
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

11-2023 

Learning to Learn from Sparse User Interactions Learning to Learn from Sparse User Interactions 

Krishna Prasad Neupane 
kpn3569@g.rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Neupane, Krishna Prasad, "Learning to Learn from Sparse User Interactions" (2023). Thesis. Rochester 
Institute of Technology. Accessed from 

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please 
contact repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11630?utm_source=repository.rit.edu%2Ftheses%2F11630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Learning to Learn from Sparse User Interactions

by

Krishna Prasad Neupane

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

November, 2023



Learning to Learn from Sparse User Interactions

by

Krishna Prasad Neupane

Committee Approval:

We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work described in

this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in partial fulfillment of the

requirements of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Qi Yu Date
Dissertation Advisor

Dr. Xumin Liu Date
Dissertation Committee Member

Dr. Rui Li Date
Dissertation Committee Member

Dr. Zhiqiang Tao Date
Dissertation Committee Member

Dr. Ricardo Figueroa Date
Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date
Ph.D. Program Director, Computing and Information Sciences

ii



iii

©[2023] [Krishna Prasad Neupane]

All rights reserved.



Learning to Learn from Sparse User Interactions

by

Krishna Prasad Neupane

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in

Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

The ability to learn from user interactions provides an effective means to understand user intent through

their behaviors that is instrumental to improve user engagement, incorporate user feedback, and gauge user

satisfaction. By leveraging important cues embedded in such interactions, a learning system can collect key

evidence to uncover users’ cognitive, affective, and behavioral factors, all of which are critical to maintain

and/or increase its user base. However, in practical settings, interactive systems are still challenged by

sparse user interactions that are also dynamic, noisy, and highly heterogeneous. As a result, both traditional

statistical learning methods and contemporary deep neural networks (DNNs) may not be properly trained to

learn meaningful patterns from sparse, noisy, and constantly changing learning signals.

In recent years, the learning to learn (L2L) (or meta-learning) paradigm has been increasingly leveraged

in diverse application domains, such as computer vision, gaming, and healthcare to improve the learning

capacity from sparse data. L2L tries to mimic the way how humans learn from many tasks that allows them

to generalize often from extremely few examples. Inspired by such an attractive learning paradigm, this

dissertation aims to contribute a novel L2L framework that is able to effectively learn and generalize well

from sparse user interactions to collectively address the challenges of learning from sparse user interactions.

The L2L framework is comprised of four interconnected components. The first component focuses on

learning from sparse interactions that constantly change over time. For this, we introduce a Dynamic Meta

Learning (DML) model that integrates a meta learning module with a sequential learning module, where data

sparsity is tackled by the first module and the later module captures constantly changing user interaction

behaviors. The second component focuses on dealing with noisy interactions to detect true user intent

through uncertainty quantification. This component integrates evidential learning with meta learning, in

which the former quantifies the uncertainty by leveraging evidence of each interaction and the later tackles

sparse interactions. Furthermore, the concept of evidence is utilized to guide the predictive model to find

more important and informative interactions in sparse data to enhance model training. The third component

iv
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emphasizes dealing with dynamic and heterogeneous user behavior in sparse interactions. This component

aims to ensure long-term user satisfaction by combining reinforcement learning, which handles constantly

evolving user behaviors and evidential learning, which leverages evidence-based exploration to tackle data

heterogeneity. The last component aims to advance the contemporary dynamic models which require to

partition the time into arbitrary intervals to support model training and inference. We develop a novel Neural

Stochastic Differential Equation (NSDE) model in the L2L setting that captures continuously changing user

behavior and integrates with evidential theory to achieve evidence-guided learning. This method leverages

the power of a NSDE solver to capture user’s continuously evolving preferences over time which results in

richer user representation than previous discrete dynamic methods. Furthermore, we derive a mathematical

relationship between the interaction time gap and model uncertainty to provide effective recommendations.
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Chapter 1

Introduction

Learning from user interactions involves understanding user intent and interaction processes, developing

user models, and providing personalized services. Furthermore, the learning model leverages insights from

user interaction data to enhance user satisfaction. However, learning from user interactions is still challenged

by the sparse human behaviors that are also dynamic, noisy, and highly heterogeneous. As a result, existing

methods are less effective when learning from large-scale historical interaction data that cover a massive user

base over a long period of time whereas useful learning signals remains rather limited for each individual

users that are further concealed by users’ constantly changing behavior coupled with a complex interaction

environment that is noisy and heterogeneous.

Recently, the Learning to Learn (L2L) paradigm is gaining popularity in the machine learning field due to its

capability of learning and generalizing well as similar to human learning and generalization from extremely

few examples (e.g. often just a single example suffices to teach a new thing) [79]. In this dissertation,

we propose to leverage the L2L paradigm to effectively learn and generalize from sparse user interactions

and further ease the dynamic, noisy, and heterogeneity problems. First, we aim to tackle the problem of

constantly changing user interactions over time. Second, we further extend with uncertainty-aware quantifi-

cation to deal with the problem of noisy sparse interactions. Third, we leverage exploitation and exploration

concept to deal with dynamic and heterogeneity problems in sparse interaction and provides users long-term

satisfaction. Finally, we tackle dynamic and noisy sparse interaction capturing continuous user intent and

quantifying uncertainty-aware preferences.

In this chapter, we introduce user interactions and their importance, describe the problem statement and

research challenges, summarize our contribution, mention research plans, and finally provide the outline of

the dissertation.

1
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1.1 User Interactions

With the enormous growth of Internet usage, many sectors like commerce, media, health, etc. have been

shifted to digital systems. This result understating in-depth knowledge of user interactions has become a

crucial research concern to provide user satisfaction and advancement of digital systems. For example, e-

commerce provides personalized products for each consumer by learning the consumer’s needs and interests

from users’ historical interactions. Further, many users’ behavior is evolving over time and data are too

noisy, which results most of the user interaction systems falling into the data sparsity problem. In the

following paragraphs, we describe user interactions in an interactive system and their challenges in detail.

An interactive system allows a human to interact with systems in a more natural way. It has been used in

many research fields like gaming, healthcare, robotics, etc to collect user interactions. For example, in the

healthcare domain, virtual reality (VR) has been used as an interacting system to collect data from various

participants (like painting maze games for ASD and typically developing (TD) patients). Data collection

for those systems is challenging due to user dynamic behavior, and, noisy and heterogeneous data. Further,

participants are very few and the training model in small data set adds extra difficulties. Similarly, in the

field of e-commerce, recommending user-preferred products requires maintaining a user base. Many users

are very less active and have sparse interactions. Further, interactions are noisy, changing over time, and

heterogeneous which causes recommender systems very prone to maintain their user base and learn user

intent.

1.2 Problem Statement and Research Challenges

Traditional model learning requires enormous user interaction data to effectively understand and learn the

user intent. In many real-world scenarios, user interaction data are largely sparse, noisy, and dynamic.

This results data hungry existing methods greatly lacking learning from sparse interactions, handling noisy

and dynamic nature, and are ineffective in providing user intent. There requires an immediate method

to deal with such problems. In this proposed dissertation, we aim to address that learning problem from

challenging sparse interaction leveraging the learning to learn (L2L) framework. We point out the limitations

of existing methods as some major challenges in learning from user interaction that motivate us to formulate

the proposed L2L framework.

Data Sparsity. Data sparsity occurs due to an inadequate number of user interactions and causes learning

difficulty to the model. This largely limits the quality of system performance. For example, in e-commerce

systems, if a user has interacted with a small number of items, it is quite difficult to generate accurate
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preference due to limiting the learning capability of the model for that user. Existing methods heavily suffer

from data sparsity problems and need to devise a novel method to handle this problem.

Dynamic Interactions. User behaviors are not static and likely to change over time. Changing behavior

influences user interaction in the system. Capturing user behavior over time is the key challenge in many

real-world systems to provide convincing performance. Existing systems are prone to dynamic interactions

and do not adequately capture user intent to maintain their engagement in the system.

Noisy Interactions. Noisy interaction occurs when real data is corrupted or distorted by the data acquisition

system and is inherent to the data. These noisy data could lead to meaningless information and cause the

system to behave differently from the expected performance. Many existing methods largely suffer from

data noise and are unable to suppress its effect.

Heterogeneous Interactions. Heterogeneous interactions are variable data due to quite diverse interac-

tions from the user. The model falls into potential ambiguity while learning user preferences from those

heterogeneous data. Most of the existing methods largely lack to handle such a problem and acquire poor

performance.

1.3 Learning to Learn Framework for Sparse User Interactions

Our solutions to the aforementioned challenges are well organized under a novel learning to learn (L2L)

framework to provide effective learning from sparse user interactions. The L2L framework and its related

mechanisms are a powerful tool to tackle sparse interactions, user-shifting behaviors, noisy interactions,

and heterogeneous interactions problems. Figure 1.1 depicts the overall diagram of the framework. First

mechanism leverages meta-learning as the L2L framework, which is a class of few-shot learning (i.e. only

a few samples are used while training) and combines with a sequential module to handle the time-changing

sparse interaction. This integrated model captures time-specific and time-evolving user preferences and

is represented as a Dynamic Meta-Learning Model (DML) as shown in the figure. Similarly, the second

mechanism leverages evidence learning with the L2L framework (MetaEDL) to tackle noisy interaction

and provide confidence prediction utilizing uncertainty-aware user preference. The model quantifies the

uncertainty of prediction via utilizing epistemic uncertainty (i.e. model uncertainty) and then provides user

preferences based on both epistemic and interaction values.

We further utilize L2L with evidence learning and reinforcement learning methods to form a model called

meta-evidential reinforcement learning (MetaERL) to tackle dynamic and heterogeneous problems in user

interactions. The model utilizes an evidence-based actor-critic network to provide effective exploration by
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Figure 1.1: Learning to Learn (L2L) Framework for Sparse User Interactions

maximizing long-term reward. We also derive evidential policy to optimize the policy so that it provides

a maximum return in long run. Besides, we also customized the RNN network to capture users’ evolving

nature over time. Fourth, We also provided a novel approach called E-NSDE in the L2L setting in which

we integrate evidence learning with neural stochastic differential equation techniques to capture both un-

certainty in prediction and the user’s continuously evolving preference over time. This method essentially

captures a richer representation of the users via SDE solver which is the lack of existing dynamic models

and also considers predictive uncertainty to provide effective user preferences.

1.4 Summary of Contributions

We provide effective learning to learn (L2L) framework to learn from sparse user interactions. We first

introduce a popular L2L approach called meta-learning with a recurrent neural network to capture user’s

evolving preferences over time and provide dynamic user preferences. We devise a dynamic meta learning

model that contributes to effective learning from sparse user interaction. We further contribute evidence-

guided meta-learning to consider evidence of the prediction that guides learning systems to provide effective

user preference. Additionally, we utilize learning to learn with reinforcement learning for user dynamics

and evidence learning for uncertainty-aware exploration for long-term engagement to contribute a meta

evidential reinforcement learning model (MetaERL). Finally, we contribute the neural SDE method with

evidential learning (E-NSDE) in learning to learn setting to capture users’ continuous behavior to reflect
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users’ real-life evolving scenarios.

1.5 Outline

This dissertation proposal is organized as follows, Chapter 2 reviews related work of learning to learn

from user interactions, interactive systems, the traditional recommendation systems, and learning to learn

methods. Chapter 3 proposes a dynamic meta-learning model for constantly changing interaction over

time. Chapter 4 introduces meta-evidential learning to handle noisy interaction leveraging evidence for

uncertainty-aware quantification. Similarly, Chapter 5 proposes two generic solutions for sparse user inter-

actions. The first method leverages the reinforcement learning (RL) method to tackle data heterogeneity and

dynamic interaction problems and provide long-term user engagement. Further, the RL method is combined

with the evidential learning method to tackle noisy interactions. The second method is designed to discover

users’ unique behavior with the help of an evidential-reinforce attention mechanism in the RL setting for

the sparse data regime. Chapter 6 includes the approach that captures the user’s continuous time preference

leveraging neural SDE architecture to provide more accurate user interest. In this chapter, we leverage the

importance of the interaction gap and its role in modeling user uncertainty. In Chapter 7, we provide a

conclusion of the dissertation and also the future work. Finally, Chapter 8 includes a list of publications and

submitted papers.



Chapter 2

Literature Review

In this chapter, we provide a literature review of user interactions considering interaction systems and rec-

ommender systems. Further, as we leverage the L2L concept, we will describe related work from diverse

sectors.

2.1 Learning from User Interactions

Learning from user interactions involves understanding user intent, incorporating user feedback, and im-

proving user satisfaction [58]. We describe existing works in interactive systems and recommender systems

to cover the related works of user interactions over the proposed dissertation.

2.1.1 Interactive Systems

The interactive system involves high-level user interaction with the systems. Liu et al. [54] leverage user

interaction to understand the user-seeking intention in web searches. Ferro et al. [19] model user dynamics

and explicit knowledge of user interactions to explore a promising area of search space. Similarly, [23]

utilizes reinforcement learning from user interactions with keywords to direct exploratory searches. We

further describe user interactions in a recommender system as an interactive system to provide prior works

in the following sub-section.

6
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2.1.2 Recommender Systems

In this section, we provide a literature review of existing methods from matrix factorization to recent deep

learning methods for the recommendation.

Matrix Factorization Matrix factorization is a commonly used collaborative filtering approach that char-

acterizes users and items through the latent factors inferred from the item rating patterns [46]. Using singular

value decomposition (SVD) for recommendation is popularized by the Simon Funk [22] in the Netflix prize

competition and a probabilistic version is introduced by [59]. SVD is extended to SVD++ [44] for process-

ing the implicit feedback.

The above static models do not include the important temporal information, which should be considered for

analyzing user-item interactions in a time-sensitive setting. Dynamic matrix factorization has been devel-

oped to address the issue, which allows latent features to change with time. Some works introduce time-

specific factors, such as timeSVD++, which uses additive bias to model user-related temporal changes [45].

However, only using time-specific factors may over-fit the model to sparse input data, because the depen-

dency of latent variables across time is not considered. Other works introduce time-evolving factors, where

the Markov structure is assumed in which latent variables at one period are dependent on variables in the pre-

vious period. There have been works that employ Gaussian state-space models to introduce time-evolving

factors with a one-way Kalman filter [27, 75]. To handle implicit data, Sahoo et al. propose an extension to

the hidden Markov model [67], where clicks are drawn from a negative binomial distribution and Charlin et

al. [11] introduces a Gaussian state-space model with the Poisson emission. However, the Markov structure

may not work well with factors oscillating a lot instead of evolving from time to time, as it may not capture

the time-specific factors that may significantly affect users’ activity and items’ popularity. Besides, matrix-

factorization-based algorithms may suffer from limited expressive power and may not be able to capture the

complex nature of user-item interactions.

Deep Learning Models Recent works in recommender systems [13, 28, 96] utilize deep learning to pro-

vide better recommendations. Cheng et al. [13] propose to jointly train wide linear models and deep neural

networks to combine the benefits of memorization and generalization. Similarly, DeepFM [28] integrates

the power of deep learning and factorization machines models to learn low- and high-order feature interac-

tions simultaneously from the input. DIEN [96] formulates interest evolution network as a deep learning

model to capture latent temporal interests and evolving interests for better recommendations. These models

are very sensitive to the features and might need important features information and large datasets while

training. Also, sequential recommendation systems with RNN [33] that utilizes whole session information
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and hierarchical attention networks [93] which consider long and short-term user preferences are used to

recommend next items. However these methods are not specifically designed for the cold-start users and

required large datasets. Moreover, differing from traditional sequential recommendation where next item

is predicted based on previous interactions, our model considers limited current interactions to learn user’s

recent preference using meta-learning and uses remaining historical interactions to capture user’s long-term

interest.

Graph-Based Models Another popular line of recommendation systems is graph-based models. A graph

captures high-order user-item interactions through an iterative process to provide effective recommenda-

tions [30]. Users and items are represented as a bipartite graph in [9] and links are predicted to pro-

vide recommendation. Similarly, a graph-based framework called Neural Graph Collaborative Filtering

(NGCF) [84] explicitly encodes the collaborative signal in the form of high-order connectivities in a user-

item bipartite graph via embedding propagation. However, these methods are unable to capture long-term

user preferences or deal with cold-start problems.

Sequential Models Sequential models understand the sequential user behaviors via user-item interactions,

and model the evolution of users’ preferences and item popularity over time [17,83]. Tang et al. [78] utilizes

convolutional sequence embedding to capture union level and point level contributions of historical items via

horizontal and vertical filters and provides top-N sequential recommendations. Similarly, Kang et al. [39]

introduce a self-attentive mechanism to handle both long and short-term user preferences in a sequential

setting. Also, some graph-based sequential recommendation models are introduced to provide the temporal

preference [21,86]. In each session, a sequence graph is created between consecutively clicked items and the

model predicts the next item. These methods are constructed to predict the next item without specifying a

specific user in each session and hence not suitable for cold-start user recommendation. Besides, Sequential

models focus on users’ evolving preferences (i.e., recent interactions) but largely neglect long-term users’

preferences.

Meta-learning Models The user-item interaction data is usually sparse because a user may only interact

with a few items within the large item pool. In such cases, making recommendations can be viewed as a

few-shot learning problem. Meta-learning [6,68] is recently becoming a popular few-shot learning approach

that learns from similar tasks and can generalize quickly and efficiently for the few-shot unseen new tasks.

Finn et al. [20] propose a model-agnostic meta-learning model that learns global parameters from a large

number of tasks and performs as a good generalization on a new task that has few samples utilizing the few

steps of gradients. To address the cold-start problem in item recommendation, Vartak et al. [81] introduce
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a meta-learning strategy with two deep neural network architectures: a linear classifier network whose

weights are learned from the item history, and a neural network whose biases are adjusted with the item

history. It that focuses on the items-cold-start problem to recommend cold-start items considering that items

arrive continuously in the Twitter Timeline. On the contrary, our model focuses on recommendations for

the time-sensitive, cold-start users by capturing users’ preferences over time. Similarly, recent work based

on meta-learning is done to estimate user preferences in [47] and scenario-specific recommendation in [16].

Both works use the information of users and items to generate user and item embeddings. Meta-learning is

specifically utilized to learn heterogeneous information networks to alleviate cold-start problems [57]. Also,

meta-learning is applied in click-through rate (CTR) prediction [63] where desirable embeddings for the

new ads are generated via meta-learner. These embedding methods are designed for a static setting, making

them not applicable to learn user preferences evolving over time.

2.2 Learning to Learn Methods

Learning to learn is a new research direction in machine learning [10]. As a single example is sufficient for a

human to correctly generalize, learning to learn method effectively learns and is generalized with extremely

few examples [1] as similar to human learning. Meta-learning [68] is gaining popularity as a learning to

learn approach that learns from similar tasks and can generalize quickly and efficiently for unseen new tasks

with limited data samples. A popular way of meta-learning is to train meta-learner which efficiently updates

model parameters in a few-shot setting [6,69]. The learning meta-learner concept is applied in the DNN and

optimizes the DNN parameters in [35]. Finn et al. [20] propose a model-agnostic meta-learning model that

learns global parameters from a large number of tasks and performs as a good generalization on a new task

that has few samples utilizing the few steps of gradients.



Chapter 3

Dynamic Meta-Learning for Sparse User
Interactions

In this chapter, we discuss a dynamic meta learning model to tackle the problem of sparse user interac-

tions changing over time. Learning and understanding from those sparse interactions to achieve accurate

user intent require effective means of learning paradigms. Our proposed method aims to address that prob-

lem by leveraging the L2L framework which combines meta learning module, and a sequential module.

The former module effectively learns and is generalized well from very limited interactions, and the latter

module captures dynamic user interaction behavior over time. The dynamic meta learning model can be

applied in various applications such as e-commerce, healthcare, gaming, robotics, etc which are suffered

from sparse as well as dynamic user interactions. In this chapter, we apply the dynamic meta learning model

in the recommeder systems as an application of the e-commerce sector to tackle sparse and dynamic user

interaction problems.

3.1 Dynamic Meta-Learning for Recommendation

The recommender system has long been used as an effective means to improve user experience and to

provide personalized recommendations in diverse fields such as media, entertainment, and e-commerce. [75,

87]. One effective way of recommendation is via Collaborative Filtering (CF) [25, 73], which recommends

items based on similar users’ preferences. CF assumes that users who had similar interactions with some

items in the past are likely to have the same preference on other items, and leverages the observed user-item

interactions to make predictions for the missing parts, which indicate the potential items of interest to users.

10



CHAPTER 3. DYNAMIC META-LEARNING FOR SPARSE USER INTERACTIONS 11

06/02
12/02

06/03
12/03

06/04
12/04

06/05
12/05

Period

1.5

2.0

2.5

3.0

3.5

4.0

4.5
G

e
n
re

 A
v
e
ra

g
e
 R

a
ti

n
g Drama

Thriller

Romance

(a)

Preference06
/0212

/0206
/0312

/0306
/0412

/0406
/0512

/05

(b)

Figure 3.1: For User (ID:2181970): (a) shows dynamic changes of ratings for three genre types over time

(b) demonstrates how user’s latent preferences evolve over time.

Matrix Factorization (MF) is one commonly used CF technique that exploits user and item latent factors

to capture their inherent attributes. Most existing MF methods model user preferences and item attributes

as static factors [44, 46]. Some recent efforts consider the dynamic changes in the user-item interactions

by modeling user preferences as shifting latent factors over time, allowing them to provide more timely

recommendations [11, 27, 75].

When user-item interactions are very sparse, making accurate recommendations based on limited informa-

tion is highly challenging, which is usually referred to as the cold-start problem. A viable solution to handle

the cold-start problem is to utilize extra side information such as item descriptions, user profiles [80], and

social relationships [91]. While various side information is widely available for items (i.e., movies, songs,

and books), the user-related side information is typically very scarce as acquiring users’ personalized infor-

mation may be practically difficult due to privacy issues. Several recent works adopted meta-learning for

few-shot learning in the recommender systems to alleviate the cold-start problem [16,47,81]. Meta-learning

aims to learn global knowledge from the historical information of many similar tasks (users) and then pro-

vide quick adaptation for a new task (user) with limited interaction information. Although the meta-learning

approaches show promising results [47, 81], they are primarily designed for static settings and hence not

effective in providing timely recommendations that best reflect users’ current interests.

Figure 3.1a shows that the average movie ratings for three genre types of an example user from the Netflix

dataset, which oscillate significantly from 2002 to 2005. The average rating indicates an overall satisfaction

on each type of genre items that the user interacts with for each period, and serves as an indicator for the

change of users’ preference. Those changes are usually caused by the interplay of two contributing factors.
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First, a user’s preference over different types of items (e.g., movie or music) may change over time, which

we refer to as the time-evolving factor. Second, a user’s behavior in a specific period may vary significantly

from other periods due to the impact of money/time budget or other external causes, which we refer to as the

time-specific factor. Given sufficient user interactions over time, both factors could be effectively learned

to provide accurate and timely recommendations. However, in practice, many users may have interactions

in prior periods but become largely inactive with few interactions in recent periods for various reasons. We

define these users as the time-sensitive cold-start users due to scarce recent interactions. Solely relying

on the historical interactions of these users may lead to outdated recommendations that do not match their

recent interests. Furthermore, the limited recent interactions pose a user cold-start problem for the current

period that makes existing CF-based techniques less effective.

The main challenge with these time-sensitive cold-start users is to simultaneously capture their most recent

interests and evolving preferences, which are keys to achieve accurate and timely recommendations. In

this work, we focus on this special time-sensitive cold-start problem, which is critical for a recommender

system to maintain its user base. We propose to dynamically factorize a user’s (latent) preference into time-

specific and time-evolving representations in order to capture the time-specific and time-evolving factors

from both the historical and current user-item interactions. For example, the Netflix dataset consists of a

user’s interactions with a large movie set in the form of user ratings. The variation of movie ratings from the

same user may be affected by the change of user preference, rating criteria, or other (unknown) factors. In

addition, a user’s preference for different genres may evolve over multiple periods, as shown in Figure 3.1b,

which corresponds to the proportion of different factors in the time-evolving representation discovered by

our proposed model.

The proposed model consists of two distinct modules: a meta-learning module and a recurrent module.

The former aims to capture time-specific latent factors through limited interaction data by leveraging the

shared knowledge learned from other users. The latter aims to capture time-evolving latent factors by nest-

ing a recurrent neural network, and it can be jointly optimized with the meta-learning module through the

model-agnostic meta-learning approach [20]. Finally, we seamlessly integrate the two modules by merging

the time-specific and time-evolving factors to form the user representation. This user representation fur-

ther interacts with an item embedding (which is also optimized during model training) to provide the final

recommendations. Our experimental results clearly show that the proposed model makes timely recommen-

dations that closely resemble the dynamically changed user ratings as a result of effectively integrating the

complementary factors capturing the user preferences.

The main contributions of this work are five-fold: (i) the first work to formulate the time-sensitive cold-

start problem that is critical to maintain the user base of a recommender system; (ii) a novel integrated
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recommendation framework to model sparse dynamic user-item interactions and extract time-evolving

and time-specific factors of user preferences simultaneously; (iii) a time-sensitive meta-learning module
to effectively handle user cold-start problems by leveraging knowledge shared across multiple users from

the current recommendation period to adapt to any specific user’s case using limited interaction information,

(iv) a time-evolving recurrent module to effectively capture the gradual shift of users’ preferences over

time, and (v) an integrated training process that combines these two models to simultaneously learn time-

specific and time-evolving factors and optimizes the item embedding.

We conduct extensive experiments over multiple real-world datasets and compare with representative state-

of-art dynamic and meta-learning-based recommender systems to demonstrate the effectiveness of the pro-

posed model.

3.2 Related Work

Related work for this work is described in the section 2.1.2 of Chapter 2.

3.3 Proposed Model

Problem Settings. We propose a dynamic recommendation model, where the input data is represented as

{U , I,H}, U is the user set, I is the item set, andH is the set of time periods. A time period t ∈ H defines a

particular time interval where the interactions for user u with the item i are aggregated based on timestamps.

We perform recommendation in each time period with a recommendation function as

f tθtu,ω(i) = r̂t(u,i) ∀u ∈ U , i ∈ I, t ∈ H (3.1)

where r̂t(u,i) is the recommended score for item i assigned by user u at period t, θtu is user latent factor at

time t, and ω is the parameter of the recurrent neural network module. The goal of a recommender system

is to predict the recommendation scores that can accurately capture a user’s true preference on items over

time so that the recommended items are likely to be adopted by the users.

We formulate dynamic recommendations as a few-shot regression problem in the meta-learning setting.

Users are dynamically partitioned into meta-train and meta-test sets based on their interactions in the current

recommendation period t. In particular, the meta-train user set includes users with sufficient interactions,

while the meta-test user set includes time-sensitive cold-start users who have only a few interactions in the

current time period. Details for the train-test user splits are discussed in the experiment section. We consider
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Figure 3.2: The proposed model captures time-evolving factors via a recurrent network module and time-

specific factors through a meta-learning module.

a distribution over tasks P (T ), and each user is represented as a few-shot regression task T tu sampled from

the given task distribution. In general, a task includes a support set Stu and a query set Qtu. The support set

includes a user’s interactions at period t where k is interpreted as the number of shots (i.e., interactions).

The query set includes the rest interactions of this user at period t.

T tu ∼ P (T ) : Stu = {(u, ij), rt(u,ij)}j=1:k,

Qtu = {(u, ij), rt(u,ij)}j=k+1:Nt

(3.2)

where Nt is the number of items a user interacted with at period t and rt(u,ij) represents label (i.e. rating or

count) from user u to item ij . We adopt episodic training [82], where the training task mimics the test task

for efficient meta-learning. The support set S in each episode works as the labeled training set on which the

model is trained to minimize the loss over the query set Q. The training process iterates episode by episode

until convergence.

We summarize the major notations used throughout the work in Table 3.1.

3.3.1 Model Overview

To leverage item information such as text descriptions, our model generates an initial item representation

(I) using an embedding matrix E ∈ Rd×m, where m is the dimension of input item attributes, and d is the

dimension of embedding. The embedding is generated from item attributes following [13, 47]. An item i is
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Table 3.1: Summary of Notations

Notation Description
u, i user and item

zi, ei item i’s original encoding and embedding

r̂t(u,i), r
t
(u,i) predicted and ground truth scores for user u on item i at period t

utts, utte time-specific and time-evolving factors of user u at period t

θt, θtu meta and user-specific parameters of time-specific module at period t

ω parameter of time-evolving module

Stu, Qt
u support and query sets in task corresponding to user u at period t

Dt
u items interacted with user u at period t

first encoded as a binary vector zi ∈ Rm, where the corresponding index of item attributes is set to 1 and 0

otherwise. The binary vector is then transformed using the embedding matrix: ei = Ezi. The embedding of

all items can be stacked as: I = [e1, e2, ..., en] where n is the total number of items. The embedding matrix

E will be optimized along with the model training process after the user latent factor is learned, and details

are provided at the end of this section.

Figure 3.2 shows that the proposed model consists of a time-specific meta-learning module and a time-

evolving recurrent neural network module to generate time-specific user latent factors utts and time-evolving

latent factors utte, both of which contribute to the final prediction f t(u, i). Details of them are described

in following sections. After both modules are trained, the model learns time-specific user factors utts and

time-evolving user factors utte. These user factors are merged to interact with the item embedding to provide

recommendations for the user. The recommendation for a user u at the current period t is denoted as a vector

r̂tu.

Making recommendations can be viewed as a regression problem. By using the mean square error (MSE)

function, the loss for a specific user u is formulated as:

LT t
u
[f tθtu,ω] =

∑
i

||f tθtu,ω(i)− r
t
(u,i)||

2
2,

f tθtu,ω(i) = (utts + ut−1
te ) · ei

(3.3)

where rt(u,i) is user-item interaction (rating or count). The user representation is the vector sum of time-

specific utts and time-evolving user factors ut−1
te (as a compact single representation reducing the number

of trainable parameters that helps to avoid overfitting), and the prediction is achieved by the dot product

of u and item embedding i. Note that prediction for the current time includes time-specific user factors

from current time period i.e. utts and time-evolving user factors from the previous time period i.e. ut−1
te . In

general, dynamic recommender systems utilize the information from the previous period to predict for the
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next period, and we follow this standard setting.

The total loss is formed by aggregating all users in the meta-train set, regularized by the L2 norm of key

model parameters. Let θtu and θt denote the local (i.e., user-specific) and global parameters of the time-

specific meta-learning module, ω denote the parameters of the time-evolving recurrent neural network mod-

ule. Training of a dynamic recommendation model can be formulated as:

argmin
θt,ω

∑
T t
u∼p(T )

LT t
u
[f tθtu,ω] +

λ

2
(||θt||22 + ||ω||22),

θtu = θt − αθtLT t
u
[f tθt,ω]

(3.4)

where θtu is one gradient step from global parameter θt of the meta-learned time-specific module with α

being the step size and λ is the regularization parameter.

3.3.2 Time-Specific Meta-Learning Module

This module aims to capture time-specific user factors by only considering the information from the current

recommendation period. The meta-learner takes input from the specific period, which is a different setting

than the existing meta-learning-based recommender systems [16, 47]. In this way, the model can capture

the latent factors associated with that specific period to provide more accurate and timely recommendations.

We consider each user as a learning task. Our goal is to learn a meta parameter θt that represents a time-

specific global user representation given the meta-training set. We follow the standard setting of few-shot

learning [20], where the distribution over tasks is represented as p(T ). The model is trained iteratively by

sampling tasks from p(T ). The meta-learning module generates time-specific user latent factors (utts) as:

utts = f tmeta(T tu ; θt) (3.5)

where T tu represents task of a user u at period t. The task T tu includes Stu andQtu. We first pass Stu into f tmeta
to adapt user-specific model parameter θtu from the global user model parameter θt and then we provideQtu
into the f tmeta to generate time-specific user factors (utts).

We apply an optimization-based meta-learning approach [20] to learn time-specific user factors, as shown

in Figure 3.2. The meta-learning network consists of one input layer, two fully connected hidden layers, and

one output layer. The first and second hidden layers have 128 and 64 hidden units with ReLU activation,

while the last layer estimates time-specific user factors with a linear function followed by sigmoid activation.

The input to the meta-learning model is the item embedding for the users on a particular period. Algorithm 4

shows the training process that learns the model parameters. For the time-specific module, the local update
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(line 7) is done for the user specific parameter, which is achieved by one or more gradients from the global

parameter:

θtu = θt − α∇θtLT t
u
[f tθt,ω] (3.6)

In this update, the loss function is computed with the support set. Similarly, the global update (line 11) is

conducted with the new item interactions of each user from the query set for the meta update:

θt = θt − β∇θt
∑

T t
u∼p(T )

LT t
u
[f tθtu,ω] (3.7)

This process continues to find a good global parameter shared by all users in each period.

3.3.3 Time-Evolving Module

User preferences usually change dynamically over time. By capturing the time-evolving factors and inte-

grating them with the time-specific factor, the proposed model can recover the user’s true preference more

accurately. To this end, we formulate time-evolving user factors (utte) for each user using a nested recurrent

neural network (RNN):

utte = f trnn(u
t−1
te , Dt

u;ω) (3.8)

where Dt
u is the set of items that user u interacted with at time t, ut−1

te is the previous time period time-

evolving user factors, and ω is the network parameter. Notice that the input and output of the RNN are both

latent variables instead of observations. We use SGD to update the parameter of RNN:

ω = ω − γ∇ω(LT t
u
[f tθtu,ω] +

λ

2
||ω||22) (3.9)

where γ is the step size. As shown in the time-evolving module of Figure 2, the vector representation of

a hidden layer utte is a time-evolving factor of user u at period t and helps to propagate influence from the

previous period to the next period [94]. The updates of time-specific user factors through meta-learning

and time-evolving user factors through nested RNN are summarized in Algorithm 4. The recommendation

process is summarized in Algorithm 2.

Joint Item Embedding Optimization. Let Lemb denote a differentiable loss function used to train the

embedding matrix E. And let G denote the decoding module, which is followed by attribute-wise sigmoid

transformation:
di = G(Ezi), [ẑi]j = sigmoid(ηTj di)

=
1

1 + exp (−ηTj di)
∀j ∈ {1, ...,K}

(3.10)
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where zi is the original item representation in a binary vector, K is the length of zi, E is the embedding

matrix, di is the decoded item representation, η is the parameter for attribute-wise Sigmoid transformation,

and ẑi is the recovered item representation. The loss function for learning the embedding matrix is a negative

log-likelihood and is represented as:

Lemb = −
∑
i∈I

∑
j

[zi]j log [ẑi]j (3.11)

Other designs for item embedding with a differentiable loss function can also be applied.

To jointly train the embedding matrix, time-specific and time-evolving modules, we combine those losses,

and optimize the total loss with respect to θt, ω and E.

arg min
θt,ω,E

∑
T t
u∼p(T )

LT t
u
[f tθtu,ω,E ] + ξLemb +

λ

2
(||θt||22 + ||ω||22)θtu = θt − αθtLT t

u
[f tθt,ω,E ] (3.12)

where ξ is the weight to be tuned. If ξ is set to a very large value, matrix E is determined only by Lemb.

Note that the encoded item embedding is used for both modules. By fixing θtu and ω, it is possible to

back-propagate and calculate the gradient with respect to E, which is updated in each task as

E = E − γ∇E(LT t
u
[f tθtu,ω,E ] + Lemb) (3.13)

Also notice that Lemb is not dependent on θt and ω. Therefore, when embedding matrix is fixed, the loss

function reduces to Eq (4.22), and θt and ω are updated without considering Lemb.

3.4 Experiments

We conduct experiments on two movie datasets: Netflix and MovieLens-1M that consist of users’ ratings

of movies as explicit feedback and one music dataset: Last.fm that consists of users’ play counts of mu-

sic tracks as implicit feedback. Besides reporting the overall recommendation performance and comparing

with state-of-the-art baselines, we also investigate key properties of the model, including: (1) each mod-

ule’s performance when used in isolation, (2) impact of varying time period lengths, (3) recommendation

performance with no interactions in the current period, and (4) impact of hyper-parameters in the model.

Settings. We initialize both meta-learning and recurrent models with random initial values. Model learn-

ing rates are set through a grid search, and the Adam optimizer is applied with L2-regularization. In a
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Algorithm 1 Model training

Require: Set of time periods: H
Require: Hyperparameters: α, β, γ

1: for t ∈ H do
2: Initialize meta learner, θt

3: while not converge do
4: Sample tasks T tu ∼ p(T )
5: for all T tu do
6: Sample support set Stu for local update

7: Perform local update with Stu for time-specific module using Equation (4.23)

8: Sample query set Qtu for meta update

9: Update time-evolving module with Dt−1
u using Equation (3.9)

10: end for
11: Perform meta update with Qtu for time-specific module using Equation (4.24)

12: end while
13: end for

Algorithm 2 Recommendation for time-specific cold-start users

Require: Trained meta parameter θt, RNN parameter ω, recommendation time period t

1: Identify cold-start user set for t

2: for each user u in the set do
3: Form support set Stu from current interactions

4: Perform local update with Stu for time-specific module using Equation (4.23)

5: Compute user factors using Equations (3.5) and (3.8)

6: Make recommendation using Equation (4.21)

7: end for

dynamic meta-learning setting, the recurrent module takes historical interactions up to t− 1 time period as

an input while predicting for the next time period t, but the meta-learning module takes few recent interac-

tions from the current time as a support set (e.g., in our setting, we have three months of period, so it takes

K-shot interactions from the first month of the t time period and remaining interactions of two months as

query set). We split users into meta-train and meta-test sets. To make the problem more challenging, we

consider time-sensitive users with few interactions in the current period as test users. We set the few-shot

(K = 5) to select the limited interactions for the support set.

For non-meta learning methods, the meta-train and meta-test split does not apply. To make a fair comparison,
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we first collect user interactions from period 1 to t− 1 and then take the first few interactions (K) from the

current time period t to create the training set. The remaining interactions from time period t are used for

the test set. This mimics the few-shot problem for the current time period, and then a few interactions are

available for the model to learn the user factors.

Different from explicit ratings that are constrained in a range, some implicit counts could take very large

values. As a result, most of the models are not specifically designed for implicit data. To address this issue,

we take a logarithm transformation on the Last.fm dataset to make the observed entries more balanced.

Since DPF is specifically designed for counts data (only compared on Last.fm), we do not take logarithm

transformation during training, but take such transformation on prediction and observation when calculating

RMSE to make a fair comparison.

Datasets. The Netflix dataset has around 100 million interactions, 480,000 users, and nearly 18,000

movies rated between 1998 to 2005. We preprocessed the dataset similar to [49], which consists of user-item

interactions from 01/2002 to 12/2005. Movie attributes are taken from the IMDB website, in which we con-

sidered genres, directors, actors, movie descriptions, and overall movie ratings as the key movie attributes.

The MovieLens-1M dataset includes 1M explicit feedback (i.e., ratings) made by 6,040 anonymous users

on 3,900 distinct movies from 04/2000 to 02/2003. This dataset has very dense ratings in a particular time

range. Thus we split datasets in a period of 6-months and got a total of 6 periods in contrast to the other

two datasets, which have 16 periods considering a period of 3 months. We use the same preprocessing for

this dataset as we did for the Netflix dataset. The Last.fm dataset is created by crawling the user interactions

and track details from the Last.fm database. This dataset includes 12,902 unique tracks and 548 users from

01/2012 to 12/2015. Tracks are described with artists, tags, and summary information.

Methods for Comparison. For comparison, we include matrix factorization based static and dynamic

models, deep learning based models, graph models, sequential models, and meta-learning models:

• Matrix factorization (MF): The standard MF model SVD++ [44] that also exploits both explicit and

implicit feedback is used here as a static baseline.

• Dynamic models: We use timeSVD++ [45], collaborative Kalman Filter (CKF) [27], and dynamic

Poisson factorization (DPF) [11] as the time-evolving models.

• Deep learning models: We use Wide and deep [13], DeepFM [28] as static, and DIEN [96] as a

dynamic models for deep learning-based recommendation. However, most of them are developed for

click-through rate prediction in their original forms.

• Graph-based model: Most graph-based models are designed for static settings. For comparison,



CHAPTER 3. DYNAMIC META-LEARNING FOR SPARSE USER INTERACTIONS 21

we use graph convolutional matrix completion (GC-MC) [9], which models recommendation as link

prediction in the graph, and neural graph collaborative filtering (NGCF) [84] that utilizes embedding

propagation over user-item graphs.

• Sequential model: We use Sequential Recommendation via Convolutional Sequence Embedding

(Caser) [78], which models recommendation as a unified and flexible structure to capture both pref-

erences and sequential patterns, and transformer-based sequential recommendation model (SASRec)

[39] in our comparison.

• Meta-learning models: We follow the model-agnostic meta-learning model (MAML) to implement

the meta-learning model similar to MeLU [47]. We also compared with the meta-learning model

in [81] that focuses on item cold-start problem (referred to as ML-ICS). The model is also designed

for the classification setting, so we have to make adjustments to fit into our context.

Evaluation Metrics. For evaluation, we analyze the experimental results in terms of both the deviation of

predicted values from the ground truth and the errors of the ranking sequences. We use Root Mean Squared

Error (RMSE) and Normalized Discounted Cumulative Gain (NDCG) averaged across all test users. RMSE

is usually reported for explicit data, while NDCG is usually reported for implicit data:

RMSE =

√ ∑
ru,i∈O

(r̂u,i − ru,i)2/|O|,

NDCGu =
∑
n

relpredn

log2(1 + n)
/
∑
n

relidealn

log2(1 + n)

(3.14)

where O is the observation set for the test set and reln is the relevancy of nth item in the ranking sequence

for user u, which is binary for implicit data or the rating for explicit data. To penalize the negative feedback,

we linearly mapped the ratings to a range of [-1,1]. The NDCG is the fraction of Discounted Cumulative

Gain (DCG) of recommendation result over the ideal DCG.

3.4.1 Recommendation Performance

The experimental results are shown in Figure 6.2. We evaluate NDCG based on the top N recommendation

list and RMSE based on the training epochs. The RMSE is stable after 30-40 epochs in all datasets.

The average results of NDCG and RMSE considering all periods with the range of deviation are shown

in Table 3.2, for the Netflix, Last.fm, and MovieLens datasets, respectively. The proposed model clearly

demonstrates the advantage of combining time-specific and time-evolving user factors that lead to a su-

perior recommendation accuracy as compared with other competitive models. Both explicit and implicit
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Figure 3.3: (a) RMSE based on the training epochs and (b) NDCG based on the top N recommendations

for Netflix, Last.fm, and Movielens-1M datasets respectively.
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Figure 3.4: Dynamic trend of movie genres in Netflix: ground truth (a) vs model recommended (b)

datasets are highly sparse, and MF models’ performance is poor due to the sparse interactions. Also, MF

models suffer from cold-start problems, and thus their performances are fairly limited, as shown in Table 3.2.
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Category Model Netflix Last.fm MovieLens-1M
RMSE NDCG RMSE NDCG RMSE NDCG

MF SVD++ 0.9797±0.03 0.2915 1.7829±0.08 0.2882 1.0825±0.04 0.3023
timeSVD++ 0.9538±0.06 0.3115 1.6912±0.11 0.2962 1.0483±0.03 0.3224

Dynamic CKF 0.9337±0.04 0.3130 1.5316±0.32 0.3018 1.0652±0.04 0.3151
DPF N/A N/A 1.5227±0.43 0.3085 N/A N/A

Wide and Deep 0.9904±0.04 0.2864 1.7253±0.22 0.2727 1.1364±0.06 0.2932
Deep Learning DeepFM 0.9811±0.03 0.2930 1.6815±0.21 0.2971 1.1723±0.05 0.2882

DIEN 1.0345±0.04 0.2832 1.9225±0.26 0.2714 1.1872±0.14 0.2843
Graph GC-MC 1.0760±0.03 0.2901 N/A N/A 1.1704±0.08 0.2913

NGCF 1.0321±0.03 0.3026 1.5612±0.23 0.2896 1.1216±0.05 0.3103
Sequential Caser 1.0124±0.03 0.3101 1.5824±0.31 0.2931 1.1339±0.08 0.3012

SASRec N/A 0.3246 N/A 0.3103 N/A 0.3238
Meta-Learning MeLU 0.9213±0.05 0.3232 1.2580±0.28 0.3122 1.0685±0.08 0.3214

ML-ICS 0.9332±0.04 0.3173 1.2408±0.24 0.3142 1.0845±0.06 0.3244
Proposed Ours 0.8925±0.03 0.3472 1.2203±0.16 0.3385 0.9945±0.08 0.3351

Table 3.2: Recommendation Results (RMSE and NDCG)

Similarly, deep learning models require sufficient training data and hence largely suffer in the few-shot rec-

ommendation setting. Moreover, these models might need extra side information, like user profile and item

details, for better recommendations. For example, DIEN needs cleverly chosen interest features like user

behavior, and the absence of those features limits its performance, as shown in Table 3.2. Similarly, the

poor performance of graph-based models in both movie datasets implies that these methods are insufficient

to handle cold-start problems. Like other existing models, the performance of a sequential model is less

effective for the cold-start users in all three datasets. The reason could be that the model is less effective

in capturing long-term user preferences. In contrast, the meta-learning approaches show better results by

leveraging shared knowledge across the users. However, in the time-specific cold-start setting, test users

have very limited interactions. In particular, the meta-learning model doesn’t benefit from time-evolving

aspects of the user interests, and thus underperforms the proposed model.

We use an illustrative example to further demonstrate how the proposed model effectively captures the

underlying user interest and its evolution in Figure 3.4. The recommended movie genres are compared to

the user’s favorite genres based on the provided true ratings. The result shows that the recommendation

matches user’s changing taste over time well. It is also interesting to see that the proposed model accurately

detects some dramatic changes in user’s ratings (e.g., from 12/02 to 06/03 and from 06/04 to 12/04), which

were likely to be caused by some time-specific factors.

We further present an example to show how the meta-learning module effectively captures time-specific

factors in the form of popular trends in a specific period from the global user space and transfers the (meta)
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knowledge to the cold-start users with very limited interactions. Table 3.3 demonstrates top-5 time-specific

(period 4) popular movies learned by the meta-learning module, which shares that knowledge with the test

users (i.e., two users are shown in Table 3.3 and some time-specific popular movies like ’Best in Show’ are

recommended to them). This example demonstrates how our model provides effective recommendations to

users by capturing time-specific factors.

Users Movies
Training users [’Best in Show’, ’Chicken Run’,

’Sommersby’, ’Bedrooms and Hall-
ways’, ’The Mod Squad’]

Test user
(ID:5636)

[’Mr. Mom’, ’Best in Show’,
’Shower’, ”We’re No Angels”,
’Groundhog Day’]

Test user
(ID:5539)

[’Best in Show’, ’An Ideal Hus-
band’, ’Life Is Beautiful’, ’Break-
ing Away’, ’Kramer vs. Kramer’]

Table 3.3: Time-specific popular movies learned and predicted by the meta-learning module

Performance of Individual Modules. The proposed model integrates two modules to capture time-specific

and time-evolving latent factors. We study their contribution in detail to show how the user’s time-specific

interest and time-evolving preferences affect the overall recommendation performance.

• Time-specific Meta-Learning (TS-ML) Module. This module is specifically designed to capture

users’ time-specific interest in each period. Different from [47], it only relies on time-specific data so

that the proposed model is more generally applicable.

• Time-evolving RNN (TE-RNN) Module. This module is designed to capture users’ gradual shift of

interest by utilizing historical interactions.

Table 3.4 reports the recommendation performances of each module and compares them with the proposed

integrated model. First, each module performs reasonably well, and the recommendation results are compa-

rable with some of the state-of-the-art baselines. It is also interesting to see that the meta-learning model out-

performs the time-evolving module in all cases. This demonstrates the stronger impact of the time-specific

factors when making recommendations to users. It also justifies the proposed meta-learning module’s effec-

tiveness that successfully captures these latent factors by learning the global trend from other users during a



CHAPTER 3. DYNAMIC META-LEARNING FOR SPARSE USER INTERACTIONS 25

Table 3.4: Comparison of recommendation performance (Average RMSE and NDCG) using each module

alone and the proposed integrated model for all three datasets

Dataset Model RMSE NDCG
TS-ML 0.9380±0.02 0.3103

Netflix TE-RNN 0.9478±0.03 0.3011
Proposed 0.8925±0.03 0.3472

TS-ML 1.2791±0.12 0.3073
Last.fm TE-RNN 1.9938±0.34 0.2910

Proposed 1.2203±0.16 0.3385
TS-ML 1.0935±0.07 0.3144

MovieLens-1M TE-RNN 1.2505±0.13 0.3162
Proposed 0.9945±0.08 0.3351

specific period. Finally, the proposed model that integrates both modules achieves the best recommendation

performance, because it can capture both the time-evolving and time-specific factors.

We further provide an illustrative example from the MovieLens-1M dataset for a user with ID:3462 to show

each module’s contribution to the final prediction. Figure 3.5 shows that final predicted ratings are the com-

bination of both modules, and they effectively complement each other to provide better final performance.
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Figure 3.5: Contribution of time-evolving and time-specific modules to the recommendation of different

movies, where they jointly contribute to the predicted ratings.

Varied Recommendation Period Lengths. In this paragraph, we show a more fine-grained temporal

analysis by varying the period length. We use three different period lengths: 1 month, 3 months, and 6

months, in the Netflix dataset and report the model performance. We also select one representative from each
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Table 3.5: RMSE and NDCG in varying period lengths in months

Model 1 3 6
RMSE NDCG RMSE NDCG RMSE NDCG

SVD++ 1.0923±0.04 0.2892 0.9797±0.03 0.2915 0.9730±0.05 0.2901
timeSVD++ 1.0742±0.04 0.3086 0.9538±0.06 0.3125 0.9641±0.04 0.31142

deepFM 1.1260±0.09 0.2817 0.9811±0.04 0.2930 0.9585±0.06 0.2891
MeLU 1.0037±0.05 0.3138 0.9213±0.05 0.3232 0.9414±0.04 0.3204

Proposed 0.9864±0.06 0.32070 0.8925±0.03 0.3472 0.9226±0.03 0.3317

category of baseline models and report the RMSE and NDCG in Table 3.5. The user base and the number of

interactions per user are limited when we set the length to 1 month. Due to this, matrix factorization methods

and deep learning methods suffer largely and have poor performance compared to the proposed model. In

the case of 6 months, due to more interactions, deep learning models are performing better than other smaller

period lengths. Also, we perform K = 5-shots for meta-learning, and due to large interactions present in

a 6-month period length, it is quite possible not to get those shots from the most recent interactions. This

could hurt the performance of meta-learning, which achieves slightly lower performance than the 3-month

period. Overall, in all period lengths, our model outperforms others with a noticeable margin.

No Interactions in the Current Period. We further study the model performance where a user doesn’t

have any interaction in the current period. In this case, our time-specific module utilizes global user factors

instead of user-specific factors due to lack of interaction, and hence no adaptation is made. Similarly, the

time-evolving module just forwards its previous evolving user factors to the next time period to provide an

integrated recommendation.

We provide an illustrative example, where we randomly choose five test users with user ids: {870391,

1197396, 757756, 920368, 1918714} and remove their interactions in a given period (i.e., period = 4). We

compare the prediction performance with the regular model where these interactions are not removed to

show the impact of completely missing interactions in the current period. Table 3.6 shows that the proposed

model provides quite robust results. In Period 4, due to missing interactions, the meta-learning module only

utilizes global user factors. Similarly, for Period 5, the time-evolving module doesn’t have inputs in Period

4 and hence forwards the user’s time-evolving factors from Period 3. The performance with no interactions

is slightly worse than having interactions.
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Figure 3.6: Impact of item embedding size

Table 3.6: Results with/without interactions in current period

Period Interactions No Interactions
RMSE NDCG RMSE NDCG

4 0.8720±0.04 0.3382 0.8953±0.03 0.3226
5 0.8466±0.04 0.3448 0.8569±0.04 0.3415

Hyperparameter Tuning. We perform fine-tuning of model learning rates through a grid search from

{1e-5, 1e-4, 1e-3, 1e-2, 1e-1} and select best value as α = β = γ = 1e−4. In our implementation, we

learn user embedding from the model but item embedding is generated from the corresponding attributes.

We embed each attribute (or feature) of an item in a vector of size 32. Each item in movies datasets has 5

attributes (genre, director, actors, plot, and overall rating), which are concatenated to generate the final item

embedding of size 160. We applied different vector sizes [16,32,64,128,256] for each attribute and at 32 we

got the optimal performance. Increasing the size didn’t improve the results as shown in Figure 4.5 for three

datasets. So, we choose 32 for each attribute and the final embedding size is set as 160.

Time Complexity. Denote the computational complexity of embedding, time-specific and time-evolving

module for one round of backpropagation as O(m1), O(m2), O(m3). In one epoch, the model iterates

through T tasks, and in each task, the model performs a local update for the time-specific module on the

support set of size S and also updates the time-evolving module on both support S and query set Q. After

iterating through the tasks, a meta update is performed utilizing query set Q on the time-specific module.

Overall, the total time complexity is O(m1 + T (m2 + m3)(S + Q)) for each iteration. We also provide

the actual time taken by the proposed model to complete one training iteration utilizing GeForce RTX 2070

GPU. The proposed model considers each user as a task where the time-specific module and time-evolving

module take 0.0065s and 0.0023s, respectively, to train on one task. Considering Movielens-1M dataset,
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Table 3.7: Netflix Periodic RMSE Results

Period SVD++ timeSVD++ CKF MeLU DeepFM Wide &
Deep

GC-MC Caser DIEN ML-ICS Proposed

1 0.9813 0.9840 0.9552 0.9201 1.2706 1.3178 1.2912 1.2845 1.3102 0.9335 0.9205

2 0.9862 0.9895 0.9683 0.9481 1.1117 1.1321 1.2903 1.2882 1.3033 0.9498 0.9258

3 0.9795 0.9795 0.9693 0.9440 1.0489 1.0921 1.2732 1.2634 1.2724 0.9445 0.9479

4 0.9742 0.9708 0.9524 0.9374 1.0896 1.0777 1.2613 1.2404 1.2543 0.9401 0.8771

5 0.9800 0.9710 0.9432 0.9415 1.0630 1.0115 1.2311 1.2127 1.2167 0.9426 0.9279

6 0.9757 0.9740 0.9564 0.9495 0.9911 0.9904 1.1374 1.1206 1.1515 0.9487 0.9533

7 0.9744 0.9725 0.9612 0.9506 1.0323 0.9895 1.1068 1.1745 1.0984 0.9622 0.8723

8 0.9766 0.9661 0.9526 0.9418 0.9706 1.0122 1.049 1.1132 1.0401 0.9517 0.8789

9 0.9737 0.9603 0.9412 0.9424 0.9902 0.9897 1.0442 1.0724 1.0311 0.9503 0.8786

10 0.9726 0.9597 0.9228 0.9391 0.9961 0.9655 1.0918 1.0843 1.0511 0.9430 0.9209

11 0.9722 0.9595 0.9332 0.9360 0.9497 1.0570 1.03403 1.0563 1.0615 0.9315 0.8997

12 0.9731 0.9511 0.9541 0.9438 0.9761 0.9648 1.0885 1.0245 1.0528 0.9396 0.9427

13 0.9361 0.9556 0.9243 0.9351 0.9710 0.9540 1.0451 1.0373 1.0417 0.9306 0.8746

14 0.9658 0.9431 0.9416 0.9457 0.9720 0.9635 1.031 1.0143 1.0531 0.9487 0.8824

15 0.9673 0.9457 0.9358 0.9378 1.0050 0.9598 1.0162 1.0142 1.0237 0.9441 0.8812

16 0.9670 0.9340 0.9337 0.9428 0.9866 0.9550 1.0254 1.0078 1.0145 0.9468 0.8340

we used 80% training users and hence total training time for both modules in each iteration are 31.40s and

11.11s. Similarly, the embedding module takes 3.14s. This gives the total time of 41.65s/iteration.

3.5 Periodical Recommendation Results

We report the detailed result for each prediction period for all three datasets to demonstrate how the predic-

tions evolve over time.

Netflix. As can be seen from Table A.1, in most periods, the proposed model performs better than others

except for a few periods like 3 and 6, where the proposed model slightly under-performs the meta-learning

model. A possible explanation is that in these periods, time-specific user interest might largely deviate from

the time-evolving user factors, and hence their combined recommendation is less accurate.

Last.fm Datasets. The period-wise results for the Last.fm dataset on one run is shown below in Table A.2.

The proposed model achieves good results in this implicit feedback (i.e., counts) dataset. The high variation

of the counts indicates users’ music listening habits are fluctuating significantly. The results in Table A.2

show that matrix factorization and deep learning baseline models are less effective in capturing those varia-

tions. In contrast, the proposed model simultaneously captures those variations in the form of users’ specific

biases and the gradual shift of preferences effectively.
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Table 3.8: Last.fm periodic RMSE results

Period SVD++ timeSVD++ CKF DPF MeLU DeepFM Wide & Deep Caser DIEN ML-ICS Proposed
1 1.6507 1.6920 1.8353 1.6953 1.3153 2.1434 2.1993 1.8132 2.4720 1.3233 1.3173
2 2.3052 2.1647 1.3964 1.3238 1.5567 2.1336 2.1675 1.3854 2.1291 1.5407 1.5320
3 2.1972 1.9160 1.7007 2.0814 1.3408 2.0674 2.1194 1.6772 2.1065 1.3531 1.3465
4 2.1574 1.7385 1.5462 1.4654 1.1346 2.0757 2.0464 1.5232 1.9520 1.1287 1.1047
5 1.5858 1.6520 1.6602 1.5214 1.1687 2.0202 2.0033 1.5843 1.9876 1.1732 1.1578
6 1.7879 1.8460 1.5555 1.3815 1.2602 2.0763 2.1651 1.5278 1.8816 1.2821 1.0809
7 1.5348 1.6498 1.6527 1.3448 1.6359 1.9372 1.9595 1.6227 1.8392 1.6324 1.6226
8 1.7527 1.7350 1.5798 1.3617 1.5987 1.8883 1.8839 1.5482 1.8806 1.6037 1.4270
9 2.2419 1.9977 1.4311 1.5085 1.4493 1.9546 2.0015 1.4326 1.9011 1.4488 1.3338
10 1.9101 1.7901 1.4572 2.3051 1.1753 1.8346 1.8766 1.4104 1.8743 1.1714 1.0368
11 1.5709 1.4704 1.3067 1.4337 1.1528 1.7557 1.8178 1.2974 1.8515 1.1553 1.0864
12 1.5864 1.5760 1.3353 1.2409 1.2226 1.7666 1.7346 1.3136 1.8483 1.2105 1.0933
13 1.5228 1.3637 1.4613 1.0546 1.0546 1.7518 1.7192 1.4463 1.8617 1.0720 1.0123
14 1.7330 1.5966 1.6130 1.2670 1.0809 1.6417 1.6800 1.5812 1.8445 1.0912 1.0603
15 1.9891 1.6644 1.4429 1.3264 1.1094 1.6815 1.7253 1.4293 1.7623 1.0996 1.0824
16 1.4638 1.4106 1.4334 1.2547 1.3206 1.6900 1.9963 1.4017 1.7456 1.3322 1.0688

Table 3.9: Movielens periodic RMSE results

Period SVD++ timeSVD++ CKF MeLU DeepFM Wide & Deep GC-MC Caser DIEN ML-ICS Proposed
1 1.0615 1.0496 1.1155 1.2234 1.5341 1.3719 2.3345 2.2941 2.3438 1.2412 1.2253
2 0.9954 0.9932 0.9847 1.1613 1.3659 1.2686 1.7912 1.7247 1.7065 1.1803 1.0444
3 1.0445 0.9982 1.0305 0.9341 1.2267 1.2585 1.2576 1.2289 1.2019 0.9423 0.8487
4 1.1499 1.1189 1.0508 0.9776 1.2492 1.2346 1.1332 1.1223 1.1623 0.9711 0.9084
5 1.0918 1.0611 1.1468 1.0308 1.1615 1.1052 1.1346 1.1286 1.1587 1.0514 0.9053
6 1.0773 1.0688 1.0699 1.1377 1.0994 1.0672 1.1112 1.1021 1.1421 1.1127 1.0377

Movielens Datasets: Periodic results for the Movielens dataset are shown in Table A.3. In the first period,

we notice that meta-learning models are not performing well, whereas SVD models are performing well.

This is because the dataset has very dense interactions in the first period. Meta-learning models only use

k-shot for learning, but SVD models benefit from maximum interactions. For the proposed model, time-

evolving user factors don’t contribute in the first period. Also, time-specific factors are based on meta-

learning. Hence, its performance is not better than the baselines, but the proposed model achieves a better

performance in the subsequent periods

3.6 Conclusion

In this chapter, we formulate a novel time-sensitive cold-start problem and present a dynamic recommenda-

tion framework to address its unique challenges. The framework integrates a time-sensitive meta-learning

module with a time-evolving recurrent module. The former handles the user cold-start problem by learning

global knowledge among users from their interaction information in the current recommendation period.

This module is jointly optimized with the time-evolving recurrent module that captures a user’s gradually
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shifted preferences. A merged user representation is generated using the two modules’ outputs and interacts

with the item embedding to provide the final recommendations.



Chapter 4

Meta Evidential Learning for Sparse User
Interactions

In this chapter, we focus to deal with the problem of noisy sparse interaction and provide a systematic learn-

ing method extending L2L framework with evidential learning that detects true user intent by quantifying

the uncertainty. The proposed method integrates meta learning module with an evidential learning mod-

ule in which the former module deals with sparse interactions and the latter module leverages evidence to

quantify the uncertainty that is instrumental to address the noisy interactions problem. To show the model’s

effectiveness, we leverage meta evidential learning method into recommender systems as one application

throughout the chapter to tackle the issues of sparse and noisy interactions.

4.1 Meta Evidential Learning for Cold-start Recommendation

Recommender systems exploit data mining techniques and prediction algorithms to predict users’ interest

in products, services, and information among a large number of available items [2]. Commonly used ap-

proaches can be generally categorized as collaborative filtering-based, content-based, and hybrid systems.

Collaborative filtering methods recommend items to the target users based on the similar taste of existing

users [25]. These methods mostly suffer from data sparsity that leads to the cold-start problems (i.e., not

able to handle new users and/or items with limited interactions). Content-based methods [56] address this

issue by utilizing users’ demographic information (e.g., age, gender, and nationality) and item content (e.g.,

genres, directors, and actors). While various extra-information is available for the items, acquiring users’

personalized information is usually difficult due to privacy issues. Hybrid models combine the benefits of

31
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Table 4.1: Epistemic uncertainty and RMSE loss for two distinct users from Movielens 1M dataset based

on the number of interactions.

UserID Interactions Epistemic RMSE
4515 24 0.5133 1.0345

4575 164 0.6812 1.7038

both collaborative and content-based systems but remain less effective to the cold-start users/items.

Several recent works have attempted to address the cold-start problem in recommender system through

meta-learning [47, 81]. In particular, meta-learning models the cold-start recommendation as a few-short

learning problem. By arranging existing users’ item-consumption history as the training tasks, it learns a

global meta-model that can adapt to users/items with limited interactions with improved recommendation

accuracy. Most existing methods, including meta-learning models, use the number of interactions as the

primary factor to identify the cold-start users. However, they ignore the nature of the interactions as not

all the interactions are equally important for a recommender system to construct an accurate (latent) profile

for users to provide effective recommendations. As certain interactions can bring much higher value to the

system than others, it is essential to consider both the number and the value of the interactions to most

properly handle cold-start recommendations.

Table 4.1 shows two examples users from the Movielens dataset with significantly different numbers of

interactions. As can be seen, the second user is much more active than the first user who has much fewer

interactions and may be regarded as cold-start. However, more interactions may not necessarily lead to a

more accurate recommendation result, which is evidenced by a higher root mean squared error (RMSE) for

the first user. In fact, the larger recommendation error is also reflected by a higher model (or epistemic)

uncertainty. This example, along with more illustrative examples provided in our experiment section, helps

to further confirm the distinct values of different interactions. It also implies the important role of using

uncertainty to quantify the model confidence when making a recommendation that could indicate the cold-

start level of a user (i.e., how well the system knows the user).

In general, a recommender system’s prediction is very sensitive to observed user-item interactions, especially

when they are limited. Hence, a precise and calibrated uncertainty estimation is useful for interpreting the

model confidence in cold-start recommendations. There are two common types of uncertainty: aleatoric

that captures the uncertainty introduced by the noises in the data and epistemic that captures the model

uncertainty due to lack of understanding of the data [41]. Aleatoric uncertainty is usually irreducible and

can be directly estimated from data. Bayesian models offer a natural way to capture model uncertainty, and

hence Bayesian neural networks have been commonly used to estimate the epistemic uncertainty of deep
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learning (DL) models.

However, Bayesian DL models usually conduct posterior inference through Monte Carlo (MC) sampling,

which poses a very high computational cost due to a large number of parameters in a DL model and their

complex dependencies. Consequently, directly extending the current deep learning-based recommend sys-

tems through Bayesian modeling will prevent them from scaling to a large user-item space.

To address the above key challenges, we propose a meta evidential learning model, referred to as MetaEDL,

to provide uncertainty-aware cold-start recommendations. By integrating a meta-learning module with ev-

idential learning, MetaEDL is able to leverage all existing users’ historical interactions to learn a global

model that can easily and accurately adapt to cold-start users with limited interactions. Furthermore, we

construct a hierarchical model that provides a generative process to model the likelihood of the user-item

interactions. Instead of performing an expensive posterior inference, evidential learning is adopted to di-

rectly predict the hyper-parameters of the prior distributions of the parameters in the likelihood function,

using a non-Bayesian deep neural network. These predicted hyperparameters have a natural interpretation

as pseudo counts, which can serve as evidence to quantify the model confidence for its recommendations.

The main contributions of this work are four-fold:

• A novel recommendation model that integrates meta-learning and evidential learning to provide uncertainty-

aware cold-start recommendations.

• Posterior inference through evidential learning to ensure good efficiency that allows a recommender

system to scale to a large user-item space.

• Using pseudo count based evidence that provides a deeper insight to understand the value of dif-

ferent interactions that is instrumental to identify truly cold-start users, going beyond just using the

interaction count.

• An integrated end-to-end training process that optimizes the embeddings and meta evidential learning

modules.

We conduct extensive experiments over four real-world datasets and compare with state-of-the-art models

to demonstrate the effectiveness of the proposed MetaEDL model.
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4.2 Related Work

Section 2.1.2 of chapter 2 has included most of the related work for this work and here we specifically

mention related work for only uncertainty-aware recommendation.

Uncertainty in Recommender Systems. All the above methods primarily focus on personalized recom-

mendation but lack in handling uncertainty. Recently, Gaussian embedding-based recommendation [36] at-

tempts to capture user and item uncertainty but does not measure model uncertainty. Our proposed method

not only provides an effective recommendation but also measures both data and model uncertainty utilizing

the evidential learning approach [3].

4.3 Problem Formulation

For a recommendation model, input data is represented as {U ,I}, where U is the user set and I is the item

set. Table C.1 summarizes the major notations used throughout the sections. We perform recommendation

and uncertainty quantification for each user with a recommendation function as:

fθu,Eu,Ei
(u, i) = {γ(u,i), ν(u,i), α(u,i), β(u,i)} ∀u ∈ U , i ∈ I (4.1)

where γ(u,i) is the recommended score for item i assigned by user u, ν(u,i), α(u,i),and β(u,i) are the model

evidence (which will be detailed along with the meta evidential module) for user u on item i, θu is user

specific model parameter; Eu, and Ei are user and item embedding module parameters. The goal of a

recommender system is to predict the scores with confidence so that it can accurately capture a user’s true

preference on items in belief that the recommended items are likely to be adopted by the users.

We formulate recommendations as a few-shot regression problem in the meta-learning setting. Users are

dynamically partitioned into meta-train and meta-test sets. The meta-train user set includes users with

sufficient interactions, while the meta-test user set includes cold-start users who have only a few interactions.

We consider a distribution over tasks P (T ), and each user is represented as a few-shot regression task Tu
sampled from the given task distribution. In general, a task includes a support set Su and a query set Qu.

The support set includes a user’s interactions where k is interpreted as the number of shots (i.e., interactions).

The query set includes the rest interactions of this user.

Tu ∼ P (T ) : Su = {(u, ij), r(u,ij)}
N
j=1, Qu = {(u, ij), r(u,ij)}

N+M
j=N+1

(4.2)

where N is the number of items a user interacted, and r(u,ij) represents label (i.e. rating or count) from user

u to item ij .
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Table 4.2: Summary of Notations

Notation Description
u, i user and item
ei, zi item i’s one-hot encoding and embedding
eu, zu user u’s one-hot encoding and embedding
r(u,i) ground truth score for user u on item i

θ, θu meta and user-specific parameters of meta-learning module
Eu, Ei users and items embedding matrix
Su, Qu support and query sets in task corresponding to user u
γ(u,i) model prediction for user u on item i

ν(u,i),α(u,i),
β(u,i)

model evidence for user u on item i as an hyperparmaters of an eviden-
tial distribution

We adopt episodic training [82], where the training task mimics the test task for the efficient meta-learning.

The support set S in each episode works as the labeled training set on which the model is trained to minimize

the loss over the query set Q. This training process is iteratively carried out episode by episode until

convergence.

4.4 Proposed Model

The proposed model consists of two major components: an embedding module and a meta evidential learn-

ing module, as shown in Figure 4.1. The embedding module generates user and item embeddings and is

forwarded to the evidential meta-learning module, where prediction and model evidence are produced as a

final output.

4.4.1 Embedding Module

We represent user u, and item i in one hot encoding considering unique user and item IDs: eu ∈ Rn where

n is the total number of users and ei ∈ Rm where m is the total number of items respectively. This one

hot vector is then transformed using the embedding matrix Eu for user and Ei for item in d-dimension:

zu = Eueu and zi = Eiei. The embedding matrix is optimized along with the model training process. We

use gradient descent to update the both users and item embedding matrix:

Eu = Eu − ξ∇Eu(LTu [fθu,Eu,Ei
])

Ei = Ei − ξ∇Ei(LTu [fθu,Eu,Ei
])

(4.3)
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Figure 4.1: Overview of the proposed model.

where ξ is the step size, and LTu [fθu,Eu,Ei
] is an end-to-end meta evidential user-specific loss and detail is

given in Equation (4.21).

4.4.2 Meta Evidential Learning Module

We formulate the meta-learning module as a non-Bayesian neural network to estimate a target interaction

score and its associated evidence to learn both aleatoric and epistemic uncertainty. We accomplish this by

placing evidential priors over the original Gaussian likelihood function and training the neural network to

infer the hyperparameters of the evidential distribution as similar to [3]. The key intuition of employing ev-

idential learning in recommender systems is that it allows us to assign evidence to the predicted interaction,

where the evidence can be used to formulate the prediction score while capturing the model confidence.

A hierarchical model. The recommendation problem is set up in such a way that the target (rating and

count), yn, is drawn i.i.d. from a Gaussian distribution with unknown mean and variance (µ, σ2). Model

evidence can be introduced by further placing a prior distribution on (µ, σ2), leading to a hierarchical model.

To ensure conjugacy, we choose a Gaussian prior on the unknown mean and an Inverse-Gamma prior on the

unknown variance:

p(yn|µ, σ2) = N (µ, σ2) (4.4)

p(µ|γ, σ2ν−1) = N (γ, σ2ν−1) (4.5)

p(σ2|α, β) = Inv-Gamma(α, β) (4.6)

where Inv-Gamma(z|α, β) = βα

Γ(α)

(
1
z

)α+1
exp(−β

z ) with Γ(.) being a gamma function; γ, ν, α, and β are
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parameters of the corresponding prior distributions.

Interpreting hyper-parameters. Besides serving as the parameters of the corresponding prior distributions

in the hierarchical model, the hyper-parameters (γ, ν, α, β) offer very intuitive meanings, which set the

stage to use them in the proposed evidential learning. The best way to show this is to couple these prior

distributions with a set of actual observations, y = (y1, ..., yN )
⊤. Given the Gaussian likelihood in (4.4),

we compute joint posterior distribution p(µ, σ2|y) factorized as p(µ|y, σ2)p(σ2|y). We first derive the

conditional posterior of µ:

p(µ|y, σ2) = N (γN , σ
2
N ) (4.7)

γN =
ν

ν +N
γ +

1

N + ν

N∑
n=1

yn (4.8)

σ2N =
σ2

ν +N
=
σ2

νN
(4.9)

where νN = ν +N . From (4.8), we can see that the posterior mean is the convex combination of the prior

mean γ and the maximum likelihood estimation of the mean, given by 1
N

∑N
n=1 yn. Similarly, the variance

in the posterior distribution is νN times smaller than the prior variance. As a result, ν can be interpreted as

the ‘effective’ prior observations for the prior mean γ. We continue to derive the posterior of σ2:

p(σ2|y) = Inv-Gamma(αN , βN ) (4.10)

αN = α+
N

2
(4.11)

βN = β +
1

2

N∑
n=1

(yn − µ)2 (4.12)

First, (4.11) shows that after observing N data samples, the prior parameter α is increased by N
2 to reach

the posterior parameter αN . This has the effect of treating the prior hyper-parameter as 2α ‘effective’ prior

observations of ‘pseudo’ data samples. Similarly, by multiplying both sides of (4.12) by 2, we have

2βN = 2β +
N∑
n=1

(yn − µ)2 = 2β +Nσ2ML (4.13)

where σ2ML denotes the maximum likelihood estimator of the variance arising the from data samples (y1, ..., yN ).

From this, hyper-parameter β can be interpreted as the 2β total ‘prior’ variance arising from the correspond-

ing 2α ‘effective’ prior observations’ of ‘pseudo’ data samples.

Mapping hyper-parameters to evidence-based uncertainty. The above analysis provides an intuitive in-

terpretation of key hyper-parameters introduced along with the prior distributions in the hierarchical model.
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This will help to understand their key roles in defining different types of uncertainties introduced next. In

particular, since both ν and α are essentially the ‘effective’ prior observations, it is natural to treat their

posterior counterpart νN and αN as the evidence to support (or suspect) a prediction given training samples

(y1, ..., yN ). Furthermore, βN can be treated as the total uncertainty that combines two sources of uncer-

tainty: the prior variance β from the pseudo samples and the variance σ2ML of the actually observed data

samples.

We start defining the model prediction and uncertainty from the data (referred to as aleatoric uncertainty) as

Prediction:E[µ] =γN (4.14)

Aleatoric:E[σ2] =
βN

αN − 1
(4.15)

where both can be directly obtained as the mean from the corresponding Gaussian and Inv-Gamma posteriors

defined in (4.7) and (4.10), respectively. It is interesting to see that the uncertainty from the data is proportion

to the total uncertainty βN and decreases with (both pseudo and actual) observations. Next, we quantify

the uncertainty of the model prediction (referred to as epistemic uncertainty) by showing an important

relationship with the aleatoric uncertainty through the following theorem.

Theorem 1 Given a hierarchical model as specified by (4.4)-(4.6) and a set of observed (training) data

samples (y1, ..., yN ), the epistemic uncertainty that quantifies the variance of the posterior mean (as the

model prediction), given by Var[µ], is 1
νN

times of the aleatoric uncertainty:

Var[µ] =
E[σ2]

νN
=

βN
νN (αN − 1)

(4.16)

where νN is defined in (4.9).

First, note that we cannot directly use the variance given by the posterior distribution in (4.7) as it is still

conditioned on σ2. Since Var[µ] is defined on the marginal posterior p(µ|y), we need to further marginalize

σ2, which gives

Var[µ] =
∫ ∫ [

µ2p(µ|σ2)− (E[µ])2
]
p(σ2)dµdσ2

=γ2N − (E[µ])2 +
∫
σ2

ν
p(σ2)dσ2

=
βN

νN (αN − 1)

(4.17)

where we omit the dependency on y to keep the notation uncluttered.

Interpretation. The relationship between epistemic and aleatoric uncertainty given in Theorem 1 has a very

intuitive interpretation when we treat both νN and αN as evidence. For the aleatoric uncertainty, it starts
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with a total uncertainty of βN and continues to decrease with the collection of more data samples that add

to the evidence term αN . The epistemic uncertainty further considers the belief of a given model (µ). For a

model with a total evidence of νN , the remaining uncertainty arising from data will further scale down by

νN , leading to the model uncertainty given in (4.17). By fixing the prior pair (α, ν), we have Var[µ] ∼ 1
N2 ,

which implies that the epistemic uncertainty will decrease in a speed of N2.

Learning Meta-Evidential Distribution. The evidence-based uncertainty analysis reveals that conducting

regression based recommendation for cold-start users using a traditional Bayesian model in the few-shot

setting faces a number of key challenges. First, in a typical few-shot setting, N is small, which leads to a

large epistemic uncertainty that makes the prediction much less confident. While this could be addressed by

choosing proper evidence pair (α, ν), setting hyper-parameters is inherently challenging without sufficient

prior knowledge. Second, such an approach does not benefit from the meta-learning framework, which aims

to leverage useful information from other warm-start users to improve cold-start recommendations.

To tackle these challenges, we propose to directly learn an evidential distribution from data through meta-

learning to estimate the potential interaction between a user-item pair (u, i). Instead of solely providing a

prediction by using predefined priors and a set of training samples, we directly predict the posterior mean

γ(u,i), the evidence pair (ν(u,i), α(u,i)), and the total uncertainty β(u,i). Intuitively, for a potential interaction,

if it shares important properties with existing interactions, the meta evidential learning model should predict

a high evidence along with a low total uncertainty. As evidenced by our experiments, such highly confident

predictions supported by the predicted evidence usually lead to a higher accuracy. In contrast, for interac-

tions with a high uncertainty, recommending such items to a user could help the model more effectively

capture the user’s true preference that leads to more accurate recommendations in future interactions. Our

experiments show that by focusing on interactions with a high epistemic uncertainty, our model can use

much less interactions to accurately capture a cold-start users’ preference.

We start by defining a loss function that is formed through the evidence and total uncertainty parameters.

Given an observed score r(u,i) resulted from an interaction between user u and item i, we marginalize the

likelihood parameters (µ, σ2), which gives the marginal likelihood function

p(r(u,i)|γ(u,i), ν(u,i), α(u,i), β(u,i)) =

∫ ∫
p(r(u,i)|µ, σ2)p(µ, σ2|γ(u,i), ν(u,i), α(u,i), β(u,i))dµdσ

2

=

∫ ∫
N (µ, σ2)N (γ(u,i), σ

2ν−1)IG(α(u,i), β(u,i))dµdσ
2 (4.18)

=St
(
r(u,i); γ(u,i),

β(u,i)(1 + ν(u,i))

ν(u,i)α(u,i)
, 2α(u,i)

)
where IG is short for Inv-Gamma and St(.) is a student-t distribution on target variable r(u,i) with respective

location and scale parameters.
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We adopt an evidential loss, which utilizes the above marginal likelihood while computing predicted loss.

This includes negative log-likelihood (LNLL[fθu,Eu,Ei
]) to maximize the marginal likelihood and an evi-

dential regularizer (LR[fθu,Eu,Ei
]) to impose a high penalty on the predicted error with a low uncertainty (or

a large confidence). We first formulate the negative log-likelihood, given by

LNLL[fθu,Eu,Ei
] = − log(p(r(u,i)|γ(u,i), ν(u,i), α(u,i), β(u,i))

= − log

(
St(r(u,i); γ(u,i),

β(u,i)(1 + ν(u,i))

ν(u,i)α(u,i)
, 2α(u,i))

)
=

1

2
log

(
π

ν(u,i)

)
− α(u,i) log(2β(u,i)(1 + ν(u,i)))

+ (α(u,i) +
1

2
) log((r(u,i) − γ(u,i))2ν(u,i)

+ 2β(u,i)(1 + ν(u,i))) + log

(
Γ(α(u,i))

Γ(α(u,i) +
1
2)

)
(4.19)

We formalize our own evidence regularizer, which considers epistemic uncertainty to penalize confident

predicted errors. We multiply the predicted error with the inverse epistemic uncertainty that scales up

the error when the predicted evidence is high causing high inverse epistemic uncertainty and vice-versa.

Conversely, it will be less penalized if the prediction is close to the target score:

LR[fθu,Eu,Ei
] =|r(u,i) − γ(u,i)|.

(
ν(u,i)(α(u,i) − 1)

β(u,i)

)
(4.20)

In meta evidential setting, we compute the loss for a specific user u, which can be formulated with user

evidential loss as:

LTu [fθu,Eu,Ei
] =

∑
u,i∼Tu

L[fθu,Eu,Ei
(u, i)],

L[fθu,Eu,Ei
(u, i)] =LNLL[fθu,Eu,Ei

(u, i)] + λ1LR[fθu,Eu,Ei
(u, i)]

(4.21)

where λ1 is a regularization parameter.

The total loss is formed by aggregating all users in the meta-train set, regularized by the L2 norm of key

model parameters. Let θu and θ denote the local (user-specific) and global parameters of the meta evidential

learner. Training the meta evidential learning as a recommendation model can be formulated as the following

optimization problem:

min
θ

∑
Tu∼p(T )

LTu [fθu,Eu,Ei
] +

λ2
2
||θ||22,

θu = θ − η∇θLTu(fθ,Eu,Ei
)

(4.22)
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Algorithm 3 Meta Evidential Training

Require: Hyperparameters: α, β, γ, ν

Require: Stepsize hyperparameters: η, ξ

1: Initialize user embedding, Eu
2: Initialize item embedding, Ei
3: Initialize meta learner, θ

4: while not converge do
5: Sample tasks Tu ∼ p(T )
6: for all Tu do
7: Sample support set, Su ∈ Tu for the local update

8: Perform local update with Su for meta evidential learning module using Equation (4.23)

9: Sample query set Qu ∈ Tu for the global update

10: end for
11: Perform global update with Qu for the meta evidential learning module using Equation (4.24), and

for user and item embedding using Equation (4.3)

12: end while

where θu is one gradient step update from global parameter θ of the meta evidential learner with η being the

step size, and λ2 is the regularization parameter.

We apply an optimization-based meta-learning approach [20] to learn user specific factors, as shown in

Figure 4.1. The meta evidential learning consists of three fully connected linear layers with ReLU activation

in the first two, while the last layer predicts ratings or count and its evidence. The input to the meta evidential

learning model is the concatenation of user embedding (zu) and item embedding (zi) for each user, i.e.,

(zu||zi). Algorithm 4 shows the training process that learns the model parameters. For the meta evidential

learning module, the local update (line 8) is done for the user-specific parameter, which is achieved by one

or more gradients from the global parameter:

θu = θ − η∇θLTu [fθ,Eu,Ei
] (4.23)

In this update, the loss function is computed with the support set. Similarly, global update (line 11) is done

with the new item interactions of each user from the query set for the meta update:

θ = θ − ξ∇θ
∑

Tu∼p(T )

LTu [fθu,Eu,Ei
] (4.24)

This process continues to find a good global parameter shared by all users. Note that in both local and

global meta updates, evidence and uncertainty parameters are incorporated via the loss function as given in

Equation (4.21).
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4.5 Experiments

In this section, we provide the details of datasets, baselines, experimental settings, results and discussion,

and hyperparameter tuning.

4.5.1 Dataset Description

We evaluated our model on four public benchmark datasets. Three are explicit datasets where users provide

explicit ratings: MovieLens 1M, Netflix, and Book Crossing datasets; and one implicit dataset where users

have implicit interactions, (e.g., count): Last.fm-1K dataset.

• MovieLens 1M: This dataset includes 1M explicit feedback (ratings) made by 6,040 anonymous users on

3,900 distinct movies from 04/2000 to 02/2003.

• Netflix: This dataset has around 100 million interactions, 480,000 users, and nearly 18,000 movies rated

between 1998 to 2005. We pre-processed the dataset and selected 6,042 users that consist of user-item

interactions from 01/2002 to 12/2005.

• Book Crossing: This dataset contains 278,858 users providing 1,149,780 ratings (explicit/implicit) about

271,379 books in a 4-week crawl (08-09 of 2004). We further pre-processed the dataset and selected 751

users with their corresponding interactions.

• Last.fm: This dataset contains the whole listening history (till 05/2009) for nearly 1,000 users.

4.5.2 Baselines

For comparison, we include matrix factorization based deep learning models and meta-learning based rec-

ommendation models:

• DeepFM: Deep learning based factorization machine [28]. It integrates the power of deep learning and

factorization machines models to learn low- and high-order feature interactions.

• Wide & Deep: Both deep and wide networks are used to exploit the benefits of generalization and memo-

rization [13].

• Graph based model: We use graph convolutional matrix completion (GC-MC) [9], which models recom-

mendation as link prediction in the graph.

• MeLU: It utilizes both user and item embeddings to learn meta knowledge which is used to adapt for a

new user to perform prediction [47].
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• VAMPIRE: A Bayesian meta-learning method which estimates the uncertainty in the model-agnostic meta-

learning using variational inference [61]. We applied this method in recommender system; however, it is

not adopted in any recommendation literature.

4.5.3 Evaluation Metrics

For evaluation, we analyze the experimental results in terms of the deviation of predicted values from the

ground truth and use Root Mean Squared Error (RMSE) and Normalized Discounted Cumulative Gain

(NDCG) averaged across all test users. RMSE is usually reported for explicit data, while NDCG is usually

reported for implicit data:

RMSE =

√ ∑
ru,i∈O

(r̂u,i − ru,i)2/|O|,

NDCGu =
∑
n

relpredn

log2(1 + n)
/
∑
n

relidealn

log2(1 + n)

(4.25)

where O is the observation set for the test set, reln is the relevancy of nth item in the ranking sequence

for user u, which is binary for implicit data or the rating for explicit data. The NDCG is the fraction of

Discounted Cumulative Gain (DCG) of recommendation result over the ideal DCG.

We measure uncertainty based on model evidence for each user. We compute aleatoric and epistemic un-

certainty as given in Equation (4.15) and (4.17). The aleatoric uncertainty measures uncertainty in the data,

and epistemic uncertainty measures uncertainty in the model.

4.5.4 Settings

We initialize the meta-evidential learning model with random initial values. Model learning rates are set

through a grid search, and the Adam optimizer is applied with L2-regularization. In the evidential meta-

learning setting, we split users into meta-train users (who have enough interactions > 30) and meta-test

users (who have few interactions ≤ 30). For example, in Movielens-1M dataset, we split 5,231 users for

meta-train and 809 users for meta-test . In general, the meta-learning model does K-shot learning in which

K examples are taken from each task as a support set and the rest for a query set. In our case, the model

takes historical interactions of the users and performs any-shot meta-evidential learning. In other words, we

vary the number of interacted items into support set by making a fixed number of items in the query set (e.g.,

for Movielens-1M dataset, we fixed interacted items in the query set equal to 10 and the rest of interactions

for support set). We performed this any-shot learning to capture users’ uncertainty that helps to show model
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Table 4.3: Performance of Recommendation (average RMSE and NDCG)

Model MovieLens-1M Book Crossing Netflix Last.fm
RMSE NDCG RMSE NDCG RMSE NDCG RMSE NDCG

deepFM 1.0254±0.03 0.2913 4.0889±0.06 0.2733 0.9699±0.02 0.2915 1.1939±0.05 0.2807
Wide & Deep 1.0218±0.03 0.2932 4.1341±0.08 0.2745 0.9686±0.02 0.2944 1.1847±0.05 0.2812

GC-MC 1.0313±0.03 0.2872 4.1405±0.10 0.2712 0.9816±0.03 0.2814 N/A N/A
MeLU 1.0195±0.02 0.3308 3.7388±0.05 0.2811 0.9613±0.02 0.3265 1.0711±0.03 0.3102

MetaEDL 1.0114±0.02 0.3493 3.7026±0.04 0.3046 0.9525 ±0.02 0.3488 1.0183±0.03 0.3233

confidence for each user with varying length of their interactions. This setting is designed explicitly for

cold-start recommendations since we consider test users with few interactions.

4.5.5 Results and Discussion

The experimental results for the proposed model and baselines are summarized in Table 6.2. We compute

the average RMSE considering all users with the range of deviation for all datasets: MovieLens 1M, Book

Crossing, Netflix, and Last.fm, respectively. The proposed model benefits from the meta-learning module,

and hence it can effectively handle cold-start users who have few interactions like those in Book Crossing

datasets. We also observe from Table 6.2 that deep learning and graph based models have poor performance

on the Book Crossing datasets than meta-learning models like MeLU and the proposed model achieves

significant improvements. For the last.fm dataset, the meta-learning models have shown a clear indication of

improvement again over deep learning and graph based models is not applicable due to implicit datasets. For

the Movielens 1M and Netflix datasets, most users have enough interactions, and hence all models achieve

comparable performances. We further provide top N NDCG performance ranging from top 5 to top 25 and

their respective values for each model. For this, we chose those test users who have 30 interactions so that

we can use 25 interactions for query set to compute NDCG. Similarly, we report the average RMSE values

of test users considering the number of training epochs. Both NDCG and RMSE are shown in Figure 6.2.

We further analyze the relationship between predictive confidence and model performance as shown in

Figure 4.3.

The predictive confidence is estimated based on an epistemic uncertainty threshold and model performance

with each user’s RMSE loss. The figure shows that RMSE loss and epistemic uncertainty positively corre-

late: higher uncertainty leads to a higher RMSE loss. This relationship applies to all datasets. The Book

Crossing dataset has a larger RMSE loss due to its range of target labels are from 0-10. The last.fm has

count data, and its target labels vary largely. To address this, we did a logarithmic transformation of the
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Figure 4.2: NDCG based on the topN recommendations and RMSE based on the number of training epochs
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Figure 4.3: Relationship between epistemic uncertainty threshold and observed error for four datasets.

count data to make the network’s inputs have a reasonable range.

Our main objective is to show the type of interactions matters more than the number of interactions that

users have. To demonstrate this, we estimate uncertainty considering the diversity in genres of each user in

the Movielens 1M dataset. We initially find the top 10 highest epistemic and lowest epistemic users. Based

on their preference of genres, we group users in two groups: group 1 with high drama and low romance and

else group 2. Then, we compute the corresponding RMSE loss and both aleatoric and epistemic uncertainty

as shown in Table 4.4.

Table 4.4: Uncertainty for group of users with different genres

User Group Users RMSE Epistemic Aleatoric
Group 1 1734 1.0139 0.4447 0.1711

Group 2 265 1.0465 0.4651 0.1713

We observed that users with low epistemic uncertainty are most likely to watch movies that belong to the
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drama genre, and less likely to watch romance movies. Likewise, users with higher epistemic uncertainty

like both genres. To extend our analysis, we further analyze the Book Crossing dataset in which we group

users based on their interactions with books published by popular authors. We follow a similar approach

applied in Movielens dataset and group users based on low epistemic with popular authors as a group 1 and

rest group 2. Table 4.5 shows that popularity bias exists in the recommender systems and can be captured

by this proposed model.

Table 4.5: Uncertainty for group of users with popular authors.

User Group Users RMSE Epistemic Aleatoric
Group 1 6 3.1255 0.8377 0.4066

Group 2 255 3.7406 0.9111 0.4092

Intuitively, the proposed model utilizes epistemic uncertainty to show the popularity bias. Our model

not only provides model uncertainty via epistemic uncertainty but also provides data uncertainty through

aleatoric uncertainty. From Tables 4.4 and 4.5, for each dataset their user representation doesn’t varies

much. This empirically supports the way we represent our user and item embeddings. We represent each

user and item embedding just doing one hot encoding utilizing unique IDs of user and item, and hence they

have the same level of noise in representation.
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Figure 4.4: Genre count and rating count for the items selected in the support set with size 10 and RMSE

for the query set

4.5.6 Uncertainty-Aware Recommendations

In this set of experiments, we show how the model effectively leverages predicted uncertainty to recommend

the most informative items rather than solely based on the predicted ratings. For this, we randomly chose a

test user (ID: 41) from the Movielens-1M dataset. This user has a total of 25 interactions, and we randomly

choose 20 interactions that serve as the candidate pool to form the support set. The remaining 5 interactions
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are used for a query set. We perform uncertainty-based recommendation to tackle cold-start problem where

we recommend a few items from the pool according to their epistemic uncertainty (instead of predicted

ratings). By collecting only limited interaction results, we expect the model to learn the most from the

cold-start user (by reducing the epistemic uncertainty) to provide more accurate recommendation in the

future. To demonstrate that the uncertainty-based recommendation can lead to better future predictions,

we also employ the classical rating based recommendation to select same number of highest rated items.

After the adaptation using the selected support set, both methods will be evaluated on the same query set for

comparison.

We first show total counts of genres and ratings by the left and middle plots of Figure 4.4. From those plots,

we can clearly see that the epistemic method selects more diverse genres with more count in others genres.

It also selects items with relatively lower ratings than the rating-based method. Table 4.6 shows important

items selected by both methods: most of the rating-based movies belong to adventure and action genres,

whereas the epistemic method selects more diverse genres. This suggests that rating based recommendation

seems more specific to the adventure movies, whereas epistemic method selects more diverse genres, includ-

ing drama, adventure, and a higher number of others genres. Here, the support set has 15 different genres

and each movie can have multiple genres. We showed 5 major genres in Figure 4.4 and remaining genres

as an accumulated count in the others genre. This clearly shows that uncertainty based model focuses on

more informative items so that model becomes more confident after observing those diverse but important

interactions.

We further investigate how interactions selected based on epistemic uncertainty help to provide a better

future recommendation. For this, we make fast adaptation of our meta-train model with those few interac-

tions resulted from the recommended items and then perform testing on the query set. We start by adding 5

interactions and continue to add 5 in each round until all the items in the candidate pools are used.

As we can see from the right plot of Figure 4.4, after adding 10 interactions based on the recommended

items, the epistemic method achieves almost optimal performance on the query set. In contrast, the rat-

ing based method requires more than 15 interactions to achieve similar performance on the query set. In

Table 4.7, we report the movie names of the top-3 recommended items for both methods on the query set

along with the ground-truth. It clearly shows that the epistemic uncertainty-based method recommends more

accurate items, which matches movies from highly rated ground truth ones.

The above experiments clearly show that using limited but highly informative items for recommendation,

we could more accurately capture the latent preference users that is instrumental for cold-start recommen-

dations.



CHAPTER 4. META EVIDENTIAL LEARNING FOR SPARSE USER INTERACTIONS 48

Table 4.6: Important Movies for user 41.

Method Important Items (Movies)
Rating [’Star Wars: Episode I - The Phantom Menace’, ’Star

Wars: Episode IV - A New Hope’, ’Anastasia’, ’Star Wars:

Episode V - The Empire Strikes Back’, ’Arachnophobia’]

Epistemic [’I Still Know What You Did Last Summer’, ’Star Wars:

Episode IV - A New Hope’, ’Arachnophobia’,’Gladiator’,

’Mystery Science Theater 3000: The Movie genre’]

Table 4.7: Top 3 recommended items from random and epistemic methods

Method Recommended Movies
Rating [’The Deep End of the Ocean’, ’A Life Less Ordinary’,

’Braveheart’]

Epistemic [’Titanic’, ’A Life Less Ordinary’, ’The Deep End of the

Ocean’]

Ground-Truth [ ’Titanic’, ’Star Wars: Episode VI - Return of the Jedi’,

’A Life Less Ordinary’]

4.5.7 Hyperparameter Tuning

MetaEDL exploits evidential regularizer loss (LR) with regularization constant (λ1=1e-3) which is cross

validated from {0, 1e-4, 1e-3, 1e-2, 1e-1, 1}. Similarly, we cross validated coefficient of the L2 regularizer

λ2=1e-4, learning rates ξ=1e-4, and η=1e-3 and embedding dimension d=64.

Analysis of Evedential Regularization Parameter

One of the key hyperparameters of the MetaEDL model is the regularizer coefficient (λ1) for evidential

learning. We cross-validated this parameter with empirical results of model RMSE loss for different λ1
values on two datasets (other datasets are omitted due to limited space) as shown in Table C.2.

Analysis of Embedding Dimension

We generate user and item embeddings using the embedding module. We perform grid search for embedding

dimension (d) of the user and item in MetaEDL for three datasets as shown in Figure 4.5. The Book Crossing

dataset follows a similar trend, and we didn’t incorporate it into the figure due to its higher RMSE range.
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Table 4.8: Average RMSE loss with different regularizer values

Regularizer MovieLens 1M Book Crossing
(λ1) RMSE RMSE

0 1.0138±0.02 3.7132±0.04
1e-4 1.0131±0.02 3.7082±0.04
1e-3 1.0114±0.02 3.7026±0.04
1e-2 1.0137±0.02 3.7103±0.04
1e-1 1.0242±0.02 3.7210±0.04

1 1.0248±0.02 3.7321±0.04
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Figure 4.5: Impact of item embedding size

4.6 Conclusions

In summary, we present a novel meta evidential learning recommendation framework that integrates evi-

dential learning with a meta-learning approach to provide uncertainty-aware cold-start recommendations.

The proposed framework handles the user cold-start problem by adopting global knowledge of similar users

from their interaction information and leveraging evidential learning for efficient posterior inference to fur-

ther quantify the model confidence. Experimental results on four real-world datasets and comparison with

the state-of-the-art competitive models clearly demonstrate the effectiveness of the proposed model.



Chapter 5

Meta Evidential Reinforcement Learning
for Sparse User Interactions

In this chapter, we propose two evidential reinforcement learning approaches for sparse user interactions.

The goal of both techniques is to address the learning limitations present in the existing techniques. Our first

approach tries to address the challenging problem of balancing exploitation (with high predicted ratings)

and exploration (with evidence-based uncertainty) strategies for effective recommendations. We formulate

an evidential RL framework that augments the maximum reward RL objective with evidence-based uncer-

tainty maximization. More importantly, the evidence-based uncertainty formulation substantially improves

exploration and robustness by acquiring diverse behaviors that are indicative of a user’s long-term interest.

Our second approach leverages evidential reinforced attention to uniquely discover the user behavior pat-

terns from sparse datasets collected via interactive systems. Further, evidential reinforced attentions (ERA)

perform evidence-aware exploration and attentively selects and builds sub-spatiotemporal sets. In particu-

lar, we introduce a uniquely designed reward function to encourage attention to the unknown but potentially

important behavioral sub-sequences. The reward simultaneously considers both the prediction accuracy for

exploitation and evidence-based uncertainty estimation for unknown behavior exploration. Inspired by the

learning to learn setting we formulate a task in few-shot learning, and design the training objective as a

sub-trajectory classification problem.

50
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5.1 Evidential Reinforcement Learning for Dynamic Recommendation

Recommender systems (RS) have been widely used for providing personalized recommendations in diverse

fields such as media, entertainment, and e-commerce by effectively improving user experience [73, 75, 87].

Most existing RS methods consider recommendation as a static process, and therefore they cannot consider

users’ evolving preferences. Some efforts have been devoted to capture users’ evolving preferences by shift-

ing the user latent preference over time [11,27,45]. Similarly, sequential recommendation methods [39,78]

attempt to incorporate users’ dynamic behavior by leveraging previously interacted items. However, both

the abovementioned static and dynamic recommendation methods primarily focus on maximizing the imme-

diate (short-term) reward when making recommendations. As a result, they fail to take into account whether

these recommended items will lead to long-term returns in the future, which is essential to maintain a sta-

ble user base for the system in the long run. further, they primarily rely on standard exploration strategies

(ϵ-greedy), which are less effective in a large item space with sparse reward signals given the limited inter-

actions for most users. Therefore, they may not be able to learn the optimal policy that captures effective

user preferences and achieves the maximum expected reward in the long run.

To address the above key challenges, we conduct novel deep evidential reinforcement learning (DERL) that

utilizes a balanced exploitation and exploration strategy for effective recommendations. We formulate an

evidential RL framework that augments the maximum reward RL objective with evidence-based uncertainty

maximization. More importantly, the evidence-based uncertainty formulation substantially improves explo-

ration and robustness by acquiring diverse behaviors that are indicative of a user’s long-term interest. The

proposed DERL seamlessly integrates two major components: a customized RNN and an Evidential Actor-

Critic (EAC) module. The former primarily focuses on generating the current state of the environment by

aggregating the previous state, current items captured by a sliding window, and future recommended items

from the RL agent. This provides effective means of dynamic state representation for better future recom-

mendations. Meanwhile, the EAC module leverages evidence-based uncertainty to effectively explore the

item space to identify items that potentially align with the user’s long-term interest. It encourages learning

the optimal policy by maximizing a novel conservative evidential Q-value to achieve a maximum long-term

cumulative reward. The main contribution are:

• A novel recommendation model that integrates reinforcement learning with evidential learning to provide

uncertainty-aware recommendations.

• Evidence-based uncertainty maximization to enable stability and effective exploration.

• An off-policy formulation to effectively promote the reuse of previously collected data while stabilizing

model training, which is important to address data scarcity in recommender systems.

• Seamless integration of a customized RNN, an actor-critic network, and an evidential network to provide
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an end-to-end integrated training process.

We conduct extensive experiments over four real-world datasets and compare with state-of-the-art baselines

to demonstrate the effectiveness of the proposed model.

5.1.1 Related Work

Static models. Matrix Factorization (MF) leverages user and item latent factors to infer user prefer-

ences [22,44,46]. MF is further extended with Bayesian Personalized Ranking (BPR) [66] and Factorization

Machine (FM) [65]. Recently, deep learning-based recommender systems [13, 28] have achieved impres-

sive performance. DeepFM [28] integrates traditional FM and deep learning to learn low- and high-order

feature interactions. Both wide and deep networks are jointly trained in [13] for better memorization and

generalization. In graph-based methods [9], users and items are represented as a bipartite graph and links

are predicted to provide recommendations. Similarly, Neural Graph Collaborative Filtering [84] explicitly

encodes the collaborative signal via high-order connectivities in the user-item bipartite graph via embedding

propagation.

Dynamic and sequential models. Dynamic model shifts latent user preference over time to incorporate

temporal information. TimeSVD++ [45] considers time-specific factors, which uses additive bias to model

user and item related temporal changes. Gaussian state-space models have been used to introduce time-

evolving factors with a one-way Kalman filter [27]. To process implicit data, Sahoo et al. extended the

hidden Markov model [67], and Charlin et al. [11] further augmented it with the Poisson emission. However,

these models capture user evolving preference, and they are less aware of future interactions and provide

recommendations based on fixed strategies. Similarly, sequential models utilize users’ historical interactions

to capture users’ preferences over time. Tang et al. utilized a CNN architecture to capture union level and

point level contributions [78]. Also, Kang et al. leveraged transformer-based user representation to better

capture their interest [39] and Sun et al. utilized bidirectional encoder for sequential recommendation [74].

Sequential models neglect long-term users’ preferences. The proposed DERL model aims to fill this critical

gap by performing evidence guided exploration and maximizing total expected reward.

RL-based models. RL-based RS models aim to learn an effective policy to maximize the total expected

reward in the long run. The on-policy learning with contextual bandit [50] and Markov Decision Process

(MDP) [95] exploits by interacting with real customers in an online environment. A collaborative contextual

bandit algorithm called CoLin [85] utilizes graph structure in a collaborative manner. On the other hand,

off-policy utilizes Monte Carlo (MC) and temporal-difference (TD) methods to achieve stable and efficient
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learning with users’ history [18]. Similarly, model-based RL models user-agent interaction via a generative

adversarial network [5]. Pseudo Dyna-Q [98] further integrates both direct and indirect RL approaches

in a single unified framework without requiring real customer interactions. However, the above methods

utilize random exploration strategies, which are less effective at capturing users’ long-term preferences. In

contrast, our DERL utilizes evidence-based uncertainty to systematically explore the item space to maximize

the long-term reward.

5.1.2 Preliminaries

We first introduce the standard RS setup in RL and provide an overview of the evidential theory.

Recommendation Formulation with RL. We formulate recommendation tasks in an RL setting, where

an RL agent interacts with the environment (users and items) to recommend the next items to a user over

time in a sequential order to maximize the cumulative reward. We design this problem as the MDP, which

includes a sequence of states, actions, and rewards. More formally, a tuple (S,A, p, r) is defined as:

• State space (S): A state st = RNN(·|st−1,ut) ∈ S is generated by a customized RNN that utilizes

previous state st−1 and current user ut embedding which is generated from the concatenation of M

recently interacted items provided by a sliding window (see details later) and an RL-agent.

• Action space (A): An action at ∈ A is represented as a continuous parameter vector that recommends

top-N items for a user based on the current state st at time t.

• Transition probability (p): The transition probability p(st+1|st,at) quantifies the probability from state

st to st+1 with an action at.

• Reward (r): The environment provides an immediate reward as a feedback based on items recommended

(actions at) to the user in state st.

Uncertainty and the Evidential Theory. Theory of evidence is a generalization of Bayesian theory to

subjective probabilities [15]. We briefly introduce subjective logic (SL) [38] and discuss uncertainty esti-

mation based on SL. SL is a probabilistic logic that is built upon probability theory and belief theory. It

represents uncertainty by introducing vacuity of evidence in its opinion, which is a multinomial random

variable y in domain Y = {1, ...,K}. This opinion can be equivalently represented by a K-dimensional

Dirichlet distribution Dir(p|α) where α is a strength over K classes and p = (p1, ..., pK)⊤ governs a cate-

gorical distribution over Y. The term evidence is the measure of the number of supportive observations from

data for each class. It has a fixed relationship with the concentration parameter α given a non-informative

prior. Let ek be the evidence for a class k. SL measures different types of second-order uncertainty through
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evidences, including vacuity, dissonance, and a few others [37]. In particular, vacuity corresponds to the

uncertainty mass of a subjective opinion ω:

vac(ω) = U =
K

S
, S =

K∑
k=1

(ek + 1) (5.1)

Since vacuity is defined by a lack of evidence in the data sample, it provides a natural way to facilitate the

exploration of an RL agent, which will be detailed next.

5.1.3 Proposed Model

The proposed model is shown in Figure 5.2. The model includes a recurrent neural network (RNN) to

maintain dynamic state space, and an evidential-actor-critic (EAC) module to explore the item space by

introducing the evidence-based uncertainty (vacuity) into a new evidential RL setting.
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Figure 5.1: Overview of the proposed framework
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5.1.4 Environment Setup

The environment consists of user-interacted items (an item pool I) from this user’s interaction history Hu

, embedding matrix E to generate the user embedding, the RNN for dynamic state generation, and an evi-

dential reward process (ERP) that specifies an incentive mechanism to each action of the agent. Our reward

process encourages a balance between exploitation (based on predicted ratings) and exploration (based on

evidence-based uncertainty) when making recommendations to users. In particular, a recommended list

consists of a limited number of items. The proposed ERP ranks candidate items according to an evidential

score that integrates the predicted rating and evidence-based uncertainty:

scoreu,i = r̂atingu,i + λUπ(i|st,at) (5.2)

where λ balances the rating and the uncertainty, and r̂atingu,i is the predicted rating. Given K possible

rating classes, the evidence network (introduced later in this section) outputs an evidence vector ei =

(ei1, ..., eiK)⊤ for each item i. This will allow us to evaluate r̂atingu,i as
∑K

k=1 pik × k where pik is rating

probability given by (5.9). Meanwhile, uncertainty Uπ(i|st,at) for item i can be evaluated through (5.1).

Based on the evidential score, an RL agent will choose the top-N items to form a list Nu and recommend

them to the user. As feedback to the agent, the user provides the actual rating for each recommended item.

Consequently, the evidential reward is

reπ(st,at) =
1

N

(∑
i∈Nu

(ratingu,i − τ) + λUπ(i|st,at)

)
(5.3)

where ratingu,i is the user assigned ground truth rating and τ is a threshold chosen based on the rating

mechanism (τ = 3 for a 1 − 5 rating system). Given the evidential reward, we introduce an evidential

Q-value, which can be computed by repeatedly applying the Bellman operator (Bπ):

BπQe(st,at)r
e
π(st,at) + γEst+1∼π[V (st+1)] (5.4)

where V (st) = Eat∼π[Q
e(st,at)].

The evidential Q-value will be used for the update of the EAC module, which is introduced later in this

section.

5.1.5 The Customized RNN for Latent State Generation

A specially designed RNN is used to maintain the state space of a dynamic RS environment. In particular,

a state st is generated by aggregating three pieces of information: the previous state st−1, items interacted

by the user in the the current step, and newly recommended items. Here, item is also an embedding vector
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which encodes item entity information. By aggregating all these information, the current state can evolve

from the previous state by effectively capturing the past preference and future predicted preference of the

user. In particular, newly interacted items are extracted from the user’s interaction historyHu using a sliding

window and the currently recommended items are obtained by invoking the at−1. Assume that a total M

items are obtained with a half from the sliding window and the rest from the action. These M items then go

through an embedding matrix to produce a user embedding ut for time step t. Then, st is formed by

st = RNN(st−1,ut) (5.5)

To train the customized RNN, we collect additional data tuples [st−1,ut] into the reply buffer. We then

sample batches from the buffer and send ut and st−1 to the RNN module that generates the current state st.

After that, we send st to action network that samples at from the action distribution. Action at will then go

through the evidence network to predict the evidence vector for each candidate item. Finally, we compute

evidential loss JEvi as defined in (5.10) and conduct backpropagation with respect to RNN parameter ω:

∇ωJRNN(ω) = ∇ωJEvi(ψ) (5.6)

In this way, the computing graph is maintained even in the offline setting and the RNN can be trained as in

the standard supervised setting.

5.1.6 Evidential Actor Critic (EAC)

Training goal. A standard RL model maximizes the expected sum of reward. We consider a generalized

evidential reward function reπ defined in (5.3), which augments the standard RL objective with the average

evidence-based uncertainty of the recommended items to encourage exploration of the item space. We

achieve our training goal by updating the evidential actor network that finds the optimal policy to maximize

the expected cumulative evidential reward as:

Jπ =
T∑
t=0

E(st,at)∼D(r
e
π(st,at)) (5.7)

where D is the distribution of (st,at) from the data or the replay buffer and T is the total time steps in the

episode. A novel benefit of the new objective is to allow the agent to interact with more informative items

for more effective exploration of a large item space. EAC consists of three key networks: action network,

evidence network, and critic network, which will be detailed next.

Action network. The action network (or policy network) utilizes the current state st from the offline replay

buffer and outputs a policy distribution π(.|st), which is modeled as a Gaussian. From this distribution, we
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sample an action at that is used in the evidence and the critic networks to provide recommendations and

direct the policy update, respectively. For action network update, we use backward update signals from the

critic network:

∇ϕJπ(ϕ) = (−∇atQ
e(st,at))×∇ϕπ(·|st, ϕ) (5.8)

This gradient extends DDPG style policy update [53] by utilizing the chain rule to the Q-network that

updates the action network.

Evidence network. The evidence network predicts a Dirichlet distribution of class probabilities, which

can be considered as an evidence collection process. The learned evidence is informative to quantify the

predictive uncertainty of recommended items. The evidence network takes action at from replay buffer and

item pool I to provide class level evidence. Then the probability assigning rating k is

pik =
(eik + 1)

Si
(5.9)

where eik is the evidence collected for rating k for item i. To train the evidence network, we define a standard

evidential loss by utilizing the MSE loss between rating class probability pik and the one-hot ground truth

label yi, in which yik = 1 if k is the correct rating, otherwise yik = 0:

JEvi(ψ) =

K∑
k=1

(yik − pik)2 +
pik(1− pik)
Si + 1

(5.10)

We update the network by backpropagating the evidential loss JEvi(ψ) with its network parameters ψ.

Critic network. The critic network is designed to approximate evidential Q value utilizing the current

state st and action at in a fully connected neural network Qθ(st,at). This Q-value judges whether the

agent generated actions matches the current state st requirements. We derived an update formulation for the

critic network following the double DQN [31] method that utilizes two critic networks to stabilize training

process, achieve faster convergence, and provide better Q-value as:

Q̃e(st,at) = Est+1∼D,at+1∼π[r
e
π(st,at) + γ ×min{Qe(st+1,at+1), Q̂

e(st+1,at+1)}] (5.11)

where Q̂(st+1,at+1) is a target network, which is updated slowly to stabilize the training process.

Now the evidential Q-function parameters can be trained by minimizing the temporal difference (TD) error:

JQ(θ) = E(st,at,st+1,at+1,reπ(st,at))∼D[
1

2
(Qe(st,at)− Q̃e(st,at))2] (5.12)

where D is the distribution of (st,at, st+1,at+1, r
e
π(st,at)) in offline buffer.

Further, Q-network is optimized with stochastic gradient decent.
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5.1.7 Derivation of Evidential Policy Iteration

We derive evidential policy iteration as a general method for learning optimal uncertainty policies by al-

ternating between evidential policy evaluation and evidential policy improvement in the maximum uncer-

tainty framework. We compute the value of a policy π according to the maximum uncertainty objective

of Eq. (5.32). DERL expresses policy as a Gaussian policy with mean and covariance of an action neural

network. With the above settings, we show the evidential policy iteration can achieve the optimal policy at

convergence.

Lemma 2 (Evidential Policy Evaluation) Given the Bellman operatorBπ in Eq. (5.4) andQn+1 = BπQn,

the Q-value will converge to the evidential Q-value of policy π as n→∞.

Proof Given the evidential reward defined as reπ(st,at) = 1
N

(∑
i∈Nu

(ratingu,i − τ) + λUπ(i|st,at)
)

the

update rule for evidential Q-value can be written as:

Qe(st,at) = Eπ
∞∑
t′=t

γt
′
reπ(st′ ,at′) = reπ(st,at) + γEst+1,at+1 [Q

e(st+1,at+1)] (5.13)

Then based on the evaluation convergence rule [76] with finite action space, it is guaranteed that the Q-value

will converge to the evidential Q-value of policy π.

Lemma 3 (Evidential Policy Improvement) Given a new policy πnew that is updated via Eq (5.8), then

Qeπnew
(st,at) ≥ Qeπold(st,at) for all (st,at).

Proof The policy can be updated towards the new Q-value function. Consider the updated policy πnew as

the optimizer of the maximization problem.

πnew = argmax
π′

Jπ(ϕ) = argmax
π′

Est∼D,at∼π′[Q
e
π′(st,at)] (5.14)

Denote the old policy as πold. Using the update rule specified in Eq 5.8 with a sufficiently small step size,

we get an updated policy πnew that satisfies

Eat∼πnew [Q
e
πold

(st,at)] ≥ Eat∼πold [Q
e
πold

(st,at)] (5.15)
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Given Equation B.3, we have the following inequality

Qeπold(st,at) ≤r
e(st,at) + γEst+1,at+1∼πnew [Q

e
πold

(st+1,at+1)]

≤re(st,at) + γEst+1,at+1∼πnew [r
e(st+1,at+1)]

+ Est+2,at+2∼πnew [Q
e
πold

(st+2,at+2)]

...

=Qeπnew
(st,at)

(5.16)

where re(st,at) is a evidential reward in step t. Therefore, we show that the new policy πnew ensures

Qeπnew
(st,at) ≥ Qeπold(st,at) for all (st,at).

Theorem 4 (Evidential Policy Iteration) Alternating between evidential policy evaluation and evidential

policy improvement for any policy π ∈ Π converges to an optimum evidential policy π∗ such thatQπ
∗
(st,at) ≥

Qeπ(st,at) for all (st,at).

Proof Let πi denote the policy at iteration i. We already show that the sequenceQeπi(st,at) is monotonically

increasing. Since Qeπ(st,at) is bounded above, the sequence converges to some π∗. At convergence, it must

be the case that Jπ∗(π∗(.|st)) ≤ Jπ∗(π(.|st)) for π ̸= π∗. Based on Lamma 11, we have Qeπ∗(st,at) >

Qeπ(st,at) for all (st,at). In other words, the evidence value of any other policy π is lower than that of the

converged policy π∗. Therefore, it guarantees convergency to an optimal policy π∗ such that:

Qeπ∗(st,at) ≥ Qeπ(st,at) (5.17)

5.1.8 Experiments

We conduct extensive experiments on four real-world datasets that contain explicit ratings: Movielens-1M,

Movielens-100K, Netflix, and Yahoo! Music. For baseline comparisons, we use dynamic models, sequential

models, and reinforcement learning-based models. We consider each user an episode (to maintain the learn-

ing to learn framework) for the RL setting and split users into 70% as training users and 30% as test users.

For each user, we select the firstM = 10 interacted items to represent an initial state s0. In the next state, we

utilize the previous state representation and concatenate five items embedding from the sliding window and

other five items embedding from RL agent to generate current state st by passing through the RNN module.

Evaluation metrics. We use two standard metrics to measure the recommendation performance. We also

use test rewards for the RL-based methods.
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• Precision@N: It is the fraction of the top-N items recommended in each step of the episode that are

positive (rating > τ ) to the user. We compute the average of all test users as the final precision.

• nDCG@N: Normalized Discounted Cumulative Gain (nDCG) measures ranking quality, considering the

relevant items within the top-N of the ranking list in each step of the RL episode.

• Test Reward: It measures average reward considering rewards of top-N recommended items in each step

for the RL episode.

5.1.9 Recommendation Performance Comparison

Table 6.2 summarizes the recommendation performance from all models. The proposed model benefits

from both the RNN module and EAC module so that it provides better results in all four datasets on both

standard metrics. The dynamic and sequential models achieve less ideal performance due to their focus on

short-term user interest and inability to provide long-run or future preference. RL methods have shown a

clear advantage due to their focus on maximizing expected long-term rewards. Thanks to the evidence-based

uncertainty exploration, DERL achieves the best performance among all DL based models.

Table 5.1: Performance of Recommendation (average P@N and nDCG@N)

Category Model MovieLens-1M MovieLens-100K Netflix Yahoo! Music
P@5 nDCG@5 P@5 nDCG@5 P@5 nDCG@5 P@5 nDCG@5

Dynamic MF timeSVD++ 0.5341 0.4328 0.5034 0.4145 0.5234 0.4220 0.5267 0.4190

Sequential CASER 0.5762 0.4613 0.5434 0.4428 0.5633 0.4542 0.5745 0.4365

ϵ-greedy 0.5977 0.4834 0.5580 0.4556 0.5850 0.4765 0.5909 0.4812

Proposed DERL 0.6313 0.5365 0.6379 0.5386 0.6336 0.5372 0.6232 0.5330

5.1.10 Conclusion

In this section, we propose a novel deep evidential reinforcement learning framework for dynamic recom-

mendations. The proposed DERL framework learns a more effective recommendation policy by integrating

both the expected reward and evidence-based uncertainty. DERL integrates a customized RNN to gener-

ate the current state that accurately captures user interest and an evidential-actor-critic module to perform

evidence-based exploration to optimize policy by improving an evidential Q-value. We theoretically prove

the convergence behavior of the proposed evidential policy integration strategy. Experimental results on

real-world data and comparison with the state-of-the-art competitive models demonstrate the effectiveness

of the proposed model.
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5.2 Evidential Reinforced Attentions for Users Unique Behavioral Pattern
Discovery

Machine learning-driven human behavior analysis is gaining attention in behavioral/mental healthcare, due

to its potential to identify behavioral patterns that cannot be recognized by traditional assessments. Further,

collections of data may be incomplete and noisy, and thus lead to a very sparse dataset. In addition, health

research requires a higher level of interpretability on the analytical results as well as reasonable general-

ization with few examples. This makes current existing models (deep neural networks) inappropriate since

they lack interpretability due to complex architecture and also required extremely large datasets to train the

model.

To address these challenges, we propose a novel evidential reinforced attention that attentively selects and

build sub-spatiotemporal sets. In particular, we introduce a uniquely designed reward function to encourage

attention to the unknown but potentially important behavioral sub-sequences we called them as behavioral

patterns. The reward simultaneously considers both the prediction accuracy for exploitation and evidence-

based uncertainty estimation for unknown behavior exploration. Inspired by the task formulation in few-

shot learning works, we design the training objective as a sub-trajectory classification problem. Evidence

reinforce attention takes sub-trajectory data for training rather than the entire trajectory and thus is capable

of processing incomplete sequential data, which is common for behavioral studies of children. As a result,

informative behavioral patterns can be effectively identified (with noisy ones excluded) to ensure good

interpretability along with improved predictive accuracy. We summarize our main contributions below:

• a novel end-to-end ERA model to analyze sparse, dynamic, and noisy behavioral data.

• evidential reinforced attentions to identify behavioral patterns that are both discriminative and highly

interpretable.

• use of learning to learn task formulation to achieve accurate predictions with limited sparse information

from incomplete sequences of behavioral data, making it more realistic and effective to support real-world

behavioral studies.

5.2.1 Related Work

Machine learning driven digital behavioral biomarker discovery. In recent years, there has been a grow-

ing interest in identifying data-driven biomarkers leveraging machine learning techniques [4, 8, 48]. These

biomarkers have unique advantages over traditional biomarkers such as analysis at both the individual and

population level, continuous measures, and passive monitoring [4]. Lee et al. [48] leverage various machine
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learning approaches with putative biomarkers as an imbalance between sympathetic and parasympathetic

nervous activity to predict cognitive fatigue. Further, establishing robust neuroimaging biomarkers using

structural magnetic resonance imaging (MRI) with traditional machine learning mechanisms are used to

diagnose and tailor treatment for ASD patients [62]. In contrast to these approaches, our model is uniquely

designed to capture users’ signature behavioral patterns to better differentiate different user groups.

Reinforcement learning. RL has been increasingly used to solve computer vision and natural language

processing problems. For example, [60] applies reinforced visual attention to recognize important image

patches for digit classification. [64] introduces a neural network model with novel intra-attention and a new

training method that combines standard supervised word prediction and RL. In medical assessment, [92]

proposes an RL-based synthetic sample selection method that learns to choose synthetic images containing

reliable and informative features.

Our work designs a new reward function that balances classification accuracy and evidence-based explo-

ration. Instead of performing relatively simple synthetic sample selection, we provide novel ways to achieve

evidential reinforced attentions to handle complex and sparse sequential data.

5.2.2 Preliminaries

Data collection. The data used for this article were collected using multiple virtual reality (VR) games [42].

While all gaming data were collected using a similar setup, where participants sat in front of a screen-based

VR, the contents were quite different, including 2D and 3D Maze Painting, Word Scanning, and

Coloring following a template.

Evidential learning and uncertainty. Evidential learning is an evidence acquisition process where every

training sample adds support to learn higher order evidential distribution [3, 70]. Given the target yn, is

drawn i.i.d. from a Gaussian distribution with unknown mean and variance (µ, σ2) the model evidence can

be introduced by further placing a prior distribution on (µ, σ2). Leveraging Gaussian prior on the unknown

mean and the Inverse-Gamma prior on the unknown variance, the posterior of (µ, σ2) is the Normal-Inverse-

Gamma (NIG) distribution.

5.2.3 Proposed Model

We aim to develop a model F that can accurately predict, and identify the behavioral patterns from multi-

modal sequential data. In this work, we focus on behavioral patterns that can be used to effectively distin-
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guish ASD and TD children given the recorded multimodal behavioral observations (gaze and touch) during

the game-play:

F : {gn, tn}Ne
n=1 → y; gn ∈ RMg , tn ∈ RMt (5.18)

where y ∈ [0, 1], T = {gn, tn}Ne
n=1 represents the entire data within an episode (trajectory). In this trajec-

tory, (gn, tn) represents nth instance and Ne is the number of gaze and touch data points in the episode.

Each gaze feature is Mg dimensional, each touch feature is Mt dimensional, y = 1 represents an ASD user,

and y = 0 is a TD user. The length of trajectory Ne varies across the users and episodes.

Inspired by the task formulation in few-shot learning [24, 26], we design the training objective as a sub-

trajectory classification problem. Specifically, we randomly sample a sub-trajectory T s = {gn, tn}k+Ns
n=k

of length Ns (∀k ∈ [1, Ne − Ns]) from the trajectory T (ignoring padding 3p for simplicity) and train the

model to accurately identify the user group based on the limited sub-trajectory information (F : T s → y).

This addresses the limited data problem, enables the model to train on a large number of training tasks, and

encourages the model to capture multiple identifying patterns of users. Moreover, this sub-trajectory-based

classification is likely to be more realistic and representative in real-world settings especially involving

children.

Evidential Reinforced Attentions (ERA). As shown in Figure 5.2, we first construct the current state

embedding (et) by concatenating the embedding network generated embedding d and the RL-agent selected

attentive subset embedding dtattn:

et = concat(d,dtattn) (5.19)

We leverage a state encoder (SE), which takes the current state embedding (et) and previous state (st−1) to

generate current state-space (st) as:

st = SE(et, st−1; θse) (5.20)

We develop an evidential policy network (πθe) parameterized by θe, which takes the st as an input and output

evidential distribution parameters (γ, ν, α, β). Then, the likelihood of choosing an action, at is obtained by

marginalizing over the prior parameters (µ, σ2):

p(at|γ, ν, α, β) =
∫
σ2

∫
µ
p(at|µ, σ2)p(µ, σ2|γ, ν, α, β)dµdσ2

= St (at; γ, β(1 + ν)/(να), 2α)

(5.21)

where St(at; γ, β(1 + ν)/(να), 2α) is the Student-t distribution with location, scale, and degrees of freedom

respectively, which is achieved by placing a NIG evidential prior on a Gaussian likelihood.
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Figure 5.2: Overview of the proposed framework

From this Student-t distribution, we sample an action at that provides the attentive location in temporal-set

and directs the policy update, respectively. It should be noted that our action is a continuous vector of length

Na representing all the starting position of an attention window.

Specifically, for each attention akt (k ∈ [1, Na]), we apply a sigmoid function (σ) and multiply it with length

of (Ns −W ), where W represents the size of attention window. We then generate the attention starting

index using a floor function:

idxkt = ⌊σ(akt ) · (Ns −W )⌋ (5.22)

We construct an all-zero mask Mt of length Ns and then flip the entries indexing in [idxkt , idx
k
t +W ], ∀k ∈

[1, Na] to 1. The RL selected attentive subset embedding in time step t dtattn is then obtained by Mt ·
concat(Φt(hi),Φs(hi)), where · symbolizes dot product function.

We design a novel evidential reward function that incorporates standard RL reward computed with predicted

classification accuracy and epistemic uncertainty that captures policy network’s uncertainty while providing

an action:

re(st,at) = r(st,at) + λepistemic(πθe(·|st))

r(st,at) = 1{pT = ys} (5.23)

where r(st,at) is a predictive reward representing the classification accuracy at last time step T , pT is the

last time step’s predicted result while ys is the user category label corresponding to sub trajectory T s, and

epistemic(πθe(·|st)) = Var[µ] = β
ν(α−1) is the epistemic uncertainty.
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Given the evidential reward, we introduce an epistemic value function, V e(st), which can be computed by

repeatedly applying the Bellman operator (Bπ):

BπV e(st)r
e(st,at) + γRLEst+1∼π[V (st+1)] (5.24)

The detailed workflow of the ERA module is presented in Figure 5.2. The module takes st as input to the

evidential policy network that generates evidential distribution parameters. We further marginalize those

parameters and achieve a predictive student-t distribution and from which we sample an action at. We

generate attention masks based on the provided action and then select attentive gaze and touch embeddings

and compute evidential reward simultaneously.

5.2.4 Derivation of Epistemic Policy Iteration

We derive epistemic policy iteration to achieve optimal policy by alternating between epistemic policy eval-

uation and epistemic policy improvement.

Lemma 5 (Epistemic Policy Evaluation) Given the Bellman operator Bπ in (5.24) and V n+1 = BπV n,

the value will converge to the epistemic value of policy π as n→∞.

Proof Given the evidential reward defined as re(st) = rπ(st) + λepistemicπ(.|st)) the update rule for

epistemic value can be written as:

V e(st) = Eπ
∞∑
t′=t

γt
′
re(st′) = re(st) + γEst+1 [V

e(st+1)] (5.25)

Following the convergence rule [76] with finite action space, it is guaranteed that the value will converge to

the epistemic value of policy π.

Lemma 6 (Epistemic Policy Improvement) Given a new policy πnew that is updated via (5.33), then

V e
πnew

(st) ≥ V e
πold

st for all st.

Proof The policy can be updated towards the new value function. Consider the updated policy πnew as the

optimizer of the maximization problem.

πnew = argmax
π′

Jπ(ϕ) = argmax
π′

Est [V
e
π′(st)] (5.26)
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Denote the old policy as πold. Using the update rule specified in Eq (5.33) with a sufficiently small step size,

we get an updated policy πnew that satisfies

Eat∼πnew [V
e
πold

(st)] ≥ Eat∼πold [V
e
πold

(st) (5.27)

Given Eq (B.3), we have the following inequality

V e
πold

(st) ≤re(st) + γEst+1,at+1∼πnew [V
e
πold

(st+1)]

≤re(st) + γEst+1,at+1∼πnew [r
e(st+1)]

+ Est+2,at+2∼πnew [V
e
πold

(st+2)]

...

=V e
πnew

(st)

(5.28)

where re(st) is a evidential reward in step t. Therefore, we show that the new policy πnew ensures

V e
πnew

(st) ≥ V e
πold

(st) for all st.

Theorem 7 (Epistemic Policy Iteration) Alternating between epistemic policy evaluation and epistemic

policy improvement for any policy π ∈ Π converges to an optimum epistemic policy π∗ such that V π∗
(st) ≥

V e
π (st) for all st.

Proof Let πi denote the policy at iteration i. We already show that the sequence V e
πi(st) is monotonically

increasing. Since V e
π (st) is bounded above, the sequence converges to some π∗. At convergence, it must be

the case that Jπ∗(π∗(.|st)) ≤ Jπ∗(π(.|st)) for π ̸= π∗. Based on Lamma 11, we have V e
π∗(st) > V e

π (st) for

all s. In other words, the evidence value of any other policy π is lower than that of the converged policy π∗.

Therefore, it guarantees convergency to an optimal policy π∗ such that:

V e
π∗(st) ≥ V e

π (st) (5.29)

5.2.5 Training and Inference

The training procedure involves the parameter update associated with both classification and ERA modules.

The classification module is trained with supervised learning utilizing binary cross-entropy loss as:

L(θNN ) = −
1

T

T∑
t=1

ys · log(NN(st)) + (1− ys) · log(1− NN(st)) (5.30)
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where NN is a binary classifier neural network, and ys is a ground truth label. The classification network is

updated as:

θNN ←− θNN − ηNN∇θNN
L(θNN ) (5.31)

Similarly, the ERA module finds the optimal policy to maximize long-term expected cumulative evidential

reward as:

Jπ(θe) =
T∑
t=1

E(st,at)∼π(r
e
π(st,at)) (5.32)

where T is the total number of time steps in the episode.

For ERA module update, we update the evidential policy network with policy gradient method:

θe ←− θe + ηe∇θeJπ(θe) (5.33)

where∇θeJπ(θe) is proportion to

E(st,at)∼π[r
e
π(st,at)∇θe lnSt(at;πθe(·|st))]

During inference, we input the model with variable length sub-trajectories or full episode trajectories to test

the model’s capability in classifying the provided trajectory belonging to ASD or TD users. We provide

details of the inference process in the experimental section.

5.2.6 Experiments

In this section, we conduct quantitative experiments to evaluate the proposed ERA model on three different

games regarding ASD detection, Maze Painting, Word Scanning, and Coloring. First, we com-

pare our model with multiple state-of-the-art baselines. The performance comparison shows that our model

surpasses all the competitors by a significant margin.

Comparison baselines. We compare with multiple state-of-the-art baselines, all of which are trained using

the same sub-trajectory-based task formulation:

• Recurrent Classifier (LSTM) [34]: We consider a LSTM based classifier as a simple recurrent based

baseline that leverages the multimodal sequential information for classification. The model uses two

sequence encoders to generate the task representation. Specifically, the output from the final time step is

concatenated to obtain the task representation.
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Table 5.2: Classification Performance Comparison

Dataset Maze-
2D

Maze-
3D

Maze-
Mixed

Coloring Word Scan-
ning

LSTM [34] 65.0±6.7 63.0±5.5 68.8±4.8 62.0±3.8 62.5±4.1
LSTM-FCN [40] 91.5±3.6 93.4±3.5 90.4±3.8 86.0±4.2 89.0±4.1
ERA 94.0±3.8 95.3±5.3 95.0±5.2 91.0±3.9 93.5±3.8

• LSTM-FCN [40]: LSTM-FCN explores the augmentation of fully convolutional networks with LSTM

RNN sub-modules for time series classification.

Classification performance. We compare ERA’s predictive accuracy with the baselines on the 2D, 3D and

mixed (including both 2D and 3D ) game data for Maze Painting as well as the other two games in

Table 5.2. As can be seen, ERA outperforms all baselines by a significant margin. Working across all these

real-world datasets further demonstrates our model’s generalization capability in human behavior analysis.

5.2.7 Conclusion

In this section, we prosposed evidential reinforced attention to discover subtle and complex multimodal hu-

man behavioral patterns. The proposed ERA model leverages RL agent to perform evidential reinforced at-

tention that learns an effective policy to select representative embeddings as attention signatures and further

boosts the performance. Experimental results on multiple real-world datasets demonstrate the effectiveness

of the proposed model.



Chapter 6

Evidential Stochastic Differential Equation
for Sparse User Interactions

In this chapter, we focus on dealing with the problem of noisy sparse interaction and provide a systematic

learning method extending the L2L framework with evidential learning and stochastic differential equation

that captures users’ preference change over time leveraging continuous architecture i.e. neural stochastic

differential equations (NSDE), and then integrate with evidential learning framework to recommend both

important and diverse items for effective recommendation.

6.1 Evidential Stochastic Differential Equation for Sequential Recommen-
dation

Various sequential recommendation models [74, 83, 88, 90] have been proposed to capture dynamics in user

behaviors. They mainly leverage the user’s sequential historical interactions and aim to predict the next

item that a user like to interact with. Although these methods attempt to infer high-quality user represen-

tation with sequential interaction information, they assume a uniform time interval among consecutive user

interactions and are insufficient to capture users’ continuously evolving behavior. In reality, the actual time

intervals vary dramatically. This may significantly impact the recommendation performance in practice.

To demonstrate the challenge as outlined above, we provide an example in Table 6.1, where we follow the

standard sequential recommendation similar to [39, 74] by predicting the next item considering other 100

negative items from the item pool. We select a user (ID:13) from the Movielens-100K dataset and provide

69
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Table 6.1: Ranking of the ground-truth item of the next interaction in a sequence for a user (ID:13) consid-

ering the gap between two consecutive interactions

Interaction Gap (Seconds) Ranking
BERT4Rec E-NSDE

6 to 7 44 4 4

13 to 14 623,591 24 16

116 to 117 62 6 3

150 to 151 896,291 56 18

recommended ranking results together with the interaction time gap in the sequence. The recommendation

performance for a sequential model BERT4Rec deteriorates significantly when the gap between the con-

secutive interactions becomes large. For example, when the next interaction occurs soon after the first one,

BERT4Rec consistently ranks the ground-truth item in a top-10 list. However, for a much larger gap, the

ground-truth item drops out of the top-20 or even top-50 recommendation list.

To address the issues above, few recent efforts [14, 29, 77] have adopted the concept of Neural Ordinary

Differential Equations (NODE) that maps the existing discrete neural network to a continuous model, which

provides the ability to capture users’ continuously evolving preferences. Although these methods leverage

the power of NODE and provide richer representation, they lack the capability to learn model uncertainty,

which could be essential to understand the user behavior when recommending the next item.

There is a variant of NODE called Neural Stochastic Differential Equations (NSDE), which adds Brownian

motion terms to incorporate stochasticity via a diffusion function. NSDE has been successfully applied in

the field of computer vision [43, 89] to model uncertainty. Inspired by the idea of NSDE, we propose to use

NSDE as the sequential recommendation model that not only helps to capture users’ continuously changing

behavior but also model stochasticity in the user and item’s evolving representation. While NSDE can model

the noise due to stochasticity in user and item representations, it does not capture the uncertainty in user-item

interactions. To fill this critical gap, we further incorporate evidential deep learning (EDL) [3, 70], aiming

to capture model uncertainty by gathering evidence from user-item interactions. The proposed E-NSDE

seamlessly integrates two major components: an NSDE module and an EDL module to capture continuous

user preferences over time and provide important and diverse items for an effective recommendation. The

NSDE module is responsible for learning user and item representations over time. Furthermore, the EDL

module utilizes this richer representation of users and items to identify important and diverse items that the

model needs to learn to capture users’ actual behavior with the help of uncertainty-aware exploration.

The main contribution of this work is fourfold:
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• a novel recommendation model that integrates neural stochastic differential equations with evidential

learning to provide uncertainty-aware sequential recommendations,

• leveraging interaction and time-guided evidential uncertainty to maximize information gain through ex-

ploration of a large item pool,

• using a monotonic network to ensure a mathematical relationship between interaction time gap and pre-

dicted uncertainty,

• an end-to-end integrated training process with seamless integration of NSDE and EDL modules.

6.2 Related Work

For traditional baselines like sequential models and graph models please refer to Chapter 2.

Neural ODE in Recommender Systems. Neural ODE solver has also been used in recommender sys-

tems [14,77]. The learnable time ODE-based collaborative filtering [14] redesigns linear graph convolution

networks on top of the NODE that learns the optimal architecture and smooth ODE solutions for effective

collaborative filtering. Similarly, [77] utilizes meta-learning enhanced neural ODE for citywide next POI

Recommendation. Basically, it models city-invariant information and city-specified information separately

to achieve accurate citywide next POI recommendation.

6.3 Preliminaries

Problem Formulation. The user set (U ) and item set (I) are the two sets of input data for a recommenda-

tion model, respectively, where |U | and |I| denote the total number of users and items. We represent a user

ut ∈ U and item it ∈ I at time t. In a sequential recommendation setting, users’ behavior sequences are

chronological order and hence represent interaction sequences for user u as [i0,i1,...,it−1,it] at time t. We

perform recommendation and uncertainty quantification for each user with a recommendation function as:

fΘ(ut, it) = {γ(ut,it), ν(ut,it), α(ut,it), β(ut,it)}

∀ut ∈ U, it ∈ I (6.1)

where γ(ut,it) is the recommended score for item i assigned by user u, ν(ut,it), and α(ut,it) are the model

evidence, and β(ut,it) is a total uncertainty coming from both pseudo and actual data samples at time t.
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Evidential Learning. Evidential learning is an evidence acquisition process where every training sample

adds support to learn higher order evidential distribution [3, 70]. Given the target yn, is drawn i.i.d. from

a Gaussian distribution with unknown mean and variance (µ, σ2) the model evidence can be introduced

by further placing a prior distribution on (µ, σ2). Leveraging Gaussian prior on the unknown mean and

the Inverse-Gamma prior on the unknown variance, the posterior of (µ, σ2) is the Normal-Inverse-Gamma

(NIG) distribution. We choose a Gaussian prior on the unknown mean and an Inverse-Gamma prior on the

unknown variance to ensure conjugacy as:

p(yn|µ, σ2) = N (µ, σ2), p(µ|γ, σ2ν−1) = N (γ, σ2ν−1)

p(σ2|α, β) = Inv-Gamma(α, β) (6.2)

where Inv-Gamma(z|α, β) = βα

Γ(α)

(
1
z

)α+1
exp(−β

z ) with Γ(.) being a gamma function; m = (γ, ν, α, β)

are parameters of the corresponding prior distributions. The posterior of (µ, σ2) follows a Normal Inverse-

Gamma (NIG):

p(µ, σ2|m) =
βα
√
ν

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + ν(γ − ν)2

2σ2

}
(6.3)

Given a NIG posterior, one can derive the mean (E[µ]), aleatoric (E[σ2]) and epistemic (Var[µ]) uncertainty

as:

E[µ] = γ, E[σ2] =
β

α− 1
, Var[µ] =

β

ν(α− 1)
(6.4)

Neural Ordinary Differential Equations (NODE) Ordinary Differential Equations (ODEs) are used to

model continuous-time hidden dynamics in neural networks [12] and can be defined as:

dht = fψ(ht, t)dt, h0 ∈ Rd (6.5)

where f(.) is a neural network with parameter ψ and h0 is an initial value.

Further, leveraging Eq (6.5) and integrating these dynamics forward, one can compute h(ti+1) from h(ti)

by solving the following Riemann integral problem:

h(ti+1) = h(ti) +

∫ ti+1

ti

f(h(ti), t;ψ)dt (6.6)

Neural Stochastic Differential Equations (NSDE) We could view Stochastic Differential Equations

(SDE) as an ODE with infinitesimal noise added throughout time:

dht = fψ(ht, t)dt+ gω(ht, t)dBt (6.7)
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where f(.) and g(.) are drift and diffusion functions respectively, Bt is a Brownian motion.

Similar to NODE, we are also able to compute the forward dynamics of NSDE i.e. h(T ) from initial value

h(t0) integrating Eq (6.7) as:

h(T ) = h(t0) +

∫ T

t0

f(h(t), t;ψ)dt+

∫ T

t0

g(h(t), t;ω)dBt (6.8)

6.4 E-NSDE: Evidential Stochastic Differential Equation for Recommenda-
tion

Overview. We propose a novel time-aware sequential recommendation model as shown in Figure 6.1. The

model includes a Neural Stochastic Differential Equations (NSDE) to capture continuous time-evolving

user dynamics and an evidential module to capture uncertainty in user-item interactions and also to pro-

vide uncertainty-aware exploration leveraging interaction time gap. The NSDE module takes the initial

representations of users and items, and uses the interaction time gap to generate refined user and item rep-

resentations. Subsequently, these improved user and item representations are fed into the EDL module.

Within the EDL module, the rating network generates a rating score, while the monotonic network produces

evidential parameters that incorporate the interaction time gap, establishing a direct link to the model’s pre-

dicted uncertainty. Our approach adheres to the conventional sequential training strategy and incorporates

supervised signals derived from evidential learning. We delve into detailed discussions in the subsequent

sections.
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Figure 6.1: Overview of E-NSDE framework. The framework includes user and item NSDE modules

to generate the final user and item representation and an EDL module to provide an uncertainty-aware

prediction.

6.4.1 NSDE Based User and Item Representations

The Neural Stochastic Differential Equations (NSDE) include two key components: drift and diffusion func-

tions. The drift component captures the evolving nature in the system and the diffusion component captures

stochasticity in the system. The proposed NSDE for recommender system advances contemporary sequen-

tial models from the following aspects: 1) existing methods require partitioning the time into uniform inter-

vals to support model training and inference, while NSDE removes this requirement, providing additional

flexibility; 2) the existing methods largely negate stochasticity in the system, but the NSDE incorporates

it into the form of inherent noise. This suggests a better fit of the NSDE into sequential recommendation

and essentially supports generating richer user and item representations leveraging the power of the SDE

solver to capture users’ continuously evolving preferences over time than previous discrete sequential and

deterministic ODE methods.

The user fine-grained representation processes based on NSDE formulation can be written following the

Eq (6.8):

u(T ) = u(t0) +

∫ T

t0

f(u(t), t;ψ)dt+

∫ T

t0

g(u(t), t;ω)dBt (6.9)

where u(t0) represents the user’s initial representation which is computed with aggregation of a few initial

interacted items (i.e., u(t0) = agg(io, i1, ..ik)), and T represents the final time.

For the NSDE formulation in recommender systems, we intuitively show the role of both drift and diffusion
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components. We thought of the drift component as a user’s internal evolution and diffusion component as

an inherent noise that occurs when interacting with environments.

We leverage the diffusion function with Brownian motion to capture the user’s inherent noise over each

interaction. This term is crucial in SDE to capture stochasticity in the system. By capturing stochasticity, we

incorporate the impact of noisy user-item interactions. As it includes the Brownian motion for stochasticity,

we relate this in recommender systems to incorporate noise considering the time interval of interaction. Here

we first define the basic definition and properties of the Brownian motion and then mention the detail of its

applicability in the recommender systems.

Lemma 8 (Standard Brownian Motion) A standard Brownian motion Bt is a stochastic process that sat-

isfies the following properties: a) Bt-Bs is normally distributed with zero mean and (t-s) variance, i.e.,

N (0,t-s) for all t ≥ s ≥ 0; b) For every pair of disjoint time intervals [t1, t2] and [t3, t4], with t1<t2 ≤ t3 ≤
t4, the increments i.e., Bt2-Bt1 and Bt4-Bt3 are independent random variables.

Theorem 9 A larger the interaction time gap (t2-t1) incurs a higher uncertainty in user interest.

Given the Lemma 8, we can show that the increase in interaction time gap (t2-t1) increases the chance the

user may deviate from the current interest. The last term of Eq (6.9) shows that if there is a long time gap in

the interaction, there is usually a larger deviation in the user interest:∫ t2

t1

g(u(t), t;ω)dBt ∝ Bt2 −Bt1 (6.10)

Due to Lemma 8, the Brownian interval Bt2-Bt1 is going to increase, which also increases the noise accu-

mulation. It indicates that if there is a longer interaction gap, then recommending the next item is relatively

uncertain due to the user’s less involvement in the current time.

Given this Theorem 9, the final term in Eq. (6.9) holds the user’s time deviation and its impact in increasing

large variance or noise in the system. Further, the first term captures the user’s initial representation with

some interactions, and the second drift component provides the user’s evolving interest. Considering all of

these three components, the SDE solver captures the user’s richer representation over time.

Similarly, NSDE-based item representation processes can be formulated as:

i(T ) = i(t0) +

∫ T

t0

f(i(t), t;ψ)dt+

∫ T

t0

g(i(t), t;ω)dBt (6.11)

where, i(t0) represents item’s initial representation
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6.4.2 Evidential Module

We leverage an evidential learning technique to provide an uncertainty-aware model prediction for effec-

tive recommendations. The evidential module consists of two key networks: Rating Network, and

Monotonic Network.

Rating Network. The rating network utilizes the fine-grained user ut and item it representations from

the NSDE and outputs the predicted score γ(ut,it) of the corresponding user item interactions. We adopt an

evidential loss as the marginal likelihood while computing the predicted loss. This includes the negative

log-likelihood (LNLL[fΘ]) to maximize the marginal likelihood and an evidential regularizer (LR[fΘ]) to

impose a high penalty on the predicted error with low uncertainty (i.e., high confidence). We first formulate

the negative log-likelihood, given by

LNLL[fΘ(ut, it)] = − log(p(r(ut,it)|m(ut, it)) (6.12)

where, m(ut, it) = (γ(ut,it), ν(ut,it), α(ut,it), β(ut,it)) are model parameters at time t, and p(r(ut,it)|m(ut, it))=

St(r(ut,it); γ(ut,it),
β(ut,it)(1+ν(ut,it))

ν(ut,it)α(ut,it)
, 2α(ut,it)) is a student t-distribution acquired after placing a NIG evi-

dential prior on Gaussian likelihood function. We formalize our own evidence regularizer, which considers

epistemic uncertainty to penalize confidently predicted errors. We multiply the predicted error with the in-

verse epistemic uncertainty that scales up the error, which encourages high inverse epistemic uncertainty

when the predicted evidence is high (and vice-versa). Conversely, it will be less penalized if the prediction

is close to the target score:

LR[fΘ(ut, it)] =|r(ut,it) − γ(ut,it)|.
(
ν(ut,it)(α(ut,it) − 1)

β(ut,it)

)
(6.13)

The regularized EDL loss for each sequential update is given as:

LEDL(ut, it) = LNLL[fΘ(ut, it)] + λLR[fΘ(ut, it)] (6.14)

where λ is a regularization coefficient.

Monotonic Network. We adopt the concept of a monotonic network [72] in the context of building the

relationship between the interaction time gap and model uncertainty. Intuitively, the monotonic network

is designed in such a way that the increase in input, i.e., time interval (∆t), increases the output, i.e., the

variance of the predicted rating. The variance or epistemic uncertainty is computed as given by Eq (6.4). For

this, the nominator term, i.e., total uncertainty β(ut,it) should need to be increased with the increase in ∆t,
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and the denominator terms, i.e., pseudo-observations ν and α should need to be decreased with the increase

in ∆t. We theoretically show this intuition in the following theoretical section and showed a mathematical

relation. We maintain this by performing exponential transformation of the network weights as:

ϕ = exp (ϕinit) (6.15)

where ϕinit is the network’s initial weight. To ensure increasing monotonicity, we assign all positive weights

to the network layers. Similarly, to decrease the monotonicity, we assign negative weights to the last layer

and positive weights to other layers of the network. We update the network utilizing the total loss similar to

the rating network.

Lemma 10 (Monotonic increase of total uncertainty β) Given an increased time interval ∆t and positive

network weights W , the output i.e. total uncertainty β(ut,it) of the evidential monotonic network increases

monotonically.

Please refer to Appendix C.2.1.

Lemma 11 (Monotonic decrease of pseudo-observations α and ν) Given an increased time interval ∆t

and negative last layer network weight (WL), and other layer weights are positive W0,...,L−1 the output i.e.

pseudo-observations α(ut,it), and ν(ut,it) of the evidential monotonic network decreases monotonically.

Please refer to Appendix C.2.2.

Theorem 12 (An increase in time interval (∆t) results in an increase in epistemic uncertainty V ar[µ]).

Given the Lemma 10 and 11, an increase in the input time interval (∆t) of the evidential monotonic

network increases the epistemic uncertainty V ar[µ].

The epistemic uncertainty equation from Eq (6.4):

U(ut,it) = Var[µ] =
β(ut,it)

ν(ut,it)(α(ut,it) − 1)

Given the increase β(ut,it) from Lemma 10 and decrease in α(ut,it) and ν(ut,it) from Lemma 11 the nomi-

nator of the epistemic uncertainty increases, and the denominator decreases. This proves that the increase in

the time interval (∆t) increases the epistemic uncertainty var[µ] of the evidential monotonic network. We

enforced the constraints on (β(ut,it), α(ut,it), ν(ut,it)) with a soflplus activation (and additional +1 added

to α(ut,it) since α(ut,it) > 1).
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Interpreting Hyper-parameters in the context of Recommender Systems. Besides serving as the pa-

rameters of the evidential prior distributions, the hyper-parameters (ν(ut,it), α(ut,it), β(ut,it)) offer very in-

tuitive meanings. First, both ν(ut,it) and α(ut,it) are essentially the ‘pseudo’ prior observations, and their

posterior can be treated as the evidence to support a prediction. In the context of the recommendation,

their relation with time interval is inverse, because the large time gap causes a decrease in the number of

pseudo items, as mentioned in Lemma 3. Second, the β(ut,it) hyperparameter combines total uncertainty

from pseudo samples and observed data. Lemma 2 shows that an increase in time interval will result in

an increase in the uncertainty (due to a smaller number of pseudo and interacted items to the user), and

therefore the model is less confident to provide an accurate prediction.

Weighted Bayesian Personalized Ranking (WBPR) Loss. To leverage the effective exploration for the

long-term, we formulate weighted BPR loss which is computed from non-interacted items i.e. negative items

(jt ∈ Nt) which are similar to the user’s future interacted positive items. We first select similar negative

items from the user non-interacted item pool and then leverage cosine similarity with future positive item

embeddings. Further, the model provides uncertainty-aware predicted rating score for those negative items

leveraging both rating and monotonic network output as:

r̂(ut,jt) = γ(ut,jt) + ηU(ut,jt) (6.16)

where jt represents non-interacted items at time t and η is scalar to control the influence of epistemic

uncertainty.

We then compute weight coefficients based on uncertainty-aware predicted scores with cosine similarity

CosineSim(.) as:

w(it,jt) =

max(CosineSim(f emb,j emb)), if r̂(ut,jt) > τ

min(CosineSim(f emb,j emb)), otherwise

where f emb, j emb are future and negative item embedding respectively. We then formulate weighted

BPR loss utilizing a negative log-likelihood function as:

LWBPR(ut, it) =
∑

(ut,it,jt∈Nt)

w(it,jt) × (− ln (σ(r̂(it,jt)))) (6.17)

where r̂(it,jt) = r̂(ut,it) − r̂(ut,jt), σ(.) is the sigmoid.

Remark. The intuition behind this weighted BPR formulation is to learn effective exploration by providing

higher weight to the non-interacted items which are quite similar to user future positive items so that model

can learn quickly a diverse and wider range of user-evolving behavior to benefit in the future.
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Table 6.2: Performance of Recommendation (average P@N, and nDCG@N)

Category Model MovieLens-100K Movielens-1M Netflix
P@5 nDCG@5 P@5 nDCG@5 P@5 nDCG@5

Dynamic MF timeSVD++ 0.4010±0.015 0.3420±0.013 0.3917±0.016 0.3508±0.013 0.3756±0.016 0.2951±0.013
CKF 0.4053±0.017 0.3620±0.013 0.3928±0.016 0.3552±0.015 0.3600 ±0.017 0.2986±0.014

Graph NGCF 0.4059±0.014 0.3662±0.012 0.3978±0.016 0.3587 ±0.018 0.3574±0.015 0.3167±0.017
LightGCN 0.4103±0.014 0.3702±0.013 0.4028±0.017 0.3632±0.015 0.3617±0.013 0.3204±0.016

CASER 0.4096 ±0.012 0.3663±0.015 0.4021±0.014 0.3626±0.016 0.3658 ±0.013 0.3189±0.012
Sequential SASRec 0.4105±0.013 0.3740 ±0.011 0.4112±0.015 0.3708±0.017 0.3746±0.012 0.3257±0.014

BERT4Rec 0.4149±0.014 0.3781±0.011 0.4163±0.012 0.3754 ±0.013 0.3793±0.011 0.3295±0.013
S3-Rec 0.4124 ±0.012 0.3755±0.014 0.4134±0.013 0.3715 ±0.014 0.3786±0.016 0.3274±0.013

CL4SRec 0.4210±0.016 0.3821±0.017 0.4205±0.013 0.3781 ±0.015 0.3814 ±0.016 0.3318±0.012

LT-OCF 0.4267±0.013 0.3785±0.015 0.4141±0.016 0.3673 ±0.014 0.3848±0.012 0.3313±0.013
ODE GRU-ODE 0.4398±0.014 0.3902 ±0.017 0.4275±0.013 0.3792±0.012 0.3994±0.013 0.3417±0.015

Proposed E-NSDE 0.4711±0.015 0.4112±0.013 0.4551±0.011 0.3982±0.016 0.4194±0.013 0.3637±0.015

The overall loss of the end-to-end model training is acquired by combining the EDL and WBPR loss:

L(ut, it) = LEDL(ut, it) + ζLBPR(ut, it) (6.18)

where ζ represents the balancing factor between EDL and WBPR loss.

Training and inference details are provided in Appendix section C.3.

6.5 Experiments

We conduct extensive experiments on three real-world datasets that contain explicit ratings: Movielens-

100K, Movielens-1M, and Netflix. For baseline comparisons, we use dynamic, sequential, graph-based, and

ODE-based recommendation methods. For more details about datasets, baselines, experimental setup, and

implementation please check Appendix section C.4, C.5, and ?? respectively.

Evaluation metrics. To evaluate the proposed and baseline recommendation models, we follow the se-

quential recommendation setup similar to [74]. We consider one ground truth item in each sequential rec-

ommendation. We use two standard metrics to measure the recommendation performance.

• Precision@N (P@N): It is the fraction of the top-N items recommended in each sequence to the user .

We reported the average overall sequence precision value as the final precision. Further, due to only one

ground truth in the target, the P@N is equivalent to Recall@N.

• nDCG@N : Normalized Discounted Cumulative Gain (nDCG) measures ranking quality, considering the

relevant items within the top-N of the ranking list in each recommendation.
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Figure 6.2: Precision (top) and nDCG (bottom) Performance @5: MovieLens-100K , MovieLens-1M , and

Netflix datasets.

6.5.1 Recommendation Performance Comparison

Table 6.2 summarizes the recommendation performance from all models for three real-world datasets. The

proposed model benefits from both the SDE module, which continuously captures user evolving preferences,

and the evidential module, which estimates prediction confidence, and thus achieves better results in all

three datasets. The dynamic models achieve less ideal performance due to their focus on discrete-term

user interest and inability to provide continuous user preference. Graph-based methods take advantage of

recently interacted items and have shown better performance than traditional dynamic methods. However,

they may not be good enough to capture user sequential interest. Further, sequential methods benefit from

sequential learning and have promising results. However, they lack to consider the time component in

the recommendation and hence are less effective than the proposed method. ODE-based methods have

shown a clear advantage due to their focus on capturing users’ continuous behavior over time, but they

cannot estimate model confidence on predictions and hence have lower performance value than the proposed

method. We provided a detailed plot of precision and nDCG @5 in Figure 6.2 considering test users in each

training epoch.

6.5.2 Qualitative Study

We performed a qualitative study on the impact of interaction time gap and its relation to uncertainty to pro-

vide important and diverse items. Table 6.3 shows the proposed E-NSDE model provides diverse tastes (i.e.
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’Thriller’ and ’Sci Fi’) movies for the larger interaction time gap (∆t)=896,291 seconds that are important

for the future to the user (ID:13). In the other hand, the existing GRU-ODE model suggest only popular

genres like ’Drama’ and fails to explore.

Table 6.3: Important movies recommended to the user (ID:13) at sequence 150 to 151 with gap (∆t):

896,291 seconds.

Model Important Movies (Genre) Future Movie’s Genre
GRU-ODE Dead Man Walking (’Drama’) ’Thriller’

Richard III (’Drama’) ’Drama’

Mad Love (’Romance’) ’Mystery’

E-NSDE GoldenEye (’Thriller’) ’Crime’

Taxi Driver (’Drama’) ’Sci Fi’

Twelve Monkeys (’Sci Fi’)

We also did an ablation study, first, we provide the impact of each key component in the proposed E-

NSDE method as shown in Table 6.4. From the table, it is clear that each component is helping to improve

recommendation performance. Second, we provide the impact of hyperparameters (λ, ζ, η) and embedding

size (d) in the Appendix section C.6.

Table 6.4: Ablation study results on Movielnes-100K

NSDE EDL WBPR Performance
P@5 nDCG@5

✓ 0.4065 0.3677

✓ ✓ 0.4523 0.3962

✓ ✓ 0.4120 0.3715

✓ ✓ ✓ 0.4711 0.4112

6.6 Conclusion

We propose a novel evidential stochastic differential equation (E-NSDE) model for the time-aware sequen-

tial recommendations. The proposed model seamlessly integrates an NSDE module and an EDL module

to capture users’ continuously evolving behavior and model predictive uncertainty at the same time. Our

proposed model effectively leverages the interaction time gap and provides uncertainty-aware recommen-

dations with diverse items to the user. Further, we theoretically derive mathematical relationships between

the interaction time gap and model uncertainty to enhance the learning process. Experimental results on

real-world data and comparison with the state-of-the-art competitive models demonstrate the effectiveness

of the proposed model.



Chapter 7

Conclusion and Future Work

In this chapter, we conclude the dissertation and also provide some future directions.

7.1 Conclusion

Learning from user interactions remains a complex task due to sparse human behavior and that is also dy-

namic, noisy, and highly heterogeneous. Consequently, current approaches are limited in their effectiveness.

To address this challenge, we offer an efficient framework for learning to learn (L2L) framework to learn

from sparse user interactions. Initially, we introduce a prevalent L2L strategy known as meta-learning,

employing a recurrent neural network to capture the evolving user preferences over time and provide dy-

namic user preferences in Chapter 3. We have developed a dynamic meta-learning model that enhances the

effectiveness of learning from scarce user interactions. We extend our contributions to include evidence-

informed meta-learning in Chapter 4, which incorporates predictive evidence to guide learning systems

in delivering effective user preferences. Furthermore, we leverage reinforcement learning for learning-to-

learn with respect to user dynamics and employ evidence-based learning for uncertainty-aware exploration,

aiming to enhance long-term user engagement in Chapter 5. This culmination of efforts resulted in the de-

velopment of a meta-evidential reinforcement learning model, known as MetaERL. Finally, we introduce

the Neural Stochastic Differential Equation (SDE) method with integrated evidential learning (E-NSDE)

within the learning-to-learn framework in Chapter 6, enabling the capture of users’ continuous behaviors

that accurately reflect their evolving real-life scenarios. This framework is applicable to many domains

including e-commerce, media, health, and many time-evolving user scenarios that specifically have very

sparse datasets.

82
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In conclusion, our framework provides an effective means of quick adaptation from global user knowledge

leveraging the L2L approach and dynamic user intent via sequential and dynamic models for users with

sparse interactions.

7.2 Future Work

Meta Evidential Graph Contrastive Learning for Sequential Recommendations In this future work, we

will focus on how to effectively handle the users’ evolving preferences over time in sparse data domains like

recommender systems. We plan to use meta learning as a learning-to-learn approach to tackle the sparse

interactions and the evidential graph contrastive learning method to provide effective user representation so

that it recommends important items that are more useful for model training and long-term prediction.

There are several contrastive learning-based methods in recommender systems but they largely generate the

contrastive view of the user in a static setting [52, 55, 71] and fail to deal with evolving user preferences

for users who have very limited interactions. Also, they neglect the importance of interaction time while

generating graph augmentation. Further, they do random sampling to augment the graph and don’t have

a specific mechanism to capture the uncertainty in the augmented graph. Similarly, meta-learning-based

models are used to tackle the sparse problem in recommender systems but they fail to provide important and

diverse recommendations for an effective recommendation.

To address the above problems of those methods, we plan to do future research on a novel model by inte-

grating the meta-evidential learning method with a graph contrastive learning method that handles sparse

interaction problems in the user’s evolving scenario by leveraging the benefits of exploitation and explo-

ration graph augmentation views to generate users’ richer dynamic representation.

To accomplish this, in the future, we plan to conduct the research in the short term and long term:

1. Short Term Plan: In the short term, we plan to construct datasets and devise the model. For dataset
construction, we need to collect the datasets in a task-wise manner to train the model. We will process

and construct the dataset for each user as a single task. This fits the task level setting of the problem

and we will mainly focus on those sparse user interactions which are very difficult in testing time.

Further, design model will involve a complex combination of meta, evidential, and graph contrastive

learning methods. We design the model to handle sparse user interactions from the perspective of

few-shot learning utilizing meta-learning and capturing effective users’ preferences via contrastive

graph learning and also providing important and diverse items via evidential learning.
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2. Long Term Plan: In the long term, we plan to design the loss function for the end-to-end training,

perform experiments, and better fine-tune the proposed model. For loss function design, we lever-

age the power of contrastive learning and evidential learning approaches, thus, we will design a loss

function that incorporates the impact of both approaches for better model training and generaliza-

tion. Similarly, experiment and evaluation, we perform experiments on the above-collected datasets

considering important evaluation metrics for a recommendation. Finally, we will do fine-tuning and
ablation study of the proposed model for better explainability and scalability of the model.
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Appendix A

In this appendix, we mainly provide the additional results to better strengthen the experiment of Chapter 3.

A.1 Periodical Recommendation Results

We report the detailed result for each prediction period for all three datasets to demonstrate how the predic-

tions evolve over time.

Netflix. As can be seen from Table A.1, in most periods, the proposed model performs better than others

except for a few periods like 3 and 6, where the proposed model slightly under-performs the meta-learning

model. A possible explanation is that in these periods, time-specific user interest might largely deviate from

the time-evolving user factors, and hence their combined recommendation is less accurate.

Last.fm Datasets. The period-wise results for the Last.fm dataset on one run is shown below in Table A.2.

The proposed model achieves good results in this implicit feedback (i.e., counts) dataset. The high variation

of the counts indicates users’ music listening habits are fluctuating significantly. The results in Table A.2

show that matrix factorization and deep learning baseline models are less effective in capturing those varia-

tions. In contrast, the proposed model simultaneously captures those variations in the form of users’ specific

biases and the gradual shift of preferences effectively.

Movielens Datasets: Periodic results for the Movielens dataset are shown in Table A.3. In the first period,

we notice that meta-learning models are not performing well, whereas SVD models are performing well.

This is because the dataset has very dense interactions in the first period. Meta-learning models only use
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Table A.1: Netflix Periodic RMSE Results

Period SVD++ timeSVD++ CKF MeLU DeepFM Wide &
Deep

GC-MC Caser DIEN ML-ICS Proposed

1 0.9813 0.9840 0.9552 0.9201 1.2706 1.3178 1.2912 1.2845 1.3102 0.9335 0.9205

2 0.9862 0.9895 0.9683 0.9481 1.1117 1.1321 1.2903 1.2882 1.3033 0.9498 0.9258

3 0.9795 0.9795 0.9693 0.9440 1.0489 1.0921 1.2732 1.2634 1.2724 0.9445 0.9479

4 0.9742 0.9708 0.9524 0.9374 1.0896 1.0777 1.2613 1.2404 1.2543 0.9401 0.8771

5 0.9800 0.9710 0.9432 0.9415 1.0630 1.0115 1.2311 1.2127 1.2167 0.9426 0.9279

6 0.9757 0.9740 0.9564 0.9495 0.9911 0.9904 1.1374 1.1206 1.1515 0.9487 0.9533

7 0.9744 0.9725 0.9612 0.9506 1.0323 0.9895 1.1068 1.1745 1.0984 0.9622 0.8723

8 0.9766 0.9661 0.9526 0.9418 0.9706 1.0122 1.049 1.1132 1.0401 0.9517 0.8789

9 0.9737 0.9603 0.9412 0.9424 0.9902 0.9897 1.0442 1.0724 1.0311 0.9503 0.8786

10 0.9726 0.9597 0.9228 0.9391 0.9961 0.9655 1.0918 1.0843 1.0511 0.9430 0.9209

11 0.9722 0.9595 0.9332 0.9360 0.9497 1.0570 1.03403 1.0563 1.0615 0.9315 0.8997

12 0.9731 0.9511 0.9541 0.9438 0.9761 0.9648 1.0885 1.0245 1.0528 0.9396 0.9427

13 0.9361 0.9556 0.9243 0.9351 0.9710 0.9540 1.0451 1.0373 1.0417 0.9306 0.8746

14 0.9658 0.9431 0.9416 0.9457 0.9720 0.9635 1.031 1.0143 1.0531 0.9487 0.8824

15 0.9673 0.9457 0.9358 0.9378 1.0050 0.9598 1.0162 1.0142 1.0237 0.9441 0.8812

16 0.9670 0.9340 0.9337 0.9428 0.9866 0.9550 1.0254 1.0078 1.0145 0.9468 0.8340

Table A.2: Last.fm periodic RMSE results

Period SVD++ timeSVD++ CKF DPF MeLU DeepFM Wide & Deep Caser DIEN ML-ICS Proposed
1 1.6507 1.6920 1.8353 1.6953 1.3153 2.1434 2.1993 1.8132 2.4720 1.3233 1.3173
2 2.3052 2.1647 1.3964 1.3238 1.5567 2.1336 2.1675 1.3854 2.1291 1.5407 1.5320
3 2.1972 1.9160 1.7007 2.0814 1.3408 2.0674 2.1194 1.6772 2.1065 1.3531 1.3465
4 2.1574 1.7385 1.5462 1.4654 1.1346 2.0757 2.0464 1.5232 1.9520 1.1287 1.1047
5 1.5858 1.6520 1.6602 1.5214 1.1687 2.0202 2.0033 1.5843 1.9876 1.1732 1.1578
6 1.7879 1.8460 1.5555 1.3815 1.2602 2.0763 2.1651 1.5278 1.8816 1.2821 1.0809
7 1.5348 1.6498 1.6527 1.3448 1.6359 1.9372 1.9595 1.6227 1.8392 1.6324 1.6226
8 1.7527 1.7350 1.5798 1.3617 1.5987 1.8883 1.8839 1.5482 1.8806 1.6037 1.4270
9 2.2419 1.9977 1.4311 1.5085 1.4493 1.9546 2.0015 1.4326 1.9011 1.4488 1.3338
10 1.9101 1.7901 1.4572 2.3051 1.1753 1.8346 1.8766 1.4104 1.8743 1.1714 1.0368
11 1.5709 1.4704 1.3067 1.4337 1.1528 1.7557 1.8178 1.2974 1.8515 1.1553 1.0864
12 1.5864 1.5760 1.3353 1.2409 1.2226 1.7666 1.7346 1.3136 1.8483 1.2105 1.0933
13 1.5228 1.3637 1.4613 1.0546 1.0546 1.7518 1.7192 1.4463 1.8617 1.0720 1.0123
14 1.7330 1.5966 1.6130 1.2670 1.0809 1.6417 1.6800 1.5812 1.8445 1.0912 1.0603
15 1.9891 1.6644 1.4429 1.3264 1.1094 1.6815 1.7253 1.4293 1.7623 1.0996 1.0824
16 1.4638 1.4106 1.4334 1.2547 1.3206 1.6900 1.9963 1.4017 1.7456 1.3322 1.0688

Table A.3: Movielens periodic RMSE results

Period SVD++ timeSVD++ CKF MeLU DeepFM Wide & Deep GC-MC Caser DIEN ML-ICS Proposed
1 1.0615 1.0496 1.1155 1.2234 1.5341 1.3719 2.3345 2.2941 2.3438 1.2412 1.2253
2 0.9954 0.9932 0.9847 1.1613 1.3659 1.2686 1.7912 1.7247 1.7065 1.1803 1.0444
3 1.0445 0.9982 1.0305 0.9341 1.2267 1.2585 1.2576 1.2289 1.2019 0.9423 0.8487
4 1.1499 1.1189 1.0508 0.9776 1.2492 1.2346 1.1332 1.1223 1.1623 0.9711 0.9084
5 1.0918 1.0611 1.1468 1.0308 1.1615 1.1052 1.1346 1.1286 1.1587 1.0514 0.9053
6 1.0773 1.0688 1.0699 1.1377 1.0994 1.0672 1.1112 1.1021 1.1421 1.1127 1.0377

k-shot for learning, but SVD models benefit from maximum interactions. For the proposed model, time-
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evolving user factors don’t contribute in the first period. Also, time-specific factors are based on meta-

learning. Hence, its performance is not better than the baselines, but the proposed model achieves a better

performance in the subsequent periods



Appendix B

In this appendix, we mainly provide the theoretical proof of Chapter 5.

B.1 Proofs of Theoretical Results

In this section, we provide proofs of all lemmas and the theorem.

B.1.1 Proof of Lemma 1

Given the evidential reward defined as reπ(st,at) =
1
N

(∑
i∈Nu

(ratingu,i − τ) + λUπ(i|st,at)
)

the update

rule for evidential Q-value can be written as:

Qe(st,at) = Eπ
∞∑
t′=t

γt
′
reπ(st′ ,at′) = reπ(st,at) + γEst+1,at+1 [Q

e(st+1,at+1)] (B.1)

Then based on the evaluation convergence rule [76] with finite action space, it is guaranteed that the Q-value

will converge to the evidential Q-value of policy π.

B.1.2 Proof of Lemma 2

The policy can be updated towards the new Q-value function. Consider the updated policy πnew as the

optimizer of the maximization problem.

πnew = argmax
π′

Jπ(ϕ) = argmax
π′

Est∼D,at∼π′[Q
e
π′(st,at)] (B.2)
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Denote the old policy as πold. Using the update rule specified in Eq 5.8 with a sufficiently small step size,

we get an updated policy πnew that satisfies

Eat∼πnew [Q
e
πold

(st,at)] ≥ Eat∼πold [Q
e
πold

(st,at)] (B.3)

Given Equation B.3, we have the following inequality

Qeπold(st,at) ≤r
e(st,at) + γEst+1,at+1∼πnew [Q

e
πold

(st+1,at+1)]

≤re(st,at) + γEst+1,at+1∼πnew [r
e(st+1,at+1)]

+ Est+2,at+2∼πnew [Q
e
πold

(st+2,at+2)]

...

=Qeπnew
(st,at)

(B.4)

where re(st,at) is a evidential reward in step t. Therefore, we show that the new policy πnew ensures

Qeπnew
(st,at) ≥ Qeπold(st,at) for all (st,at).

B.1.3 Proof of Theorem 1

Let πi denote the policy at iteration i. We already show that the sequence Qeπi(st,at) is monotonically

increasing. Since Qeπ(st,at) is bounded above, the sequence converges to some π∗. At convergence, it must

be the case that Jπ∗(π∗(.|st)) ≤ Jπ∗(π(.|st)) for π ̸= π∗. Based on Lamma 11, we have Qeπ∗(st,at) >

Qeπ(st,at) for all (st,at). In other words, the evidence value of any other policy π is lower than that of the

converged policy π∗. Therefore, it guarantees convergency to an optimal policy π∗ such that:

Qeπ∗(st,at) ≥ Qeπ(st,at) (B.5)



Appendix C

In this Appendix, we first summarize all notations used in Chapter 6. Next, we provide the theoretical proof

for Lemma 2 and Lemma 3. Following that, we provide algorithms for the training and inference process,

and then we provide datasets and baselines. Further, we provide an experimental setup along with additional

results for the ablation study.

C.1 Summary of Notations

We summarize the major notations used throughout the paper in Table C.1.

C.2 Proof of Theoretical Results

In this section, we provide proofs of Lemma 2 and Lemma 3.

C.2.1 Proof of Lemma 2

Given the user final representation ut, item final representation it, and interaction time gap ∆t. The mono-

tonic network produces β(ut,it) as:

β(ut,it) =W × concat[ut, it,∆t]

dβ

d(∆t)
=W (C.1)

Given the corresponding weight W is positive then dβ
d(∆t) ≥ 0.
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Table C.1: Summary of Notations

Notation Description
U , I user set and item set

ut, it user u and item i continuous representations at time t

β(ut,it) total model uncertainty for user u on item i at time t

α(ut,it), ν(ut,it) model evidence for for user u on item i at time t

γ(ut,it) predicted score for user u on item i at time t

r̂(ut,it), r(ut,it) Uncertainty-aware predicted rating and ground truth for user u on item i at time t

r̂(it,jt) Predicted rating score difference between ground truth item i and negative item j for user u at time t

Θ Overall model parameters i.e. Θ=(ψ, ω, θ, ϕ)

ψ, ω, θ, ϕ SDE drift, SDE diffusion, rating, and monotonic networks parameters

∆t interaction time gap between two consecutive items

w(it,jt) Weight coefficients for negative item j based on uncertainty-aware predicted scores

τ Threshold for uncertainty-aware predicted rating score

Nt Negative items at time t

U(ut,it) Epistemic uncertainty for user u and item i interaction at time t

λ, η, ζ Balancing coefficient for EDL regularizer, uncertainty-aware rating, and WBPR loss respectively

C.2.2 Proof of Lemma 3

Given the same setup as Lemma 2, the monotonic network outputs α(ut,it), and ν(ut,it). We first consider

α(ut,it):

α(ut,it) =WL × hL−1[WL−1,... × h0[W0 × [concat[ut, it,∆t]]]

=WL × hL−1[WL−1,... × h0[W0 × concat[ut, it]]

+WL × hL−1[WL−1,... × h0[W0 ×∆t]]

dα(ut,it)

d(∆t)
=WL × h′L−1 ×WL−1...h

′
0 ×W0

when WL is negative and WL−1,...0 are positives then dα
d(∆t) ≤ 0.

Similarly, we can show that dν
d(∆t) ≤ 0. We leverage the monotonic non-linear activation function i.e.

ELU(.) to satisfy this condition.
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C.3 Training and Inference

The training procedure involves the end-to-end parameter updates associated with the NSDE module and

evidential module. Both modules utilize the overall loss mentioned in Eq (6.18), which includes a supervised

signal from evidential loss and ranking loss from WBPR loss. The rating network (θ) and monotonic network

(ϕ) are updated with the Adam optimizer, and the SDE module with model parameters (ψ, ω) is updated with

SDE adjoint method [51]. Algorithm 4 shows the training process that learns the model parameters.

Algorithm 4 E-NSDE Training

Require: Hyperparameters: λ, η, ζ, α, β, γ, ν

1: Initialize both NSDE and EDL modules:Θ = (ψ, ω, θ, ϕ)

2: while not converge do
3: Sample train user Tu from user pool U

4: for all u ∈ Tu do
5: Compute user and item final representations using Eq (6.9) and Eq (6.11) respectively from SDE

module.

6: Compute interaction time gap ∆t with target item

7: Compute EDL loss for each sequence using Eq (6.14).

8: Compute weighted BPR loss for each sequence using Eq (6.17).

9: Perform end-to-end update using overall loss Eq 6.18

10: end for
11: end while

During inference, we consider test users (i.e., distinct users from the training set) and perform standard

sequential recommendations respecting the time interval of interactions.

C.4 Datasets and Baselines

We evaluated the E-NSDE model on three public benchmark datasets that contain explicit ratings:

• Movielens-100K1: This dataset contains 100,000 explicit ratings on a scale of (1-5) from 943 users

on 1,682 movies. Each user at least rated 20 movies from September 19, 1997 through April 22, 1998.
1https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/
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• Movielens-1M2: This dataset includes 1M explicit feedback (i.e. ratings) made by 6,040 anonymous

users on 3,900 distinct movies from 04/2000 to 02/2003.

• Netflix [7]: This dataset has around 100 million interactions, 480,000 users, and nearly 18,000 movies

rated between 1998 to 2005. We pre-processed the dataset and selected 6,042 users with user-item

interactions from 01/2002 to 12/2005.

Further, we used competitive baselines:

• Dynamic models: timeSVD++ [45] , and CKF [27]

• Sequential models: CASER [78], SASRec [39], BERT4Rec [74], S3-Rec [97], and CL4SRec [88]

• Graph-based models: NGCF [84] and LightGCN [32]

• ODE-based models: LT-OCF [14], and GRU-ODE [29]

C.5 Experimental Setup

We set up the sequential recommendation models adopting next-item recommendation tasks, which were

used in [74]. We first split users 70% into train and 30% in test. For each user, we leverage the fixed

sequence length and hold out the next item of the behavior sequence as the target item. We follow the

standard strategy in [74] for easy and fair evaluation. We leverage the actual time of interactions (in UNIX

timestamp) to provide fine-grained user evolution.

C.6 Ablation Study

We perform an ablation study on the impact of hyperparameters (λ, η, ζ) and embedding size (d).

Evidential Regularization Parameter. One of the key hyperparameters of the E-NSDE model is the

regularizer constant (λ) for the evidential learning. We cross-validated this parameter with empirical results

of the model for the different λ values in two datasets as shown in Table C.2. From the table, our model

achieves the best performance in both datasets with λ = 0.001.
2https://grouplens.org/datasets/movielens/1M/

https://grouplens.org/datasets/movielens/1M/
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(b) Uncertainty-aware rating
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(c) WBPR loss

Figure C.1: Average nDCG@5 plot for different embedding sizes, and balancing factors.

Table C.2: Average P@5 and nDCG@5 for E-NSDE with different regularizer values

Regularizer MovieLens 1M Netflix
(λ) P@5 nDCG@5 P@5 nDCG@5
0 0.4236 0.3786 0.4022 0.3574

0.0001 0.4412 0.3914 0.4134 0.3615
0.001 0.4551 0.3982 0.4194 0.3637
0.01 0.4518 0.3942 0.4096 0.3605
0.1 0.4224 0.3756 0.4064 0.3586
1 0.4116 0.3711 0.3923 0.3502

Embedding Dimension. We generate user and item embeddings using the embedding network. We per-

form a grid search for the embedding dimension (d) of the user and item representation in E-NSDE model

as shown in Figure C.1a. From the plot, it shows that E-NSDE has the best performance with d=64.

Balancing Factors. We leverage grid search on uncertainty-aware ranking factor η, and WBPR loss bal-

ancing factor ζ on three datasets as shown in Figure C.1b and Figure C.1c respectively. From the plot, it

shows a clear advantage with η=0.01, which indicates that the uncertainty-aware exploration component

takes an effective role in providing the best performance for our proposed E-NSED model. Similarly, for ζ

balancing factor integrated overall loss has the best performance when it is equal to 0.001.
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