unique blue, 0.65 for unique red, 0.5 for unique yellow, with the eccentricity
of unique green set to unity [29].

In the 1985 revision of his color appearance model, Hunt introduced cross-talk between
his R, G, and B cone signal values [30]. This cross-talk calculation included an additional
square root applied to the cone responses. Hunt also took the square root of the eccentricity
values from his 1982 paper since he was now working in square root response space, leading
to eccentricity values of 1.2 for blue, 0.8 for red, and 0.7 for yellow, with the eccentricity of
green set to unity. These values were used to derive the eccentricity function, et, found in
CIECAM16 (Figure 3.5) [4]:

et = 1
4

[
cos

(
hπ

180 + 2
)

+ 3.8
]

(3.26)

The hue angle, h, is defined as:

h = tan−1
(

b

a

)
(3.27)

The formula for eccentricity gives values of approximately 1.198 for blue, 0.774 for red,
0.723 for yellow, and 0.988 for green, closely matching the above values from Hunt’s 1985
paper. The hue angles used for the NCS unique hues were also transcribed from Hunt’s 1985
model as opposed to measuring the hue angle of the NCS unique hues in the CIECAM16 a-b
dimensions.

This eccentricity function is problematic for a number of reasons. First of all, there are
several potential flaws in the method used by Hunt to derive the initial eccentricity values
in 1982. Chromaticness in the NCS system is relative to the maximum chromatic intensity
of each individual hue [40], thus NCS chromaticness and saturation are not meant to be
compared in absolute terms across hues as Hunt did by drawing loci of constant saturation.
Additionally, there is no self-apparent justification for his assumption that the limit of the
loci of constant saturation as saturation approaches zero is invariant across different color
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Figure 3.5: Average eccentricity of Munsell colors as a function of CIECAM16 hue angle in com-
parison to the CIECAM16 et function (Equation 3.26) and the proposed formula, which was fit to
the Munsell data (Equation 3.28). Colors are approximate.

spaces. Secondly, there is no justification for the use of the same numeric values for Hunt’s
1985 model and CIECAM16, given that they have different RGB cone spaces and different
tone compression functions. While CIECAM16 has remained true to the values derived by
Hunt, it has lost the connection to Hunt’s original intent in proposing these values. Finally,
CIECAM16 assumes that the proper eccentricity values follow a sinusoidal shape between the
target unique hue values. However, no evidence is provided to support such an assumption.

By returning to Hunt’s original intent—the scaling of stimuli of each hue by their relative
chromatic strength—we can derive an eccentricity function that resolves the problems de-
scribed above. Unlike the NCS system, which normalizes each hue by its chromatic strength,
the Munsell system has a measure of chromatic intensity, chroma, whose magnitude can
be compared across hues [40]. To determine the proper eccentricity function, the Munsell
chroma of each Munsell color is divided by

√
a2 + b2, which is proportional to the chroma

of the color following our proposed formula (Equations 3.23 and 3.24). The mean dividend
for each Munsell hue is shown in Figure 3.5. A new formula for et was fit to these data:

et = −0.0582 cos(h) − 0.0258 cos(2h) − 0.1347 cos(3h) + 0.0289 cos(4h)
−0.1475 sin(h) − 0.0308 sin(2h) + 0.0385 sin(3h) + 0.0096 sin(4h) + 1

(3.28)
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The formula was normalized to have an average value of one. While this proposed formula
is more complex than the current formula (Equation 3.26), it merely reflects the trend
of the Munsell data (Figure 3.5), which appears plausible. We believe that it is better to
directly represent the Munsell data rather than choose an ambiguous middle-ground between
complexity and basis in data.

While the proposed formulas offer clear theoretical advantages to the current CIECAM16
formulas for chroma and colorfulness, it is important to verify that these proposed formulas
also perform well on visual data. Data from the Munsell color order system [41] and the
LUTCHI color appearance scaling experiments were used to compare the proposed and
current models. These LUTCHI data contain two subsets. The first set of data consists of
the scaled colorfulness of 99 stimuli at two luminance levels (252 cd/m2 and 42 cd/m2) and
three relative background luminance levels (6.2%, 21.5%, and 100%) [10]. The second set
of data consists of the scaled colorfulness of 36 stimuli at six luminance levels ranging from
Lw = 0.4 cd/m2 to Lw = 842 cd/m2 (approximately 11 stops) against a mid-gray background
[11].

Different methods were used to calculate the adapting luminance for the CIECAM16 for-
mulas versus the proposed formulas. Since, as discussed above, the background dependencies
in the current CIECAM16 formulas for chroma and colorfulness compensate for background
dependency of adapting luminance, the adapting luminance was allowed to vary with back-
ground luminance when predicting the LUTCHI data with the current CIECAM16 colorful-
ness formula. Even though this method of calculating the adapting luminance is problematic
(as discussed above) and can easily lead to errors for unaware practitioners, this method was
chosen to represent the best possible performance for CIECAM16 on the LUTCHI colorful-
ness data. On the other hand, since the proposed formulas remove this convoluted set of
counteracting background dependencies, the adapting luminance could be held at 20% of
the white point luminance for all LUTCHI data calculations.

The models’ performance on the Munsell data is shown in Figure 3.6 and their perfor-
mance on the LUTCHI data is shown in Figure 3.7. The proposed chroma formula shows a
clear improvement on the Munsell data compared to the current formula. For the current
formula, the plot appears to curve downwards as chroma increases. This nonlinearity is
possibly due to the nonlinear relationship between t and C in CIECAM16 (Equations 3.19),
where greater values of C are compressed. Figure 3.6 shows the clear advantage in linearizing
these formulas: there is no more downward curve at high chromas with the proposed formula.
However, when analyzing Munsell chroma predictions within a single hue and chroma, the
proposed chroma of the proposed formula decreases with decreasing value. In summary, the
proposed formulas appear to be superior at predicting Munsell chroma as chroma and hue
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Figure 3.6: The chroma of colors from the Munsell color order system [41] as predicted by chroma
in (a) CIECAM16 (Equation 3.19) and (b) the proposed formula (Equation 3.24). The coefficients
of determination (r2) for the data are 0.87 for CIECAM16 and 0.96 for the proposed formula. The
proposed chroma attribute also demonstrates improved linearity. Note that colors are approximate
and that the scales need not be equal in magnitude.

change, but not as consistent at predicting Munsell chroma as value changes. We believe
that this is a worthwhile tradeoff.

The proposed formula for colorfulness (Equation 3.23) underperforms the current CIECAM16
formula (Equation 3.20) on the LUTCHI data (Figure 3.7). This performance advantage for
the CIECAM16 formula is due to the difference in luminance dependency of the current and
proposed formulas. The current colorfulness formula scales proportional to F 0.25

L , whereas the
proposed colorfulness formula has the same relationship with scene luminance as AW (Figure
3.4). However, there is an important theoretical argument for the proposed formula’s propor-
tionality to AW : this matches the luminance-dependent behavior of the proposed brightness,
Q, formula (Equation 3.17). Thus, as scene luminance increases, the proposed colorfulness
and brightness scales remain in proportion to each other. This proportionality is necessary for
saturation to remain invariant to scene luminance level. In the current CIECAM16 formulas,
brightness increases more quickly than colorfulness with increasing luminance, leading to the
poor performance of CIECAM16 on the LUTCHI brightness data (Figure 3.2). Given these
theoretical considerations and the importance of the AW dependency for the proposed Q

formula, the worse performance on the LUTCHI data by the proposed colorfulness formulas
is permissible.
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Figure 3.7: Colorfulness data from the LUTCHI scaling experiments [10, 11] as predicted by (a)
CIECAM16 (Equation 3.20) and (b) the proposed formula (Equation 3.23). The coefficients of
determination (r2) for the data are 0.81 for CIECAM16 and 0.71 for the proposed formula. Note
that colors are approximate and that the scales need not be equal in magnitude.

3.1.4 Discussion

We have introduced important revisions to the CIECAM02 and CIECAM16 formulas for
brightness, colorfulness, and chroma. Our goal has been primarily conservative in na-
ture—not to extend CIECAM16 for new applications or datasets, but rather to improve
its internal consistency while remaining grounded in the LUTCHI dataset and the principles
used to derive the original equations. When needed, data from the Munsell color order sys-
tem has supplemented the LUTCHI data, allowing us to improve the linearity of the color
appearance model. Additionally, simplifications to certain formulas have brought the color
appearance model into line with the theoretical definitions of color appearance terminology
while also making explicit the effects accounted for by the model.

Analyzing the history of the equation for brightness, Q, in these color appearance models,
we found that the nonlinear relationship between lightness, J , and brightness is an artifact of
how the Hunt model was transcribed to CIECAM97s. Linearizing the nonlinearity (Equation
3.17) removes a perceptual paradox (Figure 3.1) and improves the performance of the Q

equation on brightness scaling data from the LUTCHI experiment (Figure 3.2). Removing
redundant dependencies from the CIECAM16 equation for Q (Equation 3.14) simplifies the
brightness formula and improves performance. Thus, the proposed changes to the brightness
formula are justified and necessitated by both theory and performance and are the most
urgent of all changes proposed in this section.

Resemblance between the CIECAM16 formulas for Q and C, chroma, (Equation 3.19)—
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specifically, the
√

J
100 term that appears in both and is clearly incorrect in the Q formula—

prompted a reevaluation of CIECAM16 formulas for chroma, colorfulness, M , and saturation,
s. Subsequent improvements made to the chroma and colorfulness formulas fall into three
categories: background dependencies, eccentricity, and linearity.

The current CIECAM16 formulas contain myriad background dependencies that coun-
teract each other. This convoluted formulation hid the fact that the actual background
dependency did not follow Hunt’s qualitative description of how chroma and colorfulness
depend on background luminance factor. Furthermore, close analysis of the LUTCHI data
revealed no statistically significant effect of background luminance factor on scaled colorful-
ness or chroma. Thus, the background dependencies have been removed from the formulas
for colorfulness and chroma. Additionally, it is now recommended that the adapting lumi-
nance be specified directly by the user, as opposed to being derived from the background
luminance. Together, these changes mimic the background-invariance found in the current
formulas. Now, this invariance is explicit, as opposed to the current formulas, which claim
to be dependent on background luminance but are actually invariant in practice. This new,
more honest formulation allows for future addition of background dependencies, if desired
by the user. For instance, a background dependency of colorfulness has been reported by
Kim, Weyrich, and Kautz [42]. They follow a similar approach to modeling as proposed here;
they do not include an explicit background dependency in their formulas for colorfulness and
chroma. Instead, they modify the adapting luminance input term to reflect the changing
background level while holding the stimulus luminance level constant. The Kim et al. ap-
proach may be worth exploring in a future iteration of CIECAM16. In the current model,
such an accommodation is not possible because absolute luminance level of the stimulus is
derived from the adapting luminance as opposed to being specified independently.

Eccentricity is a key function in CIECAM02 and CIECAM16 that scales colorfulness,
chroma, and saturation to be perceptually uniform across hues. The current eccentricity
function (Equation 3.26) was fit to four values from an early version of the Hunt model.
These values are no longer relevant to the current model given the fundamental differences
between Hunt’s early model and CIECAM16. Furthermore, their original derivation relied
on assumptions that are unsupported and potentially incorrect. We have followed the core
principles laid out by Hunt along a more rigorous path to deriving an eccentricity function
directly from an analysis of the Munsell color order system using CIECAM16 color coordi-
nates. The directness of the derivation promises to provide a much more reliable measure of
eccentricity (Equation 3.28).

The proposed formulas for colorfulness, chroma, and saturation have been linearized in
comparison to their current CIECAM16 counterparts. This linearization is more theoreti-
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cally grounded in the definitions of these attributes and leads to improved performance on
data from the Munsell color order system. However, the linearization of the colorfulness
equation contains a significant tradeoff. In the current CIECAM16 colorfulness formula, col-
orfulness increases in proportion to the adapting-luminance-dependent F 0.25

L . Colorfulness
in the proposed formulas increases with increasing adapting luminance at the same rate as
AW , the achromatic white signal (Figure 3.4). The matching luminance dependencies of AW

and M in the proposed formula ensures that colorfulness remains proportional to brightness
as adapting luminance increases, and the AW dependency of brightness is in turn necessary
to correctly predict the LUTCHI brightness data. However, the AW dependency does hurt
the performance of the proposed colorfulness formula on the LUTCHI colorfulness data com-
pared to the current CIECAM16 formula. More work should be done to evaluate the proper
relationship between colorfulness and adapting luminance.

3.2 Why Achromatic Response is Not a Good Measure
of Brightness

3.2.1 Background

One common metric for the sensitivity of the human visual system in photopic conditions
is luminance, which is defined by a spectral sensitivity function symbolized V (λ). V (λ) was
standardized in 1924 by the Commission Internationale de l’Éclairage (CIE) using results
from an experimental method called heterochromatic flicker photometry [43]. In flicker
photometry, the visual stimulus alternates quickly between a test patch and a reference
patch (on the order of 10-30 Hz [44–46], but dependent upon the luminance of the stimuli
[47]). The intensity of the reference patch is adjusted until the two patches fuse and the
perception of flicker disappears. If the frequency of the flicker is properly set, then there
will be a small range of intensities for which flicker fusion occurs [45]. In the case of V (λ),
flicker photometry was used with spectral test stimuli to determine the visual sensitivity to
the entire visible spectrum. (For more detailed discussion of the methods and data used to
derive V (λ), see [44].) Luminance has been widely adopted, partially because its definition
is inherently additive: the luminance of a stimulus made from different sources is equal to
the sum of the luminances of its constituent sources.

Brightness is defined as the degree to which a visual stimulus appears to emit or reflect
more or less light [25]. Lightness is defined as the brightness of a stimulus relative to the
brightness of an equally-illuminated white object in the scene [25]. A common method for
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assessing brightness is direct brightness matching [48–52]. In this method, two visual stimuli
are shown next to each other with a small gap in between. Observers adjust the intensity
of one stimulus until the two stimuli appear equally bright or light. Unlike luminance,
brightness is not additive [53]: if chromatic lights (e.g., red, green, and blue lights) are
combined to form an achromatic light, the sum of the brightnesses of the constituent lights
will be greater than the brightness of their light when combined. In other words, the results
of heterochromatic flicker photometry and direct brightness matching do not agree with
each other, and the brightness of chromatic stimuli is underestimated by their luminance.
This phenomenon is known as the Helmholtz-Kohlrausch effect and has been widely studied
[49–51, 54–57].

There are two fundamental explanations for the discrepancy between heterochromatic
flicker photometry and direct brightness matching. Firstly, the neural pathways that carry
chromatic information—the parvocellular pathways—are less sensitive, and perhaps com-
pletely insensitive, to the temporal frequencies at which flicker photometry is performed
[46, 58]. Undoubtedly, though, they will be sensitive to the static stimuli in direct brightness
matching. This suppression of chromatic information only during flicker photometry but not
during direct matching might partially explain the discrepancy between the luminance and
brightness of chromatic stimuli [59]. Furthermore, the two experimental methods contain
different tasks: in one, to minimize flicker, and in the other, to match brightness. There is
no rule of perception that states that the flicker minimization occurs when the stimuli are
equally bright. In fact, task-dependency has already been reported in research that com-
pared direct brightness matching to an alternate method called minimally distinct border
that also uses static stimuli [51]. In minimally distinct border experiments, a test patch
and reference patch are placed directly adjacent, and the reference patch adjusted until the
border between the two is minimally visible or distinct. Such experiments appear to produce
results that are more similar to luminance-like matches than the results produced by direct
brightness matching, showing that task method can have a substantial effect [51, 60].

In this work, we separate the two factors described above which distinguish flicker pho-
tometry from direct brightness matching. By slowing down flicker photometry to allow both
the magnocellular and parvocellular pathways to respond to the experimental stimuli [61],
we can directly measure the effect of the difference between these two experimental tasks.
Such work has potential implications for color spaces, such as CIELAB [62], and color ap-
pearance models, such as CIECAM16 [1, 4], which seek to predict perceptual attributes
including brightness and lightness from information about the stimulus and (in the case of
color appearance models) the environment in which the stimulus is viewed. Understanding
the difference between methods of measuring brightness is especially relevant for those with
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an interest in incorporating the Helmholtz-Kohlrausch effect into such models or color spaces
[32, 56, 63, 64]. Conversely, color appearance models provide a baseline within the context
of experimental design to investigate how these experimental tasks operate in the perceptual
domain, allowing us draw more meaningful conclusions from experimental results than would
be possible using CIE XYZ tristimulus values, which have no inherent perceptual meaning.

3.2.2 Methods

Psychophysical experiments were run using two methods of stimulus presentation: direct
matching and temporal oscillation/flicker. In direct brightness matching, one chromatic
patch and one achromatic patch were shown side by side against a random noise background
(Figure 3.8). Each patch filled approximately one degree of visual angle and the two patches
were separated by approximately one half of one degree of visual angle. The nine observers
were instructed to use a keyboard to adjust the luminance of the achromatic patch until
the two patches matched in brightness. Each judgement was repeated, resulting in eighteen
total observations. The random noise background had an average CIECAM16 lightness of
50 relative to a 950 cd/m2 D65 white point. The noise pattern was used to reduce the effect
of simultaneous contrast from uniform backgrounds and to prevent bias by removing a fixed
reference point for observers (such as would be provided by a uniform background) without
changing their overall state of adaptation.

In the flicker/temporal gradient method, a single, one-degree patch was shown to ob-
servers against the random noise background (Figure 3.9). The patch oscillated continuously
between the test chromatic stimulus and the achromatic stimulus (Figure 3.10). Observers
were instructed to adjust the luminance of the achromatic stimulus to minimize their per-
ception of flicker. Five oscillation frequencies were tested: 0.5 Hz, 1.39 Hz, 3.87 Hz, 15 Hz,
and 30 Hz. Intermediate stimuli in the oscillations were evenly spaced in CIECAM16 color
space between the chromatic and achromatic stimuli. The number of intermediate stimuli
was determined by the oscillation frequency and the refresh rate of the monitor (60 Hz). For
instance, the 1.39 Hz oscillation had 21 intermediate stimuli, whereas the 15 Hz oscillation
had only one, and the 30 Hz oscillation had none.

In a follow-up experiment to test the effect of the intermediate stimuli, the intermediate
stimuli were removed. In this case, the patch simply alternated between the achromatic and
chromatic endpoints at each test frequency. The results of this follow-up are included in the
Results section below.

In an additional follow-up experiment, the intermediate stimuli were adjusted from being
evenly spaced between the achromatic and chromatic endpoints to being sinusoidally spaced
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Figure 3.8: Screenshot of example stimulus from the direct matching experiment. Observers ad-
justed the luminance of the achromatic patch (right) until it matched the brightness of the chromatic
patch (left). The left/right orientation of the achromatic and chromatic patches was randomized
for each trial. e Each patch occupied approximately 2° of visual angle with a 1° gap between them.
Colors are approximate.

Figure 3.9: Screenshot of example stimulus from the flicker/temporal oscillation experiment. The
patch occupied approximately 2° of visual angle. Color is approximate.
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Figure 3.10: Schematic diagram of stimuli used for temporal oscillation experiment. The single
patch stimulus (Figure 3.9) oscillated between the fixed chromatic endpoint and the adjustable
achromatic endpoint. CIECAM16 lightness and chroma (with the revisions proposed in Section
3.1) were used as the achromatic and chromatic response dimensions, respectively, to calculate the
intermediate stimuli between the endpoints. Observers adjusted the luminance of the achromatic
endpoint until a perceptual minimum was reached. This point indicates the achromatic endpoint
which has the same achromatic response as the chromatic endpoint in the observer’s internal per-
ceptual color space (see Discussion).
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between the endpoints. This modification had no statistically significant effect on the results
and thus is excluded from further analysis.

Experimental stimuli were displayed on an Asus ProArt PA32UCS monitor, controlled
using Psychtoolbox-3 [65] and MATLAB on a Windows computer with an Nvidia Quadro
P400 video card. Three chromatic test patches with CIECAM16 hue angles of 12◦, 110◦,
and 242◦ were tested, roughly corresponding to red, yellow, and blue, respectively. The red,
yellow, and blue patches had CIECAM16 lightness of 47.1, 50.7, and 50.7, and CIECAM16
chroma of 20.5, 26.3, and 23.2, respectively, calculated using our proposed corrections to
CIECAM16 (Section 3.1). A dark surround and a degree of adaptation of one were used for
all CIECAM16 calculations. The slight variation in lightness and chroma values between
hues were due to differences between the Rec. 2100 color space [66], which was used to
generate the code values for the experimental stimuli, and the performance of the Asus
ProArt display in matching that standard. These variations do not impact the conclusions
of this paper.

3.2.3 Results

The results of the experiment are quantified by the lightness of the achromatic patch matched
to the test chromatic patch by the observers in each viewing situation. The mean lightnesses
of the achromatic patches are shown in Figure 3.11 along with estimated 95% confidence
intervals. The statistical significance of the differences between mean values was calculated
using Welch’s two-sample t-test at an α level of 0.05 with equal variances not assumed.

First, the results from the 15 Hz and 30 Hz flicker observations were compared to deter-
mine which frequency best represented traditional heterochromatic flicker photometry. The
mean values from the two frequencies were not significantly different for any individual hue
(Table 3.1), but the variance of the 30 Hz observations was substantially greater. Observers
reported that there was a wide range of lightnesses for which their perception of flicker dis-
appeared at this frequency of oscillation, explaining the high variance of their responses.
Thus it was decided that the 15 Hz oscillation should serve as the representative sample of
the traditional heterochromatic flicker method.

Figure 4 shows that at lower frequency oscillations, the observers chose a lighter achro-
matic patch to minimize their perception of flicker with the same chromatic patches. Values
that were significantly different from the mean value at 15 Hz are circled in Figure 3.11 (p
values in Table 3.1). The difference between the 15 Hz oscillation and slower frequencies
could be due to the increased sensitivity of the parvocellular neural pathway—carrying color
information—at lower frequencies.
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Figure 3.11: Results of the direct matching experiment (left) and the oscillation method with
variable frequency (right) for the three tested hues (red, yellow, and blue). The y-axis represents
the mean lightness of the achromatic patch that was adjusted by observers in each experimental
condition. Dashed lines indicate the lightnesses of the fixed chromatic patches. Values that are
significantly different (p < 0.05 on a two-sample t-test with unequal variances) from the luminance-
like match at 15 Hz are circled.

Color Flicker Frequency (Hz)
Direct 0.5 1.39 3.87 30

Red 4.2×10−7 0.027 0.011 0.024 0.085
Yellow 0.22 0.018 2.8×10−4 4.1×10−4 0.79
Blue 2.6×10−4 0.12 0.036 0.063 0.96

Table 3.1: p values for Welch’s two-sample t-test with equal variance not assumed for the data
represented in Figure 3.11 compared to mean achromatic lightness for the 15 Hz oscillation.
Statistically significant values are underlined.
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Figure 3.12: Results of the square-wave oscillation experiment (flicker frequencies 0.5 Hz, 1.36
Hz, and 3.87 Hz) compared to the direct matching and 15 Hz results from Figure 3.11. The
y-axis represents the mean lightness of the achromatic patch that was adjusted by observers in
each experimental condition. Dashed lines indicate the lightnesses of the fixed chromatic patches.
Values that are significantly different (p < 0.05 on two-sample t-test with unequal variances) from
the luminance-like match at 15 Hz are circled

When the pattern of the slow frequency oscillations was changed from an even gradient
to simply alternating between the two endpoints, the matched lightness of the achromatic
patch increases even further (Figure 3.12) for the red and blue patches. The difference
between the two methods was statistically significant using test described above for the red
and blue patches, but not for the yellow patches. An explanation for this result is given in
the Discussion section.

The results of the direct matching experiment are also shown in Figure 3.11. For the
red and blue test patches, the mean lightnesses of the matched achromatic patches were
significantly greater than their value from the smooth oscillation method (Table 3.2).
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Color Flicker Frequency (Hz)
Direct 0.5 1.39 3.87 30

Red 1.4×10−5 8.4×10−6 1.8×10−5 4.2×10−7 2.5×10−6

Yellow 0.75 0.91 0.85 0.22 0.27
Blue 2.6×10−4 2.4×10−4 0.0012 0.0015 0.0089

Table 3.2: p values for Welch’s two-sample t-test with equal variance not assumed for mean
results of oscillation method compared to mean results for the direct matching achromatic.
Statistically significant values are underlined.

3.2.4 Discussion

The experimental results clearly show three distinct regimes of observer behavior corre-
sponding with the direct matching, slow oscillation, and fast oscillation methods of stimulus
presentation. The fast oscillation presentation leads to a luminance-like match solely based
on the achromatic information present in the stimuli [58]. In direct brightness matching,
chromatic information is incorporated into the stimulus judgement, leading chromatic stim-
uli to be judged as brighter in direct matching than in luminance-like matching [59]. This
is known as the Helmholtz-Kohlrausch (H-K) effect and is represented in the results of our
experiment. That we observed a stronger H-K effect for the red and blue stimuli than for
the yellow stimulus is in agreement with other studies [56, 67]. Given that observers in the
direct matching stimulus presentation were asked to match the patches in brightness, we can
conclude that patches directly matched have equal (perceived) brightness. Therefore, the
patches that were matched in the fast oscillation method do not have equal brightness.

The results from the novel slow oscillation presentation require more detailed explana-
tion. Given the increased chromatic contrast sensitivity at the low frequencies tested in this
experiment, we expect the chromatic (parvocellular) channel of our visual system to respond
to the oscillation, as in direct brightness matching [58, 61]. However, the observers’ task is
different for the slow oscillation matching than the direct brightness matching: minimizing
their perception of flicker versus matching brightness.

Unlike with fast flicker, where the observers’ perception of flicker could disappear when
the chromatic and achromatic endpoints were matched, the perception of oscillation never
disappeared as the patch oscillated between its achromatic and chromatic endpoints. Never-
theless, observers could adjust the achromatic patch to find a clear perceptual minimum in
the slow oscillation. At that point, observers experienced a minimum in the perceived speed
of the oscillation. The perception of a minimum in speed can be understood by conceptu-
alizing the observers’ perception of the experimental stimuli as existing in an internal color
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space (Figure 3.10). As the achromatic endpoint moves up and down the achromatic axis as
it is adjusted by the observer, it moves farther from and closer to the chromatic endpoint.
Thus, the oscillation covers more or less distance in our internal color space over the same
amount of time and appears to speed up or slow down. A minimum in perceived speed oc-
curs when the distance between the achromatic and chromatic endpoints is at a minimum in
the observers’ internal color space. This minimum distance occurs when the achromatic and
chromatic endpoints have an equal position along the dimension of achromatic response.
Thus, unlike other psychophysical methods of luminance or brightness measurement, this
slow oscillation is a direct measure of this dimension of our internal color space.

This interpretation of the results of the slow oscillation matching is confirmed by the effect
of switching from a colorimetrically smooth oscillation between the achromatic and chromatic
endpoints (Figure 3.11) to a temporal square-wave pattern that simply alternated between
the two endpoints without any intermediate stimuli (Figure 3.12). For the smooth oscillation,
the mean lightnesses of the achromatic patches matched to the red and blue chromatic
patches were significantly less than the lightnesses of the achromatic patches matched to
the same chromatic patches via direct brightness matching (Figure 3.11). However, when
the intermediate stimuli were removed, the lightnesses of the matched achromatic patches
increased as the frequency decreased, trending towards the directly matched lightnesses.
This equivalence between directly matching two patches and viewing them in alternation on
a single location is coherent with the idea that the observer must move their gaze between the
two patches when directly comparing, so both situations generate similar temporal patterns
in the visual system. More importantly, that the square wave oscillation results match the
direct matching results confirms that the difference between the smooth oscillation results
and the direct matching results is not due to temporal effects in the visual system’s response
to the low-frequency oscillation which are not accounted for in our above explanation. Put
simply, this result supports our assumption that the same neural pathways in our visual
system are active during the direct matching and slow oscillation stimulus presentations and
that the difference in the results is primarily due to the difference in task.

The statistically significant difference between the slow oscillation method and the direct
matching method leads us to the conclusion that an achromatic color and a chromatic color
with equal (perceived) brightness do not have the same position along this measurable di-
mension of our internal color space. Instead, our results show that an achromatic color and
a chromatic color are closest to each other in our internal color space when they produce a
similar achromatic response in our visual system. Thus, we can conclude that this dimension
in our internal color space is the achromatic response, not brightness or lightness. These
results have profound implications for one-dimensional scales of achromatic response, such
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as the L∗ dimension in CIELAB or the Q and J dimensions in CIECAM02 and CIECAM16.
We have presented direct experimental evidence that a one-dimensional scale of achromatic
response exists in our internal color space and that such a dimension is not scale of brightness
or lightness and cannot be so.

A common aim of models of the H-K effect has been to “correct” the achromatic re-
sponse scale (e.g., L∗, Q, J) so that scale values of chromatic stimuli match the scale values
of equally-bright achromatic stimuli. Our experiment demonstrates that brightness (and
therefore lightness) are dependent on multiple dimensions and thus should not be modeled
using a one-dimensional scale based on a single physical metric such as luminance. This
conclusion does not mean that the one-dimensional scales are unneeded or incorrect; our
experiment actually demonstrates the opposite: that such a scale does exist in our inter-
nal color space. Rather, we have demonstrated that the terms “brightness” and “lightness”
should not be used to label any single dimension in color spaces, such as CIELAB or CAM16-
UCS, which attempt to match our internal representation of color in three-dimensional space.
“Value” could be a better term for achromatic response scales (e.g., L∗, Q, J) to avoid the
misconception that colors with equal achromatic response scale values have equal brightness
and lightness. “Value” comes from the achromatic scale of the Munsell color order system
[68] and has a clear meaning without the connotation that colors with equal value has equal
perceived brightness.

The other consequence of this experiment is to show that models of the H-K effect should
be multidimensional, combining both the achromatic response dimension and a dimension
or dimensions related to chromatic intensity. Examples of such scales of brightness include
vector brightness in the color appearance models of Guth [57, 69] and vividness as proposed
by Berns [70]. Recent work by Xie psychophysically measuring the zero-grayness threshold
also holds potential for developing a measure of brightness that accounts for the colorfulness
of stimuli [71, 72], building on previous work on zero-grayness and brilliance by Evans [73, 74].
Fairchild and Heckaman have discussed whether brightness and lightness should even be
mapped in three-dimensional space or simply be modeled as an independent scale [75].

The next sections of this dissertation outline our efforts to combine achromatic and chro-
matic response dimensions to generate a two-dimensional brightness scale. Future work is
planned to use the slowly oscillating gradient method to investigate the chromatic dimension
of our internal perceptual color space as was accomplished for the achromatic dimension in
this study.
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3.3 Building a model of the Helmholtz-Kohlrausch
effect from past data

3.3.1 Background

As the chromatic intensity (colorfulness) of a stimulus increases, so does its brightness, even
if its luminance is held constant. This phenomenal crosstalk between our perceptions of
chroma and brightness is called the Helmholtz-Kohlrausch (H-K) Effect. While the H-K
Effect is well-known in the color science community, there does not exist a standard model
of the effect [76]. Developing such a model is important for accurate prediction of brightness
and lightness (brightness relative to the brightness of scene white).

Tracing the history of models of the H-K effect reveals the need for a new model. Early
models (pre-1990s) focused on using chromaticity diagrams to describe the H-K effect.
Sanders & Wyszecki (1963) [49] and Wyszecki (1967) [50] are examples of such models,
which were fit to experimental brightness-matching data. An H-K model from Wyszecki
(1967) [50] is shown in Figure 3.13. In such a model, contours on a chromaticity diagram are
used to predict the “B/Y ratio” of a stimulus of given chromaticity. The B/Y ratio is the
ratio of the luminance of an equally bright neutral patch to the luminance of the stimulus in
question. For example, if a stimulus has a luminance of 100 cd/m2 and a B/Y ratio of 1.35,
the model predicts that it will appear equally bright to a neutral patch with luminance of
135 cd/m2.

As can be seen from Figure 3.13, these models predict that the intensity of the H-K
effect depends on both hue and chromatic intensity. An advantage of these models is their
simplicity and their dependence on both hue and chroma. However, their predictions are
limited by the limited gamut of stimuli used in the experimental data upon which the model
was built. Another shortcoming of such models is that xy chromaticity coordinates are a
two-dimensional representation of color that does not account for the brightness of stimuli.
Thus, B/Y ratios predicted by Wyszecki-style models are invariant to stimulus brightness and
luminance. This invariance may be problematic, especially given that stimulus appearance
varies greatly with luminance at constant chromaticity.

Yoshinobu Nayatani’s models of the H-K effect in the 1990s represent a shift from the
diagram-based models described above to formula-based models [54, 55, 67, 77, 78]. For
example, his 1997 model for object colors has the form [67]:

B

Y
= 1 + [−0.1340 · q(θ) + 0.0872 · KBr] suv, (3.29)
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Figure 3.13: An example of a B/Y ratio contour diagram in xy chromaticity space from Wyszecki
(1967). Reprinted with permission from [50] © The Optical Society.
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Figure 3.14: Hue angle dependency, −q(θ), of the 1997 Nayatani model as a function of u′v′ hue
angle [67]. Colors are approximate.

where KBr depends on the adapting luminance of the scene, suv is the saturation of the
stimulus on the u′v′ chromaticity diagram and q(θ) is a function of the hue angle, θ, in u′v′.
Like Wyszecki, Nayatani’s model uses chromaticity coordinates to predict the strength of
the H-K effect, this time in u′v′ chromaticity space as opposed to xy chromaticity space.
Importantly, Nayatani’s B/Y ratio is linearly related to saturation (suv) and has a hue
dependency (Figure 3.14).

Unfortunately, several factors make it difficult to apply Nayatani’s H-K model. First, his
model did not consist of just a single equation (as presented in Equation 3.29) but rather
four different equations that depended upon the application [67]. It is difficult to determine
which equation is correct given a specific situation in which one may want to estimate the H-
K effect. (For an example of a paper in which the researchers appeared unclear about which
of Nayatani’s models to use, see Liao et al. (2009) [79].) Specifically, Nayatani’s decision
to develop two separate models—Variable Achromatic Color (VAC) and Variable Chromatic
Color (VCC)—was motivated by the results of a single study that did not follow standard
brightness-matching procedures [77]. Furthermore, the quasi-mathematical derivation of
the VCC equations from the VAC equations relied on semantic sleight-of-hand and circular
reasoning [78]. The confusion about model choice and the faulty mathematics underlying
some of Nayatani’s derivations limit the usefulness of Nayatani’s models.
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One further limitation of the Nayatani models was outside of his control. In the late 1990s,
the CIE approved the CIECAM97s color appearance model [80], which was then followed
up by CIECAM02 and CAM16 [28, 36]. These color appearance models include equations
for brightness and lightness that take input from all three CIEXYZ tristimulus values, not
just from luminance (Y ). This is in contrast to CIELAB, where lightness, L∗, is solely
calculated from Y . Thus, simply multiplying the luminance of a stimulus by its B/Y ratio
to account for the H-K effect is not compatible with the color appearance models that have
become the state-of-the-art in predicting color appearance attributes. Furthermore, applying
a B/Y ratio to a stimulus’s CIE XYZ values before inputting into a color appearance model
would also lead to unintended changes to hue and chroma predicted by the color appearance
model. So, the H-K effect must be directly built into any color appearance model that seeks
to account for the effect.

An example of an early effort to incorporate a model of the H-K effect was a CIELAB
extension developed by Fairchild & Pirrotta (1991) [56]. Fit to experimental brightness-
matching data collected by the investigators, their model avoided the incompatibility of the
B/Y ratio described above by directly adjusting the CIELAB lightness (L∗) function to
create a new lightness scale, L∗∗:

L∗∗ = L∗ + f1(L∗)f2(h◦)C∗ (3.30)

C∗ is the CIELAB chroma of the stimulus. f1 and f2 are functions of CIELAB lightness and
hue angle (Figure 3.15 and Figure 3.16). Like the Nayatani model, the Fairchild-Pirrotta
model includes hue and chroma dependencies. Additionally, because the model does not use
chromaticity coordinates as the independent variable, the Fairchild-Pirrotta model is also
able to include a lightness dependency.

A key development in the Fairchild-Pirrotta was the transition from the multiplicative-
factor based design of previous models to an additive model. While multiplicative compensa-
tion for the H-K effect works well in the luminance domain, which is linear to the amount of
light, additive models are the norm for H-K models when operating directly on appearance
scales, which are non-linearly compressed relative to the amount of light.

Recently, the Fairchild-Pirrotta model inspired the H-K extension to CIECAM02 pro-
posed by Kim, Jo, Park, and Lee (2019) [63]. In fact, the Kim model directly transcribed
the Fairchild-Pirrotta model [56] (including values) into CIECAM02. Unfortunately, given
that CIECAM02 and CIELAB are distinct color spaces with different methods for calcu-
lating lightness, chroma, and hue, a simple transcription of values from one color space to
another is not appropriate.
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Figure 3.15: Hue angle dependency of the H-K effect in the Fairchild & Pirrotta CIELAB model
[56]. Colors are approximate.

Figure 3.16: Lightness dependency of the H-K effect in the Fairchild & Pirrotta CIELAB model
[56]. Theirs is the sole model with an explicit lightness dependency; they found that the strength
of the H-K effect decreased with increasing lightness.

45



Several notable color appearance models account for the H-K effect through an additive
contribution of colorfulness, M , to their equations for brightness, Q. The Hunt model from
the late 1980s and early 1990s uses a simple addition of colorfulness to the achromatic signal,
A [31]:

Q = (A + M)N1 − N2 (3.31)

where N1 and N2 are constants based on viewing conditions and are irrelevant to the present
discussion. Indeed, one of the strengths of the Hunt model was its accounting for the H-K
effect in this way. However, this contribution of colorfulness was lost in the simplification
of the Hunt model as it was translated to CIECAM97s. It was understandably problematic
for the developers of CIECAM97s to use colorfulness in the calculation of lightness and
brightness given that lightness was also used to calculate colorfulness (Equations 3.19 and
3.20).

Two recent color appearance models for unrelated and self-luminous stimuli, CAM15u
[81] and CAM18sl [64], also account for the H-K effect through a contribution of colorfulness
to brightness. For instance, in CAM15u, this H-K effect compensation takes the form:

Q = A + 2.559M0.561 (3.32)

The QUGR glare model refined this H-K effect model of the CAM15u brightness formula
by combining it with the Fairchild-Pirrotta H-K hue dependency function (Figure 3.15) [82].
As mentioned above regarding the Kim model [63], this method of simply transcribing an
H-K hue dependency function from one context to another is unlikely to accurately predict
the H-K effect.

CAM15u, CAM18sl, and QUGR were specifically designed for stimuli that appear self-
luminous, such as light sources. CIECAM02 and CIECAM16 can also be applied to self-
luminous stimuli, such as those generated by displays, when a reasonable white point can
be inferred. In fact, the LUTCHI dataset, which forms the experimental foundation of these
models, was conducted using displays. In contrast, CAM15u and CAM18sl are designed for
situations where there is no meaningful white point, such as when viewing a traffic light at
night. Thus, these models occupy a domain separate from the applications of CIECAM02 or
CIECAM16. Nonetheless, their incorporation of additive colorfulness contributions to the
equation for brightness reinforces the validity of this model structure.

From this review of past models of the H-K effect, it can be seen that there remains a
lack of a model that fulfills all of the following attributes:

• Implemented directly in CIECAM02 and CIECAM16.

46



• Fit to experimental H-K effect data.

• Includes additive contribution of colorfulness to lightness or brightness.

• Dependent upon hue.

3.3.2 A model based on past studies

The H-K effect is typically measured by asking observers to directly match achromatic and
chromatic stimuli so that they appear equally bright. Four sources of published experimental
brightness-matching data on the H-K effect were assessed for incorporation in the fitting of
a CIECAM02/CIECAM16 extension for the H-K effect: Sanders & Wyszecki [49], Wyszecki
[50], Fairchild & Pirrotta [56], and Nayatani, Sobagaki, & Hashimoto [77]. Data used to
derive the CAM15u and CAM18sl models were not considered because these data do not in-
clude direct brightness matching and these models cover a separate domain from CIECAM02
and CIECAM16.

Observers in the Sanders & Wyszecki experiment [49] performed direct brightness match-
ing on a bipartite field between an achromatic stimulus and 96 stimuli of luminance 20 cd/m2

and varying chromaticity. The luminance of the achromatic stimulus was adjusted by the
observer to match the brightness of each chromatic stimulus. While the stimuli were self-
luminous, they still fell into the category of related stimuli (as opposed to unrelated) as they
were viewed against a well-lit background in a scene from which a plausible white point could
be inferred. Twenty observers participated in the experiment. One flaw in the experimental
design is that the color of the achromatic background was much bluer than the color of the
achromatic reference stimulus (approximately 7500K versus 5000K). Thus, it is likely that
the reference stimulus appeared yellowish to the observers due to chromatic adaptation to
the bluer background. (Those interested in using these data should note that there is a typo
in the y chromaticity coordinate for stimulus number 583/4. The correct y chromaticity,
converted from the provided 1960 uv coordinates, is 0.415.)

The Wyszecki experiment [50] is notable in that chromatic tiles were used instead of the
chromatic light of the Sanders & Wyszecki experiment. 76 observers scaled the lightness of
43 chromatic tiles against a scale of neutral tiles. Matches were made under daylight-colored
illumination (approximately 6500K) with an adapting luminance of approximately 30 cd/m2

(500 lux at the surface).
The Fairchild & Pirrotta experiment [56] also used physical samples. In this case, 11

observers matched the lightness of 36 glossy Munsell papers to an adjustable gray sample
generated by a spinning Maxwell disc. The experiment was performed under a fluorescent
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daylight simulator (6700K) with an adapting luminance of around 75 cd/m2 (1200 lux). Un-
fortunately, the color of the chromatic samples under the experimental illumination was not
reported in the paper. Instead, the paper lists the CIELAB coordinates of the Munsell papers
under standard illuminant D65. To estimate the color of the samples in the experimental
condition for use in this section, the CIE XYZ values of each tested Munsell paper were
recalculated using CIE standard illuminant F7 (6500K) [62] and reflectance measurements
of the glossy Munsell papers from the UEF Spectral Database.

Munsell papers were also used in the Nayatani, Sobagaki, & Hashimoto experiment [77].
However, as opposed to the other experiments listed here, where the chromatic stimulus had
a fixed lightness and the achromatic reference stimulus varied in lightness, this experiment
had its 4 observers estimate the equivalent lightness of a fixed reference Munsell paper on
a lightness scale of each of 10 chromatic stimuli. Unusually, the reference stimulus was a
chromatic yellow as opposed to the typical neutral. Due to the small number of observers
and the atypical choice of reference stimulus, this experiment’s data were excluded from our
study.

The data from the three selected studies were input in CIECAM02 and CIECAM16 using
the corrections to these color appearance models proposed in Section 3.1. (Note: Due to
the similarity between CIECAM02 and CIECAM16, I will now focus on the CIECAM16
model. The model fit to CIECAM02 can be found in the Appendix of [83].) Based on the
descriptions of the experimental viewing conditions, it was determined that the experiments
were performed under “average” conditions for the purposes of CIECAM16. Additionally, the
degree of adaptation was set to unity in CIECAM16 calculations. Using these parameters,
CIECAM16 lightness, J , was estimated for each set of chromatic stimuli and matched neutral
achromatic stimuli using white points derived from the description of each experiment. These
data indicate that CIECAM16 systematically underestimates the lightness of stimuli as their
chroma increases, meaning that CIECAM16 does not compensate for the H-K effect.

Based on our analysis of past models of the H-K effect (see Section 3.3.1), we hypothesized
that an additive contribution of colorfulness or chroma to either lightness or brightness would
properly account for the H-K effect. Unlike the Hunt model, which calculates brightness
first and then derives lightness from brightness, CIECAM16 first derives lightness and then
brightness. (CAM15u and CAM18sl do not predict lightness.) Thus, for CIECAM16, it
is simplest to account for the H-K effect in the equation for lightness and then derive an
H-K-compensated brightness from lightness. Thus, our hypothesized model has the form:

JHK = J + f(h)Cγ (3.33)
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where J is lightness, f(h) is the hue angle dependency and C is the chroma as calculated
using our proposed chroma correction to CIECAM16 (Section 3.1). H-K-effect-compensated
brightness, QHK is calculated directly from JHK , following the proposed brightness correction
to CIECAM16 (Section 3.1):

QHK =
(2

c

)(
JHK

100

)
(Aw) (3.34)

This linear relationship between lightness and brightness ensures that the additive contribu-
tion of chroma to lightness is mathematically equivalent to adding colorfulness to brightness,
à la the Hunt model (Equation 3.31).

The form of the hue angle dependency, f(h), was hypothesized to be a simplified version
of the hue dependency in the Nayatani model:

f(h) = α1 cos h + α2 cos 2h + α3 sin h + α4 sin 2h + α5 (3.35)

γ and α1 to α5 were parameters to be set by least squares fitting to the experimental data,
minimizing the difference in JHK between the chromatic stimuli and the experimentally-
matched reference stimuli. The results of such fitting leads to the following values:

JHK = J + f(h)C0.587 (3.36)

f(h) = −0.160 cos h + 0.132 cos 2h − 0.405 sin h + 0.080 sin 2h + 0.79 (3.37)

The hue dependency function, f(h), is shown in Figure 5. The hue dependency follows
a similar trend to the hue dependencies in the Nayatani and Fairchild & Pirrotta models
(Figure 3.14 and Figure 3.15). However, direct comparison of the hue dependencies is not
possible because the current model operates on CIECAM16 lightness whereas the previous
models operate on luminance and CIELAB lightness, respectively.

The performance of this model is evaluated alongside other models of the H-K effect on
these and other data sets in Section 3.4.5.

3.4 A model of the H-K effect built from new
experimental data

In this section, we present a subtle innovation in the method of direct brightness matching
by fixing the chroma difference between the reference and test patches. In the traditional
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Figure 3.17: Hue dependency of the proposed H-K effect model (Equation 3.37). Colors are ap-
proximate.

design of brightness matching experiments, the difference in chroma between the achromatic
test patch and the chromatic reference patch fluctuates as the reference patches change
in chroma. By removing the restriction that the test patch be achromatic, we could fix
the chroma difference between the two patches, with the formerly achromatic test patch
increasing in chroma as the reference patch increases in chroma. The data collected using
this method measure not just the strength of the H-K effect, but how the change in the
strength of the H-K effect varies with the lightness, chroma, and hue of the stimuli.

Measuring the brightness difference between two chroma levels is not possible using tra-
ditional methods that always involve an achromatic patch. One could try to use achromatic-
chromatic patch matches to infer brightness differences between chromatic patches, but using
the common variable-achromatic method, one would only be able to infer chromatic patch
differences when observers were lucky enough to match two chromatic patches to the same
achromatic patch. If one instead fixes the achromatic patch and has observers adjust the
chromatic patch, one then becomes constrained by the gamut of the display, and the limited
lightness range at higher chromas leads to bias in the results. Thus, our method of constant
chroma differences between the actual stimuli is the only feasible method for deriving this
type of data in emissive viewing modes.

Our calculus-based approach to modeling these data sets rules that models of the H-
K effect must follow. We present here a new model of the H-K effect built on top of the
CIECAM16 color appearance model [4] (following key corrections to CIECAM16 proposed by

50



Hellwig & Fairchild [83]) and based on the results of a series of three experiments conducted
using our refined method of direct brightness matching.

3.4.1 Experiment 1: Preliminary study

Methods

Direct brightness matching was performed on 37 pairs of stimuli. For each stimulus presen-
tation, the observer was presented with two patches, each subtending approximately 2◦ of
visual angle and separated by 1◦ of visual angle, against a random noise background. The
observer was able to adjust the luminance of the lower-chroma test patch and was asked
to match the brightness of the test patch to the brightness of the higher-chroma reference
patch. There was no time limit for observers to complete each match; the median response
time was 15 seconds. Stimuli were presented in random order.

The colors of the stimuli were chosen in an attempt to independently measure the depen-
dence of the H-K effect on hue, lightness, and chroma. The hue dependency was tested by 12
pairs of stimuli evenly spaced in CIECAM16 hue angle, with lightness values of 50, and with
chromas of 0 and 20. The lightness and chroma dependencies of the H-K effect were measured
by sampling a range of lightnesses and chromas in yellow (h = 90◦) or purple (h = 330◦) hue
planes. The CIECAM16 achromatic lightness of the reference patch was varied from 30 to
90 in steps of 20 and the CIECAM16 chroma of the reference patch was varied from 20 to
60 in steps of 10 as allowed by the gamut of the display. In each case, the chroma difference
between the reference and test patches was 20. All CIECAM16 calculations were performed
following key corrections proposed in Section 3.1. The CIECAM16 degree of adaptation was
set to 1 and the surround condition was set to dark for all calculations.

A D65 white point at 500 cd/m2 was used for all stimuli and the background. A random
noise background was used instead of a uniform background to reduce the effects of simulta-
neous contrast and crispening, which are not accounted for by CIECAM16. The background
was a pixelated semi-uniform noise distribution with 0.01◦ pixels. The range of background
pixel luminances ranged from 5.5 cd/m2 to 500 cd/m2, with the uniformity of the random
luminance distribution modified so that the average background luminance was mid-gray
(94.1 cd/m2). The background subtended approximately 20◦ of visual angle horizontally
and 10◦ vertically. The experiment was run in a dark room. The stimuli were displayed on a
32” Asus ProArt PA32UCX monitor driven by an NVIDIA Quaddro P400 graphics card on
a Windows computer. The stimuli were generated using MATLAB and Psychtoolbox [65].
11 expert observers participated in the experiment.
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.
Figure 3.18: Partial results of Experiment 1, with the box plots showing the achromatic lightness
of achromatic patches matched to the chromatic patches with achromatic lightness 50 and chroma
20 at various hue angles. ANOVA indicated that there was no statistically significant difference
between these hues. The chromatic line is the hue dependency from the H-K model fit to previously
published experimental data proposed in Section 3.3

Results

The H-K effect is measured by comparing the achromatic lightness (CIECAM16 J) of the
lower-chroma test patch to the fixed achromatic lightness of the higher-chroma reference
patch. The lower-chroma patch usually has a higher achromatic lightness than the matched
higher-chroma patch because the increased chroma typically increases the observers’ percep-
tion of brightness.

The box plot in Figure 3.18 displays the results of the attempt to measure the hue
dependency of the H-K effect using the 12 evenly-spaced stimuli. One-way ANOVA was
performed on these data and indicated that there was not a statistically significant effect of
hue on the results (p = 0.57).

In a later experiment, we discovered that a few of the matches made by a few observers
were limited by the gamut of the display. The resulting clipping of the range of responses
could influence the mean value of the responses. Thus the median was calculated for all
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Figure 3.19: Partial results of Experiment 1, showing pairs of brightness-matched stimuli in the
revised CIECAM16 achromatic lightness-chroma plane.[83] Steeper lines indicate a stronger H-K
effect. The results for the 330◦ hue plane demonstrate the trends found throughout our experiments:
the strength of the H-K effect is constant with chroma and decreases with increasing achromatic
lightness.

results to eliminate this potential source of bias. Additionally, using the median helps avoid
questions about whether the mean should be calculated using perceptually-linear or light-
linear scales.

Figure 3.19 shows the results of the lightness and chroma sampling in the purple and
yellow hue planes. The median achromatic lightness set by observers was calculated for each
pair of stimuli. A larger difference between the achromatic lightness of the matched stimuli
indicates a larger contribution of chroma to perceived brightness, which we refer to as the
strength of the H-K effect. Two-way ANOVA performed on the data in the purple hue plane
(which had the most data) indicated a significant effect of lightness on H-K effect strength
(p < 10−6), with increasing lightness leading to weaker H-K strength. ANOVA also indicated
that there was not a significant effect of chroma on H-K strength (p = 0.27). Furthermore,
ANOVA found that the H-K effect was significantly stronger in the purple hue plane than
the yellow hue plane (p = 0.008), although this conclusion may be compromised by the fact
that it was not possible to generate lower-lightness stimuli in the yellow hue plane due to
the shape of the display’s gamut.
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Overall, the results indicated that more data needed to be collected to build a complete
model of the H-K effect. While our explicit measurement of the hue dependency of the H-K
effect in CIECAM16 space did not find a significant effect, there was a significant difference
in the data between the better-sampled purple and yellow hue planes. Complete sampling
of additional hue planes would help resolve this discrepancy in the results.

3.4.2 Experiment 2: Measuring the full gamut

Methods

A second experiment was performed to completely sample the dependence of the strength of
the H-K effect in 12 hue planes in CIECAM16 color space. An identical brightness matching
technique was used as in Experiment 1. The CIECAM16 achromatic lightness of the reference
stimulus was varied from 30 to 90 in steps of 20 and its CIECAM16 chroma was varied from
20 to the edge of the gamut (up to 80) in steps of 10 at each hue. This even sampling in
color space led to uneven numbers of stimuli at different hues due to the difference in the
size of the display’s color gamut at each hue. Thus, for hues with fewer pairs, the lightness
sampling step size was decreased from 20 to 10, and for hues with too many pairs of stimuli,
the chroma sampling step size was increased from 10 to 20. This sampling led to 134 total
stimuli at the 12 hues, providing about 11 pairs per hue (ranging from 7 to 15).

In Experiment 2, a Samsung S95B QD OLED display was chosen for the experiment to
take advantage of the display’s wide color gamut. The luminance of the white point for the
displayed stimuli was 400 cd/m2, although observers were allowed to adjust the test patch
up to approximately 690 cd/m2. A white point with a correlated color temperature of 12000
K was used to better match the resting white point of an observer in a dark room [84].
The background subtended approximately 20◦ of visual angle horizontally and 10◦ vertically.
Repeated stimuli between Experiments 1 and 2 indicated that this change in white point did
not affect the results. 25 observers participated in the experiment. The observers included a
mix of expert and näıve observers, although no significant difference was found in the results
between the two groups. Median response time remained similar at 12 seconds.

Results

The results for the 12 hue planes tested in Experiment 2 are shown in Figure 3.20. Once
again, ANOVA revealed a significant effect of reference patch achromatic lightness on the
strength of the H-K effect (p < 0.0005) and no significant effect of reference patch chroma
on the strength of the H-K effect (p = 0.83), which is represented by the slope of the lines in
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Figure 3.20: The results of Experiment 2, showing pairs of brightness-matched stimuli in the revised
CIECAM16 achromatic lightness-chroma plane. [83]

Figure 3.20. The strength of the H-K effect did seem to fluctuate slightly with hue, especially
for stimulus pairs where the test patch was achromatic. However, when hue was viewed as
a continuous variable with one degree of freedom, ANOVA indicated that there was not a
statistically significant effect of hue on the strength of the H-K effect (p = 0.83), although
it would be unlikely for such analysis to detect a periodic hue dependency. There will be
additional discussion on the hue dependency of our experimental data in Section 3.4.4.

3.4.3 Experiment 3: The transitivity of brightness matches

Methods

The use of constant chroma differences between the reference and test patches in Experi-
ments 1 and 2 was a key innovation of our research that will allow for a new form of data
analysis (Section 3.4.4). However, it was important to confirm that this method of brightness
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matching is transitive—that if Patch A with a chroma of 40 is matched to Patch B with a
chroma of 20, and Patch B with a chroma of 20 is matched to Patch C with a chroma of
0, then Patch A would also be matched to Patch C. The transitivity of brightness matches
would confirm that our method of stimuli choice is equally valid to the traditional method
of only using achromatic adjustment patches.

65 pairs of stimuli were chosen at CIECAM16 lightnesses and hues where, in Experiment
2, multiple chroma levels had been tested. In this experiment, larger chroma differences
(ranging from 30 to 60 CIECAM16 chroma units) were used to test whether the match
made across larger chroma differences could be predicted by integrating the smaller chroma
differences tested in Experiment 2. The same physical setup was used in Experiment 3 as in
Experiment 2. 12 observers (only 1 näıve) participated in the experiment. Median response
time remained similar at 11 seconds.

Results

The transitivity of direct brightness matches was tested by seeing if the matches made in
Experiment 3 could be predicted by integrating the matches made in Experiment 2. Two-
sample t-tests were used to statistically test this hypothesis, using the Šidák correction to
maintain a family-wise error rate of 0.05. The null hypothesis was not rejected for all 65
trials with all p-values exceeding the Šidák-corrected α value of 0.0008. Only four tests
returned p-values less than 0.05 and only one p-value was less than 0.01, quantities which
would be expected from running 65 t-tests. Thus, we can conclude that brightness matches
are transitive and our method of stimulus choice with a constant chroma difference is valid.

3.4.4 Building a model

The novel use of equal chroma differences between test and reference patches in direct bright-
ness matching allows for a calculus-based approach to building a model, which was unattain-
able with data derived from previous methods of brightness matching. Specifically, we can
quantify how the slope of the equal brightness lines connecting brightness-matched stimuli
(Figures 1 and 2) varies with chroma, lightness, and hue. As mentioned above, we found
that the chroma of the reference patch did not have a significant effect on the slope of the
equal brightness lines, but that the negative slope of the equal brightness lines increased
(became less steep) with increasing achromatic lightness.

If we express the equal brightness line as a function in the achromatic lightness and
chroma plane, the function’s derivative should be negative, invariant to chroma (C), and
increase (become less steep) with increasing achromatic lightness (J). We assessed three
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potential forms for the equation for the derivative of the equal brightness line.

dJ

dC
= aJ − b (3.38)

dJ

dC
= −ae−bJ (3.39)

dJ

dC
= −a

J − b
(3.40)

In these formulas, dJ
dC

represents the strength of the H-K effect, with a more negative value
meaning a stronger H-K effect. We found that the formulas for H-K compensated lightness,
JHK derived from each of these potential formulas for dJ

dC
could equally fit our experimental

data since they meet the criteria discussed above. However, their behavior differed signif-
icantly at higher achromatic lightness. The linear derivative, Equation 3.38, predicts that
above a certain lightness, we will see an inverted H-K effect, where more chromatic stim-
uli appear darker than less chromatic stimuli! This implausible prediction allowed us to
eliminate Equation 3.38.

Two other factors lead us to choose the inverse-form derivative, Equation 3.40, over the
exponential-form derivative, Equation 3.39. First of all, the slower decrease in predicted
strength of the H-K effect at high lightness by Equation 3.40 is aligned with our belief
that the H-K effect should still be present for stimuli above diffuse white [64]. The inverse-
form derivative nicely predicts a constant strength of the H-K effect at constant saturation as
lightness increases. Secondly, we will see that the formula for H-K compensated lightness that
results from solving Equation 3.40 more closely resembles some previously published formulas
for H-K compensated brightness [57, 85]. These reasons serve as sufficient justification to
proceed with the inverse-form derivative, Equation 3.40, outside of empirical evidence to
separate the two potential models.

The differential Equation 3.40 has the general solution for equal-brightness lines in the
achromatic lightness and chroma plane:

J =
√

k − µC + β, (3.41)

where µ and β are positive constants. The constraint that the H-K compensated lightness,
JHK , is equal to the achromatic lightness, J , when C is zero allows us to solve for the
constant of integration, k:

J =
√

(JHK − β)2 − µC + β (3.42)
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Figure 3.21: Our proposed model (Equation 3.44) compared to the data from Experiments 1 and 2

When solved for H-K compensated lightness, this formula becomes:

JHK =
√

(J − β)2 + µC + β (3.43)

This formula, however, has the domain restriction that J > β. Fitted values of β were
typically very small, near 1, and we found that the β could be set to zero with minimal
loss in performance on our data. When fit to all data that we collected across the three
experiments, we found that a µ value of 66 minimized the root-mean-square error. Thus,
our complete formula for H-K compensated lightness is:

JHK =
√

J2 + 66C (3.44)

This model is shown alongside the data from Experiments 1 and 2 in Figure 3.21.
The revised, linear relationship between lightness and brightness can be used to predict
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H-K compensated brightness, QHK , from H-K compensated lightness:

QHK =
(2

c

)(
JHK

100

)
Aw, (3.45)

where Aw is the achromatic signal for the reference white and c is a term that depends on
the surround viewing conditions.

A surprising aspect of the proposed model is that it does not contain an explicit hue
dependency. The revised version of CIECAM16 used for this model includes a correction to
the eccentricity function that improves the uniformity of the chroma scales relative to hue
(see Equation 3.28 and Figure 3.5 in Section 3.1.3). Thus, we hypothesize that the improved
uniformity of our chroma values may obsolete the need for an explicit hue-dependency in
our formula for H-K compensated lightness. The necessity of a hue dependency in many
other models of the H-K effect may be simply due to nonuniformities in the chroma or
saturation scale used in those models relative to hue. Indeed, when our data is converted
from CIECAM16 to CIELAB, the data become less uniform relative to hue, and to fit a
model that matches our data, a hue dependency is once again required.

Following our hypothesis that the H-K hue dependency is due to chroma non-uniformity,
we simply followed the same procedure that was used to fix the eccentricity function in
CIECAM16 to calculate a hue dependency for our CIELAB H-K function. Data from the
Munsell system [41] was converted to CIELAB and the average ratio of Munsell chroma to
CIELAB chroma was calculated for each Munsell hue. These ratios represent a correction
factor for CIELAB chroma, to which we fit the following function (Figure 3.22):

f(h) = 0.0258 cos(h) + 0.0648 cos(2h) + 0.0138 cos(3h)
+0.0107 cos(4h) − 0.1872 sin(h) + 0.0339 sin(2h)

+0.0152 sin(3h) − 0.0121 sin(4h) + 1

(3.46)

Shockingly, not only does this function—fitted solely to Munsell chroma data—closely resem-
ble the hue dependencies of other models of the H-K effect (Figure 3.22), but it also allows
the CIELAB version of our H-K model to almost match the performance of our CEICAM16
H-K model. Thus, we come to the important conclusion that chroma, when properly scaled,
equally feeds into our perception of lightness and brightness at all hues. Our full CIELAB
model, fit to our experimental data, then takes the form:

L∗
HK =

√
L∗ + 32f(h)C∗ , (3.47)
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Figure 3.22: The eccentricity function (Equation 3.46) fit to increase the chroma uniformity of
CIELAB using data (colored points) from the Munsell color order system.[41] Despite being fit
only for chroma uniformity, the function closely resembles the hue dependency of models of the
H-K effect fit to brightness-matching data.[56, 86]

where L∗
HK is H-K compensated lightness, L∗ is CIELAB (achromatic) lightness, C∗ is

CIELAB chroma, and f(h) is the hue angle dependency (Equation 3.46).
Despite the lack of an explicit hue-dependency in our CIECAM16 model, our data do show

some differences between hues (Figure 3.21). The first step from achromatic to chromatic
sample for yellow and green hues (hue angle 90◦ to 150◦) at high lightness experiences an
extremely weak H-K effect. However, this weakness disappears when two chromatic samples
are compared and the data better follow our model. These results suggest an unaccounted-
for effect when comparing achromatic and yellow stimuli, which could have also encouraged
other models to include the common hue dependency that weakens the H-K effect for yellow.
However, since the overall behavior for yellow and green follows our proposed trends, we omit
that achromatic oddity from our model.

Additionally, a weak H-K effect can be observed for high chroma purple stimuli (hue
angles 300◦ and 330◦) in Experiment 2 (Figure 3.20), which seems to conflict with our
model. However, no such weakness was observed for the same hue (330◦) in Experiment
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1 (Figure 3.19), which does match the model (Figure 3.21). Thus, this isolated weak H-K
effect is most likely due to some isolated effect in the experimental setup, to which it would
not be valid to fit a hue dependency.

3.4.5 Model Performance

We compared the proposed models (Equations 3.44 and 3.47) to four other models of the
H-K effect [56, 63, 86, 87] alongside default CIECAM16 and CIELAB on our data and five
other brightness matching datasets [49, 50, 56, 71, 86, 88]. (Hellwig ’22 refers to the model
described in Section 3.3.) These data consist of CIE XYZ values for pairs of stimuli that
were matched in brightness or lightness by observers. An ideal model will produce equal
lightness and brightness predictions for each pair of stimuli; the difference between predicted
lightness values represents the error of the models. Root-mean-square error values are shown
in Table 3.3, with the lowest errors underlined. Our proposed models perform very well on
the three recent datasets but poorly on the three older datasets.

Looking at the mean error (Table 3.4) can provide more context for comparing the mod-
els. These values represent the average difference in predicted lightness values between the
more chromatic and less chromatic stimuli, so a negative mean error means that a model
underpredicts the strength of the H-K effect, and a positive mean error means that a model
overpredicts the strength of the H-K effect. For example, as expected, CIECAM16 and
CIELAB have universally negative mean errors, as they do not explicitly compensate for the
H-K effect.

Universally, the analyzed models of the H-K effect have lesser mean errors (either smaller
positive or greater negative values) on the four newer datasets—our dataset, the High dataset
[86], the Seong dataset [88], and the Xie dataset [71]—than on the three older datasets.
This indicates that the strength of the H-K effect is greater in the four newer datasets
than in the three older datasets. This could be due to differences in experimental design
(Table 3.5). The use of physical, reflective samples is unique to the Fairchild [56] and
Wyszecki [50] datasets and there could be unknown differences in the H-K effect due to
this difference in medium. Additionally, the Wyszecki experiment [50] and the Sanders
experiment [49] both did not separate the test and reference stimuli. Presenting adjacent
samples can lead observers to make minimally-distinct-border judgments, which are distinct
from heterochromatic brightness matches and tend to lead to luminance-like matches [51].

These experimental differences can help explain why our models and others perform well
on some of the datasets but not on others. Our proposed models appear to be well-tuned to
the three newer datasets, with low RMSE values and mean errors close to zero. Meanwhile,
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Dataset
CIECAM16-based models

Proposed Hellwig ’22 Kim ’19 CIECAM16
Current 6.0 11.3 5.6 14.3
High ’23 2.3 3.1 4.5 6.0
Seong ’23 6.3 12.8 26.6 20.1
Xie ’21 6.7 12.6 7.0 17.5

Fairchild ’91 7.3 3.4 6.8 4.6
Wyszecki ’67 4.5 1.6 4.2 4.6
Sanders ’63 6.2 1.8 7.3 4.9

Dataset
CIELAB-based models

Proposed High ’23 Fairchild ’91 CIELAB
Current 5.9 7.4 8.7 14.6
High ’23 2.2 1.7 2.3 5.2
Seong ’23 13.2 9.0 12.2 26.6
Xie ’21 10.4 9.7 13.7 21.7

Fairchild ’91 7.0 4.9 4.6 4.9
Wyszecki ’67 3.7 1.9 1.2 4.8
Sanders ’63 5.5 6.5 2.1 5.9

Table 3.3: RMSE for 8 models of brightness and lightness on brightness matching data from
7 experiments. All data is scaled from 0 to 100 (the traditional lightness scale) to allow for
comparisons between datasets and models. Underlined values indicate the best performance
or lack of statistical difference from the best performance amongst all eight models (two-
sample t-test with α = 0.05)
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Dataset
CIECAM16-based models

Proposed Hellwig ’22 Kim ’19 CIECAM16
Current -0.37 -8.4 -2.3 -12
High ’23 -0.087 -1.1 -3.4 -4.8
Seong ’23 -4.7 -11.2 -21.5 -18.1
Xie ’21 -3.0 -8.4 0.030 -14

Fairchild ’91 5.6 1.2 5.4 -1.9
Wyszecki ’67 3.7 -1.3 3.6 -4.3
Sanders ’63 3.3 -1.6 4.4 -4.3

Dataset
CIELAB-based models

Proposed High ’23 Fairchild ’91 CIELAB
Current -0.72 -2.2 -4.4 -12
High ’23 -0.48 0.22 -0.80 -4.1
Seong ’23 -11.5 -4.4 -10.5 -23.5
Xie ’21 -6.6 -5.8 -8.7 -17

Fairchild ’91 5.2 2.8 1.9 -2.0
Wyszecki ’67 3.0 0.64 -0.60 -4.6
Sanders ’63 3.4 2.8 0.10 -4.8

Table 3.4: Mean error for 8 models of brightness and lightness on brightness matching
data from 7 experiments. Negative values indicate the model underpredicts the strength
of the Helmholtz-Kohlrausch effect in the data and positive values indicate that the model
overpredicts the H-K effect.
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Data set No. Stimuli No. Observers Viewing Mode Match Criteria Sample Separation
Current 236 11-25 Emissive Brightness Yes
High ’23 120 19-21 Emissive Lightness Yes
Seong ’23 285 20 Emissive Brightness Yes
Xie ’21 15 12 Emissive Zero-grayness Yes

Fairchild ’91 36 11 Reflective Lightness Yes
Wyszecki ’67 43 37-39 Reflective Lightness No
Sanders ’63 96 20 Emissive Brightness No

Dataset Lightness Range LW (cd/m2) YBG Surround
Current 30-90 400, 500 18 Dark
High ’23 80-100 120 20 Dim
Seong ’23 100 30, 95, 300 0.0005 Dark
Xie ’21 100 50, 100, 200 18 Dark

Fairchild ’91 30-70 382 20 Average
Wyszecki ’67 50 159 30 Average
Sanders ’63 50 100 20 Unknown

Table 3.5: Experimental parameters for brightness matching datasets.

positive net errors for the proposed models on the three older datasets indicate that our
models overpredict the brightness of more chromatic colors in these data, which follows the
above discussion on the relative weakness of the H-K effect in these data. A similar trend of
well-predicting the strength of the H-K effect in the newer data but overpredicting it in the
older data can be seen for the Kim and High models (Table 3.4). Meanwhile, the Hellwig
’22 model and the Fairchild model match the strength of the H-K effect in the older data
(to which they were both trained) while underpredicting the H-K effect when applied to the
newer datasets (negative mean errors in Table 3.4). Furthermore, analysis of the individual
errors for each model suggests that the Hellwig ’22, High, and Fairchild models underpredict
the H-K effect for darker colors in comparison to the other models.

3.4.6 Dicussion

Our unique method of brightness matching—choosing pairs of stimuli with constant differ-
ences in chroma—revealed two important features of the H-K effect:

1. The change in strength of the H-K effect is invariant to starting chroma; that is, you
see the same gain in brightness from increasing the chroma from 10 to 15 as from 5 to
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10. (The stimulus with chroma 15 is still brighter than the other two.)

2. The strength of the H-K effect decreases with increasing achromatic lightness; that is,
the rate at which increasing chroma contributes to perceived brightness and lightness
is lower at higher achromatic lightness.

The models proposed in this section follow these laws of the H-K effect; no other considered
model does so. The strengths of the H-K effect in the Hellwig ’22 model, the Kim ’19 model,
and the Fairchild ’91 model are not invariant to chroma, which can be seen by taking the
derivative of these models’ formulas for equal-brightness lines. Additionally, the Hellwig ’22
and High ’23 models do not predict the strength of the H-K effect to decrease with increasing
achromatic lightness.

In addition to its high performance, our proposed CIECAM16-based model is much sim-
pler than others; it only uses one fitted parameter versus six parameters for the Hellwig
model [87] and five parameters for the High [86], Kim [63] and Fairchild [56] models. Al-
though the proposed CIELAB model does contain more parameters (Equation 3.46), only
one parameter was fit to brightness matching data.

Brightness matching is an inherently noisy method of psychophysics, as can be seen
from the disordered lines of Figure 3.20. Our ability to draw deeper conclusions about the
relationship of the H-K effect with brightness and lightness despite this noisiness is due to our
refinement in the method of brightness matching. Hopefully, future experiments will adopt
the same constraint of equal chroma differences between stimuli pairs on a chroma-uniform
scale, such as the proposed revision to the CIECAM16 chroma scale. Using even smaller
chroma differences may lead to further discoveries. In the meantime, our model represents
a conservative—in that it does not overfit the noise in the data we collected—yet accurate
model of the brightness of chromatic visual stimuli.

The key aspects of the proposed model that differentiate it from other models of the H-K
effect also act as evidence for the hypothesis of this dissertation, that higher-level perceptual
attributes are best modeled using an accurate color appearance model as a base. Almost
all other models of the H-K effect require a hue dependency. However, because we already
corrected the hue-dependent eccentricity function (Equation 3.28 in Section 3.1.3), we no
longer needed a specific hue dependency in our CIECAM16-based model. The fact that the
function made to improve perceptual chroma uniformity also solved this problem in the H-K
effect is evidence that the H-K effect is occurring at this higher, cognitive level.

The simplicity of our model also depends on our conclusion that the strength (rate-of-
change) of the H-K effect is invariant to chroma, which is in turn reliant upon an accurate
scale of chroma. Our proposed formula for chroma (Equation 3.24 in Section 3.1.3) improved
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the perceptual linearity of the chroma scale (Figure 3.6). This chroma invariance would only
have occurred on such a perceptually linear scale and is further evidence that the H-K effect
is a cognitive perceptual phenomenon.

Finally, our logical improvements to the CIECAM16 formulas allow for this H-K model
to even exist. Our model would not be invertible without our removal of the explicit light-
ness dependency in the CIECAM16 formula for chroma (Equation 3.19). Additionally, our
newly linearized relationship between lightness and brightness (Equation 3.17) is necessary
to generate a model of the H-K effect that can predict both H-K-compensated lightness and
H-K-compensated brightness.

3.5 Testing the Helmholtz-Kohlrausch effect model on
HDR images

3.5.1 Introduction

In this study, we sought to test whether the model of brightness proposed in Section 3.4 could
be applied to predict how observers would perceive modulations in the color of HDR, WCG
imagery, simulating how differences in display color gamut and peak luminance may affect
ratings of brightness and saturation. Due to spatial effects, color appearance in images is
more complex when compared to the simplified geometric stimuli used in the direct brightness
matching studies for the H-K effect [9, 89–92]. However, directly applying this model to
images serves as a useful first study of how the Helmholtz-Kohlrausch effect functions for
images.

3.5.2 Methods

Image Modulation

Nine frames of HDR video were selected from a set of publicly available HDR videos devel-
oped by the Video Electronics Standards Association for visual experiments (Figure 3.23).
Each frame was mapped to the gamut of the Sony PVM-X3200 reference monitor used in
the experiment with the diffuse white point set to D65 at 100 cd/m2 and the peak luminance
of the images clipped to the white point of the display, 790 cd/m2. The CIE XYZ values of
each image pixel were then used as input to the revised CIECAM16 color appearance model.
The diffuse white point was used as the reference white point for the model with the degree
of adaptation set to 1 and the surround specified as “dark.”
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Figure 3.23: SDR approximation of HDR images used in the experiment. Images were used under
a CC by 4.0 license from VESA and York University.
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Figure 3.24: Example directions of image pixel color modulation in the achromatic lightness-chroma
plane. The upper dashed line represents the equal-perceived-brightness line predicted by our model
of the H-K effect (Equation 3.44) and the lower dashed line represents the equal saturation line.

The color of each image pixel was then modulated in one of nine directions in the
CIECAM16 lightness-chroma plane to generate nine new images for each start image. The
directions of modulation were as follows (ordered counter-clockwise) (Figure 3.24):

1. The positive lightness direction (+90◦ in Figure 3.24).

2. The angle halfway between directions 1 and 3.

3. The direction of the equal brightness line as predicted by Equation 3.44.

4. The angle halfway between directions 3 and 5.

5. The negative chroma direction (0◦ in Figure 3.24).

6. The angle halfway between directions 5 and 7.

7. The direction of the equal saturation line (towards the origin of the lightness-chroma
plane).

8. The angle halfway between directions 7 and 9.
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9. The negative lightness direction (−90◦ in Figure 3.24).

Given that the derivative of the equal brightness line and the direction of the equal satura-
tion line depend on achromatic lightness and chroma, these directions and the intermediate
directions were calculated for each pixel. The magnitude of the modulation was set to either
5% or 10% of the chroma of each pixel, generating 18 modulated images for each reference
image. No pixels with chroma below 10 were modulated so as to encourage the viewer to only
use the chromatic areas of the image to judge brightness. This expectation was confirmed
via post-experiment interviews with the participants.

Experimental Design

The experiment followed a two-alternative forced-choice method where observers were pre-
sented with one of the 18 modulated images next to the corresponding reference image
(separated by a vertical bar) and asked one of two questions:

• Which image is brighter?

• Which image is more saturated?

This was repeated in random order for all modulated images, all reference images, and
both brightness and saturation, leading to 324 total judgments per observer. 18 observers
participated in the experiment, 13 of which had previously received formal color science
education and 5 of which were näıve. They were instructed in the definition of saturation
by demonstration of pages from the DIN color order system.

Stimuli were displayed on a Sony PVM-X3200 reference monitor in a dark room. Col-
orimetric characterization was performed with a Colorimetry Research CR-100 colorimeter.
A 10 × 10 × 10 test grid in Rec. 2020 R′G′B′ space was used to test the color accuracy of
the display and optimize a 3 × 3 transform matrix, which improved the color accuracy of the
display from 2.3 ∆E00 to 1.3 ∆E00.

3.5.3 Results

General Trends

The direction of image pixel modulation in color space should predict the response of ob-
servers. When the angle of modulation is in the positive achromatic lightness dimension (90◦

in the notation from Figure 3.24), the expectation is that the observers will always perceive
the modulated image as brighter and less saturated than the reference image. The converse
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Figure 3.25: Percent of trials in which the modulated image was chosen as brighter or more saturated
as a function of modulation angle, averaged across all observers and images.

is expected for the −90◦ dimension: the modulated image should now appear less bright
but more saturated than the reference image. Figure 3.25 shows that these predictions hold
when our data is averaged across all observers, images, and modulation intensities.

As the modulation angle decreases in our notation (Figure 3.24), observers should be less
likely to rate the modulated image as brighter, as can be seen in Figure 3.25. For modulated
images between 90◦ and 0◦, chroma is reduced in the modulated images and achromatic
lightness is increased in the modulated images. In our model of H-K-compensated brightness,
both chroma and achromatic lightness contribute to perceived brightness. Thus, according to
the prediction of our model, reducing the chroma should make the image appear less bright

Figure 3.26: Representative examples of brightness curves generated by individual observers in the
experiment.
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to observers but increasing the achromatic lightness should make the image appear brighter
to observers. So, there is an inherent brightness tradeoff in this quadrant. If the achromatic
lightness is boosted much more than the chroma is decreased (e.g., modulation angle 2), then
we would expect that the small loss in perceived brightness due to decreased chroma to be
offset by the increase in achromatic lightness in the modulated image, which would make the
modulated image still appear brighter than the reference image. Conversely, if the chroma
is decreased much more than the achromatic lightness is boosted (e.g., modulation angle
4), we would expect that the decrease in chroma to cause the modulated image to appear
less bright than the reference image, even though there was a small boost to the (physical)
achromatic lightness of the image. The point at which the loss in chroma is exactly offset
by a gain in achromatic lightness should be when observers were equally likely to choose
either the modulated image or the reference image as brighter. Surprisingly, though, when
the only modulation was to reduce the chroma (modulation angle of 0◦), observers did not
perceive the modulated images as less bright! Even when the achromatic lightness was
slightly reduced along with the chroma (the first negative modulation angle), observers were
equally likely to choose the modulated image as the reference image. Possible explanations
for this unexpected result are discussed below.

Observers should be more likely to rate the modulated image as more saturated as the
modulation angle decreases in our notation (Figure 3.24). Saturation is typically defined
as chroma relative to lightness, so decreasing the chroma or increasing the lightness should
cause the perceived saturation to decrease. Thus, for the positive angles of modulation where
both chroma is decreased and lightness is increased, the perception of the observers that the
reference image was more saturated agrees with our expectations.

In the case of negative angles of modulation, the chroma is still being decreased, which
would cause saturation to decrease, but the lightness is now also being decreased, which
would cause saturation to increase. The modulation angle at which the decrease in lightness
offsets the decrease in chroma and observers are equally likely to rate either image as more
saturated should fall along the line of equal saturation which points from the stimulus to
the origin of the lightness-chroma plane. In our results, the average percentage of saturation
ratings did cross the 50% point at the angle that pointed to the origin, in agreement with
the expectations outlined above.

Differences between observers

The 18 observers who participated in the experiment were consistent in their judgments of
saturation, with all but two following the trend from the average results. However, there was
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significantly more variation between observers in their ratings of brightness. The majority
(12) of observers’ results followed the average trend from Figure 3.25. However, several
observers had results curves that were relatively flat or lacked a clear trend relative to
modulation angle (Figure 3.26). Additionally, two observers appeared to conflate brightness
and saturation, with their brightness results following the same trend as saturation (Figure
3.26). Interestingly, all five of the näıve observers fell into the first category of observer; the
observers that conflated the meaning of brightness and saturation had all received formal
color science training. These severe differences between observers that we observed are a
cautionary tale for researchers of brightness. Given the fluid linguistic meaning of the term
“brightness,” we cannot assume that the interpretation of brightness by observers exactly
aligns with the technical color science definition [25].

3.5.4 Discussion

The perceptual effect on saturation of our pixel-by-pixel modulation of images was well
predicted by the direction of modulation in the revised CIECAM16 achromatic lightness-
chroma plane. This indicates that our color appearance modeling pipeline was accurate in
predicting the perceptual color attributes of image content and that observers were consistent
in their ratings of saturation.

However, our results for observers’ ratings of brightness were more mixed. Observers
had differing interpretations of brightness or differing implementations in how they made
brightness comparisons (Figure 3.26). Thus, brightness judgments may be less reliable in
image psychophysics than saturation judgments.

Furthermore, the overall trend in observers’ brightness comparisons did not follow the
expected transition point predicted by the Helmholtz-Kohlrausch effect as the direction of
image pixel color modulation in the lightness-chroma plane changed. This failure of our color
appearance modeling pipeline to predict brightness judgments could be partially due to our
exclusion of spatial effects in our calculations. For example, in many images, the background
of the image was not modulated because its chroma fell below our chroma cutoff. So, the
interaction between the constant background and the shifting image content could have
created spatial brightness effects for which we did not account.

Spatial effects alone, though, would not be able to account for the most surprising result,
which is that when images were modulated to only reduce chroma and keep achromatic light-
ness constant, observers on average rated the modulated image as brighter than the reference
image. Even if the Helmholtz-Kohlrausch effect did not exist, then observers should still have
only been equally likely to rate either image as brighter, but with the well-established validity

72



of the Helmholtz-Kohlrausch effect (more colorful stimuli are brighter at equal luminance),
this result is completely unexpected.

A failure of the achromatic lightness dimension in CIECAM16 to be completely isolumi-
nant is one possible explanation for why the less colorful image was perceived as brighter by
observers, for in this case changing the chroma could have also led to an increase in luminance
that was not accounted for. Additionally, the image content could have played a role in this
surprising result. In post-experiment interviews, observers focused on the brightest and most
colorful elements in the images when making their judgments, which in six of the nine images
were colored lights. It is possible that decreasing the chroma of the colored lights made them
look whiter, which observers may have interpreted as brightness in the context of lighting.
Perhaps the use of a color appearance model tailor-made for self-luminous stimuli, such as
CAM18sl [64], may be more appropriate for this type of image content than CIECAM16.

The color modulations (Figure 3.24) performed in this study could approximate the
differences between displays with different peak luminance or color gamut. As expected,
increasing the simulated color gamut of an image by increasing its chroma led the observers
to view the image as more saturated. While they did not necessarily view such images as
brighter, another recent study indicated that wider color gamut and more saturated colors
are more important to the brightness and vividness of HDR images than peak luminance [93].
Thus, further exploration of this topic is necessary to address the potential shortcomings in
our modeling described above, including the incorporation of spatial effects on the perception
of HDR content.

Brightness is not typically referred to as a cognitive color appearance phenomenon. Both
the success of our cognitive approach to modeling the H-K effect and the failure of our
modeling to directly translate to image brightness are evidence that brightness perception
ought to be treated as a cognitive mechanism. We have also shown how accurate color
appearance models should form the basis for models of such cognitive perceptual attributes
and can provide more useful data when incorporated into experimental design as well.

73



Chapter 4

Chromatic Adaptation

This chapter investigates cognitive mechanisms of chromatic adaptation, specifically cogni-
tive discounting of the illuminant. Heterochromatic viewing environments, where an observer
is presented with two colors of illumination in different parts of the scene, form the basis for
our experimental methods and are introduced in Section 4.1. Our first experiment, covered
in Section 4.2, measured the sensory adaptation to the heterochromatic lighting environ-
ment to establish a baseline for the second experiment. The same heterochromatic viewing
condition is used for hue matching in Section 4.3 as we seek to quantify the degree to which
observers cognitively discount the illuminant.

4.1 Background

The inherent challenge of studying chromatic adaptation is that we seek to compare stimuli
that cannot coexist at the same time and place. Studies of chromatic adaptation then involve
either temporal or spatial separation of illumination conditions. In these experiments, we ex-
plore simultaneously-presented, spatially-separated heterochromatic viewing environments.
Such environments have been implemented across many types of visual experiments.

One application of heterochromatic viewing conditions is to generate data sets of cor-
responding colors—stimuli which have the same color appearance under different colors of
illumination/states of adaptation. Such experiments [73, 94] form the experimental foun-
dation for modern chromatic adaptation transforms and were central to the development
of such transforms in the 1980s and 1990s. Importantly, these experiments implemented
haploscopic viewing conditions, where each eye is presented with a separated field with its
own color of illumination. Each eye then independently undergoes chromatic adaptation to
the color of the illumination and the resulting corresponding colors provide useful informa-
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tion specifically for models of sensory adaptation, such as that implemented by CIECAM16
(Equation 2.2).

If we are instead to explore cognitive mechanisms of discounting the illumination color,
we can allow both eyes to view both scenes/areas of illumination. Such viewing environ-
ments were used in the 1990s in color science studies of cross-media image comparison where
the white points of the hard copies and soft copies varied [95, 96]. These studies referred
to such viewing conditions as “simultaneous-binocular viewing” to differentiate them from
the haplosopic conditions discussed above. Similar viewing environments, where two areas
with different color of illumination were presented to observers, were used in the same era
by psychologists studying “color constancy” and were referred to as “simultaneous asym-
metic matching” [23, 97]. While similar in experimental design, these studies implemented
a different theoretical approach to the question of how the visual system deals with the
color of the illumination. The color scientists tended to think about experiments in terms of
finding appearance matches, whereas the “color constancy” researchers used the paradigm
of the visual system trying to recover surface properties of objects across viewing conditions
[98]. However, such a surface-oriented paradigm often fell prey to the fallacy that there is
one “correct” color that an object should appear under a second illumination given its color
under a first illumination, a mindset which ignores the phenomenon of metamerism [20].

While binocular viewing conditions offer more natural viewing environments, it is more
difficult to define the exact method of adaptation compared to the haploscopic condition,
as discussed by both color scientists [95] and psychologists [97]. Our two-part approach to
studying chromatic adaptation in heterochromatic environments allows us to resolve some of
the uncertainty of the location of chromatic adaptation between sensory and cognitive sites.
By first employing a experimental task and stimulus arrangement which forces observers to
make achromatic matches based on sensory adaptation, we can separate out the mechanisms
of adaptation when we analyze the results of the more natural viewing environment that
allows for both sensory and cognitive adaptation. Revisiting this type of experimental setup a
quarter century later also provides us the benefit of the a quarter century of maturing of color
appearance models, where we have transitioned from a plethora of color appearance models
and chromatic adaptation transforms to a mature, CIE-recommended model [1]. (Although
research does continue in the development of and improvements to color appearance models
[64, 83, 99].)

The key consideration when observers make appearance matches across viewing condi-
tions is the criteria used by the observer to determine a match. The common conceptualiza-
tion of match criteria consists of two types of matches: light-like matches and surface-like
matches [100]. For light-like matches, one is essentially asking an observer to use their visual
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system as a colorimeter and ignore cognitive effects as much as possible. This type of match
is also referred to as an appearance match and is often cued as such to observers. If instead
one asks an observer a question like “Find the two objects that appear to be made from the
same paint,” the experimenter would expect for the observer to make a surface-like match
by cognitively discounting the color of the illuminant.

Certain experimental setups tend to lend themselves to one type of match or the other.
Making color matches across two displays in a dark room is going to lead to light-like matches
due to the lack of scene cues. Asking an observer to find the piece of paper from which a
provided sample was cut is going to lead to surface-like matches. However, in many cases,
such as in Experiment 2 (Section 4.3), the type of match made by the observer is not so
clear. In an early pilot of this experiment, I specifically instructed observers to make surface-
like matches, but this instruction proved difficult for observers to implement in practice.
Furthermore, when I tested out the final version of the experiment, I specifically tried to make
light-like matches, but found that such matches actually indicated I was strongly cognitively
discounting the illuminant on both sides of the light booth. Thus, while experimenters may
wish to divide sensory and cognitive mechanisms into, respectively, what we “see” and what
we “think,” this anecdote indicates that cognitive mechanisms are indivisible at some level
from our perception of pure appearance.

4.2 Experiment 1: Sensory adaptation to
heterochromatic illumination

4.2.1 Methods

A large bipartite light booth was used to generate heterochromatic lighting environments
within which the chromatic adaptation of observers would be measured (Figure 4.1). Each
of the two adjacent cells of the light booth were approximately 23 inches wide, 23.5 inches
deep, and 24 inches tall. The walls of the booth were painted with neutral gray paint with
approximate Munsell Value 8 (Yw = 59). Seven-channel ETC Source Four LED theater lights
installed above each light booth cell provided the lighting. The spectral power distributions
of the seven LED channels are shown in Figure 4.2. Diffusive panels installed below the
lights helped the uniformity of the illumination.

Three colors of light were used as adapting stimuli: CIE Illuminant A, CIE Illuminant
D65, and 12000 K daylight calculated using the CIE method. Since there are many combi-
nations of the seven LED channels that can be used to match the color (CIE XYZ values) of
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Figure 4.1: Bipartite light booth used in chromatic adaptation experiments.

Figure 4.2: Spectral power distributions of the 7-channel LEDs used to illuminate the light booth.
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each of these standard illuminants, the LED channel intensities for each color were optimized
to minimize the spectral difference between the light booth spectral power distribution and
the spectra of the standard illuminants. Spectral differences were minimized in order to
reduce the effect of inter-observer differences in spectral sensitivity. Each pairwise combi-
nation (three) of these three illuminations were used as adapting stimuli. Three uniform
illumination settings, where both sides of the light booth were set to the same color, were
also used, bringing the total number of adapting environments to six.

A psychometric staircase method was used to assess each observer’s neutral point when
adapted to each heterochromatic or uniform lighting environment. At the beginning of each
staircase, each observer was adapted to the lighting for two minutes. This length of time was
determined to achieve a sufficient degree of adaptation based on the lack of drift in observer
results as they completed the staircase and continued to adapt to the adapting environment.
Observers were visually cued at short, random intervals to direct their gaze to one side of the
light booth or the other in order to ensure that they spent equal time looking at both sides
of the light booth. The direction of gaze was randomized by the MATLAB program used to
run the experiment, but the exact location of their gaze within each light booth was directed
towards the center of each section’s back wall. This specific method of adaptation and gaze
control was chosen to mimic the likely behavior of observers in Experiment 2, where they
would be comparing the color of objects across the two halves of the light booth.

After the adaptation period, each trial stimulus presentation followed the following flow
(Figure 4.3):

1. Re-adaptation for 10 seconds following the method described above.

2. A brief, 1 second period where all lights turned off, to indicate to the observer that
the trial stimulus was about to be presented.

3. The trial stimulus presentation: a single color of light across both halves of the light
booth presented for 0.1 seconds.

4. All the lights off again while the observer enter their judgment as to whether the trial
stimulus appears more yellowish or bluish.

The set of available trial stimuli consisted of 121 illuminations along the Planckian and
daylight loci. The stimuli were evenly spaced in the CIE u′v′ chromaticity diagram. The
method recommended by the IES TM-30 standard was used to blend the two loci, with
the weighted averaging of the corresponding Planckian and daylight spectra from 4000 K to
5000 K.
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Figure 4.3: Block diagram demonstrating experimental method for Experiment 1.

For each stimulus presentation, the observers judged whether the stimulus appeared more
yellowish or bluish. If they responded bluish, the next stimulus would increment down in
correlated color temperature (in the yellow direction) and vice versa if they responded yel-
lowish. The turning point, when an observer switches from responding bluish to responding
yellowish, is a measure of their reference white appearance, and taking the mean of many
turning points provides a measure of their state of chromatic adaptation. It is important
to note that this experimental design and set-up specifically measured observers’ sensory
adaptation without any discounting of the illuminant. This was achieved by removing any
objects from the light booth and simply having them judge the color of the illumination.
Since they are judging the pure stimulation of the light, there is no additional illumination
to discount.

Each staircase began randomly at one of seven starting stimuli that were evenly spaced
among the 121 trial stimuli. Three stages of progressively smaller increments (20 steps, 5
steps, and 1 step) through the 121 stimuli were used in order to more quickly hone in on
the white-appearing stimuli for each adapting stimulus. The staircase moved from the first
stage to the second stage after two turning points and from the second stage to the third
stage after three turning points. The first stimulus of the next stage was the median of the
turning points from the previous stage. These criteria were chosen experientially in order to
minimize the number of trials: requiring more turning points increases the number of trials
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required while having too few turning points would lead to the next stage starting farther
away from the observer’s white point and require additional trials at a smaller increment to
get back close to the white point. The lack of drift in median turning point between the
different stages across most trials throughout the experiment indicated that these criteria
were well chosen.

The third, final stage with the finest increment was stopped after four turning points,
which would then be averaged to calculate the white point of the observers. There was con-
cern that observers might detect that their responses directly controlled the next stimulus
(responding blue causes the next stimulus to be yellower, and vice versa). So, two simulta-
neous staircases with different starting positions were run with their stimulus presentations
interleaved so as to mask the logic of the experiment, resulting in eight total stage-three
turning points.

There was also concern that the small increment size during stage three would lead
to observer frustration or distraction because sequential stimuli may appear very similar.
So, during stage three, there was a one-in-eight chance of being shown a randomly chosen
“dummy” stimulus.

Nine observers (ages 18-35, median 19) participated in the experiment. The observers
did not have previous experience with psychophysics but received a training session before
participating in the experiment.

4.2.2 Results

The results of the experiment are shown in Figure 4.4. The CCT of the adapting illuminant or
illuminants is indicated by the vertical black boxes. The mean of the final stage turning points
for each observer is indicated by a vertical black line on each row and 95% confidence intervals
for those values are indicated by the green boxes. Confidence intervals were estimated using a
Monte Carlo simulation in which each staircase was simulated 1000 times using the observed
percentages for each trial stimulus for that specific observer and adapting stimuli.

Alignment of the confidence intervals with the adapting illumination in Figure 4.4 in-
dicates complete chromatic adaptation. For instance, most observers experienced complete
chromatic adaptation to D65 (left column, center row) but only partial chromatic adapta-
tion to Illuminant A (left column, top row) and 12,000 K daylight (left column, bottom
row). Each observer’s results from the single-illuminant condition were used to predict their
results in the heterochromatic illumination condition (brown vertical lines in the right col-
umn). These predictions were generated by taking the average of the positions of the two
white points along the Planckian-to-daylight IES TM-30 reference illuminant curve in the
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Figure 4.4: Results of Experiment 1. Each sub-figure represents one illumination condition, with
the correlated color temperature of the illuminant or illuminants indicated by the vertical black
boxes. Within a set, each of the vertical black lines indicates the experimentally determined neutral
point of each observer. The green boxes indicate the 95% confidence intervals for each result. The
brown vertical lines in the right column indicate the neutral point predicted from the average of
the results from relevant single illumination adaptation points in the left column.
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Ill. A D65 12k K
Ill. A 3450 5179 5402
D65 - 6407 7752

12k K - - 10109

Table 4.1: Mean neutral point across observers for each combination of illumination colors.

u′v′ chromaticity diagram.
Interestingly, the measured adaptation point for observers in the heterochromatic condi-

tions do not match these values predicted by averaging the single illuminant results. For the
D65 and Illuminant A heterochromatic condition (top right in Figure 4.4), the observers’
chromatic adaptation was biased towards D65 compared to the average of their adaptation
points to the individual illuminants. A similar towards the bluer illuminant can be observed
in the results of the D65 versus 12,000 K heterochromatic condition (bottom right). The
vastly different colors of the illuminations in the Illuminant A versus 12,000 K condition
appears to have led to a wide dispersion of adaptation points to that lighting compared to
the relatively narrow dispersion of results from average their adaptation to individual illumi-
nants (middle right). This suggests that judging the achromatic point was more difficult for
observers in this condition. Nevertheless, it is useful to record observers’ mean white point
in these conditions, which are reported in Table 4.1.

4.3 Experiment 2: Hue matching across
heterochromatic lighting

4.3.1 Methods

Experimental Design

Experiment 2 sought to expand upon the preliminary results of Experiment 1 by introducing
objects into the heterochromatic lighting environments to assess how observers compensated
for the color of the illumination beyond their sensory chromatic adaptation in judging the
appearance of chromatic stimuli. The first step in the process was creating the objects.
4” hard foam cubes were used as the substrate to which heavy-body acrylic paints would
be applied. Roy Berns had previously generated a data set of absorption and scattering
spectra for 19 Golden Heavy-Body Acrylics [101]. Two-constant Kubelka-Munk theory was
used to predict the reflectance spectra of mixtures of these paints from their scattering and
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absorption spectra [102].
Five color centers were targeted in this experiment with CIECAM16 lightness 50, chroma

20, and five evenly spaced hue angles from 18◦ to 306◦ in steps of 72◦. These hue angles
roughly align with red, yellow, green, blue, and purple. The MATLAB Optimization Toolbox
was used to find all possible mixtures of three paints plus white which would match the target
appearance attributes under the light booth’s spectral simulation of D65. Three paints plus
white are sufficient to match any target color within their gamut (three degrees of freedom for
three dimensions of CIE XYZ values). The more accurate, physiologically-based CIE 2012
10◦ standard observer was used for all colorimetric calculations in order to improve the quality
of the metamers generated by this method. CIECAM16 calculations were performed using
revisions proposed by Hellwig and Fairchild [83]. Additionally, all CIECAM16 calculations
used a degree of adaptation factor of 1, assumed “average” viewing conditions, and set the
relative background reflectance factor to 59.10, the adapting luminance to 40 cd/m2, and the
white luminance to 200 cd/m2.

For each color center, the set of all matching mixtures under D65 was then simulated
as being illuminated by the light booth’s spectral match of Illuminant A. It was observed
that these metamers under Illuminant A appeared to have one primary degree of variation
in the CIECAM16 a-b plane. Principle component analysis was performed to quantify this
variation. From each set of metamers, three specific mixtures were chosen: the two most
extreme metamers along the principal component of variation and a third metamer closest
to the middle of the variance (Figure 4.5).

A scale with 0.01-gram precision was used to measure out the concentration by weight of
each paint for each paint mixture. 20% concentration of Golden acrylic matte medium was
added to each mixture, and then the mixture was applied in two layers to the foam cubes.
Due to the approximations inherent in Kubelka-Munk theory and the limits of the accuracy
of both the absorption and scattering database and the manual process of measuring and
mixing the paint, the resulting paint mixtures were not perfect color matches under D65,
with a median ∆E2000 of 2.0. If need be, though, this color error could easily have been
corrected by adjusting the spectrum of the D65 simulation generated by the 7-channel LED
lighting to illuminate each cube.

The spectral differences in the painted cubes along with the spectral tunability of the
7-channel LEDs provided the opportunity to present cubes with a broad variety of ap-
parent color without changing the color of the illumination. A significant shortcoming in
previous studies of color “constancy” is that one-to-one mappings of object colors between
illumination colors were assumed either by the experimenters or implicitly by the lack of
spectral tunability and variablity in the physical media used to present physical stimuli.
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Figure 4.5: Gray lines represent the change in color of each metamer between its color under D65
(circles, the same for each metamer) and its color under Illuminant A in the revised CIECAM16
a-b plane. x’s indicate the chosen metamers for painting.
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Our spectrally-flexible methods overcome these shortcomings and assumptions, allowing us
to control the color of each box via the illumination but independently of the color of the
illumination.

We considered two experimental modalities to test how observers account for the color
of the illumination in the color appearance of objects. The first modality would have been
an adjustment-based method. In this experimental paradigm, observers would have been
shown a reference box under one illumination (in practice, D65-colored light), and then
would have used a keyboard to adjust the color of a similar box under a second illumination
(in practice, Illuminant-A-colored light). Their hue- and chroma-based adjustment would
have been translated by an algorithm into adjustments to the spectrum of light that would
adjust the color rendering to achieve the target color appearance for that box. The color
of the box adjusted by the observer and the reference box color would then form a pair of
corresponding colors.

The second candidate experimental modality was a pass/fail acceptability judgment. In
this paradigm, observers would simply be shown the reference box color under a D65-colored
light and one of many test box colors and asked to judge whether the two boxes match
in color. This methodology is more inclusive of the uncertainty of observers’ judgments of
colors across illumination colors—there is not one single color that observers will perceive
as matching (as assumed by the first experimental paradigm), but rather a range of colors
that will appear acceptably similar [103]. The color pairs that observers are most likely to
approve as matching can be considered corresponding color pairs.

The second methodology was chosen for this experiment to simplify both the experimental
design and the task for observers. The experimental task was further simplified and improved
by asking observers to simply judge whether the two boxes had the same hue. Removing
chroma from the judgment criteria allowed us to spend more time testing hue, to which
observers tend to have more stringent criteria. Lightness was never considered because
adjusting the spectrum of the illumination had little effect on lightness. Furthermore, object-
pair metamers infrequently differ greatly in lightness [104].

Nonlinear optimization in MATLAB was then used to find the range of hues that each
box could be made to appear under optimized metamers of Illuminant A via the 7-channel
LED light source. For each of the five color centers, then, the one box of the three options
that could generate the widest range of hues was chosen for use in our experiment. Then, to
generate the exact stimuli for the experiment, nonlinear optimization was used to find LED
channel intensities to make an Illuminant A metamer that would cause the boxes to match
a given set of CIECAM16 hue angles and revised chroma [83]. The target hue angles ranged
from the lowest to greatest hue angle that could be generated by this cube and light source
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Color Center
Red Yellow Green Blue

Ill. A
hmin 11◦ 46◦ 160◦ 220◦

hmax 35◦ 108◦ 192◦ 262◦

Increment 0.5◦ 1◦ 0.5◦ 1◦

D65
h1 18◦ 66◦ 146◦ 229◦

h2 24◦ 78◦ 152◦ 241◦

Table 4.2: Hue angle information for the experimental stimuli used in Experiment 2

Figure 4.6: Experimental setup.

combination in increments of either 0.5◦ for the red, green, and purple color centers and 1◦

for the yellow and blue color centers due to the larger range of hue angles that could be
covered by these two color centers. The target chroma was 20, but the chroma was allowed
to fluctuate if needed to match the required hue angle. Additionally, for each color center,
two sets of LED channel intensities were optimized to find D65-metamer spectral power
distributions that would produce two target hue angles for each cube. These hue angles were
separated by twelve increments.

At this point, it was discovered that the purple boxes under Illuminant-A-colored light
never appeared to have equal hue to the same boxes under D65-colored light, regardless
of spectral power distribution. Thus, the purple color center was eliminated from this ex-
periment. Table 4.2 contains the details of the experimental hue angles for the other color
centers.
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A turntable was built to display the cubes within the light booth (Figure 4.6). Servo
motors with positional feedback and a pair of Arduino microcontrollers were used to control
the position of the turntables with MATLAB. All surfaces of the turntable were painted with
Golden Neutral 8 paint to match the color of the light booth, and vertical barriers obstructed
observers’ view of the other cubes when they were not being shown.

Experimental Procedure

For each color center, the boxes on either side of the light booth were compared by the
observers under each combination of the many Illuminant-A-metamer test lighting settings
and the two D65-metamer reference light settings. As discussed above, the colors of the
Illuminant A metamers were all identical but caused the boxes to appear a different hue.
All stimuli were shown in random order with left-right randomization of Illuminant A and
D65. Additionally, it was ensured that adjacent trials never tested the same box. Observers
were asked to judge whether the two boxes matched in hue. Before participating, observers
were educated on the definition of hue and were shown Munsell constant-hue pages. In-
structions to the observers tried to get them to still make light-like matches following the
matching paradigm introduced in Section 4.1. This education was important because the
boxes sometimes differed in chroma, especially for the blue color center. 17 color normal
observers—ranging in age from 20 to 59 with a median age of 25—participated in the exper-
iment.

4.3.2 Results

Figure 4.7 shows the percentage of the 17 observers who responded that the two boxes
matched in hue as a function of the CIECAM16 hue angle of the box under each Illuminant
A metamer, using Illuminant A as the white point for the CIECAM16 calculations (unity
degree of adaptation). Vertical lines of the same color as these lines indicate the CIECAM16
hue angles of the box under each of the two D65 metamers, using D65 as the white point for
the CIECAM16 calculations (unity degree of adaptation).

The expected shape of the curves are demonstrated by the results for the yellow boxes (top
right). At the hue angle where the Illuminant A metamer causes the box to appear the same
hue as the reference D65 box, nearly all observers responded that the two cubes matched in
hue (value closest to one). Then, as the hue angle deviates from the best match, the frequency
of “match” responses from observer decreases until it approaches zero. These characteristic
curves can be approximated as normal probability distribution functions (Figure 4.8), with
the abscissas of the peaks of the curves representing the box under Illuminant A that best
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Figure 4.7: The percent of responses that indicated a match in hue between boxes as a function
of the CIECAM16 hue angle for each of the Illuminant A boxes divided into four color centers.
Vertical lines indicate the CIECAM16 hue angle of the corresponding reference boxes under D65,
assuming full adaptation to D65.
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Figure 4.8: Normal probability distributions fit to each curve from Figure 4.7, representing the
percent of responses indicating a hue match between boxes.

matches the corresponding reference box hue under D65.
For the other color centers, the hue match frequency never reached one; all observers

never agreed that a single pair of cubes matched in hue. This result can be further explained
by examining the individual results for each observer (Figure 4.9) For the yellow color center
(top right of each set), the observers had similar tolerances for hue matching and their
individual ranges of acceptability had similar centers, leading to the normal shape of the
yellow results. For the green color center (bottom left of each set), there were discrepancies
amongst observers both in relation to the range of tolerance and which hue was the best
match. Some observers only saw a very narrow range of bluish cubes under Illuminant A as
matching the D65 reference cube hue, whereas others had a very broad range of hues that
they viewed as an acceptable match, and these hues tended towards the greener part of the
displayed hues compared to the first set of observers.

A similar distinction between the tolerance range of observers can be seen in the results
for the red color center (top left of both sets of Figure 4.9). However, these results are further
complicated by the fact that the D65 reference cube hues were too purple (low hue angle)
compared to the box hues that could be generated by the Illuminant A metamers. Thus, the
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Figure 4.9: Each diamond represents a “hue match” response for a specified stimulus for each of the
17 observers that participated in the experiment, whereas an empty space indicates the observer
did not observe a hue match.
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probability distributions for the red color center may never have reached their peak (Figures
4.7 and 4.8). Thus, we may not have been able to determine the correct hue match for that
color center.

The observer variation in tolerances was even more severe for the blue color center (bot-
tom right of both sets of Figure 4.9), with some observers reporting that all of the box hues
under Illuminant A matched the D65 reference box hue and other observers reporting very
few matches, if any. This lack of discernment for some observers flattens the resulting proba-
bility distributions (Figure 4.8). These results suggest that some observers may have reverted
to judging color categories as opposed to judging the precise hue composition of each box,
despite instruction provided to the observers to specifically exclude any pairs of boxes where
one box appeared slightly bluer, or slightly greener, or slightly yellow, or slightly redder than
the other box. In future experiments, it may be beneficial to train observers to discern hue
more precisely using monochromatic illumination and perhaps even exclude observers that
fail to sufficiently discern hue differences. These limitations of the data described above are
important to keep in mind as we analyze the results of the normal fitting.

The color of the best hue match of a box under an Illuminant A metamer against each ref-
erence D65-illuminated box is shown in Figures 4.10 and 4.11. Each diagram was generated
using the proposed revisions to CIECAM16 (Section 3.1). In the case of Figure 4.10, the in-
dividual illuminant for each section (either D65 or Illuminant A) was used as the CIECAM16
white point. In the case of Figure 4.11, the mean neutral point from the relevant conditions
from Experiment 1 (Table 4.1) was used as the white point for calculations. For both figures,
opponent color axes α and β were calculated from CIECAM16 J , C, and h using a polar to
rectangular Cartesian conversion, because CIECAM16 does not explicitly specify such axes
in the output of the model.

If observers underwent instant and complete chromatic adaptation to each of the illumi-
nants in the heterochromatic viewing environment as they were judging the hue of each box,
the matching CIECAM16 hue angle under Illuminant A would be the same or close to the
CIECAM16 hue angle of the D65 reference. Instead, the Illuminant-A-condition hue angles
are offset from the D65-condition hue angles (Figure 4.10). The direction of the offset in the
data is consistent with the observers partially compensating for the color of the illumination.
For instance, for the green color center, a yellower (after complete chromatic adaptation)
cube under D65 was matched to a bluer cube under Illuminant A. This suggests that the
color of the illumination was partially mixed with the perceived color of the boxes—the
tristimulus values of the box under the D65 metamers are bluer than its tristimulus values
under the Illuminant A metamers. The same dynamic can readily be seen in the red color
center, where the Illuminant-A-adapted hue angles of the preferred Illuminant A boxes are
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Figure 4.10: The color of hue-matched boxes are plotted as diamonds on α−β opponent color axes
derived from predicted chroma and hue angle scales following the proposed revisions to CIECAM16
(Section 3.1). The color appearance of each box was calculated assuming complete adaptation to
the color of each box’s specific illumination. The dashed lines indicate the range of possible box
colors that were tested under Illuminant A metamers and are thus also useful in identifying which
of each pair of diamonds refers to the Illuminant A box and which refers to the D65 box (which is
not connected to the dashed line).
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Figure 4.11: The color of hue matched boxes are plotted as diamonds on α − β opponent color axes
derived from predicted chroma and hue angle scales following the proposed revisions to CIECAM16
3.1. The color appearance of each box was calculated assuming adaptation to the observers’ pre-
dicted sensory neutral point, 5180 K daylight. The colors of the illumination are therefore not
neutral and are also plotted as circles on the diagrams.
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bluer than the hue angles of the matched boxes under D65.
Directly interpreting these results from the superficial trends is simplest for the red

and green color centers, since they are perceptually orthogonal to the blue-yellow axis of
variation of the color of the illumination. The correct relationship between the hue angles is
more difficult to read from the yellow and blue hue angles, where it’s not apparent without
further calculation which direction the illumination would be pushing the perception of the
boxes. Such calculation involves using partial chromatic adaptation to derive an adapted
white point for the observer between the white point of the illumination in question and the
observer’s internal resting reference white point.

Figure 4.11 suggests an alternative paradigm for analyzing whether the illuminant was
discounted by observers. The calculation of hue angle represented by complete adaptation
(as in Figure 4.10) implies that cognitive discounting of the illuminant follows the same
mathematical von Kries form as sensory adaptation, but there is no explicit evidence for
such an assumption. By using our best estimate of the state of sensory adaptation of the
average observer, Figure 4.11 shows the predicted perceived colors of both the boxes and
the illuminations in the entire heterochromatic scene. Thus, this represents the perceptual
information that the observer is using to judge the colors. However, the angular relationship
between each box and its respective illumination is not significantly changed from the full von
Kries state and thus does not provide additional insight into the mechanism of discounting
the illuminant.

A third potential path for evaluating these hue match pairs is suggested by Berns and
Choh [96]. This study evaluated appearance matches across hard copy and soft copy media
within different white points and found that the appearance match preferred by observers
when they assumed that the observer would be 75% adapted to whichever medium they were
viewing at that moment and 25% adapted to the other medium. Unique, partially adapted
states would also be plausible given our experimental method and may be the result of
cognitive discounting of the illuminant.

In the case of our heterochromatic lighting condition, we can use the results of Experiment
1 to estimate a resting state of sensory adaptation for the observers in Experiment 2. This
adaptation state will serve as the baseline white point from which observers’ white points are
changed as they use cognitive mechanisms to partially discount the color of each illumination.
(This approach also allows for fast chromatic adaptation that would occur as observers look
back and forth between the light booth sections.) The mean correlated color temperature
(CCT) of the white point from the observers in Experiment 1 in the D65 versus Illuminant
A condition was 5180 K (daylight). The accuracy of this value has surprisingly little effect
on the results of the following calculations, thus we need not overly concern ourselves with
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the interobserver differences observed in Experiment 1 nor the fact that Experiment 1 and
Experiment 2 consisted of separate observer pools.

We can then find the degree of partial chromatic adaptation from this baseline white
point towards each of the adapting illuminants at which the stimuli would have the same
CIECAM16 hue angle. Instead of using the default CIECAM16 method for implementing
partial chromatic adaptation, it is more appropriate in this context to use the weighted-
geometric-mean method proposed by Shen & Fairchild[6], which improves upon several of
the flaws in the CIECAM16 formula. Specifically relevant for this case, predicted white
points follow the Planckian and daylight loci more closely in the weighted-geometric-mean
method, as did our stimuli in Experiment 1.

The implementation of the model is as follows. Given the CIECAM16 pseudo-cone values
for the (reference) baseline white point, RrGrBr, and the pseudo-cone values for the adapting
illuminant, RwGwBw, the effective white point, ReGeBe, after partial chromatic adaptation
to degree D is calculated by:

Re = RD
w R1−D

r (4.1)

Ge = GD
w G1−D

r (4.2)

Be = BD
w B1−D

r (4.3)

This effective white point can then be used to model typical von Kries chromatic adaptation
as implemented in CIECAM16.

The hue angle of each of the matched stimuli as a function of the degree of adaptation is
shown in Figure 4.12, with the dashed lines representing the reference stimuli under D65 and
the solid lines representing the median matched stimuli under the Illuminant A metamers.
If observers were able to completely discount the color of the illumination when making hue
matches, each pair of dashed and solid lines would intersect where D = 1. (The ordinate of
each line at D = 1 matches the hue angles from Figures 4.7 and 4.8.) If observers did not
discount the illuminant at all nor experienced any fast chromatic adaptation as they looked
back and forth, then the solid lines would intersect at D = 1. Instead, all intersections occur
between these endpoints, indicating that observers partially, but not completely, discounted
the illuminant in their judgment of the boxes’ hues.

As discussed earlier, the red boxes were too blue under D65 to match any of the box
hues under Illuminant A. Thus, solid lines (representing Illuminant A) should be lower than
they are in Figure 4.12 and the degree of adaptation value should be less. Similarly, the
inter-observer variability discussed above leads to a lack of confidence in the blue curves
at the top of the figure. Thus, the two central pairs of lines represent the highest quality
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Figure 4.12: Predicted hue angle of each box as a function of the degree of partial adaptation to
the test illumination from 5180 K daylight used to calculate a CIECAM16 adaptation point. Solid
lines indicate the Illuminant A boxes and dashed lines indicate D65 boxes, with the color of each
line used to identify its pair. The circles indicate the degree of adaptation at which the boxes are
predicted to match in hue.
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data and predict effective degrees of adaptation ranging from 0.40 to 0.63. These predicted
white points are shown relative to the resting sensory adaptation point (5180 K daylight)
and with the colors of the chosen boxes as well in Figure 4.13. While the Berns and Choh
paper only tested one degree of partial adaptation, 0.75, their value agrees with the values
that we report here [96].

4.4 Conclusion

Heterochromatic lighting environments and the associated psychophysical method of simul-
taneous asymmetric color matching are important experimental tools for researchers of chro-
matic adaptation. Our experimental development and approach rooted in color appearance
modeling represent significant improvements on the current standard for these experiments.
Taking advantage of the metamerism of multi-primary, spectrally tunable illumination along-
side the tunability of surface reflectance via Kubelka-Munk simulations allowed our experi-
ment to supersede the limiting assumptions made by past “color constancy” researchers to
study chromatic adaptation with objects without the chosen spectral reflectances biasing the
results or analysis of the experiment. Our more rigorous approach also gave us the opportu-
nity to quantify how observers cognitively discounted the illuminant, opening the path for
future studies that complement existing experimental paradigms for measuring chromatic
adaptation.
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Figure 4.13: The color of hue matched boxes are plotted as diamonds on α − β opponent color axes
derived from predicted chroma and hue angle scales following the proposed revisions to CIECAM16
3.1. The color appearance of each box was calculated assuming adaptation to the observers’ pre-
dicted sensory neutral point, 5180 K daylight. The solid lines indicate the range of color coordinates
of neutral points assuming partial adaptation to each individual illumination, ranging from no adap-
tation (the origin) to full adaptation (empty circles). Filled circles indicate the neutral point for
the degree of adaptation at which the pair of boxes are predicted to have equal perceived hue.
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Chapter 5

Conclusion

5.1 Summary

This thesis reports the following improvements to modeling brightness within the framework
of color appearance modeling:

• Improved CIECAM16 by linearizing the relationship between lightness and brightness.

• Simplified and improved the CIECAM16 measures of chromatic intensity.

• Developed an initial model of the brightness of chromatic color that accounts for the
Helmholtz-Kohlrausch effect.

• Conducted a series of three psychophysical experiments to generate new data on the
Helmholtz-Kohlrauch effect.

• Fit a new model of the brightness of chromatic colors to our data.

• Testing our model of brightness on high-dynamic-range images.

Additionally, this thesis reports the following achievements in our studies of cognitive phe-
nomena related to chromatic adaptation:

• Developed new psychophysical procedures to measure the sensory adaptation of ob-
servers to heterochromatic viewing environments.

• Conducted an asymmetric hue matching experiment with the heterochromatic lighting
environment that overcame the shortcomings of previous studies.

• Measured the degree to which observers cognitively discount the color of the illumina-
tion in their perception of hue.
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5.2 Discussion

This thesis demonstrates the power of color appearance models in designing and analyzing
psychophysical experiments. Our finding that the strength of the Helmholtz-Kohlrausch (H-
K) effect is invariant to chroma and hue could only have been seen with a chroma metric that
was perceptually linear and uniform to hue. Thus, the greater computational investment on
the front end of color appearance modeling paid off with a final model that was simpler than
a model that only used CIELAB. Using CAMs in this way has a benefit for the models, as
well, as this type of implementation can reveal flaws or areas for improvement in a model.
This was demonstrated by our refinement of the relationship between achromatic brightness
and achromatic lightness in CIECAM16 following our discovery of a perceptual paradox in
the model.

CAMs were also key to designing our experiments on chromatic adaptation. The 7-
channel LED illumination, along with our ability to spectrally tune reflectances with Kubelka-
Munk theory, provided an exceptional number of degrees of freedom that could only be prop-
erly constrained and properly deployed via color appearance modeling. The use of multiple
white points in the experiment also called for the reliable chromatic adaptation transforms
implemented by CAMs.

This integration of color appearance modeling into our experimental modalities also re-
veals surprising instances where observer behavior seems to depart from the definitions used
by color scientists. In our HDR image brightness experiment, this occurred when some ob-
servers appeared to conflate saturation and brightness and rated less luminant (but more
saturated) images as brighter. In the heterochromatic viewing condition experiment, we saw
a wide range in observer tolerance for hue matches. Future experiments that incorporate ex-
plicit color appearance modeling in their design and analysis have the potential to shed more
light on how observers interpret these color appearance terms when completing experimental
tasks.

Both sets of experiments have led to important new insights into cognitive mechanisms
of color appearance. However, challenges remain for broader application of color appearance
models to the applications we have introduced. A stated goal of CAMs is to be able to
properly account for the effects of viewing conditions, such as luminance level, background
luminance, and surrounds conditions, on visual perception. The current generation of CAMs,
such as CIECAM16, are not able to reliably and rigorously account for these effects. Thus,
while the scales work very well within one set of viewing conditions, we cannot use the CAM
to maintain constant color appearance for images across viewing conditions. Further research
should be done to improve the rigor of these parameters within CIECAM16 and other models.
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Additionally, even within one set of viewing conditions, our model had trouble making
predictions of brightness for high-dynamic-range images. This failure is at least partially
due to spatial effects, which are not accounted for in CIECAM16. Modular additions to the
CAM that would allow for spatial or temporal effects would greatly increase the utility of
the model.

5.3 Contributions

5.3.1 Journal Articles

Hellwig, L., Stolitzka, D., & Fairchild, M. D. (2023). The Brightness of Chromatic Colors.
Color Research & Application, [Accepted].

Hellwig, L., & Fairchild, M. D. (2022). Brightness, lightness, colorfulness, and chroma in
CIECAM02 and CAM16. Color Research & Application, 47 (5), 1083–1095.

Hellwig, L., Stolitzka, D., & Fairchild, M. D. (2022). Extending CIECAM02 and CAM16
for the Helmholtz–Kohlrausch effect. Color Research & Application, 47 (5), 1096–1104.

Hellwig, L., & Fairchild, M. D. (2020). Using Gaussian Spectra to Derive a Hue-linear
Color Space. Journal of Perceptual Imaging, 3 (2), 020401-1–020401-8

5.3.2 Conference Proceedings, Presentations, and Posters

Hellwig, L., Stolitzka, D., & Fairchild, M. (2022, November). Novel methods of brightness
and saturation testing for high-dynamic-range images. In Color and Imaging Conference
(Vol. 31, No. 1, pp.122-125). Society for Imaging Science and Technology.

Hellwig, L., Stolitzka, D., & Fairchild, M. (2022, September). Improvements to CIECAM16
and Future Directions. In Proc. 30th Session. Commission Internationale de l’Eclairage.

Hellwig, L., Stolitzka, D., & Fairchild, M. D. (2023, June). The Brightness of Chromatic
Colors. Inter-Society Color Council: Color Impact [Presentation Only].

Hellwig, L., & Fairchild, M. D. (2023). Chromatic Adaptation to Heterochromatic Illu-
mination. Journal of Vision, 23(11), 51. [Abstract – poster presented at Optica Fall Vision
Meeting 2022]

Hellwig, L., Stolitzka, D., & Fairchild, M. (2022, November). Why Achromatic Response
is not a Good Measure of Brightness. In Color and Imaging Conference (Vol. 30, No. 1, pp.
1-5). Society for Imaging Science and Technology.

Hellwig, L., Stolitzka, D., & Fairchild, M. D. (2022, November). Revising CAM-16. Color
and Imaging Conference [Poster Only].
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Hellwig, L., Stolitzka, D., Yi, Y., & Fairchild, M. D. (2022, June). 75-1: Student Paper:
Brightness and Vividness of High Dynamic Range Displayed Imagery. In SID Symposium
Digest of Technical Papers (Vol. 53, No. 1, pp. 1009-1012).

Hellwig, L., & Fairchild, M. D. (2020, November). Using Gaussian Spectra to Derive a
Hue-linear Color Space. In Color and Imaging Conference (Vol. 28, No. 1, pp. 244-251).
Society for Imaging Science and Technology.
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Appendix A

Proposed Color Appearance Model:
HellesCAM23

In Section 3.1, this thesis proposed key revisions and corrections to CIECAM16. Addition-
ally, in section 3.4, we proposed an extension to this revised CAM, introducing two new
output attributes, JHK and QHK , to account for the Helmholtz-Kohlrausch effect. Fur-
thermore, the MATLAB implementation of CIECAM16 used for these calculations contains
improvements suggested by Nico Schlömer [105]. The full model resulting from these sug-
gested changes is recorded below and can be referred to as HellesCAM23, after the German
word for “bright.”

A.1 Forward Model

A.1.1 Model Inputs:

• XY Z, tristimulus values of stimulus.

• XwYwZw, tristimulus values of diffuse white within the scene.

• La, luminance of adapting field in cd/m2, which is defined as 20% of the luminance of
the diffuse white within the scene, regardless of scene composition.

• Yb, luminance factor of background.

• D, degree of adaptation.

• Surround parameters, F , c, and Nc, determined via Table A.1.
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F c Nc

Dark 0.8 0.525 0.8
Dim 0.9 0.59 0.9

Average 1.0 0.69 1.0

Table A.1: Surround parameters

A.1.2 Values which are independent of stimulus

k = 1
5LA − 1 (A.1)

FL = 0.2k4(5LA) + 0.1(1 − k4)2(5LA) 1
3 (A.2)

z = 1.48 +
√

Yb

Yw

(A.3)

M16 =


0.401288 0.650173 −0.051461

−0.250268 1.204414 0.045854
−0.002079 0.048952 0.953127

 (A.4)


Rw

Gw

Bw

 = M16


Xw

Yw

Zw

 (A.5)

Raw = Gaw = Baw = 400
(

F 0.42
L

F 0.42
L + 27.13

)
(A.6)

Aw = 2Raw + Gaw + Baw

20 (A.7)

A.1.3 Cone responses 
R

G

B

 = M16


X

Y

Z

 (A.8)

A.1.4 Chromatic Adaptation
Rc

Gc

Bc

 =


Yw

Rw
0 0

0 Yw

Gw
0

0 0 Yw

Bw




R

G

B

 (A.9)
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A.1.5 Tone compression

Ra = 400


(

FLRc

100

)0.42

(
FLRc

100

)0.42
+ 27.13

 (A.10)

Calculate Ga and Ba similarly.

A.1.6 Opponent dimensions and hue

a = Ra − 12Ga

11 + Ba

11 (A.11)

b = Ra + Ga − 2Ba

9 (A.12)

h = arctan
(

b

a

)
(A.13)

A.1.7 Eccentricity

Figure A.1: Current, trigonometric eccentricity function (red; Equation A.14) compared to the
B-spline eccentricity function (green; Equations A.15 and A.16).
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et = −0.0582 cos(h) − 0.0258 cos(2h) − 0.1347 cos(3h) + 0.0289 cos(4h)
−0.1475 sin(h) − 0.0308 sin(2h) + 0.0385 sin(3h) + 0.0096 sin(4h) + 1

(A.14)

The above formula was used for all calculations represented in this thesis. Recently, Laslo
Hunhold has suggested that a 4th-order B-spline function could achieve the same perfor-
mance as this trigonometry-based formula with much greater efficiency. The B-spline fit to
the same Munsell data is defined by coefficients c and knots τ :

c =



0.8121
0.8003
0.8397
0.9582
0.9371
0.8326
0.805
0.8557
1.2605
1.1801
0.9398
0.9994
1.124
1.4352
1.1419
0.9102
0.8238
0.8121



T

(A.15)
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τ =



0
0
0
0
24
48
72
96
120
144
168
192
216
240
264
288
312
336
360
360
360
360



T

(A.16)

The trigonometric and B-spline eccentricity functions are compared in Figure A.1.

A.1.8 Achromatic response

A = 2Ra + Ga + Ba

20 (A.17)

A.1.9 Achromatic Lightness

J = 100
(

A

AW

)c·z
(A.18)

A.1.10 Achromatic Brightness

Q =
(2

c

)(
J

100

)
(AW ) (A.19)
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A.1.11 Colorfulness

M = 47Nc · et ·
√

a2 + b2 (A.20)

A.1.12 Chroma

C = 35 M

Aw

(A.21)

A.1.13 Saturation

s = 100M

A
(A.22)

A.1.14 Lightness

JHK =
√

J2 + 66C (A.23)

A.1.15 Brightness

QHK =
(2

c

)(
JHK

100

)
(AW ) (A.24)

A.2 Inverse Model

A.2.1 Values which are independent of stimulus

Calculate FL, z, Rw, Gw, Bw, and Aw as described in the forward model.

A.2.2 Achromatic response

From QHK and/or M :

JHK = 50
(

c

QHK · AW

)
(A.25)

C = 35 M

Aw

(A.26)

Then, from JHK :
J =

√
(JHK)2 − 66C (A.27)

From Q:

J = 50
(

c

Q · AW

)
(A.28)
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Then, from J :

A = Aw

(
J

100

) 1
cz

(A.29)

Note: The model is not analytically invertible if only provided saturation, s, and either QHK

or JHK only. However, the inverse can quickly be computationally solved using Halley’s
method, which will be the topic of a future publication.

A.2.3 Opponent dimensions

From s:
M = s · A

100 (A.30)

From C:
M = C · Aw

35 (A.31)

Then, from M and h:

et = −0.0582 cos(h) − 0.0258 cos(2h) − 0.1347 cos(3h) + 0.0289 cos(4h)
−0.1475 sin(h) − 0.0308 sin(2h) + 0.0385 sin(3h) + 0.0096 sin(4h) + 1

(A.32)

γ = M

43et · Nc

(A.33)

a = γ cos(h) (A.34)

b = γ sin(h) (A.35)

A.2.4 Cone responses
Ra

Ga

Ba

 = 1
1403


460 451 288
460 −891 −261
460 −220 −6300




A

a

b

 (A.36)

A.2.5 Inverse cone compression

Rc = 100
FL

(
27.13|Ra|
400 − |Ra|

) 1
0.42

(A.37)

Calculate Gc and Bc
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A.2.6 Inverse chromatic adaptation
R

G

B

 =


Rw

Yw
0 0

0 Gw

Yw
0

0 0 Bw

Yw




Rc

Gc

Bc

 (A.38)

A.2.7 Tristimulus values
X

Y

Z

 = M16
−1


R

G

B

 (A.39)
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Appendix B

Experimental Data

There are two key sets of data collected in this experiment. The first is the brightness
matching data from the experiments described in Section 3.4, which are presented in Tables
B.1 to B.3. The second is the result of the hue matching experiment from Section 4.3, which
is presented in Table. These data may also be downloaded from my profile on Research
Gate: www.researchgate.net/profile/Luke-Hellwig-2.

Table B.1: Tristimulus values for the 1931 standard observer for pairs of stimuli matched in
brightness following the method described in Section 3.4.1. The white point used to design
the background pattern and for CAM calculations has tristimulus values of 474.4, 500, 543.6.

Test Stimulus Reference Stimulus
X Y Z X Y Z

173.3 182.5 198.4 123.0 87.0 97.8
189.3 199.4 216.8 116.4 88.4 44.8
144.1 151.7 164.9 105.0 90.9 23.9
120.7 127.1 138.2 91.7 93.9 13.7
186.3 196.2 213.3 73.5 97.9 17.4
190.9 201.1 218.6 64.5 99.8 55.4
217.0 228.5 248.5 65.9 99.8 105.4
149.2 157.1 170.8 69.2 99.8 171.7
163.8 172.5 187.5 83.1 97.3 239.2
186.0 195.9 212.9 96.1 93.8 222.5
151.7 159.8 173.7 105.3 91.4 198.5
171.9 181.1 196.9 116.9 88.6 167.9
212.3 223.6 243.1 201.4 210.8 67.0
246.4 261.4 175.4 207.2 210.4 22.8
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348.8 367.4 399.4 366.8 386.9 171.2
439.1 465.8 348.1 372.8 386.5 90.1
421.5 445.1 208.9 382.4 386.0 34.1
89.0 93.7 101.9 40.2 25.2 65.2
119.3 107.0 153.0 47.7 24.0 88.5
204.6 189.4 256.7 131.4 85.9 207.9
246.8 204.1 334.5 146.6 83.4 252.9
256.6 188.5 376.7 162.4 80.9 303.1
285.3 188.9 448.3 178.8 78.5 358.8
254.0 267.6 290.9 244.4 202.0 331.5
335.8 318.2 414.5 267.4 197.6 390.9
329.2 279.7 438.3 291.0 193.3 456.0
403.0 314.6 568.3 315.3 189.2 527.2
392.6 275.2 594.4 340.4 185.1 604.5
441.2 464.7 505.2 430.7 374.1 564.9
318.2 455.0 290.7 189.1 368.1 135.6
228.8 381.7 185.5 84.1 239.6 43.4
360.3 447.6 633.5 166.2 269.9 533.3
334.4 352.2 382.9 275.9 348.9 506.7
178.7 178.8 362.3 55.5 39.4 253.2
311.4 323.4 458.3 217.5 210.3 527.6
355.2 335.0 176.7 256.7 200.7 15.3
473.2 476.5 388.8 369.3 326.7 105.5

Table B.2: Tristimulus values for the 1931 standard observer for pairs of stimuli matched in
brightness following the method described in Section 3.4.2. The white point used to design
the background pattern and for CAM calculations has tristimulus values of 384.2, 400, 640.5.

Test Stimulus Reference Stimulus
X Y Z X Y Z

89.08 92.26 146.4 39.7 21.27 34.61
130.8 136 215.7 106.8 70.82 114.8
197 152 249.4 134.3 67.55 111.5

218.9 130.4 217.2 150.4 61.82 102.3
234.6 245.6 389.2 212.2 157.9 256.3
289.2 232.6 380.3 259.5 153.1 250
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327.8 211.2 347.7 289.5 143.8 239.1
350.4 183.6 300.4 337.8 139.4 239.6
297.6 309.7 494.4 367.3 293.6 470.6
444.2 368 603.6 433.5 276.1 458
419.1 277 466 483.8 269.8 451.3
80.65 84.45 134.4 37.29 21.95 3.888
177.6 186.1 295.4 98.15 72.03 40.52
179.1 148.9 142.9 126.3 71.06 9.118
187.2 195.5 312.4 197.9 161.3 140.4
285.6 247.6 263.4 239.8 156.4 60.08
286.6 205.8 116 264.9 149.6 24.93
331.3 198.2 50.03 306.7 145.1 1.191
350.8 364.8 582.9 343.3 296 294.1
397.7 350 394.5 403.5 292.3 165.6
385.6 289.1 190 439.5 279.7 97.11
112.3 116.5 186.9 30.4 22.34 0.368
101.3 105.5 166.6 82.72 73.76 18.04
174.9 175.4 188.8 97.47 73.58 2.144
215.8 225.7 358.5 174.9 162.9 96.36
219.9 222.2 252.5 186.3 161.7 30.82
239.9 232.3 172.2 199.6 158.7 12.9
248.6 224.4 101.8 209.6 158.9 2.492
285.5 297.2 473.7 310.4 300.7 232.6
330.3 335.8 398.3 330.1 295.3 125.3
341.8 333.3 277.6 340.2 291.8 71.43
355.7 328.4 183.5 356.6 293.6 42.28
383.5 338.5 118.8 389.8 295 4.606
105.7 109.8 173.8 42.7 44.41 1.724
131.5 136.6 216.6 68.79 75.96 10.66
150.2 162 149.8 73.65 73.96 1.405
138.8 144.6 228.4 105.2 116 26.99
136.2 146.8 134.8 113 115.6 3.657
165 170.5 274.7 150.5 165.1 61.9

189.4 207.4 202.3 156.1 167.1 15.04
202.2 220 126 162.2 167.3 3.167
202.4 210.9 340.7 206.9 227.7 114.1
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231.8 248.8 255.8 213.3 231 38.82
275 299.6 200 216.7 229 5.72

264.3 276 438.9 279.3 305.8 185.2
315.2 338.7 371.9 283.4 301.1 85.47
305.1 334.8 222.7 284.3 302.2 33.8
339.7 372.5 160.2 293.9 303.7 5.764
90.78 93.92 149.4 14.55 24.03 0.5632
131.2 136.2 216.7 54.53 78.01 19.39
113 134.7 127.1 50.09 79.57 1.784

205.3 214.6 341.4 128.8 171.7 85.72
267.4 310.1 337.4 117.8 175.9 33.49
196.3 253.9 157.2 112.9 175.8 3.882
281.4 293 466.9 246.4 314.5 206
278.7 322.5 351.2 225.8 313.3 110.7
313.3 390 297.3 215 321.2 56.81
285.5 382.2 175.2 211.6 327.4 7.211
101 104.7 168.4 10.89 24.59 12.2

137.1 142.7 225.8 50.48 78.75 67.43
150.9 180.2 231.1 40.4 80.3 49.08
219.3 229.4 363.7 125.7 173.6 180.1
206.3 243.5 321.3 110.1 177.6 146.9
209.5 278 304.1 92.8 179 115.4
186.4 282.1 255.6 73.77 185.8 77.93
303.4 315.8 504 241.5 313.2 357.6
337.2 388.7 532.7 224.7 322.5 314.3
279.9 360.2 414.9 198.5 327.8 261.7
284.1 405.1 401.7 168.9 332.7 199.7
277.8 443.3 368 142.3 337.6 156.9
107.8 111.8 179.6 28.21 47.04 72.18
152.9 158.9 253.8 53.36 78.88 124.5
165.3 174.1 274.3 87.44 120.5 190.2
144 168.3 267.9 72.75 123.5 193.9

209.2 218.6 347.2 131.1 173.1 273.8
224.7 257.4 410.9 114.8 175.3 274.2
262.5 274.3 435.5 182.7 235.8 372.3
264.1 300.7 482.1 167.2 243.1 380.5
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256.2 320 509.6 143.3 245.4 382.2
331.8 344.5 553 256 317.4 505.9
352.5 398.2 626.8 228.6 320.1 494.8
315.8 390.4 614.7 205.2 326.5 501.3
103.5 107.3 172.5 58.85 79.36 200.1
146.7 152.2 244.5 94.57 121.1 282.6
204.6 214 339.8 138.9 172.4 390.9
261.3 272.9 433.9 194.9 238.1 515.1
319.7 358.7 651 180.2 240.6 615.4
339.5 352.7 563.8 264.4 317.6 660.8
385.5 426 776.4 248.6 322.6 762.5
126.9 131.6 209.6 46.28 46.23 189.4
151.1 157.7 247.6 72.61 76.88 272
150.5 157 246.9 111 118.2 373.7
237.7 247.6 399.8 159.8 168.2 503
305.1 324.5 662.3 164.1 170 658.8
264.2 275.8 438.4 218.8 232.6 648
331.1 349.9 713.8 223.9 234.6 825.6
328 340.7 546.3 292.4 310.5 810.7

403.3 426.8 858.1 294.8 310.5 1014
86.34 89.11 142 28.17 21.74 113.7
96.02 94.1 217.7 35.34 21.8 171.4
126 130.6 208.1 82.28 72.65 251.6

166.2 165.8 358.5 91.71 73.63 347.1
176.6 166.4 473.6 103.9 72.39 462.3
199.1 208.3 331.7 176.6 166.2 473.3
209.2 209.9 440.3 188.4 165.6 605.2
241.5 231.4 622.7 202.9 163.7 756.7
272.6 246.3 811.2 222.8 163.7 942.6
256.3 214.8 905 240.1 160.2 1140
314.7 326.8 523.7 311.5 300.7 776.3
309.9 311.9 635.3 328.9 302.1 953.8
335.3 324.6 827.4 339.7 296.4 1111
108.8 112.9 180.9 31.28 21.2 97.09
114.4 94.5 282.9 45.58 19.23 194.4
160.6 166.4 267.5 88.99 72.11 230.4
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142.2 121.1 340.9 113.1 69.27 383.6
133.9 86.11 435.8 143.1 66.25 579.8
179.1 91.64 690.4 181.8 61.72 846
205.3 214.7 341.1 186.6 162.5 434.1
206.9 180.9 472.5 220.5 156.6 653.3
230.8 167.3 682.6 260.1 152.3 916.6
288.4 300.5 478.5 331.2 299.3 723.5
373.6 338.6 806.9 377.5 291.6 1013
89.4 92.18 148.7 34.37 19.98 75.51
121.8 91.19 235.8 49.85 18.59 132.9
151.2 157 251.6 96.85 70.25 193.3
204.3 162.8 390 122.6 64.62 285.6
156.4 87.65 348.9 157.3 62.01 407.7
206.1 215.4 342.6 201.7 160.3 381.9
248 202.4 472.7 242.9 150.7 519.5

285.9 184.9 608.3 292.2 145.1 691.9
329.3 169.7 768.1 346 139.4 899
337.4 350.3 561.8 348.9 292.5 645.4
405.8 343.7 747.2 410.8 284.1 837.4
413.9 285.8 849.4 473.4 270.5 1056

Table B.3: Tristimulus values for the 1931 standard observer for pairs of stimuli matched in
brightness following the method described in Section 3.4.3. The white point used to design
the background pattern and for CAM calculations has tristimulus values of 384.2, 400, 640.5.

Test Stimulus Reference Stimulus
X Y Z X Y Z

153 158.7 254.2 97.47 73.58 2.144
169.8 175.2 282.4 186.3 161.7 30.82
283.9 295.9 470 199.6 158.7 12.9
294.5 306.7 487.6 209.6 158.9 2.492
236.7 247.1 391.5 330.1 295.3 125.3
352.6 366.4 585.4 340.2 291.8 71.43
488.9 507.4 817.3 356.6 293.6 42.28
439.5 456.1 726.3 389.8 295 4.606
129.8 134.5 213.5 73.65 73.96 1.405
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139.6 145.3 229.2 113 115.6 3.657
244.5 255.8 405.1 156.1 167.1 15.04
176.3 184.9 292.4 162.2 167.3 3.167
194.6 203.2 322.9 213.3 231 38.82
279.8 291.7 463.8 216.7 229 5.72
248.6 260 411.9 283.4 301.1 85.47
306.3 318.8 508.3 284.3 302.2 33.8
312 324.5 518.8 293.9 303.7 5.764

91.85 94.88 150.7 40.4 80.3 49.08
243.1 254.2 402.9 110.1 177.6 146.9
300.3 312.7 498.3 92.8 179 115.4
253.9 265.3 420.8 73.77 185.8 77.93
370.3 386.4 616 224.7 322.5 314.3
328.4 340.7 546.4 198.5 327.8 261.7
424.7 441.5 703.1 168.9 332.7 199.7
444.6 462.6 740.4 142.3 337.6 156.9
76.3 79.98 126.5 35.34 21.8 171.4
194 202.5 322.2 91.71 73.63 347.1
169 174.6 280.3 103.9 72.39 462.3

313.6 326.2 520.3 188.4 165.6 605.2
244.6 254.6 411.2 202.9 163.7 756.7
337.3 350.5 560.6 222.8 163.7 942.6
334 346.9 555.6 240.1 160.2 1140

308.1 320.7 512.1 328.9 302.1 953.8
382.7 398.1 634.1 339.7 296.4 1111
261.1 262.9 301.6 199.6 158.7 12.9
341.2 346.8 410.5 209.6 158.9 2.492
396.3 402 484.5 340.2 291.8 71.43
318.3 321.4 377.7 356.6 293.6 42.28
511.7 519.4 639.5 389.8 295 4.606
248.2 268.3 275.4 162.2 167.3 3.167
246.8 266.9 274.1 216.7 229 5.72
292.8 317.5 334.3 284.3 302.2 33.8
278.1 299.7 311 293.9 303.7 5.764
261.8 300.7 414.2 92.8 179 115.4
333.7 387.8 517.2 73.77 185.8 77.93
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397.9 453.3 628.8 198.5 327.8 261.7
371.8 424.4 587.3 168.9 332.7 199.7
432.7 491 683.5 142.3 337.6 156.9
182.3 182.4 387.3 103.9 72.39 462.3
311.5 313.3 638.1 202.9 163.7 756.7
310.7 312.5 636.5 222.8 163.7 942.6
432.9 436.4 875.9 240.1 160.2 1140
402.6 407 813.9 339.7 296.4 1111
325.2 315.1 250.1 209.6 158.9 2.492
355.4 347.5 275.7 356.6 293.6 42.28
474.3 466.1 421.9 389.8 295 4.606
367.7 405.7 276.6 293.9 303.7 5.764
242.6 314.5 359.6 73.77 185.8 77.93
353.9 444.5 526.8 168.9 332.7 199.7
413.5 509.3 617.5 142.3 337.6 156.9
350.6 338.9 863.8 222.8 163.7 942.6
374 360.5 903.4 240.1 160.2 1140

409.7 380.9 205.9 389.8 295 4.606
296.6 410.7 423 142.3 337.6 156.9
342.9 317.5 978.9 240.1 160.2 1140

128



Illuminant A D65
X Y Z X Y Z

47.78 29.57 7.49 35.56 28.61 22.58
47.62 29.74 7.50 39.37 31.23 21.04
31.73 26.23 3.99 31.30 29.56 12.03
34.07 29.66 4.02 32.40 32.23 12.07
25.12 29.92 10.11 27.99 35.13 26.68
24.65 29.53 10.49 26.75 34.30 27.12
25.14 27.38 20.59 27.75 33.62 60.29
25.20 27.00 20.53 27.69 31.57 60.22

Table B.4: Relative tristimulus values for the CIE 2012 10◦ observer for pairs of stimuli
matched in hue following the method described in Section 4.3. All Illuminant-A-colored illu-
mination had relative tristimulus values of 111.77, 100, 31.12. All D65-colored illumination
had relative tristimulus values of 94.78, 100, 107.61. The luminance of white was approxi-
mately 200 cd/m2, thus for absolute values, these values should be multiplied by 2.
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