
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

12-2023

Tapered-Precision Numerical Formats for Deep Learning Tapered-Precision Numerical Formats for Deep Learning

Inference and Training Inference and Training

Seyed Hamed Fatemi Langroudi
sf3052@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Fatemi Langroudi, Seyed Hamed, "Tapered-Precision Numerical Formats for Deep Learning Inference and
Training" (2023). Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11621?utm_source=repository.rit.edu%2Ftheses%2F11621&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Tapered-Precision Numerical Formats for
Deep Learning Inference and Training

by

Seyed Hamed Fatemi Langroudi

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Kate Gleason College of Engineering

Rochester Institute of Technology

Rochester, New York

Dec 2023

ii

Dissertation title: Tapered-Precision Numerical Formats
for Deep Learning Inference and Training

By
Seyed Hamed Fatemi Langroudi

Committee Approval: We, the undersigned committee members, certify that

we have advised and/or supervised the candidate on the work described in this

dissertation. We further certify that we have reviewed the dissertation manuscript

and approve it in partial fulfillment of the requirements of the degree of Doctor of

Philosophy in Electrical and Computer Engineering.

Dr. Dhireesha Kudithipudi, Advisor Date
Professor, Department of Computer Engineering, RIT

Dr. Andres Kwasinski , Committee Member Date
Professor, Department of Computer Engineering, RIT

Dr. Majid Rabbani, Committee Member Date
Professor, Department of Electrical and Microelectronic Engineering, RIT

Dr. Christopher Kanan, Committee Member Date
Associate Professor, Department of Computer Science, UR

Certified By:

Dr. Andres Kwasinski , Date
Electrical and Computer Engineering PhD Director, RIT

iii

ABSTRACT

Degree: Doctor of Philosophy
Author’s name: Seyed Hamed Fatemi Langroudi
Advisor’s name: Dr. Dhireesha Kudithipudi
Dissertation title: Tapered-Precision Numerical Formats for Deep Learning Infer-
ence and Training

The demand to deploy deep learning models on edge devices has recently
increased due to their pervasiveness, in applications ranging from healthcare to pre-
cision agriculture. However, a major challenge with current deep learning models,
is their computational complexity. One approach to address this limitation is to
compress the deep learning models by employing low-precision numerical formats.
Such low-precision models often suffer from degraded inference or training ac-
curacy. This lends itself to the question, which low-precision numerical format
can meet the objective of high training accuracy with minimal resources?

This research introduces tapered-precision numerical formats for deep learning
inference and training. These formats have inherent capability to match the dis-
tribution of deep learning parameters by expressing values in unequal-magnitude
spacing such that the density of values is maximum near zero and is tapered
towards the maximum representable number. We develop low-precision arith-
metic frameworks, that utilize tapered precision numerical formats to enhance
the performance of deep learning inference and training. Further, we develop a
software/hardware co-design framework to identify the right format for inference
based on user-defined constraints through integer linear programming optimiza-
tion. Third, novel adaptive low-precision algorithms are proposed that match the
tapered-precision numerical format configuration to best represent the layerwise
dynamic range and distribution of parameters within a deep learning model. Finally,
a numerical analysis approach and signal-to-quantization-noise ratio equation for
tapered-precision numerical formats are proposed that uses a metric to select the
appropriate numerical format configuration.

The efficacy of the proposed approaches is demonstrated on various bench-
marks. Results assert that the accuracy and hardware cost trade-off of low-precision
deep neural networks using tapered precision numerical formats outperform other
well-known numerical formats, including floating point and fixed-point.

iv

This thesis is dedicated to my beloved wife and respected parents

for their endless love, support, and encouragement.

This achievement is as much yours as it is mine.

v

Acknowledgments

First and foremost, I would like to express my deep and sincere gratitude to my

adviser, Dr. Dhireesha Kudithipudi, for her continuous support of my PhD research,

helpful advice, providing motivation, and invaluable feedback. I offer my sincere

appreciation to the committee members: Dr. Majid Rabani, Dr. Andres Kwasinski,

Dr. Christopher Kanan, and Dr. Ernest Fokoue, for their insightful comments, and

constructive advice.

I would also like to thank RIT faculty and staff, specifically Dr. Edward Hensel,

Dr. Ray Ptucha, Dr. Cory Merkel, Mr. Mark Indovina, Mr. Richard Tolleson,

and Rebecca Ziebarth, for their tremendous help and support. The PhD adventure

would be much more challenging if it were not for their insight and excellent

assistance. I am very grateful and fortunate to have had the opportunity to work

with outstanding collaborators.

Many thanks go to Dr. John Gustafson (Singapore University of Technology),

who is the inventor of posit, generalized posit, and tapered fixed-point (taper) and

has provided valuable insights over the years. I am extending my heartfelt thanks

to all the members of the Neuromorphic AI lab: Abdullah Zeyarah, Zachariah

Carmichael, Tej Pandit, Vedant Karia, Nicholas Soures, Anurag Daram, Humza

Syed, Fatima Tuz Zohora, and Peter Helfer. Also to my friends: Masoud Abdullahi,

Kamran Binaee, Behrooz Mansouri, and Celal Savur. I am delighted to be working

with you guys, who are knowledgeable but also enthusiastic, and friendly. I want

to express my gratitude to all of you for supporting me in every possible way.

ACKNOWLEDGMENTS vi

I would like to express my heartfelt gratitude to my wife, Tahereh, whose

unwavering support and encouragement have been a source of strength and motiva-

tion throughout my PhD journey. Her understanding and patience have sustained

me during challenging times, and her belief in me has pushed me to strive for

excellence.

Finally, I extend my gratitude and sincerest thanks to my parents. I could

not have undertaken this journey without their exceptional support, kindness, and

patience. Your belief in me has kept my enthusiasm and motivation high throughout

this process.

vii

Contents

Abstract iii

Acknowledgments v

List of Tables xiii

List of Figures xx

1 Introduction 1
1.1 Motivation . 5

1.2 Contributions and thesis outline 7

2 Background 10
2.1 Deep neural network . 10

2.1.1 Feedforward and convolutional neural networks 11

2.1.2 Recurrent neural network 12

2.1.3 Transformer . 15

2.2 Low-precision arithmetic . 17

2.2.1 Numerical format . 18

2.2.2 Quantization method . 19

2.3 Tapered-Precision numerical format 21

2.3.1 Posit . 22

2.3.2 Generalized posit . 26

2.3.3 Tapered fixed-point . 30

CONTENTS viii

2.4 Error analysis for tapered-precision numerical formats 33

2.5 Summary . 35

3 Related work 37
3.1 Empirical analysis of low-precision 37

3.1.1 Variants of IEEE-754 standard numerical format 38

3.1.2 Variants of block floating point 44

3.1.3 Variants of fixed-point 47

3.1.4 Posit . 51

3.2 Numerical error analysis of low-precision 54

3.3 Summary . 58

4 Tapered-Precision numerical formats for deep learning inference 60
4.1 Empirical approach: Cheetah-V2 framework 61

4.1.1 User interface . 63

4.1.2 Initialization . 63

4.1.3 Inference accuracy evaluator 63

4.1.4 Hardware complexity evaluator 69

4.1.5 Optimization . 70

4.2 Numerical analysis approach: ALPS Framework 71

4.2.1 SQNR for tapered-precision numerical formats 72

4.2.2 Finite precision error analysis 75

4.2.3 ALPS framework use-case 77

4.3 Summary . 78

5 DNN inference results and discussion 80
5.1 Benchmark specification . 80

5.1.1 Datasets & pre-processing 80

5.1.2 Experiment setup . 83

5.2 Tapered precision numerical formats performance 84

5.3 Empirical quantization error analysis 90

CONTENTS ix

5.4 Numerical analysis of quantization error 91

5.4.1 SQNR impact on DNN accuracy 91

5.4.2 Theoretical vs. experimental performance: 92

5.5 Hardware system results . 93

5.5.1 EMAC hardware complexity vs performance accuracy . . 93

5.5.2 Exploiting the posit es parameter 94

5.5.3 DNN inference hardware complexity vs performance accu-

racy . 95

5.6 Numerical format identification based on user constraints through

ILP . 96

5.7 Comparison with other posit frameworks 97

5.8 Summary . 98

6 Tapered-precision numerical formats for deep learning training 102
6.1 Problem formulation . 105

6.1.1 AGP parameter selection (statistical approach) 107

6.1.2 AGP parameter selection (numerical analysis approach) . . 108

6.1.3 Low-precision asymmetric generalized posit dot product . 110

6.2 Benchmark specification . 111

6.2.1 Datasets . 111

6.2.2 Experiment setup . 113

6.3 Tapered-precision numerical formats performance 113

6.3.1 Comparison with state-of-the-art low-precision training

approaches . 116

6.4 Summary . 116

7 Case study 118
7.1 Case study: Surveillance video analysis 118

7.1.1 DNN model & datasets 119

7.1.2 Edge-devices . 120

7.2 Tapered precision numerical formats performance 121

CONTENTS x

7.3 Summary . 122

8 Conclusion and Future work 123

A Appendix 128
A.1 Algorithms . 128

A.2 Derivation of Equation 4.11 . 141

Bibliography 144

xi

List of Tables

3.1 The DNN training performance using variants of the IEEE-754

standard floating point format on CIFAR-10, and ImageNet. 40

3.2 The DNN Inference performance using variants of the IEEE-754

standard floating point formats on CIFAR-10 and ImageNet. . . . 43

3.3 The DNN training performance using block floating point format,

on CIFAR-10 and ImageNet. 46

3.4 The DNN Inference performance using block floating point format,

on CIFAR-10 and ImageNet. 47

3.5 The DNN training performance using variants of fixed-point nu-

merical format, on CIFAR-10 and ImageNet. 49

3.6 The DNN Inference performance using variants of fixed-point

format, on CIFAR-10 and ImageNet. 51

3.7 The DNN training performance with variants of fixed-point numer-

ical format, on CIFAR-10 and ImageNet. 53

3.8 The DNN Inference performance using posit format, on CIFAR-10

and ImageNet. 55

4.1 Frameworks for Tapered-Precision Numerical Formats for Deep

Learning Inference . 61

5.1 The DNN models and benchmarks using 32-bit float parameters

description. 81

5.2 The metrics, variables and search space configuration 84

LIST OF TABLES xii

5.3 The DNN inference performance using the tapered-precision nu-

merical formats on Fashion-MNIST dataset (P: posit, FP: floating

point, FX: fixed-point, GP: generalized posit, TFX: tapered fixed-

point). 85

5.4 The RNN inference performance using various numerical formats

(P: posit, FP: floating point, FX: fixed-point, GP: generalized posit,

TFX: tapered fixed-point). 89

5.5 High-level summary of Cheetah-V2, ALPS and other low-precision

posit frameworks. All datasets are image classification tasks. FM-

NIST: Fashion MNIST; FP: floating point; FX: fixed-point; P: posit;

GP: Generalized Posit; TFX: Tapered Fixed-point; SW: software;

HW: hardware. 98

6.1 The DNN models and benchmarks using 32-bit float parameters

description. 112

6.2 The DNN training performance using the posit, generalized posit,

posit, and asymmetric generalized posit formats on various bench-

marks. 113

6.3 The DNN training performance using variants of IEEE-754 stan-

dard floats format, on CIFAR-10. 117

7.1 Specifications of the anomaly detection video dataset 120

7.2 Specifications of the SOC with edge co-processors 121

7.3 Specifications of the Embedded Microcontoller chip 121

7.4 The DNN inference performance using the generalized posit, posit,

and asymmetric generalized posit formats on CIFAR-10. 122

A.1 The DNN inference performance using the tapered-precision nu-

merical formats on CIFAR-10 dataset (P: posit, FP: floating point,

FX: fixed-point, GP: generalized posit, TFX: Tapered fixed-point). 143

LIST OF TABLES xiii

A.2 The DNN inference performance using the tapered-precision nu-

merical formats on Speech commands v2, Visual Wake Word, and

ImageNet datasets (P: posit, FP: floating point, FX: fixed-point,

GP: generalized posit, TFX: Tapered fixed-point). 143

xiv

List of Figures

1.1 The gap between DNN model complexity and edge device re-

sources. OD: Object Detection [1], VA: Video Analysis [2], SR:

Speech Recognition [3], IC: Image Classification [4], AD: Activity

Detection [5]. 4

1.2 (a) 8-bit posit (es = 0) value distribution; (b) ResNet parameter

distribution overlaid with quantization error (squared error). Both

exhibit high density in the [-0.1,+0.1] range. 6

2.1 Computation-Graph executed on a node in a layer in various neural

network topology: (a) Feedforward neural network, (b) Convolu-

tional neural network, (c) Gated recurrent unit (GRU), (d) Long

short-term memory (LSTM) . 12

2.2 Various deterministic rounding functions 18

2.3 Illustration of possibilities for N-bit posit numerical format with

2-bit exponent (es = 2). Either exponent or fraction bits can be

truncated and padded with zero values. 23

2.4 Representation of a number in the posit format P(N = 16,es = 2). 24

2.5 Illustration of quire format with 2-bit exponent (es = 2). For in-

stance, the quire size for 8-bit posit with es = 2 is 128 bits). 26

2.6 Illustration of N-bit generalized posit numerical format with 2-bit

exponent (es = 2). 27

2.7 Illustration of the distribution of values in generalized posit numer-

ical format with N = 5, rs = {1,2,3,4} and eb = 0 27

LIST OF FIGURES xv

2.8 Representation of a number in the GP(N = 16,es = 2,rs = 2,eb =

−2) format . 28

2.9 Illustration of quire format with variable es and rs (e.g, the quire

size for 8-bit posit with es = 2 and rs = 3 is 80 bits) 29

2.10 Illustration of N-bit tapered fixed-point format. 30

2.11 Illustration of the distribution of values in tapered fixed-point for-

mat with N = 5, IS = {1,2,3,4,5} and SC =−1 31

2.12 Representation of a number in the T FX(N = 16, IS = 3,SC =−2)

format . 32

2.13 Illustration of Quire format with variable IS and SC (e.g, the quire

size for 8-bit tapered fixed-point with IS = 8 and SC = 0 is 50 bits) 33

2.14 The relative decimal accuracy [6] for various 8-bit numerical for-

mats Float 8_5 , Float 8_4, Float 8_3 are 8-bit floating point nu-

merical formats with 5, 4 and 3 exponent bits, respectively, and

Posit 8_0, Posit 8_1, and Posit 8_2 are 8-bit posit numerical for-

mats with 0, 1, and 2 exponent bits respectively. The Fixed 8_5

indicates fixed-point numerical format with 5-bit integer and 3 frac-

tion bits, and Generalized posit 8_1_4_0 is 8-bit generalize posit

numerical format with es = 1, rs = 4, and eb = 0. 34

3.1 Variants of IEEE-754 low-precision numerical format are used in

DNN training. The main differences among approaches are the

bit width of exponent and fraction. The Tunable Float has three

configurable bits that can be assigned to either the exponent or

the fraction, based on application requirements. The 4-bit training

requires radix-4 representation to capture the dynamic range of

DNN gradients. 39

3.2 Variants of IEEE-754 low-precision numerical format are used in

DNN Inference. An exponent bias is used in the adaptive floating

point to adjust the dynamic range of the floating point with the

layerwise DNNs parameters’ dynamic range. 43

LIST OF FIGURES xvi

3.3 Low-precision Block floating point numerical format used in DNN

Training. In BFP format, the exponent is shared between the block

of floating point numbers. The bit width of shared exponent and

fraction is the main difference between various approaches. 45

3.4 Low-precision block floating point numerical format used in DNN

Inference. The exponent is shared in BFP format. Different ap-

proaches varied the bit width of shared exponent and fraction. . . . 47

3.5 Low-precision fixed-point numerical formats used in DNN Train-

ing. The MFX8 represents gradients with 8-bit precision and

increases the precision gradually during the training epochs based

on the diversity of gradient metric [7]. 49

3.6 Low-precision fixed-point numerical format used in DNN Infer-

ence. In most approaches, quantization techniques are used to

compensate for accuracy degradation due to the narrow dynamic

range of fixed-point numerical format 51

3.7 Low-precision posit numerical formats are used in DNN Training.

The most successful approach allocates 2 bits for the exponent. . . 53

3.8 Low-precision posit numerical format used in DNN Inference.

In most cases, an exponent bit is enough to represent the DNN

parameters. 55

4.1 The Cheetah-V2 High-level low-precision Hardware & Software

Co-design framework for DNN models on edge platforms 62

4.2 an example of DNN inference accuracy evaluator with tapered

fixed-point parameters. The evaluator is applied to each layer

individually, selecting specific IS and SC values to match the dis-

tribution and range of parameters within the layer. IS specifies the

maximum number of integer bits, and SC specifies the degree of

shift required (left-shift if positive, right-shift if negative). The

MAC structure displays the tapered fixed-point EMAC unit ex-

plained in this section . 68

LIST OF FIGURES xvii

4.3 Deep Neural Network accelerator architecture with custom tapered

fixed-point processing elements. The architecture is evaluated

in a full cycle-emulator to analyze the performance and energy

constraints. 70

4.4 The impact of quantization error in inference misclassification with

ResNet-50. An image sample is misclassified as a dog instead of a

cat due to the accumulation of weight quantization error. 72

4.5 Generalized posit quantization model with a fixed-point quantizer,

compressor y=1
γ
sinh−1(θx), and expander x′ = 1

θ
sinh((γ)y′) func-

tions. The α , β , γ , and θ are real variables that are varied for

different generalized posit configurations 73

5.1 The DNN inference performance using the tapered-precision nu-

merical formats on the CIFAR-10 dataset. (a) ResNet8; (b) ResNet18;

(c) ResNet50; (d) EfficientNet-B0 86

5.2 The DNN inference performance using the tapered-precision nu-

merical formats on Speech commands v2, Visual Wake Word, and

ImageNet datasets. (a) Speech commands v2 (DS-CNN); (b) Vi-

sual Wake Word (MobileNetv1); (c) ImageNet (ResNet18); (d)

ImageNet (ResNet50). 87

5.3 Layer-wise delta distortion rate ∆(d(R)) heatmaps compare the

precision (rates) of 5 to 8-bit numerical formats for representing 32-

bit floating point DNN parameters. The average ∆(d(R)) among all

weights in a DNN is shown in the final column of each heatmap. (a)

d(R)posit −d(R) f ixed for the Fashion-MNIST task; (b) d(R)posit −
d(R) f loat for the Fashion-MNIST task; (c) d(R)posit − d(R) f ixed

for the Fashion CIFAR-10 task; (d) d(R)posit − d(R) f loat for the

CIFAR-10 task.; . 90

LIST OF FIGURES xviii

5.4 (a) The SQNR of 8-bit generalized posit compared to 8-bit posit

and 8-bit floats. (b) ImageNet misclassification rate as a function

of the generalized posit bit-precision with optimal rs for two DNNs

and the theoretical upper bound (as formalized in (4.19)). 92

5.5 (a) The average accuracy degradation for 32-bit floating point

across three classification tasks vs. the energy-delay-product of

the respective multiplier and accumulator unit (MAC). (b) The

average accuracy degradation for 32-bit floating point across three

classification tasks vs. the latency of the respective MAC. N is

total bits, Q is fractional bits for the fixed-point numerical format,

es and we are the number of bits allocated for exponent in posit

and floats, respectively. 94

5.6 Energy-delay product of ResNet-50 benchmarked with ImageNet

when using generalized posit (a), posit (b) and floating point(c).

The performance of posit is evaluated for different bit widths, by

changing number of exponent bits (es), to represent the weights

and activations. 96

5.7 (a) EDP vs Accuracy (b) MAC Frequency vs. Accuracy (c) Power

vs. Accuracy (d) Energy vs. Accuracy (e) Area vs Accuracy

(f) Memory vs Accuracy for an image classification task with an

accelerator configured with PEs arranged in a 16x16 systolic array

and output stationary dataflow. The constraint was derived by

adding the mean with the standard deviation of the metric. 100

LIST OF FIGURES xix

5.8 (a) EDP vs Accuracy (b) MAC Frequency vs. Accuracy (c) Power

vs. Accuracy (d) Energy vs. Accuracy (e) Area vs Accuracy (f)

Memory vs Accuracy for keyboard spotting task with an accelerator

configured with PEs arranged in a 16x16 systolic array and output

stationary dataflow. The constraint was derived by adding the mean

with the standard deviation of the metric. The numerical format

selected by the ILP optimizer (marked by the large dark blue oval)

in the highlighted region identifies the format for which the best

accuracy and metric combination is achieved. GP n_es is n-bit

generalized posit with es-bit exponent. 101

6.1 Comparison DNN parameter’s range and distributions with nu-

merical formats value range and distribution. (a) 8-bit numerical

formats absolute value range, fixed-point: FX(integer,fraction),

floating point: FP(sign,exponent,fraction), posit:P(es), asymmetric

generalized posit:AGP(es,rsd ,rsu).(b) DNN Parameters absolute

value range. The range is asymmetric toward small values. 104

6.2 The relative decimal accuracy [6] for various 8-bit numerical for-

mats Float 1_5_2 , Float 1_4_3, are 8-bit floating format with 5,

4 exponent bits, respectively, and Posit 8_2 are 8-bit posit format

with 2 exponent bits respectively. The Fixed 5_3 and Fixed 8_0

indicates fixed-point numerical format with 5-bit integer and 8-

bit integer respectively, and Generalized posit 8_2_4_2_0 is 8-bit

generalize posit numerical format with es = 2, rsd=4, rsu=2, and

eb = 0. 105

6.3 The training unit of Jaapi low-precision framework for DNN training107

7.1 The high-level deep learning flow for abnormal activity detection

on surveillance video for the edge. BC: Binary Classification . . . 119

LIST OF FIGURES xx

7.2 High level overview of the CDN architecture. Each frame n =

1, . . . ,τ from video v are passed through the CNN feature extractor

to produce u(n) = u(v)
n . All ESN responses U(v) are collected

(i.e. U(v) = {u(v)
1 , . . . ,u(v)

τ } = x(n) for n = 1, . . . ,τ). Temporal

averaging is performed on U(v). Finally the averaged responses are

passed into the SoftMax layer for video activity class prediction

y(v) [8]. 120

1

1. Introduction

Over the course of the last decade, deep neural networks (DNNs) have achieved

state-of-the-art accuracy in a wide spectrum of applications such as biomedicine [9],

precision agriculture [10], nature conservation [11], cybersecurity [12], and space

computing [13]. For instance, Evans et al. proposed a new DNN model to

perform protein folding tasks to diagnose and treat diseases such as Alzheimer’s,

Parkinson’s, and Cystic Fibrosis [14]. Another example is Waldmann et al., who

introduced new DNN models for mapping out Saturn’s turbulent storms to reveal

deeper insight into the planet, such as the presence of ammonia ice clouds [15].

The success of DNNs can be attributed to their ability to hierarchically learn

from huge amounts of raw and unstructured training data, where conventional

machine learning algorithms have gaps [16]. Another contributing factor to DNNs’

success is the significant enhancement in the knowledge capacity of DNN mod-

els. For instance, the knowledge capacity of DNNs for language translation has

increased by 1942x from the GNMT model (278 million parameters) [17] to the

recent PaLM model (540 billion parameters) [18] within a 6-year timespan. In-

creasing the knowledge capacity of DNN models also increases the number of

CHAPTER 1. INTRODUCTION 2

floating point operations (FLOPS), ranging from quintillion of floating point op-

erations (ExaFLOPS) to septillion of floating point operations (YottaFLOPS) per

DNN training and billions of floating point operations (GigaFLOPS) to trillions

of operations (TeraFLOPS) per DNN inference [19]. However, DNN inference

and training on these models demand substantial computational resources and

high-bandwidth memory, leading to increased latency and power dissipation in

performing machine learning tasks. For instance, training the GPT-3 language

model costs 4.6 million [20] and consumes energy of 1287 MWh [21] (more than

the average monthly electricity usage of U.S. residents in 2021 [22]). As another

example, the state-of-the-art EfficientNet-B5 [23] to perform classification on the

ImageNet dataset [24] requires 1024 TPU-v3 to train the network in one hour and

four minutes and consumes approximately 325 KWh energy [25]. Inference perfor-

mance on the same model on a V100 GPU is 60 milliseconds and approximately

550 mWh energy consumption per image [26].

Currently, the majority of DNN models are trained and deployed on the cloud

to accommodate the large amounts of computations and high-bandwidth memory

requirements. These DNN models are classified as CloudML models. However,

the computational paradigm is shifting from cloud to edge computing that offers

intelligence-at-the-edge of the mobile and sensor networks, known as Edge-AI [27].

It is expected that the Edge-AI hardware market is going to grow 17.9% in the next

five years [28], which will deliver $51.6 billion in revenue by 2025, 3.5X larger than

cloud revenue [29]. Therefore, a new class of DNN models (MobileML [30, 31]

and TinyML [32, 33]) have emerged to address the surging demand for deploying

CHAPTER 1. INTRODUCTION 3

DNNs on edge devices.

Although Edge-AI will likely play a pivotal role in tackling global challenges

and bringing considerable benefits to people’s lives, it faces some key challenges,

such as a massive gap between compute resources, memory storage, and energy

budget required to train and deploy of DNN models and the available hardware

resources on edge devices (as shown by Figure 1.1) [19]. The apparent solution to

address this gap is compressing the network size and alleviating the computation

requirements to match putative edge resources. Several groups have proposed

the compressed DNN models with new compute- and memory-efficient neural

networks [30, 33] and parameter-efficient neural networks, such as DNN pruning

[34], distillation [35], low-rank approximation [36], and low-precision arithmetic

[37–45]. Among these approaches, low-precision arithmetic is noted for its ability

to reduce memory capacity, bandwidth, latency, and energy consumption associated

with multiply and accumulation (MAC) units in DNNs, and increase the level

of data parallelism [37, 46, 47]. However, the benefit of using low-precision

arithmetic to reduce the complexity of a model comes at the cost of degraded

inference or training accuracy [48]. This trade-off lends itself to the question:

which low-precision approach can meet the dual objectives of high inference

and training accuracy and minimal hardware resources? The answer to this

question heavily depends on the choice of numerical formats for representing the

parameters. A viable solution to this question could lead to significant energy

savings in application domains such as autonomous vehicles, smart cities, and

healthcare. Therefore, the impact of finding the appropriate numerical format for

CHAPTER 1. INTRODUCTION 4

5
4
3
2

1

C
loser	to	U

ser

Edge	Devices	&	Hardware
Characteristics

DNN	applications	&	DNN
models	Characteristics

Smart	Drones

Smart	Speakers

Smartphone

Wearable	Devices

7-10	W,	33	ms
5-7	W,	33	ms
3-5	W,	33	ms	
1-3	W,	33	ms

Less	than	1	W,	7	ms

Power	Capacity,	Latency

Surveillance	Cameras

Public	Safety	

OD	(7.5	W,	8	ms	,	18	%)		

Power,	Latency,	Accuracy	degradation	

Facility	Protection

Home	Assistant	

VA	(6	W,	149	ms	,	6	%)	

SR	(4	W,	52.14	ms	,	0	%)	
IC	(2	W,	22.12	ms	,	10	%)	

Smart	Home

AD	(1	mW,	285	ms	,	0	%)		

Smart	Healthcare		

Figure 1.1: The gap between DNN model complexity and edge device resources.
OD: Object Detection [1], VA: Video Analysis [2], SR: Speech Recognition [3], IC:

Image Classification [4], AD: Activity Detection [5].

low-precision arithmetic is quite high, prompting organizations like IEEE to study

this topic and develop a standard for arithmetic formats for machine learning

(P3109) by 2025 [49].

This dissertation aims to address the aforementioned question through three

main aspects. First, frameworks and low-precision approaches are developed to

evaluate the efficacy of tapered precision numerical formats as our recommended

numerical formats for DNN models. Note that the recent literature in tapered

precision, published after our paper on posit numerical format for deep learning in

2018 [50], lacks either support for DNN training with the tapered precision numer-

ical format, or accommodation of the variability in DNN parameter distributions

and dynamic ranges. These gaps are addressed in this study by performing DNN

training and inference with adaptive tapered precision numerical formats such as

CHAPTER 1. INTRODUCTION 5

generalized posit and tapered fixed point.

Second, the automated hardware-software co-design framework is developed

to identify appropriate numerical format based on the performance and hardware

complexity constraints defined by users.

Third, the benefit of tapered precision numerical formats for low-precision

arithmetic is justified through the numerical analysis approach.

1.1 Motivation

To understand the correlation between hardware complexity (e.g., energy efficiency)

and performance of low-precision neural networks for the edge, a hardware and

software co-design framework is required. Previous studies have addressed this by

proposing low-precision frameworks [37, 47, 51–58]. However, the scope of these

studies is limited, as listed below. This research aims to address these gaps through

a comprehensive analysis of tapered-precision hardware-software co-design.

1. All of the previous studies only explore the efficiency of mixed low-

precision floating point and fixed-point numerical formats for both DNN

training and inference [37,47,51,52]. Recently, the posit numerical format

has been proposed as an alternative to IEEE-745 floating point format [6].

The posit format provides a higher dynamic range, better decimal accuracy

for the ranges around zero, and balanced magnitude over floating point.

These advantages are gained by altering the characteristics of the IEEE-745

floating point standard. For instance, only two bits are associated in the

CHAPTER 1. INTRODUCTION 6

32-bit posit numerical format to represent zero, ± infinity, and not a real

number (NaR) in comparison to (223 +1)-bit with 32-bit floating point nu-

merical format. Additionally, the posit numerical format supports tapered

precision for full dynamic range while the floating point numerical format

supports tapered precision only for subnormal numbers. The benefits of posit

numerical formats make it a suitable numerical format for DNN applications.

The non-linear distribution of DNN parameters is matched to tapered pre-

cision of posit values. This feature significantly reduces the rounding error

in comparison to fixed-point number system and floating point numerical

format, as shown in Figure 1.2.

60 40 20 0 20 40 60
Posit Value

0

10

20

30

40

50

60

70

80

De
nsi

ty

0.10 0.05 0.00 0.05 0.10
Parameter Value

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

0

1

2

3

4

Qu
an

tiz
ati

on
 Er

ror

1e 5

Figure 1.2: (a) 8-bit posit (es = 0) value distribution; (b) ResNet parameter
distribution overlaid with quantization error (squared error). Both exhibit high

density in the [-0.1,+0.1] range.

2. In most of the previous studies, the hardware complexity comparison

across various low-precision approaches has been conducted only across

numerical formats. The underlying hardware overhead for quantiza-

tion (e.g. complex vector quantization with k-means clustering) and

pre-processing approaches are disregarded [59]. Additionally, in some

CHAPTER 1. INTRODUCTION 7

cases, the comparison across numerical formats has been performed for

varying bit-widths (e.g. 32-bit floating point compared to 8-bit fixed-

point [46]). These unfair comparisons do not offer insights into the viability

of each low-precision approach over other low-precision approaches for a

particular task.

3. Despite empirical comparison between performance of numerical for-

mats in low-precision DNN models, little work has been devoted to

theoretically explain why a specific low-precision approach works bet-

ter than other low-precision arithmetic techniques. Realizing theoreti-

cal bounds on misclassification rate to perform DNN inference with low-

precision fixed-point parameters [60] and providing the dimension-free the-

oretical bounds on the convergence rate of low-precision fixed-point and

floating point training with stochastic gradient descent (SGD) [53] are few

of the missing details in these studies.

1.2 Contributions and thesis outline

The primary aim of this research is to understand the correlation between dual

objective DNN inference and training performance (accuracy and hardware com-

plexity) and associated tapered-precision numerical format. This correlation is

evaluated either through empirical or numerical analysis approaches. The proposed

frameworks and algorithms are applied in a wide range of neural networks such

as convolutional neural networks, feedforward neural networks, recurrent neural

CHAPTER 1. INTRODUCTION 8

networks, and transformers, and a broad range of applications such as image clas-

sification, video activity classification, keyword spotting, and natural language

processing. The key contributions of this research are:

• Low-precision arithmetic frameworks are developed, that utilize tapered

precision numerical formats to enhance the performance of DNN inference

and training.

• A hardware-software co-design framework which selects an appropriate

numerical format for deep learning inference based on custom user-defined

constraints through integer linear programming optimization.

• Novel adaptive quantization algorithms that match the tapered-precision

numerical format configuration to best represent the layerwise dynamic

range and distribution of parameters within a DNN model.

• A signal-to-quantization-noise ratio (SQNR) equation for generalized posit

numerical format is proposed that uses a metric to select the appropriate

generalized posit configuration. To compute the SQNR equation, the gen-

eralized posit quantization is modeled by a compressor function, expander

function, and a fixed-point quantizer.

The rest of this dissertation is organized as follows: Chapter 2 discusses

the overview of DNN inference and training for popular DNN models. It also

explains three tapered-precision numerical formats as appropriate candidates that

can satisfy most to all characteristics of numerical formats for DNN. Chapter 3

surveys the state-of-the-art numerical formats for DNN inference and training.

Moreover, the approaches to numerically analyze the correlation between the DNN

CHAPTER 1. INTRODUCTION 9

performance accuracy and low-precision numerical format are discussed. Chapter

4 provides details about the Cheetah-V2 framework that (i) evaluates tapered-

precision numerical formats for deep learning inference, (ii) empirically studies

the correlation between hardware complexity and inference accuracy of tapered-

precision deep learning models, (iii) selects the appropriate tapered-precision

numerical format depending on accuracy and hardware complexity. Moreover, the

novel ALPS framework adjusts the distribution and dynamic range of generalized

posits and matches it with that of the DNN parameters for each layer. Adaptation is

achieved by estimating the hyper-parameters in generalized posit and minimizing

the quantization error (while maximizing the SQNR) in each layer. Chapter 5

demonstrates the efficacy of tapered precision numerical formats using Cheetah-V2

and ALPS frameworks on image classification, video activity detection, natural

language processing, and keyboard spotting (Chapters 4 and 5 contents are based

on Langroudi et. al [50, 61–66]). Chapter 6 provides the details about training

DNN models using tapered-precision numerical formats through Jaapi framework.

This framework provides a statistical and numerical analysis algorithm that adapts

the tapered-precision numerical formats (mostly focus on asymmetric generalized

posit) to best represent the layerwise dynamic range and distribution of parameters

within layers and training epochs (contents of Chapter 6 are partially based on [67]).

Chapter 7 describes the use case of Cheetah-V2 framework for surveillance video

analysis as a case study. In this study, crime-related behaviors are detected through

automatic analysis of surveillance video for various edge devices. The dissertation

conclusions and future work are presented in Chapter 8.

10

2. Background

2.1 Deep neural network

Deep neural networks (DNNs) are artificial neural networks that are used for

various tasks, such as classification, regression, and prediction, by learning the

correlation between examples from training sets [68, 69]. These networks are

capable of learning a non-linear input-to-output mapping in either a supervised,

unsupervised, or semi-supervised manner. For instance, in a supervised learning

scenario, to determine the correctness of classification in DNNs inference, the

average error between Yi and the desired output Ŷi is calculated as E(ei) by using

a cost function L. To train DNNs, the weights are learned through mini-batch

stochastic gradient descent using the backpropagation algorithm to minimize E(ei)

as given by Equations (2.1) and (2.2) [70] where α is a learning rate, m is a

batch size, θ ′ is derivative of activation function and [W , A, OW , OA, OY] indicate

weights, activations, weight gradients, activation gradients, and error gradients

respectively.

∆W =−αOW
(
E(ei)

)
=−αOW

(1
m

m

∑
i=1

L(Yi(A,W),Ŷi)
)

(2.1)

CHAPTER 2. BACKGROUND 11


OYn

(
E(ei)

)
= θ ′(Yn)OAn

(
E(ei)

)
OWn

(
E(ei)

)
= An−1OYn

(
E(ei)

)
OAn−1

(
E(ei)

)
= wᵀOYn

(
E(ei)

) (2.2)

To learn from different data, different DNN models have emerged [71–76].

These DNN models share a common characteristic, such as containing a sequence

of layers with a set of nodes in each. However, the connectivity between layers

is varied in DNN models. For instance, the layers are globally connected in feed-

forward neural networks, locally connected in convolutional neural networks and

transformers, and recurrent connections in recurrent neural networks. Moreover,

the computation in each node also varies in each DNN model, as summarized in

Figure 2.1, where a major computation in these DNN models is the (multiply-and-

accumulate) MAC operation. In this section, the most common DNN models are

explained based on the computation graph executed on their node as (i) feedforward

and convolutional neural network, (ii) recurrent neural network (iii) transformer.

2.1.1 Feedforward and convolutional neural networks

Feedforward neural networks are an appropriate choice for applications with scalar

data, such as recommendation systems. On the other hand, convolutional neural

networks are naturally suited for applications with multidimensional and structural

data such as image classification. In particular, a node in feedforward neural and

convolutional neural networks computes Equation (2.3) where B j indicates the bias

CHAPTER 2. BACKGROUND 12

MAC MAC MAC

MAC MAC

MAC

MAC

MAC

MAC MAC

MAC

(a)

(b)

(c) (d)

MAC MAC

MAC MAC

MAC MAC

MAC MAC

MAC

Figure 2.1: Computation-Graph executed on a node in a layer in various neural
network topology: (a) Feedforward neural network, (b) Convolutional neural

network, (c) Gated recurrent unit (GRU), (d) Long short-term memory (LSTM)

vector, Wi j is the weight tensor with numerical values that are associated with each

connection, Ai represents the activation vector as input values to each node, θ is

the activation function, Yj is the feature vector as an output of each node, and N

equals either the number of nodes for feedforward neural networks or the product

of (C,R,S) filter parameters: the number of filter channels, the filter heights, and

the filter widths respectively for convolutional neural networks.

Yj = θ(B j +
N

∑
i=0

Ai×Wi j) (2.3)

2.1.2 Recurrent neural network

The convolutional neural networks and feedforward neural networks may not be

appropriate DNN models to learn a task from temporal information since the

memory mechanisms are not designed in these networks. The recurrent neural

CHAPTER 2. BACKGROUND 13

network connections act as a memory to retrieve information learned from previous

time steps. In recurrent neural networks (RNNs), the operations computed by each

node depend on recurrent topology (Vanilla RNN [73], Long Short-Term Memory

(LSTM) [74], Gated Recurrent Units (GRU) [75]).

A node in Vanilla RNN computes Equation (2.4) where W k
i j and W h

i j indicate

the weight tensors, Y t−1
j represents the output in the previous time step, and N1

depicts the number of time steps and N2 represents the number of nodes.

Y t
j = B j +

N1

∑
i=0

Y t−1
j ×W h

i j +
N2

∑
i=0

Ai×W k
i j (2.4)

However, performing DNN training and inference using the Vanilla RNNs has

limitations, such as a lack of capability to learn long-term dependency and training

divergence due to vanishing or exploding gradients. The LSTM architecture has

been designed to address these limitations by adding memory units [74]. A node in

LSTM computes Equation (2.5) where Xi is the input vector, ht−1
j represents hidden

state in the previous time step, [W hI
i j ,W

I
i j,W

h f
i j ,W f

i j , W ho
i j ,W

o
i j,W

hc
i j ,W

c
i j] are a set of

weight tensors, [Bh
j ,B

f
j ,B

o
j ,B

c
j,B

y
j] represent bias vectors, [θ , Γ, Φ] are activation

functions,
⊙

represents element-wise multiplication, and [It
j, f t

j,O
t
j,C̃

t
j,c

t
j,h

t
j,Y

t
j]

indicate input gate, forget gate, output gate, candidate for cell gate, cell state,

CHAPTER 2. BACKGROUND 14

hidden state, and output respectively.

It
j = θ(Bh

j +∑
N1
i=0 ht−1

j ×W hI
i j +∑

N2
i=0 Xi×W I

i j),

f t
j = θ(B f

j +∑
N1
i=0 ht−1

j ×W h f
i j +∑

N2
i=0 Xi×W f

i j),

Ot
j = θ(Bo

j +∑
N1
i=0 ht−1

j ×W ho
i j +∑

N2
i=0 Xi×W o

i j),

C̃t
j = Γ(Bc

j +∑
N1
i=0 ht−1

j ×W hc
i j +∑

N2
i=0 Xi×W c

i j),

ct
j = f t

j
⊙

ct−1
j + It

j
⊙

C̃t
j

ht
j = Ot

j
⊙

Γ(ct
j)

Y t
j = Φ(By

j +∑
N3
i=0 ht

j×W y
i j)

(2.5)

LSTMs are able to predict significantly longer sequences as compared to

Vanilla RNNs, but have considerable overheads caused due to a multitude of

computations and parameters [77]. To reduce the complexity of LSTMs, the GRU

was proposed [75]. The forgetting and input units of the LSTM architecture are

combined together in GRU and called the update unit. A node in GRU calculates

Equation (2.6) where Xi is the input vector, ht−1
j represents the hidden state in the

previous time step, [W hR
i j ,W R

i j ,W
hU
i j ,WU

i j ,W
hh̃
i j ,W

h̃
i j,W

y
i j] are the set of weight tensors,

[Bh
j ,B

f
j ,B

c
j] represent bias vectors,

⊙
represents element-wise multiplication, [θ ,

Γ, Φ] are activation functions, and [Rt
j,U

t
j, h̃

t
j,h

t
j,Y

t
j] are reset gate, update gate,

CHAPTER 2. BACKGROUND 15

activation vector candidate, activation vector, and output respectively.

Rt
j = θ(BR

j +∑
N1
i=0 ht−1

j ×W hR
i j +∑

N2
i=0 Xi×W R

i j),

U t
j = θ(BU

j +∑
N1
i=0 ht−1

j ×W hU
i j +∑

N2
i=0 Xi×WU

i j),

h̃t
j = Γ(Bh̃

j +∑
N1
i=0 (R

t
j
⊙

ht−1
j)×W hh̃

i j +∑
N2
i=0 Xi×W h̃

i j),

ht
j = (1−U t

j)
⊙

ht−1
j +U t

j
⊙

h̃t
j

Y t
j = Φ(By

j +∑
N3
i=0 ht

j×W y
i j)

(2.6)

2.1.3 Transformer

The recurrent neural networks have the capability to process the temporal data

through cyclic connections and memory units. However, this process is inher-

ently performed sequentially, where the output of each timestep becomes the next

timestep input. Recently, transformer models have emerged to address the lack of

parallelization within the training corpus in the recurrent neural network through

the attention mechanism. In particular, the transformer is a sequence-to-sequence

model [76], to learn a temporal task through the attention mechanisms that work as

a differentiate associative memory [78]. A transformer is composed of a decoder

and an encoder unit, with L identical blocks on each [79]. The encoder and decoder

mainly include multi-head self-attention, position-wise fully connected, and nor-

malization layers. In addition to these layers, the decoder has a cross-self-attention

layer between the multi-head attention and the fully connected layers [79]. The

transformer can be used for classification by using the encoder only or can be used

as a generative model by using the decoder only [79]. A node in an encoder unit

computes Equation (2.7) where Xi is the input vector, DK indicates the dimension

CHAPTER 2. BACKGROUND 16

of key matrix, Addnorm is a function that performs addition and normalization

over input operands, [W q1
i j ,W

k1
i j ,W

v1
i j , ... ,W

qm
i j ,W km

i j ,W vm
i j ,W O

i j ,W
p1

i j ,W
p2

i j] are a set

of weight tensors, θ is the activation function, [Q1
j ,K

1
j ,V

1
j ,H

1
j ,A j,Z j,Z′j,Y j] repre-

sent the embedding query, embedding key, embedding input value, self-attention

head vector, the multi-head self-attention vector, normalized cross attention vector,

position-wise self-attention vector and the output of the encoder.

Q1
j = ∑

N1
i=0 Xi×W q1

i j ,

K1
j = ∑

N2
i=0 Xi×W k1

i j ,

V 1
j = ∑

N3
i=0 Xi×W v1

i j ,

H1
j = ∑

N4
i=0(So f tmax(1/

√
DK×∑

N1
i=0 (Q

1
i)× (K1

i)
T)×V 1

i ,

.

.

.

Qm
j = ∑

N1
i=0 Xi×W qm

i j ,

Km
j = ∑

N2
i=0 Xi×W km

i j ,

V m
j = ∑

N3
i=0 Xi×W vm

i j ,

Hm
j = ∑

N4
i=0(So f tmax(1/

√
DK×∑

N5
i=0 (Q

m
i)× (Km

i)
T)×V m

i ,

A j = ∑
N6
i=0 [H

1...Hm]i×W O
i j ,

Z j = Addnorm(A j,X j)

Z′j = ∑
N8
i=0W p2

i j ×θ(∑
N7
i=0 Z j×W p1

i j)

Yj = Addnorm(Z j,Z′j),

(2.7)

The decoder computation behaves similarly to Equation (2.7), except the inputs

are shifted by one position, and another mask-based multi-head self-attention layer

is added to control which inputs transfer to the next layer.

CHAPTER 2. BACKGROUND 17

2.2 Low-precision arithmetic for DNN

Low-precision arithmetic offers benefits such as reduction in memory footprint,

reduction in latency, reduction in communication bandwidth, and reduction in

energy consumption of DNN models. In this approach, the DNN parameters (e.g.,

weights, activations, and gradients) are represented with less than 32-bit or 16-bit

precision (number of bits available to express a value). Additionally, the arithmetic

operations in DNN inference and training procedure are performed partially or

fully in low-precision arithmetic [80]. By reducing the bit precision, it brings the

possibility to deploy these models to resource-constrained edge devices. However,

the low-precision arithmetic produces numerical errors that have a side effect on the

DNN training and inference accuracy compared to the high-precision DNN models.

Therefore, designing a low-precision DNN model with similar performance as the

high-precision DNN model counterparts with minimal computational overhead

is the potential benefit of using low-precision arithmetic. On the other hand,

quantization is an approach to discretize a continuous function into a set of intervals

and map each interval to a value (called quantized value) [81]. Although these

two terms are sometimes used interchangeably in the literature, quantization is a

sub-part of low-precision arithmetic.

Performing DNN inference and training using low-precision arithmetic com-

prises two key aspects: i) Numerical format, and ii) quantization method.

CHAPTER 2. BACKGROUND 18

2.2.1 Numerical format

The numerical format includes a set of numbers and procedures that need to be

defined by a designer or a standard. For instance, how many bits are assigned for

the exponent and fraction for a new floating-point format, what function should be

used to express the values, how arithmetic is computed, how rounding is performed,

and how to represent zero, and ±∞. For instance, a brief description of various

rounding functions used in numerical formats is provided.

Rounding function: The various deterministic rounding functions commonly

used in various numerical formats are shown in Figure 2.2.

U (ODD)L (EVEN) MID-POINT U (ODD)L (EVEN) MID-POINT

ROUND TO NEAREST EVEN ROUND TO NEAREST ODD

U (ODD)L (EVEN) MID-POINTU (ODD)L (EVEN) MID-POINT

ROUND TOWARD ZERO FOR NEGATIVE VALUES ROUND TOWARD ZERO FOR POSITIVE VALUES

U (ODD)L (EVEN) MID-POINT

ROUND TOWARD −∞ ROUND TOWARD +∞

U (ODD)L (EVEN) MID-POINT

Figure 2.2: Various deterministic rounding functions

While there are many approaches to rounding, the most frequently applied

functions are either rounding to the nearest zero (truncation) or to the nearest

even number. Among these rounding approaches, the round-to-nearest-even has

CHAPTER 2. BACKGROUND 19

less average rounding error (0.25 unit of least precision (ULP) in performing the

two-operand function). However, the hardware implementation of this rounding

function is more complex than the others. On the other hand, the truncation can

be simply implemented in hardware but the average rounding error is increased

to 0.5 ULP. However, to perform MAC operations, the occurrence of stagnation

during summation (the summation result is not changed when a new summand is

added) cannot be avoided by using round-to-nearest-even approach. This problem

can be solved using the stochastic rounding [82] where the round-up and down are

performed based on probability value (Pi) as shown in Equation (2.8) where xi are

actual values, x′i are rounded values, and fs indicates the number of fraction bits for

32-bit floating-point format. However, stochastic rounding consumes more energy

than the round-to-nearest rounding approach [83].

x′i = SR(xi, f s) =


bxic if (Pi ≥ xi−bxc

2− f s)

bxic+2− f s, otherwise
(2.8)

2.2.2 Quantization method

The quantization methods to perform DNN inference and training using low-

precision arithmetic, fall under three categories: quantization aware training (QAT),

post-training quantization (PTQ), and fully quantized training (FQT). To perform

DNN inference, the QAT approaches train or fine-tune DNNs with simulated

quantization operations to learn quantized weights and activations, which increases

computational complexity [37]. On the other hand, no training is involved in the

CHAPTER 2. BACKGROUND 20

PTQ approach [39]; the high-precision parameters are directly converted to low-

precision parameters without the need to access the training procedure. The PTQ

can be data-free (also called zero-shot quantization) or data-dependent (e.g., using

the calibration approach [84]). To perform DNN training, the FQT approach is used

when in addition to weights and activations, the gradients are also quantized [85].

Quantization function: The quantization function Q(xi,q, l,u,s,z) estimates

each 32-bit floating-point DNN parameter xi as x′i (a q-bit low-bit precision numer-

ical format), as defined in Equation (2.9) where s and z are scaling factor and zero

point [37], respectively. Given the dynamic range of a low-precision numerical

format, the 32-bit high-precision float values that lie outside this dynamic range are

clipped to the format minimum (l) and maximum (u) appropriately. The clipped

values are then rounded with a rounding function (Round(xi)) to the values that is

expressible in low-precision numerical format.

x′i = Q(xi,q, l,u,s,z) = Round(Clip((s× xi− z), l,u)) (2.9)

Quantization parameters: The s and z is quantization parameters and com-

puted as a 0 for rounding quantization and as in Equations (2.10) and (2.11) for

linear quantization where α = min(xi) and β = max(xi) for asymmetric quantiza-

tion and −α = β = max(|min(xi)|, |max(xi)|) for symmetric quantization [81].

s =
|l−u|
|α−β |

(2.10)

z = mean(clip(xi,α,β)) (2.11)

CHAPTER 2. BACKGROUND 21

Quantization granularity: The quantization parameters are selected based

on the statistic of DNN parameters. This statistic depends on the granularity of

DNN parameters and is categorized into four subgroups: layerwise quantization,

multiple channel-wise quantization, channel-wise quantization, and sub-channel-

wise quantization [81]. Selecting between these granularity depends on hardware

and accuracy trade-offs. Sub-channel-wise quantization is the most computationally

expensive and accurate approach.

Applicability of quantization approach: The quantization approach for DNN

inference is categorized into three levels, depending on access to training data

and retraining requirement [86]: (level-1) data and training free, (level-2) data-

dependent, and training free, (level-3) data-dependent and training dependent. The

QAT approach is a level-3 approach, and PTQ can be either the level-1 or level-2

approach. Proposing a level-1 quantization approach with no loss in accuracy is

desired but in most cases, using the level-1 approach results in accuracy loss; thus

level-2 and level-3 approaches are more commonly implemented to achieve the

application target accuracy.

2.3 Tapered-Precision numerical format

The weights and activations of DNN models are distributed non-uniformly (bell-

shaped) and are approximated with normal distribution [87]. On the other hand, the

DNN gradient distributions are heavy-tailed and approximated with a log-normal

distribution [88]. The DNN parameters (weights, activations, and gradients) can be

CHAPTER 2. BACKGROUND 22

expressed using an equal-magnitude spacing numerical format such as fixed-point

along with adaptive non-uniform quantization [81]. However, performing adaptive

non-uniform quantization, commonly through a clustering algorithm, leads to a

surge in hardware resource requirements for DNN training and inference [81]. The

alternative approach is to suitably represent DNN parameters with the tapered

precision numerical format that expresses values in unequal-magnitude spacing

such that the density of values is maximum near zero and is tapered towards the

maximum representable number. The tapered precision numerical format was

proposed by Morris in 1971 [89]. Afterward, variants of these numerical formats

have been studied in the literature [90–94]. However, these numerical formats

either have redundant encoding to represent a value or are not hardware-oriented

approaches. Recently, John L. Gustafson proposed new tapered precision numerical

formats such as posit [6], generalized posit [95], and tapered fixed point [96] that

addresses the shortcoming of the previous tapered precision numerical format. In

this section, we introduce these numerical formats and compare them with floating

point and fixed-point numerical formats in terms of numerical error.

2.3.1 Posit

The posit numerical format, a type III universal numbers (unums) [97], is pro-

posed to improve upon the arithmetic shortcomings of the IEEE-754 floating point

format such as complicated sign-magnitude arithmetic, dependence upon over-

flow/underflow detection, and lack of algebraic associativity. Posits also address

complaints about hardware complexity of Type I due to variable-length encod-

CHAPTER 2. BACKGROUND 23

ing and scalability of type II unums due to lookup table (LUT) based encoding.

Posits yield better arithmetic accuracy for near zero values, dynamic range, and

reproducibility than IEEE-754 floating point of the same bit-length [6]. Tapered-

accuracy, where the density of values is maximum near zero and is tapered towards

the maximum representable number [95], is one of posits’ characteristics that dis-

tinguishes it from floating point that has roughly constant relative values’ density.

The tapered-accuracy attribute of posits comes from the variable-length regime

(signed unary encoded) in their binary representation.

Like IEEE floating point, binary representations contain a sign bit, exponent

bit, and fraction bits (shown in Figure 2.3).

SIGN
S

N

XPONENT 2 … N-5RACTIONF

EGIME . . . N-12 . . .

EREGIME …R+12 . . .

R
REGIME … R+12 . . . XPONENT 2E

1…

Figure 2.3: Illustration of possibilities for N-bit posit numerical format with 2-bit
exponent (es = 2). Either exponent or fraction bits can be truncated and padded

with zero values.

However, posits also have regime bits. The regime is encoded using a run-

length (m) of identical bits (r...r). It is terminated either by a termination bit r

or by the least significant bit. The regime value k equals −m if the r is zero, and

m−1 if the r is one. After the regime, posits have an es-bit exponent e (unsigned

integer value e) followed by fraction bits f ,0≤ f < 1. Note that in posit format

(shown in Figure 2.3), truncated bits for the exponent and fraction are padded with

zero values. With a leading sign bit, s, the real number represented by a posit is

CHAPTER 2. BACKGROUND 24

given by Equation (2.12),

x =
(
(1−3s)+ f

)
×2(1−2s)×(2esk+e+s), (2.12)

with special cases for zero and not-a-real (NaR) excluded. Unlike the NaN values

of floating point, NaR includes the non-real values ∞ and −∞. The values that

are too large will round to the largest magnitude posit instead of overflowing to ∞.

The values that are too small will round to the smallest magnitude posit instead

of underflowing to zero. The dynamic range of this numerical format is shown as

Equation (2.13) where xP are positive representable values.

DP =
Max(xP)

Min(xP)
= 22es+1×(N−2) (2.13)

For instance, 32.3125 in posit, with N = 16 and es = 2, can be represented as

shown in Figure 2.4.

000000101001
EXPONENT RACTIONF

110
REGIME

0
SIGN

𝑋𝑋𝑝𝑝 =

𝑋𝑋𝑑𝑑 = 𝟏𝟏 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 × 𝟐𝟐 𝟐𝟐𝟐𝟐×𝟏𝟏+𝟏𝟏 = 𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑

Figure 2.4: Representation of a number in the posit format P(N = 16,es = 2).

Conversion from posit to decimal value (posit decoding): The value in posit

representation is decoded in order to extract the sign, regime, exponent, and fraction

and then uses Equation (2.12) to compute the decimal value. As the regime bit

field has variable size, this process is nontrivial. Algorithm 1 in the Appendix A

presents the posit decoding procedure.

CHAPTER 2. BACKGROUND 25

In the first step, the zero, and NaR values and sign are captured, and the two’s

complement of the negative input is calculated (lines 2–4). According to the first

bit of regime encoding, the inverse of the result is calculated (lines 5–6). This step

is performed to bypass the requirement to compute both Leading Zero Detection

(LZD) and Leading One Detection (LOD) to extract regime value. The regime

value is extracted using the LZD algorithm. The regime bits are shifted out, and

the exponent based on the es value and fraction is obtained (lines 7–12). Note that

a regime-terminating bit r and extended zero are assumed if we run out of space (n

bit-width) to compute the regime-bit as well as the exponent and the fraction bits.

Conversion from decimal to posit (posit encoding): Algorithm 2 in the

Appendix A presents the posit encoding procedure. To encode posits, at the first

step, the zero, NaR values, and sign are determined (lines 2–3). By capturing

the sign bit, the absolute value of the real number is enough to determine other

posit encode bits (line 4). The regime bit (reg) is computed by R times dividing

or multiplying a real number by 22es
until the number is in the range [1, 22es

).

Otherwise, the aforementioned range condition is enough to terminate this process

(lines 5–19). To find the exponent, this process is continued until the number is

in the range [1, 2) (lines 20–27). To compute the fraction, the remaining value is

diminished by one and rounded to the nearest even number (lines 28–29).

Quire: Quire format is a wide fixed-point two’s complement format that can

be used for fused/exact multi-operand computations, which is re-branded as the

"exact accumulator" proposed by Ulrich Kulisch [98]. In particular, the bit width of

the quire format is selected such that the maximum and minimum values produced

CHAPTER 2. BACKGROUND 26

during accumulation are expressible. Therefore rounding errors become zero when

the quire format is used. The posit standard [99] supports the quire format, as

shown in Figure 2.5. For instance, to compute the fused multiply-add (a×b+ c),

the a and b are multiplied in a posit format without rounding or truncation at the

end of multiplication. The product (a×b) and c are stored in a quire format and

accumulated. The result of accumulation is rounded to the nearest value that is

representable in the posit numerical format. Therefore, in this approach, rounding

is delayed until the last operation in the computations.

16N

CARRY GUARD 32

2 . . .

SIGN INTEGER 8N-16 8N-16RACTIONF

Figure 2.5: Illustration of quire format with 2-bit exponent (es = 2). For instance,
the quire size for 8-bit posit with es = 2 is 128 bits).

2.3.2 Generalized posit

The generalized posit (GP) format, as shown in Figure 2.6, is an extended version

of posit numerical format where two parameters (exponent bias (eb) and maximum

regime run-length (rs)) are added to have the capability to adapt to the distribution

of parameters across various applications. There is no additional memory require-

ment to store these parameters if the values of these parameters are predefined for

specific applications.

In particular, a parameter eb ∈ [−N−2
2

, N−2
2] can re-center the location of maxi-

mum tapered accuracy from zero to eb. Restricting the regime length rs∈ [1,N−1]

prevents the exponent and fraction bit fields from vanishing at the extremes of the

CHAPTER 2. BACKGROUND 27

SIGN

N

XPONENT 2 … N-4RACTIONF

EGIME . . . N-12 . . .

EREGIME …RS1 . . .

EGIME

0…

-
𝒆𝒃

+

Figure 2.6: Illustration of N-bit generalized posit numerical format with 2-bit
exponent (es = 2).

dynamic range. The effect of these parameters on the distribution of values is shown

in Figure 2.7. Notably, generalized posit formats encompass IEEE-like floating

point with rs = 1 (fixed fraction field), standard posits with rs = N−1, and other

tapered-precision formats between those bounds. The real number represented by

a generalized posit is given by (2.14).

x = ((1−3s)+ f)×2(1−2s)×(2esk+e+s+eb) (2.14)

Value
20 40 60

0204060

De
ns

ity

0
20
40
60
80

100
120
140
160

- - -

GP(5,1,1,0)=Float

GP(5,1,2,0)

GP(5,1,3,0)

GP(5,1,4,0)=Posit

___________________Increasing rs >

Figure 2.7: Illustration of the distribution of values in generalized posit numerical
format with N = 5, rs = {1,2,3,4} and eb = 0

The dynamic range of this numerical format is shown as Equation (2.15) where

CHAPTER 2. BACKGROUND 28

t = N− rs− 1 and xGP are positive representable values. Note that eb does not

change the dynamic range but only shifts the range of values represented by

generalized posit numerical format.

DGP =
Max(xGP)

Min(xGP)
=


22es+1×rs×22es-t−1

, if (t ≤ es)

22es+1×rs× (1−2es−t−1)
(1+2es−t) , otherwise

(2.15)

For instance, the same bit pattern illustrated in Figure 2.4 can be represented

in the generalized posit numerical format with N = 16, es = 2, rs = 1, eb =−2 as

shown by Figure 2.8.

1000000101000
EXPONENT RACTIONF

11
REGIME

0
SIGN

𝑋𝑝 =

𝑋𝑑 = 𝟏 + 𝟎. 𝟓𝟎𝟒𝟖𝟖𝟐𝟖𝟏𝟐𝟓 × 𝟐 𝟐𝟐×𝟏+𝟎−𝟐 = 𝟔. 𝟎𝟏𝟗𝟓𝟑𝟏𝟐𝟓

-
−𝟐
+

Figure 2.8: Representation of a number in the GP(N = 16,es = 2,rs = 2,eb =−2)
format

Conversion from generalized posit to decimal (GP decoding): Algorithm

3 in the Appendix A presents the generalized posit decoding procedure. The

generalized posit decoding procedure is similar to the posit decoding procedure.

The major difference between them is the LZD operation (line 7). To extract the

regime bits, the GP decoder should perform the LZD operation on fewer bits (rs

bits) compared to the posit decoder that should compute the LZD operation on N

bits.

Conversion from decimal to generalized posit (GP encoding): Algorithm

CHAPTER 2. BACKGROUND 29

4 in the Appendix A presents the generalized posit encoding procedure. The

generalized posit encoding procedure is similar to the posit encoding procedure.

The main difference between them is the generalized posit encoder requires an

additional comparison operation to check the regime overflow occurrence which

adds additional hardware complexity to the encoder (lines 7–14). This comparison

operation is not needed in the posit encoder since the zero and NaR values are

separately extracted.

Quire: The quire format for generalized posit is not defined in the posit

standard [99]. It is possible to use the quire in posit format for generalized posit,

as shown in Figure 2.9, since it captures the dynamic range of generalized posit

numerical format for various rs. The alternative approach is to use Equation (2.16)

to compute the quire size.

wq = 32+2×θ = 32+2×
⌈

log2

(
Max(xGP)

Min(xGP)

)⌉
(2.16)

𝒘𝒒

CARRY GUARD 32

2 . . .

SIGN INTEGER 𝜽 RACTIONF 𝜽

Figure 2.9: Illustration of quire format with variable es and rs (e.g, the quire size
for 8-bit posit with es = 2 and rs = 3 is 80 bits)

Symmetric vs asymmetric tapered-precision: The tapered-precision is sym-

metric about the origin when the generalized posit values are represented in the log

domain as shown in Figure 1. However, the outcome of prior studies indicated that

DNN parameters are distributed asymmetrically about the origin in the log domain.

To address this mismatch, it is possible to separate the rs parameter for values

CHAPTER 2. BACKGROUND 30

greater than one as rsu and values less than one rsd . This gives the advantage of

supporting dynamic ranges and tapered-precision for numbers less or greater than

one.

2.3.3 Tapered fixed-point

The tapered fixed-point numerical format (TFX), or taper [96], can be illustrated as

a combination of the generalized posit and fixed-point numerical formats as shown

in Figure 2.10. It combines the hardware-oriented characteristics of fixed-point

and the high accuracy of generalized posit with tapered-precision. Specifically,

the binary encoding to represent the integer bits in fixed-point is replaced with

the regime encoding that was previously used to represent the regime bits in the

generalized posit format. This change adds tapered-precision characteristics to the

fixed-point numerical format. The fraction remains the same as the standard fixed-

point where the fraction is added to the integer rather than scaling, which reduces

the hardware complexity as compared to generalized posit and floating-point.

N-1

… N-1RACTIONF…IS1 . . . 0…INTEGER

SIGN

-
𝑺𝑪

+1

0

1
0

0
1

SIGN

1

ONLY present

during compute

1

Figure 2.10: Illustration of N-bit tapered fixed-point format.

In particular, IS (in a range of [1,N]) indicates the maximum number of regime

encoded integer bits and SC ∈ [−N−1
2

, N−1
2] is the power-of-2 scaling downward or

upward. The IS value controls both the dynamic range and the tapered-precision.

CHAPTER 2. BACKGROUND 31

Similar to generalized posit, the dynamic range is shifted with variation in the SC

parameter. The effect of these parameters on the distribution of values that are

expressible by tapered fixed-point is shown in Figure 2.11, where the real number

represented by a tapered fixed-point is given by Equation (2.17). In this equation,

I is computed in Equation (2.18) representing the integer value, f indicates the

fraction value, and fs the maximum number of bits allocated for the fraction.

X = (I +
f

2fs)×2SC (2.17)

Value

6420246

Density

0
25
50
75

100
125
150
175
200

TFX(5,1,- 1) TFX(5,2,-1)

TFX(5,3,- 1)

TFX(5,4,- 1)

TFX(5,5,-1)

___________________>
Increasing IS

Figure 2.11: Illustration of the distribution of values in tapered fixed-point format
with N = 5, IS = {1,2,3,4,5} and SC =−1

The integer bit-field is encoded as similar to the regime encoding in generalized

posit except for the sign bit (s) that is flipped and is also considered as the first bit

CHAPTER 2. BACKGROUND 32

of the integer (s = i).

I =


−m, if i = 0

m−1, if i = 1
(2.18)

The dynamic range of this numerical format is shown as Equation (2.19) where

xT FX are positive representable values.

DTFX =
Max(xT FX)

Min(xT FX)
=


2N−1, if IS = 1

IS×2N−2, otherwise
(2.19)

For instance, the same bit pattern illustrated in Figure 2.4 can be represented

with tapered fixed-point format with N = 16, IS = 4 and SC = −2 as shown in

Figure 2.12.

010000001010
RACTIONF

110
INTEGERSIGN

𝑋𝑝 =

𝑋𝑑 = 𝟐 + 𝟎. 𝟐𝟓𝟐𝟒𝟒𝟏𝟒𝟎𝟔𝟐𝟓 × 𝟐 −𝟐 = 𝟎. 𝟓𝟔𝟑𝟏𝟏𝟎𝟑𝟓𝟏𝟓𝟔

-
−𝟐
+

0 1

Figure 2.12: Representation of a number in the T FX(N = 16, IS = 3,SC =−2)
format

Conversion from decimal to tapered fixed-point (TFX decoding): Algo-

rithm 5 in the Appendix A presents the tapered fixed-point decoding procedure.

The tapered fixed-point decoder is similar to generalized posit decoder with es = 0

except that the inverse of the sign bit is represented as the first bit of the integer.

It is computationally more complex than fixed-point decoding due to the LZD

CHAPTER 2. BACKGROUND 33

requirement.

Conversion from decimal to tapered fixed-point (TFX encoding): An al-

gorithm 6 in the Appendix A presents tapered fixed-point encoding procedure.

The tapered-precision encoding is different from generalized posit encoding with

es = 0. In the first step, the sign is captured to encode tapered fixed-point. The

absolute value of a real number is used to determine other tapered fixed-point

encoding. The integer value is computed by R≤ IS time subtracting and adding a

real number by one until the number is in the range [0,1). To compute the fraction,

the remaining value is rounded to the nearest even number.

Quire: The quire is not defined for tapered fixed-point [96]. However, it is

possible to define quire format as shown in Figure 2.13 and use Equation (2.20) to

compute the quire size.

wq = 32+2×θ = 32+2×
⌈

log2

(
Max(xT FX)

Min(xT FX)

)⌉
(2.20)

𝒘𝒒

CARRY GUARD 32

2 . . .

SIGN INTEGER 𝜽 RACTIONF 𝜽

Figure 2.13: Illustration of Quire format with variable IS and SC (e.g, the quire size
for 8-bit tapered fixed-point with IS = 8 and SC = 0 is 50 bits)

2.4 Error analysis for tapered-precision formats

In numerical analysis, the most commonly used metric for analyzing the quantity

of computation errors is absolute error, especially for values expressed uniformly

CHAPTER 2. BACKGROUND 34

by a numerical format [100]. However, the absolute error does not produce a

meaningful result when a number is represented by a numerical format that has a

large dynamic range [100]. The alternative solution is to define a relative error and

relative accuracy as in Equation (2.21) where the xd is an actual decimal value that

is approximated as an expressible number in arbitrary numerical format (xn f).

RA =
1

RE
=

1
| ln(xn f /xd)|

(2.21)

0
-10-20 +10 +20

𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂_𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(𝒗𝒗))

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨

Float 8_5
Float 8_4

Float 8_3

Fixed 8_5

Posit 8_0 Posit 8_1

Generalized Posit 8_1_4_0

0.5

1.0

1.5

2.0

2.5

Posit 8_2

Figure 2.14: The relative decimal accuracy [6] for various 8-bit numerical formats
Float 8_5 , Float 8_4, Float 8_3 are 8-bit floating point numerical formats with 5, 4

and 3 exponent bits, respectively, and Posit 8_0, Posit 8_1, and Posit 8_2 are
8-bit posit numerical formats with 0, 1, and 2 exponent bits respectively. The

Fixed 8_5 indicates fixed-point numerical format with 5-bit integer and 3 fraction
bits, and Generalized posit 8_1_4_0 is 8-bit generalize posit numerical format

with es = 1, rs = 4, and eb = 0.

The decimal accuracy of various 8-bit numerical formats is shown in Figure

2.14. The posit’s decimal accuracy has a tent-shaped distribution, and maximum

decimal accuracy occurs where xp ∈ [−22es
,22es

]. The decimal accuracy is tapered

towards the minimum magnitudes value −22es×(n−2) and maximum magnitudes

CHAPTER 2. BACKGROUND 35

value 22es×(n−2) (tapered decimal accuracy). On the other hand, the floating point

has an almost uniform-shaped decimal accuracy distribution with a ramp-shape

decimal accuracy for subnormal values. Moreover, the decimal accuracy of fixed-

point distribution takes long ramp-shape where it is tapered from the maximum

magnitude value to the minimum magnitude value. In variant applications, the

parameters are distributed in a bell-shape as shown in Figure. 2.14. Therefore,

posit can present these parameters more accurately as compared to floating point

and fixed-point due to tapered-precision. By using the rs parameters the decimal

accuracy distribution of generalized posit captures the decimal accuracy of float,

posit, and other numerical formats in between.

2.5 Summary

In the first section of this chapter, an overview of the most widely used deep

learning models (feedforward neural network, convolutional neural network, re-

current neural network, and transformer) and training/inference procedures are

presented. The use cases, connectivity between layers, and a computation graph

executed on a node in a layer, are highlighted. When it comes to deep learning

model computations, MAC operation is the dominant computation in a DNN

node. One practical solution to reduce the computational complexity of MAC

operations and other arithmetic operations in DNN models is performing DNN

inference and training within low-precision arithmetic. However, the benefit of

using low-precision arithmetic to reduce the complexity of a model comes at the

CHAPTER 2. BACKGROUND 36

cost of degraded inference and/or training accuracy. Meeting this dual objective

(high inference and training accuracy and minimal hardware resources) heavily

depends on the choice of numerical formats and quantization approaches. Thus,

the characteristic of appropriate numerical format for DNN models and the quan-

tization approaches landscape is discussed in the second section of this chapter.

As a result of numerous prior studies, it has been found that the low-precision

numerical format for DNN models requires: (i) to have the capability to represent

parameters with non-uniform and, in many cases, skewed distributions, (ii) can

capture the dynamic range of DNN parameters, (iii) the ability to accommodate the

variability observed in inter-, and intra-layer parameter distributions and dynamic

range of DNNs, and (iv) to provide the best trade-off between quantization error

and hardware complexity. Therefore, the three newest tapered precision numerical

formats (posit, generalized posit, and tapered fixed-point) is explained as candidate

numerical formats for DNN models. Through the dynamic range and numerical

error analysis of these numerical formats, It can be concluded that they can support

some to all of these characteristics which are lacking in conventional formats, such

as fixed-point, floating point formats.

37

3. Related work

3.1 Empirical analysis of low-precision

As early as the 1980s, low-precision arithmetic has been studied for shallow neural

networks to reduce compute and memory complexity on performing training and

inference without degradation in performance [80, 101]. It may also improve

the training and inference performance when the noise generated by the low-

precision shallow neural network parameters hypothetically acts as a regularization

method [102,103]. The outcome of these studies indicated that 8- to 16-bit precision

is sufficient for training and inference on shallow networks [80,101,103]. Motivated

by prior studies, the benefits of low-precision arithmetic are reevaluated in the deep

learning era to reduce memory footprint and energy consumption during training

and inference [104, 105]. Several of these studies can be categorized in terms of

numerical formats as (i) variants of IEEE-754 standard numerical format [106], (ii)

variants of block floating point, (iii) variants of fixed-point, and (iv) posit.

CHAPTER 3. RELATED WORK 38

3.1.1 Variants of IEEE-754 standard numerical format

Low-precision DNN training: Traditionally 32-bit IEEE standard floating point

format is used for DNN training. However, this floating point format is designed

for representing a wide dynamic range (> 1080) of numeric values; this range is

much larger than what is needed to represent DNN parameters. For example, the

DNN models studied in this thesis only span a dynamic range of (≈ 1020).

Several prior studies trained DNN with 16- and 32-bit mixed-precision IEEE

standard floating point parameters to reduce this dynamic range mismatch (as

shown in Figure 3.1 and Table 3.1). In these studies, 16-bit floating point is used

to represent weights, activations, gradients, and errors to perform forward and

backward passes. In most of these approaches, the weights are updated in 32-bit

floating point format to prevent accuracy loss caused by underflow in the product

of learning rate and gradients in stochastic gradient descent (SGD) optimization.

Additionally, the dynamic range of 16-bit floating point is shifted using a new

loss scaling approach to represent gradients with a very small magnitude [107].

Unfortunately, this approach fails to preserve inference accuracy in DNN models

such Single-Shot Detector (SSD), which has high variability in the dynamic range

of parameters across layers [107]. To capture this dynamic range’s variability, the

loss scaling factor’s bit-width may be increased, however, this also increases the

computational complexity. A less computational complex alternative approach is

representing DNN parameters with the brain floating point (BFloat16) format that is

proposed by Google and used as a numerical format in TPU V2 AI accelerator [108].

This numerical format has a similar exponent bit-width (8-bit), and less fraction

CHAPTER 3. RELATED WORK 39

Exponent 5-bit RACTIONFSIGN 10-bit

Exponent 8-bit RACTIONF 7-bit

Exponent 6-bit 9-bitF RACTION

7-bit3-bit5-bitExponent RACTIONF

SIGN

SIGN

SIGN

SIGN

SIGN

Exponent

Exponent

Exponent

RACTIONF

RACTIONF
RACTIONF

5-bit

5-bit

4-bit

2-bit

2-bit

3-bit

IEEE FP16, AI-Float [29, 34]

BFloat16 [30, 33]

DFloat16 [31, 32]

Tunable Float [38]

FP8, S2FP8 [40, 46, 48]

HBFP8 [49]

SIGN Integer

SIGN

7-bitR4-FP4 [41] SIGN Exponent 3-bit

Figure 3.1: Variants of IEEE-754 low-precision numerical format are used in DNN
training. The main differences among approaches are the bit width of exponent

and fraction. The Tunable Float has three configurable bits that can be assigned to
either the exponent or the fraction, based on application requirements. The 4-bit

training requires radix-4 representation to capture the dynamic range of DNN
gradients.

bit-width (7-bit) compared to 32-bit floating point. The same exponent bit-width

of BFloat16 and 32-bit floating point reduces the conversion complexity between

these two formats by performing Round-to-Nearest-Even (RNE) operation on

lower 16 bits of 32-bit floating point DNN parameters. In training a ResNet-50

model on the ImageNet dataset, BFloat16s achieve the same performance as 32-bit

floating point when bias parameters and a master copy of the weights in SGD are

represented in 32-bit floating point [109].

However, this approach requires to support of both BFloat16 and 32-bit float

arithmetic units in DNN training and thereby doubles the memory footprint. To

reduce the memory footprint, Zamirai et al. trained ResNet-50 models on the Ima-

geNet dataset with only BFloat16 arithmetic by combining it with either stochastic

CHAPTER 3. RELATED WORK 40

Table 3.1: The DNN training performance using variants of the IEEE-754
standard floating point format on CIFAR-10, and ImageNet.

Numerical Format Bit-Configuration1 Approach2 CIFAR-10 ImageNet

W A G E Acc UP BN Act LS KS SR CA ResNet-18 ResNet-50 ResNet-18 ResNet-50

FP16 [107] 16 16 16 16 32 32 32 16 × × × - - - 76.04(+0.12)%
BFloat16 [109] 16 16 16 16 32 32 16 16 × × × × - - - 74.04(+0.00)%
DFloat16 [112] 16 16 16 16 32 32 16 16 × × × × - - - 74.00(0.00)%
DFloat16-d [42] 16 16 16 16 32 32 16 16 × × × - - - 75.90(0.00)%
BFloat16 [111] 16 16 16 16 32 16 16 16 × × 95.36(-0.09)% - - 75.61(-0.09)%

AI-Float16 [113] 16 16 16 16 16 16 16 16 × × - - - 75.90(0.00)%

HBFP8-B [115] 8 8 8 8 32 32 32 32 × × × - - 70.29(-0.06)% 76.61(+0.04)%
S2FP8 [115] 8 8 8 8 32 32 32 32 × × × 91.10(-0.40)% 93.2(+0.20)% 69.60(-0.70)% 75.20(-1.00)%
L-FP8 [116] 8 8 8 8 24 16 32 16 × 93.41(-0.10)% - - 76.14(-0.24)%
FP8 [117] 8 8 8 8 16 16 16 16 × - - 66.95(-0.48)% 73.14(-0.42)%

HBFP8 [118] 8 8 8 8 16 16 16 16 × - - 69.39(+0.01)% 76.22(-0.22)%

FP4(R4)-FX4 [48] 4 4 4 4 16 16 16 16 × × 92.74(-0.27)% 93.42(-1.28)% 68.27(-1.13)% 74.01(-2.47)%

1 W: Weights; A: Activations, G: Gradients, E: Error, Acc: Accumulation, UP: Update, BN: Batch Normalization, Act: Activation
2 LS: Loss Scaling, KS: Kahan Summation, SR: Stochastic Rounding, CA: Chunk-Based Accumulation

rounding [82] or Kahan summation [110] approaches [111].

Although the BFloat16 numerical format is supported in most of AI accelerators

as a replacement for IEEE-754 floating point, the small fraction bit-width (7-

bit) of BFloat16 introduces large quantization error in gradients computation in

DNN training [111]. To reduce the quantization error, various approaches are

proposed [42, 112–114]. For instance, DFloat-16 proposed by IBM allocated 6 bits

for the exponent, therefore, the number of fraction bits is increased from 7 bits

in BFloat16 to 9 bits in DFloat16 [112]. The DFloat16 shows 5% performance

improvement over BFloat16 in training a transformer on WMT 2014 English-to-

German translation task [112]. Recently, to have more flexibility in fractional

bit-width, Nannarelli proposed a tunable floating point (TFP) numerical format

where fractional bit-width can be dynamically modified from 7- to 10-bit to meet

the application requirements.

Additionally, to further reduce the hardware complexity compared to variant

CHAPTER 3. RELATED WORK 41

16-bit floating point formats, researchers trained DNN models utilizing DNN

parameters with two precision levels: (8-bit and 16-bit), [38] and (8-bit and 32-

bit) [119]. In these studies, stochastic rounding, 2-level chunk-based accumulation

(chunk size equals 64), and loss scaling approaches are applied to minimize the

rounding and overflow errors. For instance, Xiao Sun et al. successfully trained a

variety of DNN models such as ResNet-50, Transformer, and LSTM with a hybrid

8-bit precision floating point format (HFP8). In this format, 8-bit (four exponent

bits and three fraction bits) represents high precision demands of weights and

activations in the forward pass, and 8-bit (five exponent bits and two fraction bits)

represents high dynamic range demands of gradients in the backward pass. The

DFloat16 numerical format is used for arithmetic operations in batch normalization

layers, activation layers, SGD procedures, and all accumulation operations. To

prevent the requirement of the hybrid 8-bit precision, Cambier et al. proposed a

new 8-bit floating point numerical format with shift and squeeze hyperparameters

(S2FP8). In this approach, the mean and standard division of DNN parameters

distribution is adapted to the mean and standard division of distribution of 8-bit

floating point values over training epochs, [115]. The outcome of this study in-

dicates that 8-bit floating point is sufficient to achieve training accuracy within

1% variation of 32-bit floats with ResNet-50 on the ImageNet dataset. To further

reduce the hardware complexity, the possibility of training DNN models with

hybrid 4-bit radix-4 floating point and radix-2 fixed-point (FP4(R4)-FX4) represen-

tation is being examined [48]. To achieve DNN training convergence approaches

such as PACT [120], SAWP [121], two-phase rounding, and gradient scaling are

CHAPTER 3. RELATED WORK 42

adopted along with FP4(R4)-FX4 numerical format [48]. Overall, Training DNNs

with hybrid 4-bit and 8-bit radix2 floating point arithmetic is still an open

question.

Low-precision DNN inference: Several groups have demonstrated that 8-bit

floating point numerical format are adequate to represent weights and activations

without significantly degrading performance yielded with 32-bit floating point

as shown in Figure 3.2 and Table 3.2 [38, 47, 122, 123]. For instance, Deng et

al. demonstrated 8-bit floating point numerical format (4-bit exponent and 3-

bit fraction) to represent weights for AlexNet and VGG-16 DNN models on the

ImageNet dataset [122]. The results indicated that it is possible to represent 20% of

the weights in 8-bit floating point representation with less than 1% degradation of

accuracy. Following this work, Gysel et al. showed that 8-bit floating point (5-bit

exponent and 2-bit fraction) weights and activations, 8-bit multipliers, and 32-bit

accumulation results in less than 1% accuracy loss on AlexNet with the ImageNet

corpus [47]. Moreover, Sun et al. evaluated that 8-bit floating point (4-bit exponent

and 3-bit fraction) with a fixed scaling factor of 4, shows less quantization error

compared to 8-bit floating point (5-bit exponent and 2-bit fraction) for a variety of

DNN models [38]. To further reduce bit precision and hardware complexity, Tambe

et al. [123] introduced an adaptive ≤ 8 floating point numerical format (AFP). This

numerical format has the capability to accommodate the variability observed in

inter- and intra-layer parameter dynamic range of DNNs through parameterizing

the exponent bias (Eb) in floating point numerical format. The result of this study

indicated that it is possible to reduce the bit precision of weights and activations to

CHAPTER 3. RELATED WORK 43

SIGN Exponent

Exponent

RACTIONF

RACTIONF

5-bitFP8 [48,49] 2-bit

3-bit4-bit

SIGN

FP8 [44]

Exponent 4-bitSIGN

SIGN

SIGN

3-bitRACTIONFAFP [50]

AFP [50] Exponent 4-bitSIGN 1-bitRACTIONF

Exponent 3-bitSIGNAFP [50]

𝒆𝒆𝒃𝒃
+
𝒆𝒆𝒃𝒃 -𝑬𝑬𝒃𝒃

𝒆𝒆𝒃𝒃
+
𝒆𝒆𝒃𝒃 -𝑬𝑬𝒃𝒃

𝒆𝒆𝒃𝒃
+
𝒆𝒆𝒃𝒃 -𝑬𝑬𝒃𝒃

Figure 3.2: Variants of IEEE-754 low-precision numerical format are used in DNN
Inference. An exponent bias is used in the adaptive floating point to adjust the

dynamic range of the floating point with the layerwise DNNs parameters’ dynamic
range.

Table 3.2: The DNN Inference performance using variants of the IEEE-754
standard floating point formats on CIFAR-10 and ImageNet.

Numerical Format Bit-Configuration1 Approach2 CIFAR-10 ImageNet

W A Acc BN Act PQ EB SR CA ResNet-20 ResNet-50 ResNet-20 ResNet-50

FP8 (S:1, E:5, F:2) [122] 8 32 32 32 32 × × × - - - -
FP8 (S:1, E:5, F:2) [47] 8 8 32 32 32 × × × × - - - -
FP8 (S:1, E:4, F:3) [38] 8 8 16 16 16 × - - 68.99(-0.33) 76.42(+0.04)

AFP8 (S:1, E:4, F:3) [123] 8 8 32 32 32 × × × - - - 75.7(-0.05)%

AFP6 (S:1, E:4, F:1) [123] 6 6 32 32 32 × × × - - - 73.90(-2.40)%
AFP4 (S:1, E:3, F:0) [123] 4 4 32 32 32 × × × - - - 29.0(-47.30)%

1 W: Weights; A: Activations, Acc: Accumulation, BN: Batch Normalization, Act: Activation
2 PQ: Partial Quantization, EB: Exponent Bias, SR: Stochastic Rounding, CA: Chunk-Based Accumulation

6-bit in performing DNN inference with ResNet-50 on ImageNet dataset within 2.4

accuracy degradation compared to 32-bit floating point. Any further reduction of

bit precision, such as 4-bit, for both weights and activations, results in significant

degradation of accuracy (e.g., 47.3% accuracy degradation using the 4-bit floating

point on ResNet50 and ImageNet dataset). Therefore, DNN inference with 4-bit

floating point numerical format is still an open question.

CHAPTER 3. RELATED WORK 44

3.1.2 Variants of block floating point

The block floating point (BFP) is a decades-old approach that was first used

in the 1950s, where a block of floating point numbers used a shared exponent

[124]. The shared exponent is selected as a common exponent in the block (either

minimum or maximum exponent) and all significants in the block are aligned

according to the new shared exponent. After this alignment, the operation in the

block can be performed with fixed-point arithmetic. Therefore, BFP provides a

balance between the dynamic range (benefit of floating point numerical format)

and hardware complexity (benefit of fixed-point numerical format). While the

BFP seems to be a promising approach for deep learning, the shared exponent in

the BFP numerical format needs to be updated according to the DNN parameter

statistics, thus increasing the computational complexity of deep learning training

and inference [125].

Low-precision training: Several researchers have evaluated the efficacy of

BFP numerical format for deep learning training as shown in Figure 3.3 and Table

3.3 [105, 118, 125–127]. For instance, Courbariaux et al. trained a low-precision

DNN on the MNIST, CIFAR-10, and SVHN datasets with the floating point, fixed-

point, and BFP numerical formats [105]. They demonstrated that BFP is the most

suitable choice for low-precision training since it can capture the dynamic range of

DNN parameters [105].

Following this work, Koster et al. proposed the 21-bit BFP numerical format

(5-bit shared exponent, 16-bit fraction) re-branded as Flexpoint numerical format.

Moreover, a new algorithm called Autoflex is proposed to automatically predict the

CHAPTER 3. RELATED WORK 45

9-bitSIGN

8-bit 9-bitSIGN
Exponent

SIGN

8-bit
SIGN

Exponent

SIGN 15-bit

15-bit
5-bitExponent

15-bit

15-bit

4-bitExponent

SIGN

SIGN 3-bit

3-bit

SIGN

2-bitExponent

SIGN

SIGN 3-bit

3-bit

BFP [53]

HBFP [42]

BFP [52]

HBFP [57]

HBFP [57]

RACTION

RACTION

RACTION

RACTION

RACTION

RACTION

F

F

F

F

F

F

RACTION

RACTION

RACTION

RACTION

F

F

F

F

Figure 3.3: Low-precision Block floating point numerical format used in DNN
Training. In BFP format, the exponent is shared between the block of floating point

numbers. The bit width of shared exponent and fraction is the main difference
between various approaches.

optimal shared exponent’s value for DNN parameters in each iteration of SGD by

statistically analyzing the values of DNN parameters in previous iterations [125].

On training a ResNet-18 model on CIFAR-10 dataset, the Flexpoint numerical

format with the Autoflex algorithm demonstrates similar performance compared

to 32-bit floating point [125]. However, the Autoflex algorithm selects shared

exponents several times per training batch; this leads to large quantization errors

where the exponent values are changed abruptly between blocks. To mitigate this

problem, Drumond et al. applied the tiling approach (dividing the weights parame-

ters to multiple tiles or blocks), and wider bit-width for intermediate accumulations

with 16-bit BFP (8-bit shared exponent and 8-bit fraction) parameters [118]. They

also showed that 8-bit (4-bit shared exponent and 4-bit fraction) fails to capture

the variability between the dynamic range of parameters across blocks. To address

this issue, Zhang et al. combined 8-bit BFP training with stochastic rounding and

CHAPTER 3. RELATED WORK 46

Table 3.3: The DNN training performance using block floating point format, on
CIFAR-10 and ImageNet.

Numerical Format Bit-Configuration1 Approach2 CIFAR-10 ImageNet

W A G E Acc UP BN Act AEM KS SR CA ResNet-20 ResNet-50 ResNet-20 ResNet-50

BFP16-5 [125] 21 21 21 21 32 32 32 32 × × × - - - -
BFP16-8 [126] 24 24 24 24 32 32 32 16 × - - - 75.77(+0.7)%

HBFP8-10 [118] 18 18 18 18 32 32 32 32 × - - - 76.12(+0.24)%

HBFP4-4 [44] 8 8 8 8 32 32 32 32 × - - 68.57(-0.03)% 75.13(-0.02)%
HBFP3-4 [44] 7 7 7 7 32 32 32 32 × - - 68.10(-0.50)% 73.98(-1.19)%
HBFP2-4 [44] 6 6 6 6 32 32 32 32 × - - 63.10(-5.5)% 72.10(-3.07)%

1 W: Weights; A: Activations, G: Gradients, E: Error, Acc: Accumulation, UP: Update, BN: Batch Normalization, Act: Activation
2 AEM: Automated Exponent management, KS: Kahan Summation, SR: Stochastic Rounding, CA: Chunk-Based Accumulation

achieved similar training accuracy with 32-bit floating point [44]. Although 8-bit

BFP has shown a promising result in DNN training, the 4-bit BFP training

did not converge [44] and is currently an open research question.

Low-precision Inference: The BFP is also evaluated on DNN inference as

shown in Figure 3.4 and Table 3.4. For instance, Song et al. introduced a 12-

bit BFP (4-bit shared exponent and 8-bit fraction) to represent DNN parameters.

Moreover, the analytical bound on the bit width of the BFP format is derived in

this work. The result indicated that it is possible to classify ImageNet on the

ResNet-50 model with less than 0.3% inference accuracy degradation compared to

32-bit floating point. Following this work, Rouhani et al. proposed a 12-bit BFP

(8-bit shared exponent and 4-bit fraction) rebranded as a Microsoft floating-point

(MSFP) and performed DNN inference on a variety of DNN models [41]. The

outcome of this study showed that the BFP is more suitable for the transformer

models due to a wider dynamic range of parameters compared to that of other

DNN models [41]. One drawback of the MSFP format is that it can not represent

non-uniform and skewed distribution due to the use of sign-magnitude fixed-point

arithmetic. This drawback causes the quantization error to be increased when the

CHAPTER 3. RELATED WORK 47

DNN parameter bit width is reduced to ≤ 8-bit [41]. Therefore, DNN inference

with 4-bit floating point numerical format is an active area of research.

SIGN

SIGN

Exponent 8-bit
RACTION

RACTION 7-bit

7-bit

4-bitExponent
SIGN

SIGN

RACTION

RACTION 3-bit

3-bit

F

F

F

F

Exponent 3-bit
SIGN

SIGN

RACTION

RACTION 4-bit

4-bitF

F

MSFP [55]

MSFP [55]

MSFP [56]

Figure 3.4: Low-precision block floating point numerical format used in DNN
Inference. The exponent is shared in BFP format. Different approaches varied the

bit width of shared exponent and fraction.

Table 3.4: The DNN Inference performance using block floating point format, on
CIFAR-10 and ImageNet.

Numerical Format Bit-Configuration1 Approach2 CIFAR-10 ImageNet

W A Acc BN Act PQ AEM SR CA ResNet-20 ResNet-50 ResNet-20 ResNet-50

MSFP8-8 [41] 16 16 16 16 16 × × - - - 75.26(-0.00)%
BFP8-4 [128] 12 12 16 16 16 × × - - - 76.40(+0.27)%
BFP8-4 [129] 12 12 16 16 16 × × - - - 75.75(-0.38)%
MSFP4-8 [41] 12 12 16 16 16 × × - - - 72.77(-2.49)%

1 W: Weights; A: Activations, Acc: Accumulation, BN: Batch Normalization, Act: Activation
2 PQ: Partial quantization, AEM: Automated Exponent management, SR: Stochastic Rounding, CA: Chunk-Based
Accumulation

3.1.3 Variants of fixed-point

Low-precision training: Training DNN models using fixed-point numerical for-

mats is a challenging task due to the fixed-point narrow dynamic range that fails

to capture the dynamic range of DNN gradients and quickly runs up against the

quantization error. To mitigate this problem, several approaches have been pro-

posed in the literature as shown in Figure 3.5 and Table 3.5, and a few of them

CHAPTER 3. RELATED WORK 48

successfully trained DNN models with 8- and 16- bits fixed-point numerical format.

For instance, Banner et al. proposed a hybrid 8- and 16-bit fixed-point represen-

tation where the activation gradients are represented with 16-bit precision. The

reason behind the 16-bit representation of activation gradients is that the statistics

of activation gradients do not follow the normal distribution, which contradicts

the assumption of most of the quantization approaches [130]. However, with prior

knowledge of the distribution of activation gradients and introducing a new batch

normalization algorithm (Range BN), they successfully trained Resnet-50 model on

imageNet with 0.4% accuracy degradation [130]. Following this work, Rajagopal

et al. proposed a new algorithm to automatically switch the DNN parameter’s

precision every epoch based on a gradient diversity metric [131]. Specifically, the

DNN is initially trained with the smallest precision (e.g., 8-bit precision), and the

diversity of gradient dg is evaluated on each epoch. Afterward, the precision of

DNN parameters gradually increased from initial precision to 12-bit, 14-bit, and

16-bit fixed-point numerical formats when the dg is decreased. The ResNet-18 is

trained on the ImageNet using this approach with 0.39% accuracy degradation as

compared to the same network with 32-bit floating point [7]. Recently, Zhao [132]

et al. observed that the gradients over various channels have two different distribu-

tions (normal and log-normal distribution). Based on this observation, the gradients

are quantized channel-wise, and the scale factor for quantization is calculated based

on the distribution of gradients. By using this approach, the ResNet-50 model on

ImageNet is trained without accuracy degradation. However, this approach requires

to store the weights, activations, and gradients in 32-bit floating point to analyze

CHAPTER 3. RELATED WORK 49

SIGN

RACTIONF

RACTIONF
RACTIONF

RACTIONF

15-bit

11-bit

9-bit

7-bit

-
𝑺𝑺𝑺𝑺

+

SIGN 7-bitRACTIONF

-
𝑺𝑺𝑺𝑺

+

MFX8 [116]

FX8 [114,117,118]

Figure 3.5: Low-precision fixed-point numerical formats used in DNN Training.
The MFX8 represents gradients with 8-bit precision and increases the precision
gradually during the training epochs based on the diversity of gradient metric [7].

Table 3.5: The DNN training performance using variants of fixed-point numerical
format, on CIFAR-10 and ImageNet.

Numerical Format Bit-Configuration1 Approach2 CIFAR-10 ImageNet

W A G E Acc UP BN Act LS KA SR CA ResNet-20 ResNet-50 ResNet-20 ResNet-50

FX8 [133] 8 8 8 8 32 32 32 32 × × × 91.95(-0.32)% - 69.67(-0.63)% 76.34(-0.26)%
FX8 [132] 8 8 8 8 32 32 32 32 × × 92.76(+0.41)% - 70.21(-0.01)% 76.59(+0.09)%
FX8 [130] 8 8 8 8 32 32 8 32 × × × - - 65.10(-0.05)% 72.10(-0.10)%
MFX8 [7] 8 8 8 8 32 32 32 32 × × 90.86(+0.78)% - 69.09(-0.39)% -

1 W: Weights; A: Activations, G: Gradients, E: Error, Acc: Accumulation, UP: Update, BN: Batch Normalization, Act: Activation
2 LS: Loss Scaling, KS: Kahan Summation, SR: Stochastic Rounding, CA: Chunk-Based Accumulation

their distributions used for quantization, and the accumulations are performed in

32-bit fixed-point.

Low-precision inference: Numerous studies in low-precision arithmetic in-

vestigate approaches to perform DNN inference with ≤ 8-bit fixed-point numerical

format as shown in Figure 3.6 and Table 3.6 [40, 43, 84, 134–139]. For instance,

Migacz introduced an 8-bit fixed-point quantization approach by scaling either

down or up the 32-bit high-precision floating point parameters and then converting

to the fixed-point number [84]. The Kullback–Leibler (KL) divergence between

the high precision value and quantized value over the partial training dataset (cal-

ibration dataset) is used to find the appropriate scaling factor. The result of this

CHAPTER 3. RELATED WORK 50

study showed a negligible accuracy degradation (0.13%) for the ResNet-50 model

on the ImageNet dataset when 1250 training images were used as a calibration

dataset [84]. Recently, this approach has been studied for a variety of DNN models.

The outcome of this study showed that in some cases (e.g., EfficientNet-B0), the

accuracy loss is substantial (4.79% accuracy loss) [40]. To mitigate this problem,

the granularity of the scaling factor is reduced to vector size that is analogous to the

BFP approach and has similar drawbacks such as large quantization error due to

abrupt change in scaling factor between channels [134]. The alternative approach

to perform DNN inference without managing the scaling factor is to represent

DNN parameters with mixed-precision fixed-point numerical format [43,135–137].

However, this approach requires a precision selection algorithm for each layer

either based on first-order error information (Jacobian norm) [135], or the second-

order error information (Hessian matrix) of DNN parameters [43, 136, 137]. For

instance, Yao et al. used a Hessian matrix to compute the sensitivity of DNN

parameters in each layer to quantization error and assigned the least number of

bits for parameters of layers to minimize quantization error. The DNN using

4-bit and 8-bit mixed-precision fixed-point numerical format achieved a compa-

rable accuracy compared to high-precision 32-bit floating point (2.53% accuracy

degradation) [43]. However, performing DNN inference using 4-bit fixed-point

numerical format is still an open question. The main reason the fixed-point fails

to preserve accuracy is the narrow dynamic range of this numerical format. A few

proposals are proposed to extend the dynamic range of fixed-point numerical for-

mat, such as dual fixed-point [140], and triple fixed-point numerical format [138].

CHAPTER 3. RELATED WORK 51

SIGN 7-bitRACTIONF

-
𝑺𝑺𝑺𝑺

+

FX8 [63,119,120,124]

SIGN 3-bitRACTIONF

-
𝑺𝑺𝑺𝑺

+

FX4 [120,124]

Figure 3.6: Low-precision fixed-point numerical format used in DNN Inference. In
most approaches, quantization techniques are used to compensate for accuracy

degradation due to the narrow dynamic range of fixed-point numerical format

However, the benefits of the 4-bit precision of these numerical formats are not

evaluated on DNN inference.

Table 3.6: The DNN Inference performance using variants of fixed-point format,
on CIFAR-10 and ImageNet.

Numerical Format Bit-Configuration Approach CIFAR-10 ImageNet

W A Acc BN Act PQ AEM SR CA ResNet-20 ResNet-50 ResNet-20 ResNet-50

FX8 [84] 8 8 32 32 32 × × - - - 73.10(-0.13)%
FX8 [40] 8 8 32 32 32 × × - - - 76.05(-0.11)%
FX8 [134] 8 8 32 32 32 × × - - - 75.15(-1.01)%
FX8 [43] 8 8 32 32 32 × × - - 71.56(+0.09)% 77.58(-0.14)%

FX4 [134] 4 4 32 32 32 × × - - - 74.36(-1.80)%
FX4 [43] 4 4 32 32 32 × × - - 68.45(-3.02)% 74.24(-3.48)%

1 W: Weights; A: Activations, Acc: Accumulation, BN: Batch Normalization, Act: Activation
2 PQ: Partial Quantization, AEM: Automated Exponent Management, SR: Stochastic Rounding, CA: Chunk-Based Accumula-
tion

3.1.4 Posit

The capability to represent the non-uniformly distributed (bell-shaped) parameters

by posit numerical format due to its tapered precision motivated us to evaluate

the benefits of posit numerical format for DNN parameters for the first time in

the literature. In particular, we demonstrated that the weights of a deep learning

model’s parameters, which are non-uniformly distributed (bell-shaped), can be most

CHAPTER 3. RELATED WORK 52

suitably represented with posits instead of uniformly distributed fixed-point [50].

The outcome of this study indicates that deep learning network weights can be

represented by 7-bit posits to achieve inference accuracy similar to that of 32-bit

floating point (with 1% variation). After this work and relevant to this thesis

research, the extensive studies in understanding the benefits and overheads of

posit numerical format for deep learning by researchers in academia and industries

[58, 123, 141–145, 145–150, 150–157]. In this section, we only present a summary

of previous works on deep learning with posit that offer different viewpoints

compared to the algorithms presented in this thesis.

Low-precision training: Few studies have proposed a framework to evaluate

the efficacy of 16-bit and 8-bit posit numerical format for DNN training as shown

in Figure 3.7 and Table 3.7 [145, 148–151, 158]. Unfortunately, the scope of these

studies is either limited to the use of posit for memory operations by representing

DNN parameters in 8-bit posit formats (the computation is performed in 32-bit

floating point) [148, 150] or has been only evaluated on low-dimensional datasets,

such as MNIST [149]. For instance, Lu et al. demonstrated that the memory

footprint is reduced between 2× to 4× when training ResNet-18 model with 8-bit

posit while achieving an accuracy similar to 32-bit floating point. Their approach

also relies on the warm-up method (initially for some epoch trained with 32-bit

low-precision floating point) that increases the training overhead [148]. Recently,

Goncalo Raposo et al. evaluated the DNN training using 8-bit posit for both

memory and computation operations. They successfully trained a LeNet-5 model

on the MNIST dataset without accuracy degradation. However, the scope of this

CHAPTER 3. RELATED WORK 53

SIGN

16

XPONENT 1 … 12RACTIONF

EGIME 2 . . .

EREGIME …151 . . .

EGIME

0…

EGIME 2 . . .

SIGN

8

XPONENT 1 … 4RACTIONFEREGIME …71 . . .

EGIME

0…

SIGN

8

XPONENT 2 … 3RACTIONFEREGIME …71 . . .

EGIME

0…

P16_1 [133]

P8_1 [136]

P8_2 [137,139,146]

Figure 3.7: Low-precision posit numerical formats are used in DNN Training. The
most successful approach allocates 2 bits for the exponent.

Table 3.7: The DNN training performance with variants of fixed-point numerical
format, on CIFAR-10 and ImageNet.

Numerical Format Bit-Configuration1 Approach2 CIFAR-10 ImageNet

W A G E Acc UP BN Act LS Q MO WU ResNet-20 ResNet-50 ResNet-20 ResNet-50

P16_1 [145] 16 16 16 16 16 16 16 16 × × × × - - - -

P8_1 [148] 8 8 8 8 32 16 16 32 × 92.07(-0.14) - 70.83(-0.11) -
P8_2 [158] 8 8 8 8 32 32 32 32 × 89.70(-1.30) - - -
P8_2 [158] 8 8 8 8 32 32 32 32 × 91.60(0.60) - - -
P8_2 [149] 8 8 8 8 32 12 8 32 × × × - - - -

LP8_2 [151] 8 8 8 8 20 32 32 32 × × 93.10(-0.3) - 70.10(-0.8) -

1 W: Weights; A: Activations, G: Gradients, E: Error, Acc: Accumulation, UP: Update, BN: Batch Normalization, Act: Activation
2 LS: Loss Scaling, Q: Quire, MO: Memory Only, WU: Warm-up

study was limited to the low-dimensional dataset, and small DNNs [149]. Finally,

Nhut-Minh Ho et al. proposed the Qtorch+ framework as an extension to the

QPytorch framework to represent weights, activations, and gradients with a hybrid

8-bit posit and 32-bit floating point format. Based on the result of this study, it

is possible to train the DNN models with this numerical format similar to 32-bit

floating point as long as the gradient scaling approach is used. However, the

arithmetic operations for DNN models in this work are performed in the 32-bit

floating point. Therefore, training DNN models with posit numerical format

that perform both memory and arithmetic operations with either hybrid ≤

8-bit and 32-bit precision or hybrid ≤ 8-bit and 16-bit precision is an active

research area.

CHAPTER 3. RELATED WORK 54

Low-precision inference: Deep learning inference with low-precision posit

has been studied in literature, as shown in Figure 3.8 and Table 3.8 [58, 123,

145–147, 156]. For instance, Jeff Johnson proposed a logarithmic form of posit

arithmetic [58]. On the ImageNet dataset, 8-bit log-posit performed within

0.9% inference accuracy of 32-bit floating point. The inference performance

on DNNs with 10-bit posits has also shown similar performance in autonomous

driving applications, such as the CIFAR-10 benchmark [146]. The new posit-based

exponential linear unit (ELU) activation function was proposed to achieve this

performance in this work. Recently, the DNN inference with ≤ 8-bit posit formats

has been explored, to further decrease the hardware complexity of performing DNN

inference [123, 158]. The results of these studies showed that 8-bit low-precision

DNN inference, combined scaling factor achieves similar performance to 32-bit

floating point DNN inference on the Imagenet dataset. However, further reducing

the bit precision to less than 8-bit causes a significant drop in accuracy [123, 158].

Therefore, performing DNN inference using ≤ 8-bit posit numerical format

is still an open question.

3.2 Numerical error analysis of low-precision

Low-precision Inference: Studies considering low-precision arithmetic have ex-

perimentally shown that neural networks using 8-bit numbers can achieve infer-

ence accuracy comparable to that of 32-bit numbers. However, few studies have

proposed numerical analysis frameworks that explain the function between the

CHAPTER 3. RELATED WORK 55

SIGN

10

… 6RACTIONFREGIME …91 . . .

EGIME

0…

SIGN

8

XPONENT 1 … 4RACTIONFEREGIME …71 . . .

EGIME

0…

SIGN

8

… 5RACTIONFREGIME …71 . . .

EGIME

0…

SIGN

6

XPONENT 1 … 2RACTIONFEREGIME …51 . . .

EGIME

0…

P10_0 [134]

P8_1 [43,133,105,146]

P8_0 [134]

P6_1 [105,146]

Figure 3.8: Low-precision posit numerical format used in DNN Inference. In most
cases, an exponent bit is enough to represent the DNN parameters.

Table 3.8: The DNN Inference performance using posit format, on CIFAR-10 and
ImageNet.

Numerical Format Bit-Configuration Approach CIFAR-10 ImageNet

W A Acc BN Act PS Q SR CA ResNet-20 ResNet-50 ResNet-20 ResNet-50

P10_0 [146] 10 10 32 32 32 × × × - 93.7(0.0)% - -
LP-8_1 [58] 8 8 38 8 32 × × - - - 75.23(-0.90)%
P8_1 [145] 8 8 32 32 32 × × × - - - -
P8_0 [146] 8 8 32 32 32 × × × - 85.00(-13.7)% - -
P8_1 [123] 8 8 32 32 32 × × × - - - 75.40(-0.80)
P8_1 [158] 8 8 32 32 32 × × × - - - 75.70(-0.40)

P6_1 [123] 6 6 32 32 32 × × × - - - 68.80(-7.40)%
P6_1 [158] 6 6 32 32 32 × × × - - - 69.10(-7.00)%
P4_1 [123] 4 4 32 32 32 × × × - - - 0.70(-75.70)%

1 W: Weights; A: Activations, Acc: Accumulation, BN: Batch Normalization, Act: Activation
2 PS: Parameter Scaling, Q: Quire, SR: Stochastic Rounding, CA: Chunk-Based Accumulation

precision of numerical formats and the inference accuracy [135, 159–162].

To find such a function theoretically, Holt et al. analyzed the error generated

by finite-precision computation in shallow neural networks [159]. In this study,

the low-precision floating point parameters are quantized by either a truncation

or rounding operation. They prove that the expected square error [e2
y] and q-

bit precision for each layer in a feedforward neural network follows a function

CHAPTER 3. RELATED WORK 56

presented by (3.1).

q = 1
2 log2([e

2
y])+

1
2 log2(12) (3.1)

To extend this work for DNNs with fixed-point arithmetic, Lin et al. proposed

an analytic solution for the optimal bit-width and range by calculating the SQNR

of all DNN parameters [161]. They proved that the overall DNN performance is

indicated by the Harmonic Mean of the SQNR of all DNN parameters.

However, the optimization of DNN parameters’ bit precision based on SQNR

tends to require multiple bit precisions, which increases the hardware complexity.

To solve this drawback, Sakr et al. derived two theoretical upper bounds for low-

precision DNN inference by calculating the mismatch classification rate between

low-precision fixed-point and high-precision floating point [135]. The mismatch

probability pm has an upper bound given by (3.2), where EA and EW represent the

maximum tolerable error of a network with respect to the different activation and

weight quantization, and BA and BW indicate the activation and weight precision,

respectively. Based on the upper theoretical bound, they found a double-exponential

relationship between the bit precision of DNN parameters and the performance of

DNNs during inference:

pm ≤ 2−(BA−1)EA +2−(BW−1)EW (3.2)

They also analytically determined that the precision of the weights has a similar

impact on convolutional neural networks and a larger impact in feedforward neural

networks than that of activations. A similar theoretical approach is explored to

CHAPTER 3. RELATED WORK 57

determine the minimum per-layer precision of DNNs in [162]. Recently, Lauter et

al. proposed a semi-theoretical approach by using interval and affine arithmetic to

maintain the accuracy of neural networks with low-precision floating point [160].

The result from this study showed that the rounding error generated from low-

precision linear operations in feedforward and convolutional layers is remedied by

the activation function.

Low-precision training: Most of the current work highlights theoretical

bounds for DNN inference. Furthermore, to realize the function between DNN

training performance and bit-precision, Li et al. proposed the convergence bound

with convex assumption given by (3.3), where the objective f (w′T)− f (w∗) is

expected error, σ2
max is an upper bound on the second moment of the stochastic

gradient samples, ∆ is a quantization step, and d is the dimension of the DNN

model [85]. Note that the expected error is calculated by the difference between

the low-precision DNN output and the output of the true global minimizer after

T iterations. With this convergence bound, they theoretically showed that the

approximate number of bits needed to perform DNN training equals the log of

DNN parameters’ dimension (e.g. the DNN models with 108 parameters require

13-bit training precision). However, dependence on dimensionality is undesirable

in deep learning applications [163]. Thus, to find a dimension-free upper bound

for low-precision training with floating point parameters, Li et al. modified the

f (w′T)− f (w∗) with L1 norm term instead of L2 norm term. Based on this approach,

the number of bits needed for E[f (w′T)− f (w∗)] <∈ is given by log2 O(R× σ1
ε
)

CHAPTER 3. RELATED WORK 58

where R indicates the radius of the range of DNN parameters [53].

E[f (w′T)− f (w∗)]≤ (1+ log(T +1))×σ2
max

2µ×T
+

√
d×∆×σmax

2
(3.3)

3.3 Summary

In this chapter, an overview of the state-of-the-art low-precision numerical formats

(variants of IEEE floating point, block floating point, fixed-point, and posit) for

deep learning training and inference is presented. The benefits and drawbacks

of numerical formats in terms of inference and training accuracy and hardware

complexity are highlighted. To perform DNN training, the current state-of-the-art

approaches utilize mixed-precision numerical formats from [8, 16, 32] precision

set where the majority of operations are usually performed in the least precision

numerical format. Evaluation of these numerical formats on DNN training has

revealed that the significant challenge to achieving high training and inference

accuracy is the mismatch between the dynamic range of DNN parameters and

numerical format, and accumulation of quantization error. The approaches such

as loss scaling, Kahan summation, stochastic rounding, Kulisch accumulator, and

chunk-based addition are used in the literature to mitigate this problem. However,

further reducing the bit precision to less than 8-bit is a challenging task and, in

most cases, requires high-radix and logarithmic number systems that increase

the computational complexity. Therefore, DNN training using numerical for-

mats with ≤ 8-bit is an active research area. To perform DNN inference, the

mixed precision 8-bit and 4-bit fixed-point numerical formats have been commonly

CHAPTER 3. RELATED WORK 59

used compared to other numerical formats. The prior studies concluded that com-

pared to high-precision 32-bit floating point, the DNN utilizing 4-bit and 8-bit

mixed-precision fixed-point numerical formats obtained slight accuracy degra-

dation (2.53%). However, performing DNN inference with ≤ 8-bit numerical

format is still an active research area. To successfully perform DNN training

and inference with ≤ 8-bit precision, we introduce the posit numerical format for

deep learning for the first time in the literature. Extensive studies from academia

and industry indicated that the ≤ 8-bit posit numerical format is appropriate for

DNN training and inference. Finally, to the best of our knowledge, no numerical

error analyses are devoted to the posit format that we will study through this thesis.

60

4. Tapered-Precision numerical formats for deep

learning inference

Compressing the DNN parameters using a low-precision numerical format is one

of the efficient approaches that enable us to deploy deep learning models on edge

devices. Unfortunately, this compression can jeopardize performance as a conse-

quence of the discrepancy between the expressible values of low-precision numbers

and the unaltered high-precision DNN parameters. Multiple low-precision numer-

ical formats have been proposed, as summarized in Chapter 3, as replacements

for the 32-bit high-precision floating point formats. However, most of these nu-

merical formats either have failed to achieve similar performance to the 32-bit

floating point or require being combined with approaches such as mixed-precision

quantization [37] and numerical format scaling [123] to reduce the computational

complexity. Tapered-precision numerical formats offer unequal-magnitude spacing

(tapered accuracy), and a flexible dynamic range that is appropriate to represent the

DNN model. Therefore, in this chapter, the efficacy of various tapered-precision

numerical formats is comprehensively studied for deep learning inference. The

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 61

characteristics of various proposed frameworks are summarized in Table 4.1. The

tapered-precision numerical formats for deep learning inference are explained

through Cheetah-V2 and ALPS frameworks that support all features of other

frameworks.

Table 4.1: Frameworks for Tapered-Precision Numerical Formats for Deep
Learning Inference

Framework Numerical format1 Neural network2 Implementation3 Approach

P GP TFX FP FX FF DCNN RNN SW HW SW/HW Experimental Numerical

Mem-Posit [50] × × × × × × × ×
Deep Positron [56] × × × × × ×

PositNN [61] × × × × × × ×
Cheetah [62] × × × ×

Adaptive-Posit [63] × × × × × × ×
ALPS [65] × × × × ×
TENT [64] × × × × × × ×

ACTION [66] × × ×
Cheetah-V2 ×

1 P: Posit; GP: Generalized Posit, TFX: Tapered fixed-point, FP: Floating-point, FX: Fixed-point
2 FF: Feed-Forward, DCNN: Deep Convolutional Neural Network, RNN: Recurrent Neural Network
3 SW: Software, HW: Hardware, HW/SW: Hardware/Software co-design.

4.1 Empirical approach: Cheetah-V2 framework

The goal of Cheetah-V2 framework is threefold. First, evaluate the efficacy of

tapered-precision numerical formats in terms of accuracy and hardware complexity

for deep learning inference. Second, empirically understand the correlation be-

tween hardware complexity and inference performance accuracy of deep learning

models with tapered-precision numerical formats. Third, select the appropriate

tapered-precision numerical format based on accuracy and hardware complexity

constraints provided by practitioners. As shown in Table 4.1, the current version

of Cheetah-V2 supports five numerical formats (fixed-point, floating point, posit,

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 62

generalized posit, tapered fixed-point) and three DNN models feedforward neural

networks, convolutional neural networks, and recurrent neural networks for Deep

learning inference. The framework supports a range of 5- to 32-bit precision

for DNN inference. Moreover, the framework supports seven important metrics

for the evaluation of tapered-precision numerical formats, including power, en-

ergy, energy-delay product (EDP), MAC frequency, area, memory footprint, and

accuracy.

This framework comprises four key aspects, as shown in Figure 4.1: User

Interface, Initialization, Optimizer, and Evaluator. The evaluator is composed of

Inference Accuracy and Hardware Complexity Evaluator aspects.

DESIGN CONFIGURATION

Cheetah-V2 FRAMEWORK

INITIALIZATION

ACCURACY HARDWARE COMPLEXITY

DNN MODEL

ARITHMETIC LIBRARY
[NUMERICAL FORMATS]

ACCELERATOR SIMULATOR
[SCALESIM]

EMAC SOFTCORE
[NUMERICAL FORMAT]

MEMORY
ESTIMATOR

[CACTI]

MULTI-OBJECTIVE
OPTIMIZATION

EVALUATOR

ILP
OPTIMIZER

 ACCURACY
 EDPDNN MODELGOLDEN

DESIGN

INITIAL
STATE

CURRENT
STATE

ACTIONS NUMERICAL FORMATS
ARCHITECTURES

USER INTERFACE

DESIGN CONSTRAINTS

BENCHMARK SPECIFICATION

ED
P

ACCURACY
INPUT

OUTPUT

DNN MODEL

NUMERICAL
FORMAT

SUBJECTIVE
METRICS

OBJECTIVE
METRICS

Figure 4.1: The Cheetah-V2 High-level low-precision Hardware & Software
Co-design framework for DNN models on edge platforms

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 63

4.1.1 User interface

The goal of the user interface is to preselect the benchmark specification and

design constraints given as input to the framework. These include benchmark

specifications (applications, datasets, deep learning models), evaluation metrics

(e.g., accuracy and energy), constraints (e.g., 90% accuracy and 10 mJ energy

consumption), and variables (e.g., numerical format configurations).

The framework generates optimal numerical format configurations to satisfy

user constraints as an output file. The input and output of the interface are specified

in YAML format.

4.1.2 Initialization

The trained weights are needed to perform DNN inference. Therefore, in the

initialization step, the model is trained with 32-bit floating point values. The

high-precision 32-bit floating point trained weights and activations are transferred

to the evaluator.

4.1.3 Inference accuracy evaluator

The inference accuracy evaluator is a two-level software framework that is used to

evaluate the performance of various numerical format configurations by emulating

low-precision DNN inference. The Evaluator unit is explained with the help of

an example of a single hidden layer convolutional neural network to highlight its

key components and operations clearly, although it can be generalized for any

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 64

DNN models. Note that the low-precision numerical format parameters (e.g., es

bit-width) are required to be predetermined prior to performing the computation in

a single hidden layer convolutional neural network.

Low-precision numerical format parameter selection

Posit parameters selection: No specific algorithm is proposed to select the

parameters in posit numerical format. In the evaluation step, all possible options

for n ∈ {5,6,7,8} and es ∈ {0,1,2} are tested.

Generalized posit parameters selection: Algorithm 7 presents the rs and Eb

optimization procedure. The selection of rs and Eb is governed by the dynamic

range of DNN parameters. As mentioned in Chapter 2, Eb recenters the location of

maximum accuracy (the mean of posit values distributions in the log domain) from

20 to 2eb . Therefore Eb is selected in a way that the mean of DNN parameters in the

log domain matches the maximum accuracy of the posit value distribution. After

selecting Eb, rs is selected based on the dynamic range of the DNN distribution

(lines 6–10). In most cases, the dynamic range of DNN parameters is captured

with the dynamic range of generalized posits by fixing es value and varying rs. In

the worst case scenario, when the dynamic range of DNN parameters is larger than

the dynamic range of the generalized posit numerical format, es could be increased

to compensate for the dynamic shortage coverage by generalized posit.

Tapered fixed-point parameters selection: Algorithm 8 in the appendix A

presents the IS and SC optimization procedures. This algorithm 8 defines the

process by selecting IS an SC to adjust the numerical format range into the range of

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 65

parameters in each individual layer. To select these parameters in the first step, the

maximum absolute value of the DNN parameters at each layer (Wamax, and Aamax)

is computed (lines 2–3) and rounded up to generate the appropriate IS value. In the

worst case scenario, when the range of DNN parameters (e.g, Wamax) is larger than

the range of tapered fixed-point (IS), the maximum possible value of n, where n is

the total number of bits represented in tapered fixed-point format, is selected for IS

(lines 4–13). Selecting IS based on the algorithm 8 reduces the overflow error in

quantization. However, when the maximum absolute value of a DNN parameter

(e.g, Wamax) is less than the maximum absolute value of the tapered fixed-point

format representation (IS), many bit-patterns in the numerical format are unused.

To address this issue, the tapered fixed-point format values are scaled down by 2

raised to the power of SC. The SC parameter is determined by base-2 logarithm of

wamax (lines 14–19).

Low-precision arithmetic operations

As mentioned in Chapter 2, a computational node in a single hidden layer con-

volutional neural network computes (4.1) where B indicates the bias vector, W is

the weight tensor with numerical values that are associated with each connection,

A represents the activation vector as input value to each node, θ is the activation

function, Q denotes the quantization function, Y is a feature vector consisting of

the output of each node, and M is equal to the product of (C,R,S) filter parameters;

where (C,R,S) are the number of filter channels, the filter heights, and the filter

weights respectively. The computation in (4.1) is performed N times, where N is a

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 66

product of batch size, output activation size (height and width), and the number of

filters.

Y j = θ(Q(B j)+
M

∑
i=0

Q(Ai)×Q(Wi j)) (4.1)

At the first step, each 32-bit floating point DNN parameter (xi) is mapped to an

l-bit low-precision numerical format value (x′i) through the quantization function

as defined in (4.2), where s and z are the scaling factor and zero point, respectively.

Given the low-precision numerical format values range ([l,u]), the large magnitude

32-bit floating point numbers that are not expressible in this range are clipped

either to the format lowerbound (l) and upperbound (u). Moreover, the clipped

values that lie in the interval [a,b] (the two consecutive low-precision numerical

format values) are rounded to the nearest even number (RNE(xi)). 1

x′i = Q(xi,q, l,u,s,z) = RNE(Clip(s× xi + z, l,u)) (4.2)

Following that, the MAC operation over quantized weights and activations in-

puts is employed to calculate Yj. To minimize arithmetic error, the MAC operation

in this thesis is calculated using the EMAC algorithm. The EMAC algorithm varies

among various numerical formats. In this section, the EMAC algorithm for posit,

generalized posit, and tapered fixed-point is explained 2.

Posit EMAC: The Posit EMAC procedure can be found in Algorithm 9 in the

1Algorithms 2, 4, and 6 in the appendix A can be used to quantize 32-bit floats to posit,
generalized posit and tapered fixed point encoding

2The EMAC algorithm for fixed-point and floating point is behind the scope of this thesis topic.
More details are provided in [57]

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 67

appendix A. In the posit EMAC algorithm, to preserve precision in computing

the products, the posit weights and activations are multiplied in a posit format

without truncation or rounding at the end of multiplications. To avoid rounding

during accumulation, the products are stored in a wide register (quire), with a

bit-width given by (4.3). Note that the quire bit-width is adaptive (depend on Nop

and es) and different than the fixed bit-width allocated for quire in standard posit

format as mentioned in Chapter 2. Following that, the products are converted to

the fixed-point format FX(mk,nk), where mk = 2es+1× (n−2)+2+ dlog2(Nop)e is

the exponent bit-width and nk = 2es+1× (n−2) is the fraction bit-width. Finally,

the Nop fixed-point products are accumulated, and the result is converted back to

posit format.

wq = dlog2(Nop)e+2es+2× (n−2)+2 (4.3)

Generalized posit EMAC: The generalized posit EMAC is presented in Algo-

rithm 10. In the first step, a set of quantized weights and activations is decoded to

the generalized posit format, and the scaling factor is computed (lines 2–5). Then,

the product of the generalized posit weights and activations is calculated without

truncation or rounding at the end of multiplications (lines 6–10). The product is

then stored in a wide signed fixed-point register, the quire [6], for m additions

with size wquire = dlog2(m)e+ 2×dlog2(
MaxGP
MinGP

)e+ 2 (lines 11–14). The stored

product is then converted and accumulated using fixed-point arithmetic. Finally,

the accumulated result is converted back to the generalized posit numerical format

(lines 15–17).

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 68

FC

CONV
44-45-46

CONV
47-48-49

CONV
2-3-4

CONV
5-6-7

CONV
8-9-10

CONV
11-12-13

CONV+
MAX POOL

CIFAR-10
EXAMPLE CLASSIFIER

OUTPUT

LAYERWISE
PARAMETER
DISTRIBUTION

𝝎𝝎𝟏𝟏𝟏𝟏

TAPERED FORMAT
DISTRIBUTION

ALGORITHM-1

TAPERED
FIXED-POINT
QUANTIZED FORMAT

𝑸𝑸𝒓𝒓 R

𝑨𝑨𝒒𝒒

𝑾𝑾𝒒𝒒

MAC STRUCTURE

AT EVERY LAYER

SELECTION OF

IS & SC

WEIGHTS
& ACTIVATIONS

[no SC shifting]

TAPERED FIXED-POINT

SIGN BIT

IS BITS FRACTION BITS

TERMINATING BIT
FINAL IS BIT

IS FS

SC
+

-

ReLU

Figure 4.2: an example of DNN inference accuracy evaluator with tapered
fixed-point parameters. The evaluator is applied to each layer individually,
selecting specific IS and SC values to match the distribution and range of

parameters within the layer. IS specifies the maximum number of integer bits, and
SC specifies the degree of shift required (left-shift if positive, right-shift if negative).
The MAC structure displays the tapered fixed-point EMAC unit explained in this

section

Tapered fixed-point EMAC: The tapered fixed-point EMAC is presented in

Algorithm 11. In the first step, a set of quantized weights and activations is decoded

to the tapered fixed-point (lines 2–3). To decode the tapered fixed point format, the

sign bit, integer bits (through the leading zero detection algorithm), and remaining

fractional bits require to be extracted (lines 4–7). Then, the products of the tapered

fixed-point weights and activations are calculated without truncation or rounding

after multiplication operations (lines 8–9). The products are then stored in a wide

register (quire [6]) for m multipliers with the size of wquire as in (4.4) (lines 10–12).

wquire = dlog2(m)e+2×dlog2(Dl)e+2 (4.4)

An example of an inference accuracy evaluator is illustrated in Figure 4.2.

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 69

4.1.4 Hardware complexity evaluator

The hardware complexity evaluator is a hardware framework that combines Cacti

[164] and SCALE-Sim simulators [165]. The hardware framework is a soft-core

implementation of EMAC operations on FPGA/ASICs and is used for evaluat-

ing hardware characteristics of the low-precision EMAC operations in various

numerical formats as a fundamental computation in DNN models. Most existing

frameworks such as [166] evaluate the performance of the numerical formats by

comparing only the energy consumption of the MAC operations which overlooks

the constraints imposed by memory and dataflow in the accelerator. However, in

this thesis, we measure the hardware metric through a DNN accelerator that is

simulated using SCALE-Sim software [165].

The high-level architecture of the DNN accelerator is used to evaluate the

hardware complexity of DNN inference with various numerical formats, as shown

in Figure 4.3. This architecture is guided by Eyeriss v2 [167] design. Primarily, it is

composed of processing elements (PEs) arranged in a 2D systolic array architecture

and a hierarchical memory organization. This architecture adopts three dataflows

including input stationary (IS), weight stationary (WS), and output stationary (OS).

The PE in the systolic array includes float, posit, generalized posit, fixed point,

and tapered-fixed point MAC unit with configurable bit-precision and parameters.

For modeling the memory hierarchy, a 128 MB off-chip DRAM and a 3×108 kB

on-chip scratchpad memory (SRAM) are used. The DRAM is dedicated to storing

input features and parameters that are loaded by the host processor, whereas the

SRAM serves as a global buffer.

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 70

HOST

PROCESSOR

DDR3

DRAM

SYSTEM

ARCHITECTURE

FILTER SRAM
108 KB

SRAM
BANK.0

SRAM
BANK.1

SRAM
BANK.2

SRAM
BANK.3 PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

CONTROL UNIT

16 COLUMNS

1
6

R

O
W

S

PROCESSING

ELEMENT

STRUCTURE

INPUT

FEATURE

IS WEIGHT

DECODER

DECODER

ENCODER

108 KB

SRAM
BANK.0

SRAM
BANK.1

SRAM
BANK.2

SRAM
BANK.3

108 KB

SRAM
BANK.0

SRAM
BANK.1

SRAM
BANK.2

SRAM
BANK.3

IFmap SRAM

OFmap SRAM

OUTPUT

FEATURE

HOST

INTERFACE

16x

NBITS

16x

NBITS

NBITS

c log (N) NBITS

NBITS

MEMORY

INTERFACE

16x

NBITS

PE

2

SC

3BITS

Figure 4.3: Deep Neural Network accelerator architecture with custom tapered
fixed-point processing elements. The architecture is evaluated in a full

cycle-emulator to analyze the performance and energy constraints.

4.1.5 Optimization

In the Cheetah-V2 framework, we use integer linear programming (ILP) to find

the optimal numerical format configuration. In this thesis, the ILP is defined as

(4.5), where yi, x j, and A are, respectively, objective metrics, subjective metrics,

and configuration sets (e.g., sets of numerical format configurations), selected from

Table 5.2. C j are constraints with respect to subjective x j,

min
yi

k=1

∑
i=0

yi(A)

s.t. x j(A)< c j,0 < j < 6

(4.5)

For instance, the accuracy degradation (ACCd) is selected as an objective. Area,

EDP, memory footprint, and MAC frequency are chosen as subjective metrics, as

in (4.6). In this study, we set the maximum number of subjective metrics to 4 from

6 proposed subjective metrics since some of the subjective metrics overlap with

each other, such as power and EDP. Note that there is no limitation on the number

of subjective metrics. However, the probability of finding the optimal solution by

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 71

the ILP approach decreases as the number of subjective metrics increases.

min
ACCd

ACCd(A)

s.t. EDP(A)< EDP Constraint

Area(A)< Area Constraint

Memory footprint(A)< Memory footprint. Constraint

MAC Frequency(A)< MAC Frequency Constraint

(4.6)

4.2 Numerical analysis approach: ALPS Framework

The goal of the ALPS framework is to formalize the relationship between quan-

tization error of high-precision floating point DNN parameters and low tapered-

precision numerical format. Our goal is to derive a function F that approximates

the misclassification probability, pm, as given by (4.7).

pm ≈F
(
ε(wi,w′i),ε(Ai,A′i)

)
(4.7)

where the function ε(·, ·) determines the total quantization error between its two

arguments, wi and Ai represent floating point weights and activations, w′i and A′i

represent low tapered-precision weights and activations respectively. Figure 4.4

conceptually illustrates the relationship described by (4.7) where a cat image

is misclassified by ResNet-50 as a dog due to the errors generated in each layer

and accumulated in the last layer as ε(wn,w′n) due to low-precision quantization

process.

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 72

FC

CONV
44-45-46

CONV
47-48-49CONV

2-3-4
CONV
5-6-7

CONV
8-9-10

CONV
11-12-13

CONV+
MAX POOL

IMAGENET
EXAMPLE

CLASSIFIER
OUTPUT

CAT

DOG

ACCUMULATIVE
QUANTIZATION
ERROR LEADS TO

MISCLASSIFICATION
DOG

CAT

DOG

CORRECT
CLASSIFICATION

CAT

PARAMETER
DISTRIBUTION

PARAMETER
DISTRIBUTION

ERROR
DISTRIBUTION

ERROR
DISTRIBUTION

CUMULATIVE
ERROR

DISTRIBUTION

𝝎𝝎𝟏𝟏

𝝐𝝐(𝝎𝝎𝒏𝒏,𝝎𝝎𝒏𝒏
′)Σ𝝐𝝐(𝝎𝝎𝟏𝟏,𝝎𝝎𝟏𝟏

′)

𝝎𝝎𝟐𝟐

𝝐𝝐(𝝎𝝎𝟐𝟐,𝝎𝝎𝟐𝟐
′)

Figure 4.4: The impact of quantization error in inference misclassification with
ResNet-50. An image sample is misclassified as a dog instead of a cat due to the

accumulation of weight quantization error.

In particular, the ALPS numerical analysis framework comprises two key

aspects: SQNR and Finite Precision Error Analysis.

4.2.1 SQNR for tapered-precision numerical formats

SQNR for generalized posit: Defining the SQNR for generalized posits requires

modeling the quantization error ε(xi,x′i) = ∑
m
i=0 |xi− x′i| [168], where m represents

the number of parameters in a DNN, xi represents the 32-bit high-precision floating

point DNN parameters, and x′i indicates the q-bit quantized DNN parameters with

low-precision generalized posit. This model depends on the distribution of the

values represented by this numerical format. Low-precision generalized posit nu-

merical format has a non-uniform distribution, which is modeled as a non-uniform

quantizer with compander system [169], as shown in Figure 4.5. The compander

system contains a monotonic smooth non-uniform compressor function, a fixed-

point quantizer, and an inverse function of the compressor function (expander

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 73

function). In this chapter, the compressor and expander are approximated by (4.8)

and (4.9), respectively,

GENERALIZED POSIT QUANTIZATION

COMPRESSOR LINEAR QUANTIZATION EXPANDER
x

y y’

y y’

x’

COMPANDER SYSTEM

x

x’

32-bit Float Weights 5-bit Generalized
Posit Weights

Figure 4.5: Generalized posit quantization model with a fixed-point quantizer,
compressor y=1

γ
sinh−1(θx), and expander x′ = 1

θ
sinh((γ)y′) functions. The α, β ,

γ, and θ are real variables that are varied for different generalized posit
configurations

y =
m

∑
i=0

(1
α

x+ sign(x)β∆)×1[i∆,(i+1)∆)(|x|)

≈
m

∑
i=0

1
γ
sinh−1(θx)×1[i∆,(i+1)∆)(|x|)

(4.8)

x′ =
m

∑
j=0

(α(y′− sign(y′)β∆)×1[j∆,(j+1)∆)(|y′|)

≈
m

∑
j=0

1
θ

sinh−1(γy′)1[j∆,(j+1)∆)(|y′|)
(4.9)

where α , β , γ , and θ are real variables, ∆ is the quantization step size, m represents

the quantization levels, and 1[a,b)(|x|) is the indicator function as given by (4.10).

Note that prior works model the quantization error by using this approach for

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 74

non-uniform float formats [168]. The rationale for choosing the sinh function as

an expander is to approximate the distribution of the generalized posit derivatives

(spacing between two numbers), which maintain a constant value (equal to one)

near zero and taper towards infinity for the maximum representable number. The

tanh−1 function was not chosen as an expander because its derivative rapidly

approaches infinity for inputs larger than two, which contrasts with the distribution

of the generalized posit derivatives. While a more accurate (optimal) function

for the expander might exist in comparison to the sinh function, no mathematical

approach currently exists to find the optimal function [168].

1[a,b)(|x|) =


1, if (a≤ |x|< b)

0, otherwise
(4.10)

While modeling the quantization error for generalized posit, the SQNR is

computed as in (4.11) where ∆GP (quantization step size) is computed as (4.12).

The derivation of (4.11) is provided in Appendix A .

SQNRGP(dB)≈ (10.79−20log(γ))+20log(∆−1
GP) (4.11)

∆GP =


2−(2

esrs−2es−(n−rs−1))+sc, if (n− rs≤ es+1)

2−(2
esrs−es+(n−rs−1))+sc, otherwise

(4.12)

The proposed SQNR captures the several posit parameters that affect the

representable distribution of values. Therefore, the SQNR of generalized posits is

varied based on the exponent bit-width (es), the maximum regime bit-width (rs),

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 75

and the exponent bias (sc) parameters. The parameter sc shifts the peak of SQNR

and dynamic range. The parameter es controls the dynamic range and width of the

max SQNR interval ([2−2es
,22es

]). The parameter rs adjusts the shape of the SQNR

distribution and also controls the dynamic range.

SQNR for posit: The definition of the posit SQNR is similar to the generalized

posit SQNR except the ∆GP in (4.11) is changed to ∆P, as in (4.13).

SQNRP(dB)≈ (10.79−20log(γ))+20log(∆−1
P) (4.13)

∆P = 2−(2
es(n-2)) (4.14)

SQNR for tapered fixed-point: The tapered fixed-point SQNR in (4.15) is

defined similar to posit SQNR except es = 0 and ∆P in (4.13) is changed to ∆T FX ,

as in (4.15).

SQNRTFX(dB)≈ (10.79−20log(γ))+20log(∆−1
TFX) (4.15)

∆TFX = 2−((n-2)) (4.16)

4.2.2 Finite precision error analysis

The output (y) of a DNN is produced by a sequence of operations, the predominant

one being the multiply-accumulate (MAC) operation. This operation is given

in (4.17), where quantization error is considered throughout the network with an

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 76

activation function T [170].

y+ εy = Tn(· · ·(T2(T1(w1 + εw1×A1 + εA1)+ εA2)× (w2 + εw2)) (4.17)

For simplicity, we use the shorthand εx to represent the error ε(x,x′) for some

arbitrary x. For neural network models with a non-linear Ti, the error is calculated

as in (4.18) by using the chain rule of partial derivatives and approximated as the

first-order Taylor series [159].

εy ≈
n

∑
i=1

εwi

∂Ti

∂wi
+

n

∑
i=1

εAi

∂Ti

∂Ai
(4.18)

Finally, by calculating the probability εy for any yi [135, 161], we can formulate

the relationship between the mismatch probability and numerical precision as in

(4.19), where EWl and EAl are weight and activation quantization error gains at

layer l [135, 161].

pm ≤
L

∑
l=1

1
SQNRwl

EWl +
1

SQNRAl

EAl (4.19)

Given this equality, it helps us to find a theoretical upperbound on classification

accuracy of DNN inference with various tapered-precision numerical formats.

Moreover, we can use this equality to select an appropriate generalized posit

numerical format configuration for a specified pm. This use case of the equation

4.19 is elaborated in the next section.

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 77

4.2.3 ALPS framework use-case

Generalized Posit parameter selection

As mentioned before, the performance of the DNN using the low-precision general-

ized posit depends on the pm and the SQNR, as illustrated in (4.19). To improve the

performance of DNN model with low-precision numerical format, the pm requires

to be minimized, which can be accomplished by balancing the summation in the

equation (4.19) [162]. This computes rs and sc from the equations (4.20), (4.21),

(4.22), and (4.23), which are inspired from [162].

rswl = RNE

(
log2

√
Ewl

Ewr

)
+ rswr (4.20)

rsAl = RNE

(
log2

√
EAl

Ewr

)
+ rswr (4.21)

scwl = RNE

(
log2

√
Ewl

Ewr

)
+ scwr (4.22)

scAl = RNE

(
log2

√
EAl

Ewr

)
+ scwr (4.23)

In these equations, RNE is the round-to-the-nearest-even function and Ewr is

the quantization error gain for weights of the reference layer (selected randomly).

Algorithm 12 presents the rswr and scwr optimization procedure. The selection

of rswr and scwr is governed by the mean and excess kurtosis (Kurtosis-3) of

the reference layer weights, which is computed in the initialization steps (lines

2–6). As altering the rs parameters causes the distribution of the posit numerical

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 78

format to shift from approximately uniform to near-Normal and near-Laplace

distributions [171], excess kurtosis is employed to differentiate between these

distributions. It should be noted that the excess kurtosis is calculated over the small

dynamic range of the generalized posit numerical format (similar to the dynamic

range of weights) in order to minimize the impact of extremely large outliers that

would result in very high kurtosis values.

To compute rswr , the difference between the excess kurtosis of DNN weights

and the excess kurtosis of generalized posit values with varied rs is computed.

Then, the generalized posit numerical format configuration which has the closest

excess kurtosis to that of the DNN parameters is selected (lines 7–16). A similar

procedure is applied to compute scwr , except that the mean of the DNN weights is

used as a metric to select scwr .

4.3 Summary

In this chapter, the proposed tapered-precision frameworks (Cheetah-V2 and ALPS)

and adaptive tapered-precision algorithms are summarized. Through Cheetah-V2

frameworks, the practitioners can evaluate and compare the efficacy of tapered-

precision numerical formats such as generalized posit, posit, and fixed-point in

comparison with traditional numerical formats (fixed-point and floating point) in

terms of accuracy and different hardware metrics, such as power consumption, on

various DNN models. In addition, the trade-off between hardware metrics and

performance accuracy for 5- to 8-bit precision of each model and dataset can be

CHAPTER 4. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
INFERENCE 79

reported. Moreover, the Cheetah-V2 framework can be used by practitioners and

startups as an EarlyDSE (early stage design space exploration) framework that

identifies design variables, including the numerical format specification, to discover

the optimal numerical formats and accelerator configurations based on custom

user-defined constraints. The configuration selection problem in this framework

is solved by integer linear programming (ILP), which can reduce the cost of the

AI accelerator design by identifying the optimal numerical format and accelerator

configuration faster than common approaches such as reinforcement learning

approaches.

In the second part of this chapter, the novel tapered-precision framework, ALPS,

is presented which has the ability to adapt the generalized posit configurations to

the layerwise dynamic range and distribution of parameters within a DNN model.

Adaptation in this framework is achieved by estimating the hyper-parameters

in generalized posit and minimizing the quantization error while maximizing

the SQNR in each layer. To define the generalized posit SQNR function, the

generalized posit quantization is modeled by a compressor function, expander

function, and a fixed-point quantizer. This model is inspired by the quantization

model of a compander system. To formulate the function between the SQNR of

posit and the performance of DNNs, finite precision error analysis is used. This

approach for adapting the generalized posit configurations ultimately enhances the

performance of DNN inference with this numerical format. A similar approach

can be used for other adaptive tapered-precision numerical formats, such as the

tapered fixed-point that is explored in the TENT framework.

80

5. DNN inference results and discussion

Having described the algorithms and frameworks that enable us to efficiently use

the tapered-precision format for deep learning inference and provide the optimal

numerical formats to match with edge device characteristics in chapter 4, this

chapter discusses the 16 benchmarks that are used to evaluate the efficacy of

various tapered-precision formats in the Cheetah-V2 framework. Moreover, we

summarize the performance of various tapered-precision numerical formats in

these benchmarks. The specifications of the tasks and inference performance with

32-bit floating point DNNs are summarized in Table 5.1.

5.1 Benchmark specification

5.1.1 Datasets & pre-processing

Fashion-MNIST [172]: Fashion-MNIST dataset is comprised of 70000 images of

28x28 grayscale pixels to classify 10 various clothes. The test set of this dataset

includes 10000 images. The test set is normalized in a range between zero to one.

CIFAR-10 [173]: The CIFAR-10 dataset contains images of 10 various cate-

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 81

Table 5.1: The DNN models and benchmarks using 32-bit float parameters
description.

Application Dataset DNN/RNN Model # Parameters Performance

Image classification

Fashion-MNIST
4 FC1 0.34 M 89.51±0.25%

2 Conv1, 3 FC, 2 PL1, 1 BN1 1.88 M 92.54±0.26%

CIFAR-10

ResNet-8 78.67 K 86.26±0.30%
ResNet-18 0.27 M 91.54±0.23%
ResNet-50 0.86 M 92.10±0.24%

EfficientNet-B0 4.00 M 98.00±0.36%

ImageNet
ResNet-18 11.70 M 68.10±0.52%
ResNet-50 25.00 M 74.60±0.68%

Keyword Spotting Speech Commands v2 DS-CNN2 24.91 K 92.15±0.41%
Visual Wake Words VWW Dataset MobileNet-V1 221.79 K 82.72±0.47%

Activity classification DogCentric
2 V-RNN3,1 FC 1.58 M 50.78 ±0.65 %
2 LSTM, 1 FC 6.30 M 63.79 ±0.76 %
2 GRU, 1 FC 4.73 M 61.97 ±0.80%

NLP PTB
2 V-RNN, 1 FC 4.17 M PPW4= 164.36 ±1.21
2 LSTM, 1 FC 4.65 M PPW= 114.25±0.91
2 GRU, 1 FC 3.72 M PPW= 117.64±0.87

1 FC: Fully Connected layer, Conv: Convolutional layer, PL: Pooling, BN: Batch Normalization layer
2 DS-CNN: Depthwise separable convolutional neural network
3 V-RNN: Vanilla RNN
4 PPW: Perplexity per word

gories, such as airplanes, and automobiles which are collected from the web. In

this dataset, 10000 images are assigned to the test set. The test set is normalized in

a range between zero to one.

ImageNet [174]: The ImageNet dataset contains images of 1000 categories,

that is, image classes built through WordNet’s hierarchical structure. In this dataset,

50000 images are assigned to the test set. The images in the test set are resized to

256x256 pixels with cubic spline interpolation. Afterward, the images are center

cropped to 224x224 pixels.

Speech commands v2 [175]: The speech commands v2 dataset includes

105,829 utterances from 2,618 speakers. The dataset is labeled with 12 com-

mand classes (e.g., "yes", "no", "up", and "down"). In this dataset, 4800 utterances

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 82

are selected for the test set. The features from the speaker’s speech are extracted

with a sample rate of 16000 audio samples per second and 1000 millisecond audio

length. Other audio feature extractions preprocessing are adapted from MLPerf™

Tiny deep learning benchmarks (V0.5) [176].

Visual wake words [177]: The application of this dataset is person detection

for smart doorbell devices [176]. The visual wake words dataset is built upon

the COCO 2014 dataset [177]. The images in the COCO dataset are labeled as a

person or no person. The test set of this dataset includes 8059 images. The images

are resized to 96x96 dimensions [176].

DogCentric dataset [178]: DogCentric dataset contains 208 videos recorded

by cameras attached to the backs of dogs while they performed 10 different classes

of activity (e.g., playing with a ball or sniffing an object). The test set of this dataset

is 107 videos. The videos in DogCentric do not have a fixed length. We chose to

use a fixed sequence length of 160 frames for simplicity. Shorter videos received

zero padding, and longer videos were truncated to provide a consistent 160 frames.

The frames are resized and center cropped to 224x224 pixels.

PTB dataset [179]: The English Penn Treebank (PTB) corpus (the section of

the corpus corresponding to the articles of the Wall Street Journal) is one of the most

known and used corpora for the evaluation of models for sequence labeling. The

task consists of annotating each word with its Part-of-Speech tag. The vocabulary

used in this dataset is 10k words. The 82430 tokens are allocated for the test set.

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 83

5.1.2 Experiment setup

The Cheetah-V2 framework is implemented in C++ and Python languages and

extended to the TensorFlow framework [180]. A summary of the metrics and

numerical configurations are used in different benchmarks is presented in Table

5.2. Note that the generalized posit and tapered fixed-point hyperparameters

(rs, Is ∈ {1,2, · · · ,7}, and eb,sc ∈ {−4,−3, · · · ,3}) are not mentioned in the Table

5.2 since these values are predetermined based on algorithms 7 and 8 in the

appendix A. Additionally, there are constraints that need to be defined by the

users. However, as an example to show the performance of Cheetah-V2 framework

in the selection of numerical format, the constraint was derived by adding the

mean with the standard deviation of the metric. Note that the input features

belonging to recurrent neural networks are provided through the embedding layer

[181], and off-the-shelf CNN features using pre-trained ResNet-50 and VGG-16

neural networks [182] for video activity classification. Moreover, to estimate

latency, we bridge our framework with the SCALE-Sim tool [183]. SCALE-

Sim, however, does not consider the cycles consumed by shuttling data back and

forth between the global buffer and the DRAM. Therefore, the total latency is

re-approximated by considering PE array execution time and DRAM access time

(Micron MT41J256M4). For energy estimation analysis, the execution time, and

power consumption, we factor in the 32-nm CMOS technology node.

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 84

Table 5.2: The metrics, variables and search space configuration

Metrics
Accuracy, EDP, Energy, Power, MAC frequency,

Area, Memory footprint

Variables

Posit (n ∈{5,6,7,8},es∈{0,1,2})
Generalized Posit (n ∈{5,6,7,8},es∈{0,1,2})

Tapered Fixed-Point (n ∈{5,6,7,8})
Floating point (n ∈{5,6,7,8},e∈{3,4, · · · ,n−2})

Fixed-Point (n ∈{5,6,7,8},f∈{1,2, · · · ,n−1})
Search Space 60

5.2 Tapered precision numerical formats performance

The efficacy of tapered-precision numerical formats is evaluated for DNN and

RNN inference using Cheetah-V2 framework as shown in Tables 5.3 and 5.4, and

Figures 5.1 and 5.2 (corresponding to Tables A.1, and A.2 in the appendix). The

best accuracy is selected among 5 to 8 bits formats with a varying of the es, e, and

f parameters (as shown in Table 5.2) for both generalized posit and posit, floating

point, and fixed-point formats, respectively.

On Fashion-MNIST, the findings show that the low-precision generalized

posit (with es=1) outperforms other numerical formats in terms of accuracy with

fewer bits. In particular, it is possible to perform inference on a 4-layer fully

connected neural network with 6 bits parameters using generalized posit numerical

format without accuracy degradation in comparison to the performance of the same

network with 32-bit floating point. Achieving similar accuracy with low-precision

posit, floating point, and tapered fixed-point requires 7, 8, and 8 bits respectively.

Moreover, the performance of DNNs using 5-bit floating point and fixed-point

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 85

Table 5.3: The DNN inference performance using the tapered-precision numerical
formats on Fashion-MNIST dataset (P: posit, FP: floating point, FX: fixed-point,

GP: generalized posit, TFX: tapered fixed-point).

Format
Fashion-MNIST (FC) Fashion-MNIST (Conv)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 89.59±0.18% 89.44±0.22% 89.24±0.21% 88.14±0.25% 92.70±0.21% 92.60±0.27% 91.64±0.30% 88.92±0.32%
FP 89.56±0.23% 89.36±0.26% 88.92±0.28% 83.00±0.31% 92.63±0.29% 92.22±0.25% 89.58±0.30% 68.21±0.42%
FX 89.16±0.27% 87.27±0.24% 85.20±0.31% 83.97±0.35% 89.59±0.28% 88.63±0.32% 85.31±0.35% 83.46±0.40%
GP 89.68±0.14% 89.65±0.13% 89.58±0.17% 89.21±0.26% 92.75±0.19% 92.63±0.25% 92.32±0.28% 91.65±0.30%

TFX 89.66±0.19% 89.59±0.22% 89.38±0.28% 89.02±0.32% 92.59±0.26% 92.47±0.31% 92.14±0.33% 89.35±0.39%

32-bit FP 89.51±0.25% 92.54±0.26%

is reduced significantly in comparison to generalized posit since these numerical

formats are not able to capture the dynamic range of parameters (e.g., it is not

possible to represent 5-bit floating point with four exponent bits). We also observed

that the performance of tapered fixed-point is not only better than fixed-point, but

also, on average, comparable with floating point and posit formats. This finding

emphasizes that tapered fixed-point could be a good candidate for applications

and models where a trade-off between performance and hardware complexity is

desired.

On CIFAR-10 dataset, amongst the evaluated numerical formats, generalized

posit shows the best performance. For instance, the inference accuracy on classify-

ing images using ResNet-8 model with generalized posit is improved by an average

of 11.55%, 28.79%, and 16.28%, as compared to posit, floating point, and tapered

fixed-point, respectively. Moreover, in this dataset, the inference performance gains

are further noticeable with ultra-low bits generalized posit (e.g., 5-bit generalized

posit having 16.53%, 31.93%, and 25% improvements over posit, floating point

and tapered fixed-point, respectively. The high performance of the generalized

posit numerical format on image classification benchmarks can be credited to

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 86

8-bit 7-bit 6-bit 5-bit

Tapered Fixed-Point

Generalized Posit

Fixed-Point

Floating Point

Posit

20%

30%

40%

50%

60%

70%

80%

Accuracy

Loading [MathJax]/extensions/MathMenu.js
(a)

8-bit 7-bit 6-bit 5-bit

Tapered Fixed-Point

Generalized Posit

Fixed-Point

Floating Point

Posit

20%

30%

40%

50%

60%

70%

80%

90%
Accuracy

Loading [MathJax]/extensions/MathMenu.js (b)

8-bit 7-bit 6-bit 5-bit

Tapered Fixed-Point

Generalized Posit

Fixed-Point

Floating Point

Posit

10%

20%

30%

40%

50%

60%

70%

80%

90%
Accuracy

Loading [MathJax]/extensions/MathMenu.js (c)

8-bit 7-bit 6-bit 5-bit

Tapered Fixed-Point

Generalized Posit

Fixed-Point

Floating Point

Posit

10%
20%
30%
40%
50%
60%
70%
80%
90%

Accuracy

Loading [MathJax]/extensions/MathMenu.js
(d)

Figure 5.1: The DNN inference performance using the tapered-precision
numerical formats on the CIFAR-10 dataset. (a) ResNet8; (b) ResNet18; (c)

ResNet50; (d) EfficientNet-B0

the capability of this numerical format to auto-adjust to the dynamic range and

distribution of the weights and activations. On the other hand, as the number of

bits is decreased to 7-bits and below, the floating point, fixed-point, and tapered

fixed-point formats show poor performance accuracy. This can be attributed to the

discrepancy between the dynamic range provided by these numerical formats and

the actual dynamic range of weights and activations. Finally, in contrast to the DNN

inference results on Fashion-MNIST dataset, achieving the similar performance of

the 32-bit floating point baseline requires representing DNN parameters with 8-bit

generalized posit numerical formats.

On Speech commands v2 dataset, amongst all five numerical formats, only

generalized posit and posit numerical formats have shown promising results. For

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 87

10

20

30

40

50

60

70

80

90
Posit
Floating Point
Fixed-Point
Generalized Posit
Tapered Fixed Point

Loading [MathJax]/extensions/MathMenu.js

8-bit

8-bit

8-bit

8-bit

7-bit

7-bit

7-bit

7-bit

6-bit

6-bit

6-bit

6-bit

5-bit

5-bit

5-bit

5-bit

8-bit 7-bit
6-bit

5-bit

Fl
oa

tin
g

Po
in

t

Ta
pe

re
d

Fi
xe

d-
Po

in
t

Po
si

t

Fi
xe

d-
Po

in
t

Ge
ne

ra
liz

ed
Po
sit

Ac
cu
ra
cy
(%
)

Numerical Format

(a)

60

65

70

75

80

Posit
Floating Point
Fixed-Point
Generalized Posit
Tapered Fixed Point

Loading [MathJax]/extensions/MathMenu.js

8-bit 8-bit

8-bit

8-bit

7-bit

7-bit

7-bit

7-bit7-bit

6-bit

5-bit

6-bit

6-bit

6-bit

5-bit

5-bit
5-bit

6-bit

5-bit

8-bit

Po
si

t

Fl
oa

tin
g

Po
in

t

Fi
xe

d-
Po

in
t

Ge
ne

ra
liz

ed
Po
sit

Ta
pe

re
d

Fi
xe

d-
Po

in
t

Ac
cu
ra
cy
(%
)

Numerical Format

(b)

0

10

20

30

40

50

60

70 Posit
Floating Point
Fixed-Point
Generalized Posit
Tapered Fixed Point

Loading [MathJax]/extensions/MathMenu.js

8-bit

8-bit

8-bit

8-bit

7-bit

7-bit 6-bit
7-bit

6-bit

6-bit

7-bit

6-bit

5-bit 5-bit

5-bit

5-bit

8-bit

5-bit

7-bit
6-bit

Ac
cu
ra
cy
(%
)

Numerical Format

Po
si

t

Fl
oa

tin
g

Po
in

t

Fi
xe

d-
Po

in
t

Ge
ne

ra
liz

ed
Po
sit

Ta
pe

re
d

Fi
xe

d-
Po

in
t

(c)

0

10

20

30

40

50

60

70
Posit
Floating Point
Fixed-Point
Generalized Posit
Tapered Fixed Point

Loading [MathJax]/extensions/MathMenu.js

8-bit

8-bit

8-bit

8-bit

7-bit

6-bit

7-bit

7-bit7-bit
6-bit

6-bit

5-bit 5-bit

6-bit

5-bit

5-bit

8-bit

7-bit
6-bit

5-bit

Ac
cu

ra
cy

(%
)

Numerical Format

Po
si

t

Fl
oa

tin
g

Po
in

t

Fi
xe

d-
Po

in
t

Ge
ne

ra
liz

ed
Po
sit

Ta
pe

re
d

Fi
xe

d-
Po

in
t

(d)

Figure 5.2: The DNN inference performance using the tapered-precision
numerical formats on Speech commands v2, Visual Wake Word, and ImageNet

datasets. (a) Speech commands v2 (DS-CNN); (b) Visual Wake Word
(MobileNetv1); (c) ImageNet (ResNet18); (d) ImageNet (ResNet50).

instance, the 7-bit generalized posit DNN parameters representation is sufficient to

achieve inference accuracy within 1% variation of 32-bit floating point. Moreover,

the performance of a 6-bit low-precision generalized posit depthwise separable

convolutional neural network on this dataset is boosted by 45.10%, compared to

the float-based network. On Visual Wake Word dataset, generalized posit performs

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 88

uniformly well from 8- to 6-bit precision and demonstrates improvement over

floating point. An interesting result is that generalized posit, posit, and tapered

fixed-point at 8-bit precision improve upon the 32-bit floating point baseline

performance for this task. These performance benefits can be intuitively explained

by the quantization noise generated from the use of low-precision parameters in

neural networks for binary image classification acts as a regularization method

[102].

On ImageNet dataset, the findings show that the low-precision generalized

posit outperforms other numerical formats on various benchmarks. For instance,

the performance of a 7-bit low-precision generalized posit ResNet-18 network is

improved by 4.6%, 15.7%, and 14.8% compared to the posit, float, and tapered

fixed-point based ResNet-18 networks, respectively. Furthermore, we observed

that the generalized posit shows greater benefits on DNN models whose parameters

have a large dynamic range, such as ResNet model. These performance benefits can

be intuitively explained by the auto-tuning capability of the Cheetah-V2 framework,

which adapts the format to the dynamic range of the weights and activations, to

reduce the quantization error. The best performance observed on all the benchmarks

(when analyzed across the full 5- to 8-bit range) is achieved with generalized posit.

On temporal and spatio-temporal datasets such as PTB, and DogCentric datasets,

the results demonstrate that ultra-precision generalized posit with (mostly es = 1)

surpasses other numerical formats on most of the tasks and RNN models. For

instance, the performance of deploying RNN inference using GRU on the Dog-

Centric dataset is improved by 31.52%, and 10.11% with 5-bit generalized posit in

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 89

Table 5.4: The RNN inference performance using various numerical formats (P:
posit, FP: floating point, FX: fixed-point, GP: generalized posit, TFX: tapered

fixed-point).

Format
DogCentric (Vanila-RNN) DogCentric (LSTM)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 50.80±0.66% 50.78±0.71% 50.46±0.69% 48.59±0.78% 64.31±0.74% 64.25±0.77% 62.31±0.75% 55.64±0.81%
FP 50.78±0.72% 50.70±0.79% 50.07±0.83% 23.79±0.88% 64.39±0.74% 63.10±0.78% 59.17±0.83% 34.81±0.89%
FX 50.25±0.74% 43.91±0.79% 36.20±0.82% 26.86±0.84% 63.32±0.73% 62.66±0.68% 53.87±0.81% 45.98±0.90%
GP 50.85±0.64% 50.82±0.60% 50.63±0.71% 49.06±0.76% 64.71±0.69% 64.40±0.76% 63.27±0.78% 57.92±0.82%

TFX 50.70±0.70% 50.33±0.73% 49.72±0.77% 30.65±0.78% 63.98±0.72% 62.97±0.80% 58.23±0.84% 48.34±0.86%

32-bit FP 50.78±0.65% 63.79±0.76%

Format
DogCentric (GRU) PTB (Vanila-RNN)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 62.03±0.73% 61.94±0.76% 61.86±0.88% 59.19±0.85% 164.92±1.25 164.98±1.30 170.49±1.32 191.58±1.28
FP 62.05±0.81% 61.99±0.78% 61.02±0.85% 29.35±0.92% 165.22±1.36 166.87±1.40 175.51±1.42 390.83±1.40
FX 60.46±0.83% 58.27±0.89% 50.50±0.94% 45.40±0.92% 167.42±1.40 183.19±1.43 238.05±1.46 375.18±1.51
GP 62.05±0.75% 62.03±0.81% 61.94±0.83% 60.87±0.78% 164.40±1.19 164.92±1.24 166.22±1.30 175.41±1.33

TFX 63.98±0.82% 62.97±0.85% 58.23±0.80% 48.34±0.88% 165.71±1.31 170.42±1.36 185.63±1.40 220.31±1.42

32-bit FP 61.97±0.80% 164.36±1.21

Format
DogCentric (LSTM) DogCentric (GRU)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 115.52±0.88 117.98±0.91 128.37±0.87 181.99±0.95 117.64±0.86 118.02±0.95 122.86±1.01 164.41±1.00
FP 114.89±0.94 116.15±0.92 119.45±0.99 137.41±1.05 117.66±0.88 119.02±0.93 125.16±0.96 191.99±1.04
FX 134.70±1.00 167.46±1.06 288.90±1.11 524.69±1.15 127.10±0.98 151.37±1.04 188.50±1.06 460.62±1.13
GP 114.36±0.87 115.32±0.93 117.91±0.88 128.43±0.91 117.66±0.85 117.98±0.92 120.86±0.91 140.27±1.01

TFX 120.61±0.91 124.38±0.96 140.70±1.00 200.32±1.03 124.61±0.97 130.59±0.98 142.48±1.06 205.03±1.08

32-bit FP 114.25±0.91 117.64±0.87

comparison to 5-bit floating point, and tapered fixed-point, respectively. However,

as an interesting result for the same task, the performance of LSTM based RNN in-

ference with floating point numerical format outperforms posit. The dynamic range

of weights in LSTM(∼[-8,8]) could intuitively explain this observation where posit

always shows better performance where most of RNN parameters are distributed

near zero [6]. For instance, the posit performance gains are also observed on the

DogCentric dataset over floating point and fixed-point, respectively.

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 90

dense_1 dense_2 dense_3 dense_4 overall avg.

5
6

7
8

Bi
t-p

re
cis

io
n

-6e-03

-3e-03

0e+00

3e-03

6e-03

dense_1 dense_2 dense_3 dense_4 overall avg.

5
6

7
8

Bi
t-p

re
cis

io
n

-6e-03

-3e-03

0e+00

3e-03

6e-03

co
nv

2d
_1

co
nv

2d
_2

co
nv

2d
_3

co
nv

2d
_4

co
nv

2d
_5

co
nv

2d
_6

co
nv

2d
_7

de
ns

e_
1

ov
er

al
l a

vg
.

5
6

7
8

Bi
t-p

re
cis

io
n

-8e-04

-4e-04

0e+00

4e-04

8e-04
co

nv
2d

_1

co
nv

2d
_2

co
nv

2d
_3

co
nv

2d
_4

co
nv

2d
_5

co
nv

2d
_6

co
nv

2d
_7

de
ns

e_
1

ov
er

al
l a

vg
.

5
6

7
8

Bi
t-p

re
cis

io
n

-8e-03

-4e-03

0e+00

4e-03

8e-03

Figure 5.3: Layer-wise delta distortion rate ∆(d(R)) heatmaps compare the
precision (rates) of 5 to 8-bit numerical formats for representing 32-bit floating
point DNN parameters. The average ∆(d(R)) among all weights in a DNN is
shown in the final column of each heatmap. (a) d(R)posit −d(R) f ixed for the

Fashion-MNIST task; (b) d(R)posit −d(R) f loat for the Fashion-MNIST task; (c)
d(R)posit −d(R) f ixed for the Fashion CIFAR-10 task; (d) d(R)posit −d(R) f loat for the

CIFAR-10 task.;

5.3 Empirical quantization error analysis

The common metric to empirically analyze the quantization error generated dur-

ing converting parameter values represented with a 32-bit floating point to low-

precision numerical formats is the distortion rate (d(R)), which is defined by (5.1)

as the average square distance between the actual parameters (Pi) and quantized

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 91

parameters (Quant(Pi)). This metric can be used to compare different numerical

formats. Figure 5.3 demonstrates the distortion rates (d(R)) of weights of fully con-

nected layers on Fashion-MNIST and convolutional layers on CIFAR-10 datasets

with various formats. It is clear that posit has the least distortion rate, and thus it

suffers the least consequences from quantization, which is especially noticeable at

5-bit precision.

d(R) = d(P,Quant(P)) =
1
n

n

∑
i
||Pi,Quant(Pi)||2 (5.1)

5.4 Numerical analysis of quantization error

5.4.1 SQNR impact on DNN accuracy

As aforementioned in Chapter 4, the SQNR has a linear relationship with accuracy

(as shown in Figure 5.4). The range of weights is mostly centered at zero and

tapered to a dynamic range of two as mentioned in Table 5.1. Since posit has

maximum SQNR in this range, the DNN accuracy using posit outperforms floating

point only if the weights are quantized. However, when both activations and

weights are quantized, the dynamic range of activations changes across layers,

which means that the SQNR of posit surpasses the floating point, and in a few

cases floating point surpasses posit. Therefore, it is valuable to have a format,

such as generalized posit, where the SQNR is variable and can be matched to the

variability of activations.

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 92

5.4.2 Theoretical vs. experimental performance:

Figure 5.4(b) compares the theoretical misclassification upper bound with the

misclassification rate that is obtained empirically in DNN inference with the

ResNet and EfficientNet models on the ImageNet dataset using generalized posit.

This theoretical bound depends on the SQNR of weights and activations and is

given by (4.19). Since the SQNR of generalized posit is related to the precision,

∆GP, the misclassification grows exponentially when the precision is decreased

(Figure 5.4(b)). Overall, the theoretical bound is shown to approximate the mis-

classification rate in most cases.

2−6 2−4 2−2 20 22 24 26

Dynamic Range
(a)

0

10

20

30

40

SQ
N

R
 (d

B
)

posit(es=0)
float(e=3)
G-posit(es=0,rs=5)

5 6 7 8
Precision (N)

 (b)

0

10

20

30

40

50

60

M
iss

cla
ss

ifi
ca

tio
n

(%
)

ResNet-50(Exprimental)
EfficientNet(Exprimental)
Theoretical upper-bound

Figure 5.4: (a) The SQNR of 8-bit generalized posit compared to 8-bit posit and
8-bit floats. (b) ImageNet misclassification rate as a function of the generalized
posit bit-precision with optimal rs for two DNNs and the theoretical upper bound

(as formalized in (4.19)).

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 93

5.5 Hardware system results

5.5.1 EMAC hardware complexity vs performance accu-

racy

To expose the effectiveness of tapered-precision numerical formats over floating

point and fixed-point when considering both classification accuracy and hardware

cost, we evaluate the trade-off between the hardware complexity metric of the

EMAC operation (as mentioned in Table 5.2) and average accuracy degradation

from 32-bit floating point per bit-width across the multiple models on MNIST,

Fashion-MNIST and CIFAR-10 datasets for the Cheetah-V2 framework. For

instance, Figure 5.5 shows the trade-off between EDP and accuracy on across the

multiple models on these datasets.

The results indicate that posit achieves up to 23% average accuracy improve-

ment over fixed-point. However, this accuracy enhancement is gained at the cost of

a 0.41×10−10 increase in energy-delay-product to implement the EMAC unit.

Posit also consistently shows better performance, especially at 5-bit width,

compared to the floating point number system at a slight increase in the energy-

delay-product. This slight cost of generalized posit numerical format is mainly

due to the latency and power associated with decoding and encoding hardware.

Overall, the 6-bit posit shows the best trade-off between energy-delay-product and

average accuracy degradation from 32-bit floating point on the two benchmarks

(when analyzed across the 5- to 8-bit range).

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 94

5 6 7 8
N

3
4

5
6

Q

Fixed

1.05

1.20

1.35

1.50

1.65

En
er

gy
-D

el
ay

-P
ro

du
ct

1e 11

5 6 7 8
N

3
4

5
6

Q

Fixed

21

24

27

30

33

36

Av
g.

 D
eg

ra
da

tio
n

(%
)

5 6 7 8
N

0
1

2
es

Posit

0.4

0.8

1.2

1.6

2.0

En
er

gy
-D

el
ay

-P
ro

du
ct

1e 10

5 6 7 8
N

0
1

2
es

Posit

0

6

12

18

24

Av
g.

 D
eg

ra
da

tio
n

(%
)

5 6 7 8
N

3
4

w e

Float

2.4
3.0
3.6
4.2
4.8

En
er

gy
-D

ela
y-P

ro
du

ct1e 11

5 6 7 8
N

3
4

w e

Float

0
6
12
18
24
30

Av
g.

De
gr

ad
ati

on
 (%

)

(a) (b)

Figure 5.5: (a) The average accuracy degradation for 32-bit floating point across
three classification tasks vs. the energy-delay-product of the respective multiplier

and accumulator unit (MAC). (b) The average accuracy degradation for 32-bit
floating point across three classification tasks vs. the latency of the respective

MAC. N is total bits, Q is fractional bits for the fixed-point numerical format, es and
we are the number of bits allocated for exponent in posit and floats, respectively.

5.5.2 Exploiting the posit es parameter

Experimental results in this chapter are evaluated by exploiting the performance

of generalized posit and posit numerical formats by using es ∈ {0,1,2} across

benchmarks. As is shown in Figure 5.5, the energy-delay-product of the posit

EMAC is dependent upon the es parameter. For instance, the energy-delay-product

of the posit EMAC with es = 0, on average, is 3× and 1.4× less than the energy-

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 95

delay-product of the posit EMAC with es = 2 and es = 1, respectively. On the

other hand, the average performance of DNN inference with es = 1 for the posit

EMAC among the five datasets and 5- to 7-bit precision is 2% and 4% better than

with es = 2 and es = 0, respectively. Thus, the posit (es = 1) EMAC has a better

trade-off between energy-delay-product and accuracy for 5 to 7 bits. For 8-bit, the

results suggest that es = 1 is a better fit for energy-efficient applications and es = 2

for accuracy-dependent applications.

5.5.3 DNN inference hardware complexity vs performance

accuracy

The execution time of the DNN model is mainly governed by the dataflow and

the PE array architecture. Output stationary dataflow has been shown to offer a

24% reduction in latency as compared to weight stationary dataflow in performing

one inference. This is a significant improvement for a compute-bound DNN, as

inference favors latency over throughput [184]. The homogeneous 16×16 PE

configuration offers an improvement in computing efficiency from 89.58% to

91.82%, with a significant reduction in energy consumption. Figure 5.6 illustrates

the energy-delay product (EDP) for ResNet-50 with posit while performing in-

ference on the ImageNet dataset. It is worth noting that generalized posit offers

in a range of 0.6% (n = 8) to 12% (n=6) improvement in classification accuracy

with a negligible EDP overhead (6%) compared to posit. One may also observe

from Figure 5.6 that lower es results in a greater reduction in energy consumption

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 96

due to simpler encoding and decoding schemes. Reduced bit-precision economizes

the local memory storage size and the number of operational cycles in both formats:

generalized posit and posit.

5 6 7 8
Precision (N)

(a)

0

1

2

e
s

va
lu

e

Energy-delay-
product [J.s]

106.83 J.s

100
104
108
112
116
120
124
128

5 6 7 8
Precision (N)

(b)

0

1

2

es
 v

al
u

e

Energy-delay-
product [J.s]

101.39 J.s

95
97
99
101
103
105
107
109
111
113

5 6 7 8
Precision (N)

(c)

2

3

4

N
um

be
r

of
 E

xp
on

en
t b

its

Energy-delay-
product [J.s]

92.971 J.s

90.3
90.9
91.5
92.1
92.7
93.3
93.9
94.5
95.1

Figure 5.6: Energy-delay product of ResNet-50 benchmarked with ImageNet
when using generalized posit (a), posit (b) and floating point(c). The performance
of posit is evaluated for different bit widths, by changing number of exponent bits

(es), to represent the weights and activations.

5.6 Numerical format identification based on user con-

straints through ILP

Figures 5.7 and 5.8 illustrate the performance of each numerical format incor-

porated into the different configurations of accelerator and dataflows. The ILP

optimization identified the optimal numerical format much more quickly (≤1s, per-

formed on Intel i9-9960X) than the tedious and iterative process undertaken by re-

inforcement learning optimization algorithms (which can take several hours [185]).

When constraints are selected in the region beyond the mean plus standard devia-

tion of metrics (highlighted region), generalized posit was most frequently selected

as the optimal numerical format. Note that except for a trade-off between the

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 97

accuracy and MAC frequency (Figures 5.7(b) and 5.8(b)), the numerical formats

are selected in a way that to maximize accuracy when the accuracy and hardware

constraints (e.g, EDP) are met. In the case of MAC frequency, the numerical

formats are selected to maximize the frequency when the accuracy constraints are

satisfied. In most cases, the generalized posit has shown better performance as

compared to other numerical formats. When it comes to frequency performance,

tapered fixed-point is selected as an appropriate numerical format. However, note

that in some cases, the best possible result for a specific metric by identifying

the optimal numerical format may not meet the user target. In these cases, the

low-precision arithmetic approach needs to be combined with other compression

optimizations such as pruning [186] and processing in memory [187] to meet user

constraints.

5.7 Comparison with other posit frameworks

A summary of a comparison between the previous low-precision posit frameworks

and the proposed frameworks (Cheetah-V2, and ALPS) is listed in Table 5.5.

Several research groups have explored the efficacy of posit on the performance and

hardware complexity of DNNs with multiple image classification tasks [46, 47, 51,

105, 107, 125]. However, none of these works analyze the appropriateness of the

generalized posit and tapered fixed-point numerical format for both DNN inference

and training. Additionally, previous works do not offer insight into the impact of

the numerical format on both accuracy and hardware complexity, as described in

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 98

this chapter. In addition, none of the previous frameworks proposed a numerical

analysis approach to explain the reasons behind the high performance accuracy

of generalized posit. Finally, the Cheetah-V2 framework provides an approach to

identify the appropriate numerical format based on edge devices constraints which

are lacking in the previous frameworks.

Table 5.5: High-level summary of Cheetah-V2, ALPS and other low-precision
posit frameworks. All datasets are image classification tasks. FMNIST: Fashion
MNIST; FP: floating point; FX: fixed-point; P: posit; GP: Generalized Posit; TFX:

Tapered Fixed-point; SW: software; HW: hardware.
Cococcioni et al. [146] murillo et al. [145] tambe et al. [123] wong et al. [158] Johnson et al. [58] Cheetah-V2 ALPS

Dataset
MNIST, FMNIST,

CIFAR-10
WMT, LIBRISPEECH, COCO, WMT

ImageNet Table 5.1
CIFAR-10,

ImageNet ImageNet ImageNet ImageNet

Numerical Format P
FP, FX, FP, FX

PS
FP, FX FX, FP GP, FP

P P P P,GP,TFX P

Bit-precision [16..8] 16,8 [4..8] 8,6 8 [5..8] [5..8]

Models Inference Inference/Training Inference Inference/Training Inference Inference Inference

Implementation SW SW SW & HW SW SW & HW SW & HW SW & HW

DNN library Home Suite Tensorflow Pytorch - Pytorch Keras/TensorFlow Keras/TensorFlow
Device - - ASIC - ASIC ASIC ASIC/FPGA

Technology Node - - 16 nm - 28 nm 32/28 nm 32/28 nm

5.8 Summary

In this chapter, the efficacy of the tapered-precision numerical formats is evaluated

within new low-precision, Cheetah-V2, and ALPS frameworks on 20 benchmarks

for classification and prediction tasks. When it comes to performance accuracy,

the generalized posit constantly outperforms other numerical formats such as posit,

tapered fixed-point, float, and fixed-point. The reason behind the high performance

of generalized posit is that it auto-adjusts to the dynamic range and distribution

of the weights and activations, reducing quantization error which is demonstrated

by the distortion rates of weights in various neural networks. In addition, the

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 99

benefit of generalized posit is also demonstrated through the numerical analysis of

the quantization approach. Through this analysis, we found that the generalized

posit provides a higher SQNR value as compared to posit and float. Moreover, we

found that the theoretical bound on the misclassification rate for generalized posit

approximately replicates the experimental result. This shows that the generalized

posit configuration is selected optimally for each layer. Furthermore, the results

assert that generalized posit can achieve substantial performance improvements

with a relatively moderate increase in energy consumption over posit.

In the second part of this chapter, the Cheetah-V2 framework is evaluated to

identify the optimal numerical format based on edge device constraints. The results

show that no single numerical format can perform well for all edge devices, as

these devices exhibit extremely heterogeneous in terms of hardware constraints.

This is analogous to the "No free lunch theorem" in machine learning, where

there is no guarantee that a model that has shown significant performance in one

class of applications; can perform well in other classes. For instance, the tapered

fixed-point is suitable for edge devices, providing a high frequency. Finally, the

Cheetah-V2 and ALPS frameworks are compared with the existing low-precision

posit-based framework for DNN. Among different frameworks, only Cheetah-V2

and ALPS frameworks support the adaptive tapered-precision numerical format

such as generalized posit and tapered fixed-point. In addition, the Cheetah-V2

framework has the ability to identify the appropriate numerical format based on

targeted application accuracy and edge device constraints.

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 100

GP 8_0

(a)

TFX 7

(b)

GP 8_0

(c)

GP 8_0

(d)

GP 8_0

(e)

GP 7_0

(f)

Figure 5.7: (a) EDP vs Accuracy (b) MAC Frequency vs. Accuracy (c) Power vs.
Accuracy (d) Energy vs. Accuracy (e) Area vs Accuracy (f) Memory vs Accuracy
for an image classification task with an accelerator configured with PEs arranged

in a 16x16 systolic array and output stationary dataflow. The constraint was
derived by adding the mean with the standard deviation of the metric.

CHAPTER 5. DNN INFERENCE RESULTS AND DISCUSSION 101

P 8_1

(a)

TFX 8

(b)

GP 8_0

(c)

GP 8_0

(d)

GP 8_0

(e)

GP 7_1

(f)

Figure 5.8: (a) EDP vs Accuracy (b) MAC Frequency vs. Accuracy (c) Power vs.
Accuracy (d) Energy vs. Accuracy (e) Area vs Accuracy (f) Memory vs Accuracy
for keyboard spotting task with an accelerator configured with PEs arranged in a
16x16 systolic array and output stationary dataflow. The constraint was derived by
adding the mean with the standard deviation of the metric. The numerical format

selected by the ILP optimizer (marked by the large dark blue oval) in the
highlighted region identifies the format for which the best accuracy and metric

combination is achieved. GP n_es is n-bit generalized posit with es-bit exponent.

102

6. Tapered-precision numerical formats for deep

learning training

Over the last decade, the computational complexity and knowledge capacity re-

quirements for training deep learning models have grown exponentially [188].

Unfortunately, the computational capabilities and memory footprints of AI acceler-

ators have only boosted quadratically [189]. This growth-rate mismatch prevents

progress on the development and deployment of new deep learning models due to

the long DNN training time [18]. In addition, training current DNN models on AI

accelerators requires a high bandwidth memory and consumes high energy, which

consequently has a negative environmental impact [18, 21].

Similar to DNN inference, training of DNN models using the low-precision

numerical format is a prominent approach to reduce the complexity of DNN

training without accuracy degradation [111]. It can also reduce memory footprint

by curtailing the bit-precision of DNN training parameters and can decrease latency

and energy consumption associated with MAC units. For instance, training DNN

models with 16-bit brain floating point (bfloat16) instead of the 32-bit floating

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 103

point reduces energy consumption by 3.4x [190]. However, attempts at reducing

the bit-precision to ≤ 8-bit have resulted in notable accuracy degradation (e.g.,

4% and 10% error for ResNet50 training on ImageNet with naive 8-bit and 4-bit

training respectively [38, 48]).

To compensate the accuracy degradation, the current ≤ 8-bit training requires

to be combined with approaches such as hybrid numerical format [191], mixed-

precision training [7], stochastic rounding [51], adaptive exponent bias [192],

dynamic loss scaling [38], analytical clipping [88], 2-phase rounding [48], and log

quantization [45], increasing hardware complexity overhead while reducing the

benefit of training with low-precision numerical format. For instance, the training

throughput (training time) of MobileNet-V2 models with hybrid 8-bit floating point

(HBF8: FP(1,5,2) for the backward pass and FP(1,4,3) for the forward pass) on

ImageNet is only improved by 1.1x (far below 2x expectation) as compared to

16-bit IEEE standard floating point [192]. In addition, the overhead of training a

ResNet50 model on ImageNet with 4-bit radix-4 numerical format is 10 Flops per

gradient [48] (without considering the hyperparameter tuning overhead).

To mitigate the aforementioned challenges in performing DNN training with

the low-precision numerical formats, we extend the use case of tapered precision

numerical formats for deep learning training through the Jappi framework in this

chapter. In addition, this study introduces the asymmetric generalized posit nu-

merical format for ≤ 8-bit DNN training. It provides a high dynamic range (≈

214 more than ≤ 8-bit floating point and fixed-point to capture the dynamic range

of gradients (Figures 6.1(a) and 6.1(b)). The high dynamic range of asymmetric

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 104

FP(1,5,2)

FX(8,0) [2]

P(2)

2−32 2−16 20 216

[33]

[26]

[27]

FP(1,4,3)

FP(1,4,3)

FP(1,4,3)

[33,26]

FP(1,5,2) [27]

AGP(2,7,4)

AGP(2,7,3)

FX(4,4)

Absolute Value Range
232

,AGP(2,7,7)

Gradients-Cifar-10-Resnet50

Wights-Cifar-10-Resnet18

2−32 2−16 20 216

Gradients-Cifar-10-Resnet18

Wights-Cifar-10-Resnet50

Activations-Cifar-10-Resnet50

Wights-ImageNet-Resnet18

Gradients-ImageNet-Resnet18

Wights-ImageNet-Resnet50

Activations-Cifar-10-Resnet18

Maximum Absolute Value Range
232

Activations-ImageNet-Resnet18

Activations-ImageNet-Resnet18

Gradients-ImageNet-Resnet18

Figure 6.1: Comparison DNN parameter’s range and distributions with numerical
formats value range and distribution. (a) 8-bit numerical formats absolute value

range, fixed-point: FX(integer,fraction), floating point: FP(sign,exponent,fraction),
posit:P(es), asymmetric generalized posit:AGP(es,rsd ,rsu).(b) DNN Parameters

absolute value range. The range is asymmetric toward small values.

generalized posit comes from a high-radix for regime values (e.g., radix-16 for

es=2) [171]. Moreover, it is well known that the DNN parameters can be approxi-

mated with normal distribution for weights and activations [39] and log-normal for

gradients [88]. The asymmetric generalized posit values can inherently match the

distribution of DNN parameters due to its tapered-accuracy attribute (high accuracy

near zero tapering toward the maximum representable number).

Note that the asymmetric generalized posit is a promising alternative to HFP8

since it exhibits similar accuracy to FP(1,4,3) for values in the range of [-16,16],

and it could provide more than FP(1,5,2) dynamic range, as shown in Figure 6.2.

Moreover, the DNN parameters have asymmetric distribution with respect to origin

(Figure 6.1(b). The maximum positive value of DNN parameters is mostly bounded

at 25 (especially for activations); however, the value of gradients heavily tailed

toward zero (mostly less than 2−5 values). The asymmetric generalized numerical

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 105

0
-10-20 +10 +20

𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂_𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗(𝒗𝒗))

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨

Float 1_5_2

Float 1_4_3

Fixed 5_3

0.5

1.0

1.5

2.0

2.5

Posit 8_2

Fixed 8_0

-25 +25

AGP 8_2_4_2_0

Figure 6.2: The relative decimal accuracy [6] for various 8-bit numerical formats
Float 1_5_2 , Float 1_4_3, are 8-bit floating format with 5, 4 exponent bits,

respectively, and Posit 8_2 are 8-bit posit format with 2 exponent bits respectively.
The Fixed 5_3 and Fixed 8_0 indicates fixed-point numerical format with 5-bit

integer and 8-bit integer respectively, and Generalized posit 8_2_4_2_0 is 8-bit
generalize posit numerical format with es = 2, rsd=4, rsu=2, and eb = 0.

format can represent asymmetric distribution by allocating different regime bit

widths for values less than 1 and bigger than 1. Finally, the asymmetric generalized

posit can accommodate the variability observed in DNN parameter distributions

and dynamic range across layers and training epochs by optimization of three

hyperparameters. These benefits motivate us to develop a low-precision deep

learning framework to demonstrate the efficacy of asymmetric generalized posit in

DNN training.

6.1 Problem formulation

As mentioned in Chapter 2, the aim of training a DNN model in supervised setting

is learning the DNN model parameters (W) through the empirical risk minimization

problem as in (6.1), where A represents the activation vector, α is the learning rate,

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 106

m indicates batch size, Yi(A,W) is output prediction, L is the loss function, and Ŷi

is desired output (corresponding labels).

∆W =−αOW
(1

m

m

∑
i=1

L(Yi(A,W),Ŷi)
)

(6.1)

The procedure of minimizing the empirical risk, and thus learning weights,

is performed by training DNN models through mini-batch stochastic gradient

descent using backpropagation. The gradients of weights and activations are

computed for each DNN layer in the backpropagation algorithm. The training

part of the Jaapi framework is shown in Figure 6.3 for generalized posit numerical

format. The main aim of the framework at each training iteration (epoch) is to

identify the tapered-precision numerical format hyperparameters (rsd , rsu, eb) for

Cl = {W,A,OW ,OA} a set of the DNN parameter configurations. These parameters

are selected either through statistical or numerical analysis approaches. Note

that the energy overhead to compute (rsd , rsu, eb) parameters is negligible since

the statistics of parameters and gradients are estimated from the previous epoch

which is inspired by the In-Hindsight quantization range estimation approach for

low-precision DNN training [193].

Moreover, the selection of generalized posit parameters is briefly explained

for weights, and the same equations can be used for other parameters such as

activations and gradients.

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 107

Activation

Weight

AGP8

AGP8

AGP8 AGP32 AGP8
Activation

Error
gradients

AGP8
AGP8

f(x)

f'(x)

Weight
gradients

AGP8

AGP8Error
gradients

AGP8

Adam optimizer Updated
weights

Weight
gradients

Forward Pass

AGP8

f'(x)

Backward Pass

AGP8

AGP32

AGP32

AGP32 AGP32

Figure 6.3: The training unit of Jaapi low-precision framework for DNN training

6.1.1 AGP parameter selection (statistical approach)

The es can recenter the maximum accuracy from 20 to 2es. Therefore, it is desired

to match the maximum accuracy of asymmetric generalized posit by selecting

optimal eb with the mode of weights in log2 domain, as given by (6.2) where m

and v are the mean and variance, respectively.

eb(w) =
m

(v
m2 +1)3/2 (6.2)

To compute rsd the difference between the excess kurtosis (EK) of DNN param-

eters, in the range of [−1/eb(w),+1/eb(w)], and the excess kurtosis of asymmetric

generalized posit values, with varied rs, is calculated. Then the asymmetric gen-

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 108

eralized posit numerical format configuration with the closest excess kurtosis to

that of the DNN parameters is selected, as represented in (6.3) where the PW and

QAGP(rsd ,eb(w)) are probability density function of weight distribution and asymmet-

ric generalized posit value distribution.

rsd(w) = argmin
rsd∈[1,n−1]

EKd(PW ||QAGP(rsd ,eb(w))) (6.3)

To compute rsu, the range of DNN parameters requires to be captured by

the asymmetric generalized posit numerical format. Therefore, the difference

between the maximum absolute value of DNN parameters and the maximum

absolute value of asymmetric generalized posit with varied rs is calculated. Then,

the asymmetric generalized posit numerical format configuration with the closest

maximum absolute value to that of the DNN parameters is selected as represented in

(6.4). Note that the asymmetric generalized posit numerical format should capture

the dynamic range of DNN parameters (max(|W |)−max(|AGP(rsu,eb(w))|)> 0).

rsu(w) = argmin
rsu∈[1,n−1]

(max(|W |)−max(|AGP(rsu,eb(w))|) (6.4)

6.1.2 AGP parameter selection (numerical analysis ap-

proach)

The output of each DNN layer (Al+1) in the forwardpass is computed, as given in

(6.5) through a sequence of operations. The multiply-accumulate (MAC) operation

is primarily followed by an activation function F where A1 = x and An+1 = y are

the input and output of DNN model, respectively. The errors generated in the

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 109

calculation of wi and Ai are represented as εwi and εAi .

Al+1 + εAl+1 =Fl(...(F2(F1(w1 + εw1×A1 + εA1)+

εA2)× (w2 + εw2))

(6.5)

The error εAl+1 can be estimated as in (6.6) using the chain rule of partial

derivatives and first-order Taylor series approximation in neural network models

with a non-linear activation function as Fi.

εAl+1 ≈
l

∑
i=1

εwi

∂Fl

∂wi
+

l

∑
i=1

εAi

∂Fl

∂Ai
(6.6)

In the backward pass, the activation gradients are computed as a series of

operations, as given in (6.7).

OAl + εOAl
=Gl(OAl+1, ...OAn,wl, ...wn) =

F ′l+1×
(
...×(F ′n−1×

(
F ′n× (OAn + εOAn

)

× (wn + εwn)+ εOAn−1
)× (wn−1

+ εwn−1)...
)
×
(
wl + εwl

))
(6.7)

The error εOAl
can be estimated as in (6.8) using the same approach to compute

the error εAl+1 .

εOAl
≈

l+1

∑
i=n

εwi

∂Gl

∂wi
+

l+1

∑
i=n

εOAi

∂Gl

∂OAi

(6.8)

The layerwise error in computation on weight gradients (εOAi
) and updating the

weights (εwi) depend on the error of the parameter for the same and either previous

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 110

or subsequent layers. These errors can be computed as in (6.9) and (6.10).

εOwl
≈T (εOAl+1,OAl+1,εAl ,Al) =

F ′l+1× (εOAl+1×Al + εAl ×OAl+1)

(6.9)

εwl ≈T (εOwm
n ,α,wl) =

εwl +α

i=m

∑
i=0

εOwm
n

(6.10)

The objective of the framework is to select optimal rs and sc for layerwise

parameters to minimize the conversion errors such as εwl , εAl , εOwl , and εOAl as in

6.11. Formally, we drive the conversion error from 32-bit asymmetric generalized

posit numerical format with rs=15 and eb=0 to low-precision 8-bit asymmetric

generalized posit with varied rs and eb.

rsu,rsd,eb =argmin AGPh-AGPl
rsu∈[1,n−1]

, rsd ∈ [1,n−1]

, eb ∈ [−4,3]

(6.11)

6.1.3 Low-precision asymmetric generalized posit dot prod-

uct

The asymmetric generalized posit dot product is presented in Algorithm 13 in

Appendix A. In the first step, a set of quantized weights and activations is decoded

to the asymmetric generalized posit format, and the scaling factor is computed

(lines 2–5). Then, the product of the asymmetric generalized posit weights and

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 111

activations is calculated without truncation or rounding at the end of multiplications

(lines 6–10). The products are then stored in a wide signed fixed-point register, the

quire [6], for m multipliers with size wquire = dlog2(m)e+2×dlog2(
MaxGP
MinGP

)e+2

(lines 11–14). The stored products are then converted and accumulated using

fixed-point arithmetic. Finally, the accumulated result is converted back to the

asymmetric generalized posit numerical format (lines 15–17).

6.2 Benchmark specification

In this section, we discuss the four benchmarks to evaluate the efficacy of different

tapered-precision formats in the Jaapi framework. In addition, we summarize

the performance of different tapered-precision numerical formats including (posit,

generalized posit, and asymmetric generalized posit) in these benchmarks. The

specifications of the tasks and training performance with 32-bit floats DNNs are

summarized in Table 6.1.

6.2.1 Datasets

CIFAR-10 [173]: The CIFAR-10 dataset contains images of 10 various categories

such as airplanes and automobiles which are collected from the web. In this dataset,

60000 images are assigned to the training set. The training set is normalized in a

range of 0 to 1. The ResNet models are trained on this dataset for 200 epochs with

cross-entropy loss function and Adam optimizer. In this study, the 0.001 learning

rate is gradually decreased after 80, 120, 160, and 180 epochs. To improve the

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 112

accuracy, the images are augmented.

Table 6.1: The DNN models and benchmarks using 32-bit float parameters
description.

Dataset DNN Model # Parameters Performance

CIFAR-10
ResNet-18 0.27 M 91.54±0.23%
ResNet-50 0.86 M 92.10±0.24%

Tiny-ImageNet
ResNet-18 0.32 M 60.60±0.36%
ResNet-50 0.91 M 65.00±0.41%

ImageNet
ResNet-18 11.70 M 68.10±0.52%
ResNet-50 25.00 M 74.60±0.68%

Tiny ImageNet [174]: The Tiny ImageNet dataset contains images of 200

categories, each with 500 images. These categories are selected from the 1000

categories of ImageNet. The images in the training set are resized to 64x64 pixels

with cubic spline interpolation. Afterward, the images are center cropped and

augmented. The ResNet models are trained on this dataset for 24 epochs with

cross-entropy loss function and Adam optimizer. In this study, the cyclic learning

rate approach is used (baseline learning rate equals 0.001).

ImageNet [174]: The ImageNet dataset comprises images from 1000 different

categories, created using WordNet’s hierarchical system. This dataset designates

50,000 images for its test set. These test set images are first resized to 256x256

pixels using cubic spline interpolation, and then they are center cropped to a

dimension of 224x224 pixels. The models are trained for 200 epochs using a single

RTX 2080 Ti Nvidia GPU, with a batch size of 200 and an initial learning rate of

0.0001. The dropout rate is set at 0.2.

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 113

6.2.2 Experiment setup

The Jaapi framework is implemented in the C++ language and the CUDA platform,

and extended to the TensorFlow framework [180]. To demonstrate the efficacy

of the Jaapi empirical framework, the performance of asymmetric generalized

posits with rsd , rsu, and sc is evaluated across three training tasks and compared

to both generalized posits and posit with two different DNN architectures. The

specifications of the tasks and performance accuracy with 32-bit float DNNs are

summarized in Table 6.1. In the evaluation of each format, es = 2, rsd ∈ [1..n−1],

rsu ∈ [1..n− 1], and sc ∈ [−3,3] are considered for the asymmetric generalized

posits. The es = 2 is selected for posits and es = 2, rs ∈ [1..n−1], and sc ∈ [−3,3]

are chosen for generalized posit.

6.3 Tapered-precision numerical formats performance

The efficacy of the Jaapi framework is evaluated for DNN training using the

asymmetric generalized posits, as shown in Table 6.2.

Table 6.2: The DNN training performance using the posit, generalized posit, posit,
and asymmetric generalized posit formats on various benchmarks.

Dataset Bit Precision Posit Generalized Posit Asymmetric Generalized Posit

RESNET-18 ResNet-50 RESNET-18 ResNet-50 RESNET-18 ResNet-50

CIFAR-10

8-bit 89.71±0.26% 90.12±0.22% 90.46±0.15% 91.02±0.20% 91.43±0.09% 91.79±0.14%
7-bit 85.21±0.11% 83.11±0.10% 87.81±0.12% 88.92±0.26% 89.06±0.12% 90.21±0.32%
6-bit 74.32±0.33% 50.23±0.32% 76.64±0.21% 75.43±0.34% 79.43±0.32% 82.31±0.34%
5-bit 18.23±0.35% 11.05±0.14% 45.91±0.29% 40.31±0.15% 57.34±0.43% 58.23±0.36%

Tiny-ImageNet

8-bit 58.03±0.31% 62.54±0.18% 58.96±0.13% 63.76±0.17% 60.43±0.22% 64.36±0.17%
7-bit 53.61±0.17% 54.11±0.09% 55.61±0.11% 59.31±0.23% 57.38±0.19% 62.31±0.17%
6-bit 42.35±0.27% 30.26±0.31% 46.53±0.25% 48.11±0.36% 50.36±0.31% 56.45±0.20%
5-bit 17.48±0.18% 15.41±0.20% 30.43±0.15% 32.69±0.14% 40.61±0.43% 41.96±0.31%

ImageNet

8-bit 60.21±0.65% 64.71±0.76% 61.69±0.54% 65.03±0.60% 63.02±0.59% 66.53±0.55%
7-bit 54.33±0.70% 55.69±0.78% 56.23±0.75% 61.42±0.81% 59.91±0.70% 64.70±0.63%
6-bit 46.64±0.78% 48.31±0.85% 50.11±0.81% 55.77±0.86% 54.48±0.80% 58.01±0.70%
5-bit 25.61±0.76% 30.22±0.83% 35.69±0.76% 41.33±0.76% 44.37±0.72% 48.71±0.77%

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 114

On CIFAR-10, the findings indicate that an 8-bit asymmetric posit can achieve

training performance comparable to a 32-bit floating format. Both the posit and

generalized posit also exhibit acceptable performance with 8-bit precision in this

dataset. A notable advantage of the asymmetric posit over other numerical formats

is evident in the 5-bit representation, where the asymmetric generalized posit shows

improvements of 39.11% and 11.43% compared to the posit and generalized posit,

respectively. This leap in performance is attributed to the gradients’ distribution,

which follows a near-logarithmic distribution, akin to an asymmetric generalized

posit distribution. The posit and generalized posit are the most appropriate nu-

merical formats for DNN inference when the DNN follows a normal distribution.

Opting for a symmetric distribution leads to a loss in the balance between encoding

efficiency (how many bit strings of the numerical format are used to represent

DNN parameters) and accuracy for representing DNN parameters. For example, in

a 5-bit DNN inference, if rs is set to 4, 25% of the encoding becomes unusable,

as the maximum value of gradients, activation, and weights is 8, while the maxi-

mum for generalized posit and posit is 4096. This excess encoding could be more

accurately utilized to represent numbers less than 4 in an asymmetric generalized

posit by selecting rsu as 2. However, choosing rs = 2 renders numbers less than

2−3 unrepresentable in a generalized format, leading to significant quantization

error. Conversely, with rs = 4, numbers up to 2−12 can be represented, reducing

the quantization error.

When it comes to the Tiny-ImageNet and ImageNet datasets, the dynamic range

of gradients increases significantly (e.g., 236 for the ResNet model on ImageNet

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 115

datasets). This dynamic range is roughly covered only with 8-bit precision, and

when this bit precision is reduced, the quantization error increases due to the

dynamic range of DNN parameters exceeding that of the number system. For

instance, there is a 30.23% loss in inference performance when the number of bits is

reduced to 5-bit for the ResNet-18 model on the ImageNet dataset. In a comparison

between numerical formats, similar to the trend in Fashion-MNIST, the asymmetric

generalized posit shows better results due to its better adaptation to the logarithmic

distribution of gradients. Overall, the results of this study assert that the asymmetric

generalized posit performs best among the tested numerical formats. For example,

the representation of DNN parameters with an 8-bit asymmetric generalized posit is

sufficient to achieve training accuracy within a 1% variation of 32-bit floating-point.

Moreover, the performance of a 6-bit low-precision asymmetric generalized posit

ResNet-50 model on the Tiny ImageNet dataset is boosted by 26.19%, compared to

the float-based network. These performance benefits can be intuitively explained by

the auto-tuning capability of the Jaapi framework, which adapts the format to the

dynamic range and distribution of the weights, activations, and gradients, thereby

reducing error and improving accuracy. Finally, to achieve similar performance

to the 32-bit floating-point, 10-bit, and 14-bit precision are required for the Tiny

ImageNet and ImageNet datasets, respectively

As a future study, the performance of DNN training with asymmetric posit

could be enhanced by allocating more bits to the scaling factor. In this study, 3 bits

were allocated for the scaling factor; however, current research in low-precision

arithmetic [191, 194, 195] recommends using 6 bits. Although the scaling factor

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 116

is currently the only practical solution to address and accurately represent DNN

parameters, the design of a new numerical format that represents the logarithmic

distribution without using a scaling factor is desirable.

6.3.1 Comparison with state-of-the-art low-precision train-

ing approaches

A summary of previous studies that proposed low-precision training using ResNet-

18 and ResNet-50 models on the CIFAR-10 dataset is shown in Table 6.3. Several

research groups have explored the efficacy of 8-bit floating point and fixed-point

numerical format on the performance of these models on this dataset. A few works

also analyze the suitability of the posit numerical format for DNN training. The

results indicate that the asymmetric generalized posit is an appropriate candidate

for training DNN models.

6.4 Summary

In this chapter, the proposed Jaapi framework is presented as a tool to study the

performance of tapered-precision numerical formats for deep learning training.

To capture the dynamic range of gradients, a new numerical format, asymmetric

generalized posit, has been introduced. Interestingly, generalized posit can repro-

duce the values that are representable with state-of-the-art hybrid floating point

(FP(1,4,3) for forward-pass and FP(1,5,2) for backward bass) without additional

hardware to support both numerical formats. The process of selecting the optimal

CHAPTER 6. TAPERED-PRECISION NUMERICAL FORMATS FOR DEEP LEARNING
TRAINING 117

Table 6.3: The DNN training performance using variants of IEEE-754 standard
floats format, on CIFAR-10.

Numerical Format Bit-Configuration1 Parameter2 CIFAR-10

W A OW OA Acc UP BN Act eb/sc rs ResNet-20 ResNet-50

FX8 [130] 8 8 8 8/16 FP32 FP32 8 32 - - -
FX8 [133] 8 8 8 8 32 32 32 32 × 91.95(-0.37)% -
FX8 [196] 8 8 8 8 FP32 FP32 FP32 32 × - 93.22(-0.13)%
MFX8 [7] 8/16 8/16 8/16 8/16 32 FP32 FP32 32 × 90.86(+0.78)% -
FX8 [132] 8 8 8 8 32 32 32 32 × 92.76(+0.41)% -
FP8 [117] 8 8 8 8 16 16 16 16 × × - -
FP8 [119] 8 8 8 8 32 16 32 32 × × - -
HFP8 [38] 8 8 8 8 DF16 DF16 DF16 DF16 × - -

S2FP8 [115] 8 8 8 8 32 32 32 32 × 91.10(-0.40)% 93.2(+0.20)%
LFP8 [116] 8 8 8 8 24 16 32 16 × × 93.41(-0.10)% -

FP8-B [194] 8 8 8 8 32 32 32 32 × - -
FP8-B [191] 8 8 8 8 32 32 32 32 × - -
HBFP8 [118] 8 8 8 8 32 32 32 32 10 × - -
HBFP8 [197] 8 8 16 8 FP32 FP32 FP32 FP32 × - -
P8_1 [148] 8 8 8 8 32 16 16 32 × 92.07(-0.14)% -

LP8_2 [151] 8 8 8 8 20 32 32 32 × 93.10(-0.30)% -
P8_2 [158] 8 8 8 8 32 32 32 32 × 91.60(0.60)% -

Ours 8 8 8 8 32 32 32 32 91.43(-0.11)% 91.79(-0.31)%
1 W: Weights; A: Activations, G: Gradients, E: Error, Acc: Accumulation, UP: Update, BN: Batch Normalization, Act:
Activation
2 eb/sc: exponent bias or scaling factor, rs: regime bit width

asymmetric generalized posit configuration through the statistical approach and

numerical analysis is explained. For instance, the excess kurtosis and maximum

absolute values of DNN parameters are used as a metric to select the asymmetric

generalized posit parameters. Through the Jaapi framework, the efficacy of asym-

metric generalized posit on deep learning training is evaluated in comparison to

posit and generalized posit. The findings show that the asymmetric generalized

posit outperforms posit on most benchmarks and deep learning models.

118

7. Case study

7.1 Case study: Surveillance video analysis

Surveillance cameras have been used in public places to improve public safety

and reduce crimes by detecting abnormal behavior, exposing hostile intent, and

identifying the human subject [198]. Though previous studies showed that using

surveillance cameras reduces the crime rate [199, 200], there is still a consider-

able gap in the performance of a surveillance camera vs. human monitors [201].

Therefore, the surveillance system is mostly utilized as a passive system. The

video captured by the surveillance system is transferred to the cloud for human

inspection post-event [202]. To develop more efficient, active surveillance, this

study proposes the use of the Cheetah-V2 framework to automatically and instanta-

neously perform analyses on live video streams to detect crime-related behaviors

as shown in Figure 7.1. In the process of performing training, the DNN learns new

activities from videos captured by the surveillance camera and performs inference.

The DNN model with learned weights classifies the abnormal activities in each

video. The following subsections describe the DNN model that is applied in this

CHAPTER 7. CASE STUDY 119

Data Training	 Inference

Low	precision	
CDN	Model

Low	precision
CDN	Model	

+	BC

Edge	Devices Edge	Devices

Learned
Model

Output

Figure 7.1: The high-level deep learning flow for abnormal activity detection on
surveillance video for the edge. BC: Binary Classification

study for anomaly activity recognition in the candidate video datasets and the ideal

edge-devices that are compatible with the framework.

7.1.1 DNN model & datasets

To analyze activity in a video, we propose the application of the Convolutional Drift

Network (CDN), as shown in Figures. 7.2 [8]. CDNs greatly minimize training

costs in a video by combining deep learning for visual feature extraction and Echo

State Networks [203] for efficient temporal feature extraction. In a CDN, features

extracted from a pre-trained deep Convolutional Neural Network are pushed into

the ESN reservoir, where they propagate naturally, or drift through a fading mem-

ory representation provided by randomly initialized recurrent connections. They

provide near state-of-the-art performance on challenging video analysis tasks and

carry only minimal training complexity (one feed-forward neural network layer).

In addition, CDN training does not require costly back-propagation through time

algorithms common to other recurrent neural networks.

To evaluate the performance of low-precision CDN model training and in-

CHAPTER 7. CASE STUDY 120

Figure 7.2: High level overview of the CDN architecture. Each frame n = 1, . . . ,τ
from video v are passed through the CNN feature extractor to produce u(n) = u(v)

n .
All ESN responses U(v) are collected (i.e.

U(v) = {u(v)
1 , . . . ,u(v)

τ }= x(n) for n = 1, . . . ,τ). Temporal averaging is performed on
U(v). Finally the averaged responses are passed into the SoftMax layer for video

activity class prediction y(v) [8].

ference, the Avenue dataset is selected [204]. The specification of this dataset

is summarized in Table 7.1. The training accuracy using the floating point in

this dataset for Resnet-18 and Resnet-50 models on CDN is 65+0.43% and

68±0.35%,respectively.

Table 7.1: Specifications of the anomaly detection video dataset

Dataset # of videos Average # of frames Dataset length Example anomalies

Avenue [204] 37 839 30 minutes Throwing objects, loitering

7.1.2 Edge device constraints

To realize which edge-device characteristics are suitable for this task, a comprehen-

sive list of systems is summarized in Table 7.2. It is important to note that all these

CHAPTER 7. CASE STUDY 121

systems have a built-in camera to capture the video at 30 frames per second (fps).

The aim of this study is to select the optimal numerical format to perform

abnormal activity detection on surveillance video with a constraint requirement of

the edge devices mentioned in Tables 7.2 and 7.3).

Table 7.2: Specifications of the SOC with edge co-processors

SOC CPU co-processor SDRAM DRAM Throughput Power Consumption

NVIDIA Jetson Nano 4 cores A57 128 cores Maxwell GPU 4 GB 8 GB 472 GFLOPS 6 W
Intel Neural NCS2 4 cores A53 Myrid X VPU 1 GB 8 GB 1 TFLOPS 4.5 W

Google Coral 4 cores A53 Edge TPU 1 GB 8 GB 2 TFLOPS 4.8 W
Snapdragon 855 8 cores A55 & A76 Adreno 640 GPU 6 GB 16 GB 727 GFLOPS 5 W

HiSilicon Kirin 980 8 cores A76 & A55 2 cores NPU 8 GB 16 GB - 5 W
MediaTek Helio P70 8 cores A53 & A73 NPU 6 GB 16 GB 560 GFLOPS 5 W
Exynos 9820 Octa 8 cores M4 & A76 & A55 Adreno 640 GPU 6 GB 16 GB 727 GFLOPS 5 W

Table 7.3: Specifications of the Embedded Microcontoller chip

ARM Mbed Platform Processor SDRAM DRAM Throughput Power Consumption

MBED LPC11U24 Cortex-M0 8 KB 32 KB 48 MCPS 0.1 W
NORDIC nRF51-DK Cortex-M0 32 KB 256 KB 16 MCPS 0.25 W

Mbed LPC1768 Cortex-M3 32 KB 512 KB 96 MCPS 0.5 W
Nucleo F103RB Cortex-M3 20 KB 120 KB 72 MCPS 0.5 W
Nucleo L476RG Cortex-M4 128 KB 1 MB 80 MCPS 0.7 W
Nucleo F411RE Cortex-M4 128 KB 512 KB 100 MCPS 0.6 W

FRDM-K64F Cortex-M4 256 KB 1 MB 120 MCPS 0.6 W
Nucleo F746ZG Cortex-M7 320 KB 1 MB 216 MCPS 1.5 W

7.2 Tapered precision numerical format’s performance

The findings show that the asymmetric low-precision generalized posit outperforms

other numerical formats in terms of accuracy. In particular, it is possible to perform

abnormal detection with an 8-bit generalized posit and less than 1% accuracy

CHAPTER 7. CASE STUDY 122

Table 7.4: The DNN inference performance using the generalized posit, posit, and
asymmetric generalized posit formats on CIFAR-10.

Dataset Bit Precision Posit Generalized Posit Asymmetric Generalized Posit

RESNET-18 ResNet-50 RESNET-18 ResNet-50 RESNET-18 ResNet-50

Avenue 8-bit 61.32±0.21% 64.71±0.44% 63.79±0.16% 65.49+0.24% 64.88±0.36% 67.81+0.32%

degradation as compared to the performance of the same network with a 32-bit

floating point. Moreover, this finding emphasizes that the asymmetric generalized

posit is a good candidate for applications and models in which a trade-off between

performance and hardware complexity is desired.

7.3 Summary

In this chapter, the efficacy of the proposed Cheetah-V2 framework is evaluated for

real anomaly detection on videos captured by surveillance cameras. We summa-

rized the different edge devices that can be used for this task and also described the

high-level deep learning flow to perform this task. The Convolution Drift Network

(CDN) is combined with Echo State Networks to minimize the training cost for

edge devices. We found that among different low-precision numerical formats,

the asymmetric generalized posit is the appropriate numerical format for this case

study.

123

8. Conclusion and Future work

This research addresses the challenges of choosing an appropriate numerical format

that enable the development and deployment of deep learning models on edge

devices. The first challenge is to reduce the quantization error and improve the

performance of DNN inference and training. This challenge is addressed by

introducing low-precision deep learning frameworks (e.g., PositNN, and Cheetah)

with posit numerical formats. Through these frameworks, we demonstrate that the

posit numerical format has a high affinity for deep neural network inference at 5-

to 8-bit precision as compared to fixed-point and floating point. In addition, the

posit EMAC hardware is competitive with the floating point counterpart in terms of

resource utilization and EDP. Moreover, the posit EMAC hardware offers a higher

maximum operating frequency over that of floating point.

A limitation of working with posits with fewer than 8-bits is that it cannot ac-

commodate the variability observed in inter- and intra-layer parameter distributions

of DNNs. This can lead to a catastrophic drop in accuracy for six and five-bit width

models. We addressed this by proposing novel adaptive quantization algorithms

and low-precision frameworks (e.g, ALPS and TENT) that adjust the distribution

CHAPTER 8. CONCLUSION AND FUTURE WORK 124

and dynamic range of tapered-precision numerical formats (e.g, generalized posits

and tapered fixed-point) and match it with that of the DNN parameters for each

layer. This adaptation of the numerical format configurations to best represent

the layerwise dynamic range and distribution of parameters is performed with

different approaches. For example, through the ALPS framework, we proposed a

numerical analysis of the quantization error to discover the optimal generalized

posit configurations. To accomplish this, we defined a novel SQNR formulation

for generalized posits that uses a metric to select an appropriate generalized posit

configuration. This adaptive quantization approach yields an improvement in the

average classification accuracy during inference by 14% compared to the posits.

The performance of DNN inference and training is improved by representing

DNN parameters in tapered-precision numerical format. However, identifying the

optimal tapered-precision numerical format to achieve the best trade-offs between

performance accuracy and hardware complexity introduces a large design space to

explore for numerical format and bit-precision. Moreover, the hardware constraints

are different across edge devices. We address this challenge using an automatic

hardware-software co-design framework (Cheetah-V2). This framework identifies

an appropriate numerical format based on the custom user-defined constraints

through integer linear programming optimization. This framework can also be used

by practitioners and startups as an Early-DSE (early stage design space exploration)

framework that identifies the numerical format specification to reduce the cost of

the deep learning accelerator’s design.

The efficacy of the tapered-precision numerical format is demonstrated on

CHAPTER 8. CONCLUSION AND FUTURE WORK 125

different benchmarks such as image classification and natural language processing.

The generalized posit numerical format outperformed the floating point, fixed-

point, posit, and tapered fixed-point in terms of accuracy while using fewer bits

to represent weights and activations. When it comes to hardware complexity and

performance trade-off, identifying the optimal numerical format depends on the

specific edge device constraints that can be realized with the proposed Cheetah-V2

framework. Furthermore, the benchmark results suggest that the tapered precision

numerical format is more appropriate for neural networks such as CNNs with a

weight distribution range between −8 and 8. However, this is not particularly

suitable for transformer models, where the weight values can potentially exceed 8.

Future work may involve further exploration of the following:

In the process of deploying a model on edge devices to perform DNN inference,

in some cases even employing the optimal numerical format is not enough to meet

the edge device resource constraints. Therefore, as a future study, the tapered-

precision numerical formats need to be combined with other hardware/software

optimizations such as pruning [205] and processing in memory [206] for deep

learning inference and training.

Recent studies have shown that compressed networks through various ap-

proaches such as low-precision numerical formats are significantly vulnerable to

adversarial attacks [207]. Therefore, in future work, the development of theory and

algorithms that address the high compute and memory demands of deep learning

models (through model compression approaches) is necessary. Ensuring the per-

formance and robustness of the deep learning model against adversarial attacks

CHAPTER 8. CONCLUSION AND FUTURE WORK 126

during deployment is also crucial to pave a path toward secure and efficient AI

services at the edge.

The current generation of intelligent machines is reaching an astonishing level

of performance (comparable to that of the human brain) on a wide range of chal-

lenging tasks such as image classification and natural language processing [78].

However, these intelligent machines have not demonstrated the same level of profi-

ciency in lifelong learning. Lifelong learning involves the ability to continuously

learn new tasks without forgetting previous ones, reusing the learned knowledge,

exploiting similarities between multiple tasks, tolerating noise, and performing

tasks in a resource-efficient way [208]. Designing an intelligent machine with

lifelong learning capabilities remains a major challenge, and addressing this chal-

lenge requires a holistic approach with cross-layer optimization. Despite numerous

optimizations for lifelong learning [209, 210], only a few studies focus on the

low-precision numerical format for lifelong learning [211, 212]. Therefore, the

tapered-precision numerical format could be an appropriate numerical format for

lifelong learning.

In the future, the existence of an AI accelerator with posit arithmetic support

will enable us to study the full-scale implications of deployment-phase deep learn-

ing. This would allow us to go beyond synthesizing only the EMAC operation on

hardware and combine the results with emulation frameworks, such as SCALE-Sim,

to measure hardware metrics for DNN models [183].

Finally, adding a new low-precision numerical format to deep learning libraries

is a tedious and non-trivial task [213]. This thesis offers different frameworks to

CHAPTER 8. CONCLUSION AND FUTURE WORK 127

utilize tapered-precision numerical formats for deep learning. However, a range of

opportunities are available to improve the portability and user-friendly nature of

these frameworks.

128

A. Appendix

A.1 Algorithms

Algorithm 1 posit decoder for converting an n-bit input with es exponent bits into
a real value.
Input: posit (n,es)
Output: real value

1: procedure DECODE(in) . Data extraction of input
2: nzero← |in . ‘1’ if in is nonzero
3: sign← in[n−1] . Extract sign
4: twos← ({n−1{sign}}⊕in[n−2 : 0])+sign

5: rc← twos[n−2] . Regime check
6: inv←{n−1{rc}}⊕twos . Invert 2’s

Extract regime value
7: zc← LZD(inv)
8: reg← rc ? zc−1 : −zc

Extract exponent and fraction
9: tmp← twos[n−4 : 0]� (zc−1)

10: exp← tmp[n−2 : n−es−1]
11: frac←{nzero,tmp[n−es−2 : 0]}
12: return (−1)sign×22

es×reg×2exp×
(
1+ frac

2fs

)
13: end procedure

APPENDIX A. APPENDIX 129

Algorithm 2 posit encoder for converting a real value to n-bit outputs with es
exponent bits.
Input: real value
Output: posit (n,es)

1: procedure ENCODE(in) . Data extraction of input
2: nzero← |in . ‘1’ if in is nonzero
3: sign← in> 0 ? 0 : 1
4: Abs← Abs(in)

Encode the regime bit
5: if in > 1 then
6: RunLength← 1

7: while in > 22es
& RunLength > n−1 do

8: in← in/22
es

9: RunLength← RunLength+1
10: end while
11: reg← RunLength−1 . set Regime bit
12: else
13: RunLength← 0

14: while in < 1 & RunLength > n−1 do
15: in← in×22es

16: RunLength← RunLength+1
17: end while
18: reg←−1×RunLength . set Regime bit
19: end if

Encode the exponent bit
20: e← 2es−1

21: while e > 0.5 do
22: if in < 2e then
23: in← in/2e

24: exp← exp+1
25: end if
26: e← e/2
27: end while

Encode the fraction
28: frac← RNE(in−1) . Round-Tie-Even
29: return sign, reg, exp, frac
30: end procedure

APPENDIX A. APPENDIX 130

Algorithm 3 Generalized posit decoder for converting an n-bit input with es
exponent bits, rs with dlog2(n−1)e bit-width, and eb with 3 bit-width, into a real
value.
Input: Generalized posit (n,es,rs,eb)
Output: real value

1: procedure DECODE(in) . Data extraction of input
2: nzero← |in . ‘1’ if in is nonzero
3: sign← in[n−1] . Extract sign
4: twos← ({n−1{sign}}⊕in[n−2 : 0])+sign

5: rc← twos[n−2] . Regime check
6: inv←{n−1{rc}}⊕twos . Invert 2’s

Extract regime value with rs
7: zc← LZD(inv[n−1 : n−1−rs])
8: reg← rc ? zc−1 : −zc

Extract exponent and fraction
9: tmp← twos[n−2 : 0]� (zc+1)

10: exp← tmp[n−2 : n−es−1]
11: frac←{nzero,tmp[n−es−2 : 0]}
12: return (−1)sign×2(2

es×reg)+exp+eb×
(
1+ frac

2fs

)
13: end procedure

APPENDIX A. APPENDIX 131

Algorithm 4 Generalized posit encoder for converting a real value to n-bit outputs
with es exponent bits, rs with dlog2(n−1)e bit-width, and eb with 3 bit-width.
Input: real value
Output: Generalized posit (n,es,rs,eb)

1: procedure ENCODE(in) . Data extraction of input
2: nzero← |in . ‘1’ if in is nonzero
3: sign← in> 0 ? 0 : 1
4: Abs← Abs(in)

Encode the regime bit
5: if in > 1 then
6: RunLength← 1

7: while in > 22es
& RunLength > rs do

8: in← in/22
es

9: RunLength← RunLength+1
10: end while
11: reg← RunLength−1 . set Regime bit
12: else
13: RunLength← 0

14: while in < 1 & RunLength > rs do
15: in← in×22es

16: RunLength← RunLength+1
17: end while
18: reg←−1×RunLength . set Regime bit
19: end if

Encode the exponent bit
20: e← 2es−1

21: while e > 0.5 do
22: if in < 2e then
23: in← in/2e

24: exp← exp+1
25: end if
26: e← e/2
27: end while

Encode the fraction
28: frac← RNE(in−1) . Round-Tie-Even
29: return sign, reg, exp, frac
30: end procedure

APPENDIX A. APPENDIX 132

Algorithm 5 Tapered fixed-point decoder for converting an n-bit input with IS
with dlog2(n)e bit-width, and SC with 3 bit-width into a real value.
Input: Tapered fixed point (n, IS,SC)
Output: real value

1: procedure DECODE(in) . Data extraction of input
2: nzero← |in . ‘1’ if in is nonzero
3: sign← in[n−1] . Extract sign
4: twos← ({n−1{sign}}⊕in[n−2 : 0])+sign

5: inv←{n−1{sign}}⊕twos . Invert 2’s

Extract Integer value with IS
6: zc← LZD(inv[n−1 : n−1− IS])+1
7: Int← sign ? zc−1 : −zc

Extract fraction
8: tmp← twos[n−2 : 0]� (zc+1)
9: frac←{nzero,tmp[n−2 : 0]}

10: return (Int+
(
frac
2fs

)
)×2SC

11: end procedure

APPENDIX A. APPENDIX 133

Algorithm 6 Tapered fixed point encoder for converting a real value to n-bit outputs
with IS with dlog2(n)e bit-width, and SC with 3 bit-width into a real value.
Input: real value
Output: Tapered fixed point (n,IS,SC)

1: procedure ENCODE(in) . Data extraction of input
2: nzero← |in . ‘1’ if in is nonzero
3: sign← in> 0 ? 0 : 1

Encode the integer bit
4: RunLength← 1

5: while 0 > in > 1 & RunLength > IS do
6: in← in+(−1)sign
7: RunLength← RunLength+1
8: end while
9: Int← (−1)sign×RunLength . set Regime bit

Encode the fraction
10: frac← RNE(in) . Round-Tie-Even
11: return sign, Int, frac
12: end procedure

APPENDIX A. APPENDIX 134

Algorithm 7 Compute the maximum regime bit-width (rs) and scaling factor (sc)
of generalized posit for DNN parameters
Input: layers weights (Wl), layers activations (Al)
Output: rswl ,rsAl ,scwl ,scAl generalized posit parameters

1: procedure RS-SC SELECTION (Wl,Al)
2: wlog← RNE(log2(|wl|),2)
3: Alog← RNE(log2(|Al|),2)
4: wmax←max(wlog)
5: Amax←max(Alog)
6: wmin←min(wlog)
7: Amin←min(Alog)

Compute the scwl ,scAl

8: scA← |Mean(Wlog)|
9: scW← |Mean(Alog)|

Compute the rswl ,rsAl

10: for k← n−1 to 1 do
11: rsmax,rs

′
max,rsmin,rs

′
min← n−1

12: GPlog← RNE(log2(|GP(n,k,scw)|),2)
13: GP′log← RNE(log2(|GP(n,k,sca)|),2)
14: GPmax←max(GPlog)
15: GP′max←max(GP′log)
16: GPmin←min(GPlog)
17: GP′min←min(GP′log)
18: if GPmax > wmax then
19: rsmax← k

20: end if
21: if GP′max > Amax then
22: rs′max← k

23: end if
24: if GPmin < wmin then
25: rsmin← k

26: end if
27: if GP′min < Amin then
28: rs′min← k

29: end if
30: end for
31: rsw←max(rsmax,rsmin)
32: rsA←max(rs′max,rs

′
min)

33: end procedure

APPENDIX A. APPENDIX 135

Algorithm 8 Compute the maximum integer bit width (IS) and scaling factor (SC)
of tapered fixed-point for DNN parameters
Input: layers weights (Wl), layers activations (Al)
Output: ISwl ,ISAl ,SCwl tapered fixed-point parameters

1: procedure IS, SC SELECTION (Wl,Al)
2: wamax←max(|wl|)
3: Aamax←max(|Al|)

Compute the ISwl , ISAl

4: if bWamaxc+1≤ nbit then
5: ISw← bWamaxc+1

6: else
7: ISw← nbit
8: end if
9: if bAamaxc+1≤ nbit then
10: ISA← bAamaxc+1

11: else
12: ISA← nbit
13: end if

Compute the SCwl

14: SCwl ← 0

15: if Wamax < 0.5 then
16: SCW← blog2(Wamax)c+1

17: end if
18: return ISwl,ISAl,SCwl
19: end procedure

APPENDIX A. APPENDIX 136

Algorithm 9 Posit EMAC operations for vector elements each with n bits, es
exponent bits.
Input: layers quantized weights (Wlq), layers quantized activations (Alq),
Output: R as a dot product result

1: procedure GENERALIZED POSIT EMAC (Wlq,Alq)
2: signw,regw,expw,fracw← DECODE(Wlq)
3: signa,rega,expa,fraca← DECODE(Alq)

Gather total scale factors
4: sfw← 2es×regw +expw
5: sfa← 2es×rega +expa

Multiplication
6: signmult← signw⊕signa
7: fracmult← fracw×fraca
8: normfracmult← fracmult� fracmult[MSB]
9: sfmult← sfw+sfa+fracmult[MSB]

10: pmult← (−1)sign×2sfmult× (1+fracmult)

Accumulation
11: fracsmult← signmult ? −fracmult : fracmult
12: sfbiased← sfmult+2es+1× (n−2)
13: fracsfixed← fracsmult� sfbiased
14: sumquire← fracsfixed+sumquire

Rounding & Encode
15: R← ROUNDING & ENCODING(sumquire)
16: return R

17: end procedure

APPENDIX A. APPENDIX 137

Algorithm 10 Generalized posit EMAC operations for vector elements each with
n bits, es exponent bits, rs with blog2(n−1)c bit-width, sc with 3 bit-width.
Input: layers quantized weights (Wlq), layers quantized activations (Alq),
Output: R as a dot product result

1: procedure GENERALIZED POSIT DP (Wlq,Alq)
2: signw,regw,expw,fracw← DECODE(Wlq,rsw)
3: signa,rega,expa,fraca← DECODE(Alq,rsa)

Gather total scale factors
4: sfw← 2es×regw +expw+scw
5: sfa← 2es×rega +expa+sca

Multiplication
6: signmult← signw⊕signa
7: fracmult← fracw×fraca
8: normfracmult← fracmult� fracmult[MSB]
9: sfmult← sfw+sfa+fracmult[MSB]

10: pmult← (−1)sign×2sfmult× (1+fracmult)

Accumulation
11: fracsmult← signmult ? −fracmult : fracmult
12: sfbiased← sfmult+2es+1× (n−2)
13: fracsfixed← fracsmult� sfbiased
14: sumquire← fracsfixed+sumquire

Rounding & Encode
15: R← ROUNDING & ENCODING(sumquire)
16: return R

17: end procedure

APPENDIX A. APPENDIX 138

Algorithm 11 Tapered fixed-point EMAC operations for n-bit inputs each with
dlogne bits for RS, 3 bits for SC.
Input: layers quantized weights (Wlq), layers quantized activations (Alq)
Output: R as Dot Product result

1: procedure TAPERED FIXED-POINT DP (Wlq,Alq)
2: signw,Intw,fracw← DECODE(Wlq, ISw)
3: signa,Inta,fraca← DECODE(Alq, ISa)

Multiplication
4: signmult← signw⊕signa
5: Valuew← (Intw+fracw)� fracbitw + |SCw|
6: Valuea← (Inta+fraca)� fracbita
7: pmult←{sign,Valuew×Valuea}

Accumulation & Normalize
8: sumquire← pmul+sumquire . Accumulate
9: sumnquire← sumquire� fraca+fracw+ |SCw|

Rounding & Encode
10: result← ROUNDING & ENCODING(sumnquire)
11: return result

12: end procedure

APPENDIX A. APPENDIX 139

Algorithm 12 Compute the maximum regime bit width (rs) and scaling factor (sc)
of generalized posit for reference parameter (Wr)
Input: reference layers weights (Wr)
Output: rswr ,rsAr generalized posit parameters

1: procedure rs, sc SELECTION (Wr)
2: scr0 ← 0

3: rsr0 ← n−1

4: Wamax←max(|Wr|)
5: KW← Kurt(Wr,−Wamax,Wamax)
6: MW← mean(Wr)

Compute the rswr

7: KGP0 ← Kurt(GP(n,es,rsr0,scw0),−Wamax,Wamax)
8: K_diffw0← |Kw−KGP0|
9: for i← 3 to n−2 do

10: KGPi ← Kurt(GP(n,es,i,scwr),−Wamax,Wamax)
11: K_diffwi← |Kw−KGPi|
12: if K_diffwi < K_diffw0 then
13: rswr ← i

14: K_diffw0← K_diffwi
15: end if
16: end for

Compute the scwr

17: MGP0 ← mean(GP(n,es,rsrw,scr0))
18: M_diffW0← |MW−MGP0|
19: for i← 1 to 3 do
20: MGPi ← mean(GP(n,es,rsr0,i))
21: M_diffWi← |MW−MGPi|
22: if M_diffAi < M_diffW0 then
23: scWr ←−i
24: M_diffW0← M_diffWi
25: end if
26: end for
27: end procedure

APPENDIX A. APPENDIX 140

Algorithm 13 asymmetric generalized posit dot product operations for vector
elements each with n bits, es exponent bits, rsd with blog2(n−1)c bit-width, rsu
with blog2(n−1)c bit-width„ sc with 3 bit-width.
Input: layers quantized weights (Wlq), layers quantized activations (Alq),
Output: R as a dot product result

1: procedure GENERALIZED POSIT DP (Wlq,Alq)
2: signw,regw,expw,fracw← DECODE(Wlq,rsuw ,rsdw)
3: signa,rega,expa,fraca← DECODE(Alq,rsua,rsdw)

Gather total scale factors
4: sfw← 2es×regw +expw+scw
5: sfa← 2es×rega +expa+sca

Multiplication
6: signmult← signw⊕signa
7: fracmult← fracw×fraca
8: normfracmult← fracmult� fracmult[MSB]
9: sfmult← sfw+sfa+fracmult[MSB]

10: pmult← (−1)sign×2sfmult× (1+fracmult)

Accumulation
11: fracsmult← signmult ? −fracmult : fracmult
12: sfbiased← sfmult+2es+1× (n−2)
13: fracsfixed← fracsmult� sfbiased
14: sumquire← fracsfixed+sumquire

Rounding & Encode
15: R← ROUNDING & ENCODING(sumquire)
16: return R

17: end procedure

APPENDIX A. APPENDIX 141

A.2 Derivation of Equation 4.11

The quantization error of the generalized posit numerical format εp(xi,x′i) = xi−x′i

is the difference between the 32-bit floats xi input and x′i as a q-bit generalized

posit quantized output. This quantization error is approximated by fixed-point

quantizer, compressor, and expander functions. Therefore, the quantization error

of generalized posit is calculated in (A.1) where εfx(xi,x′i) presents the fixed-point

quantizer error, y′ is the input of the expander function, x′ is the output of the

expander function computed in (A.2), ∆ is quantization step size and γ is a real

number. Note that to derive the Equation 4.11, we follow [168].

εp(xi,x′i) = εfx(xi,x′i)
dx′

dy′
(A.1)

x′ =
1
θ

sinh
(
γy′
)
=

1
2θ

(
e(γy′)− e−(γy′)

)
(A.2)

By obtaining the derivative (dx′
dy′) using (A.2) and replace result in (A.1), we have

(A.3)

εp(xi,x′i) = εfx(xi,x′i)
γ

2θ

(
e(γy′)+ e−(γy′)

)
(A.3)

By using the approximation

(
e(γy′)+e−(γy′)

)
2θ

≈
(

e(γ|y
′|)−e−(γ|y

′|)
)

2θ
the εp(xi,x′i) is

correlated to x′ as (A.4)

APPENDIX A. APPENDIX 142

εp(xi,x′i) = εfx(xi,x′i)
γ

2θ

(
e(γy′)+ e−(γy′)

)
≈ εfx(xi,x′i)γ

∣∣x′∣∣ (A.4)

The generalized posit quantization error can be expressed in terms of x rather

than x′ as in (A.5) where the generalized posit quantization error εp(xi,x′i) is much

smaller than the inputs (and underflow and overflow does not occur).

εp(xi,x′i)≈ εfx(xi,x′i)γ|xi + εp(xi,x′i)|

≈ εfx(xi,x′i)γ|xi|
(A.5)

From (A.5), the generalized posit SQNR can be expressed as (A.6) and (A.7).

∆2
GP = u2 and ε2

fx(xi,x′i) =
u2

12 where u is the smallest value that can be represented

by the generalized posit numerical format.

SQNRGP =
E{x2}

E{ε2
p(xi,x′i)}

≈ 12
γ2 × (∆−1

GP)
2 (A.6)

SQNRGP(dB)≈ (10.79−20log(γ))+20log(∆−1
GP) (A.7)

∆GP =


2−(2

esrs−2es−(n−rs−1))+sc, if (n− rs≤ es+1)

2−(2
esrs−es+(n−rs−1))+sc, otherwise

(A.8)

APPENDIX A. APPENDIX 143

Table A.1: The DNN inference performance using the tapered-precision
numerical formats on CIFAR-10 dataset (P: posit, FP: floating point, FX:

fixed-point, GP: generalized posit, TFX: Tapered fixed-point).

Format
CIFAR-10 (ResNet-8) CIFAR-10 (ResNet-18)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 85.31±0.19% 77.28±0.22% 53.78±0.28% 26.19±0.32% 91.03±0.18% 90.04±0.17% 78.00±0.27% 19.91±0.36%
FP 82.10±0.24% 69.45±0.19% 11.28±0.23% 10.79±0.35% 91.05±0.21% 88.66±0.25% 58.31±0.20% 10.02±0.32%
FX 37.00±0.33% 21.80±0.30% 15.97±0.28% 12.90±0.35% 54.20±0.31% 24.05±0.29% 12.96±0.35% 11.11±0.40%
GP 85.81±0.21% 83.90±0.17% 76.36±0.25% 42.72±0.30% 91.31±0.17% 90.64±0.20% 86.52±0.23% 52.23±0.30%

TFX 85.24±0.22% 82.10±0.26% 38.60±0.27% 17.72±0.33% 81.66±0.24% 75.90±0.23% 46.79±0.26% 23.44±0.31%

32-bit FP 86.26±0.30% 91.54±0.23%

Format
CIFAR-10 (ResNet-50) CIFAR-10 (EfficientNet-B0)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 91.15±0.25% 88.66±0.27% 58.31±0.31% 10.02±0.36% 96.89±0.30% 91.27±0.22% 60.09±0.34% 10.00±0.40%
FP 89.70±0.30% 74.73±0.28% 27.63±0.37% 10.00±0.45% 94.61±0.32% 78.22±0.26% 25.96±0.39% 10.05±0.46%
FX 12.03±0.32% 10.44±0.31% 10.28±0.35% 10.01±0.42% 17.65±0.29% 14.36±0.27% 10.54±0.36% 10.03±0.45%
GP 91.75±0.22% 90.62±0.20% 76.00±0.25% 51.65±0.29% 97.37±0.28% 92.91±0.25% 70.64±0.33% 53.66±0.40%

TFX 80.52±0.28% 74.32±0.29% 45.33±0.32% 22.56±0.41% 87.45±0.30% 79.23±0.28% 50.61±0.35% 28.83±0.42%

32-bit FP 92.10±0.24% 98.00±0.36%

Table A.2: The DNN inference performance using the tapered-precision
numerical formats on Speech commands v2, Visual Wake Word, and ImageNet
datasets (P: posit, FP: floating point, FX: fixed-point, GP: generalized posit, TFX:

Tapered fixed-point).

Format
Keyword Spotting Visual Wake Word

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 91.97±0.35% 85.33±0.40% 48.62±0.46% 23.79±0.49% 83.02±0.38% 80.58±0.36% 74.53±0.45% 66.28±0.51%
FP 86.45±0.40% 46.29±0.42% 13.72±0.48% 8.50±0.53% 80.02±0.41% 68.25±0.40% 59.95±0.49% 59.37±0.52%
FX 12.70±0.38% 8.87±0.43% 8.39±0.50% 8.22±0.58% 76.43±0.37% 72.06±0.41% 61.86±0.52% 60.71±0.60%
GP 92.10±0.32% 91.39±0.39% 88.14±0.45% 49.62±0.48% 83.02±0.35% 82.14±0.44% 76.72±0.45% 69.97±0.49%

TFX 79.20±0.37% 43.75±0.35% 8.52±0.44% 8.43±0.52% 82.97±0.34% 81.92±0.40% 76.00±0.48% 66.76±0.55%

32-bit FP 92.15±0.41% 82.72±0.47%

Format
ImageNet (ResNet-18) ImageNet (ResNet-50)

8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit

P 66.23±0.55% 61.95±0.58% 46.41±0.59% 3.66±0.63% 73.61±0.65% 69.10±0.70% 53.46±0.73% 0.10±0.75%
FP 66.64±0.61% 50.85±0.64% 25.31±0.60% 4.63±0.65% 70.71±0.66% 55.34±0.63% 24.95±0.70% 0.11±0.78%
FX 9.46±0.65% 7.31±0.67% 4.23±0.73% 0.10±0.79% 10.48±0.72% 8.17±0.68% 5.49±0.67% 0.10±0.85%
GP 67.72±0.54% 66.55±0.57% 52.37±0.63% 40.93±0.62% 74.11±0.64% 72.46±0.68% 63.76±0.70% 46.22±0.72%

TFX 56.11±0.29% 51.72±0.59% 32.84±0.64% 15.31±0.71% 63.86±0.75% 56.88±0.70% 34.93±0.64% 11.51±0.69%

32-bit FP 68.10±0.52% 74.60±0.68%

144

Bibliography

[1] R. J. Wang, X. Li, and C. X. Ling, “Pelee: A real-time object detection
system on mobile devices,” in Advances in Neural Information Processing
Systems, 2018, pp. 1963–1972.

[2] C. Bailas, M. Marsden, D. Zhang, N. E. O’Connor, and S. Little, “Perfor-
mance of video processing at the edge for crowd-monitoring applications,”
in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE,
2018, pp. 482–487.

[3] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang et al., “Streaming end-to-end speech
recognition for mobile devices,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 6381–6385.

[4] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” CoRR, vol. abs/1812.03443, 2018.
[Online]. Available: http://arxiv.org/abs/1812.03443

[5] S. Kodali, P. Hansen, N. Mulholland, P. Whatmough, D. Brooks, and G.-Y.
Wei, “Applications of deep neural networks for ultra low power iot,” in 2017
IEEE International Conference on Computer Design (ICCD). IEEE, 2017,
pp. 589–592.

[6] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game:
Posit arithmetic,” Supercomputing Frontiers and Innovations, vol. 4, no. 2,
pp. 71–86, 2017.

http://arxiv.org/abs/1812.03443

BIBLIOGRAPHY 145

[7] A. Rajagopal, D. Vink, S. Venieris, and C.-S. Bouganis, “Multi-precision
policy enforced training (muppet): A precision-switching strategy for quan-
tised fixed-point training of cnns,” in International Conference on Machine
Learning. PMLR, 2020, pp. 7943–7952.

[8] D. Graham, S. H. F. Langroudi, C. Kanan, and D. Kudithipudi, “Convolu-
tional drift networks for video classification,” in 2017 IEEE International
Conference on Rebooting Computing (ICRC). IEEE, 2017, pp. 1–8.

[9] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin,
A. Žídek, A. W. Nelson, A. Bridgland et al., “Improved protein structure
prediction using potentials from deep learning,” Nature, vol. 577, no. 7792,
pp. 706–710, 2020.

[10] M. Haque, S. Marwaha, C. K. Deb, S. Nigam, A. Arora, K. S. Hooda, P. L.
Soujanya, S. K. Aggarwal, B. Lall, M. Kumar et al., “Deep learning-based
approach for identification of diseases of maize crop,” Scientific reports,
vol. 12, no. 1, pp. 1–14, 2022.

[11] D. Tuia, B. Kellenberger, S. Beery, B. R. Costelloe, S. Zuffi, B. Risse,
A. Mathis, M. W. Mathis, F. van Langevelde, T. Burghardt et al., “Perspec-
tives in machine learning for wildlife conservation,” Nature communications,
vol. 13, no. 1, pp. 1–15, 2022.

[12] M. Taddeo, T. McCutcheon, and L. Floridi, “Trusting artificial intelligence
in cybersecurity is a double-edged sword,” Nature Machine Intelligence,
vol. 1, no. 12, pp. 557–560, 2019.

[13] A. S. Chakravarthy, R. Roy, and P. Ravirathinam, “Mrscatt: A spatio-channel
attention-guided network for mars rover image classification,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2021, pp. 1961–1970.

[14] R. Evans et al., “De novo structure prediction with deep-learning based
scoring,” in In Thirteenth Critical Assessment of Techniques for Protein
Structure Prediction, 2018.

[15] I. P. Waldmann and C. A. Griffith, “Mapping saturn using deep learning,”
Nature Astronomy, p. 1, 2019.

BIBLIOGRAPHY 146

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[17] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation
system: Bridging the gap between human and machine translation,” arXiv
preprint arXiv:1609.08144, 2016.

[18] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311, 2022.

[19] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos,
“Compute trends across three eras of machine learning,” arXiv preprint
arXiv:2202.05924, 2022.

[20] C. Li, “Openai’s gpt-3 language model: A technical overview,”
https://lambdalabs.com/blog/demystifying-gpt-3/, 2020.

[21] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild,
D. So, M. Texier, and J. Dean, “Carbon emissions and large neural network
training,” arXiv preprint arXiv:2104.10350, 2021.

[22] “2021 electricity rates by state,” https://standards.ieee.org/project/3109.html.

[23] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. PMLR,
2019, pp. 6105–6114.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115,
no. 3, pp. 211–252, 2015.

[25] A. Wongpanich, H. Pham, J. Demmel, M. Tan, Q. Le, Y. You, and S. Kumar,
“Training efficientnets at supercomputer scale: 83% imagenet top-1 accuracy
in one hour,” in 2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2021, pp. 947–950.

[26] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training. arxiv
2021,” arXiv preprint arXiv:2104.00298.

BIBLIOGRAPHY 147

[27] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions on
Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[28] “Global edge ai hardware market (2022-2027) by component, device, power
consumption, function, end user, geography, competitive analysis, and the
impact of covid-19 with ansoff analysis,” Research and Market, p. 1, 2022.

[29] A. Kaul, “Mapping saturn using deep learning,” NVIDIA’s Inference Push
for AI, 2018.

[30] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE/CVF international conference on computer vision,
2019, pp. 1314–1324.

[31] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.
Le, “Mnasnet: Platform-aware neural architecture search for mobile,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2820–2828.

[32] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “Micronets: Neural
network architectures for deploying tinyml applications on commodity mi-
crocontrollers,” Proceedings of Machine Learning and Systems, vol. 3, pp.
517–532, 2021.

[33] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient patch-
based inference for tiny deep learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 2346–2358, 2021.

[34] J. H. Shin, A. Shafiee, A. Pedram, H. Abdel-Aziz, L. Li, and J. Hassoun,
“Griffin: Rethinking sparse optimization for deep learning architectures,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 861–875.

[35] B. Zhou, Y. Sun, D. Bau, and A. Torralba, “Revisiting the importance of
individual units in cnns via ablation,” arXiv preprint arXiv:1806.02891,
2018.

BIBLIOGRAPHY 148

[36] W. Park, D. Jin, and C.-S. Kim, “Eigencontours: Novel contour descriptors
based on low-rank approximation,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2022, pp. 2667–2675.

[37] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[38] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, X. Cui, W. Zhang,
K. Gopalakrishnan et al., “Hybrid 8-bit floating point (hfp8) training and
inference for deep neural networks,” 2019.

[39] R. Banner, Y. Nahshan, and D. Soudry, “Post training 4-bit quantization of
convolutional networks for rapid-deployment,” in Proceedings of the 33rd
International Conference on Neural Information Processing Systems, 2019,
pp. 7950–7958.

[40] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, “Integer quantiza-
tion for deep learning inference: Principles and empirical evaluation,” arXiv
preprint arXiv:2004.09602, 2020.

[41] B. Darvish Rouhani, D. Lo, R. Zhao, M. Liu, J. Fowers, K. Ovtcharov,
A. Vinogradsky, S. Massengill, L. Yang, R. Bittner et al., “Pushing the
limits of narrow precision inferencing at cloud scale with microsoft floating
point,” Advances in Neural Information Processing Systems, vol. 33, pp.
10 271–10 281, 2020.

[42] V. Popescu, A. Venigalla, D. Wu, and R. Schreiber, “Representation range
needs for 16-bit neural network training,” arXiv preprint arXiv:2103.15940,
2021.

[43] Z. Yao, Z. Dong, Z. Zheng, A. Gholami, J. Yu, E. Tan, L. Wang, Q. Huang,
Y. Wang, M. Mahoney et al., “Hawq-v3: Dyadic neural network quantiza-
tion,” in International Conference on Machine Learning. PMLR, 2021, pp.
11 875–11 886.

[44] S. Q. Zhang, B. McDanel, and H. Kung, “Fast: Dnn training under variable
precision block floating point with stochastic rounding,” Computer, 2022.

BIBLIOGRAPHY 149

[45] B. Chmiel, R. Banner, E. Hoffer, H. B. Yaacov, and D. Soudry, “Logarithmic
unbiased quantization: Practical 4-bit training in deep learning,” arXiv
preprint arXiv:2112.10769, 2022.

[46] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, “Understanding
the impact of precision quantization on the accuracy and energy of neural
networks,” in 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2017, pp. 1474–1479.

[47] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A framework
for empirical study of resource-efficient inference in convolutional neural
networks,” IEEE Transactions on Neural Networks and Learning Systems,
2018.

[48] X. Sun, N. Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani,
K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan, “Ultra-low preci-
sion 4-bit training of deep neural networks,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[49] P3109, “Standard for arithmetic formats for machine learning,”
https://standards.ieee.org/project/3109.html, 2021.

[50] S. H. Langroudi, T. Pandit, and D. Kudithipudi, “Deep learning inference on
embedded devices: Fixed-point vs posit,” arXiv preprint arXiv:1805.08624,
2018.

[51] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” in Advances in
neural information processing systems, 2018, pp. 7686–7695.

[52] S. Hashemi, N. Anthony, H. Tann, R. Bahar, and S. Reda, “Understanding
the impact of precision quantization on the accuracy and energy of neural
networks,” arXiv preprint arXiv:1612.03940, 2016.

[53] Z. Li and C. De Sa, “Dimension-free bounds for low-precision training,”
2018.

[54] Y. Ding, J. Liu, J. Xiong, and Y. Shi, “On the universal approximability
and complexity bounds of quantized relu neural networks,” arXiv preprint
arXiv:1802.03646, 2018.

BIBLIOGRAPHY 150

[55] S. H. F. Langroudi, T. Pandit, and D. Kudithipudi, “Deep learning inference
on embedded devices: Fixed-point vs posit,” in 2018 1st Workshop on
Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2), March 2018, pp. 19–23.

[56] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and
D. Kudithipudi, “Deep positron: A deep neural network using posit number
system,” in Design, Automation & Test in Europe (DATE) Conference &
Exhibition. IEEE, 2019.

[57] ——, “Performance-efficiency trade-off of low-precision numerical formats
in deep neural networks,” arXiv preprint arXiv:1903.10584, 2019.

[58] J. Johnson, “Rethinking floating point for deep learning,” arXiv preprint
arXiv:1811.01721, 2018.

[59] Y. Guo, “A survey on methods and theories of quantized neural networks,”
arXiv preprint arXiv:1808.04752, 2018.

[60] Y. Choi, M. El-Khamy, and J. Lee, “Towards the limit of network quantiza-
tion,” arXiv preprint arXiv:1612.01543, 2016.

[61] H. F. Langroudi, Z. Carmichael, J. L. Gustafson, and D. Kudithipudi,
“Positnn framework: Tapered precision deep learning inference for the
edge,” in 2019 IEEE Space Computing Conference (SCC). IEEE, 2019,
pp. 53–59.

[62] H. F. Langroudi, Z. Carmichael, D. Pastuch, and D. Kudithipudi, “Cheetah:
Mixed low-precision hardware & software co-design framework for dnns
on the edge,” arXiv preprint arXiv:1908.02386, 2019.

[63] H. F. Langroudi, V. Karia, J. L. Gustafson, and D. Kudithipudi, “Adaptive
posit: Parameter aware numerical format for deep learning inference on the
edge,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 2020, pp. 726–727.

[64] H. F. Langroudi, V. Karia, T. Pandit, and D. Kudithipudi, “Tent: Efficient
quantization of neural networks on the tiny edge with tapered fixed point,”
arXiv preprint arXiv:2104.02233, 2021.

BIBLIOGRAPHY 151

[65] H. F. Langroudi, V. Karia, Z. Carmichael, A. Zyarah, T. Pandit, J. L.
Gustafson, and D. Kudithipudi, “Alps: Adaptive quantization of deep neural
networks with generalized posits,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021, pp. 3100–3109.

[66] H. F. Langroudi, “ACTION: Automated hardware-software Codesign frame-
work for low-precision numerical format selecTION in tinyml,” in CoNGA
2022: Conference on Next Generation Arithmetic (CoNGA), March 1, 2022.

[67] H. F. Langroudi, Z. Carmichael, and D. Kudithipudi, “Deep learning training
on the edge with low-precision posits,” arXiv preprint arXiv:1907.13216,
2019.

[68] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[69] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[70] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[71] A. Ivakhnenko, “Cybernetic predicting devices,” Tech. Rep.

[72] K. Fukushima, “Neural network model for a mechanism of pattern recogni-
tion unaffected by shift in position-neocognitron,” IEICE Technical Report,
A, vol. 62, no. 10, pp. 658–665, 1979.

[73] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[74] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[75] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

http://www.deeplearningbook.org

BIBLIOGRAPHY 152

[76] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[77] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neural networks
hardware implementation on fpga,” arXiv preprint arXiv:1511.05552, 2015.

[78] Y. Bengio, Y. Lecun, and G. Hinton, “Deep learning for ai,” Communications
of the ACM, vol. 64, no. 7, pp. 58–65, 2021.

[79] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” arXiv
preprint arXiv:2106.04554, 2021.

[80] A. Iwata, Y. Yoshida, S. Matsuda, Y. Sato, and N. Suzumura, “An artificial
neural network accelerator using general purpose 24 bits floating point
digital signal processors,” in IJCNN, vol. 2, 1989, pp. 171–182.

[81] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network inference,”
arXiv preprint arXiv:2103.13630, 2021.

[82] R. Barnes, E. Cooke-Yarborough, and D. Thomas, “An electronic digital
computor using cold cathode counting tubes for storage,” Electronic Engi-
neering, 1951.

[83] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in International conference on machine
learning. PMLR, 2015, pp. 1737–1746.

[84] S. Migacz, “8-bit inference with tensorrt,” in GPU Technology Conference,
2017.

[85] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein, “Training
quantized nets: A deeper understanding,” in Advances in Neural Information
Processing Systems, 2017, pp. 5811–5821.

[86] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling, “Data-free quan-
tization through weight equalization and bias correction,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019, pp.
1325–1334.

BIBLIOGRAPHY 153

[87] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[88] B. Chmiel, L. Ben-Uri, M. Shkolnik, E. Hoffer, R. Banner, and D. Soudry,
“Neural gradients are near-lognormal: improved quantized and sparse train-
ing,” arXiv preprint arXiv:2006.08173, 2020.

[89] R. Morris, “Tapered floating point: A new floating-point representation,”
IEEE Transactions on Computers, vol. 100, no. 12, pp. 1578–1579, 1971.

[90] H. Hamada, “Urr: Universal representation of real numbers,” New Genera-
tion Computing, vol. 1, no. 2, pp. 205–209, 1983.

[91] ——, “A new real number representation and its operation,” in 1987 IEEE
8th Symposium on Computer Arithmetic (ARITH). IEEE, 1987, pp. 153–
157.

[92] A. M. Azmi and F. Lombardi, “On a tapered floating point system,” in
Proceedings of 9th Symposium on Computer Arithmetic. IEEE, 1989, pp.
2–9.

[93] H. Yokoo, “Overflow/underflow-free floating-point number representations
with self-delimiting variable-length exponent field,” IEEE transactions on
computers, vol. 41, no. 8, pp. 1033–1039, 1992.

[94] N. Akinari and H. Hagiwara, “On the real-number representation with
variable-length exponent field,” Information processing letters, vol. 52,
no. 1, pp. 1–6, 1994.

[95] J. L. Gustafson, “A generalized framework for matching arithmetic format
to application requirements,” in https://posithub.org/, 2020.

[96] ——, “A generalized framework for matching arithmetic format to applica-
tion requirements,” in https://posithub.org/, 2020.

[97] J. Gustafson, The End of Error: Unum Computing, ser. Chapman &
Hall/CRC Computational Science. Taylor & Francis, 2015. [Online].
Available: https://books.google.com/books?id=W2ThoAEACAAJ

[98] U. W. Kulisch, “Computer arithmetic in theory and practice,” Tech. Rep.,
1981.

https://books.google.com/books?id=W2ThoAEACAAJ

BIBLIOGRAPHY 154

[99] J. L. Gustafson et al., “Standard for posit™ arithmetic,” in
https://posithub.org/, 2021, pp. 1–12.

[100] J. Gustafson, “Posit arithmetic,” 2017.

[101] D. Hammerstrom, “A vlsi architecture for high-performance, low-cost, on-
chip learning,” in Neural Networks, 1990., 1990 IJCNN International Joint
Conference on. IEEE, 1990, pp. 537–544.

[102] C. M. Bishop, “Training with noise is equivalent to tikhonov regularization,”
Neural computation, vol. 7, no. 1, pp. 108–116, 1995.

[103] N. Morgan, Experimental determination of precision requirements for back-
propagation training of artificial neural networks, 1991.

[104] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” CoRR, vol. abs/1502.02551,
2015. [Online]. Available: http://arxiv.org/abs/1502.02551

[105] M. Courbariaux, Y. Bengio, and J. David, “Low precision arithmetic
for deep learning,” CoRR, vol. abs/1412.7024, 2014. [Online]. Available:
http://arxiv.org/abs/1412.7024

[106] IEEE standard for binary floating-point arithmetic. New York: Institute of
Electrical and Electronics Engineers, 1985, note: Standard 754-1985.

[107] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed preci-
sion training,” arXiv preprint arXiv:1710.03740, 2017.

[108] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,
and D. Patterson, “A domain-specific supercomputer for training deep neural
networks,” Communications of the ACM, vol. 63, no. 7, pp. 67–78, 2020.

[109] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avan-
cha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen et al., “A study
of bfloat16 for deep learning training,” arXiv preprint arXiv:1905.12322,
2019.

[110] W. Kahan, “Further remarks on reducing truncation errors, commun,” Assoc.
Comput. Mach, vol. 8, p. 40, 1965.

http://arxiv.org/abs/1502.02551
http://arxiv.org/abs/1412.7024

BIBLIOGRAPHY 155

[111] P. Zamirai, J. Zhang, C. R. Aberger, and C. De Sa, “Revisiting bfloat16
training,” arXiv preprint arXiv:2010.06192, 2020.

[112] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi,
and K. Gopalakrishnan, “Dlfloat: A 16-b floating point format designed for
deep learning training and inference,” in 2019 IEEE 26th Symposium on
Computer Arithmetic (ARITH). IEEE, 2019, pp. 92–95.

[113] “Ai-float™ - mixed precision arithmetic for ai: A hardware perspective,”
https://docs.graphcore.ai/, 2022.

[114] A. Nannarelli, “Variable precision 16-bit floating-point vector unit for em-
bedded processors,” in 2020 IEEE 27th Symposium on Computer Arithmetic
(ARITH). IEEE, 2020, pp. 96–102.

[115] L. Cambier, A. Bhiwandiwalla, T. Gong, M. Nekuii, O. H. Elibol, and
H. Tang, “Shifted and squeezed 8-bit floating point format for low-precision
training of deep neural networks,” arXiv preprint arXiv:2001.05674, 2020.

[116] J. Zhao, S. Dai, R. Venkatesan, M.-Y. Liu, B. Khailany, B. Dally, and
A. Anandkumar, “Low-precision training in logarithmic number system
using multiplicative weight update,” arXiv preprint arXiv:2106.13914, 2021.

[117] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training
deep neural networks with 8-bit floating point numbers,” Advances in neural
information processing systems, vol. 31, 2018.

[118] M. Drumond, T. Lin, M. Jaggi, and B. Falsafi, “Training dnns with hybrid
block floating point,” arXiv preprint arXiv:1804.01526, 2018.

[119] N. Mellempudi, S. Srinivasan, D. Das, and B. Kaul, “Mixed precision
training with 8-bit floating point,” arXiv preprint arXiv:1905.12334, 2019.

[120] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and
K. Gopalakrishnan, “Pact: Parameterized clipping activation for quantized
neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[121] J. Choi, P. I.-J. Chuang, Z. Wang, S. Venkataramani, V. Srinivasan, and
K. Gopalakrishnan, “Bridging the accuracy gap for 2-bit quantized neural
networks (qnn),” arXiv preprint arXiv:1807.06964, 2018.

BIBLIOGRAPHY 156

[122] Z. Deng, C. Xu, Q. Cai, and P. Faraboschi, “Reduced-precision memory
value approximation for deep learning,” Hewlett Packard Labs, HPL-2015-
100, 2015.

[123] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks,
and G.-Y. Wei, “Adaptivfloat: A floating-point based data type for resilient
deep learning inference,” arXiv preprint arXiv:1909.13271, 2019.

[124] J. Wilkinson, “Rounding errors in algebraic processes,” 1965.

[125] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof et al., “Flexpoint: An adaptive
numerical format for efficient training of deep neural networks,” in Advances
in Neural Information Processing Systems, 2017, pp. 1742–1752.

[126] D. Das, N. Mellempudi, D. Mudigere, D. Kalamkar, S. Avancha, K. Baner-
jee, S. Sridharan, K. Vaidyanathan, B. Kaul, E. Georganas et al., “Mixed
precision training of convolutional neural networks using integer operations,”
arXiv preprint arXiv:1802.00930, 2018.

[127] J. Park, S. Lee, and D. Jeon, “A neural network training processor with 8-bit
shared exponent bias floating point and multiple-way fused multiply-add
trees,” IEEE Journal of Solid-State Circuits, 2021.

[128] H. Fan, G. Wang, M. Ferianc, X. Niu, and W. Luk, “Static block floating-
point quantization for convolutional neural networks on fpga,” in 2019 Inter-
national Conference on Field-Programmable Technology (ICFPT). IEEE,
2019, pp. 28–35.

[129] Z. Song, Z. Liu, and D. Wang, “Computation error analysis of block floating
point arithmetic oriented convolution neural network accelerator design,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[130] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for 8-bit
training of neural networks,” arXiv preprint arXiv:1805.11046, 2018.

[131] D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos, K. Ramchandran, and
P. Bartlett, “Gradient diversity: a key ingredient for scalable distributed
learning,” in International Conference on Artificial Intelligence and Statis-
tics. PMLR, 2018, pp. 1998–2007.

BIBLIOGRAPHY 157

[132] K. Zhao, S. Huang, P. Pan, Y. Li, Y. Zhang, Z. Gu, and Y. Xu, “Distribution
adaptive int8 quantization for training cnns,” in Proceedings of the Thirty-
Fifth AAAI Conference on Artificial Intelligence, 2021.

[133] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, and J. Yan, “To-
wards unified int8 training for convolutional neural network,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1969–1979.

[134] S. Dai, R. Venkatesan, M. Ren, B. Zimmer, W. Dally, and B. Khailany,
“Vs-quant: Per-vector scaled quantization for accurate low-precision neural
network inference,” Proceedings of Machine Learning and Systems, vol. 3,
2021.

[135] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical guarantees on numerical
precision of deep neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp. 3007–
3016.

[136] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq:
Hessian aware quantization of neural networks with mixed-precision,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision,
2019, pp. 293–302.

[137] Z. Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. W. Mahoney, and
K. Keutzer, “Hawq-v2: Hessian aware trace-weighted quantization of neural
networks,” arXiv preprint arXiv:1911.03852, 2019.

[138] M. Kerner, K. Tammemäe, J. Raik, and T. Hollstein, “Triple fixed-point
mac unit for deep learning,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 1404–1407.

[139] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-training 4-bit
quantization of convolution networks for rapid-deployment,” arXiv preprint
arXiv:1810.05723, 2018.

[140] C. Te Ewe, P. Y. Cheung, and G. A. Constantinides, “Dual fixed-point:
An efficient alternative to floating-point computation,” in International
Conference on Field Programmable Logic and Applications. Springer,
2004, pp. 200–208.

BIBLIOGRAPHY 158

[141] M. Cococcioni, E. Ruffaldi, and S. Saponara, “Exploiting posit arithmetic
for deep neural networks in autonomous driving applications,” in 2018
International Conference of Electrical and Electronic Technologies for
Automotive. IEEE, 2018, pp. 1–6.

[142] E. de Haan, A. Podobas, and S. Matsuoka, “Towards accelerating deep
neural network training on fpgas: Facilitating the use of variable precision,”
2018.

[143] Z. Wan, E. Mibuari, E.-Y. Yang, and T. Tambe, “Study of posit numeric in
speech recognition neural inference,” Harvard Univ., Cambridge, MA, USA,
Tech. Rep. CS247r, 2018.

[144] A. Guntoro, C. De La Parra, F. Merchant, F. De Dinechin, J. L. Gustafson,
M. Langhammer, R. Leupers, and S. Nambiar, “Next generation arithmetic
for edge computing,” in 2020 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, 2020, pp. 1357–1365.

[145] R. Murillo, A. A. Del Barrio, and G. Botella, “Deep pensieve: A deep
learning framework based on the posit number system,” Digital Signal
Processing, vol. 102, p. 102762, 2020.

[146] M. Cococcioni, F. Rossi, E. Ruffaldi, S. Saponara, and B. D. de Dinechin,
“Novel arithmetics in deep neural networks signal processing for autonomous
driving: Challenges and opportunities,” IEEE Signal Processing Magazine,
vol. 38, no. 1, pp. 97–110, 2020.

[147] L. Sommer, L. Weber, M. Kumm, and A. Koch, “Comparison of arithmetic
number formats for inference in sum-product networks on fpgas,” in 2020
IEEE 28th Annual international symposium on field-programmable custom
computing machines (FCCM). IEEE, 2020, pp. 75–83.

[148] J. Lu, C. Fang, M. Xu, J. Lin, and Z. Wang, “Evaluations on deep neu-
ral networks training using posit number system,” IEEE Transactions on
Computers, vol. 70, no. 2, pp. 174–187, 2020.

[149] G. Raposo, P. Tomás, and N. Roma, “Positnn: Training deep neural networks
with mixed low-precision posit,” in ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2021, pp. 7908–7912.

BIBLIOGRAPHY 159

[150] N.-M. Ho, D.-T. Nguyen, H. De Silva, J. L. Gustafson, W.-F. Wong, and
I. J. Chang, “Posit arithmetic for the training and deployment of genera-
tive adversarial networks,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 1350–1355.

[151] Y. Wang, D. Deng, L. Liu, S. Wei, and S. Yin, “Lpe: Logarithm posit
processing element for energy-efficient edge-device training,” in 2021 IEEE
3rd International Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE, 2021, pp. 1–4.

[152] S. Nambi, S. Ullah, S. S. Sahoo, A. Lohana, F. Merchant, and A. Kumar,
“Expan (n) d: Exploring posits for efficient artificial neural network design
in fpga-based systems,” IEEE Access, vol. 9, pp. 103 691–103 708, 2021.

[153] V. Gohil, S. Walia, J. Mekie, and M. Awasthi, “fixed-posit: A floating-
point representation for error-resilient applications,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3341–3345,
2021.

[154] N. Shah, L. I. G. Olascoaga, S. Zhao, W. Meert, and M. Verhelst, “9.4 piu:
A 248gops/w stream-based processor for irregular probabilistic inference
networks using precision-scalable posit arithmetic in 28nm,” in 2021 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 64. IEEE,
2021, pp. 150–152.

[155] A. Y. Romanov, A. L. Stempkovsky, I. V. Lariushkin, G. E. Novoselov,
R. A. Solovyev, V. A. Starykh, I. I. Romanova, D. V. Telpukhov, and I. A.
Mkrtchan, “Analysis of posit and bfloat arithmetic of real numbers for
machine learning,” IEEE Access, vol. 9, pp. 82 318–82 324, 2021.

[156] M. Zolfagharinejad, M. Kamal, A. Afzali-Khusha, and M. Pedram, “Posit
process element for using in energy-efficient dnn accelerators,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 2022.

[157] Y. Nakahara, Y. Masuda, M. Kiyama, M. Amagasaki, and M. Iida, “A
posit based multiply-accumulate unit with small quire size for deep neural
networks,” IPSJ Transactions on System LSI Design Methodology, vol. 15,
pp. 16–19, 2022.

[158] W.-F. Wong, “Qtorch+: Next generation arithmetic for pytorch machine
learning,” in Next Generation Arithmetic: Third International Conference,

BIBLIOGRAPHY 160

CoNGA 2022, Singapore, March 1–3, 2022, Revised Selected Papers, vol.
13253. Springer Nature, 2022, p. 31.

[159] J. L. Holi and J.-N. Hwang, “Finite precision error analysis of neural network
hardware implementations,” IEEE Transactions on Computers, vol. 42, no. 3,
pp. 281–290, 1993.

[160] C. Lauter and A. Volkova, “A framework for semi-automatic precision and
accuracy analysis for fast and rigorous deep learning,” in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH). IEEE, 2020, pp. 103–110.

[161] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep
convolutional networks,” in International Conference on Machine Learning,
2016, pp. 2849–2858.

[162] C. Sakr and N. Shanbhag, “An analytical method to determine minimum
per-layer precision of deep neural networks,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 1090–1094.

[163] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[164] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “Cacti 7: New tools for interconnect exploration in innovative
off-chip memories,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[165] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “A systematic methodology for characterizing scalability of dnn
accelerators using scale-sim,” in 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2020, pp.
58–68.

[166] N. S. Eliezer, R. Banner, E. Hoffer, H. Ben-Yaakov, and T. Michaeli,
“Energy awareness in low precision neural networks,” arXiv preprint
arXiv:2202.02783, 2022.

[167] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible acceler-
ator for emerging deep neural networks on mobile devices,” IEEE Journal

BIBLIOGRAPHY 161

on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp.
292–308, 2019.

[168] B. Widrow and I. Kollár, “Quantization noise,” Cambridge University Press,
vol. 2, p. 5, 2008.

[169] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on infor-
mation theory, vol. 44, no. 6, pp. 2325–2383, 1998.

[170] S. M. Pizer, To compute numerically: Concepts and strategies (Little, Brown
computer systems series). Atlantic/Little, Brown, 1983.

[171] P. Lindstrom, “Variable-radix coding of the reals,” in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH). IEEE, 2020, pp. 111–116.

[172] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[173] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[174] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[175] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[176] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly,
P. Montino, D. Kanter, S. Ahmed, D. Pau et al., “Mlperf tiny benchmark,”
arXiv preprint arXiv:2106.07597, 2021.

[177] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, “Visual
wake words dataset,” arXiv preprint arXiv:1906.05721, 2019.

[178] Y. Iwashita, A. Takamine, R. Kurazume, and M. S. Ryoo, “First-person ani-
mal activity recognition from egocentric videos,” in 2014 22nd International
Conference on Pattern Recognition. IEEE, 2014, pp. 4310–4315.

[179] M. A. Marcinkiewicz, “Building a large annotated corpus of english: The
penn treebank,” Using Large Corpora, vol. 273, 1994.

BIBLIOGRAPHY 162

[180] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[181] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regu-
larization,” arXiv preprint arXiv:1409.2329, 2014.

[182] D. Graham, S. H. F. Langroudi, C. Kanan, and D. Kudithipudi, “Convolu-
tional drift networks for video classification,” in proceedings of the IEEE
International Conference on Rebooting Computing (ICRC), 2017, pp. 1–8.

[183] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, “Scale-
sim: Systolic cnn accelerator simulator,” arXiv preprint arXiv:1811.02883,
2018.

[184] D. A. Patterson, “Latency lags bandwith,” Communications of the ACM,
vol. 47, no. 10, pp. 71–75, 2004.

[185] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware auto-
mated quantization with mixed precision,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 8612–
8620.

[186] B. Chmiel, I. Hubara, R. Banner, and D. Soudry, “Optimal fine-grained
n: M sparsity for activations and neural gradients,” arXiv preprint
arXiv:2203.10991, 2022.

[187] H. Kim, J. Mu, C. Yu, T. T.-H. Kim, and B. Kim, “A 1-16b reconfigurable
80kb 7t sram-based digital near-memory computing macro for processing
neural networks,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2023.

[188] T. Henighan, J. Kaplan, M. Katz, M. Chen, C. Hesse, J. Jackson, H. Jun,
T. B. Brown, P. Dhariwal, S. Gray et al., “Scaling laws for autoregressive
generative modeling,” arXiv preprint arXiv:2010.14701, 2020.

https://www.tensorflow.org/

BIBLIOGRAPHY 163

[189] A. Gholami, Z. Yao, S. Kim, M. W. Mahoney, and K. Keutzer, “Ai and
memory wall,” RiseLab Medium Post, vol. 1, p. 6, 2021.

[190] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,
J. Laudon, S. Li, P. Ma, X. Ma et al., “Ten lessons from three generations
shaped google’s tpuv4i: Industrial product,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2021,
pp. 1–14.

[191] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey,
R. Grisenthwaite, S. Ha, A. Heinecke, P. Judd, J. Kamalu, N. Mellempudi,
S. Oberman, M. Shoeybi, M. Siu, and H. Wu, “Fp8 formats for deep
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2209.05433

[192] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang, A. Agrawal,
M. Kar, S. Jain, A. Mannari, H. Tran et al., “Rapid: Ai accelerator for
ultra-low precision training and inference,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2021,
pp. 153–166.

[193] M. Fournarakis and M. Nagel, “In-hindsight quantization range estimation
for quantized training,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 3063–3070.

[194] B. Noune, P. Jones, D. Justus, D. Masters, and C. Luschi, “8-bit numerical
formats for deep neural networks,” arXiv preprint arXiv:2206.02915, 2022.

[195] S. P. Perez, Y. Zhang, J. Briggs, C. Blake, J. Levy-Kramer, P. Bal-
anca, C. Luschi, S. Barlow, and A. W. Fitzgibbon, “Training and infer-
ence of large language models using 8-bit floating point,” arXiv preprint
arXiv:2309.17224, 2023.

[196] J. Chen, Y. Gai, Z. Yao, M. W. Mahoney, and J. E. Gonzalez, “A statistical
framework for low-bitwidth training of deep neural networks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 883–894, 2020.

[197] S. Fox, S. Rasoulinezhad, J. Faraone, P. Leong et al., “A block minifloat rep-
resentation for training deep neural networks,” in International Conference
on Learning Representations, 2020.

https://arxiv.org/abs/2209.05433

BIBLIOGRAPHY 164

[198] T. Ko, “A survey on behavior analysis in video surveillance for homeland
security applications,” in 2008 37th IEEE Applied Imagery Pattern Recogni-
tion Workshop. IEEE, 2008, pp. 1–8.

[199] G. Alexandrie, “Surveillance cameras and crime: a review of randomized
and natural experiments,” Journal of Scandinavian Studies in Criminology
and Crime Prevention, vol. 18, no. 2, pp. 210–222, 2017.

[200] E. L. Piza, “The crime prevention effect of cctv in public places: a propensity
score analysis,” Journal of Crime and Justice, vol. 41, no. 1, pp. 14–30,
2018.

[201] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in surveil-
lance videos,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6479–6488.

[202] L. Valentín, S. A. Serrano, R. O. García, A. Andrade, M. A. Palacios-Alonso,
and L. E. Sucar, “A cloud-based architecture for smart video surveillance.”
International Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences, vol. 42, 2017.

[203] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks-with an erratum note,” Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report, vol.
148, no. 34, p. 13, 2001.

[204] C. Lu, J. Shi, and J. Jia, “Abnormal event detection at 150 fps in matlab,” in
Proceedings of the IEEE international conference on computer vision, 2013,
pp. 2720–2727.

[205] S. Li, W. Romaszkan, A. Graening, and P. Gupta, “Swis–shared weight
bit sparsity for efficient neural network acceleration,” arXiv preprint
arXiv:2103.01308, 2021.

[206] C. Zhou, F. G. Redondo, J. Büchel, I. Boybat, X. T. Comas, S. Nandakumar,
S. Das, A. Sebastian, M. L. Gallo, and P. N. Whatmough, “Analognets: Ml-
hw co-design of noise-robust tinyml models and always-on analog compute-
in-memory accelerator,” arXiv preprint arXiv:2111.06503, 2021.

[207] M. Isakov, V. Gadepally, K. M. Gettings, and M. A. Kinsy, “Survey of
attacks and defenses on edge-deployed neural networks,” in Proceeding of

BIBLIOGRAPHY 165

the IEEE High Performance Extreme Computing Conference (HPEC), 2019,
pp. 1–8.

[208] D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov, D. Blackiston,
J. Bongard, A. P. Brna, S. C. Raja, N. Cheney, J. Clune et al., “Biological
underpinnings for lifelong learning machines,” Nature Machine Intelligence,
vol. 4, no. 3, pp. 196–210, 2022.

[209] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Over-
coming catastrophic forgetting in neural networks,” Proceedings of the
national academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[210] H. Li, A. Krishnan, J. Wu, S. Kolouri, P. K. Pilly, and V. Braverman, “Life-
long learning with sketched structural regularization,” in Asian Conference
on Machine Learning. PMLR, 2021, pp. 985–1000.

[211] L. Ravaglia, M. Rusci, D. Nadalini, A. Capotondi, F. Conti, and L. Benini,
“A tinyml platform for on-device continual learning with quantized latent
replays,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 11, no. 4, pp. 789–802, 2021.

[212] V. Karia, F. T. Zohora, N. Soures, and D. Kudithipudi, “Scolar: A spiking
digital accelerator with dual fixed point for continual learning,” in 2022
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2022, pp. 1372–1376.

[213] R. Zhao, W. Luk, C. Xiong, X. Niu, and K. H. Tsoi, “On the challenges
in programming mixed-precision deep neural networks,” in Proceedings of
the 4th ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, 2020, pp. 20–28.

	Tapered-Precision Numerical Formats for Deep Learning Inference and Training
	Recommended Citation

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions and thesis outline

	Background
	Deep neural network
	Feedforward and convolutional neural networks
	Recurrent neural network
	Transformer

	Low-precision arithmetic
	Numerical format
	Quantization method

	Tapered-Precision numerical format
	Posit
	Generalized posit
	Tapered fixed-point

	Error analysis for tapered-precision numerical formats
	Summary

	Related work
	Empirical analysis of low-precision
	Variants of IEEE-754 standard numerical format
	Variants of block floating point
	Variants of fixed-point
	Posit

	Numerical error analysis of low-precision
	Summary

	Tapered-Precision numerical formats for deep learning inference
	Empirical approach: Cheetah-V2 framework
	User interface
	Initialization
	Inference accuracy evaluator
	Hardware complexity evaluator
	Optimization

	Numerical analysis approach: ALPS Framework
	SQNR for tapered-precision numerical formats
	Finite precision error analysis
	ALPS framework use-case

	Summary

	DNN inference results and discussion
	Benchmark specification
	Datasets & pre-processing
	Experiment setup

	Tapered precision numerical formats performance
	Empirical quantization error analysis
	Numerical analysis of quantization error
	SQNR impact on DNN accuracy
	Theoretical vs. experimental performance:

	Hardware system results
	EMAC hardware complexity vs performance accuracy
	Exploiting the posit es parameter
	DNN inference hardware complexity vs performance accuracy

	Numerical format identification based on user constraints through ILP
	Comparison with other posit frameworks
	Summary

	Tapered-precision numerical formats for deep learning training
	Problem formulation
	AGP parameter selection (statistical approach)
	AGP parameter selection (numerical analysis approach)
	Low-precision asymmetric generalized posit dot product

	Benchmark specification
	Datasets
	Experiment setup

	Tapered-precision numerical formats performance
	Comparison with state-of-the-art low-precision training approaches

	Summary

	Case study
	Case study: Surveillance video analysis
	DNN model & datasets
	Edge-devices

	Tapered precision numerical formats performance
	Summary

	Conclusion and Future work
	Appendix
	Algorithms
	Derivation of Equation 4.11

	Bibliography

