
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

11-13-2023 

BioDOV: A Tool Used to Encourage Discovery in Bioinformatics BioDOV: A Tool Used to Encourage Discovery in Bioinformatics 

Through Gamification Through Gamification 

Gregory D. Johnson Jr. 
gdj5109@g.rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Johnson, Gregory D. Jr., "BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through 
Gamification" (2023). Thesis. Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11618?utm_source=repository.rit.edu%2Ftheses%2F11618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 1 

 

BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 

Gregory D. Johnson Jr 

Rochester Institute of Technology 

 

Committee Members 

Dr. Gary Skuse 

Dr. Gordon Broderick 

Dr. Dina Newman 

 

A Thesis submitted in Partial Fulfillment of the Requirements of the  

Degree of Master of Science in Bioinformatics 

Thomas H. Gosnell School of Life Science 

College of Science 

 

 

Rochester Institute of Technology 

Rochester, NY 

November 13, 2023 

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 2 

Abstract 

Expressing big data in a meaningful manner is exceptionally difficult. Scientists often struggle 

with the visualization of data due to several limitations. Currently, many scientists use two-

dimensional figures to display and analyze meaningful data. However, I believe using game 

design theory and game technologies, we can create more robust visualizations. These 

visualizations will allow scientists to easily communicate science to the masses and make better 

discoveries. Therefore, we introduce BioDOV (Biological Data Oriented Visualization). This tool 

will utilize game design principles to expand upon current visualization methods in the scientific 

community. Through this proof of concept, we will create the groundwork for better visualization 

technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 3 

Table of Contents 

Limitations of Current Approaches ................................................................................. 5 

Background ..................................................................................................................... 8 

Video Games ..................................................................................................................11 

Questions to Answer ..................................................................................................... 13 

The Hypothesis ............................................................................................................. 14 

Gene Networks.............................................................................................................. 15 

Cytokine Storm Use Cases............................................................................................ 16 

Materials and Methods ...................................................................................................... 17 

Game Elements ............................................................................................................. 17 

Gameplay ...................................................................................................................... 18 

Level Design ................................................................................................................. 19 

Art and Audio ................................................................................................................ 19 

Story and Characters ..................................................................................................... 19 

Medical Objective vs. Game Objective ........................................................................ 19 

Unity Engine ................................................................................................................. 20 

Code Architecture ......................................................................................................... 21 

Event-Based Architecture ............................................................................................. 22 

Class Architecture ......................................................................................................... 27 

Command Pattern.......................................................................................................... 34 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 4 

Other Supporting Classes .............................................................................................. 38 

Input Events .................................................................................................................. 39 

Network Extraction and State Transition Modeling ..................................................... 41 

Network Extraction ................................................................................................... 44 

State Transition Model .............................................................................................. 45 

Monobehaviors, Classes, and Test-Driven Development (TDD) ................................. 48 

Cytokine Data ............................................................................................................... 49 

Results ............................................................................................................................... 52 

2D vs 3D data................................................................................................................ 53 

Understanding the Game............................................................................................... 55 

Why Gamification Worked ........................................................................................... 56 

Discussion ......................................................................................................................... 57 

Code Availability .............................................................................................................. 63 

References ......................................................................................................................... 64 

 

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 5 

BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 

Bioinformatics is an important field of discovery that will enable scientists and clinicians 

to better understand biological processes and their applications in medicine. Clinicians require 

bioinformaticians to assemble and present complex data for deep understanding. You can only 

interpret so much of the collected data. 2-D graphs and figures only allow clinicians to see from 

a fixed view. So, the question becomes, is there a way bioinformaticians can present data that 

allows for deeper dimensionality? This is where game design theory can be of use. We can use 

game design theory to change how individuals conceptualize and visualize information. We can 

take advantage of all the research conducted through video games and structure it to work with 

biological data. 

Limitations of Current Approaches 

 Researchers have used games to display complex research educationally many times 

before. It is almost impossible to simplify the structure and dynamics of macromolecules, so it is 

essential to have many other scientific disciplines to assist (Kadir et al., 2021). Using games is a 

better way to illustrate the data from other scientific disciplines. This will allow scientists to 

make more profound deductions, and laymen to better understand science. Furthermore, many 

industries are starting to understand the potential of game engines. 

 The University of British Columbia used this methodology to portray its scientific 

findings to non-scientists. Using the Blender Game Engine, they have produced a simulation 

called OcenaViz (Steenbeek et al., 2021). Through their endeavors, they successfully constructed 

a brilliant example of marine-life ecosystems (Figure 1). They could communicate science to the 

masses by displaying this simulation. With the power game engines have, it’s no wonder 

scientists and other industry specialists are beginning to use them. Big car companies such as 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 6 

Ford are beginning to use unreal engines due to the power and beauty of the graphics. It has even 

been used to craft exciting movies. So, what is stopping scientists from wielding the power of 

games? To answer that question, let us look at some pitfalls of 2D simulations of biological data.  

Figure 1: This is OceanViz. We are using this as an inspiration for the tool we plan to develop.   

 

Cytoscape (https://cytoscape.org/), CellNetVis (https://github.com/heberleh/cellnetvis), 

and Coremine (https://www.coremine.com/) can provide crucial maps of related information. 

They can allow you to create maps of biological information to find references and relations of 

certain data. The web tool, CellNetVis can create a fascinating simulation that helps scientists 

research biological networks (Heberle et al., 2017) (Figure 2). Being able to increase our 

knowledge of cellular components dynamically will intrigue anyone. When you begin to look 

into the future, you must ask, is this future proof? A 2D simulation can only provide limited 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 7 

information, especially considering the limits of lower dimensionality. When Dimensions and 

layers of information are added, you can visualize data that was never seen. 

 

Figure 2: A visualization of CellNetVis, the web tool. It’s a dynamic 2D simulation that shows how cells interact.  

Organisms are three-dimensional and the creation of 3D visualization tools will aid 

researchers and scientists alike. If the Game community constantly pushes for better optimization 

strategies, better renderer graphics, and ways to teach end-users while playing their game, why 

can’t scientists do the same (Lv et al., 2013)? There are so many multidisciplinary fields that are 

required when creating a game.  From programmers to artists, they are all required to make the 

game great. Scientists will be able to answer many unanswered questions with the creation of a 

biological visualization such as this.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 8 

Even with all this information and all the questions we can answer, the most relevant 

concern is how we visualize the data. How do scientists and non-science individuals understand 

the data alike? Is it possible to create a system that will allow scientists to expand their 

knowledge in ways they never have before? As we explore this idea of visualization this question 

will be answered. Then we will be able to acknowledge the strengths and weaknesses of this 

approach. Through proper research of visualization methodologies and deeper understanding, we 

can truly make a difference.  

In this paper, we will research by exploring molecular interactions revealed by cytokine 

storms. The cytokine storm interactions result from SARS-COV-2. We will accomplish this by 

using successful and previously tested tools and utilizing current visualization technology to 

study and analyze failures and make sustainable improvements. 

Background 

Literature often describes gamification as many tools used to engage participants. Users 

can experience innovative ideologies based on the use of the software and how developers use it. 

Gamifying school environments will keep students more engaged and willing to learn. When 

applied to business environments workers become more motivated and pleased to work. If real 

life causes boredom, anxiety, moral issues, and other pressing issues, why don’t we just structure 

life closer to that of a game? Games are consistent and efficient sources of joyous experiences, so 

why don’t we use them to make our lives more enjoyable (McGonigal, 2011)? McGonigal 

explains through literature that gamification can improve the enjoyment of life and allow us to 

work to our full potential. Therefore, intrinsic rewards can aid in teaching individuals by keeping 

them happy. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 9 

 Zhihan Lv et al. explored how we can use video games to make better visualizations. 

Unity3D provides an easy-to-use interface to develop 3D applications using JavaScript, Boo, and 

CSharp code. Reflecting on how they used Unity to create a visualization and how powerful 

game engines are will advance the field. And, with all the features that were already available in 

Unity and the amazing community, it was only a matter of time before they could fully 

understand the potential of Unity. Massive success has been created through crowdsourcing big 

data and combining biology and game development (Lv et al., 2013). Looking at McGonigal 

ideals, she believes that games help generate enjoyment. With McGonigal's ideas, we can create 

a remarkable tool to showcase beautiful visualizations. Companies have created massive 3D 

simulations with McGonigal's ideals.  

Oceanviz is a 3D simulation of underwater environments. They created Oceanviz to deal 

with the challenges created by fisheries (Steenbeek et al., 2021). This simulation allows users to 

directly see marine ecosystems in an environment that closely resembles ecosystems. 

Programmers and artists were required to create this project. What’s unique about this is the idea 

of a 3D simulation compared to that of 2D. 3D simulations show much more information and do 

not falter from information overload. Information overload occurs when audiences lose track of 

overarching questions due to the exposure of too many details (Steenbeek et al., 2021). An 

ecosystem will have many events occurring in it. This makes it harder for users to see this in 2D 

space or as static images. A great example of this is the simulation tool CellNetVis. 

CellNetVis is an open-source software created in JavaScript and Hyper Text Markup 

Language (HTML). CellNetVis was developed as a plugin for Cytoscape but was eventually 

created to be a tool (Heberle et al., 2017). For a normal understanding of biological networks, or 

a quick understanding, this tool is perfect. However, when we get data that is unknown and has 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 10 

no clear patterns, two-dimensional data becomes useless. A 2D Graph can show basic expression 

information of genes and proteins. However, it would be challenging to understand their 

interactions. The human body is complex and vast, how could a 2D static visualization or even 

dynamic simulation describe it? This is why being able to describe the pitfalls of this tool would 

be useful in conceptualizing the idea of dynamic 3D simulations.  

Nanoscape is a dynamic simulation that simulates cell environments (Kadir et al., 2021). 

The only issue with tools like Nanoscape and Oceanviz is how they visualize information. 

Showing a 3D simulation of environments is hard to accomplish, but it is even harder to display 

information adequately. Looking at a simulation can provide rich data, but numerous people 

don’t know anything about cells, genes, or even marine ecosystems. Before one creates the tool 

or simulation, one must ask themselves, who is your target audience? Most of these tools are 

created to display the power of gamification but do not target an audience. During this research, 

the question will be, how do we tailor this visualization towards scientists and non-scientists 

alike?  Conversely, there was one piece of literature that used newer technology to visualize the 

information a bit differently.  

VRNetzer is a Virtual Reality (VR) platform that displays a network representation of big 

data. They were able to create powerful visualizations of biological data with Unreal Engine and 

other tools (Pirch et al., 2021). This sounds like the other simulations or visualization but uses 

VR to display web-like images or graphs. VRNetzer is designed modularly, which allows for 

user customization and extensions for data analysis.  It also allowed for visualization to be 

displayed separately (Pirch et al., 2021). Thus, although it still shows 2D representation in 3D 

space, it allows for fully dynamic data and visualizations. It furthermore gives users the power to 

customize this program as they see fit. This tool has a problem with data expressed in tabular and 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 11 

old formats. VRNetzer can be prevalent because of how efficiently it can display data. However, 

VRNetzer fails to use Virtual Reality meaningfully.  

What we can learn from these tools is how powerful but unpolished they are. If we could 

create a more dynamic feel to VRNetzer, and still allow for the mass amount of customization, 

we could visualize data in a way that has rarely been achieved. If we took lessons from 

Nanoscape and OceanViz to develop a tool that uses these simulations and allows scientists and 

non-scientists to understand, we would have an exemplary tool. Additionally, by adding more 

enjoyable features that allowed individuals to become more engaged, we could turn this from a 

good tool to a successful tool. 

 

Figure 3: This chart shows each simulation and tool described in the literature. 

 

Video Games 

 Video games are works created by large teams to entice millions of people. However, a 

game does not have to necessarily be in the form of a traditional video game. We can gamify 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 12 

certain tasks using a technique known as gamification. Gamification is the psychological use of 

intrinsic rewards, created by happiness engineers to create an application that allows fun failures, 

increased motivation, and rewarding work through the self-creation of fiero and eustress 

(McGonigal, 2011). This quote directly describes the psychology of gamification. We want to 

create visualizations that keep people playing and motivated. This is an extremely hard task to 

implement properly. Most people can immediately tell the difference between a game that is fun 

and a game that is not fun. The difference between the two can be equivalent to a canyon, or as 

simple as walking. There are no right or wrong answers, and that is what makes it difficult.  

This is why I have created a paradigm that follows three principles to create a 

visualization that appeals to scientists but also keeps the non-scientific crew engaged. The pillars 

are research, education, and technology. The research pillar focuses on the improvement of 

research. Using Gamification to speed up the way scientists research. The education pillar gives 

us the insight to create an educational tool. Making sure the tool itself can be used to teach 

individuals. The pillar of technology is concentrated on how we create the tool. Using the proper 

techniques to create a robust and manageable tool. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 13 

  

Figure 4: This is the simulation data currently being used in our prototype. This data represents the interactions between genes by showing how 

they are up and downregulated. This figure is a good representation of how difficult it is to get lost in data and shows the need for more 3D 

visualizations. Morris et al. paper explains more about the pathways of this graph. 

Questions to Answer 

The basis of this project has been stated many times. We want to create a system that 

allows for engaging research and stunning visualizations. However, some questions must be 

answered to understand why we believe our design is correct. One of the most important 

questions when designing research tools is explainability. How does our game explain and 

express gene/protein expression? Does it make sense when people find solutions? The core of 

our game is to allow individuals to create their paths and find unique solutions to the puzzle. 

Therefore, any dataset that is used in this project that users solve will give them ownership of 

the solution. They used tools available inside the game to solve the problem. This also allows 

them to document their steps for coming up with a solution. It's also important to understand 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 14 

exactly what a game is. A game is a combination of four unique systems: a goal, rules, a 

feedback system, and voluntary participation (McGonigal, 2011) (Figure 3). Using these 

systems will allow us to answer the question, is this a game, or a “glorified game.”  

Arguably the most important question to answer is why. Why are we creating this 

game? Do we need to create better ways to visualize big data? The answer to this is relatively 

simple, we want to break down the wall between scientists and non-scientists, the wall 

between amateurs and professionals. After living through the COVID-19 pandemic, I am sure 

most people understand the tension between scientists and non-scientists. Scientists were 

branded as fakes, frauds, political, etc. It truly was the pandemic of misinformation, but if we 

were able to create something that non-scientists can use with scientists, we could break the 

wall that separates the two. This would give non-scientists the potential to replicate everything 

scientists do to understand science better.  

The Hypothesis 

 Why do we think games would work so well for scientific communication? What 

exactly is gamification? Gamification is the psychological use of intrinsic rewards, created by 

happiness engineers to create an application that allows fun failures, increased motivation, and 

rewarding work through the self-creation of fiero and eustress (McGonigal, 2011). If 

gamification has been used time and time again to create joyful and meaningful experiences, 

let’s take advantage of this. We plan to create a simulation that will allow users to transform 

their 2D data into a 3D visualization. This proof of concept will allow scientists in the field to 

make stronger guests about their data and allow non-scientists to understand it. Using several 

tools, we can create something efficient that has the potential to be extended. It may not work 

for every case but creating a proof of concept will allow scientists to understand the potential 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 15 

strength of gamification. Using McGonigal’s ideas as a base for what a game is, we can stay 

within the bounds of a game to truly demonstrate how powerful gamification is. We will start 

the creation of this proof of concept by turning Figure 4 into a 3D representation.  

Gene Networks 

A strong component of this project is the idea of gene networks. A gene network is a 

collection of genes and reflections of the relationships between them. They can be used to show 

relationships between proteins and RNA as well. Gene networks also regulate molecular 

genetics, biochemistry, and physical processes (Kolchanov et al., 2000). This gives us a deeper 

understanding of the downstream effects of genes. Look at Figure 4, this is a gene network 

related to cytokine storm. It shows the relationship between genes and how they affect each 

other. If one gene is upregulated, you can make a prediction (using the figure), to understand 

how other genes will be affected in the network. Biologically, you can understand more about the 

processes and functions of these genes. With an understanding of that, you could make 

inferences about why this gene being differentially regulated, affects another gene. It allows 

scientists to understand biology more deeply. And, using computational technologies, we can use 

analysis techniques to deeply analyze these networks to understand more (Kolchanov et al., 

2000). 

For this research, we wanted to expand upon the ideas of gene networks. Traditional, 

gene networks are displayed in 2D figures and shapes. They are novel and display expressive 

information but are limited by the way they are developed. So, by transforming it into a three-

dimensional figure (or visualization), we can communicate and research the network more easily. 

Therefore, people would be able to see the downstream effects of other genes, and they could 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 16 

make predictions about the functions, processes, and jobs of the genes as they affect others in the 

network.     

Cytokine Storm Use Cases 

Cytokine storm is when the immune system becomes overactive. Immune cells and 

cytokines are hyperactive, and your inflammatory response system flares out of control. 

Cytokine Storm tends to occur in many influenza-like diseases (Tisoncik et al., 2012). The 

dataset we are using is based on cytokine storm and acute respiratory distress (ARD). The 

cytokine storm dataset displays nineteen immune mediators and their involvement with cytokine 

storm (Morris et al., 2020). This allows us to see the relationship between the immune mediators 

and their involvement in cytokine storms based on the severity of COVID-19. Morris et al., 

created a 2D figure to display all the data, but by using more gamified methods have the 

potential to answer additional questions that were not necessarily answered. 

In a 3D figure, we can see relationships in a much easier and dynamic manner. We can 

understand more about the information and explain it more easily. Morris et al. were able to 

make impressive predictions, but what if we had the potential to make predictions with the click 

of a button? What if we could program in statistical methods and other ideologies to understand 

the network more deeply? Since we propose to convert a 2D network into a 3D network, we 

already are a step ahead. We can see the downstream effects of immune mediators and 

understand more about why this happens before we test it inside the lab. Let us see how we were 

able to make a tool as powerful as this.  

  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 17 

Materials and Methods 

 To develop software as complex as this we had to employ the use of multiple tools. We 

used the Unity Engine Game Engine for the development of the tool. Inside this engine, we used 

many statistical methods to display relationships and to create biological networks. We also had 

to create code in a neat and modular manner for extension in the future. Since the Unity Engine 

is a game engine, we were able to easily add gamification methods and create a simple proof of 

concept that can be used for future development. Before we talk about the use of unity, let’s 

describe how the game was designed.  

Game Elements 

 Players will explore the phenomenal world of genetics through gene expression. The idea 

is to give users the ability to play around with the expression level of certain genes. These genes 

will affect other genes depending on how highly or lowly expressed they are. Furthermore, we 

will accomplish this using an approach based on the flow of electricity. Using the high 

throughput of electricity depending on how strongly expressed certain genes are and extruding 

the areas will allow show users which genes are the most expressed.  

 The game will be composed into levels based on a threshold meter. The threshold meter 

will work like a gauge. The idea for each level is to require users to reach a minimum threshold 

to accomplish the level. Down the line, there is an opportunity to add higher points based on how 

full your gauge is. The idea is to use extrusion to display how expressed certain genes are. If you 

look at Figure 5 you can see extrusion on the motherboard image. We are going to take 

advantage of this idea to represent gene expression levels. While the flow of electricity (the 

lines), will represent what genes are connected. This gives us the flexibility to make complex 

levels for teaching, and the ability to create a tool that allows experts to make rational decisions. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 18 

 

  
Figure 5: This image provided inspiration for how the game will look. The motherboard shows certain integrated chips taller than 
others and shows pathways similar to a typical motherboard.  

 

 
Figure 6: A 2D image of a flow chart. This will show players a more simplistic view of the current connections they are forming. This 
gives players a more simplistic chart to make decisions. 
 
Gameplay 

The objective of the game is to educate players and help researchers conduct research 

more engagingly. Gameplaywise, players will be mostly using point-and-click interaction to 

move around pieces on a motherboard and modify genes. Depending on which genes are pressed 

will determine the expression level of the pressed gene (if the gene state becomes zero, no 

expression, at gene state one, highly expressed). Other genes that are affected and connected to 

that gene will have changed expression levels as well. This can cause a domino effect if the user 

is not careful. To help the user see exactly what is being modified by the changes, we are 

introducing a map of expression. This map will showcase the levels of expressions and which 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 19 

pathways are more heightened than others. The gameplay is relatively simple, but the execution 

is the most important part of this project. To be able to firmly teach individuals while keeping 

them engaged will be difficult, be manageable if done correctly. 

Level Design 

The levels will be manually created at the beginning of the project. We will develop them 

by using scriptable objects and modular objects. This will allow for simple 3D structures of our 

envisioned level. Going with the circuit board approach, we will create nodes at different 

locations based on the level a player is on. This will force players to think creatively about the 

problem at hand. We want to increase the difficulty level after each level to impose a challenge 

on the player. But we also want players to have ownership of their solution, as it could be used in 

future research. 

Art and Audio 

Due to the project's timeline, it would be impossible to develop or find audio for the 

project. We will be using stock art such as 3D cubes. We are building a proof of concept; 

therefore, we need to efficiently showcase it.  

Story and Characters 

There is no story based on the project. As it is an educational project. The story of the 

project is most closely related to how you solve the problem. How users can develop solutions to 

immune response drugs in a coronavirus-induced cytokine storm is the story. 

Medical Objective vs. Game Objective 

What are we going to accomplish with this project? From a medical point of view, we 

want to proliferate the speed at which we can analyze data. The quicker we can visualize the 

data, the sooner we can make inferences and diagnose problems based on the results. And, with a 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 20 

project as experimental as this, the sky is the limit. But there are a few steps that must be taken. 

This is where the Game Objective comes into play. The reason why this is a game is to promote 

engagement. The development of this tool does not necessarily expand upon research or move 

immovable mountains, but it has the potential to. Therefore, if we use game theory properly, we 

can motivate players, engage players, and convey complex scientific data to individuals who do 

not understand it. So, by mixing these objectives, we can effectively create software that 

educates the masses and aids in the research of complex topics.  

Unity Engine  

 The Unity Game Engine is powerful and has been used for the creation of a multitude of 

video games. In our case, we used Unity as a base for the creation of our tool. Unity has a visual 

interface and numerous preset objects already included (Figure 7). In Unity, an object that is seen 

inside of this visual interface is called a Game Object (GO). GOs are what makes Unity, Unity. 

We can manipulate and change these in the base interface. This includes scaling, rotating, and 

changing their position in a 3D space. Furthermore, we can also manipulate game objects using 

scripts.  

Unity uses C# as a scripting language. This allows us to create C# code to manipulate 

GOs dynamically in Code. Moreover, every GO has a set of “Components” attached to them. 

Unity uses a component-based system to control how we interact with GOs. This includes the 

transform and material components. The Transform component allows us to change the rotation, 

scale, and position in a 3D space, and the material component allows us to change the material 

(such as the color, and resolution). What’s more, is that we can also create our components to 

manipulate the GOs and implement our logic in Unity. If we wanted to make a component that 

would move an object to the right every frame, we could create a script or “MonoBehaviour” to 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 21 

add some vector to the GO position every frame. It is very simple and easy to understand after 

continued use. Therefore, using this as the base to create a proof of concept was an easy choice.  

 

Figure 7: An image of how the Unity engine looks. 

 

Code Architecture 

 The plan was to create software that could be extended and used for future research. To 

accomplish this, we had to create software that was clean, maintainable, easy to read, and easy to 

extend. The SOLID principles helped us immensely when developing this software. In the 

SOLID principles, S stands for Single Responsibility Principle, O stands for Open and Close 

Principle, L stands for Liskov Substitution Principle, I stands for Interface Segregation Principle, 

and D stands for Dependency Inversion Principle. In short, the Single Responsibility Principle 

tells us that each class should only have one responsibility (Ingeno, 2018). Essentially every time 

you create a class, it should only do one thing. Therefore, when you need to make changes, the 

only thing that it affects is itself. This helps prevent downstream issues inside of the code base. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 22 

 The Open and Close Principle tells us that classes should be open for modification but 

closed for an extension. Once you create the final version of your method or class, you should 

not have to modify the class itself anymore because it is well-tested.  However, the class should 

allow you the opportunity to extend new functionality to it. This reduces the number of changes 

you must make to existing code and allows you to quickly add new features. The Liskov 

Substitution Principle states that subtypes should be able to be substitutable from their base class. 

So, if class A is inheriting class B, class A should be a perfect substitute for class B without 

having any issues.  

The Interface Segregation Principle states that we should have multiple interfaces instead 

of one big interface. Essentially ensure that they only have the functionality required.  An 

interface is a contract with the compiler that states that the class or object will provide certain 

functionality. Therefore, ensuring that it only has the features it needs reduces the amount of 

error. Finally, the Dependency Inversion Principle tells us how to deal with tightly coupled 

classes. A tightly coupled class is a class that depends on others to work. It’s a direct violation of 

the Single Responsibility Principle also because the class has more than one responsibility. 

Therefore, it tells us that classes should depend on abstraction or be giving the information they 

need upfront instead of directly referencing each other. And, because I was developing decent-

sized software I had to follow a few rules to keep my code readable and maintainable. When it 

came to architecture, I used an event-based approach. 

Event-Based Architecture 

 Event-based coding architectures are common, and even more common in the game 

community. This is heavily due to the need to create performant and efficient games. In Unity, if 

you want to detect key input, most will do it using the Update Function. The Update function is 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 23 

called every frame, and you are allowed to check for changes in the world state through it. This 

function is a double-edged sword, especially for the newer programmers. It is very easy to use 

and allows for quick iterations on small projects, but as the project grows it becomes very 

oversaturated. To many using the Update function will cause a massive amount of overhead, and 

a lot of newer developers do not know how to deal with this. This is why I created an event 

architecture. The C# Language already allows for the creation of events or as they call them, 

delegates, and Actions. Delegates are like function pointers, where they are initialized by being 

referenced to a function (Figure 8).  You can use them to call functions and pass them around like 

variables. Actions, the approach I used, is also created similarly. Like a function pointer but can 

be more flexible and easier to use.   



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 24 

namespace _Scripts.ScriptableObjects 
{ 
    public class ActionEventClass 
    { 
        //Actions 
        public System.Action action; 
         
        //Delegates 
        delegate void OnCalled(); 
         
        //This is how we invoke Actions 
        public void CallAction() 
        { 
            action.Invoke(); 
        } 
        public void OnAction() 
        { 
            System.Console.Write("Hello from actions"); 
        } 
 
        //This is how we invoke delegates 
        public void CallDelegate() 
        { 
            OnCalled onCalledDelegate = new OnCalled(OnEventCalled); 
            onCalledDelegate.Invoke(); 
        } 
        public void OnEventCalled() 
        {    
            System.Console.Write("Hello from delegates"); 
        } 
    } 
} 
 

 

Figure 8: This figure represents the differences between actions and delegates. They can be used interchangeably, but they have different 

properties.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 25 

using System; 
using System.Collections.Generic; 
using _Scripts.Interface; 
using UnityEngine; 
 
namespace _Scripts.ScriptableObjects 
{ 
    [CreateAssetMenu(fileName = "BaseEvents", menuName = 
"ScriptableObjects/CreateBaseEvent", order = 1)] 
    public class BaseEventScriptableObject : ScriptableObject 
    { 
        private List<IEventReactor> _eventsToRaise = new 
List<IEventReactor>(); 
        //Objects that are called when the OnEventRaised Function is called 
        public void Subscribe(IEventReactor eventReactor) 
        { 
            _eventsToRaise.Add(eventReactor); 
        } 
        //Remove objects to be called from the OnEventRaised Function 
        public void UnSubscribe(IEventReactor eventReactor) 
        { 
            _eventsToRaise?.Remove(eventReactor); 
        } 
        //Raises the events, and calls the event function 
        public void OnEventRaised(object objectToSend) 
        { 
            foreach (IEventReactor eventReactor in _eventsToRaise) 
            { 
                eventReactor.Execute(objectToSend); 
            } 
        } 
    } 
} 
 

 

Figure 9: This figure shows the basic code used to create our event architecture. By combining a concept in unity called scriptable objects and a 

basic subscribe and unsubscribe system, we were able to create a simple event system. From this, you can also see that the 

BaseEventScriptablObject class inherits the ScriptableObject (SO), class.  

 For this project created a class that would control the flow of events. We used an event-

based approach to declare and execute events. To accomplish this, we created a simple class 

called EventBase (Figure 9). However, to create a standalone object that did not have to be 

declared inside of the game at runtime, we created an object known as a ScriptableObject (SO). 

In Unity, a SO is a data container that is used to store information that does not have to be 

created on runtime. It is like a static database instance. So, using this with the EventBase class 

allowed us to create a standalone database instance that is not affected by anything inside of the 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 26 

game. The EventBase Object has three functions: Subscribe, Unsubscribe, and OnEventRaised. It 

also stores a list of objects known as IEventReactors. The IEventReactor is an interface that 

contains the function Execute (Figure 10). This means any class that inherits the IEventReactor 

interface will have an execute function. So, when users wanted to subscribe to the EventBase 

class, the class would send a parameter of itself (since it inherits IEventReactor), and that would 

be added to the IEventReactor list. Consequently, if they wanted to be removed from the list, 

they would call Unsubscribe. From there, any class that has a reference to this SO would be able 

to call the OnEventRaised function. This would raise (or call) all the functions that are added to 

the IEventReactor list. What's more, is that because I can create many instances of this outside of 

runtime, I can have infinitely many BaseEvent types to control the event flow. So, if I wanted 

only one to control the flow from data insertion to data mapping, and another for another event, 

we could do that! In our case, you can see how we handled the flow of our events in the figures 

below (Figure 10).  

namespace _Scripts.Interface 
{ 
    public interface IEventReactor 
    {  
        public void Execute(object obj); 
    } 
} 
 

 

Figure 10: This is the basic structure of the creation of the IEventReactor Interface. It forces classes to inherit an Execute function.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 27 

 

Figure 11: The basic flow of code. It displays in a flowchart how each task is done. This is how we handled our event execution. 
 

Class Architecture 

 In cadence with the SOLID principles, we also have a myriad of classes that each affect 

the simulation. Each main class is as follows, DataInserter, LevelController, SimulationManager, 

and Simulator. Each one of these has a distinct purpose and controls one part of the code. Many 

supporting classes take upon smaller roles in the class as well to maintain code continuity. Let's 

delve deeper into the main classes.  

 The DataInserter class is responsible for the insertion of data. It consists of two functions, 

the Start Function, and the OnInsertEvent function. The Start function is a built-in Unity function 

that is always called upon object creation. MonoBehaviours are objects that can be added to GOs 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 28 

and modify them. We used the Start function to call the OnInsertEvent function to start the event 

flow. Once the DataInserter class finishes reading the data, we use the SO event-based 

architecture to invoke an event. This event invokes the LevelController class. 

 The LevelController class is responsible for creating levels. In the case of this game, a 

level is displayed by the number of nodes on the screen. The more nodes that are displayed, the 

higher the level and the more complex it is to advance. The LevelController class has four 

functions, Awake, Init (Initialize), CreateLevel, and Execute. Like the Start function, the Awake 

function is called the moment an object is initialized, however, the Awake function is called 

before the Start function. The Init function is how we initialize the required data for the function 

to work properly. The CreateLevel function is used to create the level by determining how many 

nodes there are. Finally, the execute function is the event function. Because the LevelCreator 

class inherits the IEventReactor interface, it is required to have this function to react to events. 

As you can imagine, there is more that goes on in the background to ensure all the data for the 

level creation class is being read properly. Therefore, we have a few supporting classes to help, 

the LevelCreator class, and the LevelDataScriptableObject class.  

The LevelCreator is a simple class that is only responsible for creating a class based on 

the data inserted from the DataInserter. It has a constructor to initialize the class, and a function 

named CreateLevel. The CreateLevel function creates several nodes based on the number of data 

it reads for the CSV class (Figure 12). This was created to ensure there is no violation of the 

SOLID principles. The LevelDataScriptableObject class is a class that references the SO class. 

This allows it to be an editable instance inside of the program. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 29 

namespace _Scripts.LevelCreation 
{ 
    public class LevelCreator 
    { 
        private readonly Csv _csv; 
        public LevelCreator(Csv csv) 
        { 
            _csv = csv; 
        } 
        public Csv CreateLevel(LevelConfig config) 
        { 
            Csv csv = new Csv(); 
            for (int i = 0; i < config.numberOfNodes; i++) 
            { 
                CsvNode node = _csv.Data[i]; 
                node.CurrentState = config.nodeStateState; 
                csv.Data.Add(node); 
            } 
            return csv; 
        } 
    } 
} 
 

 

Figure 12: A representation of how we constructed the level creation class. It was created to be a standalone class that can be easily 

tested with test-driven development methodologies.  

 

 We can modify and change the values of the SO outside of the program to change the 

output of variables inside the engine. This maintains the separation of code and allows us to 

make changes without writing more code. In the case of LevelDataScritableObject, it is used to 

determine how we create the levels. It creates a public instance of the LevelConfig class. The 

LevelConfig class is a class I created to hold three variables. The number of nodes to create, the 

threshold to complete the level, and the states of the nodes (Figure 13). This class is declared 

inside the SO object as a public class to allow for individual instances of the class. Therefore, we 

can create many instances of this SO object and store them inside of a list. The list then is read 

like a queue, and once you fulfill the requirements to pass the level (threshold meter), you can 

continue to the next level.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 30 

namespace _Scripts.LevelCreation 
{ 
    [System.Serializable] 
    public class LevelConfig 
    { 
        public int numberOfNodes; // Nodes to be created 
        public float thresholdToCompleteLevel; // Threshold of nodes that 
need to be at a stable state to complete the level 
        public int nodeStateState; // The start state of all the nodes 
    } 
} 
namespace _Scripts.LevelCreation 
{ 
    [CreateAssetMenu(fileName = "LevelData", menuName = 
"ScriptableObjects/LevelData", order = 1)] 
    public class LevelDataScriptableObject : ScriptableObject 
    { 
        [SerializeField] 
        public LevelConfig levelConfig; 
    } 
} 
 

 

Figure 13: This is the configuration of how we create levels. Just define these values and a different level will be created. You can also 

see the LevelDataScriptableObject class. This class can be directly created in unity as an object and can be easily modified and used.  

 

The SimulationonManager class is used to manage the simulations. There are two kinds 

of simulation inside of the code base, the DefaultSimulation, and the CustomSimulation. The 

Default simulation is used to run simulations in default settings, while the custom allows for 

more modification. The DefaultSimulation classes inherit the ISimulator interface (Figure 14). It 

also contains eight functions and a constructor. The constructor requires a SimulationConfig 

object. This object keeps track of all changes to the data visualizations and allows us to make 

changes. The functions of the DefaultSimulation class are as follows: Simulate, Initialize, 

ExecuteCommand, ToDocumentation, UndoCommand, SetAsCurrentSimulator, Reset, and 

FinishSimulaton.   Simulate is a public function that initializes the data. It requires a 

SimulationConfig to be passed along with it and it will call the Initialize function. The Initialize 

function is a private function that requires a list of Simulation Objects.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 31 

SimulationObjects is a class that I created to separate object interaction from other parts 

of the code. It is used to represent each node of the data. It then creates the objects and positions 

them properly. The ExecuteCommand function controls the flow of interactions during the 

simulation. Since users can interact and modify the nodes in the visualization, we needed to 

create a pattern to allow for a higher level of separation. Therefore, we created a command 

pattern (Figure 12).  

namespace _Scripts.Interface 
{ 
    public interface ISimulator 
    { 
        public SimulationConfig Config { get; } 
        public bool Simulate(SimulationConfig config); 
        public bool ExecuteCommand(List<ICommand> commands, SimulationObject 
simulationObject); 
        public bool UndoCommand(); 
        public bool Reset(); 
        public bool FinishSimulation(); 
    } 
} 
 

 

Figure 14: The basic ISimulator Interface. Each ISimulator is required to have each one of these functions. A function to simulate the 

data do and undo commands, reset its data, and finish the simulation.  

 

 The ToDocumentation function takes advantage of a saved list of commands. It turns the 

list into a string and writes it to a document (Figure 15). This allows users to understand more 

deeply what is going on in the black box (behind the scenes). The UndoCommand function 

allows us to undo the last command we processed from the ExecuteCommand function. The 

SetAsCurrentSimulator is an event function. It is used to notify the SimulationManager that we 

have created a simulator. The Reset function is used to reset the simulator (clear all the data). The 

FinishSimulation function is used when the simulation is finished and outputs the documentation 

data, like the ToDocumentation function. To Understand this deeply, we need to investigate the 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 32 

use of the supporting classes MapSimulationObjects, the Command Programming Pattern, 

ICommands, and SimulationInvoker. 

 

Figure 15: An example of the data AutoDocumentation generates. This can be used to trace back your steps. 

MapSimulationObjects is a class that positions nodes in a three-dimensional space based 

on how closely related the nodes are. If they are related, we use space for them more closely 

together than if they are not. It also manages the creation of relationship lines. These lines are 

created using a Relationship Renderer class. The relationship renderer class only has one 

function called connect lines, and it takes two LineRenderers. It then connects those lines to 

depict a relationship. The MapSimulationObject class contains two functions: 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 33 

MapBasedOnRelationship and CleanUp. The MapBasedOnRelationship function maps the 

objects together and the CleanUp function allows us to remove the depiction of relationships and 

clean up the created lines. The CleanUp function makes it easier for us to switch between levels. 

 

Figure 16: Our modified version of an ICommand pattern. It uses the pattern for the basic structure, but to make proper modifications 

for our purposes, we had to add additional information. We needed to pass a reference of the SimulationConfig so we could change the objects in 

the scene.  

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 34 

namespace _Scripts.Commands 
{ 
    public class ClickDetectionCommand : ICommand // Concrete Commands 
    { 
 
        public SimulationData Data { get; private set; } 
        private KeyValuePair<int, double> _prevState = new KeyValuePair<int, 
double>(); 
        private string _docString; 
        public bool Execute() 
        { 
            _docString = ""; 
            SimulationData currentData = Data; 
            double[] states = Data.CurrentStates; 
            List<SimulationObject> allObjects = Data.AllCurrentObjects; 
            SimulationObject currentObject = Data.CurrentInteractedObject; 
            int index = allObjects.IndexOf(currentObject); 
            if (index == -1) 
                return false; 
            double oldVal = states[index]; 
            _prevState = new KeyValuePair<int, double>(index, oldVal); 
            double newVal = (oldVal + 1) % 3; 
            states[index] = newVal; 
            currentObject.Node.CurrentState = newVal; 
            currentData.CurrentStates = states; 
            Data = currentData; 
            _docString = $"{currentObject.Node.Name} was interacted with," + 
                              $" and stated changed from {oldVal}->{newVal}"; 
            return true; 
        } 
        public bool Undo() 
        { 
            SimulationData oldData = Data; 
            oldData.CurrentStates[_prevState.Key] = _prevState.Value; 
            Data.AllCurrentObjects[_prevState.Key].Node.CurrentState = 
_prevState.Value; 
            Data = oldData; 
            return true; 
        } 
 
        public void Set(SimulationData data) 
        { 
            Data = data; 
        } 
        public override string ToString() 
        { 
            return _docString; 
        } 
    } 
} 
 

 

Figure 17: An example of how we implemented and created command classes. We can create more commands using this structure. 

 

Command Pattern 

As we continued through the methods, there was another approach I took to maintain 

clean and scalable code. I used a programmatic pattern called the command pattern (Figure 16). 

The command pattern takes advantage of loosely coupled code to create command-like classes 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 35 

(Figure 17). It is defined as a behavioral programming pattern that allows you to encapsulate 

many requests as objects and supports undoing requests (Gamma et al., 1994). For this project, 

we used this for all our interactions. When we wanted to interact with objects, it was a command, 

this goes for changing the color and size of objects as well. We made modifications to the 

structure of the command pattern, but it works just the same. We started by creating the 

ICommand interface.  

    public interface ICommand 
    { 
        public SimulationData Data { get; } 
        public bool Execute(); 
        public bool Undo(); 
        public void Set(SimulationData data); 
    } 
} 
 

 

Figure 18: This was how we structured our command classes. They are created with the ability to execute and undo commands. We had to add 

the set function, so we knew exactly what data we were working with to modify.  

 

The ICommand interface is defined with a public variable of SimulationData and three 

functions: Execute, Undo, and Set (Figure 18). The Execute function is how we execute the 

commands, the Undo function allows us to redo the last command we called, and the Set 

function is how we acquire the data necessary to complete the commands. Most command 

patterns only require an Execute and Undo function, but in our cases, we need to modify the 

structure. Following this we needed to create an invoker to control the flow of commands. 

Therefore, we created the SimulationInvoker class (Figure 19).  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 36 

public class SimulationInvoker 
{ 
    private Stack<List<ICommand>> _commands = new Stack<List<ICommand>>(); 
    public SimulationData ExecuteCommand(List<ICommand> commands, ref 
SimulationData data) 
    { 
        foreach (var command in commands) 
        { 
            command.Set(data); 
            command.Execute(); 
            data = command.Data; 
        } 
        _commands.Push(commands); 
        return data; 
         
    } 
 
    public bool RemoveRecentCommand() 
    { 
        if (_commands.Count <= 0) 
            return false; 
        _commands.Pop(); 
        return true; 
    } 
    public bool UndoCommands(ref SimulationData data) 
    { 
        if (_commands.Count <= 0) 
            return false;  
        List<ICommand> commands = _commands.Pop(); 
        foreach (var command in commands) 
        { 
            command.Set(data); 
            command.Undo(); 
            data = command.Data; 
        } 
        return true;  
    } 
    public SimulationData UndoAllCommands(ref SimulationData data) 
    { 
        int count = _commands.Count; 
        for (int i = 0; i < count; i++) 
        { 
            List<ICommand> commands = _commands.Pop(); 
            foreach (var command in commands) 
            { 
                command.Set(data); 
                command.Undo(); 
                data = command.Data; 
            } 
        } 
 
        return data; 
    } 
} 
 

 

Figure 19: The SimulationInvoker class is responsible for the invocation of our command request. It processes them and makes the 

calls. It can also undo commands at will. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 37 

The SimulationInvoker class is responsible for the execution of command requests. It 

contains 4 functions: ExecuteCommand, RemoveReccentCommand, UndoCommand, 

UndoAllCommands. The ExecuteCommand function takes a list of commands and executes 

them all together. The RemoveReventCommand removes the latest command from the 

commands stack. The commands stack is used to hold a reference of all the events that occur. 

The UndoCommand function undoes the last command requests. It does this by removing the 

command from the stack and calling the undo command function on the objects. Lastly, the 

UndoAllCommands function removes every command that has been called. There are also four 

commands that we are using in this project: ClickDetectionCommand, ExtrudeObjectCommand, 

PredictGeneStateCommand, and ChangeColorBasedOnStateCommand.  

Every command includes the three functions and variable that was defined in the 

ICommand interface (Execute, Undo, Set). This is because each of them is defined using the 

ICommand interface. The ClickDetectionCommand gives us information and changes the state 

of the node that was recently pressed. The ChangeColorBasedOnStateCommand changes the 

color of each node based on its current state. The PredictGeneStateCommand uses statistical 

methods to predict the new states of genes based on current changes. Finally, the 

ExtrudeObjectCommand extrudes nodes based on how expressed they are. Using this invoker 

and ICommand interface, and interjoining it with my Simulator classes, I can create a command 

system that is easy to use and modify. If someone wanted to add new commands, they would 

need to create a new class (such as PrintHelloCommand) and allow it to derive from the 

ICommand interface. After filling in the functions with information relevant to how they want 

the command to function, they would then pass the command in a list to the invoker. This would 

then execute the command. Therefore, this code is easily scalable. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 38 

Other Supporting Classes 

 There are a few other classes with continued responsibilities. They are present in other 

parts of the code to maintain code integrity. They are as follows: SimulationObjects, 

SimulationObjectResponder, CameraController, CameraMovement, and CameraRotation. The 

SimulationObject is a representation of the node. It contains four functions: Init, OnPointerClick, 

OnPointerEnter, and OnPointerExit. The Init (Initialize) function initializes the function using 

the ISimulator parameter passed to it. The OnPointerClick function is used to check for mouse 

press interactions. The OnPointerEnter function checks for mouse hover events while the 

OnPointerExit event checks to detect when the mouse is not hovering over the object. The 

OnPointerClick, OnPointerEnter, and OnPointerExit functions are derived from the interfaces 

IPointerClickHandler, IPointerEnterHandler, and IPointerExitHandler. To further separate logic 

from the SimulatonObject class we had to create two other classes, GeneDataDisplay and 

SimulationObjectResponder.  

 The GeneDataDisplay contains 2 Functions and a constructor. The Constructor wants you 

to pass a datastructure of GeneDisplayInformation which contains information about the gene. 

The other two functions are the OnPointerEnter and OnPointerExit. These are used to represent 

the pointer interaction for SimulationObjects. The SimulationObjectResponder has a constructor 

and an OnClick function. The SimulationObjectResponder constructor requires an ISimulator 

and the simulation object to initialize. The OnClick function notifies the simulation manager 

about interaction (on click presses). These two classes are connected to the SimulationObject 

class so we can maintain our core code principles (SOLID).  

 The CameraController, CameraMovement, and CameraRoation classes are all responsible 

for the movement and rotation of the camera. The CameraMovement class controls the 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 39 

movement while the CameraRotation controls the rotation. Both objects are controlled by the 

CameraController class which initializes them.  

 

Figure 20: Shows the basic flow for how we handle user input. Allow users to subscribe to the action, and then we invoke the object once the 

condition is met. 

Input Events 

 We needed to construct another event system for inputs that worked with our current 

event architecture. We did not want to use commands for this event system due to the 

complexity, and the amount of data that would be saved every time we pressed the button. 

Therefore, the creation of an input event class was warranted (Figure 20).  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 40 

namespace _Scripts.Event 
{ 
    public class InputEventListener : MonoBehaviour, IEventReactor 
    { 
        public BaseEventScriptableObject inputEventScriptableObject; 
        private readonly List<IInputReceivers> _receiversList = new 
List<IInputReceivers>(); 
 
        private void Awake() 
        { 
            inputEventScriptableObject.Subscribe(this); 
        } 
        private void Update() 
        { 
            foreach (KeyCode keyCode in 
System.Enum.GetValues(typeof(KeyCode))) 
            { 
                if (Input.GetKey(keyCode)) 
                { 
                    CheckForInputEvent(keyCode); 
                } 
            } 
        } 
        private void CheckForInputEvent(KeyCode key) 
        { 
            foreach (var receiver in _receiversList) 
            { 
                if (receiver.Keys.Contains(key)) 
                { 
                    receiver.ExecuteKey(key); 
                } 
            } 
        } 
        public void Execute(object obj) 
        { 
            var inputReceivers = (IInputReceivers)obj; 
            _receiversList.Add(inputReceivers); 
        } 
    } 
} 
 

 

Figure 21: This is the class we use to create the input system. Objects can subscribe to it through the IEventReactor Structure, and the objects that 

are subscribed to the object are IInputReceivers. We then check for certain inputs and invoke those input events. 

The class we created was called InputEventListener (Figure 21). It inherited the 

IEventReactor interface and contained four functions: Awake, Update, CheckForInputEvent, and 

Execute. The awake command was used to subscribe to our BaseEventScriptableObject. The 

CheckForInputEvent function takes advantage of the newly created interface IInputReceiver. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 41 

IInputReceivers is an interface that allows objects to contain input events (Figure 22). Therefore, 

creating a list of IInputReceivers and forcing the objects to subscribe to it from the 

IEventReactor worked flawlessly. This allowed the CheckForInputEvent Function to only need 

to receive the key that was clicked last frame and check if any of the IInputReceiver object input 

keys are equal to it. The Update function would check every frame and call the 

CheckForInputEvent function to ensure the flow. The creation of this not only allows us to move 

the camera based on input interactions but if we wanted to add more events based on key inputs, 

we could easily create a new class with the IInputReceiver and have it notify the 

InputEventListener class to be added to the list.  

namespace _Scripts.Interface 
{ 
    public interface IInputReceivers 
    { 
        KeyCode[] Keys { get; } 
        void ExecuteKey(KeyCode code); 
    } 
} 
 

 

Figure 22: The interface used to define IInputReceivers. Using this we can confirm that the IInputReceivers have the functionality 

needed to work within the system.  

Network Extraction and State Transition Modeling 

 We had to employ several statistical methods to properly visualize a biological network. 

For the prediction of gene states, we used a Partial Least Squares (PLS) approach. PLS is a 

method based on principle component analysis (PCA) and is used to reduce the number of 

variables you need to make predictions (Esposito Vinzi & Russolillo, 2013). This was 

implemented by creating a class named PartialLeastSquresPredictionModel (Figure 23). This 

class contains two functions and a constructor. The two functions are named Predict and 

Initialize and the constructor takes in the network data. The Initialize function maps the data to 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 42 

allow for predictions, and the Predict function makes predictions based on the data given. For 

our Partial Least Squares method, we are using the Accord.net package.  

public class PartialLeastSquaresPredictionModel 
{ 
    private CsvNode _nodeToPredict; 
    private PartialLeastSquaresAnalysis _partialLeastSquaresAnalysis; 
    private MultivariateLinearRegression _linearRegressionModel; 
    private int _min = 0; 
    private int _max = 2; 
    public double UnRoundedPredictionValue = 0; 
 
    public PartialLeastSquaresPredictionModel(CsvNode node, Csv csv) 
    { 
        _nodeToPredict = node; 
        Initialize(csv, node.Name); 
    } 
 
    public double Predict(double[] newStateChanges) 
    { 
        // Samples have to be == to features used (columns used) 
        // Normalize the feature vector and make predictions 
        double[][] newSampleInput = new double[][] {newStateChanges}; 
        double[][] predictions = 
                _linearRegressionModel.Transform(newSampleInput); // The 
transformation vector, needs a feature vector (**see above) 
        double val = Math.Clamp(predictions[0][0], _min, _max); 
        UnRoundedPredictionValue = double.IsNaN(val) ? 0d : val; 
        val = Math.Round(val); 
        if (double.IsNaN(val)) 
            val = _nodeToPredict.CurrentState; // if it is NAN that means the 
data(in this case) has no baring 
        return val;                            // Or effect on the current 
data (keep it the same) 
    } 
 

 

Figure 23: This figure shows how we make predictions using the partial least square method. We are using accord.net to make predictions.  

 The MapSimulationObject class we discussed described mapping objects together based 

on relationship. To accomplish this, we had to use a mixture of statistical tests with weights.  In 

our case, we took the correlation and covariance of the input network data. This allowed us to 

space out objects in a three-dimensional space based on how closely related they are. This was 

accomplished by creating a RelationshipStatisticalAnalysisModel Class. This class has three 

functions, CovarianceTest, CalculationCorrelation, and AnalysisRelationship (Figure 24). The 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 43 

CovarianceTest function calculates the covariance while the CalculateCorrelation function 

calculates the correlation between the two nodes. The AnalysisRelationship combines both of 

those values using a weighted approach. We decided to take twenty-five percent of the 

covariance, and seventy-five percent of the correlation, and then add them up. This would give 

us an averaged-out relationship between the two variables.  

namespace _Scripts.Statistics 
{ 
    public class RelationshipStatisticalAnalysisModel 
    { 
        private double CalculateCorrelation(IEnumerable<double> dataOne, 
IEnumerable<double> dataTwo) 
        { 
            return Correlation.Pearson(dataOne, dataTwo); 
        } 
 
        private double CovarianceTest(IEnumerable<double> dataOne, 
IEnumerable<double> dataTwo) 
        { 
            return dataOne.Covariance(dataTwo); 
        } 
 
        private double CrossCorrelation(List<double> dataOne, List<double> 
dataTwo) 
        { 
            return 
CrossCorrelationAnalysisModel.CalculateCrossCorrelation(dataOne.ToArray(), 
dataTwo.ToArray()); 
        } 
 
        public double AnalysisRelationship(List<double> initialData, 
List<double> otherData) 
        { 
            //Lets apply weights 
            List<double> variances = new List<double> 
            { 
                CovarianceTest(initialData, otherData), 
                CalculateCorrelation(initialData, otherData) 
            }; 
            //Weighted measure 
            const double weightOne = 0.25d; 
            const double weightTwo = 0.75d; 
 
            double weightedRes = (weightOne * variances[0]) + (weightTwo * 
variances[1]); 
            //Debug.Log($"{variances[0]}, and {variances[1]}: 
{weightedRes}"); 
            double result = weightedRes; 
            return double.IsNaN(result) ? 0 : result; 
        } 
         
    } 
} 
 

 

Figure 24: This is the function we are using to conduct covariance and correlation. Also uses accord.net. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 44 

 Inside of the MapSimulationObject, we also had to calculate the relationship between the 

two nodes. Therefore, we recruited the use of Granger causality testing. Granger causality testing 

(GCT) determines a “Granger” relationship between variables depending on how well one time 

series predicts another. Using this together with a t-test, chi-squared test or f-test will give us the 

data needed to make the predictions. Heerah et al. also used GCT to identify causal relationships, 

however, we had to take a different approach. To incorporate this inside of unity we created a 

GrangerCausalityTestingModel class (Figure 25). This class has two functions, IsGrangerCausal 

and FitAutoRegressiveModel. The IsGrangerCasual Function is created with a default maxLag 

variable, which is set to ten. This then uses the lagged variables to create the forecaster models 

using an Ordinary Least Squares (OLS) model. We used Accord.net to create the OLS model. We 

then finish by using a chi-squared test to compare the two models. This gives us the information 

necessary to perform the analysis and draw conclusions. This was the code required to 

accomplish our task but mathematically it looks a little different. 

Network Extraction 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴 =  𝛾𝛾(𝑡𝑡)𝑎𝑎 =  𝛼𝛼𝑎𝑎 + 𝛽𝛽𝑎𝑎 ∗ 𝛾𝛾(𝑡𝑡 − 1)𝑎𝑎 (1) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵 =  𝛾𝛾(𝑡𝑡)𝑏𝑏 =  𝛼𝛼𝑏𝑏 + 𝛽𝛽𝑏𝑏 ∗ 𝛾𝛾(𝑡𝑡 − 1)𝑏𝑏 (2) 

 

 To extract the data needed to create the network, we had to use a combination of GCT, 

correlation, and covariance. GCT provides the relationships, and correlation and covariance 

spaces nodes based on their relationship. We had to create two different equations to calculate the 

GCT for the data. Look at equations 1 and 2, these are the equations necessary to create the 

standard regression models. Alpha(a) is represented by the intercept of the model, Beta(a) is 

represented by the weight and Gamma (t – 1) is the lagged values.  This is also depicted in 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 45 

Figure 25. Models A and B represent the created predicted values based on the original data and 

the lagged data. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴 =  �
(𝛾𝛾(𝑡𝑡)𝐵𝐵𝐵𝐵 − 𝑙𝑙(𝑠𝑠)𝑎𝑎𝑎𝑎)2  

𝑙𝑙(𝑠𝑠)𝑎𝑎𝑎𝑎
  (3) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵 =  �
(𝛾𝛾(𝑡𝑡)𝑎𝑎𝑎𝑎 − 𝑙𝑙(𝑠𝑠)𝑏𝑏𝑏𝑏)2  

𝑙𝑙(𝑠𝑠)𝑏𝑏𝑏𝑏
 (4) 

 Once we created our models and had a list of predicted values, we used a chi-squared test 

of goodness to test the significance (3 and 4). In equations 3 and 4, the observed value is 

Gamma(t) (The predicted values), and l(s) is the lagged series of values (or the expected values).  

This allowed us to determine the bi-directional relationship between nodes. This would allow 

users to predict the downstream effect of the PLS model before making the prediction. And 

although correlation and covariance are very similar tests, we used them together with these 

models, to determine the positions of the nodes in the network. The reason we used them 

together was to overcome any additional errors or incorrect results that come about from using 

only one statistic. There were times when I believed we needed to use another test of correlation 

or a meta-analysis to predict it more accurately. However, for the case of this proof of concept, 

this was more than sufficient to give us an accurate representation of how well this tool can 

work.  

State Transition Model 

 For our state transition model, we used PLS. I trained a PLS model using the seventeen 

features (columns) from our dataset as input. I then created an output list that contains all the 

states of the node (feature) that we are trying to predict. To make the prediction, I input a new list 

with changed values inside of the model. The linear model then computes it and makes a 

prediction based on the changes in the features. To represent the changes downstream, we apply 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 46 

the change in states to every node. This works because every node has a different model based 

on their predictors and input data. So, we apply this method of changes to the list of data and 

predict to determine what state each node will transition to.  

 

  

  

  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 47 

public static GrangerRelationship IsGrangerCausal(double[] seriesA, double[] seriesB, 
int maxLag = 10) 
{ 
    int aBSignificantCounter = 0; //If A and B are significant, Bi-direction 
relationship 
    int aSignificantCounter = 0; // If just A is significant, A Granger B 
    // Iterate over lags 
    for (int lag = 1; lag <= maxLag; lag++) 
    { 
        // Extract lagged values 
        double[] laggedA = new double[seriesA.Length - lag]; 
        double[] laggedB = new double[seriesB.Length - lag]; 
        Array.Copy(seriesA, lag, laggedA, 0, laggedA.Length); 
        Array.Copy(seriesB, lag, laggedB, 0, laggedB.Length); 
 
        double[] outputA = seriesA[lag..]; 
        double[] outputB = seriesB[lag..]; 
        // Fit autoregressive models 
        double alphaA, betaA; 
        int degreesOfFreedomA, degreesOfFreedomB; 
        FitAutoregressiveModel(laggedA, outputA, out alphaA, out betaA, out 
degreesOfFreedomA); 
 
        double alphaB, betaB; 
        FitAutoregressiveModel(laggedB, outputB, out alphaB, out betaB, out 
degreesOfFreedomB); 
        // Perform comparison (you might use statistical tests here) 
        //To calculate residuals (for predictions) 
        // Y(t) = alpha + Beta(1) * Y(t-1) 
        double[] predictedListA = new double[outputA.Length]; 
        for (int i = 1; i < outputA.Length; i++) 
        { 
            predictedListA[i] = alphaA + betaA * outputA[i - 1]; //output A is already 
lagged at time 
        } 
         
        double[] predictedListB = new double[outputB.Length]; 
        for (int i = 1; i < outputB.Length; i++) 
        { 
            predictedListB[i] = alphaB + betaB * outputB[i - 1]; //output A is already 
lagged at time 
        } 
 
        ChiSquareTest chiSquareModelA = new ChiSquareTest(outputA, predictedListB, 
degreesOfFreedomA); 
        ChiSquareTest chiSquareModelB = new ChiSquareTest(outputB, predictedListA, 
degreesOfFreedomB); 
        switch (chiSquareModelA.Significant) 
        { 
            case true when chiSquareModelB.Significant: 
                aBSignificantCounter++; 
                break; 
            case true: 
                aSignificantCounter++; 
                break; 
        } 
    } 
    Debug.Log($"Evidence: AB significance: {aBSignificantCounter}/{maxLag}, " + 
              $"A Significance: {aSignificantCounter}/{maxLag}"); 
    // No evidence of Granger causality 
    return aBSignificantCounter > aSignificantCounter? 
GrangerRelationship.Bidirectional : GrangerRelationship.Directional; 
}  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 48 

Figure 25: This is the function we used to define Granger relationships. As described, we used to take the average of two lagged models and 

compared the models using Chi-Squared tests. 

Monobehaviors, Classes, and Test-Driven Development (TDD)  

 One of the biggest reasons for the large number of classes was due to the need for test-

driven development (TDD). Test Driven developed is used to test the functionality of classes 

before you run your software. This allows you to quickly find issues with your code and fix 

them. It also helps to eliminate the fear of issues that may arise (Beck, 2022). However, there is a 

problem with TDD in the unity engine. Inherently all unity classes that are seen inside the game 

inherit the MonoBehvaiour class. This class controls the event functionality, creation, and 

manipulation of game objects. Without it, we are unable to directly control how GameObjects 

act. Furthermore, a game object must inherit this class to be added to objects inside the scene. 

The issue for TDD comes from this behavior. To test objects, you must recreate the actual in-

game behavior. Normally this would be impossible to do, but since we have separated all our 

game logic into classes, we can easily test the output of the data (Figure 26).   



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 49 

namespace Tests 
{ 
    [TestFixture] 
    public class CsvDataTest 
    { 
        public DataInserter Inserter; 
        [Test] 
        [TestCase("SimulationFiles/DataExtra.csv")] 
        public void TestInserter(string path) 
        { 
            path = Path.Combine(Application.dataPath, path);  
            FileInserter fileInserter = new FileInserter(path); 
            Csv csv = fileInserter.ReadData(); 
            Assert.True(csv.Data.Count > 0); 
        } 
 
        [SetUp] 
        public void Setup() 
        { 
            GameObject gameObject = new GameObject(); 
            Inserter = gameObject.AddComponent<DataInserter>(); 
        } 
 
        [Test] 
        [TestCase("SimulationFiles/DataExtra.csv")] 
        public void TestDataInserter(string path) 
        { 
            path = Path.Combine(Application.dataPath, path);  
            bool isTrue = Inserter.OnInsertEvent(path); 
            Assert.True(isTrue); 
        } 
    } 
} 
 

 

Figure 26: This is how we constructed our test for test-driven development. Unity has a built-in unit test package that we used. The [Setup] tag is 

used to set up the objects we are going to test. The functions that have the [Test] tag are the functions that run the test for the given functionality. 

Finally, the [TestCase] tag is used when you want to test multiple tests. It is passed as a path in the TestDataInserter function.  

 

Cytokine Data  

 The dataset we are using is based on predicting immune response to drugs in a 

coronavirus-induced cytokine storm (Morris et al., 2020). We are going to transform the 2D 

visualization that was created from this paper (Figure 4) and add another dimension to it. We are 

also going to change the statistical analysis methods on data. This is to ensure we have enough 

data to represent the model in 3D.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 50 

 The data inside of the dataset is a collection of discrete values: zero, one, two. Each value 

represents a state. Zero represents a “No expression state”, one represents “Low expression”, and 

two represents “High expression.” With the use of the statistical package Accord.net, we were 

able to create regressions and make predictions. The Accord.net packages required us to store 

each state in the column in a list. Following this, we created a target value list for a row of values 

as our “target predictors.” Using our target predictors with the list of data we acquired from the 

dataset we created a PartialLeastSquaresAnalysis model in Accord.net (the process was similar 

for all other types of models in the package). Considering the dataset refers to nineteen immune 

mediator genes, there were initial assumptions I had made about the data. Such as expecting the 

genes to be strongly affected by their related genes. However, that was not always the case. 

Many other gene-to-gene interactions are much easier to see in a 3D visualization than a 2D one.  

How Does It All Work Together 

 To accomplish the creation of our system, there were a myriad of systems to be put in 

place. We had to construct methods for the simulation to work properly. There was a need to 

insert and analyze data properly. We needed to ensure that all the nodes were respected properly 

using the data. To develop relationships and make predictions in data we needed to create 

statistical methodologies and classes. Furthermore, there was the need to create a scalable 

system, so we had to explore the use of a command programming pattern. Let’s look at how this 

all works together on a deeper level (Figure 27). 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 51 

 

Figure 27: The flow of the simulation. We start by inserting the data. Once the data is inserted, the level is created using the LevelCreator. Then, 

the Simulation manager prepares the ISimulator and the ISimulator begins to prepare the simulation. It must prepare all the statistical methods 

(Partial Least Squares, Grangers, and all the relationship statistics). Once done it runs the simulation.  

 

 Firstly, we start by inserting data inside the program (for this proof of concept we have 

data on the client). This is done using the DataInserter class. Once the data is inserted and 

returned as a CSV data structure, we use the BaseEvent SO to call the LevelController Class. 

Inside this class, after receiving the CSV data, we create the base level using the LevelData SO. 

After creating the level, we use the BaseEvent SO to call the SimulationManager. In the 

simulation manager, we set up the DefaultSimulation and prepare the SimulationConfig and 

other background tasks such as the ThresholdMeter. After this is created, an event is invoked and 

that calls the current ISimulator and prepares the simulation. The ISimulator then calls its Init 

function, maps the nodes to their proper states, and calls the MapSimulationObjects class to 

position the objects while creating relationships (using the line renderer).  Once the initial setup 

is finalized the user can click on the nodes (SimulationObjects) and interact with them by 

changing the states and making predictions based on the state changes. They can also use the 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 52 

AutoDocumetation button to print out documentation based on every move they have made. This 

is the basis for how the program allows scalability and modifications if needed.  

Results 

Through preliminary research, we tested the feasibility of this project, and through the 

actual development, there were a few questions we wanted to answer to prove that we were 

successful. The questions are as follows: Do individuals have fun when playing our game? Does 

giving users ownership of the solution help with the black box problem? Can non-scientists 

understand what is going on by playing the game? Does the game design and ideology make 

sense? Are there better ways to visualize big data? And finally, is there a way to bridge the 

connections between non-scientists and scientists alike? Let's look at our final product to 

understand how we accomplished this goal. 

 The simulation itself was efficient and worked as expected. We were able to implement a 

dataset related to the immune response drugs in corona-virus-induced cytokine storm. With this 

dataset, we analyzed it and created a network that displayed information based on how closely 

related the genes are. Therefore, we can assume that the tool to create the network itself was 

successful. However, looking at the original relationships that were inferred in a two-

dimensional graph, there were many differences.   



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 53 

 

Figure 28: The simulation that we successfully created. By reading the data and conducting many statistical methods, we were able to transform 

the two-dimensional figure into a three-dimensional simulation.  

 

2D vs 3D data 

 Looking at the data in two-dimensional space vs three-dimensional space reveals a lot of 

differences (Figure 28). The data is linear, in 2D, but in 3D you can see the relationships of every 

node. There are certain nodes in the 2D data that are hard to infer about their relationship with 

other nodes. If you look at figure 28 and 4, you can see both the 2D and 3D data. In the 2D data 

image, because there are only two dimensions (x and y) there are only two ways for the 

relationship to be depicted. Therefore, it looks like “spaghetti”, and it is hard to understand 

everything that is going on. You must look very closely to differentiate how everything is related 

to one another. In BioDOV (the 3D version), you can very clearly see how the data is related. It 

is also dynamic, so it allows users to make new interpretations by making predictions.  

 If you look deeper into the differences between the two. A lot of the relationships were 

different, although the data was the same. This was related to the differences in statistics. 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 54 

However, we were able to see more than just a relationship. We were able to see how they 

interacted with each other. Through predictions and how highly expressed the nodes were. Since 

we looked at expression as a continuous value instead of a discrete one, we were able to show 

the expression level of nodes in the pathway. If one changed, there would be a downstream effect 

on other nodes. This would allow scientists to attempt to make theoretical predictions about the 

downstream effect of drugs. In our case, we were able to see just how much a certain node (gene) 

affected others. This is also related to the reason we allowed an auto-documentation feature. 

Scientists can see exactly what changes they made to the network and look at the information 

inside of the text file. This way if they wanted to come back later and repeat the same results, 

they were able to do so. Thus, we were able to create a system that encompassed feedback and 

replayability (McGonigal, 2011). Two important aspects are needed in the creation of a game, or 

the process of gamification.  

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 55 

Figure 29: This figure represents the basic flow of the completed simulation. You start by pressing the start simulation button. You then are 

greeted with a screen that shows information (the amount of information is based on the level). After that, you can press (interact) with a node to 

change its state. I changed a node from being highly expressed to no expression. Finally, I pressed the predict button and was able to see how that 

affected the network.  

 

Understanding the Game 

Figure 29 is a perfect representation of how the game works. You start with an empty 

screen, you then start the simulation, interact with a node, and make a prediction. The main goal 

of the game is to get back to a stable state, which only occurs when all the nodes are white (no 

expression). This is why the game shows relationships, it is to help individuals make predictions 

when attempting to acquire this stable state. Each time you make a prediction, a few nodes that 

are statistically affected by it change. You are allowed to continue doing that until you acquire 

the threshold, and get the network in as stable of a state it can be in. In Figure 29, the red box in 

the corner also is a threshold that represents how stable the network is. The fuller the cube, the 

more stable the state.  

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 56 

 

Figure 30: Every button has a different purpose. The StartSimulation button will begin the simulation. The NextLevel button allows you to 

progress to the next level. As you progress to newer levels, the number of nodes in the network increases. The predict button is called the 

PredictionCommand. This command makes predictions of all the other nodes in the network based on the changes. Finally, the WriteDocs button 

writes out the documentation for every change you make in the network (Refer to Figure 14 to see how Auto Documentation outputs). 

 

Why Gamification Worked 

 For the creation of our tool, we were able to successfully employ proper gamification 

techniques. How did gamification affect the result we acquired? It impacted the way we perceive 

the tool and how we the tool will engage and reward other scientists that use it. Let's look at the 

four features that are required to make a game: A goal, rules, feedback system, and voluntary 

participation. The goal is the outcome we want players to achieve. The rules are the constraints 

and limitations required on how the player can accomplish their goal. The feedback system is a 

system that lets the player know how class they are in achieving the goal. Finally, voluntary 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 57 

participation is when the player accepts the rules, the goals, the feedback, and voluntary 

participation to play the game (McGonigal, 2011). 

 We were able to accomplish these goals as we created the features of our game. Firstly, 

the threshold meter is how we were able to accomplish our goal. The closer the player is to a 

baseline state, the more filled it will be. The rules are defined by how the user can make 

predictions. You must interact with the network and make predictions to change the others. The 

feedback system is a combination of interactivity, auto-documentation, and how the nodes are 

characterized after predictions are made. This is how we handle the feedback loop. Finally, 

voluntary participation will be accomplished when the user inputs their dataset. This means that 

they want to understand more about the data in a three-dimensional space. By doing this they 

accept the rules, feedback, and goal of the simulation. This is how we were able to successfully 

gamify and create a proper proof of concept by following our initial rules. This made our tool 

very effective for its purpose and allowed us to prove that there are more ways to create engaging 

visualizations. 

Discussion 

After the creation of this tool, we reflected on what is next for the future and expansion of 

this tool. The most important thing to note is that BioDOV is made to be extended. The software 

was created to be open-ended enough that anyone could add their code to it. This will allow 

researchers to modify this tool for their data and make their interpretations. If they want to 

change the type of statistics that affect the dataset, they can do it in the code base. If they want to 

modify the simulation settings, there is another class called CustomSimulation which only 

includes empty functions. There are many ways to build upon this tool.  



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 58 

We also are hopeful that scientists will look at this tool and begin to realize that there are 

millions of avenues to explore regarding visualization. There are so many ways to visualize data 

instead of using the same 2D graphics every time. Sure, there are visualization platforms like 

Simularium, but we believe the creation of a tool that can be extended for your use is many times 

more useful (Lyons et al., 2022) (You can view Simularium at https://simularium.allencell.org/).  

To further expand upon this proof of concept, look at Figure 29. The third and fourth 

pictures show the before and after a prediction was made. This was the prediction made after 

changing the state of the gene CSF3 from two to zero. CD40, CD80, CD86, and CTSB went 

from state two to state one (high expression to low expression).  CD40, CD86, and CD80 are 

costimulatory molecules that aid in the initiation of CD4+T cells (Rogers et al., 2003). CTSB 

mediates cell death (Wang et al., 2023). CTSL and CD200R1 went from state two to state zero 

(high expression to no expression). CTSL aids in intracellular protein catabolism (Zhang et al., 

2022). CD200R1 is involved in the inhibitory pro-inflammatory response (Dentesano et al., 

2012). Finally, CCL5 remained the same. CCL5 plays an important role in recruiting leukocytes 

into inflammatory sites (Aldinucci & Colombatti, 2014). Finally, CSF3 is an important 

neutrophil-promoting cytokine that impacts neutrophil survival (Ouyang et al., 2020). CD40, 

CD80, and CD86 all have a negative relationship towards CSF3, but they were downregulated. 

Although the downregulation was not much (You can tell by the extrusion that they state one, 

highly expressed), it is still shown.  

With this information, we can make additional assumptions, such as how a neutrophil-

promoting cytokine affects costimulatory molecules. Or what is the relationship between 

neutrophils and inhibitors of inflammatory response? The results of this prediction could also be 

the results of the way we conducted our statistical analysis, but the results are within the realm of 

https://simularium.allencell.org/


BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 59 

expectations. There are times when we make imperfect predictions using this tool, but biology 

itself is not standard. There may lie a relationship within this downstream effect that we are 

unaware of. This would allow scientists to try this in a wet lab by conducting their experiments. 

That would be the perfect type of result that is expected for this proof of concept. 

We want to engage scientists and continue to question the science and results. By giving 

them information that may lead to more questions, it proves to us that our proof of concept was 

successful. A tool like this can keep science more dynamic and allow scientists to continue to 

conduct exciting research. Furthermore, there are more ways that we want to accomplish this.  

There were a few extra features we wanted to add to the tool, but the scope would have 

increased too large. The features we wanted to add were as follows: Customization of Excel files 

in Unity, importation of any dataset, importation of simulation settings, more eye-popping art, 

and the choice of statistical test. The customization of Excel files would have allowed us to 

create the tool with a more dynamic front. The user would not have to clean up their data, they 

could just choose the columns they wanted to include in the analysis, and it would create the 

network using the appended data. The importation of datasets is the most important feature, but 

because we wanted to test proof of concept, we were unable to add this feature. 

 We wanted users to have the ability to add any dataset, from any collection of data inside 

of the simulation. This dataset can work with any kind of data, it does not have to be all 

biological. It can still make inferences based on any data (bearing a few adjustments). The 

importation of simulation settings (or the customization) would allow users to have more 

freedom in how they see the data. Maybe they wanted stars instead of cubes. Maybe they wanted 

the lines or the cubes to be a different color to match their theme. Whatever it may be this would 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 60 

have given users more options when it comes to the biological network. The importation of 

simulation settings goes hand and hand with more eye-popping art.  

Science and statistical analysis may intrigue the scientific community, but the non-

science community won’t have the same reaction. So having something that looks pretty would 

make them more likely to because interested. Finally, the choice of statistical test. I already said 

if we could modify simulation settings we could add it, but if we allowed users to add their 

statistical test without having to modify the code base, this tool could be used by people who are 

not programmers. The addition of all these features would make this tool much more feasible and 

complete. However, due to the limitation of time, these were unable to be added.  

Someone may take this in another direction and make a full game out of this project as 

well. The simulation is made to be highly dynamic and extendable. It is important to keep in 

mind that this project can be used for all purposes, but we hope that it accelerates data 

visualization in the scientific community. We have already explored the differences between this 

tool and the model in 2D. Many differences could be seen briefly. Can this be improved even 

more? Can we add more dimensions to this data? It poses questions as to what is currently 

possible and how we accomplish them. 

 Maybe data visualization is adopted in a virtual reality simulation. This would make the 

simulation more interesting to the non-scientific community. However, this would also increase 

the cost of tools needed to run the simulation. It is possible that this could reveal data that we 

could not see before. In our case, we truly believe that perception is the most important aspect of 

data visualization.  How people see and process the data is the most important aspect of 

visualization. You can see this by looking at 2D visualizations. Some people pick up an 

understanding quickly, while others need time to absorb the information fully. So, by allowing 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 61 

this tool to be extended, it gives scientists a guideline for how to create many different 

visualizations in a way only they can.  

It's also important to note that for bigger datasets (greater than 250000 rows) we may run 

into performance issues. We wanted to create BioDOV using a Data Oriented Design (DOD) 

approach, but it was not feasible. In a nutshell, DOD is a design pattern that takes advantage of 

cache misses. It structures the data in a way that helps processes avoid cache misses, thereby 

making the code infinitely more efficient. The DOD package for unity was still in alpha and was 

not completely ready. This causes us to run into many issues when trying to implement it.  

It's very important to understand that this project was used to help combat the black box 

problem. The black box problem is a neural net issue, it represents the returned data from the 

neural net. The data is different every time, and no one knows what happens inside the 

processing. This makes it extremely difficult to use for medical interpretations. Especially, since 

you want to know exactly why the neural net predicted this value instead of another. In a field 

where it is crucial to understand everything that is going on, some predictability is hard to rely 

on. This is why there are confidence intervals before companies can properly prescribe new 

medicine.  This is why we want users who use this tool with medical data to understand 

everything that is happening. So, we are attempting to give them ownership of the solution. This 

will help the medical community trust the output data more readily than other methods. If we can 

successfully aid in finding a solution for this problem, I would instantly consider BioDOV a 

success.  

 In the future, I can see BioDOV being used to view intensive biological networks in 3D, 

specifically for medical data. This would aid in the diagnosis of diseases. It would give doctors 

and clinicians better perspectives of the pathways that may be involved in the pathogenesis of the 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 62 

disease. They could then use that to either create new treatments or for prognosis. But in current 

times, using this tool as a base to further visualization technology to pave the way for the future 

would be ideal. 

This does not mean that gamification must be the only method for new visualizations. It 

is possible in the future that scientists will find a way to properly display 4D images. Or even 

properly unveil the use of quantum computing to work with big data. Many pathways could 

accomplish the future of big data visualization that is needed. However, once visualization is 

improved upon, many will be able to actively participate in medical research. This will help the 

community and researchers alike and prevent the issues that happened during the COVID-19 

pandemic (the pandemic of misinformation). And anything that can help us avoid that is a 

wonderful invention. Furthermore, if scientists are more active in scientific communication, and 

can create things that are hard for people to understand. They could help reduce the spread of 

diseases and help the field of epidemiology. Anything that uses easy-to-understand images will 

help teach the non-scientific community about topics they do not know about. But, giving them 

the power to see visualizations that are easy to understand, and can be interacted with, helps give 

people the confidence to believe in science. Through this research, we can improve the lives of 

millions around the world through better visualizations and communications. 

 

 

 

 

 

 



BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 63 

Code Availability 

All source code for this project is available at https://github.com/YoungKrug/BioDOV. 

We used the Unity engine (version 2022.3.4f1 LTS), as well as Accord.Net (version 3.8.2) and 

Math.Net (version 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/YoungKrug/BioDOV


BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 64 

References 

Aldinucci, D., & Colombatti, A. (2014). The Inflammatory Chemokine CCL5 and Cancer 

Progression. Mediators of Inflammation, 2014, e292376. https://doi.org/10.1155/2014/292376 

Beck, K. (2022). Test Driven Development: By Example. Addison-Wesley Professional. 

Conick, H. (2019, July 30). Gamification is Manipulative. Is It Ethical? American Marketing 

Association. https://www.ama.org/topics/ethics/ 

Dentesano, G., Straccia, M., Ejarque-Ortiz, A., Tusell, J. M., Serratosa, J., Saura, J., & Solà, C. 

(2012). Inhibition of CD200R1 expression by C/EBP beta in reactive microglial cells. Journal of 

Neuroinflammation, 9(1), 165. https://doi.org/10.1186/1742-2094-9-165 

Doutreligne, S., Gageat, C., Cragnolini, T., Taly, A., Pasquali, S., Derreumaux, P., & Baaden, M. 

(2015). UnityMol: Interactive and ludic visual manipulation of coarse-grained RNA and other 

biomolecules. 2015 IEEE 1st International Workshop on Virtual and Augmented Reality for 

Molecular Science (VARMS@IEEEVR), 1–6. https://doi.org/10.1109/VARMS.2015.7151718 

Esposito Vinzi, V., & Russolillo, G. (2013). Partial least squares algorithms and methods. WIREs 

Computational Statistics, 5(1), 1–19. https://doi.org/10.1002/wics.1239 

Fan, X., Wang, Y., & Tang, X.-Q. (2019). Extracting predictors for lung adenocarcinoma based on 

Granger causality test and stepwise character selection. BMC Bioinformatics, 20(Suppl 7), 197. 

https://doi.org/10.1186/s12859-019-2739-z 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable 

Object-Oriented Software. Pearson Education. 

Heberle, H., Carazzolle, M. F., Telles, G. P., Meirelles, G. V., & Minghim, R. (2017). CellNetVis: A 

web tool for visualization of biological networks using force-directed layout constrained by 

https://doi.org/10.1155/2014/292376
https://www.ama.org/topics/ethics/
https://doi.org/10.1186/1742-2094-9-165
https://doi.org/10.1109/VARMS.2015.7151718
https://doi.org/10.1002/wics.1239
https://doi.org/10.1186/s12859-019-2739-z


BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 65 

cellular components. BMC Bioinformatics, 18(10), 395. https://doi.org/10.1186/s12859-017-

1787-5 

Heerah, S., Molinari, R., Guerrier, S., & Marshall-Colon, A. (2021). Granger-causal testing for 

irregularly sampled time series with application to nitrogen signalling in Arabidopsis. 

Bioinformatics, 37(16), 2450–2460. https://doi.org/10.1093/bioinformatics/btab126 

Hussain, A., Shakeel, H., Hussain, F., Uddin, N., & Ghouri, T. (2020). Unity Game Development 

Engine: A Technical Survey. University of Sindh Journal of Information and Communication 

Technology, 4. 

Ingeno, J. (2018). Software Architect’s Handbook: Become a successful software architect by 

implementing effective architecture concepts. Packt Publishing Ltd. 

Kadir, S. R., Lilja, A., Gunn, N., Strong, C., Hughes, R. T., Bailey, B. J., Rae, J., Parton, R. G., & 

McGhee, J. (2021). Science Forum: Nanoscape, a data-driven 3D real-time interactive virtual 

cell environment. eLife, 10, e64047. https://doi.org/10.7554/eLife.64047 

Kolchanov, N. A., Anan’ko, E. A., Kolpakov, F. A., Podkolodnaya, O. A., Ignat’eva, E. V., 

Goryachkovskaya, T. N., & Stepanenko, I. L. (2000). Gene networks. Molecular Biology, 34(4), 

449–460. https://doi.org/10.1007/BF02759554 

Lv, Z., Tek, A., Da Silva, F., Empereur-mot, C., Chavent, M., & Baaden, M. (2013). Game On, 

Science—How Video Game Technology May Help Biologists Tackle Visualization Challenges. 

PLOS ONE, 8(3), 1–13. https://doi.org/10.1371/journal.pone.0057990 

Lyman, C. A., Richman, S., Morris, M. C., Cao, H., Scerri, A., Cheadle, C., & Broderick, G. (2021). 

Attractor Landscapes as a Model Selection Criterion in Data Poor Environments. bioRxiv. 

https://doi.org/10.1101/2021.11.09.466986 

https://doi.org/10.1186/s12859-017-1787-5
https://doi.org/10.1186/s12859-017-1787-5
https://doi.org/10.1093/bioinformatics/btab126
https://doi.org/10.7554/eLife.64047
https://doi.org/10.1007/BF02759554
https://doi.org/10.1371/journal.pone.0057990
https://doi.org/10.1101/2021.11.09.466986


BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 66 

Lyons, B., Isaac, E., Choi, N. H., Do, T. P., Domingus, J., Iwasa, J., Leonard, A., Riel-Mehan, M., 

Rodgers, E., Schaefbauer, L., Toloudis, D., Waltner, O., Wilhelm, L., & Johnson, G. T. (2022). 

The Simularium Viewer: An interactive online tool for sharing spatiotemporal biological models. 

Nature Methods, 19(5), Article 5. https://doi.org/10.1038/s41592-022-01442-1 

McGonigal, J. (2011). Reality Is Broken: Why Games Make Us Better and How They Can Change the 

World. Penguin. 

Morris, M. C., Lyman, C. A., Richman, S., Cao, H. B., Cheadle, C., & Broderick, G. (2020). 

Predicting the Immune Response to Repurposed Drugs in Coronavirus-induced Cytokine Storm. 

2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), 458–

465. https://doi.org/10.1109/BIBE50027.2020.00080 

Ouyang, S., Liu, C., Xiao, J., Chen, X., Lui, A. C., & Li, X. (2020). Targeting IL-17A/glucocorticoid 

synergy to CSF3 expression in neutrophilic airway diseases. JCI Insight, 5(3), e132836. 

https://doi.org/10.1172/jci.insight.132836 

Pirch, S., Müller, F., Iofinova, E., Pazmandi, J., Hütter, C. V. R., Chiettini, M., Sin, C., Boztug, K., 

Podkosova, I., Kaufmann, H., & Menche, J. (2021). The VRNetzer platform enables interactive 

network analysis in Virtual Reality. Nature Communications, 12(1), 2432. 

https://doi.org/10.1038/s41467-021-22570-w 

Rogers, N. J., Jackson, I. M., Jordan, W. J., Hawadle, M. A., Dorling, A., & Lechler, R. I. (2003). 

Cross-species costimulation: Relative contributions of CD80, CD86, and CD40. Transplantation, 

75(12), 2068. https://doi.org/10.1097/01.TP.0000069100.67646.08 

Steenbeek, J., Felinto, D., Pan, M., Buszowski, J., & Christensen, V. (2021). Using Gaming 

Technology to Explore and Visualize Management Impacts on Marine Ecosystems. Frontiers in 

Marine Science, 8. https://doi.org/10.3389/fmars.2021.619541 

https://doi.org/10.1038/s41592-022-01442-1
https://doi.org/10.1109/BIBE50027.2020.00080
https://doi.org/10.1172/jci.insight.132836
https://doi.org/10.1038/s41467-021-22570-w
https://doi.org/10.1097/01.TP.0000069100.67646.08
https://doi.org/10.3389/fmars.2021.619541


BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification 67 

Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., & Katze, M. G. (2012). Into the 

Eye of the Cytokine Storm. Microbiology and Molecular Biology Reviews, 76(1), 16–32. 

https://doi.org/10.1128/mmbr.05015-11 

Wang, J., Zheng, M., Yang, X., Zhou, X., & Zhang, S. (2023). The Role of Cathepsin B in 

Pathophysiologies of Non-tumor and Tumor tissues: A Systematic Review. Journal of Cancer, 

14(12), 2344–2358. https://doi.org/10.7150/jca.86531 

Zhang, L., Wei, C., Li, D., He, J., Liu, S., Deng, H., Cheng, J., Du, J., Liu, X., Chen, H., Sun, S., Yu, 

H., & Fu, J. (2022). COVID-19 receptor and malignant cancers: Association of CTSL expression 

with susceptibility to SARS-CoV-2. International Journal of Biological Sciences, 18(6), 2362–

2371. https://doi.org/10.7150/ijbs.70172 

 

  

 

 

https://doi.org/10.1128/mmbr.05015-11
https://doi.org/10.7150/jca.86531
https://doi.org/10.7150/ijbs.70172

	BioDOV: A Tool Used to Encourage Discovery in Bioinformatics Through Gamification
	Recommended Citation

	Limitations of Current Approaches
	Background
	Video Games
	Questions to Answer
	The Hypothesis
	Gene Networks
	Cytokine Storm Use Cases
	Materials and Methods
	Game Elements
	Gameplay
	Level Design
	Art and Audio
	Story and Characters
	Medical Objective vs. Game Objective
	Unity Engine
	Code Architecture
	Event-Based Architecture
	Class Architecture
	Command Pattern
	Other Supporting Classes
	Input Events
	Network Extraction and State Transition Modeling
	Network Extraction
	State Transition Model

	Monobehaviors, Classes, and Test-Driven Development (TDD)
	Cytokine Data

	Results
	2D vs 3D data
	Understanding the Game
	Why Gamification Worked

	Discussion
	Code Availability
	References

