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Abstract

Anomaly detection has attracted increasing attentions from diverse domains, including medicine,

public safety, and military operations. Despite its wide applicability, anomaly detection is inherently

challenging as abnormal activities are usually rare and unbounded in nature. This makes it difficult

and expensive to identify all potential anomalous events and label them during the training phase

so that a detection model can provide robust prediction on unseen event data. Unsupervised and

semi-supervised learning models have been explored, which achieve a decent detection performance

with no or much less annotations. However, these models can be highly sensitive to outliers (i.e.,

normal samples that look different from other normal ones) or multimodal scenarios (i.e., existence

of multiple types of anomalies), leading to much worse detection performance under these situations.

The imbalanced class distribution of the normal data samples poses a further challenge as the model

may be confused between the normal samples from a minority class and true anomalies.

To systematically address the key challenges outlined above, this dissertation contributes the first

Robust Weakly Supervised Learning (RWSL) framework that provides fundamental support for

real-world anomaly detection using only weak and/or sparse learning signals. The proposed RWSL

framework offers a principled learning paradigm to deal with the rare and unbounded nature of

real-world anomalies, which allows a statistical learning model to be robustly trained using only

high-level supervised signals while generalizing well in few-shot settings. The framework is com-

prised of three interconnected components. The first research component integrates Robust Distri-

butionally Optimization (DRO) with Bayesian learning, leading to a novel Bayesian DRO model

that achieves robust detection performance using weak learning signals coupled with outliers and

multimodal anomalies. The Bayesian DRO model is further augmented with non-parametric sub-

modular optimization and active instance sampling to improve both the reliability and accuracy

of the detection performance. The second research component leverages the evidential theory and

iv
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its fine-grained uncertainty formulation to tackle anomaly detection coupled with imbalanced class

distribution of normal data samples. An adaptive Distributionally Robust Evidential Optimization

(DREO) training process is developed to boost the anomaly detection performance by accurately

differentiating minority class samples and true anomalies using evidential uncertainty. Eviden-

tial learning is further integrated with a transformer architecture, leading to an Evidential Meta

Transformer (MET) for reliable anomaly detection in the few-short setting. Finally, the third

research component aims to ensure an unbiased (i.e., fair) and better-calibrated model with im-

proved anomaly detection performance by avoiding the overconfidence predictions stemming from

the memorization effect seen in deep neural networks. To achieve this, the Distributionally Robust

Ensemble (DRE) is proposed that learns multiple diverse and complementary sparse sub-networks

through the utilization of DRO properties. By facilitating these sparse sub-networks to capture

different data distributions across varying levels of complexity, they naturally complement each

other resulting in improved model calibration with enhanced anomaly detection capability.
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Chapter 1

Introduction

There has been tremendous progress in the field of artificial intelligence after the arrival of deep

neural networks (DNNs). To achieve a high prediction accuracy, the training of a DNN usually

requires an extensive amount of labeled data samples. Despite the outstanding prediction perfor-

mance in many computer vision and natural language process tasks, anomaly detection in real-world

settings still poses fundamental challenges for the current machine learning models. First, abnor-

mal activities are usually rare and unbounded in nature. This makes it difficult and expensive to

identify all potential events and label them during the training phase to learn a detection model

that can perform robustly on previously unseen event data. Second, the existence of outliers (i.e.,

normal samples that appear to be different from other normal ones) and multimodal scenarios (i.e.,

co-occurrence of multiple types of anomalies) further complicates the detection of truly abnormal

events. Third, the imbalanced class distribution of normal data samples (i.e., number of samples

for from certain known classes is much less than the rest) may make the model easily confused

between minority class samples and true anomalies. Finally, the spurious correlations that are

introduced with the data collection process coupled with overparameterized network resulting from

the memorization effect may result in a biased and un-calibrated model that tends to misiden-

tify the less representative samples as anomalies. Furthermore, such an un-calibrated model may

wrongly identify an anomalous sample as the known sample with high confidence.

1



CHAPTER 1. INTRODUCTION 2
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(a) Weakly Supervised MIL Setting (b) FSL Setting

Figure 1.1: Weakly supervised and FSL Setting

1.1 Problem Statement and Research Challenges

Our study mainly focuses on robust learning under weak supervision with only weak and/or sparse

learning signals. There are four major tasks in anomaly detection in real-world settings. The first

task is related to learning from weak supervision, referred to as weakly supervised learning where

only high level learning signals are present. Multiple Instance Learning (MIL) is one of the widely

used weakly supervised learning techniques, where we have a collection of positive and negative bags

(e.g., videos) as shown in Figure 1.1 (a). A bag (video) is considered to be positive (abnormal) if at

least one instance (frame) is positive (abnormal) otherwise negative (normal). During the training

process, only the bag (video) level annotation is present whereas, that of the instance (frame) level

annotation is missing. Based on the bag (video) level information, we want to train the model that

can perform well in the anomaly detection task indicating whether a given frame is abnormal or

normal. However, the lack of instance labels, the rare and unbounded nature of abnormal events,

coupled with the existence of outliers and multimodal scenarios, make weakly supervised anomaly

detection highly challenging.

The second task concerns the few-shot learning (FSL) setting, where strong supervised signals

are available but the total annotated data samples are extremely limited. Meta-learning offers a

promising vehicle to tackle FSL. In meta-learning, a dataset is divided into meta-training and meta-

testing phase as shown in Figure 1.1 (b). During the meta-training phase, a task is constructed by

randomly picking N -classes with each class having K-samples, and the corresponding problem is
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(a) Burglary (b) Walking (c) Running (d) Loitering (e) Walking

Figure 1.2: Examples of outlier (a-b) and multimodal frames (c-e) from the Avenue dataset

referred to as N -way K-shot problem. The model is trained using multiple tasks, and finally, it is

tested on the meta-testing dataset. During the testing phase, the model has to classify the given

query set example into one of the N-classes based on the limited samples present in the support

set. It should be noted that the number of samples per class i.e., K is very small and therefore,

the model has to make a prediction based on the limited samples. The anomaly detection under

the FSL is a very challenging problem as the model should be able to discriminate the normal class

samples and anomalous samples based on the very weak signal.

The third task is concerned with learning under the class imbalanced setting where a number of

samples for a specific class (classes) is very small compared to the rest. The anomaly detection

under such a setting is difficult as the model be confused between normal samples from minority

class and true anomalies. The final task is related to learning under the spurious correlation

setting coupled with the overparamaterized network resulting from the memorization effect, where

the biased and/or uncalibrated model resulting from such data may be confused between the in-

distribution samples and anomalous ones. Also, in this case, because of the poor calibration, the

model may incorrectly identify the anomalous samples as the known samples with high confidence

which would reduce the trust of the people representing minority groups toward the model.

Next, we present each sub-task in detail and point out the limitations of the existing techniques that

motivate us to formulate the proposed Robust Weakly Supervised Learning (RWSL) framework.

1.1.1 Anomaly Detection under Weakly Supervised Learning

To tackle anomaly detection under weakly supervised learning, the MIL paradigm has been used

that models each video as a bag and its segments (or frames) as instances within the bag [129].

One effective MIL learning objective considered in the past is to maximize the gap between two

instances having the respective highest anomaly scores from a pair of positive and negative bags,

called maximum-based multiple instance learning (MMIL). However, those techniques are highly

sensitive to the outliers and multimodal scenarios where some of the representative examples are

demonstrated in Figure 1.2. The images shown in (a-b) are outliers that look like abnormal frames
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but are indeed normal frames. For example, the frame in (a) is a normal frame from burglary

activity but looks similar to the arson-related abnormal frames. Similarly, the frame in (b) is a

normal frame that looks similar to fighting-related frames. If there exist such type of frames, the

MMIL techniques may miss actual abnormal frames during the training process and instead may

try to maximize the gap between the outlier and the instance with the highest anomaly score from

the normal bag yielding lower anomaly detection performance. Figures (c-e) are different types of

abnormal frames from the same video and the situation is called multimodality. As MMIL considers

a single frame from an abnormal video, it may try to make the anomaly score of only one type

of abnormal frame while ignoring the rest during the training process and thereby consequently

leading low anomaly detection performance.

Top-k ranking loss has been adopted in an attempt to address the issues outlined above. It maxi-

mizes the gap between the mean score of the top-k predicted instances from a positive bag and that

of a negative one [116,137]. However, there are inherent limitations to using a top-k loss. First, it

tends to be extremely sensitive to the selected k value shown in Figure 3.6. Since there is no frame

(or segment) labels available during model training, setting an optimal k through cross-validation

is infeasible or highly costly. Second, given the diverse videos, the number of abnormal instances

may vary significantly from one video to another implying we should have a different k for each

video. Hence, applying the same k to all videos as in the existing approaches fails to capture the

nature of the data. The third issue is that all (or most of) the selected k segments may come from

the same sub-sequence of the video. Using a consecutive set of visually similar segments is less

effective for model training, making it more likely to suffer from outlier and multimodal scenarios.

1.1.2 Anomaly Detection under Few Shot Learning

Anomaly detection under the FSL setting has become a challenging problem because of the limited

samples per normal classes as it can easily mislead the model to incorrectly identify anomalous

samples as the normal data samples and vice versa. There have been few attempts to address

few-shot open-set recognition (FSOSR) [56, 80]. However, those techniques have failed to learn

a compact representation of the normal classes specifically in the case where abnormal activities

share some similarities with the normal classes. Therefore it is important to consider the subtle

differences leading to discriminate the abnormal events from the normal samples.
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1.1.3 Anomaly Detection under Imbalanced Class Distribution

Anomaly detection has become a challenging case in the limited data sample setting specifically in

the imbalanced class distribution and FSL setting. Considering the imbalanced class distribution

setting, DRO can be used which has proven to be effective to learn a robust representation under

such setting [108, 164]. Further, imbalanced class distribution in the closed-set is handled through

oversampling to achieve a more balanced class distribution [18]. Although the existing techniques

are shown to be effective in a closed set classification setting, neither of them is adequate to anomaly

detection in the imbalanced class setting. A fundamental challenge lies in the interplay between

normal data samples from the minority class and the difficult samples from the majority classes.

As a result, simply oversampling the minority class may neglect these difficult samples. Similarly,

applying DRO with a flexible uncertainty set may put too much emphasis on these difficult samples

and ignore the minority class as well as some representative samples from the majority classes, which

affects proper model training.

1.1.4 Anomaly Detection under Undercalibrated Model

The modern deep neural network tends to exhibit an overfitting phenomenon resulting from the

memorization effect. Furthermore, the presence of a spurious correlation between shortcuts and

associated classes makes the situation worse. As such, the trained model becomes heavily biased and

highly uncalibrated. Therefore, if the anomaly event shares some similarity with training known

samples, the model may confidently detect the anomalous sample as the normal sample. Also,

because of the poor calibration and biases, the known samples (especially the minority ones) may

be misclassified as the anomalous sample. There have been existing efforts to make the model sparse

which may potentially improve the calibration and reduce the biases of existing models. However,

the primary focus of those sparse techniques is to match the accuracy as that of dense networks

without explicitly paying attention to calibration and biases. Despite having some improvements,

those techniques do not yield optimal performance in terms of better calibration and improvement

toward biases.

1.2 Robust Weakly Supervised Learning Framework

Our solutions to the aforementioned challenges are well organized under a novel robust weak super-

vision learning framework. DRO and related robust techniques are powerful tools to help design
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Figure 1.3: Robust Weakly Supervised Learning Framework

learning paradigms that are robust under outlier, multimodal, spurious correlation, and class/group

imbalanced settings. Figure 1.3 shows the overall diagram depicting our framework. Integration

of the DRO with Bayesian models (such as GP) helps to address the multiple issues present in

the anomaly detection task under a weakly supervised learning setting. Specifically, under a weak

supervision setting like MIL, such technique helps to make the approach robust to outlier and mul-

timodal scenario demonstrated in Figure 1.2. Further augmentation with non-parametric models

like HDP-HMM coupled with submodular function and active learning strategy further augments

the performance by ensuring diverse types of abnormal patterns during the training process. Also,

the proposed technique automatically adjusts the k-value depending on the nature of the video

yielding better performance comparison. The novel active learning techniques like P-F sampling

help to identify and label the rare abnormal patterns and thereby improving both reliability as well

as accuracy of the anomaly detection performance.

A non-trivial combination of evidential learning with the adaptive DRO provides an effective way

to perform anomaly detection under the imbalanced class distribution setting by providing high

uncertainty for the abnormal samples. It should be noted that neither evidential learning nor

a simple straightforward combination of DRO and evidential network is sufficient to tackle the

anomaly detection task.
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Considering the complexity of the anomaly detection task under the limited data setting i.e.,

few-shot learning, we devise a novel evidential transformer network, called Meta Evidential Trans-

former (MET) by combining evidential theory and transformer network. This novel MET based

architecture learns a compact representation for each normal class by leveraging the properties of

transformer network.

To tackle anomaly detection under an over-parametrized network and spurious correlation setting,

we propose Distributionally Robust Ensemble (DRE) that uses DRO along with the sparse network.

In this technique, we aim to learn multiple diverse and complementary sparse sub-networks (tickets)

with the guidance of uncertainty sets through DRO, which encourages tickets to gradually capture

different data distributions from easy to hard and naturally complement each other. Specifically,

through the DRO framework, the proposed technique avoids learning from the spurious features

and/or noises while ensuring diversity among the learned sparse sub-networks. Therefore, the

resulting ensemble model becomes more trustworthy with better calibration and unbiased. It is

worth noting that the final ensemble model may be able to better recognize the anomalous samples

instead of being confidently wrong. Also, by avoiding learning from spurious correlation, the model

will be able to better recognize minority group samples as known samples.

1.3 Summary of Contributions

Considering anomaly detection under weak-level supervision, we propose three approaches that

essentially solve the multiple challenges that exist in the previous techniques. First two approaches

are discussed in Chapter 3 and the last one is discussed in Chapter 4. In chapter 3, first we discuss

the DRO-based deep kernel multiple instance learning technique. This technique assigns the non-

zero probability to each instance in a bag through a Gaussian Process (GP) latent mixture model.

This way the proposed technique becomes more robust to outlier and multimodal scenarios as it

gives chances to all frames to participate in the optimization with different probabilities. Further,

the DRO constraint defined over the mixture model relaxes the limitations of specifying a fixed k

value which is very challenging in the existing top-k approaches. Further, through the integration

of non-parametric GP with the powerful DNN, our approach becomes a very effective approach to

handle high dimensional data resulting in state-of-the-art performance.

The second approach (in chapter 3) is defined to address the limitations that exist in the top-k

approach along with our DRO-based deep kernel multiple instance learning model. In addition to

setting fluctuating k (in top-k), there is another limitation resulting from the frame redundancy. It
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is quite possible that all (or most of) the selected k segments may come from the same sub-sequence

of the video because of temporal consistency and feature similarity. However, using a consecutive

set of visually similar segments is less effective for model training, making it more likely to suffer

from outlier and multimodal scenarios. To solve this problem we propose novel Bayesian non-

parametric construction of a submodular set function, which is integrated with multiple instance

learning to deliver robust video anomaly detection performance under practical settings. The

hierarchical dirichlet process (HDP) prior on the state transition probability of the hidden markov

model (HMM) helps to avoid the challenging problem of setting k value. In fact, HDP-HMM

helps the model automatically decide the k-value for each video depending on the nature of the

video. Also, novel submodular function helps to ensure the diverse frames to be selected during the

training process which increases the chance of including many abnormal events in the training. This

technique addresses both limitations of setting proper k value as well as maintaining the diversity

which results in a better performance.

The third approach (in chapter 4) is related to multiple instance active learning. It is found that

only using the weakly supervised approach such as MIL may not be sufficient to increase the

instance level prediction in challenging cases. The underlying reason for the less accurate instance-

level prediction is due to the lack of instance labels. For positive instances that are relatively rare

across bags, detecting them by only relying on bag labels is inherently challenging as the weakly

supervised signal (i.e., bag label) cannot be propagated to the instance level without sufficient

statistical evidence. By leveraging the key MIL assumption, the novel P-F sampling function can

explore the most challenging bags and effectively detect their positive instances for annotation,

which significantly improves the instance-level prediction. Further, we theoretically show that

the proposed distributionally robust bag likelihood (DRBL) helps to detect potentially positive

instances to support the proposed P-F sampling.

We consider anomaly detection under the imbalanced class distribution of normal data samples

in Chapter 5. Specifically, to tackle this problem, we develop an adative Distributionally Robust

Evidential Optimization (DREO) training process that provides the principled way to quantify

sample uncertainty through evidential learning while optimally balancing the model training over

all classes in the closed set through adaptive DRO framework. The proposed DREO accurately

differentiates the minority class samples and true anomalies through evidential uncertainty. To

avoid the model from primarily focusing on the most difficult samples by following the standard

DRO, the adaptive learning strategy gradually increases the size of the uncertainty set, which

allows the model to learn from easy to hard samples. Further, our experimentation along with the

theoretical analysis justifies the robustness of the proposed technique in anomaly detection.
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We devise a Meta Evidential Learning (MET) framework to deal with anomaly detection under

the few-shot learning setting in Chapter 6. The proposed MET framework uses an evidential open-

set loss to learn more compact closed-set class representations by effectively leveraging similar

closed-set classes. MET further integrates an evidence-to-variance ratio to detect fundamentally

challenging tasks and uses an evidence-guided cross-attention mechanism to better separate the

difficult open-set samples. As such, during the testing process, the model will be able to better

identify the challenging anomalous samples that may exhibit similarity with the known classes.

Also, because of the compact representation capability coupled with EVR, the model will be able

to better identify the known class samples despite having very few support set samples.

Finally, in Chatper 7 we aim to devise a model that is better calibrated, trustworthy, and unbiased

for better anomaly detection. To accomplish this, we propose a novel Distributionally Robust Op-

timization (DRO) framework to achieve an ensemble of lottery tickets toward calibrated network

sparsification. Specifically, the proposed DRO ensemble aims to learn multiple diverse and com-

plementary sparse sub-networks (tickets) with the guidance of uncertainty sets, which encourage

tickets to gradually capture different data distributions from easy to hard and naturally comple-

ment each other. As such, the DRE framework avoids learning from the spurious correlation and/or

noises and thereby avoiding the overfitting phenomenon. During testing, the resulting ensemble

model becomes much more trustworthy, better calibrated, and unbiased. Therefore, the model cor-

rectly identifies the unknown sample without being confidently wrong. Furthermore, as it avoids

learning from the spurious correlation, the model correctly identifies minority group samples as the

known samples.



Chapter 2

Literature Review

In this chapter, we discuss the existing work that is common to multiple chapters. Specifically,

we will discuss related work on (1) Anomaly Detection, (2) Distributionally Robust Optimization,

and (3) Openset Detection. The first topic addresses mainly unsupervised, and multiple instance

learning-based anomaly detection techniques. In this topic, we review existing techniques to solve

anomaly detection and figure out shortcomings. Next, we explain the DRO related work and

connect it with our technique regarding how it can address shortcomings present in the existing

multiple instance learning techniques for anomaly detection. Finally, we perform a literature review

on the openset detection techniques in a general setting.

2.1 Anomaly Detection

Encoding and sparse reconstruction-based approaches have been employed for anomaly detection,

assuming that abnormal events are rare and deviate from normal patterns. They aim to capture the

normal patterns using models, such as Gaussian processes (GPs) [76] and HMMs [66], to identify

anomalies as outliers based on the reconstruction loss. Sparse representation-based approaches

construct a dictionary for normal events and identify the events with the high reconstruction error

as anomalies [87]. Recent approaches consider both abnormal and normal events in the training

process. For video anomaly detection, since only video-level labels are assumed to be available

during model training [48], MIL offers a natural solution by modeling each video as a bag and

the associated segments (frames) as instances of the bag. Sultani et al. proposed an MIL based

approach that enables to maximize the gap between highest prediction scores from a positive and

10
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negative bags, respectively [129] . However, this maximum score based MIL model (i.e.,, MMIL)

is insufficient to handle outlier and multimodal scenarios.

top-k ranking loss based MIL models have been developed to address the limitations of the MMIL

model [137]. These models produce state-of-the-art detection performance given that a suitable k

value can be assigned in advance. However, the detection performance of such models is highly

sensitive to the chosen k value. The main issue with the top-k ranking loss is how to set a suitable

k, which can be quite challenging in practice. More importantly, since k takes discrete values, the

prediction performance may fluctuate significantly when k changes. To address this fundamental

challenge, we first, propose to integrate a DRO constraint into the GP mixture framework, which

can essentially function as a soft version of the top-k constraint, thus removing the need to specify

a fixed k value while ensuring a more stable (and robust) prediction [116].

Although the DRO based proposed approach avoids the issue of setting k value while stabilizing the

performance, we may still need to manually set the the size of the uncertainty set is controlled by the

radius (i.e.,, η) of the uncertainty ball. Furthermore, both the DRO based approch as well as top-k

variants may put more focus on a set of consecutive segments with the highest prediction scores

and ignore some other potentially positive segments resulting into degradation in the performance.

To overcome those issues, we next propose a novel submodular set function in a non-parametric

way by inferring the diversity from data automatically. By jointly optimizing the submodular

function and the MIL loss, it automatically chooses a diverse set of segments and lets the model

better differentiate these (potentially positive) segments from those of a negative bag to ensure

good detection performance.

2.2 Distributionally Robust Optimization (DRO)

Distributionally robust optimization is based on principled statistical learning theory, where the

worst case weighted loss is optimized by searching the weights in a given uncertainty set [29,98,164].

DRO offers a systematic way to handle the imbalanced class distribution and has been commonly

used in supervised learning setting [108, 164] as well as in multiple instance learning [116]. DRO

has been employed in supervised learning to assign different weights to different losses so as to

maximize the overall weighted loss over an uncertainty set for the distributional variable [98, 107].

Depending on how the uncertainty set is defined, the DRO-based loss reduces to different types

of widely known loss functions. For example, by restricting the distribution of the distributional

variable within a certain ball with a center given by the uniform distribution, DRO-based loss
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becomes variance regularized loss [99]. Similarly, by making the distributional variable take any

value between 0 to 1, the corresponding DRO-based loss becomes a maximal loss and the top-k

loss when further restricting the distributional variable value between 0 and 1
k [32]. In a similar

way, [77] proposes a technique called Tilted Empirical Risk Minimization (TERM) by redefining

the ERM with the introduction of hyperparameter t. Depending on the tunable parameter t value,

different variants of loss (maximum, minimum, and average) are recovered and thereby provide a

unified way to perform effective training in the presence of outlier and class imbalance scenarios. In

the DRO-based anomaly detection task work, we integrate DRO to constrain the parameter that

governs the probability of each frame being a positive instance in the proposed GP mixture model.

In this work, we are the first one to introduces DRO into MIL, leading to a DRO based GP mixture

model that provides robust MIL predictions.

Considering the Openset Detection Setting (OSD), while DRO may help to improve the close set

performance, it is not sufficient to address the OSD problem with imbalanced data. This is because

DRO with a flexible uncertainty set may put too much emphasis on the difficult samples and ignores

the ones from the minority class as well as representative samples from majority classes. Therefore,

we propose an adaptive learning strategy to learn from easy samples in the early training phase and

gradually shift the focus to the difficult samples. Furthermore, the class-ratio biased loss ensures

proper learning from the limited samples in the minority class.

2.3 Openset Detection

Various SVM based techniques [54, 118, 119] have proposed for OSD. For instance, Scheirer et

al. [119] proposed an SVM based model, which performs detection using a Weibull-calibrated SVM

(W-SVM) by leveraging Extreme Value Theory (EVT). Reconstruction based approaches have

been proposed [157], where a threshold defined over the reconstruction error is used to decide

whether the sample is from a known or an unknown class. Other traditional models, such as nearest

neighbor [59], quasi-linear function [15], have also been explored as well. Deep learning models have

been increasingly applied for open set detection [7, 130, 154]. As an example, OpenMAX replaces

the softmax function and probability of the softmax is redistributed to produce the probability of

a sample being unknown [7]. Sun et al. [130] proposed VAE based open set recognition, where the

probability of a sample belonging to each of the known classes is used as a proxy to detect whether

the sample is known or unknown. In their case, each known class distribution is modeled as a

Gaussian using the training data.
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Recently, systematic approaches have been presented to break the closed set limitation by explicitly

modeling the uncertainty mass belonging to the unknown distribution. One of the representative

work inline with this is the evidential deep learning (EDL) model [121]. EDL treats the predicted

multi-class probability as a multinomial opinion by leveraging the subjective logic principle. Similar

to this work, Malinin et al. [92] propose Prior Networks (PNs) that explicitly consider the distribu-

tional uncertainty to quantify the distribution mismatch. Despite having a natural way to quantify

the uncertainty, both of these methods require OOD data samples for model training, which is

less practical. Charpentier et al. [17] propose the posterior networks that leverage the normalizing

flows for density estimation in the latent space in order to predict the posterior distribution by only

using in-distribution samples. Despite the significant progresses in OSD, limited attention has been

drawn to the scenario, where the close set involves highly imbalanced classes, which is common in

practical settings, such as anomaly detection, medical diagnosis, and so on. In such cases, existing

standard ERM based approaches may not learn properly from the minority class due to lack of

positive samples resulting in the mis-identification of a minority-class sample as an unknown class

samples. Few recent works try to tackle this fundamental challenge based on the assumption that

visual similarity exists between head and tail classes in the close set [85]. A model is designed to

leverage this similarity to make it more robust for recognizing minority class samples. However,

such an assumption may not universally hold, which limits the applicability of the model in general

settings.



Chapter 3

Robust Multiple Instance Learning

for Anomaly Detection

In this chapter, we propose two MIL approaches for anomaly detection. The goal of both techniques

is to address the limitations present in the existing MIL-based techniques. Our first approach tries

to address the challenging problem of selecting a suitable k-value in the top-k based approaches.

Our proposed approach uses the DRO constraint in the Gaussian process (GP) mixture framework

which can essentially serve as a soft version of the top-k constraint and therefore, removing the

need to specify a fixed k value while ensuring a more stable (and robust) prediction performance.

The GP in our technique offers a natural way to capture the interaction among the instances. Also,

the Bayesian nature of the GP outputs the predictive uncertainty in a principled way which could

be used for the decision-making process whenever the model is uncertain. Further, considering

the limitation of GP which is restricted by a kernel with a fixed basis function, we propose to

integrate the DNN with the GP while enabling end-to-end training. The powerful DNN deals with

the high dimensional data and provides the adaptive basis function to GP that enables to capture

the of complex patterns and interactions. Through multiple real-world benchmark datasets, we

empirically show that our powerful Bayesian approach has a better as well as robust performance

compared to the competitive top-k variants.

Although the DRO-based proposed approach avoids the issue of setting k value while stabilizing

the performance, we may still need to manually set the size of the uncertainty set controlled by the

radius (i.e., η) of the uncertainty ball. Furthermore, both the DRO-based approach as well as top-k

variants may put more focus on a set of consecutive segments with the highest prediction scores

14
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and ignore some other potentially positive segments resulting in degradation in the performance.

To overcome those issues, we next propose a novel submodular set function in a non-parametric

way by inferring the diversity from data automatically. In this proposed work, we design a special

submodular set functions that enables the discovery of a representative set of a frame from a video

and thereby avoiding only choosing visually similar consecutive video frames. Next, our novel HDP

prior to the state transition distribution of a HMM helps to automatically identify the optimal

number of frames required to consider from each abnormal video. This makes the number of

frames to be considered dynamic without needing to set any k that may have otherwise resulted in

the suboptimal performance.

3.1 Distributionally Robust Optimization for Deep Kernel Multi-

ple Instance Learning

In MIL, there is a collection of positive and negative bags where each bag consists of several instances.

A bag is considered to be positive if at least one of the instances is positive and negative if none of

the instances are positive [27]. Among many other useful applications, such as text classification

and protein identification, MIL offers a particularly powerful tool to some important computer

vision tasks, such as video anomaly detection, where the models have to solely rely on video level

labels due to the lack of expensive frame-level labels [129,160].

Various approaches have been developed to tackle the MIL problem by treating it as a missing-

label problem [146,163]. Those classical MIL techniques focus on the most positive instance (often

referred to as the witness), instead of simultaneously considering multiple instances from a positive

bag. In particular, the most positive instance is the one mainly responsible for determining the

label of a bag [62]. For instance, in SVM based techniques [3], they maximize the margin of the

instance with the most positive confidence w.r.t. the current model. Different from other works, a

graph-based approach is developed to capture the interactions between instances within a bag and

thereby using the information of multiple instances [162].

For many MIL tasks such as video anomaly detection, it is important to capture the interactions

among frames in a video to correctly identify the abnormal frames given the temporal and spatial

relationship naturally embedded in the data [62]. Further, due to the lack of instance-level labels,

the model prediction may be much more uncertain and the uncertainty information is essential for

many critical domains (e.g., security surveillance) [47]. Gaussian processes (GP) offer a natural way

to capture the interactions among the instances through its covariance function. The Bayesian na-
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ture of GP outputs the predictive uncertainty in a principled way. In addition, as a non-parametric

model, GP allows the modeling power to scale well with the increase in the dataset. By leverag-

ing these modeling advantages, a number of GP based MIL models have been developed, where

maximum score from positive and negative bags are considered in the for model training [47,62].

However, there are two key limitations with using a maximum score. First, the presence of noisy

outliers may significantly impact the overall performance. This is because the defined objective

function solely focuses on an individual instance with the highest score from positive and negative

bags. Second, if a multimodal situation (e.g., multiple types of abnormal events in a single video)

presents, maximum score based approaches may only detect one type of positive instances due to

its inability to consider multiple instances from a single bag in the training process.

To address these limitations, we propose a general GP mixture framework that assigns a non-zero

probability to each instance in a bag through a latent mixture model. By adding a top-k constraint,

it is equivalent to choosing the top-k most positive instances in a bag, making it more robust

to outliers and multimodal scenarios. Most importantly, we further integrate a Distributionally

Robust Optimization (DRO) constraint that relaxes the limitation of specifying a fixed k value. By

combining DRO with a Bayesian non-parametric GP, this is the first work that develops a Bayesian

DRO model for MIL. To ensure the prediction power over high-dimensional data that are common

in MIL problems, we augment the GP kernel with fixed basis functions by using a deep neural

network to perform deep kernel (DK) learning [149]. As a result, it learns adaptive basis functions

so that the covariance structure of high-dimensional input data can be accurately captured. Finally,

different components of the proposed DRO-DKMIL model are jointly optimized through stochastic

variational inference (SVI) that leverages local kernel interpolation and structure exploiting algebra

[147] to conduct end-to-end model training, ensuring good efficiency and scalability. In summary,

our key contribution is fourfold:

• a general GP mixture framework for MIL that gives flexibility for each instance to take

non-zero membership probability in each bag,

• a novel Bayesian DRO MIL model that ensures the participation of multiple instances from

each bag in model training, making the prediction robust to outlier and multimodal scenarios,

• the first approximate inference algorithm to train the new Bayesian DRO model in MIL

setting,

• state-of-the-art prediction performance that outperforms all existing competitive MIL models.
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Experiments are conducted on three challenging real-world video anomaly detection datasets with

varied scales: UCF-Crime [129], ShanghaiTech [82], and Avenue [87]. Results show that DRO-

DKMIL achieves best performance in all cases.

3.1.1 Related Work

Work related to Multiple Instance Learning (MIL) and Distributionally Robust Optimization

(DRO) are described in Section 2. In this section, we will be describing the work related to

deep kernel learning.

Deep Kernel Learning (DKL). DKL provides a powerful learning paradigm by combining the

non-parametric flexibility of kernel methods (e.g., GP) and representation learning ability of deep

neural networks. State-of-the-art performance has been demonstrated over multiple supervised

learning tasks [147,149]. One of the key challenges comes from the computation bottleneck of GP

which can work only for a few thousand data points [150]. Such issue has been alleviated through

structure exploiting techniques [21,26,139], local kernel interpolation [61], and other advances in this

field. Building upon these efforts, we develop a stochastic variational inference (SVI) algorithm to

conduct end-to-end model training to ensure good efficiency and scalability under the MIL setting.

3.1.2 DRO Deep Kernel Multiple Instance Learning (DRO-DKMIL)

We consider that each bag has a fixed number of instances. For a positive bag, there is at least

one positive instance whereas for a negative bag all instances are normal. Let X = {x1, .....,xN}
be a set training instances. Each xn ∈ RD is a D-dimensional feature vector associated with bag

b ∈ [1, B] with corresponding label tb indicating its bag type, where +1 denotes positive and −1

otherwise. Further, consider y = {y1, ..., yB} be the set of predicted labels. Table 3.1 shows the

notations used in this section.

DRO-GP MIL

For most MIL problems, it is essential to capture the interactions among instances in the same

bag (e.g. frames in a video) as the spatially and/or temporally close instances usually belong to

the same event, which should be assigned the same labels. Further, capturing the uncertainty

associated with each instance is crucial in MIL tasks such as anomaly detection from surveillance

videos. Gaussian Processes (GP) naturally capture the interactions among instances through its
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Table 3.1: Symbols with Descriptions

Notation Description

X Set of training bag instances

B Total number of bags in a training set

y Set of predicted probabilities of B bags

tb Binary label for bag b

fb Set of functional values of instances in a bag b

zb Indicator variable drawn from a multinomial distribution

n Total number of instances in each bag

Q DNN final layer (L) feature representation of each bag instance

w DNN parameters

uj Inducing variables for jth GP

µj Posterior distribution mean for uj

Sj Posterior distribution co-variance matrix for uj

A Mixing parameter to combine J-GPS functional values

U Set of inducing variables for J GPS

Z Set of multinomial variables for bags B

F Set of functional values for bags B

M Sparse interpolation matrix

rb Posterior distribution parameter for zb

η Hyper-parameter used to define the ball radius in DRO framework

T Total number of likelihood samples used

P Mini-batch of bag size

L Lower diagonal matrix with real and positive entries

πb Prior distribution parameter for zb

N Total number of segments in a training set

D Feature dimension of each bag instance

N Gaussian distribution

Eq Expectation with respect to the distribution q

KA,B Kernel matrix computed between A and B

R Total number of inducing inputs considered in each GP

L(q) Marginal likelihood lower bound with variational distribution q⊗
Kronecker decomposition operator
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covariance function and its non-parametric flexibility allows the modeling power to scale well with

the increase of data. Being a Bayesian model, GP also directly outputs the predictive distribution

that quantifies the prediction uncertainty in a principled way.

We propose a GP based mixture framework to address the limitation of existing models as discussed

earlier. By integrating GP with a latent mixture model, the proposed framework assigns a non-zero

membership probability for each instance present in a bag resulting in robustness to the outlier and

multimodal scenarios.

We start by defining the bag level likelihood:

p(yb|fb, zb) =

n∏
i=1

{
1

1 + exp(−tbfbi)

}zbi
(3.1)

p(zb|πb) =

n∏
i=1

πzbibi , πbi ≥ 0,

n∑
i

πbi = 1 (3.2)

where zb is an indicator variable drawn from a multinomial distribution parameterized by πb, ∀b ∈
[1, B]. For a negative bag with tb = −1, the model is expected to output a small score fbi (which

can be negative) to maximize the bag level likelihood. In contrast, fbi will be high for a positive

bag with tb = 1. Since πbi ≥ 0, each instance has a chance to be predicted as positive.

We denote Pπb,n as an uncertainty set, defining the constraints over the mixing coefficient πb.

Without adding any additional constraints other than being non-negative and summing to one, we

have Pmaxπb,n
:= {πb ∈ Rn : πTb 1 = 1, 0 ≤ πb}. It turns out performing multiple instance learning

under the GP mixture framework with constraints Pmaxπb,n
is equivalent to a maximum score based

model.

Lemma 3.1. With Pmax as constraints, MIL under the GP mixture framework only considers the

most positive instance (equivalent to maximum score MIL).

Proof. Marginalizing over zb leads to the marginal likelihood of the bag-level label:

p(yb|fb,πb) =
n∑
i=1

πbi
1

1 + exp(−tbfbi)
(3.3)

Denote p(fbi) = 1
1+exp(−tbfbi) and maximizing (3.3) over πb leads to

πbi =

{
1, if p(fbi) = maxi∈b p(fbi)

0, otherwise
(3.4)
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Thus, the bag level likelihood is given by:

p(yb|fb) = max
i∈b

p(fbi) (3.5)

which only relies on the most positive instance [62].

To more effectively involve multiple instances, we can instead consider a top-k constraint, given by

Ptop−kπb,n
:= {πb ∈ Rn : πTb 1 = 1, 0 ≤ πbi ≤

1

k
} (3.6)

where k indicates the number of instances being potentially positive.

Lemma 3.2. With Ptop−k as constraints, MIL under the GP mixture framework considers the

top-k most positive instances (equivalent to average top-k MIL).

Proof. Maximizing (3.3) under Ptop−kπb,n constraints gives

πbi =

{
1
k , if p(fbi) ≥ p(fb[k])
0, otherwise

(3.7)

where p(fb[k]) indicates the instance with the kth highest value. Thus, the bag level likelihood is

p(yb|fb) =
1

k

k∑
i=1

1

1 + exp(−tbfb[i])
(3.8)

which is collectively determined by the top-k instances with largest scores.

Lemma 3.2 shows that by leveraging the top-k constraint, the GP mixture framework involves

the top-k most positive instances that can effectively overcome outlier and multimodal situations.

However, a remaining issue is how to set a suitable k, which can be quite challenging in practice.

More importantly, since k takes discrete values, the prediction performance may fluctuate signif-

icantly when k changes. To address this fundamental challenge, we propose to integrate a DRO

constraint into the GP mixture framework, which can essentially function as a soft version of the

top-k constraint, thus removing the need to specify a fixed k value while ensuring a more stable

(and robust) prediction. More specifically, the DRO constraint restricts πb within a certain ball

with a center given by the uniform distribution [98]:

PDROπb,n
:= {πb ∈ Rn : πTb 1 = 1,πb ≥ 0, Df (πb||

1
n

) ≤ η} (3.9)

where η controls the radius of a ball and Df is the f-divergence. A large η gives more flexibility on

πb, which allows it to deviate significantly from the uniform distribution so that one single instance
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may play a dominant role in the bag level likelihood (equivalent to maximum score MIL when

η →∞); a small η leads to near equal probability for each instance (equivalent to averaging overall

all instances in a bag when η → 0).

Deep Kernel MIL

While a GP has the non-parametric flexibility along with its Bayesian nature to capture model

uncertainty, it is restricted by the kernels with fixed basis functions that are less effective when

applied to high dimensional data. To address this issue, one viable solution is to integrate a deep

neural network (DNN), which uses adaptive basis functions to learn the rich representations from

high dimensional input data.

In terms of network architecture, the proposed deep kernel multiple instance learning consists of

three main components: (1) deep neural network, (2) additive Gaussian Processes, and (3) mixing

model. For each instance (xi ∈ RD) present in a bag b, we perform non-linear transformation using

a mapping function h(x,w) parameterised by neural network weights w to generate Q-dimensional

features at the final layer L, i.e., hL1i , ..., hLQi . Next, we use J Gaussian Processes with corresponding

base kernels k1, ..., kJ applied to the subset of those extracted features constituting an additive GP

model [150]. As the base kernels act on low dimensional inputs, local kernel interpolation (for

scalability) become more natural. The resulting GP functional values from J-GPS (f1i , ...., f
J
i ) are

linearly mixed by a training matrix A ∈ RJ×1 to produce a single functional value fi. Finally

collecting the functional values for all instances present in a bag b, we arrive at the bag-level

likelihood in (3.1).

For the jth Gaussian process in the additive GP layer, let f j = {f ji }Ni=1 be the latent functions

on the input data features for all the instances in a bag. By introducing a set of latent inducing

variables uj indexed by m inducing inputs [109] (denoted as R), we have

p(f j |uj) = N (f j |Kj
X,RK

j−1
R,Ru

j , K̂j), K̂ = KX,X −KX,RK
−1
R,RKR,X (3.10)

where X ∈ RN×Q is the feature representation learned from N training instances through DNN.

Performing the local interpolation approximation (similar to [150]) KX,X ≈ MKR,RM
T , K̂j be-

comes zero, yielding f j = KX,RK
−1
R,Ru = Mu, where M is N ×m matrix of interpolation weights

that can be extremely sparse with the relationship KX,R ≈ MKR,R. This means with the help of

local interpolation along with inducing points, we can obtain a deterministic relationship between

f and u governed by the sparse matrix M.

Denote U = {uj}Jj=1 as the collection of inducing variables for J additive GPs along with the pos-
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terior distribution as q(U) =
∏J
j=1N (uj |µj ,Sj). Further, let q(zb|rb) =

∏n
i=1 r

zbi
bi be the posterior

distribution for a multinomial variable corresponding to a bag b paramerized by rb. To update:

(1) variational parameters ({µj ,Sj}Jj=1, {rbi}ni=1; ∀b ∈ [1, B]) (2) GP kernel hyper-parameters, (3)

{πbi}ni=1;∀b ∈ [1, B], (4) mixing coefficients A, and (5) neural network parameters w, we optimize

a lower bound of the marginal likelihood using an efficient stochastic variational procedure.

Stochastic Variational Inference

Exact inference and parameter learning with a non-Gaussian bag level likelihood is intractable.

We develop the first stochastic variational inference method that combines a fast sampling scheme

to work on a mini-batch setting to ensure efficient and scalable end-to-end training of the new

DRO-DK-MIL model.

We start by defining the log marginal bag-level likelihood and applying Jensen’s inequality

log p(y) = log

∫
p(y,Z,F,U)dZdFdU ≥ Eq[log p(y,Z,F,U)]− Eq[log q(Z,F,U)] (3.11)

We formally define the lower bound as

L(q) =∂ Eq[log p(y,Z,F,U)]− Eq[log q(Z,F,U)]

= Eq[log p(y|Z,F)]−KL(q(Z)||p(Z))−KL[q(U)||p(U)] (3.12)

where KL(P ||Q) is the KL divergence between two distributions P and Q.

As likelihood function presented in (3.12) factorizes over each bag, i.e., p(y|Z,F) =
∏B
b=1 p(yb|fb, zb),

we can optimize the lower bound in a minibatch setting. The variational parameters corresponding

to q(U), kernel hyper-parameter parameters, mixing coefficients A, and neural network parameters

are updated using SGD through the noisy approximation of the gradient of the lower bound on

mini-batches, as detailed below.

Update q(Z). To update q(Z), we further simplify (3.12) by absorbing terms that do not depend

on Z to a constant term,

L(q(Z)) =∂ Eq(U)q(Z)[log p(y|F,Z)]− Eq(Z)[log(q(Z))] + Eq(Z)[log(p(Z))] + const (3.13)

By taking derivative with respect to rbi, we have

rbi = πbi exp(Eq(U)[log(p(tbfbi))]), ∀i ∈ [1, n] (3.14)
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As long as πbi ≥ 0, we have rbi ≥ 0. To satisfy the second constraint
∑n

i=1 rbi = 1, we normalize it

as

rbi = rbi/
n∑
j=1

rbj (3.15)

Update π. To update πb, we focus on Eq(Z)[log(p(Z))], which is the only term as a function of πb

and proceed as

max
πb

Eq(z)

n∑
i=1

zbi log(πbi) = max
πb

n∑
i=1

rbi log(πbi) (3.16)

where Eq(Z)[zbi] = rbi,∀i ∈ [1, n]. It should be noted that maximization of the above objective

function is performed under the DRO constraints in (3.9).

Update q(U). Due to the non-Gaussian bag-level likelihood function in (3.12), expectation can-

not be evaluated analytically. Therefore, we use a sampling method, which is proven to be highly

efficient with structured reparametrization, local kernel interpolation, and structure exploiting al-

gebra [147, 150]. Using the local kernel interpolation, the latent function f is expressed as a de-

terministic local interpolation of the inducing variables u and therefore, allowing us to make the

difficult posterior approximation over f easier. As such, we can perform direct reparameterization

over q(U) and compute f directly through interpolation f t = Mut (for notation simplicity, we have

omitted the index j corresponding to jth GP). Usinig Cholesky decomposition for the covariance

matrix of q(U): S = LTL, we have the sampling procedure:

ut = µ+ Lϵt, ϵt ∼ N (0, I) (3.17)

where each step of the above standard sampler has a complexity of O(m2) with m inducing points.

As the above sampling procedure requires a matrix-vector product, it may become expensive with

many inducing points which are required for large datasets with a high dimensional input [150].

To further scale up the sampling procedure, we can take the advantage of both Toeplitz and

circulant structure along with the Kronecker decomposition on L =
⊗D

d=1 Ld with D being the

input dimension of the base kernel.

As both KL divergence terms have a closed form, only the bag-level likelihood function requires

sampling for the expectation computation. With T samples of u and mini-batch of bag size P , we

can estimate the marginal likelihood lower bound as:

L(q) ≈ 1

TP

T∑
t=1

P∑
b=1

n∑
i=1

ztbi log

(
1

1 + exp(−tbf tbn)

)
−KL[q(U)||p(U)]−KL[q(Z)||p(Z)] (3.18)
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Table 3.2: Video Level Distribution on Different Datasets

Split ShanghaiTech UCF-Crime UCF-Crime Multimodal Avenue

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

Train 175 63 810 800 150 150 13 17

Test 155 44 150 140 30 30 3 4

where we can efficiently compute the KL(q(U)||p(U)) term and its gradient with the Kronecker

method (details are provided in the Appendix).

Update other parameters. Update of other parameters, including the mixing coefficients A,

kernel hyperparameters, variational parameters {µ, {Ld}Dd=1}, and neural network parameters, can

be achieved through gradient decent as detailed in the Appendix.

3.1.3 Experiments

We conduct extensive experiments to evaluate the proposed DRO-DKMIL model. We first introduce

three real-world video datasets for anomaly detection. Anomaly detection is regarded as one of

the most challenging computer vision tasks under the MIL setting. Next, we demonstrate the

overall performance of DRO-DKMIL and compare it with existing state-of-the-art video anomaly

detection models. Further, we assess the effectiveness of our proposed model in multimodal and

outlier scenarios. We also provide a qualitative analysis to justify the superior performance of our

model. Finally, we investigate the impact of the key parameters to the model performance. The

GitHub repository that includes the source code and detailed documentation can be accessed via

this link.

3.1.4 Datasets and Experimental Settings

Datasets. Our experiments involve three anomaly detection video datasets of different scales:

ShanghaiTech [90], Avenue [87], and UCF-Crime [129]. On those videos, the assumption is that

in the training set, frame level annotation is missing and only video level information (indicating

whether the video is of abnormal type or normal type) is available.

• ShanghaiTech consists of 437 videos with 330 normal and 107 abnormal videos. In the

original setting, all training videos are normal. To fit into our scenario, we follow the data

split in [159] to assign normal and abnormal videos in both training and testing sets.

https://github.com/ritmininglab/Distributionally-Robust-Optimization-for-Deep-Kernel-Multiple-Instance-Learning
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• Avenue consists of 16 training and 21 testing videos. We perform 80:20 split separately in

the abnormal and normal video sets to generate training and testing instances.

• UCF-Crime consists of 13 different anomalies with a total of 1900 videos: 1610 for training

and 290 for testing. In this dataset, frame labels are available only for the testing videos.

Table 3.2 shows how the videos are partitioned into the training and testing sets in each dataset.

Evaluation metric and model training. For evaluation, we report the frame-level receiver

operating characteristics (ROC) curve along with the corresponding AUC score, which captures the

robustness of the prediction performance at varying thresholds. For the Avenue and ShanghaiTech

datasets, we extract the visual features from FC7 layer of a pre-trained C3D network [138]. To

extract the features, we first re-size each video frame to 240 × 340 pixels and fix the frame rate

to 30fps. Next, we use a pre-trained C3D model to compute the C3D features for every 16-frame

video clip. This may yield a different number of clips (each clip having 2048 dimensional feature

vector) depending on the number of frames in each video. Thus, we fit any number of clips to the

32 segments by taking an average of clip features in a specific segment.

In terms of the DNN architecture, we follow the 2-dimensional neural network followed by the

GP base kernels. The first FC layer has 32 units followed by 16 units. We adopt a 60% dropout

regularization between FC layers along with the ReLU activation. For the UCF-Crime dataset, we

extract features using I3D network [13]. We uniformly sample 1512 frames and pass an 8-frame

video clip into the network. This yields 189 segment clips each with 1024 dimensional feature vector.

For this dataset, we use a 5-layer LSTM network, where each layer has 189 hidden units followed

by a batch normalization layer and FC layer of 16 nodes. Finally, base GP kernels are applied

to the DNN output features. In the uncertainty set of parameter π, we define the f-divergence as

a Kullback-Leibler (KL)-divergence. For hyper-parameter η, we conduct a grid search in a range

from 10−9 to 1.0 and find the one with best validation AUC score as the optimal η value. The

details about η value selection and its impact are provided in the Appendix. For DNN training, we

use SGD with a learning rate of 0.001 and l2 regularization with parameter λ = 0.001 whereas, for

variational parameters, mixing coefficient (A), and hyper-parameters, we use a learning rate of 0.1.

Performance Comparison

In our comparison study, we include baselines that are used in the video anomaly detection tasks.

We also compare with the maximum score based GP model [62] but augment it with deep kernel

learning to properly handle high-dimension data (referred as DK-MMIL). We further implement

the variational inference algorithm developed in [47] and refer to this model as VGPMIL. We also
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Table 3.3: Comparison of AUC Scores

Approach AUC (%)

UCF-Crime

Hasan et al. [46] (C3D) 50.60

Lu et al. [87] (C3D) 65.51

Lu et al. [87] (I3D) 61.98

Sultani et al. [129] (C3D) 75.41

Ilse et al. [52] (I3D) 76.52

Zhong et al. [159] (GCN (C3D)) 81.08

Zhong et al. [159] (TSNRGB) 82.12

Zhong et al. [159] (TSNOpticalF low) 78.08

Haußmann et al. [47] VGPMIL (I3D) 79.56

DK-MMIL (I3D) 82.32

DK-TKMIL (I3D) 82.66

DRO-DKMIL (I3D) 85.93

ShanghaiTech

Lu et al. [87] (C3D) 72.90

Zhong et al. [159] (GCN (C3D)) 76.44

Zhong et al. [159] (TSNRGB) 84.44

Zhong et al. [159] (TSNOpticalF low) 84.13

Ilse et al. [52] (C3D) 85.78

Haußmann et al. [47] VGPMIL (C3D) 87.78

DK-MMIL (C3D) 92.00

DK-TKMIL (C3D) 92.30

DRO-DKMIL (C3D) 94.39

Avenue

Lu et al. [87] (C3D) 62.14

Ilse et al. [52] (C3D) 72.39

Haußmann et al. [47] VGPMIL (C3D) 72.84

DK-MMIL (C3D) 73.93

DK-TKMIL (C3D) 75.12

DRO-DKMIL (C3D) 78.66

compare with the average top-k constraint as introduced in Lemma 2 (refer to as DK-TKMIL) with

a pairwise hinge loss (details are provided in the Appendix). In addition, for each dataset, we also

include other competitive models that have been applied to that dataset.

UCF-Crime. Table 3.3 shows the AUC scores of all competitive techniques. As can be seen,

DRO-DKMIL has superior performance compared to other existing techniques. The corresponding

ROC performance is shown in Figure 3.1 (a). As shown, DRO-DKMIL has higher TPR for all FPR
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Figure 3.1: ROC Performance on Three Video Datasets (a)-(c); Multimodal (d) and Outlier Pre-

diction (e)

below 0.5, which demonstrates the robustness of the approach.

ShanghaiTech. Besides the common baselines, we also compare our method with the recent GCN

based model using three feature extractors (C3D, TSNRGB, TSNOptimalF low) [159]. The result is

reported in Table 3.3. The corresponding ROC curves are shown in Figure 3.1 (b). The result

shows that DRO-DKMIL significantly outperforms other competitive methods.

Avenue. Table 3.3 summarizes the AUC scores on Avenue of the proposed approach along with

other techniques. The result confirms that DRO-DKMIL outperforms all existing techniques. The

corresponding ROC performance is shown in Figure 3.1 (c). Similarly, the proposed approach

achieves higher recall compared to other approaches.

Multimodal and Outlier Detection

In this section, we assess the effectiveness of the proposed DRO-DKMIL in outlier and multimodal

settings. For this, we create a multimodal scenario by extending the UCF-Crime dataset. For the

outlier scenario, we deliberately impose some outliers in the ShanghaiTech dataset and evaluate

the performance.

Multimodal Detection. The original UCF-Crime dataset does not explicitly consider the mul-

timodal scenario. Although it is natural to have multimodal scenario in the real-world videos (as

evidenced by the superior performance of the proposed model), it is hard to identify the actual

videos for this specific evaluation. In case of UCF-Crime, we have abnormal videos categorized into

different activity types. Therefore, we create a multimodal scenario by combining multiple abnor-

mal videos from different anomaly types. To create a multimodal scenario, we randomly select three

activity types. Then, we form a positive (abnormal) bag by concatenating three abnormal videos,

one video per activity type. To construct a normal bag, we randomly pick three normal videos

and concatenate them. In the process, the training bags are constructed using training videos only

and testing bags are constructed using testing videos only. The corresponding video statistics is

shown in the Table 3.2. Each bag is a concatenation of three videos yielding total 50 abnormal and
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50 normal bags in the training set. The testing set consists of 10 normal and 10 normal videos.

Table 3.4 reports the AUC scores and the ROC plot is shown in Figure 3.1 (d). We can observe

that the ROC curve from DRO-DKMIL clearly outperforms all baselines. This means, compared

to the baselines, our approach is more robust to the multimodal scenario at various thresholds.

Table 3.4: AUC on Multimodal and Outlier Detection

Approach AUC (%)

Multimodal Outlier

Lu et al. [87] (C3D) 58.67 72.90

Ilse et al. [52] (C3D) 66.85 85.65

Haußmann et al. [47] (C3D) 67.16 71.31

DK-MMIL (C3D) 72.44 62.89

DK-TKMIL (C3D) 72.75 92.61

DRO-DKMIL (C3D) 77.89 93.49

Outlier Detection. To test the robustness of the proposed approach with outliers, we extend the

ShanghaiTech dataset by explicitly including outliers. Specifically, we randomly select 120 segments

from abnormal videos and replace their features with points drawn from a standard multivariate

Gaussian distribution. As shown in Table 3.4, DK-MMIL suffers heavily by the outliers compared

to the proposed DRO-DKMIL. This is because, it is likely to have an outlier predicted as the

maximum prediction score from an abnormal video. As a result, the overall training process may

be heavily influenced by outliers. However, as our approach gives chance to other actual abnormal

segments as well in the training process, it makes the model robust to the outliers. It is also

noted that DK-TKMIL performs very well with outliers, which benefits from the top-k constraints.

However, setting a proper k value is highly challenging in practice and the prediction performance

fluctuates significantly with the change of k (see Appendix for details).

Qualitative Analysis

To get deeper insight regarding the effectiveness of our approach, we analyze videos where the pro-

posed DRO-DKMIL and maximum score-based DK-MMIL provide different predictions. Figure 3.2

shows abnormal frames from two videos in which DRO-DKMIL correctly predicts as abnormal

whereas DK-MMIL fails. The resulting prediction scores for all abnormal frames for the videos

Arrest001 and Explosion010 are shown in Figure 3.3. The prediction threshold (shown as a

horizontal line) in each approach is determined such that FPR is maintained at 0.3. As shown in

the video Arrest001, DK-MMIL fails to detect the abnormal frames near the transition phase.

Since transitioning frames may be far from the abnormal frame with the maximum prediction score,
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(a) Arrest001 (b) Explosion010

Figure 3.2: Abnormal Frames Identified by DRO-DKMIL but not DK-MMIL
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Figure 3.3: Abnormal Frame Prediction

DK-MMIL does not consider those types of abnormal frames during model training. However, for

the proposed DRO-DKMIL, it is more likely to involve these transitioning abnormal frames in the

training process. Thus, it can correctly identify similar frames during testing.

In the video Explosion010, DK-MMIL fails to correctly identify the abnormal frames that are

in the middle. This may be because more extreme abnormal frames of the explosion type may

only participate in the training process. As a result, the maximum score based approach may not

consider the frame as shown in Figure 3.2(b). However, the proposed approach may be more likely

to involve this type of abnormal frames as it allows the participation of multiple abnormal frames

from each abnormal video.

Uncertainty Analysis

Being a Bayesian model, the proposed DRO-DKMIL is able to accurately capture the prediction

uncertainty, which provides important complementary information for video anomaly detection.

The uncertainty score can guide a human decision maker to not only focus on the predicted positive

frames to examine the abnormality but also pay attention to the highly uncertain areas in the videos

that may also include important information to support decision-making. To show this, we use the

Avenue dataset and report the standard deviation (SD) output by DRO-DKMIL for each testing
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Figure 3.4: Uncertainty of Different Frames
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Figure 3.5: AUC Performance vs. η and Comparison with Average top-k

frame. We maintain FPR = 0.3 and identify all correct and incorrect instances. By setting a

threshold as 0.67, we identify 70 incorrect and 42 correct frames with a SD above the threshold.

This means a larger uncertainty score (i.e., sd) indicates a higher chance of prediction errors, which

is a desirable property.

Figure 3.4 shows the uncertainty associated with different frames in Avenue video Test-10. In the

video, the first 569 are normal frames, where the model has a relatively high confidence. After that

until frame 817, the transition occurs nine times between abnormal and normal frames. Therefore,

we observe much higher uncertainty. As the transition is rapid, the consecutive frames may look

very similar to each other, which may confuse the model, leading to a (correctly) predicted high

uncertainty score for those frames.

3.1.5 Impact of Key Model Parameters

Impact of η. We analyze the impact of the hyperparameter η in the AUC score for all datasets

(UCF-Crime, ShanghaiTech, Avenue, UCF Crime Multimodal, and ShanghaiTech outlier). For

the ShanghaiTech and ShanghaiTech outlier, we use 20% of the original testing set to construct

a validation set and use the rest to report the model performance. The propose of constructing

the validation set is to determine the optimal η value. To get robustness in the performance,
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we randomly choose the validation set 20 times producing 20 pairs of the validation-testing split.

Figures 3.5 (b) and (e) show the validation and testing AUC change for the randomly selected test-

validation pair from ShanghaiTech and ShanghaiTech Outlier datasets, respectively. For a lower

η value, the model allows the participation of most of the frames. As a result, the model tries

to make a prediction score of most of the frames from an abnormal video to be higher than from

a normal video, resulting in the misclassification of many normal frames from abnormal videos.

Therefore, we observe lower performance for a lower η value. As we increase η, the model limits

the participation of the frames from both abnormal and normal videos. This increases the chances

of including only abnormal frames while leaving out normal frames from abnormal videos in the

optimization process. As a result, the model learns to have a higher score for the abnormal frames

compared to all the normal frames, resulting in improvement in the performance. However, a

very high η value allows the participation of a very limited number of abnormal as well as normal

frames during the training process. As a result, the model may be highly influenced by outliers

and multimodal scenarios. Therefore, we can see the degradation in the performance for a high η

value.

For the UCF-Crime, Avenue, and Multimodal datasets, we directly report the performance in the

testing dataset, instead of using a separate validation set. For UCF-Crime, the use of a separate

validation set may not be effective because of the limited testing videos of a given type. Therefore,

similar to [129], we evaluate the testing performance with respect to η and report the one with the

best performance as the best η value. For the Avenue dataset, there are very limited testing videos,

so determining the η value using a separate validation set may not be feasible. As can be seen in

the Figures 3.5 (a), (c), and (d), the trend is similar to what we have observed in the ShanghaiTech

dataset for the same reason explained above.

Comparison with Average top-k. As proved in Lemma 2, by using a top-k constraint, the

proposed framework is equivalent to perform average top-k MIL. As the top-k most positive frames

are simultaneously considered by the training process, it can potentially handle the outlier and

multimodal scenarios as well. In this set of experiments, we further compare the proposed DRO-

DKMIL with the average top-k model (the deep kernel version is referred to as DK-TKMIL).

Figure 3.5 compares the AUC scores between DRO-DKMIL and DK-TKMIL while varying η and

k. We have three key observations: (i) With a properly chosen k, DK-TKMIL achieves a decent

prediction performance, especially when dealing with outliers, as shown in 3.5(e). (ii) DRO-DKMIL

achieves even better prediction performance. In all datasets, the test AUC curve of DRO-DKMIL

stays on top of DK-TKMIL for almost all different η and k values. (iii) In almost all datasets, the

AUC score of DK-TKMIL changes more significantly when compared with the AUC score change
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of DRO-DKMIL with η. In addition, η varies in a much wider range (i.e., 10−8 to 1) than the k

values. This clearly confirms the advantage of DRO-DKMIL over an average top-k model as setting

a proper k may be highly challenging. In addition, due to the discrete nature of k, the prediction

performance may fluctuate significantly when k changes. The DRO based constraint essentially

offers a soft version of the top-k constraint, which effectively addresses the limitation of an average

top-k model.

3.1.6 Conclusion

We present a general GP mixture framework for multiple instance learning under noisy and mul-

timodal settings. The proposed framework can flexibly incorporate multiple instances into the

bag-level likelihood so that the model can most effectively learn from these potentially positive

instances to make more robust predictions with the presence of outliers and different event types

in the same bag. A key modeling ingredient is a DRO constraint applied to the mixture model

parameters that acts as a soft top-k constraint to identify the subset of most positive instances

in a bag. We further augment the GP kernel by using a deep neural network that uses adaptive

basis functions to learn the rich representations from high dimensional input data. A stochastic

variational inference method combines a fast sampling scheme to work on a mini-batch setting

that ensures efficient and scalable end-to-end model training. Experiments on three challenging

real-world video anomaly detection datasets clearly demonstrate the effectiveness of the proposed

model.

3.2 Bayesian Nonparametric Submodular Video Partition for Ro-

bust Anomaly Detection

Anomaly detection from videos poses fundamental challenges as abnormal activities are usually rare,

complicated, and unbounded in nature [83]. Furthermore, segment or frame labels are typically

unavailable due to high labeling cost and therefore, the detection models have to rely on the weak

video level labels [129]. There are two main streams of work to handle the challenging anomaly

detection task. The first stream treats anomaly detection as an unsupervised learning problem [136].

It assumes that an event is considered to be abnormal if it deviates significantly from a predefined

set of normal events included in the training data [20, 142, 151]. However, a model trained on

limited normal data is likely to capture only specific characteristics present in the training dataset,

and therefore, testing normal events deviating significantly from the training normal events will
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lead to a high false alarm rate [159]. The second stream of research has attempted to address the

limitation by formulating the problem as multiple instance learning (MIL) that models each video

as a bag and its segments (or frames) as instances within the bag [129]. The goal is to learn a

model that can effectively make frame-level anomaly predictions relying on the video-level labels

during the training process. One effective MIL learning objective is to maximize the gap between

two instances having the respective highest anomaly scores from a pair of positive and negative

bags. The maximum score based MIL (referred as MMIL) model outperformed the unsupervised

approaches and achieved promising performance in real-world long surveillance videos [129].

However, there are two key limitations with the MMIL model. First, the presence of noisy out-

liers (different from other normal events) in both abnormal and normal videos may significantly

impact the overall model performance. This is because the objective function solely focuses on the

individual segments from both positive and negative bags, making the training process sensitive

to noises. Figure 1.2 (a-b) shows the example normal frames that are significantly different from

other normal ones in real-world surveillance videos. The first frame is from the burglary video that

looks similar to an abnormal frame from a video with an arson event. The second frame is from

the shooting video that looks similar to a fighting frame. Hence, they may serve as outliers in the

corresponding videos.

Second, if multiple types of abnormal events (referred to as multi-modal anomaly) present in a

single abnormal video, MMIL may only detect one type of anomaly while missing other important

ones due to the limitation of the objective function. Figure 1.2 (c)-(e) demonstrate three frames

with different anomaly types from an example video in the Avenue dataset [87]. In Figure 1.2 (c),

the person is running, which is regarded as a strange action in that context [87]. In (b), it shows a

person waiting in a place holding some object in the hand, and (c) involves a person walking in the

wrong direction. Therefore, the single video has multiple anomaly frames leading to a multimodal

scenario.

top-k ranking loss has been adopted in attempt to address the issues as outlined above. It maximizes

the gap between the mean score of the top-k predicted instances from a positive bag and that of

a negative one [116, 137]. However, there are inherent limitations by using a top-k loss. First, it

tends to be extremely sensitive to the selected k value. Figure 3.6 shows the highly fluctuating

detection performance from two real-world surveillance video datasets. Since there is no frame (or

segment) labels available during model training, setting an optimal k through cross-validation is

infeasible or highly costly. Furthermore, given the diverse videos, the number of abnormal instances

may vary significantly from one video to another implying we should have a different k for each
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Figure 3.6: Highly fluctuating detection performance w.r.t. k

video. Hence, applying the same k to all videos as in the existing approaches fails to capture the

nature of the data. Another serious but more subtle issue is that all (or most of) the selected k

segments may come from the same sub-sequence of the video. Using a consecutive set of visually

similar segments is less effective for model training, making it more likely to suffer from outlier and

multimodal scenarios. As a result, top-k approaches will fall short in providing a reliable detection

performance in most practical settings as evidenced by our experiments.

To address the fundamental limitations of existing solutions, we propose novel Bayesian non-

parametric construction of a submodular set function, which is integrated with multiple instance

learning to deliver robust video anomaly detection performance under practical settings. Instead

of choosing a set of instances with the highest prediction scores that are likely from a consecutive

sub-sequence, maximizing a specially designed submodular function can involve a more diverse set

of instances and expose the model to all potentially abnormal segments for more effective model

training. Furthermore, the submodular set function is constructed in a non-parametric way, which

induces a pairwise similarity among different segments in a video based on the diverse nature of

the data. More specifically, an infinite Hidden Markov Model with a Hierarchical Dirichlet prior

(HDP-HMM) [135] augmented with an enhanced self-transition is employed to partition a video

through dynamic non-parametric clustering of its segments. To more effectively accommodate the

dynamic and noisy nature of real-world surveillance videos, the emission process of the HMM is also

governed by a non-parametric mixture model to allow segments within the same hidden state to

have visual and spatial variations. This unique design is instrumental to discover temporally consis-

tent and semantically coherent hidden states that can be naturally interpreted as scenes. Pairwise

similarity among different segments are defined according to the state-component structure, which

leads to the construction of a submodular set function. We then develop a novel submodularity

diversified MIL loss function to ensure robust anomaly detection from real-world surveillance videos

with outlier and multimodal scenarios. Our key contributions include:

• Formulation of a novel submodularity diversified MIL loss that simultaneously extracts a

diverse set of potentially positive instances while maximizing the gap between the mean score of



CHAPTER 3. ROBUST MULTIPLE INSTANCE LEARNING FOR ANOMALY DETECTION35

these instances from a positive bag and a negative one, respectively.

• Bayesian non-parametric construction of the submodular set function that infers the

diversity from the video data to induce a pairwise similarity among different segments in a video

and provide an upper bound on the size of the diverse set.

• A greedy algorithm that leverages the state-component hierarchical structure resulting from

the non-parametric construction for submodular set function optimization and efficient model

training.

• Theoretical results to ensure strong performance guarantee of the greedy algorithm.

The proposed approach achieves the state-of-the-art robust anomaly detection performance on

real-world surveillance videos with noisy and multimodal scenarios.

3.2.1 Related Work

Encoding and sparse reconstruction-based approaches have been employed for anomaly detection,

assuming that abnormal events are rare and deviate from normal patterns. They aim to capture the

normal patterns using models, such as Gaussian processes (GPs) [76] and HMMs [66], to identify

anomalies as outliers based on the reconstruction loss. Sparse representation-based approaches

construct a dictionary for normal events and identify the events with the high reconstruction error

as anomalies [87]. Recent approaches consider both abnormal and normal events in the training

process. For video anomaly detection, since only video-level labels are assumed to be available

during model training [48], MIL offers a natural solution by modeling each video as a bag and

the associated segments (frames) as instances of the bag. Sultani et al. proposed an MIL based

approach that enables to maximize the gap between highest prediction scores from a positive and

negative bags, respectively [129] . However, this maximum score based MIL model (i.e.,, MMIL)

is insufficient to handle outlier and multimodal scenarios as discussed earlier.

top-k ranking loss based MIL models have been developed to address the limitations of the MMIL

model [116,137]. These models produce state-of-the-art detection performance given that a suitable

k value can be assigned in advance. However, as demonstrated earlier, the detection performance of

such models is highly sensitive to the chosen k value. Meanwhile, given the diverse nature of videos,

applying the same k value to all the videos is sub-optimal. More importantly, since instance level

labels are not available during training time, choosing a single k value through cross-validation is

infeasible or incurs a high annotation cost. Distributionally Robust Optimization (DRO) has been

used to convert the top-k set into an uncertainty set that allows the model to focus on instances
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Figure 3.7: Output of the top-k based approach in a video from Avenue datase (missing some of

the abnormal segments in top-k).

in proportion to their prediction scores [116]. This is equivalent to assigning soft membership to

involve instances into the MIL loss function. However, the size of the uncertainty set is controlled

by the radius (i.e.,, η) of the uncertainty ball, which needs to be manually set. Furthermore, the

model may put more focus on a set of consecutive segments with the highest prediction scores and

ignore some other potentially positive segments.

The proposed approach constructs a novel submodular set function in a non-parametric way by

inferring the diversity from data automatically. By jointly optimizing the submodular function

and the MIL loss, it automatically chooses a diverse set of segments and lets the model better

differentiate these (potentially positive) segments from those of a negative bag to ensure good

detection performance.

3.2.2 Methodology

Following the standard MIL assumption, we consider, for a positive bag, there is at least one

abnormal segment whereas, for a negative bag all segments are of normal types.

Preliminaries

Let x+
i be the ith segment in the positive bag Bpos and x−

j indicates the jth segment in the negative

bag Bneg. Also consider n as the total number of instances per bag. The maximum score based

MIL (MMIL) model tries to maximize the gap between the maximum prediction score from positive
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(a) Normal (b) Abnormal (c) Abnormal (d) Normal (e) Abnormal

Figure 3.8: Example frames from different scenes in an explosion video from UCF-Crime: (a-b)

scene 1, (c) scene 2, (d-e) scene 3

bag and that from the negative bag [129]:

L(Bpos,Bneg) =
[
1− max

i∈Bpos

(f(x+
i )) + max

j∈Bneg

(f(x−
j ))
]
+

(3.19)

where f(x+
i ) (or f(x−

j )) is the prediction score of x+
i (or x−

j ) and [a]+ = max{0, a}. As mentioned

earlier, MMIL is less effective to handle outlier and multimodal scenarios. The top-k ranking loss

partially addresses the limitation of MMIL by maximizing the gap between an average of k highest

segment predictions from the positive bag and maximum segment prediction score from a negative

bag:

L(Bpos,Bneg) =
[
1− 1

k

k∑
i=1

f(x+
[i]) + max

j∈Bneg

f(x−
j )
]
+

(3.20)

where the positive bag segment predictions are sorted in a non-decreasing order, i.e.,, f(x+
[1]) ≥

... ≥ f(x+
[k]). Table 3.5 demonstrates the important symbols used in this section.

There are two major issues associated with the top-k ranking loss. First, choosing an optimal k

value is a key challenge as the number of abnormal instances may vary significantly from one video

to another implying different k value for each video. Second, all the selected top-k instances may

come from same sub-sequence of the video. Including all those visually similar instances does not

contribute much in the model training process. Furthermore, concentrating only on a specific sub-

sequence may make the approach less effective to handle multimodal and outlier scenario. Figure

3.7 presents the output of the top-k based model in the Avenue dataset. It can be seen that the top-

k based approach picks the consecutive video segments while missing quite a few other abnormal

frames.
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Table 3.5: Symbols with Descriptions

Notation Description

Bpos Positive bag (video)

Bneg Negative bag (video)

n Number of segments in each bag

x+
i Segment in a positive bag

x+
[i] ith largest prediction segment in a positive bag

x−
j Segment in a negative bag

M Feature dimension of each video segment

w Network parameters

b Network bias

k Number of segments considered in the top-k formulation

η Learning rate

C+ Set of instances from positive bag involve in model training

G0 Base distribution in DP

γ Concentration parameter for the distribution G0
βk Weight associated with the kth atom

ϕk Atom k drawn from the distribution H

Gj Transition probability distribution of jth state

π̂jl Stick breaking weight associated with lth atom in jth group

α Concentration parameter for π̂j

ϕjl lth atom corresponding jth group

βk Stick breaking weight corresponding to atom ϕk

γ Concentration parameter for βk

ρ Parameter defining the self transitioning

zi Scene assignment for the ith segment in a video

si Mixture component assignment for the ith segment in a video

N Multivariate Gaussian distribution

µk,t Mean of the kth state, tth mixture component

Σk,t Covariance of kth state, tth mixture component

Si,j Pairwise similarity between ith and jth segments

F (C) Submodular set function

f∗s Maximum output score among segments assigned to the same cluster

i∗s Index of the representative segment

Ĉ+ Representative set constructed using the greedy algorithm

ϵ Threshold to exclude segments with low prediction score from the representative set

κ Upper bound of number of representative segments
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Bayesian Non-parametric Submodular Set Function Construction

The proposed Bayesian non-parametric submodular video partition (BN-SVP) approach offers a

novel integrated solution to address the above two fundamental challenges simultaneously. In

particular, since submodular set functions provide a natural measure for diversity, we design a

special submodular set function that enables discovery of a representative set of segments from

a video. This avoids only choosing visually similar consecutive video segments like in the top-

k approach, which enhances the model’s exposure to potential abnormal instances during model

training. As a result, the model’s capability to handle multimodal and outlier scenarios can be

effectively improved.

However, maximizing a submodular set function still requires to specify the size of the set. As

mentioned above, choosing a set with an optimal size in video anomaly detection is highly chal-

lenging. To this end, we propose a novel Bayesian non-parametric construction of the submodular

set function. The non-parametric construction leverages both visual features of the video segments

and their temporal closeness to derive a similarity measure that allows us to define a submodular

set function F (C+), where C+ represents a subset of segments in a video. The size of C+ is automat-

ically determined through Bayesian non-parametric analysis of the video. Intuitively, most videos,

especially those with anomalies, usually consist of multiple scenes, where each scene is comprised

of a consecutive set of visually similar segments. Figure 3.8 shows the example frames from three

different scenes in a video that records an explosion event. Ideally, if a video could be partitioned

based on these scenes, we can choose representative (and potentially positive) segments from each

scene. Such information can significantly facilitate the optimization of the submodular set function.

However, both the number and the types of the scenes are unavailable during model training.

The proposed BN-SVP addresses the above issue through non-parametric partition of a video. It

builds upon and extends an HDP-HMM model that places a Hierarchical Dirichlet Process (HDP)

prior on the state transition distribution of a Hidden Markov Model (HMM) model [135]. By

using an HMM to model a video (as a sequence of segments), each discovered hidden state can be

naturally interpreted as a scene in the video. The HDP prior allows us to determine the optimal

number of states (i.e.,, scenes) according to the nature of the data. However, real-world videos

may be highly noisy and directly using an HDP-HMM model may extract too many scenes with

less significant visual characteristics (e.g.,, spatial changes of objects or addition/removal of a

small number of objects). To address this issue, we follow the sticky HDP-HMM to encourage a

stronger self-transition of a state [36]. This will result in temporal persistence of states to produce

longer and semantically coherent scenes. To further accommodate spatial changes or variations
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in certain objects, we allow the emission distribution to follow another non-parametric DP that

automatically determines the number of mixture components (i.e.,, sub-scenes) within the same

scene. For example, scene 1 in Figure 3.8 is comprised of two sub-scenes: the first with a clear sky

and the second with smoke in the sky.

More specifically, consider a collection of hidden states (i.e., scenes in a video), the transition

probability of state j to other states is governed by a DP:

Gj =
∞∑
l=1

π̂jlδϕ̂jl , π̂j ∼ GEM(α) (3.21)

where GEM(α) is formed through a stick breaking construction process with parameter α [135],

ϕ̂jl is drawn from a base distribution G0, which follows another DP

G0 =
∞∑
k=1

βkδϕk , β ∼ GEM(γ), ϕk ∼ H (3.22)

Because of the discrete nature of G0, there can be multiple ϕ̂jl’s taking an identical value of ϕk.

Considering the unique set of atoms ϕk, we can rewrite Gj as

Gj =

∞∑
k=1

πjkδϕk , πj ∼ DP(α,β), ϕk ∼ H (3.23)

Given the highly dynamic and noisy nature of many real-world surveillance videos, directly applying

the standard HDP-HMM model to partition a video may result in many redundant scenes and

rapidly switches among them. This is problematic in our setting in which it is critical to infer

semantically coherent scenes along with a slower transition among them. As a result, it is essential

to ensure temporal persistence of the discovered scenes [36]. This can be achieved through enhanced

self transitions. In particular, the transition probability of the j’s state is augmented by

πj ∼ DP

(
α+ ρ,

αβ + ρδj
α+ ρ

)
(3.24)

This has the effect of increasing the expected probability of staying in the same state.

E[πjk|β] =

{
αβj+ρ
α+ρ if k = j
αβk
α+ρ , otherwise

(3.25)

To allow certain levels of variations within the same scene and accommodate the highly dynamic

nature of a video sequence, we propose to model the emission process using a mixture distribution
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governed by another non-parametric DP. This design offers three unique advantages. First, it

further ensures the temporal persistence of a scene as for a segment with less significant visual

differences, it can stay in the same scene by switching to a different mixture component instead

of transitioning to another (redundant) scene. Second, it offers a fine-grained partition of the

video sequence, which is instrumental to separate abnormal segments (e.g.,, frames (b) and (e)

in Figure 3.8) from normal ones (e.g.,, frames (a) and (d) in Figure 3.8) that share a common

background. Last, the number of mixture components is automatically determined by the DP

(e.g.,, scenes 1 & 3 have two mixture components while scene 2 only has one).

For the k-th scene, there is an unique stick-breaking distribution ψk ∼ GEM(τ) that defines the

weights of the mixture components within the scene. Then, given the scene and mixture component

assignment (zi = k, si = t) of a segment x+
i in a video, it is drawn from a specific multivariate

Gaussian: N (µk,t,Σk,t).

Posterior inference of the augmented HDP-HMM model with a DP mixture for emission can be

achieved through direct assignment [135] or blocked sampling with an increasing mixing rate [32].

Hyper-parameters can also be inferred by placing a vague prior on them and conduct Gibbs sam-

pling.

The scene and component assignments of BN-SVP induces a pairwise similarity among segments

in a video: {
Si,j = (x+

i )⊤Σ−1
zi,six

+
j if si == sj ∧ zi == zj

Si,j = 0 otherwise
(3.26)

It is worth to note that the similarity between two segments x+
i and x+

j is evaluated using the learned

feature representations (through a DNN) instead of the raw features. The induced similarity allows

us to define a submodular set function summarized by the follow proposition.

Proposition 3.1. Let κ denote the number of unique mixture components across all the discovered

states in a bag Bpos and C ⊂ Bpos is a subset of Bpos with size κ. Given the BN-SVP induced

pairwise similarity defined in (3.26), the following function is a submodular set function:

F (C) =
∑
i∈Bpos

max
j∈C

Si,j (3.27)

Based on the definition of Si,j as shown above, it is straightforward to show that F (C) is a special

instance of the location facility function [79], which is submodular. Since each mixture component

captures a unique sub-scene, maximization of F (C) can extract a diverse set of segments that best

represent the all the scenes (and sub-scenes) in the entire video.
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By further integrating the margin loss given in (3.20), we achieve a submodularity diversified MIL

loss:

min
w,C+∈Bpos,|C+|≤κ

L(C+)− λF (C+) (3.28)

where the margin loss is defined over instances in a set C+ with size no larger than κ:

L(C+) =
[
1− 1

|C+|
∑
i∈C+

f(x+
i ) + max

j∈Bneg

f(x−
j )
]
+

(3.29)

In essence, C+ includes the set of instances in a positive bag that participate in the model training.

The constraint |C+| ≤ κ has the effect of excluding some representative segments from the margin

loss as these segments are less likely to be abnormal (e.g.,, with a very low predicted score).

Including these segments will increase the margin loss and coefficient λ controls the balance between

the margin loss and the diversity among the chosen segments.

Greedy Submodular Function Optimization

We propose a greedy algorithm for optimizing the submodular function in (3.27) to ensure efficient

model training. The proposed algorithm leverages the special structure of the state and mixture

component space resulted from the HDP-HMM partition of the video segments. The performance

guarantee of the greedy algorithm is ensured by our theoretical result presented at the end of this

section.

Recall that we use si to denote the mixture component of segment x+
i . Let f∗s denote the maximum

score among all the segments assigned to the same mixture component and i∗s be the index of the

corresponding representative segment:

i∗s = arg max
∀i:si=s

f(x+
i ), f∗s = f(x+

i∗s
) (3.30)

We construct a representative set Ĉ+ as follows. Let Ĉ+ = Φ and for each mixture component s,

we set {
Ĉ+ ← Ĉ+ ∪ {i∗s}, if f∗s ≥ ϵ
Ĉ+ ← Ĉ+, otherwise

(3.31)

where ϵ is a threshold to exclude segments with a low prediction score, which plays an equivalent

role as constraint |C+| ≤ κ in (3.28). In our experiments, we use ϵ equal to the output of the

segment staying in the 35th percentile among video specific segments so as to avoid skipping any
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potential abnormal segments. Once a representative set Ĉ+ is constructed, model training can

proceed by solving the following MIL loss:

min
w

[
1− 1

|Ĉ+|

∑
i∈Ĉ+

f(x+
i ) + max

j∈Bneg

f(x−
j )
]
+

(3.32)

Given the state and mixture component assignment of each segment in a video, the representative

set can be quickly constructed by sorting segments within each component according to their pre-

dicted scores and choosing the representative segment from each component by comparing its score

with the threshold ϵ. Next, we provide a strong theoretical guarantee that the greedy algorithm

can ensure the inclusion of a diverse set of segments for model training.

Theorem 3.3. The representative set based MIL loss given in (3.32) is equivalent to the submod-

ularity diversified MIL loss given in (3.28). Furthermore, using the proposed greedy algorithm to

locate the κ representative segments essentially provides a κ-constrained greedy approximation to the

maximization of the submodular set function F (C). As a result, the obtained solution is guaranteed

to be no worse (1− e−1) of the optimal solution.

The detailed proof is provided in the Appendix.

3.2.3 Experiments

We conduct extensive experiments to evaluate the effectiveness of the proposed BN-SVP approach.

Through these experiments, we aim to demonstrate: (i) outstanding anomaly detection perfor-

mance by comparing with competitive top-k, MIL, and other video anomaly detection models, (ii)

robustness to outlier and multimodal scenarios, and (iii) deeper insights on the better detection

performance through a qualitative study.

3.2.4 Datasets and Experimental Settings

Our experimentation includes three video datasets of different scales: ShanghaiTech [90], Avenue

[87], and UCF-Crime [129]. Table 3.2 in the Appendix shows how the videos are partitioned into

the training/testing sets in each dataset.

• ShanghaiTech consists of 437 videos with 330 normal and 107 abnormal videos. In the original

setting, all training videos are normal. To fit into our setting, we follow the data split in [159] to

assign normal and abnormal videos in both training and testing sets.
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Figure 3.9: Performance comparison with top-k ranking models

• Avenue consists of 16 training and 21 testing videos. We perform 80:20 split separately in the

abnormal and normal video sets to generate training and testing instances.

• UCF-Crime consists of 13 different anomalies with a total of 1900 videos, where 1610 are

training videos and 290 are testing videos. In this dataset, frame labels are available only for the

testing videos.

To show the robustness of the proposed approach in the multimodal and outlier scenarios, we also

generate the Multimodal and Outlier datasets. Specifically, we create a multimodal scenario by

extending the UCF-Crime dataset. For the outlier scenario, we deliberately impose some outliers

in the ShanghaiTech dataset. More details of these two datasets are provided in Section 3.2.6. For

evaluation, we report the frame-level receiver operating characteristics (ROC) curve along with the

corresponding area under curve (AUC). The AUC score indicates the robustness of the performance

at various thresholds.

For Avenue and ShanghaiTech datasets, we extract visual features from the FC7 layer of a pre-

trained C3D network [138]. We re-size each video frame to 240× 340 pixels and fix the frame rate

to 30 fps. We compute the C3D features for every 16-frame video clip. This may yield a different

number of clips (each clip having a 2048 dimensional feature vector) depending on the number of

frames in each video. Thus, we fit any number of clips to the 32 segments by taking an average

of clip features in a specific segment. In case of UCF-Crime, we extract the features using an I3D

network [13] by using the pretrained network as described in [144]. For all datasets, we use parallel

GCN networks to capture the feature similarity and temporal consistency. The outputs of the

parallel branches are combined and passed through a 5-layer LSTM network where each layer has

32 hidden units followed by batch normalization. Finally, an FC layer with sigmoid activation is

applied to bring the prediction score to (0, 1). For model training, we use SGD with a learning rate

of 0.001 and l2 regularization with parameter λ = 0.001. Detailed information about the network

architecture is provided in the Appendix.
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3.2.5 Performance Comparison

Comparison with top-k Models We first compare the detection performance with two most

recent top-k based models, including Robust Temporal Feature Magnitude learning (RTFM) [137]

and the DRO based deep kernel MIL (DRO-DKMIL) [116]. We also compare with a standard

average top-k model (Avg Topk) as the baseline. Avg Topk uses the rank loss in (3.20) with the

same network architecture as BN-SVP. For RTFM, we get the result by re-running the original

implementation for different k values. Similarly, for DRO-DKMIL, we run the original implemen-

tation for different η values that control the size of the uncertainty set. The proposed BN-SVP

removes the dependency on these highly sensitive parameters through non-parametric modeling.

Detailed comparison results are shown in Figure 3.9.

We have several important observations. First, all the top-k models are very sensitive to the

selection of the k value (or η that defines a soft version of the top-k set). Both RTFM and

DRO-DKMIL outperform the standard Avg Topk. DRO-DKMIL achieves relatively more stable

performance across all datasets. This may attribute to its conversion of discrete optimization (i.e.,,

choose a specific k) to a continuous optimization problem (i.e., choosing η). However, for certain

dataset (e.g.,, Avenue), its performance still varies more than 8%. Second, while for some rare cases

that RTFM or DRO-DKMIL achieves the best performance for a specific k or η, they under-perform

BN-SVP in most cases. This is mainly due to that these models tend to choose a consecutive set of

segments, which limits the model’s exposure of other potentially positive segments. This issue has

been effectively addressed by BN-SVP, which extracts a diverse set of potentially positive segments

through submodular optimization.

Comparison with Other Models We also make comparison with other existing techniques

that do not depend on the k value. Specifically, our comparison study includes the maximum score

based MIL model (MMIL) by Sultani et al. [129], attention based deep MIL model proposed by

Ilse et al. [52], a dictionary based approach proposed by Lu et al. [87], and an MIL model for soft

bags (MILS) proposed by Li & Vasconcelos [78] as common baselines for all datasets. Sultani et

al. [129] used the loss function in (3.19) along with the temporal similarity and consistency as a

regularizer. Ilse et al. used a permutation invariant aggregation function to detect the positive

instances in the bag, where the function operators are learned using the attention network [52].

Li & Vasconcelos used a large-margin based latent support vector machine model with the goal

to correctly classify positive and negative bags [78]. In case of the approach presented by Zhong

et al. [159], we directly report the performance from the original paper for the UCF-Crime and

ShanghaiTech datasets. This approach involves multiple rounds of alternative optimization between
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Figure 3.10: ROC curves on three video datasets (a)-(c), multimodal (d) and outlier (e)

classification and cleaning and may produce unstable performance [137]. Considering its difficulty

in the training and replication process, we do not include it in other datasets.

Table 3.6 reports the AUC scores of BN-SVP along with the results from the comparison models

as described above. It can be seen that BN-SVP clearly outperforms other models in all datasets

and a large margin (i.e.,, 6-8%) is achieved on both ShanghaiTech and Avenue datasets. The

corresponding ROC curves are shown in Figure 3.10, which demonstrates a consistent trend. For

example, on UCF-Crime, BN-SVP has a more than 10% better True Positive Rate (TPR) compared

to MMIL at a False Positive Rate (FPR) of 0.2. Also at varying FPR, BN-SVP consistently

outperforms the other competitive baselines, which justifies its outstanding detection capability.

3.2.6 Detecting Multimodal and Outlier Segments

Multimodal Detection The original UCF-Crime dataset does not explicitly consider a multi-

modal scenario. Even though the real-world surveillance videos may indeed contain those cases

(which is evidenced by the superior performance of the BN-SVP model), it is hard to identify

actual videos for this specific information. In UCF-Crime dataset, different types of anomalies are

present. This allows us to explicitly create multimodal scenarios by combining multiple abnormal

videos from different activity types. To this end, we randomly select three activity types and form

an abnormal bag by concatenating three abnormal videos, one video per activity type. The train-

ing bags are constructed using the training dataset whereas testing bags are constructed using the

testing dataset. In total, we construct 50 abnormal and 50 normal training bags. In the testing set,

there are 10 normal and 10 abnormal videos. Table 3.7 shows the AUC scores and corresponding

ROC curve is shown in the Figure 3.10 (d). BN-SVP achieves a more superior performance com-

pared to other baselines. Furthermore, BN-SVP stays consistently on the top in the ROC curve

justifying the effectiveness of the approach toward the multimodal scenario. As an example, at

FPR = 0.1, BN-SVP is at least 20% better than other approaches on TPR.
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Table 3.6: Comparison with Other Models

Approach AUC (%)

UCF-Crime

Hasan et al. [46] (C3D) 50.60

Lu et al. [87] (C3D) 65.51

Lu et al. [87] (I3D) 61.98

MMIL [129] (C3D) 75.41

Li & Vasconcelos [78] (I3D) 77.95

Ilse et al. [52] (I3D) 76.52

Zhong et al. [159] (GCN (C3D)) 81.08

Zhong et al. [159] (TSNRGB) 82.12

Zhong et al. [159] (TSNOpticalFlow) 78.08

MMIL [129] (I3D) 79.68

BN-SVP (I3D) 83.39

ShanghaiTech

Lu et al. [87] (C3D) 72.90

Li & Vasconcelos [78] (C3D) 90.40

Zhong et al. [159] (GCN (C3D)) 76.44

Zhong et al. [159] (GCN(TSNRGB)) 84.44

Zhong et al. [159] (GCN(TSNOptical Flow)) 84.13

Ilse et al. [52] (C3D) 85.78

MMIL [129] (C3D) 92.18

BN-SVP (C3D) 96.00

Avenue

Binary SVM (C3D) 69.11

Lu et al. [87] (C3D) 62.14

Li & Vasconcelos [78] (C3D) 72.23

Ilse et al. [52] (C3D) 72.39

MMIL [129] 70.40

BN-SVP (C3D) 80.87

Outlier Detection To assess the robustness on outlier detection, we extend the ShanghaiTech

dataset with outliers. Specifically, we randomly select 120 segments from abnormal videos and

replace their features with points drawn from a standard multivariate Gaussian distribution. As

shown in Table 3.7, MMIL suffers heavily by the outliers compared to the proposed BN-SVP.

This is because, it is likely to have an outlier prediction as the maximum prediction score from the

abnormal video. As a result, the overall optimization process may be heavily influenced by outliers.
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Table 3.7: AUC Scores on Multimodal and Outlier Detection

Approach AUC (%)

Multimodal Outlier

Lu et al. [87] (C3D) 58.67 72.90

Li & Vasconcelos [78] (C3D) 70.96 90.95

Ilse et al. [52] (C3D) 66.85 85.65

MMIL [129] 57.08 86.47

BN-SVP 76.53 95.27

(a) Frame 1 (b) Frame 2

Figure 3.11: Frames from UCF-Crime Stealing019; (a) Correct BN-SVP, Avg Topk, (b) Correct

BN-SVP, Incorrect Avg Topk

3.2.7 Qualitative Analysis

To show the effectiveness of extracting a diverse set of segments for model training, we present

illustrative sample frames in a stealing video from UCF-Crime, where BN-SVP correctly identifies

all abnormal frames and a top-k approach (e.g.,, Avg Topk) misses some of them. In Figure 3.11,

both frames are of abnormal types and but they occur in two distinct time intervals within the video.

The first frame is more obvious for a stealing event. Consequently, both the proposed BN-SVP

and Avg Topk are able to correctly identify it. In contrast, the second frame is less obvious for a

stealing activity. Nevertheless, it is still chosen by BN-SVP due to its diverse coverage of potentially

abnormal frames during the training process. On the other hand, Avg Topk only focuses on frames

with high prediction scores that are usually co-located in the same time interval. This will narrow

the scope of the model being exposed to other abnormal frames. Therefore, Avg Topk is not able

to correctly predict the second frame and falsely classify it as normal. More qualitative analysis

that demonstrates the robustness of the proposed approach on multimodal and outlier scenarios is

provided in the Appendix along with an ablation study for the prediction score threshold ϵ defined

in (3.31).
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3.2.8 Conclusion

In summary, we propose a novel Bayesian non-parametric submodularity diversified MIL model for

robust video anomaly detection in practical settings that involve outlier and multimodal scenarios.

By integrating submodular optimization with the minimization of an MIL loss, the proposed ap-

proach identifies a diverse set of segments to ensure comprehensive coverage of all potential positive

segments for effective model training. The Bayesian non-parametric construction of the submod-

ular set function automatically determines the upper bound on the size of the diverse set, which

serves as a key constraint for minimizing the submodularity diversified MIL loss function. The

resulting state-component structure also leads to a greedy submodular optimization algorithm to

support efficient model training. Effectiveness of the proposed approach is demonstrated through

the state-of-the-art robust anomaly detection performance on real-world surveillance videos with

noisy and multimodal scenarios.



Chapter 4

Multiple Instance Active Learning for

Anomaly Detection

As a widely used weakly supervised learning scheme, modern MIL models achieve competitive per-

formance at the bag level. However, instance-level anomaly detection prediction, which is essential

for many important applications, remains largely unsatisfactory.

To achieve a high bag level prediction, most existing MIL models primarily focus on the most

positive instance from a positive bag that is mainly responsible for determining the bag label

[4, 47, 63, 129]. However, they suffer from two major limitations, which lead to poor instance-level

predictions. First, solely focusing on the most positive instance is sensitive to outliers, which are

negative instances that look very different from other negative ones [12]. As a result, these instances

may be wrongly assigned a high score indicating they are positive. Second, there may be multiple

types (i.e., multimodal) of positive instances in a single bag (e.g., different types of anomalies in a

surveillance video or different types of skin lesions in a dermatology image). Thus, focusing on a

single most positive instance will miss other positive ones. Both cases will result in a low instance-

level prediction performance. A possible solution to improve the detection of positive instances

is to consider the top-k most positive instances. However, the number of positive instances may

vary significantly across different bags and applying the same k to all bags may be inappropriate.

Furthermore, finding an optimal k for each bag is highly challenging as it takes a discrete value.

The underlying reason for the less accurate instance-level prediction is due to the lack of instance

labels. For positive instances that are relatively rare across bags, detecting them by only relying

50
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Figure 4.1: (a) Example of a challenging bag; (b) MI-AL performance on instance-level predictions;

(c)-(e) Prediction scores of instances in the bag in different MI-AL steps

on bag labels is inherently challenging as the weakly supervised signal (i.e., bag label) cannot be

propagated to the instance level without sufficient statistical evidence. One promising direction to

tackle this challenge is to augment MIL with active learning (AL). Multiple instance AL (or MI-AL)

aims to select a small number of informative instances to improve the instance level prediction in

MIL. In most MIL problems, the data is highly imbalanced at the instance level, where the positive

ones are much more sparse. Since the positive instances usually carry more important information,

a primary goal of MI-AL is to effectively sample the positive instances from a candidate pool

dominated by the negative ones. If a true positive instance can be sampled and labeled, it can help

to identify other similar positive instances in the same and different bags, which will significantly

improve the instance-level predictions.

However, existing MIL models may easily miss some rare positive instances [129]. They may also

focus on the wrongly identified negative instances due to their sensitivity to outliers or incapability

of handling multimodal bags. Thus, the true positive instances may be assigned a low prediction

score, indicating that they are predicted as negative with a high confidence. As a result, commonly

used uncertainty based sampling will miss these important instances. Figure 4.1 (a) shows a

challenging bag, which is an image that contains the shadow of a bird (as the positive class). The

positive instances are patches that cover (part of) the bird shadow. Figure 4.1 (b) shows that

combining uncertainty sampling with a maximum score based MIL model (the green curve) is not

able to sample effectively so that instance-level prediction remains very low over the AL process.

Figure 4.1 (c) further confirms that the initial prediction score (F-score) of the positive instance is

close to 0, making it hard to be sampled.

We propose a novel MI-AL model for effective instance sampling to significantly boost the instance-

level prediction in MIL. We design an unique variance regularized MIL loss that encourages a high

variance of the prediction scores to address bags with a highly imbalanced instance distribution

and/or those with outliers and multimodal scenarios. Since the variance regularizer is non-convex,

we propose to optimize a distributionally robust bag likelihood (DRBL), which provides a good
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convex approximation of the variance based loss with a strong theoretical guarantee. The DRBL

automatically adjusts the impact of the bag-level variance, making it more effective to detect poten-

tially positive instances to support active sampling. It can also be naturally integrated with a deep

architecture to support deep MIL model training using mini-batches of positive-negative bag pairs.

Finally, a novel P-F sampling function is developed that combines a probability vector (i.e., p) and

predicted instance scores (i.e., f), obtained by optimizing the DRBL. By leveraging the key MIL as-

sumption, the sampling function can explore the most challenging bags and effectively detect their

positive instances for annotation, which significantly improves the instance-level prediction. Novel

batch-mode sampling is developed to work seamlessly with the deep MIL, leading to a powerful

active deep MIL (ADMIL) model to support sampling of high-dimensional data used in most MIL

applications. Figure 4.1 (b) shows the proposed model (purple curve) that significantly improves

instance predictions. Figures 4.1 (c)-(e) show P-F sampling dynamically updates the probability p

and score f values to effectively sample the positive instance from the highly challenging bag in a

few steps.

Our main contribution includes: (i) an unique variance regularized MIL loss and its convex surrogate

that address inherent MIL challenges to best support active sampling, (ii) a novel P-F sampling

function to effectively explore most challenging bags with rare positive instances, (iii) mini-batch

training and batch-mode active sampling to support ADMIL in broader MIL applications, and (iv)

state-of-the-art instance prediction performance in MIL while maintaining low instance annotations.

4.1 Related Work

The related work in MIL is described in Section 2. In this section, we will be describing about the

Active Learning (AL).

Active Learning (AL). Uncertainty and margin based measures are commonly leveraged in

existing AL models to achieve efficient data sampling [124]. Distributionally robust optimization has

also been adopted in multi-class AL to address sampling bias and imbalanced data distribution [165].

Deep learning (DL) models are good candidates for AL because of their high-dimensional data

processing and automatic feature extraction capability. Existing models mainly target at improving

uncertainty quantification of the network for reliable sampling [39,60,74,143]. Batch-mode sampling

is commonly used in active DL to avoid frequent model re-training. It focuses on constructing

representative batches to avoid redundant information given by similar instances [5,64,120]. AL in

the MIL setting has been rarely investigated. One exception is the MI logistic model and its three
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uncertainty measures to simultaneously consider both instance and bag level uncertainty [125].

However, uncertainty sampling is ineffective to explore challenging bags, where all instances are

confidently predicted as negative. In addition, the original model is a simple linear model, which

does not provide sufficient capacity for high-dimensional data. There is no systematic way to

support batch-mode sampling, either. A reinforcement learning based AL technique is developed

in [14], where segments are chosen to be labeled in each AL step . However, segmentation level

annotations are required to compute the reward during the training process, which violates the

assumption of MIL. Another AL framework is developed for MIL tasks in [156]. However, sampling

is conducted at the bag level (i.e., choosing bags instead of instances). Thus, it is essentially a

multi-label AL model, aiming to improve the bag-level predictions with fewer annotated bags. This

is fundamentally different from the design goal of ADMIL.

4.2 Methodology

Let {x1, ...,xn} denote a set of instances associated with each bag B, where each xi ∈ RD is a

feature vector. Let tB ∈ {+1,−1} indicates the bag type. Following the standard MIL assumption

discussed earlier, active sampling will focus on instances in the positive bags as all instances in a

negative bag are negative. We also allow the number of instances to vary from one bag to another.

4.2.1 Variance Regularization

Let x+
i (or x−

j ) be the ith (or jth) instance in a positive bag Bpos (or a negative bag Bneg). Following

the MIL assumption, a commonly used loss function for training deep MIL models is to make the

maximum prediction score of instances from a positive bag to be higher than a negative bag [129].

We define as

LMS =

{
1− max

i∈Bpos

[f(x+
i ;w)] + max

j∈Bneg

[f(x−
j ;w)]

}
+

(4.1)

where f(x;w) ∈ [0, 1] is the prediction score of instance x provided by a deep neural network

parameterized by w and [a]+ = max{0, a}. We will omit w from f(x;w) to keep the notation

uncluttered. The above objective function aims to maximize the gap between the maximum pre-

diction score of instances from a positive bag and maximum score from a negative bag. Model

training can be performed by sampling pairs of positive and negative bags (Bpos,Bneg), using their

bag-level labels to evaluate the loss, and performing back-propagation. The maximum score based

MIL (referred to as MS-MIL) models are designed primarily for bag label prediction as it aims to
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identify a single most positive instance from a positive bag and maximizes its prediction score. In

this way, it fully leverages the MIL assumption (i.e., at least one positive instance in Bpos) and the

weakly supervised signal (i.e., bag-level label).

As discussed earlier, MS-MIL and its top-k extensions suffer from key limitations that impact their

instance-level prediction performance. Meanwhile, they provide inadequate support to sample the

most informative instances to enhance the instance predictions. Inspired by the recent advances in

learning theory to automatically balance bias and variance in risk minimization [30], we propose a

novel variance regularized MIL loss function to capture the inherent characteristics of MIL, aiming

to collectively address highly imbalanced instance distribution, existence of outliers, and multimodal

scenarios. As a result, minimizing the new MIL loss can effectively improve the prediction scores of

the positive instances, making them easier to be sampled for annotation by the proposed sampling

function. In particular, the variance regularized loss introduces two novel changes to (4.1), which

are formalized below:

LVAR =

{
1−

[
1

n

n∑
i=1

f(x+
i ) + C

√
Varn[f(X+)]

n

]
+ max
j∈Bneg

[
f(x−

j )
]}

+

(4.2)

where ∀i ∈ [1, n],x+
i ∈ Bpos, n is the size of Bpos, Varn is the empirical variance of f(X+) with X+

being a random variable representing an instance from a positive bag, and parameter C balances

the mean score and the variance.

The first key change is to use the mean score to replace the maximum score in (4.1), which avoids

the model to only focus on the most positive instance in a bag to make it robust to outliers

and multimodal scenarios. Since positive bags are guaranteed to include positive instances and

instances in a negative bag are all negative, it is desirable that the mean score for a positive bag

should be high. Maximizing the mean score in a positive bag using a complex model (e.g., a DNN)

could effectively reduce the training loss (by reducing the bias) in estimating the bag-level labels.

However, using the mean score alone is problematic as most instances in a positive bag are usually

negative in a typical MIL setting. As a result, such a low bias model will lead to a very high false

positive rate, which negatively impacts the overall instance-level prediction. The proposed loss

function addresses this issue through the novel variance term, which effectively handles the highly

imbalanced instance distribution. With only a small number of instances being truly positive, the

empirical variance Varn for the bag should be high due to the large deviation of a small number

of high scores from the majority of low scores. It is worth to note that the variance term in (4.2)

plays a distinct role than risk minimization in standard supervised learning, where it is minimized

to control the estimation error. In contrast, the variance in (4.2) is encouraged to be large to

allow a small set of instances in a bag to be positive, aiming to precisely capture the imbalanced
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distribution. To our best knowledge, this is the first bias-variance formulation in the MIL setting.

Conducting MI-AL using variance regularization still faces two challenges. First, its effectiveness

hinges on an optimal balance between the mean score and the empirical variance, which is controlled

by the hyperparameter C. Similar to the standard supervised learning, there lacks a systematic

way of setting such a hyperparameter to achieve an optimal trade-off. Second, the variance term is

non-convex with multiple local minima [30], which makes model training much more difficult and

time-consuming. Thus, it is not suitable for real-time interactions to support active sampling.

4.2.2 Distributionally Robust Bag Likelihood

To address the challenges as outlined above, we propose to formulate a distributionally robust

bag level likelihood (DRBL) as a convex surrogate of the variance regularized loss in (4.2). By

extending the distributionally robust optimization framework developed for risk minimization in

supervised learning [30, 99], we theoretically prove the equivalence between DRBL and variance

regularization with high probability. Being convex, DRBL is easier to optimize that facilitates MIL

model training to support fast active sampling. Furthermore, by setting a proper uncertainty set

as introduced next, we show that the parameter C is directly obtained when optimizing the DRBL,

where the instance distribution in the bag is constrained by the uncertainty set. As a result, it

achieves automatic trade-off between the mean prediction score and the variance.

We first introduce a probability vector p = (p1, ..., pn)⊤, where
∑

i pi = 1, pi ≥ 0, ∀i ∈ {1, ..., n} and

let pi denote the probability that instance x+
i ∈ Bpos can represent the bag. We further introduce a

binary indicator vector z = (z1, ..., zn)⊤, where p(zi = 1) = pi. Let Y be a binary random variable

that denotes the bag label. Conditioning on all the instances in the bag, the (conditional) bag

likelihood for bag Bpos is given by p(Y = 1|z, f) =
∏
i f(x+

i )zi , where f = (f(x+
1 ), ..., f(x+

n ))⊤. By

integrating out the indicator variables, we have the marginal bag likelihood as p(Y = 1|p, f) =∑
i pif(x+

i ). Instead of letting a single most positive instance to determine the bag label, where

p(y = 1|p, f) = f(x+
k ) with k = arg maxi f(x+

i ), which is equivalent to MS-MIL, or assigning equal

probability to each instance (i.e., pi = 1/n), which is equivalent to the mean score, we introduce

an uncertainty set Pn that allows p to deviate from a uniform distribution to some extent:

Pn :=

{
p ∈ Rn,p⊤

1 = 1, 0 ≤ p, Df

(
p||1

n

)
≤ λ

n

}
(4.3)

where Df (p||q) is the f -divergence between two distributions p and q, 1 is a n-dimensional unit

vector, and λ controls the extent that p can deviate from a uniform vector, which essentially

corresponds to the imbalanced instance distribution in the bag. Note that Pn only specifies a
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neighborhood that p may deviate from a uniform distribution. Since Pn is a convex set, an optimal

p can be easily computed for each specific bag by optimizing the robust bag likelihood according

to its specific imbalanced instance distribution. This is fundamentally more advantageous than a

top-k approach, where k is discrete and hard to optimize. Next, we show that the optimal robust

bag likelihood is equivalent to the variance regularized mean prediction score with high probability,

which allows us to define a new MIL loss based on DRBL.

Theorem 4.1. Let X+ be a random variable representing an instance from a positive bag, f(X+) ∈
[0, 1] is the score assigned to an instance, σ2 = Var[f(X+)] and Varn[f(X+)] denote the population

and sample variance of f(X+), respectively, and Df takes the form of χ2-divergence. For a fixed λ

and with n ≥ max(2, λ
σ2 max(8σ, 44)),

max
p∈Pn

n∑
i=1

pif(x+
i ) =

1

n

n∑
i=1

f(x+
i ) +

√
λV arn[f(X+)]

n
(4.4)

with probability at least 1− exp
(
−7nσ2

20

)
, where Pn is an uncertainty set defined by (4.3).

It is worth to note that given the highly imbalanced positive instances in a typical MIL setting, the

true variance σ2 should be high. For a bag with a decent size, it guarantees the equivalence in (4.4)

with high probability. Furthermore, maximizing the robust bag likelihood given on the l.h.s. of

(4.4) assigns C =
√
λ, which automatically adjusts the impact of variance based on the uncertainty

set. Theorem 4.2 below further generalizes this result to the KL-divergence.

Theorem 4.2. Let X+ be a random variable representing an instance from a positive bag, f(X+) ∈
[0, 1] is the score assigned to an instance, σ2 = Var[f(X+)] and Varn[f(X+)] denote the population

and sample variance of f(X+), respectively, and Df takes the form of KL-divergence. We have

max
p∈Pn

n∑
i=1

pif(x+
i ) =

1

n

n∑
i=1

f(x+
i ) +

√
2λVarn[f(X+)]

n
+ ϵ

(
λ

n

)
(4.5)

where ϵ
(
λ
n

)
= λ

3n
κ3(f(X+))
Varn[f(X+)]

+ O
((

λ
n

)3/2)
with κ3 = E0[(f(X+) − E0[f(X+)])3] and E0 denotes

the expectation taken over p0.

Remark: Given a bag with a decent size n ≫ 1 and since λ is usually set to λ ≪ 1 (0.01 is used

in our experiments), we have ϵ
(
λ
n

)
→ 0. When the empirical variance Varn[f(X+)] is sufficiently

large (which is true for MIL), the r.h.s. of (4.5) is dominated by the first two terms, which implies

max
p∈Pn

n∑
i=1

pif(x+
i ) ≈ 1

n

n∑
i=1

f(x+
i ) +

√
2λVarn[f(X+)]

n
(4.6)
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Detailed proofs are given in Appendix. Leveraging the above theoretical results, we formulate a

DRBL-based MIL loss as

LDRBL =

{
1− max

p∈Pn

[
n∑
i=1

pif(x+
i )

]
+ max
j∈Bneg

[
f(x−

j )
]}

+

(4.7)

The DRBL loss offers a very intuitive interpretation on the newly introduced probability vector p.

Since it can deviate from the uniform distribution as specified by the uncertainty set Pn, each entry

pi essentially corresponds to the contribution (or weight) of x+
i to the bag likelihood (being positive).

As a result, to maximize the robust bag likelihood, instances with a higher prediction score should

receive a higher weight. Meanwhile, constrained by Pn, multiple instances will contribute to the

bag likelihood with a sizable weight as p cannot deviate too much from being uniform. Hence,

their prediction scores will simultaneously be brought up by the model. This makes DRBL robust

to the outlier and multimodal cases as it increases the chance for the true positive instances or

multiple types of true positive instances to be assigned a high prediction score. This provides

fundamental support to the proposed P-F active sampling function that combines the probability

vector p and the prediction score f in a novel way to choose the most informative instances in a

bag for annotation.

4.2.3 P-F Active Sampling

Since we have the prediction score f(x+
i ) ∈ [0, 1], it can be naturally interpreted as the probability of

instance x+
i being positive. A straightforward way to perform uncertainty based instance sampling

is to compute the f -score based entropy of the instances, referred to F-Entropy:

x∗ = arg max
i∈Bpos

H[f(x+
i )], (4.8)

where H[f ] = −[f log f + (1 − f) log(1 − f)]. Since the sampled instance has the largest predic-

tion uncertainty (according to F-Entropy), labeling such an instance can effectively improve the

model’s instance-level performance. Active sampling using (4.8) is straightforward, which involves

evaluating H[f(x+)] for all the instances from positive training bags (note that all the instances

in a negative bag are negative). Since we consider a deep learning model to better accommodate

high-dimensional data, sampling one instance at a time requires frequent model training, which

is computationally expensive. Instead, we sample a small batch of instances in each step based

on their predicted F-Entropy. It is worth to note that, due to the highly imbalanced instance

distribution, the majority of the prediction scores, including many positive instances, may be very

low. The goal is to assign a relatively higher score to the potentially positive instances so that
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Figure 4.2: Example of challenging bags from different topics in 20NewsGroup

their entropy is not too low, indicating a confident negative prediction, which will be missed by the

sampling function.

As discussed earlier, using the robust bag likelihood as the MIL loss can directly benefit instance

sampling by increasing the chance to assign a higher prediction score to a positive instance so that it

is more likely to be sampled. However, F-Entropy sampling still suffers from two major limitations.

First, for some very difficult bags, such as the sample image shown in Figure 4.1 (a), identifying

the positive instances (e.g., the patch in the image containing the shadow of a bird) can be highly

challenging. As a result, they may be assigned a very low f score. In fact, as shown in Figure 4.1

(c), all the instances in this bag receive a very low score with the highest less than 0.01, leading to a

very low entropy. Some additional examples of challenging bags from the 20NewsGroup dataset are

shown in Figure 4.2, where all the instances are predicted with a very low score. Hence, all these

instances are predicted as negative with low uncertainty, making them less likely to be chosen by

entropy based sampling. Second, since batch-mode sampling is adopted to reduce the training cost

of a deep network, it is essential to diversify the selected instances in the same batch to minimize

the annotation cost. However, choosing data instances solely based on their predicted entropy may

lead to the annotation of similar instances, which is not cost-effective.

The proposed P-F active sampling overcomes the above two limitations simultaneously through

effective bag exploration by combining the probability vector p and the prediction score f through

a min max function according to their distinct roles in a bag. The key design rationale of P-F

sampling is rooted in the standard MIL assumption that ensures at least one positive instance in

each positive bag to guide effective bag exploration. Both p’s and f ’s along with the bag structure

are dynamically updated during bag exploration to increase the chance of sampling the positive

instances in an under-explored bag. A hybrid loss function further utilizes labels of sampled negative

instances in the same bag to boost the prediction scores of the positive instances. More specifically,

let B be the total number of positive training bags, P-F sampling will choose the following data
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instance:

xPF∗ = arg min
b∈{1,...,B}

f(x+
b∗

), and b∗ = arg maxpb (4.9)

where pb is the probability vector of bag b. For each bag, the sampling function first identifies the

instance x+
b∗

with the largest p value in each bag. Such an instance can be regarded as the most

representative instance in the bag as it makes the largest contribution (according to pb) to the bag

likelihood. According to the prediction score of x+
b∗

, we can categorize bags into three groups: (1)

easy bags, where f(x+
b∗

) takes a large value, indicating that the model makes confidently correct

predictions, (2) confusing bags, where f(x+
b∗

) is reasonably large but uncertain, indicating the model

is still confusing about its prediction, and (3) difficult bags, where f(x+
b∗

) is very low, indicating

the model makes confidently wrong predictions. It is desirable to sample from both confusing and

difficult bags as the model already makes accurate instance predictions for easy bags. Sampling

instances from the confusing bags can be achieved through the proposed F-Entropy as the model

makes uncertain predictions, which leads to a high entropy. Finally, sampling from the difficult

bags is fundamentally more challenging due to low prediction scores for the entire bag. However,

the MIL assumption provides a general direction for bag-level exploration of positive instances as

there must be at least one positive instance in each positive bag. The P-F sampling function in

(4.9) chooses the representative instance from the bag with the lowest prediction score. Such an

instance is guaranteed to be sampled from an under-explored (i.e., difficult) bag as it has the lowest

prediction score despite being predicted as the most positive instance in the bag.

Extension to the batch-mode sampling is conducted in two directions, within a bag and across bags,

for more effective exploration while ensuring diversity of the sampled instances. First, instead of

only sampling the most positive instance from the identified under-explored bag, we propose to

sample k > 1 instances as the positive instances may be ranked lower than multiple negative

instances in the bag according to the current prediction scores (see Figure 4.1 (c) for an example).

This helps to more effectively explore very difficult bags. To ensure diversity among the sampled

instances, we keep k small but sample across multiple bags simultaneously. Only bags with a max

prediction score f(x+
b∗

) less than a threshold (0.3 is used in our experiments) will be explored as these

represent the difficult bags as discussed above. For bags with a larger f(x+
b∗

), they are either easy

bags or confusing bags that can be effectively sampled using F-Entropy. Our overall P-F sampling

function integrates bag exploration and F-Entropy and gives priority to the former to perform

diversity-aware bag exploration first. As more bags are successfully explored along with MI-AL,

less instances will be sampled by exploration and the focus will be naturally shifted to F-Entropy

to perform model fine-tuning. The detailed sampling process is summarized by Algorithm 1.

Similar to AL in standard supervised learning, the sampled annotated instances should be used
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to improve the model prediction performance. However, the MIL loss primarily focuses on the

bag-level labels due to the lack of instance labels. To this end, we propose a hybrid loss function

that integrates the bag and instance labels. Let Xl = {xl1,xl2, ...,xlm} be the m labeled instances

queried by the proposed active learning function and tl = {tl1, tl2, ..., tlm} with til ∈ {0, 1} be the

corresponding instance labels. We formulate a supervised binary cross-entropy (BCE) loss as

LBCE = − 1

m

m∑
i=1

[
tli log(f(xli)) + (1− tli) log(1− f(xli))

]
(4.10)

It is clear that the sampled positive instances provide important supervised signals so that the model

will predict a high score for similar positive instances, which will directly benefit instance-level

prediction. In contrast, the sampled negative instances, especially those chosen from the under-

explored bags, contribute less to improve the prediction performance as their original prediction

scores are already low. However, they play a subtle but essential role to achieve more effective

bag-level exploration. First, if a sampled instance is labeled as negative, it will be removed from

the bag, which does not violate the MIL assumption. Meanwhile, since we have
∑

i pi = 1, the p

values will be redistributed and the chance for each remaining instance to be sampled is therefore

increased. Furthermore, the BCE loss will further bring down the prediction scores of negative

instances that are similar to the sampled one. This may help to improve the score of the positive

instance so that it can have a higher chance to be sampled in the future. Finally, the hybrid loss

that combines the MIL loss and the supervised loss is used to retrain the model after a new batch

of instances are queried:

LHybrid = LDRBL(Bpos,Bneg) + βLBCE(Xl, tl) (4.11)

where β is used to trade-off bag- and instance-level losses.

4.3 Experiments

We conduct extensive experimentation over multiple real-world MIL datasets to justify the effec-

tiveness of the proposed ADMIL model. The purpose of our experiments is to demonstrate: (i) the

state-of-the-art instance prediction performance by comparing with existing competitive baselines,

(ii) effectiveness of the proposed P-F active sampling function through comparison with other sam-

pling mechanisms, (iii) impact of key model parameters through a detailed ablation study, and (iv)

qualitative evaluation through concrete examples to provide deeper and intuitive insights on the

working rationale of the proposed model.
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Algorithm 1: P-F Active Sampling

Input: pBpos , Qprev, ThPF , ThH , BSize, k

Output: Q
Data: B positive training bags // Feature vector for each bag

1 Initialization: UB = {}, count = 0, QP−F = {}, QF = {}
2 for b ∈ [B] do

3 pb ← pBpos [b], b∗ ← arg maxpb \ Qprev[b]
4 if f(x+

b∗
) ≤ ThPF then

5 UB ← b∗

/* Adding instances from unexplored bags */

6 UB = arg sortAscb∗∈UB
f(x+

b∗
)

7 for b∗ ∈ UB do

8 if b∗ ∈ Qprev then

9 if positive ins ∈ Qprev[b] then
10 continue

11 else

12 XPF = arg sortDescb∗
(
f(x+

b∗
) \ Qprev[b∗]

)
[:k]

13 for xi ∈ XPF do

14 if count≥ BSize then

15 break

16 QP−F [b∗]← xi

17 count ← count+1

18 Qprev = Qprev ∪QP−F

/* Adding instances with highest F-Entropy;

H[f(x+
i )] = −

[
f(x+

i log f(x+
i )) + (1− f(x+

i )) log(1− f(x+
i ))
]

*/

19 Cidx = arg sortDesci
(
H[f(x+

i )] ≥ ThH
)

20 for i ∈ Cidx do

21 if count≥ BSize then

22 break

23 if x+
i ∈ Qprev[bi] then

24 break

25 QF [bi]← x+
i

26 count ← count+1

27 Q = Qprev ∪QF
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Table 4.1: Number of positive and negative bags on different datasets

Split 20NewsGroup Cifar10 Cifar100 Pascal VOC

Positive Negative Positive Negative Positive Negative Positive Negative

Train 30 30 500 500 500 500 124 124

Test 20 20 100 100 100 100 84 84

4.3.1 Experimental Setup

Datasets. Our experiments involve four datasets covering both textual and image data: 20New-

Group [162], Cifar10 [67], Cifar100 [67], and Pascal VOC [31]. The detailed description of each

dataset is given below and bag level statistics is summarized in the Table 4.1

• 20NewsGroup: In this dataset, an instance refers to a post from a particular topic. For each

topic, a bag is considered as positive if it contains at least one instance from that topic and

negative otherwise. This dataset is particularly challenging because of the severe imbalance

where there are very few (≈ 3%) positive instances in each positive bag. While number of

instances per bag may vary, on average there are around 40 instances per bag.

• Cifar10: In the original dataset, there are 50,000 training and 10,000 testing images with 10

classes indicating different images. The bags are constructed as follows. First, we pick ‘automo-

bile’, ‘bird’, and ‘dog’ related images as positive instances and the rest as negative. To construct

a positive bag, we choose a random number from 1 to 3 and pick the positive instances equal to

the randomly generated number. The rest of the instances are selected from a negative instances

pool. For negative bags, all instances are selected from the negative instance pool. For each bag,

we consider 32 instances.

• Cifar100: The dataset consists of 50,000 training and 10,000 testing images with 20 different

superclasses indicating different species. Bag construction is similar to Cifar10, where images in

superclass flowers are treated as positive and the rest as negative.

• Pascal VOC: This dataset consists of 2,913 images, where images are used for segmentation.

Each image is treated as a bag and instances are obtained as follows. We define a grid size of

60 × 75 and partition the images. Depending on the image size, the number of instances may

vary. We treat an instance as positive if at least 5% of the total pixels in a given instance are

related to the object of interest otherwise negative. In our case, we considerthe bird as the object

of interest. All the images consisting of bird are regarded as positive bags and others as negative.
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Figure 4.3: MI-AL performance
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Figure 4.4: Effectiveness of P-F active sampling

Evaluation metric and model training. To assess the model performance, we report the

instance-level mean average precision (mAP) score, which summarizes a precision-recall curve as a

weighted mean of precision achieved at each threshold, with the increase in recall from the previous

threshold as the weight. mAP explicitly places much stronger emphasis on the correctness of the

few top ranked instances than other metrics (e.g., AUC) [128]. This makes it particularly suitable

for instance prediction evaluation as a small subset of instances with the highest prediction scores

will eventually be identified as positive for further inspection (by human experts) with the rest

being ignored. For Cifar10, Cifar100, and Pascal VOC datasets, we extract the visual features from

the second-to-the last layer of a VGG16 network pre-trained using the imagenet dataset, yielding

a 4,096 dimensional feature vector for each instance. For 20NewsGroup, we use the available

200-dimensional feature vector. In terms of network architecture, we use a 3-layer FC neural

network. The first layer has 32 units followed by 16 units and 1 unit FC layers. We adopt 60%

dropout between FC layers. ReLU and sigmoid activations are used for the first and last FC layers.

Learning rate 0.01 is used for all dataset except for 20NewsGroup which is 0.1.

4.3.2 Performance Comparison

To demonstrate the instance prediction performance achieved by the proposed ADMIL model,

we compare it with competitive baselines. First, the two MI-AL sampling strategies: MIAL-

Uncertainty and MIAL-MIU [125], from the MI logistic model are included. Since our datasets
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Table 4.2: MIL Performance in Passive Setting

Approach 20NewsGroup Cifar10 Cifar100 Pascal VOC

Ilse et al. [52] 60.85 65.16 40.15 40.15

Hsu et al. [50] 42.08 63.84 41.57 34.83

ADMIL 73.47(75.42) 64.41(74.50) 40.41(51.26) 45.15(60.79)

involve high-dimensional data, we replace the original linear model by the exact DNN model used

in our ADMIL so we can focus on comparing MI active sampling. The EGL sampling technique

in [125] was not included due to the prohibitive computational cost to evaluate the gradient of

each instance output with respect to the large number of DNN parameters. We also implement an

MS-MIL model and its top-k variant with uncertainty sampling using entropy. Given the different

sizes of the datasets, we query maximum 15 instances per step in 20NewsGroup, 30 instances

in Pascal VOC, and 150 instances in Cifar10 and Cifar100. Figure 4.3 shows the MI-AL curves

with one standard deviation (computed over three runs) represented by vertical black line for all

four datasets. ADMIL achieves the best performance in all cases. For most datasets, it shows

a much better initial performance, which results from the proposed DRBL-based MIL loss that

significantly benefits MIL performance in passive learning. Overall the entire MI-AL process,

ADMIL consistently stays the best and converges to a higher point in the end for all datasets. For

the Pascal VOC, the top-k MIL model with entropy sampling achieves closer performance towards

the end, which is mainly due to the limited positive instances in this dataset. Hence, no testing

bags contain similar positive instances in the challenging bags that are explored by P-F sampling.

While ADMIL achieves much better instance predictions in those bags, the advantage does not

transfer to the testing bags. For reference, we also compare ADMIL with two recently developed

MIL models, including Ilse et al. [52] and Hsu et al. [50], under the passive setting. As shown

in Table 4.2, ADMIL achieves better or at least comparable performance as compared with these

competitive baselines. This clearly justifies of using ADMIL as a base model for active sampling.

After labeling a small set of actively sampled instances, the performance is significantly boosted

(as shown in the parenthesis), which further justifies the benefits of combining AL with MIL. Our

qualitative study will provide a more detailed analysis on this.

Effectiveness of active sampling. To demonstrate the effectiveness of the proposed P-F active

sampling function, we compare it with two other sampling methods, F-Entropy and random sam-
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Figure 4.5: Impact of model parameter λ
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Figure 4.6: Impact of model parameter β
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Figure 4.7: Impact of hyperparameter k

pling, while keeping all other parts of the model the same. As shown in Figure 4.4, P-F sampling

clearly outperforms others with a large margin in the first three datasets. It’s advantage over F-

Entropy is smaller on Pascal VOC due to the same reason as explained above. The performance

gain is mainly attributed to the effective exploration of P-F sampling over the most challenging

bags.
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Figure 4.8: (a-b) Poorly explored bags in Pascal VOC; (c) Description of these bags and their mAP

scores; (d) Additional true positive bags successfully explored by P-F sampling

4.3.3 Ablation Study

Impact of λ and β: Figures 4.5 and 4.6 demonstrate the impact of λ (with β = 1) and β (with λ

= 0.01) to the model performance. In particular, λ can be set according to the imbalanced instance

distribution within bags, where a larger λ corresponds to a higher imbalanced distribution. We vary

λ in [10−10, 1] and since most bags in the MIL setting are highly imbalanced, relatively higher λ

value gives very good performance in general. Figure 4.5 shows that λ = 0.0001 clearly outperforms

too large (or small) λ values. As for β, placing less emphasis on an instance level loss (small β),

we may not fully leverage labels of queried instances. Meanwhile, with too much emphasis on the

instance level loss (large β), the model overly focuses on the limited queried instances with less

attention to the bag labels. Therefore, a good balance results in an optimal performance, shown in

Figures 4.6.

Impact of k: Figure 4.7 shows the impact of the hyperparameter k, which is the number of

instances queried in each unexplored bag, on model performance. As can be seen, k = 2 achieves a

generally decent performance across all the datasets. For datasets with a larger size (e.g., Cifar100),

a larger k leads to a slightly better performance.

4.3.4 Qualitative analysis

To further justify why the proposed ADMIL model and its P-F sampling function work better

than other baselines, we provide a few illustrative examples to offer deeper insights on its good

performance. First, we show two challenging bags in addition to the one shown in Figure 4.1 (a).

As shown in Figure 4.8 (a-b), B2 presents a side view of a bird while only a small portion of the bird

is visible in B3. For those difficult cases, the model originally predicts all instances as a negative

with high confidence. However, by coupling the P-F sampling and the hybrid loss in (4.11), the
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positive instances from those bags are successfully queried. Figure 4.8 (c) shows a clear advantage

in the mAP scores between P-F sampling and F-Entropy. As a further evidence, we investigate the

number of true positive (TP) bags being explored by both P-F sampling and F-Entropy. TP bags

refer to those that the model is being able to query at least one true positive instance. Instead

of reporting the actual number of bags, which is affected by the size of the dataset, we show the

additional percentage TP bags being explored by P-F sampling in Figure 4.8 (d). It is worth to note

that neither method tries to query the easy bags as their positive instances are correctly predicted

with high confidence. The major difference is from the challenging bags and the percentage of

these bags varies among different datasets. Nevertheless, P-F sampling consistently explores more

effectively than F-Entropy across all datasets.

4.4 Conclusion

To tackle the low instance-level prediction performance of existing MIL models that is essential

for many critical applications, we develop a novel MI-AL model to sample a small number of

most informative instances, especially those from confusing and challenging bags, to enhance the

instance-level prediction while keeping a low annotation cost. We propose to optimize a robust bag

likelihood as a convex surrogate of a variance regularized MIL loss to identify a subset of potentially

positive instances. Active sampling is conducted by properly balancing between exploring the

challenging bags (through P-F sampling) and refining the model by sampling the most confusing

instances (through F-Entropy). The design of the loss function naturally supports mini-batch

training, which coupled with the batch-mode sampling, makes the MI-AL model work seamlessly

with a deep neural network to support broader MIL applications that involve high-dimensional

data. Our extensive experiments conducted on multiple MIL datasets show clear advantage over

existing baselines.



Chapter 5

Anomaly Detection under Class

Imbalanced Setting

Anomaly detection/open-set detection (OSD) under the class imbalanced problem posses a fun-

damental challenge as the model may be equally uncertain between minority class samples and

openset (anomalous) samples. Despite the promising progress in OSD that focuses on differen-

tiating samples from the close (normal classes) and open sets, respectively, limited attention has

been devoted to the situation where the close set involves highly imbalanced classes, which may be

quite common in many practical settings. For example, for anomaly detection, the known types

of anomalies available for model training are usually unevenly distributed into multiple categories

(e.g., car accident vs. shooting). Similarly, for computer-aided medical diagnosis, the known dis-

eases (to the model) may be highly imbalanced based on the available cases. Thus, following the

standard Empirical Risk Minimization (ERM) framework for training, the model may not learn

properly from the minority class due to the lack of positive samples. As a result, it is more likely

to misidentify a minority-class sample as an unknown-class sample during OSD, leading to a high

false-positive rate.

Distributionally Robust Optimization (DRO) offers an effective means to handle the imbalance class

distribution in the closed set setting [108,164]. In DRO, the worst case weighted loss is optimized,

where the weights are searched in a given neighborhood (referred to as the uncertainty set) of the

empirical sample distribution such that the overall loss is maximized. By expanding the uncertainty

set, the model is encouraged to assign higher weights to difficult samples. As a result, samples

from the minority class will be given more emphasis during model training if not properly learned

68
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(which incurs a larger loss). Another common solution to handle imbalanced class distribution in

the close set is through oversampling to achieve a more balanced class distribution [18]. While both

oversampling and DRO may help to improve the close set performance, neither of them is adequate

to address OSD from imbalanced data.

A fundamental challenge lies in the interplay between samples from the minority class and the

difficult samples from the majority classes. As a result, simply oversampling the minority class

may neglect these difficult samples. Similarly, applying DRO with a flexible uncertainty set may

put too much emphasis on these difficult samples and ignore the minority class as well as some

representative samples from the majority classes, which affects proper model training. In fact,

directly applying these models for OSD may lead to even worse detection performance, which is

evidenced by our experimental results. Recent approaches also try to leverage the visual similarity

across the centroids of closed-set classes to allow more effective training from the minority class

samples [85]. However, it is possible that the samples from the minority class may look quite

different from most other samples, making such a strategy less effective.

To systematically tackle the fundamental challenge as outlined above, we propose Distributionally

Robust Evidential Optimization (DREO) that offers a principled way to quantify sample uncer-

tainty through evidential learning while optimally balancing the model training over all classes

in the close set through adaptive DRO learning. To avoid the model from primarily focusing on

the most difficult samples by following the standard DRO, the adaptive learning strategy gradually

increases the size of the uncertainty set, which allows the model to learn from easy to hard samples.

A class-ratio biased loss is further assigned to the minority class to ensure proper learning from its

limited samples. Our main contribution is fourfold:

• a novel extension of DRO to evidential learning, which enables principled uncertainty quantifi-

cation under the class imbalanced setting, critical for many applications, including OSD,

• adaptive DRO training governed by a uniquely designed multi-scheduler learning mechanism to

ensure an optimal model training behavior that gives sufficient attention to the difficult samples

and the minority class while capable of learning common patterns from the majority classes,

• theoretical connection to a boosting model (i.e., AdaBoost), which ensures the nice convergence

and generalization properties of DREO,

• state-of-the-art OSD performance on various datasets.
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5.1 Related Work

Most related topics for our work Open set detection and Distributionally Robust Optimization

(DRO) which are described in Related Work 2.

5.2 Methodology

Let DN = {X,Y} = {(x1,y1), ..., (xN ,yN )} be a set of training samples in the close set. Each

xn ∈ RD is a D-dimensional feature vector and yn ∈ {0, 1}C indicates the one hot encoding

associated with its class label: ynj = 1 and ynk = 0 for all k ̸= j with j being the true label.

Evidential Learning for OSD

Following the principle of Subjective Logic (SL) [58], we consider a total of C + 1 mass values

with C being the number of classes. We assign a belief mass bc,∀c ∈ [C], to each singleton, which

corresponds to one class in the close set and the remaining mass is referred to as the uncertainty

mass, denoted by u. Table 5.1 summarizes all the major symbols along with their descriptions.

The belief masses and the uncertainty mass are all non-negative and sum to one: u +
∑C

c=1 bc =

1, u ≥ 0 and bc ≥ 0. They can be evaluated as

bc =
ec
S
, u =

C

S
(5.1)

where S =
∑C

c=1(ec + 1) with ec ≥ 0 being the evidence derived for the cth singleton, which can

be generated by a neural network enabled with a non-negative output. The belief mass assignment

in the above expression corresponds to a Dirichlet distribution with the concentration parameters

αc = ec + 1:

Dir(p|α) =

{
1

B(α)

∏C
c=1 p

αc−1
c , for p ∈ SC

0, otherwise
(5.2)

where SC is a (C − 1)-simplex and B(α) is a beta function.

Given the evidences, the expected probability for the cth singleton is given by

E[pc] =
αc
S

(5.3)

Consider a sample xn and let f(xn,Θ) denote the evidence vector generated by an evidential neural

network parameterized by Θ. This allows us to fully characterize the Dirichlet distribution, whose



CHAPTER 5. ANOMALY DETECTION UNDER CLASS IMBALANCED SETTING 71

Table 5.1: Symbols with Descriptions

Notation Description

bc Belief mass associated with class c

C Total number of classes

ec Evidence for the cth singleton

u Uncertainty mass

α Dirichlet Parameters

pc Probability for the cth singleton

yn One hot encoded C dimensional multinomial variable

ync Class label for the nth data sample for class c

pnc Probability of the nth data sample belonging to class c

ηt Uncertainty set size for DREO

β Hyperparameter controlling the schedule

γ Hyperparameter controlling the emphasis in a minority class

p Probability distribution in the DRO framework

PDRO Uncertainty set

Θ Evidential network parameters

lEL
n (Θ) Evidential loss with the nth data sample

LDREL(Θ) Distributionally robust evidential Loss

F Set of Different classifiers

σk Weight associated with kth weak learner

p(c) Weight associated with the cth class from Eq. (5.6)

p̃(c) Readjusted weight associated with the cth class from Eq. (5.9)

w Mixing weights associated with the MSF to control uncertainty set ηt

w′ Mixing weights associated with MSF to readjust the class-specific weights

β Set of Specific parameters for the SFs to control uncertainty set ηt

β′ Set of Specific parameters for the SFs to readjust the class-specific weights

W MSF Parameter sets associated in our model training

T Total number of Epcochs
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mean vector gives rise to the probability of assigning xn to each class. There are multiple ways to

design a loss function to train the evidential neural network [121]. A simple but effective option is

the sum of square loss:

lELn (Θ) = ∥yn − E[pn]∥22 =

C∑
c=1

(
y2nc − 2yncE[pnc] + E[p2nc]

)
(5.4)

Remark. Besides being used as a powerful model for close set classification, a unique benefit

of evidential learning is that it offers a principled way to quantify the uncertainty mass, which

is explicitly allocated to account for something that is ‘unknown’ to the model. Intuitively, a

properly trained evidential model will output a high total evidence for data samples whose features

are sufficiently exposed to the model during training. In contrast, it should predict a low total

evidence for less representative samples in the training data. For these samples, their corresponding

uncertainty mass u will be large (as the total mass sums to one). As a result, the uncertainty mass

fits squarely for detecting open set samples, which have not been exposed to the model that is

trained using the close set samples.

Robust Uncertainty Mass Quantification

The standard evidential learning does not explicitly consider an imbalanced class distribution. As

a result, data samples from the minority class are usually assigned a higher uncertainty mass due to

lack of sufficient training data. While this may not significantly impact the close set performance

(i.e., accuracy), it poses a more severe issue for OSD as the minority-class samples become equally

uncertain as those open set samples. To address this challenge, we propose to integrate evidential

learning with DRO for robust uncertainty mass quantification on the minority class samples in the

close set. Since the model has less chance to learn from the minority class, DRO optimizes the

worst cast loss by adjusting the weights assigned to each sample according to an uncertainty set:

PDRO :=

{
p ∈ RN : p⊤1 = 1,p ≥ 0, Df (p∥ 1

N
) ≤ η

}
(5.5)

where Df (p∥q) is f -divergence between two distributions p and q and η controls the size of the

uncertainty set. This allows us to define a distributionally robust evidential loss (DREL) as

LDREL(Θ) = max
p∈PDRO

N∑
n=1

pnl
EL
n (Θ) (5.6)
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Figure 5.1: Examples of Scheduler Functions

Depending on η in the uncertainty set, we can decide whether we want to assign an equal weight

to all data samples or focus on the most difficult ones. The lemma below reveals the relationship

between DREL and the standard evidential loss.

Lemma 5.1. With η → 0, the EDL loss under DRO reduces to the standard EDL loss.

When η is set to be very small, the model gives similar weights to all samples, which allows them

to participate equally in the training process. At another extreme, we can direct the model to fully

focus on the most difficult sample with the maximum loss, as summarized in the lemma below.

Lemma 5.2. With η → ∞, the loss under DRO becomes equivalent to a maximum loss based

approach focusing only on the hardest sample.

The above lemma implies that a highly flexible uncertainty set may cause the model to put too

much emphasis on the difficult samples. Since these difficult samples may come from the majority

classes, simply setting a large η will not be necessary to direct the model’s attention to the samples

from the minority class. Furthermore, using a flexible uncertainty set in the initial phase of the

model training may misguide the model to neglect a large number of representative data samples.

As a result, the model will not be able to capture the common patterns that exhibit in most of the

training samples. The proposed DREO model aims to address this issue by optimally balancing

the model training over all classes in the close set through adaptive DRO learning.

Adaptive DRO Training

The key idea of adaptive DRO training is to gradually increase the size of the uncertainty set, which

allows the model to learn from easy to hard samples from the close set classes. Scheduler functions

(SF) provide a natural way to achieve the desired training behavior. Figure 5.1 (a-c) shows three

typical SFs, including cosine in (a): cos
(
πt
2T

)
, cosine in (b): 1

2 cos
(
πt
T

)
+ 1

2 , and exponential in (c):

exp
(
− t
β

)
, where t denotes the index of the training epoch, T is the terminating epoch, and β is
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a specific parameter of the exponential function. It can be seen that while the general trends of

different SFs are similar, they exhibit some key differences that may lead to quite distinct model

training behaviors. For example, a cosine function can help to ensure the uncertainty set to stay

small for a relatively longer time in the beginning of model training. This ensures the model to learn

from the representative samples in the majority classes (according to Lemma 5.1). In contrast, an

exponential function can change the size of the uncertainty set very rapidly, which can give the

model more time to learn from the difficult samples at the later phase (according to Lemma 5.2).

The offset cosine function can offer both a relatively long initial learning and later learning phases.

However, choosing a SF that best matches the nature of a given dataset poses a key challenge.

Furthermore, a single SF may not be rich enough to express the desired training behavior of a

complex dataset.

To address this key challenge, we propose to conduct multi-scheduler learning to automatically

construct a composite scheduler function that can be automatically learned for each given dataset

to deliver the optimal training behavior. More specifically, the multi-scheduler function (MSF) is

formulated as a convex combination of a set of atomic SFs:

MSF(w,β, t, T ) =
M∑
m=1

wmSFm(βm, t, T ),
M∑
m=1

wm = 1, wm ≥ 0 ∀m ∈ [M ] (5.7)

where w are the mixing weights and β is a set of specific parameters for the atomic SFs. Figure 5.1

(d) visualizes an example MSF that combines a cosine and exponential functions with different

mixing weights and fixed β = 20, T = 600. As can be seen, the MSF is much more expressive then

either its component SF, which makes it capable to represent a much broader range of training

behaviors.

By leveraging the proposed MSF to control the size of the uncertainty set, we can achieve data

adaptive DRO training. Let η0 be the initial size of the uncertainty set and the size of the set at

epoch t is

ηt =
ηt−1

MSF(w,β, t, T )
(5.8)

As ηt increases, the model gradually shifts its focus from easier samples to the more difficult ones.

In this way, the model can be trained to first capture the common patterns in the data and then

conduct fine-tuning by attending to those difficult samples. However, for imbalanced classes, there

may be a good number of difficult samples from the majority classes. Therefore, solely controlling

the size of the uncertainty set does not guarantee a sufficient training over the minority class. To

address this, we further leverage the label of the minority-class c to formulate a ratio biased weight
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augmentation on samples from this class. Let p(c) =
∑

∀ync=1 pn be the total weight for minority

class c obtained by solving (5.6). Then, the weights for the minority class samples are adjusted as:

p̃(c) =

p(c), if p(c) ≥
1
C

min
(

1
C , p(c)

MSF(w′,β′,t,T )
)
, otherwise

p̃n =


p̃(c)
p(c)pn, if ync = 1

1−p̃(c)
1−p(c)pn, otherwise

(5.9)

As the MSF monotonically decreases over the training epochs, the total weight for the minority class

samples will eventually reach 1
C , making it equally weighted as the other (C − 1) classes.

The adaptive DRO training is achieved through a bi-level optimization, where the inner loop

optimizes the the model parameters (Θ) and the outer loop optimizes the MSF parameters W =

{w,w′,β,β′}:
min
W
LDRELval (Θ∗,W), s.t. Θ∗ = arg min

Θ
LDRELtrain (Θ,W) (5.10)

where LDRELtrain , LDRELval are training and validation losses, respectively. The outer loop optimization

can be solved by computing the Hypergradients [91, 104] or through a population based methods

[53], where the former may easily get stuck in local optimum [133]. To this end, we extend the

existing population based method to learn an optimal MSF and the details are given in Appendix.

Theoretical Analysis

We establish the key theoretical properties of DREO, including the convergence speed in model

training and the generalization capability by formally demonstrating the equivalence between

DREO and AdaBoost. The key idea is to leverage the equivalence between AdaBoost and the

gradient descent search of an optimal function from a linear combination of a set of (weak) learn-

ers [9, 95].

Let F = {f1, ..., fK} be a set of different classifiers, and the linear span generated by the set F is

LS(F) =

{
f : f =

K∑
k=1

σkfk, 1 ≤ k ≤ K

}
(5.11)

DREO training consists of two alternative updates between optimizing the worst case probability

and predicting function f . The update in function prediction can be regarded as finding a sub-

gradient Gt ∈ ∂LDRO(ft) and updating with
∏
LS(F)(G) = arg minf∈LS(F) ∥f −Gt∥DN

where DN is

the training data. Letting Ln(ft) be the loss associated with the data sample xn, the update of p

involves the optimization of the following objective with ft being fixed:

LDREO(ft) = max
p∈PDRO

N∑
n=1

pnLn(ft) (5.12)
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where the uncertainty set is given by (5.5). The corresponding Lagrangian of the above optimization

problem is given by

max
p≥0,p⊤1=1

N∑
n=1

pnLn(ft)− α

[(
N∑
n=1

pn log pn

)
− ηt

]
(5.13)

The theorem below shows the equivalence between DREO and Adaboost.

Theorem 5.3. Under the assumption of finite exponential moment for Ln(f), with α ≥ 0 being

sufficiently large and

ηt = β∗ψ
′
(β∗)− ψ(β∗) (5.14)

the worst case probability p∗ is given by

p∗n =
exp

(
Ln(ft)
α

)
∑N

j=1 exp
(
Lj(ft)
α

) (5.15)

where β∗ = 1
α∗ , α∗ ≥ 0 be the optimal α, and ψ(β) = log

[∑N
n=1 exp(βLn(ft))

N

]
. The alternative

optimization between f and with above worst case probability solution exactly recovers the AdaBoost

algorithm proposed in [38].

Remark. There are several key benefits of connecting DREO with AdaBoost. First, AdaBoost

is less prone to overfitting even running for a large number of iterations [94]. Inheriting such a

property is crucial for OSD as an overfitted evidential model can produce highly confident wrong

predictions. This implies that a low uncertainty may be predicted for samples that the model is less

familiar with, resulting in a false negative detection of an open set sample. Furthermore, since the

target function is expressed as a linear combination of a set of weak learners, the optimal function

can be regarded as maximizing the l1 geometric margin among the training samples to ensure good

generalization capability like other maximum-margin classifiers [95]. This ensures a decent close

set performance from DREO (as shown by our experiments). The proof of Theorem 5.3 is provided

in Appendix.

5.3 Experiments

We perform extensive experimentation to evaluate the effectiveness of the proposed DREO model.

We first describe five real-world image datasets where a minority class is introduced to create an

imbalanced setting. We then assess the OSD performance of the proposed technique by comparing

with competitive baselines. Finally, we conduct some qualitative analysis, which uncovers deeper

insights on the performance advantage of the proposed model.
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Datasets

Our experiments involve five real-world image datasets: Cifar10, Cifar100 [67], ImageNet [24],

MNIST [25], and Architecture Heritage Elements Dataset (AHED) [86]. In our experimentation,

model training is performed solely based on the closed set samples. During the detection phase,

the testing samples corresponding to the closed set classes will be assessed against the samples

from open set classes. For all datasets, for the hyperparameter optimization, randomly selected

20% of the training set is used. The brief description for each dataset is given below. For the

detailed description and data sample distribution in majority and minority classes, please refer to

the Appendix.

• MNIST: Five classes are treated as open set classes and the rest as the class set. To make

the dataset imbalanced, we consider class ‘3’ as a minority class and randomly select 30% data

samples as compared with other majority classes. The same imbalanced ratio is applied to both

training and testing sets. In addition to the MNIST open set classes as described above, we

follow other existing works [130] and further test the OSD performance on additional open set

samples from three more sources: (1) MNIST-Noise, (2) Noise, and (3) Omnigolot [70].

• Cifar10: Five classes are assigned as open set and close set, respectively. Bird’ is made as the

minority class using the same strategy introduced above. In addition to the open set classes from

Cifar10 itself, we further assess the OSD performance with Cifar+10 and Cifar+50.

• Cifar100: ’Living being’ related super classes are assigned as the closed set and the remaining

super classes are assigned as the open set. We make ‘insect’ related classes as the minority one.

• ImageNet: Five classes are assigned as open set and close set, respectively. We make ’king

crab’ as the minority class.

• Architectural Heritage Elements Dataset (AHED): Five classes are assigned as open set

and close set, respectively. This is inherently highly imbalanced dataset where number of data

points are unevenly distributed across different classes. The class ‘portal’ is the minority one.

Experimental Settings

Evaluation metric. To assess the model performance, we report mean average precision (MAP)

score which summarizes the precision-recall curve as a weighted mean of precision achieved at each

threshold, with the increase in recall from previous threshold as the weight. Specifically, in the

OSD, we treat the open set samples as positive and close set samples as negative and compute

the MAP score based on the uncertainty score produced by the trained model. Different from

AUROC, MAP places more emphasis on initial part of the ROC curve, which gives preference if
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model can rank the openset samples on the top based on thei predicted uncertainty scores. This

MAP metric works well in practice as the main focus may be devoted to the first few predicted

candidate samples, especially when there is a long candidate list. The theoretical result shows that

MAP is approximately the AUROC times the initial precision of the model [128]. Therefore, we

focus on reporting the MAP performance and leave the AUROC results in Appendix. It is worth

to note that our AUROC results also show a consistent trend as the MAP results.

Network architecture. In terms of the architecture of the evidential neural network, for all

datasets, we use an LeNet5 network with tanh activation in the feature extractor and ReLU in the

fully connected layers. For training, we use the Adam optimizer with a learning rate of 0.001 and

l2 regularization with a coefficient of 0.001. The detailed hyperparameter setting is provided in

Appendix.

Performance Comparison

In our comparison study, we include baselines that are most relevant to our model, including

EDL, EDL augmented with oversampling using SMOTE [18] (referred to as AEDL), and EDL

with standard DRO training (referred to as DRO). Further, we also compare the performance with

the Posterior networks [17] and its robust form, PostNet (RS), proposed by Kopetzki et al. [65].

In addition, we also compare with representative baselines with outstanding OSD performance:

OpenMAX [7], CGDL [130], and OLTR [85]. Please refer to the Appendix for the more detailed

description of the baselines used in our comparison study along with additional results and an

ablation study.

Tables 5.2 presents the OSD performance comparison between different models for all five datasets.

DREO consistently outperforms all the baseline models across all the datasets. For certain datasets,

the performance advantage over the second best model is more than or close to 10%. This clearly

demonstrates the benefits of conducting evidential learning through adaptive DRO training to

achieve an optimal balanced learning from all classes and different types of data samples. We also

observe that EDL consistently performs better than other non-evidential learning based models,

such as OpenMAX, in most cases. The better OSD performance from EDL is attributed to its

explicit modeling of the uncertainty mass that works naturally for detecting the open set samples.

In contrast, directly applying DRO with a flexible uncertainty set, which aims to address the

imbalanced class distribution, leads to a rather poor OSD performance due to the reasons as

analyzed in prior sections. Similarly, AEDL does not perform better than the standard EDL due to

the lack of fine-tuning of the difficult examples from the majority classes that become inseparable
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Table 5.2: OSD (MAP) performance on all datasets

Approach
Cifar10

Cifar100 ImageNet
Cifar10 Cifar+10 Cifar+50

EDL 62.42± 0.31 29.23± 0.38 65.75± 1.11 52.00± 2.40 55.93± 4.30

AEDL 54.19± 0.77 26.21± 0.68 63.04± 0.70 52.79± 0.91 57.94± 0.07

DRO 57.86 ± 2.94 18.35± 0.40 56.04± 1.63 50.78± 4.44 55.67± 3.86

OpenMAX 59.65± 1.03 24.48± 1.34 62.80± 2.08 50.88± 0.60 53.24± 0.39

CGDL 54.27± 2.06 16.83± 0.20 50.15± 1.08 50.59± 4.56 55.47± 1.53

PostNet 56.71± 6.08 25.71± 5.39 62.51± 4.68 53.85± 2.76 56.83± 1.52

PostNet (RS) 51.54± 11.32 18.28± 1.50 53.13± 4.33 51.75± 0.98 56.21± 0.75

OLTR 56.37± 0.25 19.59± 0.49 53.98± 0.68 48.48± 0.29 50.71± 0.66

DREO 72.48± 4.08 37.14± 2.06 73.87± 1.42 57.52± 1.60 62.02± 1.11

Approach
MNIST

AHED
MNIST Noise MNIST-Noise Omnigolot

EDL 87.32± 4.01 82.16± 8.74 82.89± 8.06 77.62± 6.79 50.23± 1.84

AEDL 75.37± 11.14 71.90± 11.45 76.23± 12.67 67.29± 10.77 52.22± 0.26

DRO 63.25± 4.32 46.78± 1.22 49.59± 3.98 48.15± 1.70 42.28± 0.18

OpenMAX 84.11± 1.55 83.03± 1.71 78.31± 2.745 81.14± 0.89 48.13± 0.19

CGDL 61.33± 1.53 74.88± 8.42 73.92± 8.41 90.72± 2.16 48.57± 1.39

PostNet 55.58± 9.12 47.53± 13.88 43.94± 8.00 72.79± 4.24 46.69± 1.90

PostNet (RS) 49.3± 4.071 36.14± 0.59 39.96± 2.20 77.43± 9.80 46.10± 4.37

OLTR 86.38± 0.51 90.61± 1.43 83.75± 1.28 55.27± 3.04 49.26± 1.66

DREO 90.80± 0.058 94.24± 0.32 94.18± 0.21 93.80± 0.2 53.21± 0.65

Table 5.3: Closed set performance (MAP) on all datasets

Approach Cifar10 Cifar100 ImageNet MNIST AHED

EDL 55.39± 3.78 31.80± 2.37 55.84± 1.60 99.58± 0.26 40.48± 2.65

AEDL 54.98± 0.63 36.11± 0.08 55.62± 0.58 99.62± 0.23 41.36± 3.98

DRO 27.16± 5.94 10.50± 0.25 20.71± 1.00 90.87± 3.89 30.02± 0.93

DREO 54.65± 1.02 36.44± 0.23 55.31± 1.11 99.88± 0.01 49.68± 1.58

from the open set samples with a high predicted uncertainty score.

Table 5.3 also shows the closed set performance as a reference. It is interesting to see that DRO with

a flexible uncertainty set performs the worst in the close set setting as it does not learn properly

from the most representative samples in the training data while only focusing on the difficult ones.

AEDL performs very competitively and achieves the best performances on two datasets. This is
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(a) EDL (b) DRO (c) AEDL (d) DREO

Figure 5.2: OSD performance comparison from imbalanced Cifar10 dataset.

partly because we are evaluating MAP by treating the minority class as positive and oversampling

helps to improve the prediction on the minority class quite significantly. DREO also performs

competitively and achieves the best performance on the other two datasets. The good close set

performance further confirms our theoretical result that proves the equivalence between DREO and

AdaBoost, which justifies its strong generalization capability.

Figure 5.2 provides a deeper insight on the superior OSD performance of DREO than other com-

petitive baselines, including EDL, DRO, and AEDL. Cifar10 is used as an illustrative example and

similar patterns are obtained on other datasetts. First, while EDL is able to separate outliers from

most samples in the majority classes based on their predicted uncertainty scores, it assigns much

higher uncertainty scores to samples from the minority class, making them hard to be separated

from the outliers. Second, the uncertainty scores for the majority classes span a wide range, which

implies that several (difficult) samples from these classes have also been assigned very high uncer-

tainty scores. If the goal is to ensure that most top-ranked samples are true outliers for effective

detection in practice, these highly uncertain close-set samples may significantly affect the detection

effectiveness. Third, while oversampling can help to better detect the samples from the minority

class, which is indicated by lower uncertainty scores achieved by AEDL, most majority classes

become much more uncertain and some of them have even a higher average uncertainty score than

the outliers. Furthermore, the uncertainty scores from most classes also span a wide range. Finally,

DRO effectively narrows down the range of the uncertainty scores as it allows the model to focus

more on the difficult samples. However, it does not effectively bring down the high uncertainty

scores of the minority class, either, which is still higher than outliers. Similar to DRO, the proposed

DREO also manages to keep the uncertainty scores of data samples from the majority classes low so

that even the difficult samples are unlikely to be mis-identified as outliers. Meanwhile, it effectively

lowers the uncertainty scores of the minority-class examples so that they can better separated from

the outliers.
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Bird1 Bird2 Bird3

Boat Truck

(a) Representative difficult samples

Sample
Approach

EDL AEDL DRO DREO

Bird1 137 1533 3109 4

Bird2 4548 4225 3985 100

Bird3 1928 2258 4452 183

Boat 1274 1520 1249 223

Truck 3308 1318 4208 51

(b) Ranking of samples

Figure 5.3: (a) Top row: minority class; bottom-row: majority classes; (b) sample ranking.

Qualitative Examples

We perform a qualitative analysis to further assess the effectiveness of DREO. Figure 5.3 (a) top

row shows representative testing samples from the minority class (‘bird’) in Cifar10. These images

appear to be difficult even for the humans to identify the bird as only a small part is visible. Thus,

EDL, AEDL, and DRO assign a relative higher uncertainty score for them. As a result, many

open set samples may be assigned a relatively lower uncertainty score, leading to false negative

detection on these samples. Figure 5.3 (b) shows the ranking of these samples according to the

uncertainty scores (a lower ranking indicates a lower uncertainty). In contrast, DREO assigns

much lower rankings for these birds objects. This analysis justifies the effectiveness of DREO for

detecting minority class data samples in the close set. Similarly, Figure 5.3 (a) bottom row show

representative images from some majority classes. Again, DREO is able to recognize these difficult

samples and assign a relatively low uncertainty score to avoid them being mis-identified as open

set samples as shown by Figure 5.3 (b).

5.4 Conclusion

In summary, we focus on open set detection from imbalanced close set data. To address the

fundamental challenge due to the interplay between the minority-class samples and difficult samples

from the majority classes, we propose an important extension of DRO to the evidential learning

setting, leading to a novel Distributionally Robust Evidential Optimization (DREO) model. As

an evidential learning model, DREO effectively breaks the closed set assumption by explicitly

modeling the uncertainty mass that is uniquely suitable for detecting open set samples. An adaptive
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DRO training process is achieved through multi-scheduler learning to achieve an optimal training

behavior. The experimentation conducted on five real-world datasets with diverse types of open

set data samples justifies the effectiveness of the proposed model.



Chapter 6

Anomaly Detection under Few-Shot

Learning Settings

Various learning strategies have been explored to reduce label dependency, including semi-supervised

learning [16, 101] and weakly supervised learning [52, 116]. Few shot learning (FSL) offers another

promising direction by assuming that only limited labeled data samples are available for model

training [56]. Once trained, the model is expected to perform well on unseen data samples. While

existing FSL models achieve promising results, most of them primarily focus on the closed-set set-

ting, where both the training and test samples are assumed to be from the same data distribution

over a common set of classes [89]. Nevertheless, when deployed in a practical setting, the model

may very likely be exposed to samples from unknown classes, which are not part of the training

distribution. In this case, it is ideal that the model can detect these samples as unknown. The

open-set recognition (OSR) problem has been studied in the general setting with ample training

data samples [8,41,130,155]. However, the few-shot setting poses unique challenges, making exist-

ing solutions inadequate. There have been few attempts to address few-shot open-set recognition

(FSOSR). For example, PEELER is designed to learn a high-entropy posterior distribution for

samples from the open-set classes [80]. SnaTCHer further improves PEELER by leveraging trans-

former consistency [56]. It considers a set as a whole that includes all the prototypes of closed-set

classes to detect the open-set ones. Because of the attention-based transformation of the entire

set, this approach can provide a compact representation for the entire closed-set classes, leading to

improved detection performance. However, when facing more challenging scenarios, where open-set

classes share some similarities with closed-set ones, existing techniques become less effective.

83
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Ferrets (88) Golden Retriever (82) Malamute (83)

(a) Open-set sample (golden retriever) shares simi-

lar features with closed-set samples including ferrets

and malamute.
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(c) MET

Figure 6.1: OSR performance (AUROC) of a difficult task consisting of similar closed- and open-

set images with examples shown in (a). (b) SnaTCHer (72.84%) and (c) MET (83.34%) that uses

Class Mamalute (83) serves as the opponent class for better separation between Ferrets (closed)

and Golden Retriever (open).

As shown in Figure 6.1 (a), Golden Retriever (Class ID: 82) shares some feature similarity (e.g.,

body structure, whiskers, and tail) with the closed-set class Ferrets (Class ID: 88). As such, when a

golden retriever is evaluated, it may be predicted as a Ferrets. In this case, the distance between the

altered prototype (where the class Ferrets prototype is replaced by a golden retriever sample) and

the original prototype will be very small, resulting in the misclassification of an open-set sample

as a closed-set one with high confidence. As illustrated in Figure 6.1 (b), the mean prototype

distance from this open-set class (i.e., 82) is smaller than most other closed-set classes (e.g., 80,

91, 92), leading to a relatively low detection rate with a 72.84 AUROC score. It is noted in the

figure, prototype distance is the distance that tells how far the original prototype is from the altered

prototype (the closest class prototype is replaced by a test sample) (see (6.9) for a definition).

Similar cases as described above may commonly occur in an open world. This makes it inherently

challenging to detect open-set classes similar to certain closed-set ones but with subtle and im-

portant differences (e.g., 82 and 86). Since recognizing open-set samples that are very different

from their closed-set counterparts is relatively trivial with promising results achieved by existing

methods, we will focus on attacking the more challenging cases. Since we have limited control over

the open-set samples, the goal is to learn a more compact representation of closed-set classes. To

this end, we propose a novel Meta Evidential Transformer (MET) that integrates uniquely designed

training and inference modules to address the central challenges in FSOSR.

During training, MET leverages the power of similar closed-set classes playing a role as open-

set samples (referred to as opponent classes) for improved model training. MET assigns a high

uncertainty to the opponent classes that serve as training-time open-set samples. This will help the
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model make (relatively) more confident predictions on the closed-set samples while being uncertain

of unseen open-set samples that may share similar features as the opponent classes. To achieve this,

a straightforward way would be enforcing the model to produce high uncertainty on the opponent

class samples through the entropy maximization technique [80]. However, a high entropy cannot

tell whether a sample is close to multiple closed-set classes or far away from all of them [126], where

the former corresponds to a confusing closed-set sample and the latter is a true open-set one. To

address this issue, we propose to integrate evidential learning [122], which allows us to design an

evidence-based loss function to guide model training. Intuitively, a data sample with a small sum

of evidence from all closed-set classes is more likely to be from the open-set while one with strong

conflicting evidence from multiple classes should be a confusing closed-set sample. Figure 6.1 (b)

shows an improved OSR performance by MET as compared with SnaTCHer.

While the use of a transformer coupled with the special training process allows us to improve the

overall compactness of entire closed-set samples, one challenging issue still remains when a certain

class is very different from others in the closed-set. Given an open-set sample that is relatively

similar to this special closed-set class, it will also be very different from other classes (and their

prototypes). Due to the normalization effect during transformation, this data sample will likely

be assigned to the special closed-set class. We propose a novel evidence-to-variance ratio (EVR)

to identify such cases during inference time. The inference module then conducts evidence-guided

cross-attention in the transformer to improve detection performance with theoretical guarantees.

Our main contributions are summarized below:

• a MET model that uses an evidential open-set loss to learn more compact closed-set represen-

tations by leveraging similar closed-set classes as opponent open-set classes,

• a novel evidence-to-variance ratio (EVR) to identify challenging open-set samples by col-

lectively considering both the predicted evidence and their distribution over all closed-set

classes,

• a uniquely designed evidence-based cross-attention mechanism to form a more accurate rep-

resentation of the prototypes for improved OSR performance,

We conduct extensive experiments on real-world datasets and the results clearly demonstrate the

outstanding OSR performance from the proposed MET model.
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6.1 Related Work

We discuss representative works that are most relevant to ours. More related works are also covered

in the Appendix.

Few-shot Open-set Recognition. There are recent OSR models specifically developed for few-

shot learning under the meta-learning setting. Liu et al. propose an oPen set mEta LEaRning

(PEELER) model that leverages ProtoNet for few shot open-set recognition [80], which makes an

assumption that the unknown samples are available during the training process. The key limitation

of this approach is the learned embedding representation is not task adaptive and the open-set

detection process heavily depends on the used open-set samples during the training process. To

address those limitations, Jeong et al. propose the SnaTCHer model based on FEAT [152], which

makes the embedding task specific by leveraging different transformer functions [56]. While the

training paradigm is very similar to FEAT (not requiring unknown samples), SnaTCHer proposes

a unique process to detect unknown samples during testing by leveraging the transformed set of

prototypes to represent all closed-set classes. However, SnaTCHer may suffer from more challenging

open-set samples and the normalization effect may miss detecting open-set samples with strong

confidence. Similarly, Huang et al. [51] leverage task-adaptive negative class prototype to learn

dynamic rejection boundaries for FSOSR tasks. However, learning from negative samples generated

from closed-set prototypes may not help to deal with challenging open-set samples.

Uncertainty-aware Open-set Recognition. Multiple approaches have been developed that

explicitly consider uncertainty during model training [17, 92, 121]. For instance, Sensoy et al. pro-

pose an evidential deep learning (EDL) model that leverages the subjective logic principle to learn

the evidence and uncertainty explicitly based on the training data samples [121]. Similarly, Malinin

et al. propose a Prior Network (PN) that uses an explicit mechanism to quantify the distributional

uncertainty coming from the distributional mismatch [92]. However, this approach requires un-

known samples during the training time and therefore limits its applicability in practical settings.

Considering this limitation, Charpentier et al. propose the posterior network that leverages the

normalizing flows to estimate the density in the latent space in order to predict the posterior

distribution based upon the in-distribution samples [17]. The proposed METmodel extends these

approaches to the few-shot setting through seamless and novel integration with a transformer ar-

chitecture for effective open-set recognition.
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6.2 Methodology

6.2.1 Preliminaries

Meta learning. Meta learning refers to learning to learn where a meta-learner learns a learning

algorithm by exploiting many learning tasks. Meta learning splits data into two sets: meta-train and

meta-test considering distinct training and test classes. Meta-train MS={(Stri ,Qtri )}Ntr

i=1 includes

support (Stri ) and query (Qtri ) sets for the ith task and N tr is a number of training tasks. Similarly,

meta-test MT = {(Stei ,Qtei )}Nte

i=1 includes support (Stei ) and query (Qtei ) sets for the ith task and

N te is a number of test tasks. Meta-learning performs training by minimizing the error of label

prediction for the query set Qtr conditioned on the support set Str. Specifically, the meta-training

objective is

θ∗ = arg min
θ

∑
(xj ,yj)∈T tr

i

L(yj , Pθ(·|xj , Stri )) (6.1)

where L is a loss function (e.g., cross-entropy and mean-square error), which is suitable for the

optimization procedure, and Pθ(·) is a parametric neural network or other models to make predic-

tions. Meta-learning is a popular approach for few-shot learning. It forms support and query sets

by sampling N -classes from the set of classes with few training samples (e.g., K-shot examples per

class) commonly referred to as a N -way K-shot problem.

Evidential learning. Theory of evidence and subjective logic (SL) [22,58] are utilized to address

inexact and expensive posterior inference of Bayesian and Monte-Carlo approximation. It also

provides predictive uncertainty, including both aleatoric and epistemic uncertainty. In particular,

evidence provides a measure of the number of supportive observations from data for each class and

let ek denote the evidence for a class k. Then, the Dirichlet concentration parameter αk for each

class k ∈ Y can be calculated as: αk = ek + akW , where ek ≥ 0. The belief mass and uncertainty

mass (a.k.a., vacuity) is computed as:

bk =
ek
S
, u =

K

S
with S =

K∑
k=1

(ek + 1) (6.2)

Evidential learning essentially places a Dirichlet prior Dir(pi|αi) on a multinomial likelihood Mult(yi|pi)
and then uses the negative log-likelihood to train the model:

LEDL =

K∑
k=1

yik (log(Si)− log(αik)) (6.3)
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where yik is an one-hot encoding of ground truth label yi of a data sample xi, αik is a corresponding

Dirichlet parameter and Si is the total Dirichlet strength.

6.2.2 Transformer based FSOSR

Transformers leverage the similarity among the closed-set classes through the attention mechanism,

which results in a more compact representation of the entire closed-set classes. As such, the open-

set sample representation can stay away from all of the closed-set class representations, improving

the openset detection capability. Let F (·) be the feature extractor and we can define the class-

representation (i.e., prototype) of closed-set class n as follow:

pn =
1

K

∑
x∈ class n

F (x;θf ) (6.4)

where K is the total number of samples belonging to class n in the support set, θf denotes the

parameters associated with feature extractor F , x represents a data sample belonging to class n,

and N is the total number of closed-set classes for a given task. The overall prototype representation

can then be formed as a concatenation of N closed-set class prototypes:

P = {pn}Nn=1 (6.5)

The above prototype representation does not leverage the similarity among closed-set classes. For

a more compact representation, we can transform the prototype using the transformation function
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T(·). Specifically, we transform the prototype (P) in the form of a triplet [key (K), value (V), query (Q)]

with trainable transformer weight matrices and then the transformed prototype is achieved by

P ′ = T(P;θt) = LayerNorm(P +
1

N
(WVP))

[
softmax

(
(WKP)⊤(WQP)√

d

)⊤]
(6.6)

where θt = {WK,WV ,WQ} ∈ Rd×d are learnable transformation matrices and d is the feature

dimension.

During the training process, we aim to minimize the distance between a closed-set query sample

feature representation with its respective transformed prototype class while maximizing with the

rest. To achieve this, we can leverage cross-entropy loss with the following inverse of distance as

the logits for that loss.

ojn = [d(F (xj),p
′
n)]−1 =

[√
(F (xj)− p′

n)⊤(F (xj)− p′
n)

]−1

(6.7)

where xj is the jth query sample, p′
n is the transformed prototype of class n, and d(·, ·) is the

Euclidean distance.

During the inference process, for open-set detection, one straightforward process would be comput-

ing the distance using (6.7) and deciding the sample as open-set or closed-set based on its value.

Compared to this, SnaTCHer considers a set as a whole that includes all the prototypes of the

closed-set classes to detect the open-set samples which results in better open-set detection perfor-

mance. Specifically, let xj be a query sample, and c be the closest closed-set class with this sample,

then we alter the prototype in (6.5) as

Pa = P − {pc}+ F (xj) (6.8)

Next, the altered prototype is passed through the transformer using (6.6). This yields the trans-

formed representation of altered prototype represented as P ′
a. Finally, we compute the distance

between transformed prototype and the altered transformed prototype which is given as

δ(xj) = d(P ′
a,P ′) (6.9)

For an open-set sample, the transformed P ′
a is expected to be very different from the original P ′

which has a compact representation, leading to an improved OSR performance.

Remarks. As described in the introduction, in case of more challenging scenarios where open-

set classes share some similarities with closed-set classes, the existing techniques like SnaTCHer

become less effective. Because of the feature similarity of open-set class sample with one of the

closed-set sample, P ′
a can become similar to P ′, which compromises the open-set detection ability.
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6.2.3 Meta Evidential Transformer (MET)

MET is designed to attack the most challenging few-shot open-set detection tasks that the state-

of-the-art FSOSR techniques are less effective to handle. It integrates uniquely designed training

and inference modules to achieve significantly improved OSR performance in these challenging

settings. Specifically, training of MET is guided by a novel evidential open-set loss that learns a

more compact closed-set representation by leveraging similar closed-set classes playing the role as

open-set classes (referred to as opponent classes). As a result, open-set samples can be more easily

separated from the closed-set ones falling into this compact representation. Another difficulty arises

when the closed-set involves classes that are very different from all other closed-set classes. In this

case, learning a compact representation that covers all the closed-set classes becomes challenging

due to the large difference within the set. We propose a novel evidence-to-variance ratio (EVR) to

identify such cases during the inference time using the predicted evidence by the trained evidential

transformer. The inference module then conducts evidential cross-attention in the transformer to

improve detection performance.

MET Training via Evidence-Guided Open-Set Loss. We first construct a meta-training

(MS) set consisting of only training classes so there is no overlap with samples from meta-test

(MT ) classes.

Furthermore, we choose a set of opponent classes from the existing known closed-set classes to

serve as open-set classes, aiming to learn a more compact representation of the known classes.

Figure 6.2 (b) and (c) provides an illustrative example. We develop a unique mechanism to select

opponent classes that are similar to some other closed-set classes. Specifically, within a training

set, we perform semantic analysis at the class level to identify groups of semantically relevant

classes (e.g., different categories of dogs). For datasets with a relatively small number of classes,

this introduces minimal overhead. For larger datasets, we can usually benefit from some existing

hierarchical structure among the classes. If a hierarchical structure is unavailable, similar classes

can be identified based on their semantic similarity. A neural network trained on a training dataset

with a cross-entropy loss can be used to form a feature representation for each sample that could

be used to pick similar classes.

Evidence Guided Evidential Loss. The overall training pipeline of MET is shown in Figure 6.2

(a) and the respective training algorithm is presented in Appendix. We proceed to conduct episodic

training, where the test procedure mimics the training procedure. In training, we sample (K +M)
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instances from N closed-set classes and form a support set (Stri ) utilizing K instances from each

closed-set classes and a query set (Qtri ) with the M closed-set samples as well as O samples from

open-set classes (i.e., the chosen opponent classes) for the ith training task T tri =(Stri ,Qtri ). In this

way, MET has a similar procedure as standard meta-learning and we propose the following learning

process:

θ∗ = arg min
θ

 ∑
(xj ,yj)∈T tr

i |yj∈Cs

Lclose
(
yj , Pθ(.|xj , Stri )

)
+ λ

∑
(xj ,yj)∈T tr

i |yj∈Cu

Lopen
(
Pθ(.|xj , Stri )

)
(6.10)

where θ = {θf ,θt} indicates total parameters consisting of both feature extractor parameter θf

and transformer parameter θt . Lclose is a closed-set loss and suitable loss functions include cross-

entropy and mean-square error. However, our method is based on evidential learning so it leverages

the evidential loss given in (6.3). Similarly, Lopen is an open-set loss applied to the open-set classes

introduced into the training process and we will discuss our novel approach next. Also, Cs and Cu

are the sets of closed-set classes and open-set classes of few-shot training task T tri .

During the meta-update, the model uses the query set, which includes samples from those oppo-

nent classes chosen from the closed-set playing the role of challenging open-set classes. Our goal is

to shrink the total evidence towards zero for these samples that effectively learn a more compact

representation for the closed-set classes. To this end, we utilize KL-divergence between the predic-

tive distribution on these open-set classes and a uniform distribution that indicates a maximum

uncertainty mass (i.e., u = 1):

Lopen(·) =
∑

j|yj∈Cu

KL[Dir(pj |αj)||Dir(pj |(1, ..., 1)⊤)] (6.11)

where pj represents the class probabilities of sample xj , Dir represents Dirichlet distribution, αj

is the Dirichlet parameter given by represented as follow

αjn = {ejn + 1}, ejn = ojn (6.12)

where ojn is defined in (6.7), which is non-negative.

Evidential Cross-Attention. When the closed-set involves classes that are inherently different

from other classes, learning a compact closed-set representation is more difficult. Using a loose

representation may cause trouble during inference especially when evaluating a test open-set sample

that is similar to one of the closed-set classes. Figure 6.3 (a) provides an illustrative example on
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this scenario. Due to the similarity between the open-set Bengal Cat and the original closed-set

Maine Coon, after the latter is replaced by the former using (6.8), the transformed representation

of the altered prototype (P ′
a) and that of the original prototype (P ′) remains similar to each other,

resulting in a low distance d(P ′,P ′
a). As a result, the model fails to recognize the open-set Bengal

Cat. To improve the detection performance, the proposed inference module leverages the predicted

evidence by MET to detect the challenging FSOSR tasks using a uniquely designed Evidence-

to-Variance Ration (EVR) metric. Once detected, it further performs evidential cross-attention,

leading to a transformed representation ( P ′
ϵ) of the original prototypes that is more compact than

P ′ as shown in Figure 6.3 (b). Thus, the distance d(P ′
ϵ,P ′

a) becomes much larger, which results in

a successful detection of the open-set Bengal Cat.

Let ejn denote the predicted evidence on class n for the j-th sample in the query set of a meta-test

task, i.e., j ∈ Qtei . The EVR metric is designed based on the following two properties of the

predicted evidence:

• (P1) If j is an open-set sample, maxn[ejn] is not high (since the model has not learned from
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the same class); if j is a closed-set sample, maxn[ejn] is high.

• (P2) For a challenging FSOSR task, if j is an open-set sample similar to some closed-set

class n′, varn∈N [ejn] is high (because a very low evidence for all other classes while a relative

higher evidence for n′); if j is a closed-set sample, varn∈N [ejn] is even higher (because a high

evidence to the true closed-set class).

Guided by these properties, EVR is defined as

EVRi =
1

|Qtei |
∑
j∈Qte

i

maxn∈N [ejn]

varn∈N [ejn]
(6.13)

Lemma 6.1. Consider a properly trained MET model that can predict evidence satisfying the two

properties (P1, P2). Given two FSOSR test tasks a and b, with a being a challenging task having a

loose transformed closed-set representation P ′, and b being a regular task, we have EVRa < EVRb.

Leveraging the key result in the lemma, we propose an evidential cross-attention mechanism to

improve the OSR performance. Let c be the class nearest to the given query point Qteij , and

Ai ∈ RN×N be the attention matrix obtained from the transformer network then, we update the

attention as

Ai[c1, c2] =

{
Ai[c1, c2]× ϵ

EVRi
if cond == true

Ai[c1, c2] else

}
cond = {(c1 == c||c2 == c) & c1 ̸= c2} (6.14)

where ϵ is the threshold which is chosen in a way that ϵ > EVRi for all tasks. The ratio ϵ
EVRi

should be large for challenging FSOSR tasks whereas small for easier tasks. As such, the ratio ϵ
EVRi

will have a minimal impact on the easier tasks whereas drastic effect on challenging tasks.

Theorem 6.2. Consider a challenging FSOSR testing task and a properly trained MET model that

can predict evidence satisfying the two properties (P1, P2). Let P ′,P ′
a denote the transformed rep-

resentations of the original prototypes and altered prototypes, respectively; let P ′
ϵ be the transformed

representation of the original prototypes augmented through the evidential cross-attention. Then,

with high probability the following holds true

d(P ′
a,P ′) ≤ d(P ′

a,P ′
ϵ) (6.15)

Remarks. The evidential cross-attention essentially for the (originally) different closed-set classes

to attend to each other through (6.14). This leads to a more compact representation P ′
ϵ. On the
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other hand, the representation of the altered prototypes P ′
a is much less compact as it involves

an open-set sample, leading to a large distance d(P ′
a,P ′

ϵ) that helps to improve the detection

performance. Figure 6.3 (b) shows the impact of evidential cross-attention. The overall inference

process is illustrated in Figure 6.3 (c), which integrates the EVR metric and the evidential cross-

attention. For our inference algorithm along with the proof of Theorem 6.2 please refer to Appendix.

6.3 Experiments

We conduct experiments to evaluate the effectiveness of the proposed MET model. Through these

experiments, we aim to demonstrate: (i) state-of-the-art open-set detection performance in com-

parison to existing competitive baselines, and (ii) deeper insights on better detection performance

through a qualitative and ablation study.

Datasets and Evaluation Metrics. For the evaluation we conducted experimentation on mul-

tiple datasets, including MiniImageNet [141], TiredImageNet [112], Cifar100 [68], and Caltech101

[33]. Table C.2 in the Appendix shows the data split for each dataset. We present the results for

MiniImageNet and TiredImageNet in the main chapter and leave the results from the other two

datasets in the Appendix. Both MiniImageNet and TiredImageNet are subsets of ImageNet [23].

In MiniImagenet, there are a total of 100 classes with each class consisting of 600 low-resolution

84 × 84 RGB images. In the case of TiredImageNet, there are a total of 608 classes under 34

superclasses.

As our goal is open-set recognition, we use the Area Under the ROC curve (AUROC) as the

detection performance metric. AUROC measures unseen class instance detection capability using

both seen and unseen class samples. We set five classes as known classes and the other non-

overlapped five classes as unknown classes to compose a single 5-way classification problem during

the experiments. We collected 15 instances for each class as queries, which leads to 75 known

queries and 75 unknown queries for a 5-way classification problem. We use 1 shot and 5 shot

indicating the number of examples per class in the support set.

Comparison Baselines. We compare our method with the state-of-the-art few-shot learning

and open-set recognition methods. For the few-shot learning method, we use a metric-based meta-

learning method FEAT [152] due to their setting being close to our method. Similarly, we use

PEELER [80], SnaTCHer [56], and TANE [51] as the state-of-the-art open-set recognition methods.
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We also include a classical open-set detection baseline, i.e., OpenMax [8]. Additionally, we have

included two standard metric-based few-shot learning models: Prototypical Network [127] and

Relation Network [131].

6.3.1 Results and Discussion

The comparison results are calculated over 1,000 evaluation episodes with 1,000 tasks per episode

and computed the mean over 1,000 episodes. It is worth mentioning that we achieve a compa-

rable closed-set accuracy with regard to competitive baselines as demonstrated in the Table C.3

(Appendix). Table 6.1 shows the open-set performance comparison between different competitive

models proposed MET. As demonstrated, our approach has a much superior performance compared

to the second-best TANE or SnaTCHer. In the case of MiniImageNet, the performance improve-

ment is more than 3% in both settings compared to TANE. Furthermore, compared to SnaTCHer,

our approach has more than 9% performance improvement in 1-shot and more than 6% in case of

5-shot setting.

Similarly for TieredImagenet, the performance gain over TANE for both 5-shot and 1-shot is around

4%. Compared to SnaTCHer, the performance improvement is more than 7% in the 1-shot and

around 5% in the 5-shot setting. This justifies the effectiveness of our proposed technique. For

other standard few-shot learning baselines, we leverage distance and relation scores between the

prototype and the query sample to perform open-set recognition in prototypical and relational

networks, respectively. Also, they don’t have information about opponent classes and we compute

the naive distance between prototypes and the query sample to provide its corresponding score.

This results in poor performance of those models in all datasets. Similarly, another standard

open-set recognition baseline called OpenMax has better results than other baselines in 1-shot

miniImageNet but has poor performance compared to the proposed MET model in all cases.

6.3.2 Ablation Study
Table 6.2: Ablation study results on Mini-

ImageNet.

Transformer Evidential Loss EVR AUROC

1-shot 5-shot

✓ 63.56 77.99

✓ 74.35 81.47

✓ ✓ 76.93 84.90

In this section, we first demonstrate the effective-

ness of each proposed component. Next, we perform

qualitative analysis to further justify the effective-

ness of our proposed technique. Because of the lim-

ited space, we move some of the ablation studies to

the Appendix. This includes the robustness of the
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Table 6.1: OSD (AUROC) performance on different datasets.

Approaches
MiniImageNet 5-way TieredImagenet 5-way

1-shot 5-shot 1-shot 5-shot

ProtoNet 51.63± 0.47 60.26± 0.56 58.48± 0.50 63.46± 0.24

RelationNet 53.14± 0.67 62.22± 0.78 60.85± 0.68 64.42± 0.57

OpenMAX 71.67± 0.87 76.75± 0.80 62.27± 0.55 70.92± 0.52

FEAT (Probability) 45.00± 0.70 53.82± 0.78 57.14± 0.57 63.94± 0.52

Feat (Distance) 67.71± 0.92 75.32± 0.84 61.52± 0.58 70.77± 0.52

PEELER 60.36± 0.72 68.45± 0.78 58.24± 0.65 66.14± 0.74

SnaTCHer 67.37± 0.91 77.99± 0.76 71.00± 0.66 79.49± 0.47

TANE 73.23± 0.25 81.15± 0.18 74.89± 0.64 80.45± 0.49

MET 76.93± 0.59 84.90± 0.41 78.77± 0.46 84.37± 0.35

proposed methodology for different backbones along with elaborative qualitative analysis. Further,

we will also show in the Appendix that even in the original data split, the performance of the

proposed technique is comparable/better than the existing techniques.

Different Proposed Components.

We conduct an ablation study to justify the effectiveness of each component, including the evi-

dential loss and EVR-based detection. Table 6.2 shows the effectiveness of each component on

the MiniImageNet dataset in the 5-Way 1-shot setting. As can be seen, the performance using

proposed evidential loss (second row, w/o EVR) yields better compared to without using it (first

row). Further combining both the evidential loss and EVR significantly boosts the performance as

demonstrated in the third row of the table.

Qualitative Analysis

In addition to the ablation study, we perform a qualitative analysis to show the effectiveness of

each proposed component (evidential loss and EVR). It should be noted that using SnatCHer,
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Figure 6.4: OSR performance comparison on MiniImageNet.

challenging open-set classes 82 and 85 have low prototype distance making them overlap with

many closed-set classes. This is because, 82 and 85 share similarities with closed-set class 88.

The proposed evidential loss helps to increase the separation between open-set and closed-set class

samples. Specifically, as shown in 6.4 (a), the loss helps to push difficult open-set classes, including

82 and 85 upwards. As demonstrated in 6.4 (b), by leveraging EVR, we can further push those

samples upward and thereby creating a bigger separation between open-set and closed-set samples.

In terms of detection performance on AUROC, SnaTCHer, MET (w/o EVR), and MET (w/ EVR)

achieve 65.16%, 73.40%, and 85.53%, respectively. For more detailed qualitative analysis along

with visualization, please refer to the Appendix.

6.4 Conclusion

To tackle the FSOSR task, we propose a novel meta evidential transformer (MET) that uses an evi-

dential open-set loss during training to learn more compact closed-set representation by leveraging

similar closed-set classes. Furthermore, MET integrates an evidence-to-variance ratio to detect fun-

damentally challenging open-set samples by using an evidence-guided cross-attention mechanism.

Experimental results on multiple real-world datasets demonstrate the effectiveness of the proposed

technique over existing competitive methods in terms of better recognizing unseen class samples

without deteriorating closed-set performance.



Chapter 7

Anomaly Detection under Sparse

Network Training

While there is remarkable progress in developing deep neural networks with densely connected

layers, most of these dense networks have poor calibration performance [45], limiting their appli-

cability in safety-critical domains like self-driving cars [11] and medical diagnosis [57]. The poor

calibration is mainly due to the fact that there exists a good number of wrongly classified data

samples (i.e., low accuracy) with high confidence resulting from the memorization effect introduced

by an over-parameterized architecture [114]. Recent sparse network training methods, such as Lot-

tery Ticket Hypothesis (LTH) [37] and its variants [6, 73, 81, 153, 161] generally assume that there

exists a sparse sub-network (i.e., lottery ticket) in a randomly initialized dense network, which

could be trained in isolation and also match the performance of its dense counterpart network in

terms of accuracy. While these methods may, to some extent, alleviate the overconfident issue,

two key challenges remain to be addressed: (i) most of sparse network training methods require

pre-training of a dense network followed by multi-step iterative pruning, making the overall training

process highly costly, especially for large dense networks; (ii) even for techniques that do not rely

on pre-training and iterative pruning (e.g., Edge Popup or EP [110]), their learning goal focuses

on pushing the accuracy up to the original dense networks and hence may still exhibit a severely

over-fitting behavior, leading to a poor calibration performance as demonstrated in Figure 7.1 (b).

Inspired by the recent success of using ensembles to estimate uncertainties [71, 148], a potential

solution to realize well-calibrated predictions would be training multiple sparse sub-networks and

building an ensemble from them. As such, by leveraging accurate uncertainty quantification, the

98
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(a) Dense network

(b) EP sparse sub-

network

(c) EP Sparse sub-

network (d) EP network ensemble

(e) Sparse sub-network 1 (f) Sparse sub-network 2 (g) Sparse sub-network 3

(h) DRO ensemble of (e-

g)

Figure 7.1: Calibration performance by expected calibration error (ECE) on Cifar100 dataset with

ResNet101 architecture with density K =15%. EP refers to the Edge Popup algorithm [110].

ensemble is expected to achieve better calibration. However, existing ensemble models of sparse net-

works rely on pre-training and iterative fine-tuning for learning each sub-network [81,153], leading

to a significant overhead for building the entire ensemble. Furthermore, an ensemble of indepen-

dently trained sparse sub-networks does not necessarily improve the calibration performance. Since

these networks are trained in a similar fashion from the same training data distribution, they could

be strongly correlated such that the ensemble model will potentially inherit the overfitting behav-

ior of each sub-network as shown in Figure 7.1(c). Therefore, the calibration capacity of sparse

sub-network ensemble can be compromised as shown empirically in Figure 7.1 (d).

To further enhance the calibration of the ensemble, it is critical to ensure sufficient diversity among

sparse sub-networks so that they are able to complement each other. One natural way to achieve

diversity is to allow each sparse sub-network (ticket) to primarily focus on a specific part of training

data distribution. This inspires us to leverage the AdaBoost [117] framework that sequentially finds

tickets by manipulating training data distribution based on errors. By this means, the AdaBoost

facilitates the training for a sequence of complementary sparse sub-networks. However, the empir-

ical analysis (see Table 7.1) reveals that in the AdaBoost ensemble, most sub-networks (except for

the first one) severely under-fit data leading to poor generalization ability. This is mainly because

of the overfitting behavior of the first sub-network, which assigns very low training losses to the

majority of data samples, making the subsequent sub-networks concentrate on very rare difficult
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samples that are likely to be outliers or noises. Hence, directly learning from these difficult sam-

ples without having global knowledge of the entire training distribution will result in the failure of

subsequent training tickets and also hurt the overall calibration.

To this end, we need a more robust learning process for proper training of complementary sparse

sub-networks, each of which can be learned in an efficient way to ensure the cost-effective construc-

tion of the entire ensemble. We propose a Distributionally Robust Optimization (DRO) framework

to schedule learning an ensemble of lottery tickets (sparse sub-networks) with complimentary cal-

ibration behaviors that contribute to an overall well-calibrated ensemble as shown in Figure 7.1

(e-h). Our technique directly searches sparse sub-networks in a randomly initialized dense network

without pre-training or iterative pruning. Unlike the AdaBoost ensemble, the proposed ensemble

ticket method starts from the original training distribution and eventually allows learning each

sub-network from different parts of the training distribution to enrich diversity. This is also funda-

mentally different from existing sparse ensemble models [81, 153], which attempt to obtain diverse

sub-networks in a heuristic way by relying on different learning rates. As a result, these models

offer no guaranteed complementary behavior among sparse sub-networks to cover a different part

of training data, which is essential to alleviate the overfitting behavior of the learned sparse sub-

networks. In contrast, we realize a principled scheduling process by changing the uncertainty set of

DRO, where a small set pushes sub-networks learning with easy data samples and a large set focuses

on the difficult ones (see Figure 7.2). By this means, the ticket ensemble governed by our DRO

framework could work complementary and lead to much better calibration ability as demonstrated

in Figure 7.1(h). On the one hand, we hypothesize that the ticket found with easy data samples

will tend to be learned and overfitted easily, resulting in overconfident predictions (Figure 7.1(e)).

On the other hand, the ticket focused on more difficult data samples will be less likely to overfit

and may become conservative and give under-confident predictions. Thus, it is natural to form an

ensemble of such lottery tickets to complement each other in making calibrated predictions. As

demonstrated in Figure 7.1 (h), owing to the diversity in the sparse sub-networks (e-g), the DRO

ensemble exhibits better calibration ability. It is also worth noting that under the DRO framework,

our sparse sub-networks already improve the calibration ability as shown in Figure 7.1 (f-g), which

is further confirmed by our theoretical results.

Experiments conducted on three benchmark datasets demonstrate the effectiveness of our proposed

technique compared to sparse counterparts and dense networks. Furthermore, we show through

the experimentation that because of the better calibration, our model is being able to perform well

on the distributionally shifted datasets [37] (CIFAR10-C and CIFAR100-C). The experiments also

demonstrate that our proposed DRO ensemble framework can better detect open-set samples on
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varying confidence thresholds. The contribution of this work can be summarized as follows:

• a new sparse ensemble framework that combines multiple sparse sub-networks to achieve better

calibration performance without dense network training and iterative pruning.

• a distributionally robust optimization framework that schedules the learning of an ensemble

complementary sub-networks (tickets),

• theoretical justification of the strong calibration performance by showing how the proposed robust

training process guarantees to lower the confidence of incorrect predictions in Theorem 7.2,

• extensive empirical evidence on the effectiveness of the proposed lottery ticket ensemble in terms

of competitive classification accuracy and improved open-set detection performance.

7.1 Related Work

Sparse networks training. Sparse network training has received increasing attention in recent

years. Representative techniques include lottery ticket hypothesis (LTH) [37] and its variants

[19,140]. To avoid training a dense network, supermasks have been used to find the winning ticket

in the dense network without training network weights [161]. Edge-Popup (EP) extends this idea

by leveraging training scores associated with the neural network weights and only weights with top

scores are used for predictions. There are two key limitations to most existing LTH techniques.

First, most of them require pre-training of a dense network followed by multi-step iterative pruning

making the overall training process expensive. Second, their learning objective remains as improving

the accuracy up to the original dense networks and may still suffer from over-fitting (as shown in

Figure 7.1).

Sparse network ensemble. There are recent advancements in building ensembles from sparse

networks. A pruning and regrowing strategy has been developed in a model, called CigL [73], where

dropout serves as an implicit ensemble to improve the calibration performance. CigL requires weight

updates and performs pruning and growing for multiple rounds, leading to a high training cost.

Additionally, dropping many weights may lead to a performance decrease, which prevents building

highly sparse networks. This idea has been further extended by using different learning rates to

generate different typologies of the network structure for each sparse network [81, 153]. While

diversity among sparse networks can be achieved, there is no guarantee that this can improve the

calibration performance of the final ensemble. In fact, different networks may still learn from the

training data in a similar way. Hence, the learned networks may exhibit similar overfitting behavior

with a high correlation, making it difficult to generate a well-calibrated ensemble. In contrast, the

proposed DRO ensemble schedules different sparse networks to learn from complementary parts of
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the training distribution, leading to improved calibration with theoretical guarantees.

Model calibration. Various attempts have been proposed to make the deep models more reliable

either through calibration [45, 106, 140] or uncertainty quantification [40, 123]. Post-calibration

techniques have been commonly used, including temperature scaling [45,106], using regularization

to penalize overconfident predictions [105]. Recent studies show that post-hoc calibration falls short

of providing reliable predictions [103]. Most existing techniques require additional post-processing

steps and an additional validation dataset. In our setting, we aim to improve the calibration ability

of sparse networks without introducing additional post-calibration steps or validation dataset.

7.2 Methodology

Let DN = {X,Y} = {(x1, y1), .., (xN , yN )} be a set of training samples where each xn ∈ RD is a

D-dimensional feature vector and yn ∈ [1, C] be associated label with C total classes. Let M be

the total number of base learners used in the given ensemble technique. Further, consider K to be

the density ratio in the given network, which denotes the percentage of weights we keep during the

training process. The major notations are summarized in the Appendix.

7.2.1 Preliminaries

Edge-Popup (EP) [110]. EP finds a lottery ticket (sparse sub-network) from a randomly ini-

tialized dense network based on the score values learned from training data. Specifically, to find

the sub-network with density K, the algorithm optimizes the scores associated with each weight in

the dense network. During the forward pass, the top-K weights in each layer are selected based

on their scores. During the backward pass, scores associated with all weights are updated, which

allows potentially useful weights that are ignored in previous forward passes to be re-considered.

Expected calibration error. Expected Calibration Error (ECE) measures the correspondence

between predicted probability and empirical accuracy [97]. Specifically, mis-calibration is computed

based on the difference in expectation between confidence and accuracy: Ep̂ [|P(ŷ = y|p̂ = p)− p|].

In practice, we approximate the expectation by partitioning confidences into T bins (equally spaced)

and take the weighted average on the absolute difference between each bins’ accuracy and confi-

dence. Let Bt denote the t-th beam and we have ECE =
∑T

t=1
|Bt|
N |acc(Bt)− conf(Bt)|.
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7.2.2 Distributionally Robust Ensemble (DRE)

As motivated in the introduction, to further enhance the calibration of a deep ensemble, it is

instrumental to introduce sufficient diversity among the component sparse sub-networks so that

they can complement each other when forming the ensemble. One way to achieve diversity is to

allow each sparse sub-network to primarily focus on a specific part of the training data distribution.

Figure 7.2 provides an illustration of this idea, where the training data can be imagined to follow

a multivariate Gaussian distribution with the red dot representing its mean. In this case, the first

sub-network will learn the most common patterns by focusing on the training data close to the

mean. The subsequent sub-networks will then learn relatively rare patterns by focusing on other

parts of the training data (e.g., two or three standard deviations from the mean).

AdaBoost ensemble. The above idea inspires us to leverage the AdaBoost framework [117] to

manipulate the training distribution that allows us to train a sequence of complementary sparse sub-

networks. In particular, we train the first sparse sub-network from the original training distribution,

where each data sample has an equal probability to be sampled. In this way, the first sparse sub-

network can learn the common patterns from the most representative training samples. Starting

from the second sub-network, the training distribution is changed according to the losses suffered

from the previous sub-network during the last round of training. This allows the later sub-networks

to focus on the difficult data samples by following the spirit of AdaBoost.

However, our empirical results reveal that in the AdaBoost ensemble, most sub-networks (except for

the first one) severely underfit the training data, leading to a rather poor generalization capability.

This is caused by the overfitting behavior of the first sparse sub-network, which assigns very small

training losses to a majority of data samples. As a result, the subsequent sub-networks can only

focus on a limited number of training samples that correspond to relatively rare patterns (or even

outliers and noises) in the training data. Directly learning from these difficult data samples without

a general knowledge of the entire training distribution will result in the failure of training the sub-

networks.

Distributionally robust ensemble (DRE). To tackle the challenge as outlined above, we need

a more robust learning process to ensure proper training of complementary sparse sub-networks.

Different from the AdaBoost ensemble, the training of all sub-networks starts from the original

training distribution in the DRO framework. Meanwhile, it also allows each sub-network to even-

tually focus on learning from different parts of the training distribution to ensure the desired diverse

and complementary behavior. Let l(xn,Θ) denote the loss associated with the nth data sample with
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Figure 7.2: Robust ensemble where η defines the size of an uncertainty set with η1 ≤ η2 ≤ η3.

Θ being the parameters in the sparse sub-network. Then, the total loss is given by

LRobust(Θ) = max
z∈URobust

N∑
n=1

znl(xn,Θ) (7.1)

The uncertainty set defined to assign weights z is given as

URobust :=

{
z ∈ RN : z⊤1 = 1, z ≥ 0, Df (z∥ 1

N
) ≤ η

}
(7.2)

where Df (z∥q) is f -divergence between two distributions z and q and η controls the size of the

uncertainty set and 1 ∈ 1N is N -dimensional unit vector. Depending on the η value, the above

robust framework instantiates different sub-networks. For example, by making η → ∞, we have

URobust =
{
z ∈ RN : z⊤1 = 1, z ≥ 0, Df (z∥ 1

N ) ≤ ∞
}

. In this case, we train a sub-network by only

using the most difficult sample in the training set. On the other extreme with η → 0, we have

URobust =
{
z ∈ RN : z⊤1 = 1, z ≥ 0, Df (z∥ 1

N ) ≤ 0
}

, which assigns equal weights to all data sam-

ples. So, the sub-network learns from the original training distribution.

To fully leverage the key properties of the robust loss function as described above, we propose

to perform distributionally robust ensembling learning to generate a diverse set of sparse sub-

networks with well-controlled overfitting behavior that can collectively achieve superior calibration

performance. The training process starts with a relatively small η value to ensure that the initially

generated sub-networks can adequately capture the general patterns from the most representative

data samples in the original training distribution. The training proceeds by gradually increasing the

η value, which allows the subsequent sub-networks to focus on relatively rare and more difficult data

samples. As a result, the later generated sub-networks tend to produce less confident predictions

that complement the sub-networks generated in the earlier phase of the training process. This

diverse and complementary behavior among different sparse sub-networks is clearly illustrated in
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Figure 7.1 (e)-(g). During the ensemble phase, we combine the predictions of different sub-networks

in the logit space by taking the mean and then performing the softmax. In this way, the sparse

sub-networks with high η values help to lower the overall confidence score, especially those wrongly

predicted data samples. Furthermore, the sub-networks with lower η values help to bring up the

confidence score of correctly predicted data samples. Thus, the overall confidence score will be well

compensated, resulting in a better calibrated ensemble.

7.2.3 Theoretical Analysis

In this section, we theoretically justify why the proposed DRE framework improves the calibration

performance by extending the recently developed theoretical framework on multi-view learning [1].

In particular, we will show how it can effectively lower the model’s false confidence on its wrong

predictions resulting from spurious correlations. For this, we first define the problem setup that

includes some key concepts used in our theoretical analysis. We then formally show that DRO helps

to decorrelate the spurious correlation by learning from less frequent features that characterize

difficult data samples in a training dataset. This important property further guarantees better

calibration performance of DRO as we show in the main theorem.

Problem setup. Assume that each data sample xn ∈ RD is divided into P total patches, where

each patch is a d-dimensional vector. For the sake of simplicity, let us assume each class c ∈ [1, C]

has two characterizing (major) features vc = {vc,l}Ll=1 with L = 2 . For example, the features for

Cars could be Headlights and Tires. Let DSN and DMN denote the set of single-view and multi-view

data samples, respectively, which are formally defined as{xn, yn} ∈ DSN if one of vc,1 or vc,2 appears along with some noise features

{xn, yn} ∈ DMN if both vc,1 and vc,2 appears along with some noise features
(7.3)

The noise features (also called minor features) refer to those that do not characterize (or differen-

tiate) a given class c (e.g., being part of the background). In important applications like computer

vision, images supporting such a ”multi-view” structure is very common [1]. For example, for most

car images, we can observe all main features, such as Wheels, Tires, and Headlights so they

belong to DMN . Meanwhile, there may also be images, where multiple features are missing. For

example, if the car image is taken from the front, the tire and wheel features may not be captured.

In most real-world datasets, such single-view data samples are usually much limited as compared

to their multi-view counterparts. The Appendix provides concrete examples of both single and

multi-view images. Let us consider (x, y) ∈ DSN with the major feature vc,l where y = c. Then
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each patch xp ∈ Rd can be expressed as

xp = apvc,l +
∑

v′∈∪\vc

αp,v
′
v′ + ϵp (7.4)

where ∪ = {vc,1,vc,2}Cc=1 is collection of all features, ap > 0 is the weight allocated to feature vc,l,

αp,v
′ ∈ [0, γ] is the weight allocated to the noisy feature v′ that is not present in feature set vc i.e.,

v′ ∈ ∪\vc, and ϵp ∼ N (0, (σp)21) is a random Gaussian noise. In (7.4), a patch xp in a single-view

sample x also contains set of minor (noise) features presented from other classes i.e., v′ ∈ ∪\vc in

addition to the main feature vc,l. Since vc,l characterizes class c, we have ap > αp,v
′
; ∀v′ ∈ ∪\vc.

However, since the single-view data samples are usually sparse in the training data, it may prevent

the model from accumulating a large ap for vc,l as shown Lemma 7.1 below. In contrast, some noise

v′ may be selected as the dominant feature (due to spurious correlations) to minimize the errors of

specific training samples, leading to potential overfitting of the model.

We further assume that the network contains H convolutional layers, which outputs F (x; Θ) =

(F1(x), ...FC(x)) ∈ RC . The logistic output for the cth class can be represented as

Fc(x) =
∑
h∈[H]

∑
p∈[P ]

ReLU[⟨Θc,h,x
p⟩] (7.5)

where Θc,h denote the hth convolution layer (feature map) associated with class c. Under the above

data and network setting, we propose the following lemma.

Lemma 7.1. Let vc,l be the main feature vector present in the single-view data DSN . Assume that

number of single-view data samples containing feature vc,l is limited as compared with the rest, i.e.,

Nvc,l
≪ N∪\vc,l

. Then, at any iteration t > 0, we have

⟨Θt+1
c,h ,vc,l⟩ = ⟨Θt

c,h,vc,l⟩+ βmax
z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
(7.6)

where κ is a dataset specific constant, β is the learning rate, SOFTc is the softmax output for class

c, and Vc,h,l(xj) =
∑

p∈Pvc,l
(xj)

ReLU(⟨Θc,h,x
p
j ⟩ap) with Pvc,l

(xj) being the collection of patches

containing feature vc,l in xj. The set U is an uncertainty set that assigns a weight to each data

sample based on it loss. In particular, the uncertainty set under DRO is given as in (7.2) and we

further define the uncertainty set under ERM: UERM :=
{
z ∈ RN : zn = 1

N ; ∀n ∈ [1, N ]
}
.

Learning via the robust loss in (7.1) leads to a stronger correlation between the network weights

Θc,h and the single-view data feature vc,l:

{⟨Θt
c,h,vc,l⟩}Robust > {⟨Θt

c,h,vc,l⟩}ERM ; ∀t > 0 (7.7)
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Remark. The robust loss LRobust forces the model to learn from the single-view samples (according

to the loss) by assigning a higher weight. As a result, the network weights will be adjusted to

increase the correlation with the single-view data features vc,l due to Lemma 7.1.

In contrast, for standard ERM, weight is uniformly assigned to all samples. Due to the sparse

single-view data features (which also makes them more difficult to learn from, leading to a larger

loss), the model does not grow sufficient correlation with vc,l. In this case, the ERM model instead

learns to memorize some noisy feature v′ introduced through certain spurious correlations. For a

testing data sample, the ERM model may confidently assign it to an incorrect class k according to

the noise feature v′. In the theorem below, we show how the robust training proces can effectively

lower the confidence of incorrect predictions, leading to an improved calibration performance.

Theorem 7.2. Given a new testing sample x ∈ DNS containing vc,l as the main feature and a

dominant noise feature v′ that is learned due to memorization, we have

{SOFTk(x)}Robust < {SOFTk(x)}ERM (7.8)

where v′ is assumed to be a main feature characterizing class k.

Remark. For ERM, due to the impact of the dominate noise feature v′, it assigns a large probability

to class k since v′ is one of its major features, leading to high confidence for an incorrect prediction.

In contrast, the robust learning process allows the model to learn a stronger correlation with the

main feature vc,l as shown in Lemma 7.1. Thus, the model is less impacted by the noise feature

v′, resulting in reduced confidence in predicting the wrong class k. Such a key property guarantees

an improved calibration performance, which is clearly verified by our empirical evaluation. It is

also worth noting that Theorem 7.2 does not necessarily lead to better classification accuracy.

This is because (7.8) only ensures that that the false confidence is lower than an ERM model, but

there is no guarantee that {SOFTk(x)}Robust < {SOFTc(x)}Robust. It should be noted that our DRE

framework ensures diverse sparse sub-network focusing on different single-view data samples from

different classes. As such, an ensemble of those diverse sparse subnetworks provides maximum

coverage of all features (even the weaker one) and therefore can ultimately improve the calibration

performance. The detailed proofs are provided in the Appendix.

7.3 Experiments

We perform extensive experimentation to evaluate the distributionally robust ensemble of sparse

sub-networks. Specifically, we test the ability of our proposed technique in terms of calibration and
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classification accuracy. For this, we consider three settings: (a) general classification, (b) out-of-

distribution setting where we have in-domain data but with different distributions, and (c) open-set

detection, where we have unknown samples from new domains.

7.3.1 Experimental Settings

Dataset description. For the general classification setting, we consider three real-world datasets:

Cifar10, Cifar100 [67], and TinyImageNet [72]. For the out-of-distribution setting, we consider the

corrupted version of the Cifar10 and Cifar100 datasets which are named Cifar10-C and Cifar100-

C [49]. It should be noted that in this setting, we train all models in clean dataset and perform

testing in the corrupted datasets. For open-set detection, we use the SVHN dataset [100] as the

open-set dataset and Cifar10 and Cifar100 as the close-set data. A more detailed description of

each dataset is presented in the Appendix.

Evaluation metrics. To assess the model performance in the first two settings, we report the

classification accuracy (ACC) along with the Expected Calibration Error (ECE). In the case of

open-set detection, we report open-set detection for different confidence thresholds.

Implementation details. In all experiments, we use a family of ResNet architectures with two

density levels: 9% and 15%. To construct an ensemble, we learn 3 sparse sub-networks each with

a density of 3% for the total of 9% density and that of 5% density for the total of density 15%.

All experiments are conducted with the 200 total epochs with an initial learning rate of 0.1 and a

cosine scheduler function to decay the learning rate over time. The last-epoch model is taken for all

analyses. For the training loss, we use the EP-loss in our DRO ensemble that optimizes the scores

for each weight and finally selects the sub-network from the initialized dense network for the final

prediction. The selection is performed based on the optimized scores. More detailed information

about the training process and hyperparameter settings can be found in the Appendix.

7.3.2 Performance Comparison

In our comparison study, we include baselines that are relevant to our technique and therefore

we primarily focus on the LTH-based techniques. Specifically, we include the initial lottery ticket

hypothesis (LTH) [37] that iteratively performs pruning from a dense network until the randomly

initialized sub-network with a given density is reached. Once the sub-network is found, the model

trains the sub-network using the training dataset. Similarly, we also include L1 pruning [75]. We

also include three approaches CigL [73], Sup-ticket [153], DST Ensemble [81] which are based on
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Table 7.1: Accuracy and ECE performance with 9% density for Cifar10 and Cifar100.

Training Type Approach

Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE

Dense† 94.82 5.87 95.12 5.99 76.40 16.89 77.97 16.73

Dense Pre-training L1 Pruning [75] 93.45 5.31 93.67 6.14 75.11 15.89 75.12 16.24

LTH [37] 92.65 3.68 92.87 6.02 74.09 15.45 74.41 16.12

DLTH [6] 93.27 5.87 95.12 7.09 77.29 16.64 77.86 17.26

Mixup [140] 92.86 3.68 93.06 6.01 74.15 15.41 74.28 16.05

Sparse Training CigL [73] 92.39 5.06 93.41 4.60 76.40 9.30 76.46 9.91

DST Ensemble [81] 88.87 2.02 84.93 0.8 63.57 7.23 63.22 6.18

Sup-ticket [153] 94.52 3.30 95.04 3.10 78.28 10.20 78.60 10.50

Mask Training AdaBoost 93.12 5.13 94.15 5.46 75.15 22.96 75.89 24.54

EP [110] 94.20 3.97 94.35 4.03 75.05 14.62 75.68 14.41

SNE 94.70 2.51 94.48 3.51 75.69 9.02 75.22 10.89

DRE (Ours) 94.60 0.7 94.28 0.7 74.68 1.20 74.37 2.09

Table 7.2: Accuracy and ECE on TinyImageNet.

Training Type Approach

K = 9% K = 15%

ResNet101 WideResNet101 ResNet101 WideResNet101

ACC ECE ACC ECE ACC ECE ACC ECE

Dense† 71.28 15.58 72.57 16.96 71.28 15.58 72.57 16.96

Dense Pre-training L1 Pruning [75] 68.85 14.72 69.78 16.38 70.24 14.24 70.98 15.36

LTH [37] 69.23 13.97 69.13 15.34 70.16 13.63 70.25 14.24

DLTH [6] 70.12 16.15 71.36 18.35 71.68 15.88 72.97 17.21

Mixup [140] 69.34 14.24 69.25 15.59 70.28 14.31 70.39 14.57

Mask Training AdaBoost 69.52 17.23 68.66 19.46 70.12 16.57 70.24 18.35

EP [110] 69.88 10.78 71.57 9.82 70.46 11.99 70.71 12.41

SNE 71.28 4.64 73.32 5.48 72.20 6.57 74.56 6.55

DRE (Ours) 71.68 3.48 74.04 2.82 72.00 1.52 73.72 1.08

the pruning and regrowing sparse network training strategies. From Venkatesh et al. [140] we

consider MixUp strategy as a comparison baseline as it does not require multi-step forward passes.

A dense network is also included as a reference (denoted as Dense†). Furthermore, we report the

performance obtained using the EP algorithm [110] on a single model with a given density. Finally,

we also include the deep ensemble technique (i.e., Sparse Network Ensemble (SNE), where each base

model is randomly initialized and independently trained. The approaches that require pre-training

of a dense network are categorized under the Dense Pre-training category. Those performing sparse
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Table 7.3: Accuracy and ECE performance on out-of-distribution datasets.

Training Type Approach

Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE

Dense† 79.65 19.63 79.65 19.63 54.75 35.32 54.75 35.32

Dense Pre-training L1 Pruning [75] 77.34 17.95 76.39 17.89 52.06 31.45 51.67 30.98

LTH [37] 75.85 17.88 76.15 17.62 50.79 31.23 51.35 30.56

DLTH [6] 79.67 21.74 80.12 20.31 54.82 37.55 55.12 35.74

Mixup [140] 76.35 17.74 76.88 17.55 51.36 31.12 51.92 30.35

Sparse Training CigL [73] 70.80 21.04 69.84 21.42 49.42 25.86 51.49 24.13

Sup-ticket [153] 72.89 17.80 73.01 18.82 48.80 24.99 48.81 25.62

Mask Training AdaBoost 75.94 22.96 74.55 21.46 51.36 38.45 51.25 38.34

EP [110] 77.58 17.82 77.73 17.46 52.18 30.60 52.14 29.48

SNE 78.93 15.73 78.61 15.56 54.74 24.22 54.00 20.54

DRE (Ours) 78.57 10.92 78.00 10.19 54.11 14.28 53.21 8.13

network training but actually updating the network parameters are grouped as Sparse Training.

It should be noted that sparse training techniques still require iterative pruning and regrowing.

Finally, techniques that attempt to search the best initialized sparse sub-network through mask

update (e.g., EP) are grouped as Mask Training.

General classification setting. In this setting, we consider clean Cifar10, Cifar100, and Tiny-

ImageNet datasets. Tables 7.1, 7.2, and D.2 (in the Appendix) show the accuracy and calibration

error for different models with density 9% and 15%. It should be noted that for the TinyIma-

geNet dataset, we could not run the Sparse Training techniques due to the computation issue (i.e.,

memory overflow). This may be because sparse training techniques require maintaining additional

parameters for the pruning and regrowing strategy. In the Appendix, we have made a comparison

of the proposed DRE with those baselines on a lower architecture size. There are three key ob-

servations we can infer from the experimental results. First, sparse networks are able to maintain

or improve the generalization performance (in terms of accuracy) with better calibration, which

can be seen by comparing dense network performance with the edge-popup algorithm. Second, the

ensemble in general helps to further lower the calibration error (lower the better). For example, in

all datasets, standard ensemble (SNE) consistently improves the EP model. Finally, the proposed

DRE significantly improves the calibration performance by diversifying base learners and allow

each sparse sub-network to focus on different parts of the training data. The strong calibration

performance provides clear empirical evidence to justify our theoretical results.
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(a) CIFAR10 (K = 15%) (b) CIFAR10 (K = 9%) (c) CIFAR100 (K = 15%) (d) CIFAR100 (K = 9%)

Figure 7.3: Open-set detection performance on different confidence thresholds.

Out-of-distribution classification setting. In this setting, we assess the effectiveness of the

proposed techniques on out-of-distribution samples. Specifically, [49] provide the Cifar10-C and

Cifar100-C validation datasets which are different than that of the original clean datasets. They

apply different corruptions (such as blurring noise, and compression) to shift the distribution of

the datasets. We assess those corrupted datasets using the models trained using the clean dataset.

Table 7.3 shows the performance using different architectures. In this setting, we have not included

DST Ensemble, because: (a) its accuracy is far below the SOTA performance, and (b) same training

mechanism as that of the Sup-ticket, whose performance is reported. As shown, the proposed DRE

provides much better calibration performance even with the out of distribution datasets.

Open-set detection setting. In this setting, we demonstrate the ability of our proposed DRO

ensemble in detecting open-set samples. For this, we use the SVHN dataset as an open-set dataset.

Specifically, if we have a better calibration, we would be able to better differentiate the open-

set samples based on the confidence threshold. For this, we randomly consider 20% of the total

testing in-distribution dataset as the open-set samples from the SVHN dataset. The reason for

only choosing a subset of the dataset is to imitate the practical scenario where we have very few

open-set samples compared to the close-set samples. We treat the open-set samples as the positive

and in-distribution (close-set) ones as the negative. Since this is a binary detection problem, we

compute the F-score [42] at various thresholds, which considers both precision and recall. Figure 7.3

shows the performance for the proposed technique along with comparative baselines. As shown,

our proposed DRE (refereed as DRO Ensemble) always stays on the top for various confidence

thresholds which demonstrates that strong calibration performance can benefit DRE for open-set

detection as compared to other baselines.
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7.3.3 Additional Results, Ablation Study, and Qualitative Analysis

Limited by space, we have reported additional results in the Appendix. Specifically, we compare

the proposed DRE with other standard calibration techniques commonly used in dense networks.

In addition, we have performed an ablation study to investigate the impact of parameter η and

different backbones (i.e., ViT and WideResNet). We present a qualitative analysis to further justify

the effectiveness of our proposed technique. Finally, we report the parameter size and inference

speed (FLOPS) of DRE and compare it with existing baselines.

7.4 Conclusion

In this chapter, we proposed a novel DRO framework, called DRE, that achieves an ensemble of

lottery tickets towards calibrated network sparsification. Specifically, with the guidance of un-

certainty sets under the DRO framework, the proposed DRE aims to learn multiple diverse and

complementary sparse sub-networks (tickets) where uncertainty sets encourage tickets to gradually

capture different data distributions from easy to hard and naturally complement each other. We

have theoretically justified the strong calibration performance by demonstrating how the proposed

robust training process guarantees to lower the confidence of incorrect predictions. The exten-

sive evaluation shows that the proposed DRE leads to significant calibration improvement without

sacrificing the accuracy and burdening inference cost. Furthermore, experiments on OOD and

Open-set datasets show its effectiveness in terms of generalization and novelty detection capability,

respectively.



Chapter 8

Conclusion and Future Works

8.1 Conclusion

Despite having increased attention from diverse domains, anomaly detection is inherently challeng-

ing because of the rare and unbounded nature of anomalous activities. Multiple unsupervised and

semi-supervised learning models have been used in the past but those techniques are sensitive to

outliers (i.e., normal samples that look different from other normal ones) and multi-modalities (i.e.,

existence of multiple types of anomalies). As a result, the existing techniques yield much worse

detection performance under these situations. Also, the imbalanced class distribution further poses

a challenge as the model may be confused between normal samples from the minority class and true

anomalies. Finally, the presence of the spurious correlation worsens the situation as the model is

heavily biased toward majority groups while misidentifying the minority samples as anomalies. To

tackle these challenges, we propose a novel Robust Weakly Supervised Learning (RWSL) framework

that provides fundamental support for real-world anomaly detection using only weak and/or sparse

learning signals. Our proposed RWSL framework constitutes three tightly coupled primary compo-

nents. In the first component (Chapter 3), we integrate the Robust DRO with Bayesian learning,

called Bayesian DRO, that achieves robust detection performance under the weak learning signals

in the presence of outliers and multimodal anomalies. Next, in Chapter 4 we further augment

Bayesian DRO with non-parametric submodular optimization and active instance sampling to im-

prove both the reliability as well as accuracy. In the second component, we leverage evidential

theory and fine-grained uncertainty formulation to tackle anomaly detection under the imbalanced

class distribution of normal data samples. Specifically, in Chapter 5 we propose an adaptive Dis-
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tributionally Robust Evidential Optimization (DREO) training process that boosts the anomaly

detection performance by accurately differentiating the minority class samples and true anomalies

using evidential uncertainty. Furthermore, in Chapter 6 we integrate evidential learning with a

transformer architecture to result in Evidential Meta Transformer (MET) that provides reliable

anomaly detection in the few-shot learning setting. Finally, in Chapter 7, we leverage the idea

of the sparse network training along with DRO to propose the Distributionally Robust Ensemble

(DRE) that helps to avoid: (1) learning from the spurious correlation, (2) overfitting resulting from

memorization effect. As such, the resulting model is unbiased and has better calibration leading to

better identifying minority class samples from true anomalies.

8.2 Future Works

Fairness AI. Bias can exist in various forms including biases including data bias, algorithmic

bias etc. This results in a high prediction error in the minority groups. For example, in the

natural language processing task, although SOTA speech recognizers achieve high overall accuracy,

they fail to perform well on the minority group with slightly different accents compared to the

majority one [2]. Furthermore, those approaches may even treat minority class samples as anomaly

samples. As such, the minority group people may be discouraged from using the existing biased

techniques resulting in a further reduction in the minority class data making the existing model

even more biased as time progresses. Therefore, it is important to develop the fair model to work

well on all groups considering the important applications such as face recognition [44], language

identification [10], video captioning [134] etc. Most of the previous approaches, however, have the

assumption that group-level information is available for each datapoint which may not be feasible

in all practical scenarios. Previous literature has demonstrated that DRO has been a natural

choice to deal with the class-imbalance problem. To tackle this, in the future, we plan to devise a

technique that ensures high accuracy on minority groups without accessing the group assignment

information. Our technique will leverage the DRO techniques to make the existing techniques

unbiased by ensuring high accuracy across different groups without their information during the

training process.

The planned DRO-enabled framework is motivated by the following facts

• DRO provides a natural way to learn an unbiased model by ensuring the minimization of the

minority group data samples.
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• As the DRO performs the optimization based on the loss, it does not require explicit group-

level information for each data point.

• DRO is grounded on rich statistical properties that may be helpful in developing a tight

bound to ensure the minimization of the worst group loss.

To accomplish this, in the future, we plan to conduct the research in the following two ways

1. Dataset Exploration and Design: To validate our approach, we need a dataset that re-

quires explicit group-level information at least in the evaluation set. For this, we will be exploring

the different datasets that may serve our purpose. This includes datasets from natural language

processing, image classification, etc. Further, while selecting the dataset, we need to make sure

that the dataset contains the imbalanced scenario in the training set which contains both minority

group as well as majority group samples with the severe imbalanced scenario. Also, if needed, we

will be designing a dataset to serve our purpose in order to validate the proposed technique.

2. Devise Methodology: Our proposed technique will leverage the DRO and may require the

non-trivial extension of the existing DRO to work well in order to make the machine learning

models unbiased. For this, we will be proposing the DRO-enabled technique along with the strong

mathematical formulation which ensures the model capable of being able to minimize the worst

group error without explicitly having the group-level information.

Trustworthy, sparse, and uncertainty aware Generative Language Model. There has

been increasing attention on Generative Language Models especially in the large language models

(LLMs) domain [84, 102, 145] . However, despite LLMs popularity, those models are extremely

difficult to finetune because of the demand for extensive resources [55]. As such, the progress in

generative models like LLM relies heavily on the contribution from the industry as the majority of

academic researchers may not have extensive resources to conduct research on generative language

models. Furthermore, due to extensive parameters, the LLMs may be overfitted leading to poorly

calibrated, biased, and untrustworthy models. Additionally, due to the overfitting phenomenon, the

model may confidently identify the anomalous sample as the known sample with high confidence

and also minority group samples as unknowns. We plan to solve the aforementioned shortcomings

in two ways.

In the first direction, inspired by Chatper 7, we plan to propose a way to find the sparse net-

work i.e., lottery ticket for the LLMs. The discovered lottery ticket will have very few parameters

but will perform similar to that of LLMs. This technique of LLMs sparsification will have nu-
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merous benefits. First, it makes the finetuning of the LLM process extremely efficient. As such,

academic researchers can actively contribute (in addition to the industry) in the LLM domain to

make remarkable progress in this field. Second, because of the low computational and memory

cost, the sparse LLMs could be easily deployed in low-capacity devices. Third, as evidenced in

Chatper 7, the overparameterized networks such as LLMs could be poorly calibrated because of

the overfitting phenomenon resulting from the memorization effect. Furthermore, the models may

confidently predict unknown samples as known because of the spurious correlation. To tackle this,

the sparsification of LLMs could be an important step.

In the second direction, we seek to systematically quantify the uncertainty in the LLMs. As shown

in Chapter 5 and Chapter 6, it is crucial to quantify the uncertainty in an effective way to better

detect anomalous signals. Also, having an uncertainty score will facilitate the LLM to tell ’I do not

know’ instead of being incorrectly wrong. In case of an unknown situation, we can bring humans into

the loop to further improve the LLM. Despite its need for dire attention, uncertainty quantification

is poorly explored in the LLM domain. There has been very little research in this direction but

is mostly focused on aggregating the token-level uncertainty while completely missing the overall

semantics of the sentence [69, 93]. To tackle this, we aim to extend the evidential learning in the

LLM by making it semantically meaningful. As such, the semantically meaningful uncertainty can

be used to perform various tasks such as anomaly detection, model finetuning in limited data by

the human in the loop, etc.
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Appendix A

In this section, we will mainly provide the additional information required to support the Sections

that are present in the Chapter 3. Mostly we provide the proofs for the proposed theorems used in

the respective section.

A.1 Distributionally Robust Optimization for Deep Kernel Mul-

tiple Instance Learning

This section will provide the additional information to support Chapter 3. Specifically, first we

provide the detailed proof for Lemma 3.1 and Lemma 3.2 in Chapter 3. Next, we provide parameter

update mechanism of the parameters introduced in the same chapter.

A. Detailed Proofs: In this section, we show the detailed steps of the proofs for Lemma 3.1 and

Lemma 3.2.

Proof of Lemma 3.1 : We have the bag level likelihood from Eqs. (3.1) and (3.2) as follows:

p(yb|fb, zb) =
n∏
i=1

{
1

1 + exp(−tbfbi)

}zbi
(A.1)

p(zb|πb) =
n∏
i=1

πzbibi , πbi ≥ 0,
n∑
i

πbi = 1 (A.2)
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Marginalizing over zb, we have the following expression:

p(yb|fb,πb) =
n∑
i=1

p(yb|fb, zbi = 1)p(zbi = 1|πb) =
n∑
i=1

πbi
1

1 + exp(−tbfbi)

Let’s denote p(fbi) = 1
1+exp(−tbfbi) , which yields,

p(yb|fb, πb) =

n∑
i=1

πbip(fbi)

In Lemma 3.1, we maximize the above likelihood over πb with respect to the following uncertainty

set:

Pmaxπb,n
:= {πb ∈ Rn : πTb 1 = 1, 0 ≤ πb}

The resulting optimization becomes:

max
πb

n∑
i=1

πbip(fbi) s.t.

n∑
i=1

πbi = 1, πbi ≥ 0,∀i ∈ [1, n]

Adding the Lagrange multipliers ui ≥ 0 and λ, we get:

L(πb,u, λ) =

n∑
i=1

[πbip(fbi) + uiπbi] + λ

[
n∑
i=1

πbi − 1

]
Taking derivative with respect to πbi and setting to zero yields

p(fbi) + ui + λ = 0 (A.3)

The corresponding KKT conditions are:

ui ≥ 0, uiπbi = 0, ∀i ∈ [1, n] (A.4)

Considering j = arg maxi∈b p(fbi), we have the following condition

p(fbj) + uj + λ = 0 (A.5)

Combining Eqs. (A.3) and (A.5) results in:

p(fbj) + uj = p(fbi) + ui, s.t. j = arg max
i

p(fbi), ∀i ∈ [1, n], i ̸= j (A.6)

Since p(fbj) > p(fbi), we have uj < ui. As ui ≥ 0,∀i ∈ [1, n], we have ui ̸= 0, ∀i ̸= j. By leveraging

the complementary slackness condition, we have

ui ̸= 0, πbi = 0, ∀i ∈ [i, n], i ̸= j (A.7)
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Further using summation constraint, i.e.,
∑n

i=1 πbi = 1, we have the following

πbi =

{
1, if p(fbi) = maxi p(fbi)

0, otherwise
(A.8)

In case of equality condition with p(fbj) = p(fbi) with i ̸= j, we randomly select one and assign

πbi = 1 for one instance whereas 0 for others.

Proof of Lemma 3.2: We have the following marginalized likelihood function (from Lemma 3.1

proof):

p(yb|fbπb) =
n∑
i=1

πbip(fbi) ∀i ∈ [1, n]

In Lemma 3.2 , we maximize the above likelihood function with respect to the following uncertainty

set:

Ptop−kπb,n
:= {πb ∈ Rn : πTb 1 = 1, 0 ≤ πbi ≤

1

k
} (A.9)

The resulting optimization becomes

max
πb

n∑
i=1

πbip(fbi), s.t.
n∑
i=1

πbi = 1, 0 ≤ πbi ≤
1

k
, ∀i ∈ [1, n]

Adding the Lagrange multipliers ui ≥ 0, vi ≥ 0, and λ we get:

L(πb,u,v, λ) =
n∑
i=1

[
πbip(fbi) + ubiπbi + vbi(

1

k
− πbi)

]
+ λ

(
n∑
i=1

πbi − 1

)
Taking the derivative with respect to πbi yields the following:

p(fbi) + ubi − vbi + λ = 0

Considering p(fb[1]) > p(fb[2]), ..., > p(fb[n]) with p(fb[i]) be the ith highest probability score, we

have the following conditions:

p(fb[1]) + ub[1] − vb[1] + λ

=p(fb[2]) + ub[2] − vb[2] + λ

...

=p(fb[n]) + ub[n] − vb[n] + λ
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Removing the p(fb[i]) and λ terms, we get the following inequalities:

ub[1] − vb[1] < ub[2] − vb[2] < .... < ub[k] − vb[k] < .... < ub[n] − vb[n] (A.10)

Consider the following KKT conditions ∀i ∈ [1, n]

n∑
i=1

πbi = 1 (A.11)

ub[i]πbi = 0 (A.12)

vb[i]

(
1

k
− πbi

)
= 0 (A.13)

ub[i] ≥ 0 (A.14)

vb[i] ≥ 0 (A.15)

Case 1: Assume πb[1] = 0, so vb[1] = 0 according to (A.13). This implies ub[1] < ub[2]−vb[2]. Using

KKT condition (A.14), we can write the following:

ub[2] − vb[2] > 0⇒ ub[2] > vb[2] ⇒ ub[2] > 0 (according to KKT condition (A.15))

This means, to satisfy the constraint ub[2]πb[2] = 0 we need to have the following:

πb[2] = 0

Again πb[2]=0 makes πb[3] = 0 and so on. As πb[i] = 0 ∀i ∈ [1, n], and therefore violating the

summation constraint
∑n

i=1 πbi = 1. Therefore, πb[1] can not be 0.

Case 2: Assume 0 < πb[1] <
1
k , then vb[1] = 0, ub[1] = 0, We have the following expression:

ub[2] > vb[2]

Using KKT condition vb[2] ≥ 0 we can write:

ub[2] > 0

Now again using KKT condition ub[2]πb[2] = 0, we write:

πb[2] = 0
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Using Case 1, once πb[2] becomes 0 all of the proceeding values also become zero:

πb[3] = 0, ...., πb[n] = 0

This again violates the summation constraint constraint
∑n

i=1 πbi = 1. Therefore, πb[1] can not

be less than 1
k . This leads to the following conclusion:

πb[1] =
1

k

The process of having πb[i] = 1
k continues until πb[k] = 1

k . As long as we reach to the kth highest

element,
∑n

i=1 πbi = 1. This implies the following:

πb[i] = 0, ∀i > k

In conclusion, we can write the following:

πbi =

{
1
k , if p(fbi) ≥ p(fb[k])
0, otherwise

(A.16)

which proves Lemma 3.2.

B. Parameter Update: We provide the parameter update procedures for parameters introduced

in Chapter 3.1. To update the parameters, we take the derivative of the lower bound L(q) with

respect to the parameter we want to update. We then, use SGD to update the parameter with

a given learning rate. Therefore, in this section, we show the computation of derivative of L(q),

w.r.t. each parameter.

Derivative of L(q) w.r.t. Base Kernel Hyperparameters We have following expression for

a lower bound

L(q) ≈ Eq(U)q(Z)[log p(y|F,Z)]−KL[q(U)||p(U)]−KL[q(Z)||p(Z)]

In the above equation, the base kernel hyperparameters θ are only involved in the second term i.e.,

KL[q(U)||p(U)]. Before taking its derivative let us simplify it further,

KL[q(U)||p(U)] =
1

2

{
log |K| − log |S| −D + tr(K−1S) + µTK−1µ

}
Taking derivative w.r.t. θ, it gives:

∂L(q)

∂θ
= −∂KL(q(U)||p(U)

∂θ
= −1

2

{
tr(K−1∂K

∂θ
)− tr(K−1∂K

∂θ
K−1S)− µTK−1∂K

∂θ
K−1µ

}
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Depending on type of a given kernel, we can find ∂K
∂θ in the above equation. The corresponding

matrix inversions and traces can be computed efficiently by using Kronecker product decomposition

[147].

Derivative of L(q) w.r.t. variational parameters of distribution q(U) Both variational

parameters µ and L depend on the first bag-level likelihood term and KL[q(U)||p(U)]. The first

term in L(q) is given as:

log p(yb|fb, zb) =
n∑
i=1

zbi log
1

1 + exp(−tbfbi)
=

n∑
i=1

zbip(fbi)

Taking the derivative of ith instance with respect to (p, q)-th element of L
(j)
d , i.e. λ, where j ∈ [1, J ]

indicates the jth base GP:

∇λ log p(yb|fb, zb) = zbi
∂ log p(fbi)

∂fbi

∂fbi
∂λ

In the above equation fbi is defined as:

fbi =

J∑
j=1

Ajf
j
bi (A.17)

As we are taking with respect to the jth GP, it means:

∂fbi
∂λ

= Aj
∂f jbi
∂λ

As we know we have the following relationship f = M(µ+ Lϵ). Using this relationship we get:

∂f jbi
∂λ

= AjM
j
i∇λL

(j)ϵ

where M j
i is the ith row of the jth GP. Now the first term can be computed as:

∂ log p(fbi)

∂fbi
=

tb
1 + exp(tbfbi)

Combining both and considering all elements present in a bag b, we have the following update rule:

∇λ log p(yb|fb, zb) = Ep(ϵ)q(Z)

[
zbi
tbAjM

j
i∇λL(j)ϵ

1 + exp(tbfbi)

]
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We can write down the derivatives w.r.t. the whole matric L(j) which is efficient for computing:

∇L(j) log p(yb|fb, zb) = Ep(ϵ)q(Z)

zbi tbAj
(
ϵM j

i

)T
1 + exp(tbfbi)


Now the derivative of KL[q(U)||p(U)] can be written as:

∇λKL[q(U)||p(U)] = −1

2

∂[− log |S|+ tr(K−1S)]

∂λ

We can efficiently compute the above by using Kronecker decomposition matrix. The derivatives

w.r.t. the variational mean µ can be computed similarly as that of L.

Derivative w.r.t. other parameters The mixing weight only depends on the likelihood func-

tion. Therefore, it can be easily computed as:

∇Aj log p(yb|fb, zb) = Ep(ϵ)q(Z)

[
zbitbf

j
bi

1 + exp(tbfbi)

]
(A.18)

To update the neural network parameters w, we take the derivative of L(q) with respect to w. As

the network parameters are related to L(q) through the kernel matrix K, our update procedure is

given as:

∂L(q)

∂w
=
∂L(q)

∂K

∂K

∂h(x,w)

∂h(x,w)

∂w

In the above expression, the term ∂K
∂h(x,w) is the implicit derivative of the deep kernel with respect

to h(x,w), holding base kernel hyperparameters θ fixed. The derivatives with respect to network

weight variables ∂h(x,w)
∂w are computed using the standard back-propagation techniques.

A.2 Bayesian Nonparametric Submodular Video Partition for Ro-

bust Anomaly Detection

In this section, we provide an detailed proof of the Theorem 3.3 introduced in Chapter 3.2.

A. Proof of Theorem 3.3:

In this section, we provide the detailed proof of Theorem 3.3. We first show that the representative

set based MIL loss given by (3.32) is equivalent to the submodularity diversified MIL loss given by
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Equation (3.28) with a specific λ to balance the MIL loss and the diversity of the set. We then

show that greedy algorithm to locate the κ representative segments provides a κ-constrained greedy

approximation to the maximization of the submodular set function F (C) with the solution to be

no worse than (1− e−1) of the optimal solution.

Proof of representative set based MIL loss in (3.32) is a special case of the submodular

diversified MIL loss in (3.28) We first present a lemma, which is used in the proof.

Lemma A.1. Assume that C̃+ with size κ is a solution that maximizes F (C) in (3.27). Then, C̃+

should contain one segment from each mixture component ( i.e., sub-scene).

Proof. The lemma can be proved by following the definition of the BN-SVP induced pairwise

similarity between segments given by (3.26) and then use proof by contradiction. Assume that

at least two segments, say x
(t)
i ,x

(t)
j , are chosen from the same component t. Then, there will

be at least one component, say t′, where no segments are chosen by C̃+. Given the definition of

F (C) in (3.27), for each segment in t, either x
(t)
i or x

(t)
j could be used to compute the pairwise

similarity based on their closeness to that segment. Since the cohesiveness of each component is

guaranteed through the BN-SVP process, both x
(t)
i and x

(t)
j should be close to the mean of their

assigned Gaussian component N (xt,Σt) to ensure a high likelihood optimized by HDP-HMM. Due

to triangle inequality, x
(t)
i and x

(t)
j should be close to each other. As a result, we can assume that

x
(t)
i is always chosen to evaluate the pairwise similarity Si,p with each segment x

(t)
p in component t.

Next, we replace x
(t)
j with another segment x

(t′)
j from component t′ to construct another solution set

C+. Since x
(t′)
j has positive similarity with each segment in t′ and the pairwise similarity between

x
(t)
j and all segments in t′ is all zero, we have F (C+) > F (C̃+), which contradicts the assumption

that C̃+ maximizes F (C).

Since the representative set Ĉ+ is constructed by choosing one segment from each mixture compo-

nent, it satisfies the necessary condition to be an optimizer of F (C) specified in the above lemma.

However, choosing a set of segments with the maximum diversity is not the primary goal and the

overall objective function (3.28) includes both the MIL loss and the diversity, which are balanced

through λ. Due to the lack of instance-level labels, choosing a λ that optimally balances the MIL

loss and the set diversity is challenging. We argue that construction Ĉ+ essentially offers alternative

way to set a specific λ to balance these two terms. First, since the constraint |C+| ≤ κ allows the

set to contain less than κ segment, Ĉ+ excludes those segments with low prediction scores. This

can be viewed as setting a λ to increase −F (C+) while decreasing the MIL loss L(C+). Similarly,
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instead of choosing the instance with the largest pairwise similarity with all other segments in the

same component, we choose a segment with the highest prediction score. Again, this can be viewed

as further reducing the λ to give more preference to the MIL loss as such segments can further

reduce the training MIL loss. Thus, instead of directly setting λ, which is highly challenging, Ĉ+

is constructed by leveraging both the mixture component assignments and the prediction scores of

the segments. This is equivalent to implicitly setting a λ to balance the MIL loss and the diversity

of the representative set Ĉ+, which completes the proof of the equivalence of these two objective

functions.

Proof of the optimality of the greedy algorithm We first reformulate (3.28) as a minimiza-

tion problem minw g(w) with g(w) defined as

g(w) =∂ min
C+⊆Bpos,|C+|≤κ

L(Bpos,Bneg)− λF (C+) (A.19)

The above optimization involves finding a subset C+ ⊆ Bpos that maximizes F (C+). This requires

enumerating over all
(
n
κ

)
possible subsets, which is expensive when there are large number of

segments in a given video. Defining the discrete objective function Gw where

Gw(C+) =∂ L(Bpos,Bneg)− λF (C+) (A.20)

Since −Gw(C+) is monotone non-decreasing submodular, a fast greedy procedure can be used to

approximately optimize Gw(C+). A typical greedy procedure involves evaluating the similarity

between each pair of segments in a video and then choose the segments with the largest overall

similarity with the all other segments. We make two important adjustments of this standard

greedy process. First, our non-parametric HDP-HMM process follows the clustering based heuristic

(Lin and Bilmes 2018) by choosing one segment from each cluster, which avoids evaluating each

candidate segment in the video. Different from (Lin and Bilmes 2018), which chooses the data point

that is closest to the cluster centroid, we choose the one with the highest output score. Second,

our similarity evaluation takes a linear complexity with respect to the bag size by leveraging the

temporal neighborhood of the segments.
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This section provides the additional information to support Chapter 5. First, we present the

detailed description of the training process obtained through the bilevel optimization. Next, we

provide the proofs of main theoretical results.

A. Training Through Bi-level Optimization: Our training involves a bi-level optimization,

where we jointly optimize the network parameter Θ along with the MSF parameters W. Algorithm 2

shows the overall training process based on the population based optimization. We randomly

initialize the MSF parameters Wp and network parameters Θp from the corresponding spaces H
and Θparam respectively shown in Line 3. We perform this initialization for P different models.

Next, in each epoch we independently optimize P models using the proposed objective function

defined in Eq. (5.6). After s epochs, we evaluate the accuracy of each model by using ‘eval’ as

the evaluation metric in the validation set. It should be noted that in our case, we used closed set

classification performance (MAP) as ‘eval’ metric. We identify P̂ (with P̂ < P ) worst performing

models and replace their model parameters by the randomly selected model parameters from set of

b highest accurate models. This process is known is exploitation and is demonstrated in Line 12.

MSF parameters for those worst performing model can be obtained either through random selection

from the original space H or through small perturbation of the W of the model whose parameter

is copied. This process is called exploration as we are searching for the new MSF parameters and is

shown in Line 13. The best performing model parameters and accuracy are stored in the Θ∗ and

acc∗ respectively. Finally, the best model Θ∗ is returned as the optimal model for the testing.

The optimization specified in (5.6) involves an inequality constraint, which incurs a higher compu-

tational overhead. Therefore, in our actual optimization process, we consider a regularized version

144
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Algorithm 2: Multi-Scheduler Learning Process

Input: H, P , s, eval, P̂ , T

1 Initialize: epoch = 0, Θ∗ = None, acc∗ = None

2 for p ∈ [P ] do

3 Θp,Wp ← initialize (Θparam, H)

4 while epoch¡T do

5 Θp ← optimize(Θp|Wp), p ∈ [P ]

6 if epoch%s = 0 then

7 accp → eval(Θp,Wp), p ∈ [P ]

8 sorted idx← arg sortDesc{accp}Pp=1

9 bottom idx← sorted idx[: −P̂ ]

10 top idx← sorted idx[: P̂ ]

11 for idx ∈ bottom idx do

12 Θ idx, j ← uniform({Θj}top idxj )

13 W idx← explore(H,Wj)

14 best model idx← top idx[0]

15 if Θ∗ not None then

16 if acc∗ < accbest model idx then

17 acc∗ = accbest model idx

18 Θ∗ = Θbest model idx

19 else

20 Θ∗ = Θbest model idx

21 epoch← epoch+ 1

22 return Θ∗ with the highest acc
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of the DREO loss as follows:

LDREL = max
p≥0,p⊤1=1

N∑
n=1

pnl
t
n − λDf

(
p∥ 1
N

)
(B.1)

Solving the above maximization problem leads to a closed form solution for p∗ as shown by the

following lemma. It should be noted that the role of the λ is exactly opposite as that of the η.

Specifically, we start from a high λ so that the model gives equal emphasis to all data samples.

Next, in each step we decrease λ using the following Equation

λt = λt−1MSF(w,β, t, T ) (B.2)

Decreasing λ helps the model focus on the difficult samples as training progresses.

Lemma B.1. Assuming that Df is the KL divergence, then solving (B.1) leads to the following

solution

LDREO =

N∑
n=1

p∗nl
t
n (B.3)

where p∗n is given by

p∗n =
exp

(
ltn
λ

)
∑N

j=1 exp
(
ltj
λ

) (B.4)

Proof: The the Lagrangian of the regularized loss in (B.1) is

LDREL(Θ, v, λ) =

N∑
n=1

pnl
t
n − λ

(
N∑
n=1

pn log pn + logN

)
+ v

[(
N∑
n=1

pn

)
− 1

]
(B.5)

where v is the Lagrangian multiplier. Taking the derivative with respect to pn and setting it to 0:

ltn − λ log pn − λ+ v = 0 (B.6)

Simplifying above equation, we get pn as

pn = exp

(
ltn + v

λ
− 1

)
(B.7)

Using the summation constraint over pn i.e.,
∑N

n=1 pn = 1, it leads to following

N∑
n=1

exp

(
ltn + v

λ
− 1

)
= 1 (B.8)
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Solving the above equation we get the expression for v as follows

v = λ log

 1∑N
n=1 exp

(
ltn
λ − 1

)
 (B.9)

Substituting the v value into (B.7) gives

pn =
exp

(
ltn
λ

)
∑N

n=1 exp
(
ltn
λ

) (B.10)

The concludes the proof.

B. Proofs of Theoretical Results:

In this section, we present the detailed proofs for Lemmas 5.1, 5.2, and Theorem 5.3.

Proof of Lemma 5.1: By setting η → 0, we have Df (p∥ 1
N )→ 0. This implies that p is uniform

with each element as 1
N . As a result, the optimization problem becomes

LDREL(Θ) =
1

N

N∑
n=1

lELn (Θ) (B.11)

Proof of Lemma 5.2,: With η →∞, the uncertainty set defined in (5.5) reduces to the following

PDRO :=
{
p ∈ RN : p⊤1 = 1,p ≥ 0

}
(B.12)

Now, the corresponding Lagrangian form of (5.6) becomes

LDREL(Θ,u, λ) =

N∑
n=1

(
pnl

EL
n (Θ) + unpn

)
+ µ

(
N∑
n=1

pn − 1

)
(B.13)

where un and µ are Lagrangian multipliers. Taking gradient with respect to pn and setting it zero,

we get

lELn (Θ) + un + µ = 0 (B.14)

Let k = arg maxn l
EL
n (Θ) be the index of data sample with the maximum loss (and assuming it is

unique). Then, the following holds true

uk < un; ∀n ∈ [1, N ], n ̸= k (B.15)
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This consequently leads to un > 0, ∀n ∈ [1, N ], n ̸= k. Due to the KKT conditions,

unpn = 0; ∀n ∈ [1, N ] (B.16)

we have pn = 0,∀n ∈ [1, N ], n ̸= k. By using the following constraint

N∑
n=1

pn = 1 (B.17)

we have the following conclusion

pn =

{
1, if n = k

0, otherwise
(B.18)

This means our optimization reduces to the following

LDREL(Θ) = max
n

lELn (Θ) (B.19)

which proves the lemma.

Proof of Theorem 5.3. AdaBoost can be achieved through alternative optimization between a

classification function f and the worst case probability solution [38]. To show equivalence with the

proposed DREO, our proof includes three steps: (i) a specially designed deep neural network (DNN)

architecture and a loss function adapted to match the learning process of AdaBoost, (ii) projected

functional sub-gradient descent to optimize the classification function f , and (iii) optimizing the

worst case probability solution.

Step 1: A specially designed DNN. Let ϕ(x) ∈ RM denote a M -dimensional feature vector learned

using a DNN. By applying a fully connected linear layer with a weight matrix W ∈ RK×M on top

of the feature vector, we obtain a set of K (discriminative) functions: f = (f1, ..., fK)⊤ = Wϕ(x).

Then, the final output of the DNN is obtained by aggregating theseK functions, leading to f = σ⊤f ,

where σ = (σ1, ..., σK)⊤. As a result of this design, the final function output by the DNN can be

regarded as lying in the linear span of a set of functions F = {f1, ..., fK}, given by

LS(F) =

{
f : f =

K∑
k=1

σkfk, 1 ≤ k ≤ K,σk ∈ (−∞,∞)

}
(B.20)

Training of DREO involves alternating between re-weighting using the worst case probability dis-

tribution and updating the prediction function f . Next, we prove that given the specially designed

DNN, we can exactly optimize the classification function f by keeping the worst case probability

fixed and vice versa.
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Step 2: Optimizing the classification function f under the worst case probability. We first formulate

the distributional robust evidential loss, which is given by

LDREL = max
p∈PDRO

N∑
n=1

pnLn(f) (B.21)

where Ln(f) is the loss associated with the datasample xn. Then, the optimal f∗ can be obtained

by minimizing the distributional robust loss:

f∗ = min
f∈LS(F)

LDREL (B.22)

This optimization involves a nonconvex loss LDREL. To ensure the convergence of f to a stationary

point, we adapt the ProbAbilistic Gradient Estimator (PAGE) technique [42] to the DRO setting

(shown in Algorithm 3) which ensures the convergence in O(b + b
ϵ2

) steps with b being the batch

size. Please refer to Theorem B.3 further details.

To show that an optimal f∗ can be achieved, we first verify that the specially designed DNN and

the loss function as described above meet a number key conditions as specified by [9]: (i) the

loss functional LDREL is L-smooth, (ii) for two different functions f1, f2 ∈ LS(F), f1(ϕ(xn)) ̸=
f2(ϕ(xn)), and (iii) LS(F) has a finite dimensional basis. First, (i) is true because LDREL is

the convex combination of the losses Ln(f). As each individual loss involves the ReLU term with

ReLU added in the output of DNN (to ensure non-negativity of the evidence), the resulting convex

combination may not be smooth. Therefore, we use the SoftPlus which is smooth function to

approximate the ReLU. The the convex combination of SoftPlus results in the function LDREL

to be L-smooth. Second, the rich and high dimensional input data (i.e., diverse images) and the

feature encoding through the deep architecture of the DNN ensures (ii) is true. Last, since the

dimensionality of the weight matrix W is K ×M , it implies that the dimensionality of the basis of

LS(F) is bounded by K, so (iii) holds true.

The smoothness of LDREL ensures that a stationary solution is achieved within the O(b+ b
ϵ2

)

gradient steps. This allows us to have a guaranteed stationary solution with E[∥∇LDREL∥] ≤
ϵ in a non-convex optimization setting. Furthermore, since LDREL is a functional on f , the

next two conditions ensure that the functional gradient exists and can be evaluated [9]. Dur-

ing the optimization process, we need to make sure that the trajectory of the functional gra-

dient lies in the space LS(F), which can be achieved through functional gradient projection.

Step 3: Optimizing the worst case probability solution. Let ft denote the optimal classification func-

tion for the current iteration t. Next, we continue to optimize the worst case probability solution.

The following lemma shows that such an optimal solution exists.
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Lemma B.2. Assuming that Ln(ft) has a finite exponential moment with α ≥ 0 being sufficiently

large and

ηt = β∗ψ
′
(β∗)− ψ(β∗) (B.23)

the worst case probability is given as

p∗n =
exp

(
Ln(ft)
α

)
∑N

j=1 exp
(
Lj(ft)
α

) (B.24)

where β∗ = 1
α∗ , α∗ ≥ 0 be the optimal α, and ψ(β) = log

[∑N
n=1 exp(βLn(ft))

N

]
.

Proof. Taking the derivative of the Lagrangian for the optimization problem given in (5.13) with

respect to pn leads to

Ln(ft)− α log pn − α+ un = 0 (B.25)

where un is the Lagrangian multiplier for the constraint p ≥ 0 and α is the Lagrange multiplier for

the DRO constraint with the size defined by ηt. Simplification of the above expression yields

log pn =
Ln(ft)

α
+
un − α
α

(B.26)

For some λ
′

with pn = λ
′
exp

(
Ln(ft)
α

)
, a candidate solution is

p∗n =
exp

(
Ln(ft)
α

)
)∑N

j=1 exp
(
Lj(ft)
α

) (B.27)

The above equation involves the expression in terms of the Lagrangian multiplier. By leveraging

the sufficiency result presented in Chapter 8 Theorem 1 of [88], we can find the relationship between

the multiplier and our constraint parameter ηt. As such, our optimal solution can be expressed

in terms of original constraint. Suppose that we can find α∗ ≥ 0 and p∗ ∈ PDRO such that p∗

maximizes (5.13) for α = α∗ and
∑N

n=1 p
∗
n log p∗n = ηt with the optimal solution defined in (B.27).

Considering this, we have the following

ηt =
N∑
n=1

p∗n log p∗n =
N∑
n=1

p∗n
Ln(ft)

α∗ − log

 N∑
j=1

exp

(
Lj(ft)
α∗

) = β∗ψ
′
(β∗)− ψ(β∗) (B.28)

where we define β∗ = 1
α∗ and ψ(β) = log

∑N
n=1 exp (βL(ft)). This allows us to express the La-

grangian multiplier using ηt. Next, we verify that there exists an unique solution defined in (B.27)
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by leveraging the convexity of the exponential function. Specifically, substituting (B.27) in (5.13),

we get the following

N∑
n=1

p∗nLn(ft)− α

(
N∑
n=1

p∗n log p∗n

)
= α log

N∑
n=1

exp

(
Ln(ft)

α

)
(B.29)

If we could show the following inequality holds true

α log
N∑
n=1

exp

(
Ln(ft)

α

)
≥

N∑
n=1

pnLn(ft)− α
N∑
n=1

pn log pn (B.30)

then we can claim that the above candidate solution is the optimal solution. Rearranging the terms,

we get the following

N∑
n=1

exp

(
Ln(ft)

α

)
≥ exp

N∑
n=1

(
pnLn(ft)

α
− pn log pn

)
(B.31)

This can be shown as

N∑
n=1

exp

(
Ln(ft)

α

)
=

N∑
n=1

pnp
−1
n exp

(
Ln(ft)

α

)
=

N∑
n=1

pn exp

(
Ln(ft)

α
− log pn

)

Now applying Jensen inequality to the exponential function ψ

(∑
xi
n

)
≤

∑
ψ(xi)
n , we have the

following
N∑
n=1

pn exp

(
Ln(ft)

α
− log pn

)
≥ exp

(
N∑
n=1

pnLn(ft)

α
− pn log pn

)
(B.32)

This completes the proof of the lemma.

Theorem B.3. Suppose that LDREL holds the L-smoothness criteria with following inequality

∥∇LDREL(f1)−∇LDREL(f2)∥ ≤ L∥f1 − f2∥ (B.33)

Then choosing a learning rate γ ≤ 1

L
(
1+

√
1−p
pb′

) with minibatch size b = n, secondary minimbatch size

b′ < b, the number of iterations required to be performed by our algorithm for finding ϵ-approximate

solution i.e., E[∥∇LDREL(f̂T )∥ ≤ ϵ] can be bounded by the following:

T =
2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(B.34)

Further the gradient complexity in terms of number of gradient steps is given as

Ngrad = b+
2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) (B.35)
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Before giving the formal proof, we first show two lemmas that are used during the proof.

Lemma B.4. The L-smoothness condition given by Eq. (B.33), leads to the following inequality

LDREL(f2) ≤ LDREL(f1) + ⟨∇LDREL(f1), f2 − f1⟩+
L

2
∥f2 − f1∥2, ∀f1, f2 ∈ Rm. (B.36)

where ⟨a, b⟩ = aT b, and ∥ · ∥ is the Euclidean norm.

Proof of LemmaB.4. For the completeness the proof of the above Lemma is as follow.

LDREL(f2)

≤ LDREL(f1) +

∫ 1

0
⟨∇LDREL(f1) + τ(f2 − f1)), f2 − f1⟩dτ

= LDREL(f1) + ⟨∇LDREL(f1), f2 − f1⟩

+

∫ 1

0
⟨∇LDREL(f1 + τ(f2 − f1))−∇LDREL(f2), f2 − f1⟩dτ

Cauchy-Schwarz inequality ⟨u, v⟩ ≤ ∥u∥∥v∥ leads to the following

LDREL(f2)

≤ LDREL(f1) + ⟨∇LDREL(f1), f2 − f1)⟩

+

∫ 1

0
∥∇LDREL(f1 + τ(f2 − f1))−∇LDREL(f1)∥∥f2 − f1∥dτ

Now lets use the L-smoothness assumption from Eq. (B.33), we have

LDREL(f2)

≤ LDREL(f1) + ⟨∇LDREL(f1), f2 − f1)⟩+

∫ 1

0
Lτ∥f2 − f1∥2dτ

= LDREL(f1) + ⟨∇LDREL(f1), f2 − f1)⟩+
L

2
∥f2 − f1∥2

Now, we provide another important Lemma required to prove the above Theorem based on Lemma B.4

Lemma B.5. Considering L-smoothness assumption in Eq. (B.33), and let ft+1 := ft− γgt. Then

for any gt ∈ RM and γ > 0 we have the following

LDREL(ft+1)

≤ LDREL(ft)−
γ

2
∥∇LDREL(ft)∥2 −

(
1

2γ
− L

2

)
∥ft+1 − ft∥2 +

γ

2
∥gt −∇LDREL(ft)∥2 (B.37)
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Proof: Let f̄t+1 := ft−γ∇LDREL(ft). Then using L-smoothness of LDREL, we have the following

LDREL(ft+1)

≤ LDREL(ft) + ⟨∇LDREL(ft), ft+1 − ft⟩+
L

2
∥ft+1 − ft∥2

= LDREL(ft) + ⟨∇LDREL(ft)− gt, ft+1 − ft⟩+ ⟨gt, ft+1 − ft⟩+
L

2
∥ft+1 − ft∥2

= LDREL(ft) + ⟨∇LDREL(ft)− gt,−γgt⟩ −
(

1

γ
− L

2

)
∥ft+1 − ft∥2

= LDREL(ft) + γ∥∇LDREL(ft)− gt∥2 − γ⟨∇LDREL(ft)− gt,∇LDREL(ft)⟩

−
(

1

γ
− L

2

)
∥ft+1 − ft∥2

= LDREL(ft) + γ∥∇LDREL(ft)− gt∥2 −
1

γ
⟨ft+1 − f̄t+1, ft − f̄t+1⟩

−
(

1

γ
− L

2

)
∥ft+1 − ft∥2

= LDREL(ft) + γ∥∇LDREL(ft)− gt∥2 −
(

1

γ
− L

2

)
∥ft+1 − ft∥2

− 1

2γ

(
∥ft+1 − f̄t+1∥2 + ∥ft − f̄t+1∥2 − ∥ft+1 − ft∥2

)
= LDREL(ft) + γ∥∇LDREL(ft)− gt∥2 −

(
1

γ
− L

2

)
∥ft+1 − ft∥2

− 1

2γ

(
∥γ2∥∇LDREL(ft)− gt∥2 + γ2∥∇LDREL(ft)∥2 − ∥ft+1 − ft∥2

)
= LDREL(ft)−

γ

2
∥∇LDREL(ft)∥2 −

(
1

2γ
− L

2

)
∥ft+1 − ft∥2 +

γ

2
∥gt −∇LDREL(ft)∥2

This completes the proof. The last term is the variance and it can be bounded using the following

lemma.

Lemma B.6. Suppose that the smoothness assumption in Eq. (B.33) holds. If the gradient esti-

mator gt+1 is defined in Algorithm 3 Line 13, then we have the following

E[∥gt+1 −∇LDREL(ft+1)∥2] ≤ (1− pt)∥gt −∇LDREL(ft)∥2 +
(1− pt)L2

b′
∥ft+1 − ft∥2 (B.38)

Proof: According to Algorithm 3, we have the following

gt+1 =


1
b

∑
n∈B an(ft+1)∇Ln(ft+1) with probability pt

gt + 1
b′
∑

n∈B′(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft)), with probability 1− pt

(B.39)
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Using this the left hand side of the above lemma can be written as

E[
∥∥gt+1 −∇LDREL(ft+1)

∥∥2]
= ptE

[
∥1

b

∑
n∈B

an(ft+1)∇Ln(ft+1)−∇LDREL(ft+1)∥2
]

+ (1− pt)E

[
∥gt +

1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))−∇LDREL(ft+1)∥2
]

= (1− pt)E

[
∥gt +

1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))−∇LDREL(ft+1)∥2
]

= (1− pt)E

[
∥gt −∇LDREL(ft) +

1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))

]
+ (1− pt)E

[
−∇LDREL(ft+1) +∇LDREL(ft)∥2

]
= (1− pt)E

[
∥ 1

b′

∑
n∈B′

(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))−∇LDREL(ft+1) +∇LDREL(ft)∥2
]

+ (1− pt)∥gt −∇LDREL(ft)∥2

=
1− pt
b′2

E

[∑
n∈B′

∥(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))

]

− 1− pt
b′2

E
[
(∇LDREL(ft+1)−∇LDREL(ft))∥2

]
+ (1− pt)∥gt −∇LDREL(ft)∥2

≤ (1− pt)L2

b′
∥LDREL(ft+1)− LDREL(ft)∥2 + (1− pt)∥gt −∇LDREL(ft)∥2

Using the L-smoothness assumption in Eq. (B.33), we have

E[∥gt+1 −∇LDREL(ft+1)∥2] ≤
(1− pt)L2

b′
∥ft+1 − ft∥2 + (1− pt)∥gt −∇LDREL(ft)∥2

Proof of Theorem B.3. We leverage the above lemmas to prove the Theorem. Adding Eq. (B.37)
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with γ
2p×Eq. (B.38) and taking expectation results in the following:

E

[
LDREL(ft+1)− LDREL∗ +

γ

2p
∥gt+1 −∇LDREL(ft+1∥2

]
≤ E

[
LDREL(ft)− LDREL∗ − γ

2
∥∇LDREL(ft)∥2 −

(
1

2γ
− L

2

)
∥ft+1 − ft∥2

]
+
γ

2
E
[
∥gt −∇LDREL(ft)∥2

]
+

γ

2p
E
[
(1− p)∥gt −∇LDREL(ft)∥2

]
+

γ

2p
E

[
(1− p)L2

b′
∥ft+1 − ft∥2

]
= E

[
LDREL(ft)− LDREL∗ +

γ

2p
∥gt −∇LDREL(ft)∥2

]
− E

[
1

2γ
− L

2
− (1− p)γL2

2pb′
∥ft+1 − ft∥2

]
where LDREL∗ is the loss at the optimal f∗. Using the inequality of 1

2γ −
L
2 −

(1−p)ηL2

2pb′ ≥ 0, i.e.,

γ ≤ 1

L
(

1 +
√

1−p
pb′

) (B.40)

we can write the following

E[∥gt+1 −∇LDREL(ft+1)∥2]

≤ E

[
LDREL(ft)− LDREL∗ +

γ

2p
∥gt −∇LDREL(ft)∥2 −

γ

2
∥∇LDREL(ft)∥2

]

Now let us define ϕt := LDREL(ft)−LDREL∗ + γ
2p∥gt−∇L

DREL(ft)∥2 then we can write the following

E[ϕt+1] ≤ E[ϕt]−
γ

2
E[∥∇LDREL(ft)∥2] (B.41)

Now summing from t = 0 to T − 1 results in the following

E[ϕT ] ≤ E[ϕ0]−
γ

2

T−1∑
t=0

E[∥∇LDREL(ft)∥2] (B.42)

According to the Algorithm 3, f̂T is chosen from {ft}t∈[T ] and ϕ0 = LDREL(f0)−LDREL∗ + γ
2p∥g0−

∇LDREL(f0)∥2 = LDREL(f0)− LDREL∗ = ∆0, we have

E[∥∇LDREL(f̂T ∥2] ≤
2∆0

γT
(B.43)

Setting T = 2∆0
ϵ2γ

and using Jensen’s inequality results in the following

E[∥∇LDREL(f̂T )∥] ≤ E[∥∇LDREL(f̂T )∥2] ≤

√
2∆0

γT
= ϵ (B.44)
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With the following total number of iterations

T =
2∆

ϵ2γ
=

2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(B.45)

we can obtain ϵ-approximate stationary point solution. The number of gradient steps required in

the Algorithm 3 is given as

Ngrad = b+ T (pb+ (1− p)b′) (B.46)

Replacing T by Equation (B.45), we have the following

Ngrad = b+
2∆0L

ϵ2

(
1 +

√
1− p
pb′

)
(pb+ (1− p)b′) (B.47)

This proves Theorem B.3.

Algorithm 3: Alternative Optimization between f and p using Probabilistic SGD

1 Initialize: f0, stepsize γ, minibatch sizes b, b′ < b, pt ∈ [0, 1], t = 0, pn(f0) = 1∀n ∈ [1, b]

2 compute g0 = 1
b

∑
n∈B an(f0)∇LDROn (f0) an(f0) = b ∗ pn(f0) with B,B′ being random

minibatch samples with |B| = b and |B′| = b′

3 while t¡T do

4 ft+1 ← ft − γgt
5 prev use ∼ Ber(pt)

6 if prev use = 1 then

7 Find loss Ln(f) associated with datasample xn, ∀n ∈ B

8 Find an(f t+1) = b ∗
exp

(
L\(ft)

α

)
∑b

j=1 exp

(
Lj(ft)

α

)
9 Find gt+1 = 1

b

∑
n∈B an(ft+1)∇Ln(f t+1)

10 else

11 Find loss Ln(f) associated with data sample xn, ∀n ∈ B′

12 Find an(ft+1) = b′ ∗
exp

(
L\(ft)

α

)
∑b

j=1 exp

(
Lj(ft)

α

)
13 Find gt+1 = gt + 1

b′
∑

n∈B′(an(ft+1)∇Ln(ft+1)− an(ft)∇Ln(ft))

14 t← t+ 1

15 return f̂T chosen from {ft}t∈[T ]



Appendix C

In this section we provide additional information for Chapter 6. First, we summarize all notations

used in this work. After that, we discuss other related works in additional to those reviewed in

the related work section of the Chapter 6. Next, we provide the theoretical proof for Theorem 6.2.

Then, we provide experimental details along with additional results. Finally, we provide a link to

the source code.

C.1 Summary of Notations

Table C.1 organizes all the major notations into three groups and describes their meanings.

C.2 Additional Related Work

In this section, we review some additional related works, including few-shot learning and open-set

recognition.

Few-shot Learning. Few-shot learning is becoming a popular method due to its ability to quickly

generalize to new tasks containing only a few examples. These methods are grouped into three cat-

egories: model-based, optimization-based, and metric-based. Model-based methods largely depend

on a model design for the fast adaptation [96, 115], which are less frequently used in recent years.

Optimization-based methods back-propagate the gradients to deal with generalization problems.

Ravi et al. [111] model a meta-learner as an LSTM so that knowing historical gradients can benefit

current gradient updates. MAML [34] and its variants [35,43,113] learn meta parameters with outer

157
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Table C.1: Notations with Descriptions

Symbol Group Notation Description

Meta Learning

N tr Number of training tasks

Stri Support set for ith task in Meta-train

Qtri Query set for ith task in Meta-train

Stei Support set for ith task in Meta-test

Qtei Query set for ith task in Meta-test

K Number of examples in support set

N Number of Classes in support set

Cs Set of Closed-set Classes

Cu Set of Open-set Classes

Evidential Loss

θ Neural Network Parameter

h Hidden dimensionality of feature extractor

ek Evidence belonging to class k

S Total Dirichlet Strength

u Uncertainty (vacuity) mass associated with a given data point

αik Dirichlet parameter for the ith data point in the kth class

KL(P ||Q) Kullback–Leibler divergence between two distributions P and Q

Transformer

A Square N ×N matrix with attention weights

F Backbone feature extractor

T Transformer

P Prototype obtained from backbone

P ′ Transformed prototype representation

pn Prototype corresponding to the nth class

p′
n Transformed prototype representation corresponding to class n

Pa Altered prototype by replacing nearest class prototype by query instance

P ′
a Transformed prototype representation of altered prototype

P ′
ϵ Transformed prototype representation of original prototype using cross-attention
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updates utilizing query samples and task-specific parameters via support samples. Metric-based

methods learn a good distance function to compare feature similarity between support and query

set samples. Cosine distance is learned in [141] with a recurrent network to measure similarities

between samples. Prototypical network [127] represents each class as a prototype utilizing sup-

port set samples and then computes its similarity with the query set ones. Relation network [131]

predicts a relation score between a pair of support and query set samples rather utilizing metrics

directly on the feature space. FEAT [152] transforms each class prototype via transformer func-

tions and results in a richer representation. Since feature-based metrics are also useful for open-set

recognition, we largely focus on those approaches. While those methods show promising results in

closed-set settings, few attempts have explored whether they can be effectively adapted for open-set

recognition.

Open-set Recognition. Various support vector machines (SVMs) and reconstruction-based ap-

proaches have been proposed to tackle the OSR problem in existing literature [54, 119]. For in-

stance, Scheirer et al. [119] propose a Weibull-calibrated SVM (W-SVM) technique by leveraging

the Extreme Value Theory (EVT). Zhang & Patel [157] propose a reconstruction-based approach,

where a threshold defined over the reconstruction error is used to distinguish known-class samples

from unknown classes. Additionally, various traditional models such as nearest neighbor [59] and

quasi-linear function [15], have also been used in the open-set detection tasks. More recently, deep

learning models have been adopted for open-set detection and multiple approaches have been pro-

posed. For instance, Scheirer et al. propose OpenMax [119], in which the probability output from a

softmax function is redistributed in order to produce the probability of being unknown. VAE-based

approaches have also been proposed for the open-set detection [155], [130]. For example, Yoshi-

hashi et al. propose a reconstruction-based approach that performs open-set detection similar to

OpenMax by leveraging the effective latent representation trained using VAE [155].

C.3 Theoretical Proof

In this section, we provide the Proof of Lemma 6.1 and Theorem 6.2.
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C.3.1 Proof of Lemma 6.1

Proof. Based on P1, we can write the following{
max
n∈N

[ejn]

}
easy-closed

≥
{

max
n∈N

[ejn]

}
ch-open

(C.1)

where easy-closed indicates the easy closed-set sample whereas ch-open indicates a challenging

open-set sample. According to this equation, for the easy-closed set sample as maxn∈N [ejn] is high,

the EVRi will be high i.e., evidence dominates EVRi to make it high. Based on P2, we can write

the following

{varn∈N [ejn]}easy-open ≤ {varn∈N [ejn]}ch-open (C.2)

where easy-open indicates an easy open-set sample. In this case, for the easy open-set sample

the output evidence will remain low (closed to 0) with respect to all closed-set classes making

varn∈N [ejn] low. This low variance will dominate EVRi to make it high. In case of a challenging

open-set sample, the maximum evidence maxn∈N [ejn] is relatively low while variance varn∈N [ejn]

is high, making EVRi low. Therefore, we can say that with a being a challenging task and b being

a regular task i.e., easy closed-set or easy open-set, we have EVRa < EVRb. This completes the

proof of Lemma 6.1.

C.3.2 Proof of Theorem 6.2

Proof. Specifically, we need to show the following:

d(P ′
a,P ′) ≤ d(P ′

a,P ′
ϵ) (C.3)

In the above equation, the transformed representation for P ′ on jth prototype on the lth dimension

can be represented as

{P ′}jl =
N∑
n=1

ajnfnl;∀j ∈ [N ], ∀l ∈ [h] (C.4)

where ajn is the attention for jth row and nth column and fnl be the associated feature obtained

with value value (V) in the transformer network, h is the feature dimensionality. Let c be the

closest class for a given query sample then each element of the altered transformed prototype i.e.,

P ′
a for this sample can be represented as

{P ′
a}jl =

N∑
n=1

a′jnf
′
nl;∀j ∈ [N ], ∀l ∈ [h] (C.5)
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where a′jn is the attention weight for altered transformed prototype for jth row and nth column and

f ′jl being associated feature. It should be noted that a′jn = ajn if j ̸= c or n ̸= c and f ′nl = fnl if

n ̸= c. The transformed prototype obtained using our proposed cross-attention mechanism can be

represented as

{P ′
ϵ}jl =

{
accfcl + ϵ

EV R

∑N
n=1,n̸=c ajnfnl if j == c

ϵ
EV Rajcfcl +

∑N
n=1,n̸=c ajnfnl, otherwise

}
(C.6)

Considering d being the Euclidean distance, we compute d(P ′
a,P ′) as:

d(P ′
a,P ′) =

1

N

N∑
j=1

√√√√ h∑
l=1

({P ′
a}jl − {P ′}jl)2 (C.7)

Similarity, we can compute d(P ′
a,P ′

ϵ) term as:

d(P ′
a,P ′

ϵ) =
1

N

N∑
j=1

√√√√ h∑
l=1

({P ′
a}jl − {P ′

ϵ}jl)
2 (C.8)

It it is noted that ∀j ∈ [N ], ∀l ∈ [h], if we show ({P ′
a}jl − {P ′}jl)2 ≤ ({P ′

a}jl − {P ′
ϵ}jl)

2 then the

inequality in Eq (C.4) becomes valid. For simplicity, let us assume that Ujl = {P ′
a}jl, Vjl = {P ′}jl,

Wjl = {P ′
ϵ}jl. Then, ∀j ∈ [N ], l ∈ [h], we need to prove:

(Ujl −Vjl)
2 ≤ (Ujl −Wjl)

2 (C.9)

Let us write write both sides where we seek to find the inequality relation between them

(Ujl −Vjl)
2 ? (Ujl −Wjl)

2 (C.10)

Expanding both sides and canceling common terms we have the following

V2
jl − 2UjlVjl ? W2

jl − 2UjlWjl (C.11)

Further simplification leads to the following

2Ujl(Wjl −Vjl) ? (Wjl −Vjl)(Wjl + Vjl) (C.12)

As ϵ
EV R > 1, Wjl > Vjl. As such (Wjl − Vjl) is non-negative and therefore, we can cancel

(Wjl −Vjl) on both sides without changing their inequality sign. This leads to the following:

2Ujl ? (Wjl + Vjl) (C.13)



APPENDIX C. 162

In the inequality, since ϵ
EV R > 1, there exists a constant k > 1 that makes Wjl = kVjl. Substituting

this in the above equation, we have the following:

2Ujl ? (1 + k)Vjl (C.14)

It is noted that attention weights of the altered prototype in Ujl are likely to be similar to Vjl in

case of a challenging query sample. This is because the challenging sample may be very similar

to one of the prototypes making the output representation almost identical. This makes Ujl to

be similar to Vjl. However, on the right-hand side, we have (1 + k) > 2, which therefore makes

the right term bigger than the left term. It should be noted that k is the term dependent on

the ratio ϵ
EV R where the higher the ratio, the higher the k term would be. Therefore, under the

non-negativity assumption of the feature representation (which can be achieved simply using a

non-negative transformation function in the output), with high probability following holds for the

challenging samples.

2Ujl ≤ (1 + k)Vjl (C.15)

This completes the proof of Theorem 6.2.

C.4 Experimental Details and Additional Results

In this section, we first provide the dataset distribution of all datasets used in the experimentation.

After that, we provide the implementation-specific details along with the data split strategy. Next,

we provide the closed-set performance of those datasets with respect to competitive baselines.

Next, we explain the ROC curves generated for the same set of datasets. After that, we conduct

an additional ablation study. Finally, we conduct an in-depth qualitative analysis to show the

effectiveness of our proposed technique.

C.4.1 Dataset Distribution

Table C.2 shows the dataset splits for four datasets: MiniImageNet, TieredImageNet, Cifar100,

and Caltech101. It should be noted that to serve our purpose we have considered the whole data

distribution and divided it into closed-set and open-set.
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C.4.2 Experimentation Details

In this section, we describe the way we split the data along with the implementation details.

Table C.2: Train/Evaluation/Test partition on different datasets.

Split
MiniImageNet TieredImagenet Cifar100 Caltech101

Train Eval Test Train Eval Test Train Eval Test Train Eval Test

Open-set 21 6 8 116 24 41 27 5 8 20 10 10

Closed-set 46 10 9 259 73 95 35 10 15 40 10 10

Dataset Split. According to Table C.2, we first partition the entire dataset into training, val-

idation, and testing. Within the training set, we perform semantic analysis at the class level to

identify groups of semantically relevant classes (e.g., different categories of dogs). For datasets

with a relatively small number of classes (e.g., MiniImageNet), this introduces minimal overhead.

For larger datasets, we can usually benefit from some existing hierarchical structure among the

classes. For instance, in MiniImageNet, training classes Ferrets (88) and Malamute dog (83) are

semantically similar. Instead of using both of them as closed-set samples during training like all

existing approaches, we assign Malamute dog (83) as one of the opponent classes, which are used as

part of the evidential open-set loss. As demonstrated in our experiments, this arrangement clearly

improves the detection of some similar open-set classes, such as Golden Retriever Golden Retriever

(82) and African Hunting dog (85).

Implementation Details. For the experimentation on both datasets, we used the ResNet-12

as a backbone architecture for the feature extractor followed by the transformer network. For

good initialization, the feature extractor is connected to a fully connected layer (with output nodes

equal to a number of classes present in the training set) and trained using the cross entropy (CE)

classification loss by treating it as a multi-class classification problem. Once the model is trained,

the last layer is removed and the transformer network is connected. Finally, the model is trained

in the FSL open-set detection setting using the training loss defined in (6.10). For the training,

stochastic gradient descent (SGD) is used with a total of 200 epochs. The initial learning rate of

0.002 is set and is decreased by 10% at an interval of every 20 epochs. The weight decay is set to

0.005 and λ is set to 1 throughout the experimentation.
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Table C.3: Closed set performance (ACC) on different datasets.

Approach
MiniImageNet TieredImagenet

1-Shot 5-Shot 1-Shot 5-Shot

PEELER 61.24± 0.46 76.46± 0.50 45.64± 0.44 60.22± 0.23

SnaTCHer 63.91± 0.63 79.93± 0.43 47.75± 0.72 64.04± 0.65

MET 63.13± 0.62 79.00± 0.43 47.91± 0.73 63.33± 0.48

C.4.3 Closed-Set Performance

Table C.3 shows the closed-set performance of MET with respect to the competitive baselines. As

shown our approach generates comparable closed-set performance while having a much better OSR

performance as demonstrated in Table 6.1.

C.4.4 ROC Curves

To provide a detailed view of AUROC, we further show the ROC curves for the 1-shot and 5-shot

scenarios in the miniImageNet and TieredImagenet datasets as shown in Figure C.1. The ROC plot

has a similar pattern in the other two datasets. It is worth mentioning from the ROC curves that

the proposed technique stays on the top, especially for the lower false positive rate (FPR) region.

For example, in the case of Figure C.1 (a), we can achieve True Positive Rate (TPR) around 70%

while maintaining FPR below 30% which is more than 20% higher than the second best competitive

model. This concludes that the proposed approach can correctly identify far more open-set samples

compared to other baselines while being able to maintain a low FPR.

C.4.5 Ablation Study

In this section, we conduct an ablation study with regard to the hyperparameters λ and ϵ. Next, we

explain the effectiveness of our proposed technique using different backbones. After that, we report

the performance in the original data split. Finally, we also conduct additional experimentation

using Cifar100 and Caltech datasets.
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Figure C.1: ROC curves on both 5-way-1-shot and 5-way-5-shot tasks
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Figure C.2: OSR performance with respect to hyperparameter ϵ: (a-b) MiniImageNet, (c-d) Tiered-

ImageNet.

Sensitivity to λ and ϵ: Figure C.2 shows the impact of hyperparameter ϵ on the model per-

formance. As can be seen, a very small ϵ value is not beneficial because the model fails to shift

the attention by assigning a larger weight to the predicted class. Having a higher ϵ value helps

the model to change the attention weight according to EVR, i.e., a higher EVR leads to a lower

change. But, having a very high ϵ leads to degradation in performance as it dramatically changes

the representation irrespective of the EVR value. In general, the model performance is quite sta-

ble as long as ϵ is not set to very high or very low values. With the middle range of ϵ as shown

by Figure C.2, the model automatically calibrates the change in accordance with EVR leading to

better performance.

Figure C.3 shows the impact of the open-set weight λ on the performance. As shown, having a

low λ value, the model puts less emphasis on opponent open-set classes, leading to a less compact

representation of closed-set classes that can benefit open-set detection. On the other hand, having

a very high λ value may be problematic as the model puts too much emphasis on the opponent

open-set classes without paying much attention on learning from the closed-set classes resulting in

performance degradation as well. In general, the λ value in the middle range (e.g., λ = 1) gives a

good balance between open-set and closed-set losses resulting in the best performance.
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Figure C.3: OSR performance with respect to hyperparameter λ: (a-b) MiniImageNet, (c-d) Tiered-

ImageNet.

Table C.4: MiniImageNet performance with: (a) Different backbones, (b) Original data split.

Approach ResNet12 ResNet18

PEELER 60.36± 0.72 61.52± 0.64

SnaTCHer 67.37± 0.91 68.11± 0.94

MET 76.93± 0.59 77.11± 0.62

(a) Performance on Different Backbones.

Approach 1-shot 5-shot

PEELER 60.12± 0.72 68.23± 0.66

SnaTCHer 72.98± 0.61 79.57± 0.49

MET 73.20± 0.45 81.19± 0.47

(b) Original Data Split Performance.

Different Backbones. Table C.4 (a) demonstrates the performance comparison between differ-

ent backbones for the MiniImageNet dataset (1-Shot setting). As shown, for multiple backbones,

our technique has a superior performance compared to the competitive baselines.

Original Data Split. Our technique requires similar classes in open-set as well as closed-set

to demonstrate the effectiveness of our technique. Therefore, in the main evaluation, we altered

the data split. In this section, we show that even for the original data split, we are being able

to outperform the previous baselines. Table C.4 (b) shows the performance for different baselines

for the MiniImageNet dataset in the original data split. As shown, the proposed technique has

superior performance compared to the other baselines. It should be noted that because of our

novel technique paradigm along with the novel cross-attention technique, we are being able to

outperform other baselines. Different from another evaluation strategy like SnaTCHer, we fixed

open-set and closed-set samples in both training as well as testing processes while keeping the

original split i.e., training, validation, and testing identical. Also, it is worth mentioning that for

a fair comparison, we consider the identical setting (e.g., backbone, transformer) for PEELER and
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Table C.5: OSD (AUROC) performance on additional datasets.

Approaches
Cifar100 5-way Caltch101 5-way

1-shot 5-shot 1-shot 5-shot

ProtoNet 48.12± 0.23 50.63± 0.35 47.34± 0.26 51.35± 0.54

RelationNet 48.76± 0.65 51.54± 0.56 47.95± 0.46 52.62± 0.35

OpenMAX 51.42± 0.54 54.45± 0.60 49.18± 0.52 49.77± 0.52

FEAT (Probability 49.25± 0.60 52.30± 0.59 48.99± 0.53 51.08± 0.52

Feat (Distance) 54.69± 0.46 59.86± 0.46 59.19± 0.52 65.30± 0.49

PEELER 52.46± 0.43 56.11± 0.15 51.10± 0.72 55.96± 0.22

SnaTCHer 57.60± 0.57 62.06± 0.52 62.37± 0.63 67.35± 0.53

TANE 55.14± 0.64 63.08± 0.58 52.71± 0.19 56.65± 0.18

MET 61.76± 0.60 66.17± 0.54 64.85± 0.55 72.12± 0.47

SnaTCHer and rerun them.

Experimental Results on Additional Datasets. In this section, we conduct experimentation

on additional datasets (Cifar100, Caltech101) to further justify the effectiveness of our proposed

technique. Table C.5 demonstrates the OSD performance on those datasets. As shown, in Cifar

100 and Caltech101 datasets, MET achieves around 5 − 8% improvement over most competitive

baseline SnaTCHer for both 5-shot and 1-shot setups.

C.4.6 Qualitative Analysis

In this section, we perform an in-depth quantitative analysis to justify the effectiveness of our

proposed technique. Figure C.4 (a) demonstrates some difficult examples from closed-set class

Ferrets (88) and open-set class African Hunting Dog (85). As shown in the first image i.e., leftmost

of Figure C.4 (a), the image looks different from many others from class Ferrets (88) because of

the different color and camera angle. As a result, SnaTCHer incorrectly classifies it as an open-set

sample and assigns the highest distance among all samples in the same task. Although MET (w/o

EVR) helps to decrease the distance by leveraging the opponent open-set classes in training, it is

not sufficient to correctly identify it as open-set. With the help of the novel EVR detection, MET

(w/ EVR) is able to correctly identify it as a closed-set sample. In the case of the second image

i.e., middle image in Figure C.4 (a), because of its similarity with the first image, due to color

(and possible other low-level image features), both SnaTCHer and MET (w/o EVR) incorrectly
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(a) Images: Ferrets (88), African Hunting dog

(85)

Image SnaTCHer MET (w/o EVR) MET (w/ EVR)

Image (a) 88 32 32 15

Image (b) 85 1 2 17

Image (c) 85 7 15 26

(b) Ranking

Figure C.4: Examples of difficult images with the corresponding ranking

classify it as a closed-set sample. In contrast, MET (w/ EVR) is able to correctly identify it as

an open-set sample. In the case of the third image i.e., the rightmost image in Figure C.4 (a), it

shares some similarities (in terms of color and body pattern) with closed-set samples, SnaTCHer

has trouble identifying it as an open-set sample. MET (w/o EVR) helps to increase the distance

(i.e., uncertainty) but it is not sufficient to classify confidently as an open-set sample. With further

help from EVR-based detection, we are able to correctly identify it as an open-set sample.

Similarly, Table C.4 (b) shows the relative ranking of images based on the output prototype distance.

It should be noted that a ranking of 1 i.e., highest ranked (or lowest prototype distance) means

the given sample is closest to the prototype among all samples. For Figure C.4 (a) leftmost image,

we want the sample to be ranked close to the top so that it is closer to the prototype compared to

most open-set samples. However, it ranks at 32 by both SnaTCHer and MET (w/o EVR), which

will negatively impact the overall AUROC score. In contrast, MET (w/ EVR) ranks as 15, higher

than 2
3 of other samples, most of which are open-set one, leading to an improved AUROC score. In

the case of the middle image in Figure C.4 (a), both SnaTCHer and MET (w/o EVR) rank it very

high i.e.,, better than most closed-set samples. In the case of the rightmost image in Figure C.4

(a), there is some improvement using our novel evidential loss by MET (w/o EVR). With the help

of EVR, MET (w/ EVR) is able to further push this sample down to the rank of 26. We provide

some additional qualitative analysis in the Appendix.
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In this appendix, we provide additional supplementary information related to Chapter 7. We first

present a table summarizing the major notations used by the Chapter 7. Next, we provide detailed

information about the training process and hyperaprameters setting. We provide the detailed proof

of Lemma 7.1 and Theorem 7.2 in Section D.3. After that, we provide additional experimental

details and results. Finally, we discuss the broader impacts, limitations, and future work of our

DRE technique.

D.1 Summary of Notations

Table D.1 below shows the major notations used in the Chapter 7. We further assign each notation

into one of four major categories: dataset, DRO formulation, sparse training, and theoretical results.

D.2 Robust Loss Optimization in DRO

In this section, we first provide a detailed description on how we optimize the robust loss function

in (7.1). We then explain how to set the uncertainty set by choosing a proper hyperparameter.

D.2.1 Robust Loss Optimization

The optimization problem specified in (7.1) involves an inequality constraint so directly solving it

may incur a higher computational overhead. Therefore, we consider a regularized version of the

169
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Table D.1: Symbols with Descriptions.

Symbol Group Notation Description

Dataset

X Set of training images

Y Set of training class labels

C Total classes

ŷ Predicted class label

N Total number of training samples

D Dimensionality of each data sample

DRO

Df f -divergence

η Parameter controlling size of uncertainty set in DRO framework

zn Weight associated with nth data sample

Sparse Training

M Number of sparse sub-networks

K Density of the given network

Θ Parameter associated with given neural network

p̂ Confidence associated with predicted class

l(xn,Θ) Loss associated with nth data sample

Theoretical Results

β Learning rate of the given network

P Total number of patches in each data sample

d Dimensionality of each patch

vc,l Major lth feature associated with class c

L Total number of features in each class class

DS
N Collection of single-view data samples

DM
N Collection of multi-view data samples

∪ Collection of features

H Number of convolution layers

Fc(x) Logistic output for the cth class for the data sample x

Pvc,l
Collection of patches containing feature vc,l in sample xj

SOFTc Softmax output for class c
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robust loss to train each base learner by using the following loss:

LRobust = max
z≥0,z⊤1=1

N∑
n=1

znln(Θ)− λDf

(
z|| 1
N

)
(D.1)

where ln(Θ) = l(xn,Θ). Solving the above maximization problem leads to a closed-form solution

for z∗ as shown by the following lemma:

Lemma D.1. Assuming that Df is the KL divergence, then solving (D.1) leads to the following

solution

LRobust =
N∑
n=1

z∗nln(Θ) (D.2)

where z∗n is given by

z∗n =
exp

(
ln(Θ)
λ

)
∑N

j=1 exp
(
lj(Θ)
λ

) (D.3)

It can be verified that there is a one-to-one correspondence between η in (7.2) and λ in (D.1).

Given their roles in the corresponding equations, a large η implies a small λ and a small η implies

a large λ.

D.2.2 Hyperparameter settings

The hyperparameter in the regularization term is chosen based on the difficulty of a dataset.

Specifically, for DRE, we always consider the λ → ∞ for the first sparse sub-network which is

equivalent to Expected Risk Minimization (ERM). For the second and third sub-networks, we

choose this hyperparameter based on the difficulty of data samples. It should be noted that we

need to set higher λ values for more difficult datasets as difficult samples are more common on

those datasets. Using this notion, for Cifar10, we choose small λ values so that the model can focus

on the difficult samples that are few. For this, we choose λ = 10 for the second sparse sub-network

and λ = 500 for the third sparse sub-network. Considering Cifar100 is more difficult, we would

have more difficult samples and therefore higher λ value is preferred. For this, we choose λ = 50 for

the second sparse sub-network and λ = 500 for the third one. In the case of TinyImageNet, we have

many difficult samples and therefore we choose relatively large λ values. Specifically, we choose

λ = 100 for the second sparse sub-network and λ = 1, 000, 000 for the third sparse sub-network.
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D.3 Theoretical Proof

In this section, we provide detailed proofs of the theoretical results presented in the Chapter 7.

D.3.1 Proof of Lemma 7.1

Proof. For yn = c, with respect to data sample {xn, yn}, the gradient can be evaluated as

−∇Θc,h
l(Θ;xn, yn) = [1− SOFTc(F (xn))]

∑
p∈[P ]

ReLU[⟨Θc,h,x
p
n⟩]xpn (D.4)

Assume that the given sample has a major feature vc,l, taking dot product with respect to vc,l on

both side of (D.4) leads

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = [1− SOFTc(F (xn))]

∑
p∈[P ]

⟨ReLU[⟨Θc,h,x
p
n⟩]xpn,vc,l⟩ (D.5)

Let’s further assume that the feature set is orthonormal: ∀c, c′,∀l ∈ [L], ||vc,l||2 = 1 and vc,l ⊥ vc′,l′

when (c, l) ̸= (c′, l′). Using xp = apvc,l +
∑

v′∈∪\vc
αp,v

′
v′ + ϵp given in (7.4), we have

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = [1− SOFTc(F (xn))]

 ∑
p∈Pv,l(xn)

ReLU[⟨Θc,h,x
p
n⟩ap] +

∑
p∈[P ]

⟨ϵp,vc,l⟩


(D.6)

It should be noted that the term i.e.,
∑

v′∈∪\vc
αp,v

′⟨v′,vc,l⟩ becomes zero due to the orthogonal

properties of the feature set. Let us represent the second term by κ:
∑

p∈[P ]⟨ϵp,vc,l⟩ = κ. Then,

we have

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = (1− SOFTc(F (xn)))

 ∑
p∈Pv,l(xn)

ReLU[⟨Θc,h,x
p
n⟩ap] + κ

 (D.7)

Furthermore, let us define Vc,h,l(xj) =
∑

p∈Pvc,l
(xj)

ReLU(⟨Θc,h,x
p
j ⟩ap) then above equation further

reduces to following

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = (1− SOFTc(F (xn)))(Vc,h,l(xn) + κ) (D.8)

Recall the above equation is the gradient with respect to the nth data sample. Considering the

gradient with respect to all data samples with yn = c, and let us consider the total loss, where the
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weight zn of each loss is assigned according to a distribution specified by the uncertainty set U .

Then, the total gradient is

⟨−∇Θc,h
l(Θ;X,Y),vc,l⟩ = max

z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
(D.9)

Now using the standard gradient update rule with β being the learning rate, we have

⟨Θt+1
c,h ,vc,l⟩ = ⟨Θt

c,h,vc,l⟩+ βmax
z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
(D.10)

Let xk ∈ DSN be the most difficult sample having vc,l as the main feature. Also, consider xn ∈ DMN
to be the easy sample with yn = c, yk = c. Then, we have

[1− SOFTc(F (xk))] ≥ [(1− SOFTc(F (xn))], ∀n ∈ [1, N ], n ̸= k, yn = c (D.11)

Using above property, we can write the following using (D.10)

⟨Θt
c,h,vc,l⟩+ βmax

z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
≤ ⟨Θt

c,h,vc,l⟩+ βNzk(1− SOFTc(F (xk))) (D.12)

On the r.h.s., we have zn = 1
N for ERM, which assigns equal weights to all samples. Under the

assumption of Nvc,l
≪ N∪\vc,l

, the contribution of the Nvc,l
on overall gradient will be negligible.

In contrast, for the DRO framework, using (D.3), we have

zk =
1∑N

j=1,j ̸=k exp
(
lj(Θ)−lk(Θ)

λ

)
+ 1

(D.13)

Since lk(Θ) > lj(Θ), ∀λ > 0, λ ̸= ∞, we have zk >
1
N . Using r.h.s. of (D.12) and incorporating

zk = 1
N for ERM and zk >

1
N , we have

{⟨Θt
c,h,vc,l⟩+ β(1− SOFTc(F (xk)))}ERM ≤ {⟨Θt

c,h,vc,l⟩+ β(1− SOFTc(F (xk)))}Robust (D.14)

This subsequently leads to the following:

{⟨Θt
c,h,vc,l⟩}Robust > {⟨Θt

c,h,vc,l⟩}ERM ; ∀t > 0 (D.15)

which completes the proof of Lemma 7.1.
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D.3.2 Proof of Theorem 7.2

Let x ∈ DNS from class c with vc,l as the main feature and v′ as the dominant feature learned

through the memorization. Also consider v′ to be the main feature characterizing class k. Then

for any class c′, we can define the following

SOFTc′(x) =
exp(Fc′(x))∑
j∈[C] exp(Fj(x))

(D.16)

In the above equation, Fc′(x) can be written as

Fc′(x) =
∑
h∈[H]

∑
p∈[P ]

ReLU[⟨Θc′,h,x
p⟩] (D.17)

Substituting xp from (7.4), we have

Fc′(x) =
∑
h∈[H]

∑
p∈[P ]

ReLU

ap⟨Θc′,h,vc,l⟩+
∑

v′∈∪\vc

αp,v
′⟨Θc′,h,v

′⟩+ ⟨Θc′,h, ϵ
p⟩

 (D.18)

Substituting c′ by k, we have

Fk(x) =
∑
h∈[H]

∑
p∈[P ]

ReLU

ap⟨Θk,h,vc,l⟩+
∑

v′in∪\vc

αp,v
′⟨Θk,h,v

′⟩+ ⟨Θk,h, ϵ
p⟩

 (D.19)

In case of ERM, the vc,l signal is fairly weak during the training process due to Nvc,l
≪ N∪\vc,l

.

Therefore, the term ⟨Θk,h,vc,l⟩ is negligible. Also, the last term ⟨Θk,h, ϵ
p⟩ is also small as this

corresponds to the Gaussian noise. For the second term ∃v′ for which ⟨Θk,h,v
′⟩ is very high

because of the spurious correlation. In contrast, for the robust loss, using Lemma 7.1, the model

learns a stronger correlation with the true class parameter and therefore ⟨Θc,h,vc,l⟩ is high. As

such, both terms ⟨Θk,h,vc,l⟩ as well as ⟨Θk,h,v
′⟩,∀v′ becomes low. As a result, we have

{Fk(x)}ERM > {Fk(x)}Robust (D.20)

Substituting this inequality to (D.16), we have

{SOFTk(x)}Robust < {SOFTk(x)}ERM (D.21)

This completes the proof of Theorem 7.2.
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D.4 Experimental Details and Additional Results

In this section, we first provide a detailed description of datasets used in our experimentation

followed by hardware description of our experimentation. Consequently, we provide examples

of single-view and multi-view data samples. Next, we provide additional experimental results on

Cifar10 and Cifar100 datasets with a 15% density. After that, we provide additional baselines results

on TinyImageNet. We also compare our model performance with different calibration techniques

commonly used in dense networks. Then, we perform an in-depth ablation study. Parameter size

and inference speed are discussed in the subsequent subsection. We also further investigate the

diversity of the sparse subnetworks. Finally, we provide detailed qualitative analysis to support our

proposed claim.

D.4.1 Detailed Dataset Description

For general classification setting, we consider Cifar10, Cifar100 [67], and TinyImageNet [72] datasets.

For the out of distribution setting, we consider corrupted version of Cifar10 and Cifar100, which are

named as Cifar10-C and Cifar100-C [49], respectively. Finally, for open-set detection, we leverage

SVHN [100] as the open-set dataset. The detailed description of each dataset is given below:

• Cifar10. This dataset consists of total 10 classes, each consisting of 5,000 training samples

and 1,000 testing (evaluation) samples. Each image is a colored image with size 32× 32.

• Cifar100. This dataset consists of 20 super classes where each super-class consists of 5 classes

resulting into total 100 classes. Each class consists of 500 training samples and 100 testing

samples. Each image is a colored image with size 32× 32.

• TinyImageNet. The original dataset consists of 200 classes with 1,000,000 samples where

each class has 500 training images, 50 validation images, and 50 test images. Each image is

a colored image with size 64× 64.

• Cifar10-C. Fifteen different types of corruptions are applied on the Cifar10 clean testing

dataset where each corruption has 5 severity levels, ranging from 1 to 5 with 1 being least

severe and 5 being most severe. The corruptions include Gaussian noise, shot noise, impulse

noise, defocus blur, forsted glass blur, motion blur, zoom blur, snow, frost, fog, brightness,

contrast, elastic, pixelate, and JPEG.



APPENDIX D. 176

Single View 
(Present: Headlight, Missing: 
Tire, Door handle)

Multi View
(Present: Tire, Door handle 
Missing: Headlight)

Multi View 
(Present: Headlight, Tire, Door 
handle)

Headlight Tire Door handle

Figure D.1: Examples of single-view and multi-view samples.

• Cifar100-C. Similar to Cifar10-C, fifteen different corruptions are applied on the Cifar100

clean testing dataset.

• SVHN. The Street View House Numbers (SVHN) dataset consists of 10 classes with digit 1

as class 1, digit 9 as class 9 and digit 0 as class 10. These are original, variable-resolution,

colored house-number images with character level bounding boxes. We use this dataset as

the open-set dataset in our experimentation.

D.4.2 Hardware Details for Experimentation

All experimentations are conducted using NVIDIA RTX A6000 GPU with 48GB memory requiring

300 Watt power. For GPU, CUDA Version: 11.6, Driver Version: 510.108.03, and NVIDIA-SMI:

510.108.03 is used. In terms of CPU, our experimentation uses an Intel(R) Xeon(R) Gold 6326

CPU @ 2.90GHz with a 64-bit system and an x86 64 architecture.

D.4.3 Single-view and Multi-view Examples

Figure D.1 show the three example images, where the first image is a representative single-view

data sample whereas the last two are multi-view samples. In this example, we consider three major

features for cars: i.e., Tire, Headlight, and Door handle. As only headlight feature is present in

the first image, it belongs to the single-view category. For the second and third images, multiple
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features are presented and therefore we regard those images as multi-view data samples.

Table D.2: Accuracy and ECE performance with 15% density for Cifar10 and Cifar100 Dataset.

Training Type Approach

Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE

Dense† 94.82 5.87 95.12 5.99 76.40 16.89 77.97 16.73

M

Dense Training L1 Pruning 93.88 5.69 94.23 5.88 75.53 15.52 75.83 15.78

LTH 92.97 4.03 93.15 5.69 74.36 15.13 74.77 15.22

DLTH 95.15 6.21 95.65 6.96 77.98 16.24 78.23 16.54

Mixup 93.22 4.02 93.38 5.68 74.48 15.10 74.68 15.16

M

Sparse Training CigL 92.25 4.67 93.34 4.59 77.88 10.16 77.27 10.62

DST Ensemble 89.57 2.10 88.64 1.34 64.57 9.76 64.75 9.27

Sup-ticket 94.65 3.20 94.95 3.09 78.68 10.16 78.95 10.32

M

Mask Training AdaBoost 94.07 5.65 94.76 5.14 75.98 23.55 76.28 24.27

EP 94.41 3.90 94.42 4.07 75.66 14.79 76.05 14.79

SNE 94.85 3.05 94.96 3.18 76.82 11.12 77.23 11.63

DRE 94.87 1.71 94.74 1.34 75.86 4.90 76.46 5.81

D.4.4 Additional Result on Cifar10 and Cifar100

Table D.2 shows the experimental result on Cifar10 and Cifar100 datasets with a 15% density. As

shown, the proposed technique has a far superior performance in terms of the ECE score compared

to the competitive baselines. This is consistent with the results with a 9% density as presented in

the Chapter 7, which further justifies the effectiveness of our proposed technique.

D.4.5 Additional Baseline Results on TinyImageNet

As mentioned in the Chapter 7, the computational issue (i.e., memory overflow) makes it impossible

to run sparse learning techniques i.e., CigL [73], DST Ensemble [81], and Sup-ticket [153] on the

ResNet101 and WideResNet101 architectures to make a fair comparison. Therefore, in this section,

we pick a lower capacity model (ResNet50) and compare the performance. Even for the ResNet50
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architecture, CigL still runs into the memory overflow issue with a batch size of 128. Furthermore,

lowering the batch size (e.g., 16) makes the training process extremely slow even using a 48Gb

GPU, where each training epoch takes more than half an hour, making model training extremely

difficult. Therefore, we did not report the performance of CigL. It should be noted that CigL can

be trained on Cifar10 and Cifar100 because of lower dimension of the input images and we have

already reported its performance in the Chapter 7. Table D.3 shows the performance of DRE along

with those from DST Ensemble and Sup-ticket on ResNet50. It is clear that DRE achieves better

performance compared to these baselines.

D.4.6 Performance from Ensemble Members

Table D.3: Additional baseline results on

TinyImageNet using ResNet50 with K =

15%.

Training Type Approach ACC ECE

Sparse Training DST Ensemble 72.00 2.94

Sup-ticket 68.68 10.96

Mask Training DRE 71.57 1.51

We investigate how performance varies in different

sparse sub-networks. We use Cifar100 as an exam-

ple and Table D.4 report the individual sub-network

performance on both accuracy and ECE. While each

sparse sub-network is a relatively weaker learner

(which is expected), they contribute to the final en-

semble model in a complementary way, leading to a

better ECE score as well as accuracy.

D.4.7 Comparison with Common Cali-

bration Techniques

Table D.4: Different subnetworks perfor-

mance on Cifar100 Dataset.

Subnetworks
ResNet101 ResNet152

ACC ECE ACC ECE

Subetwork 1 (3%) 68.22 14.35 69.65 13.31

Subetwork 2 (3%) 69.03 1.39 70.00 3.39

Subetwork 3 (3%) 72.86 11.96 70.24 14.78

DRE 74.68 1.20 74.37 2.09

In this section, we investigate whether existing cal-

ibration techniques designed for training dense net-

works can be leveraged to further improve the cal-

ibration performance of sparse networks. However,

most of these techniques (e.g., temperature scaling

and mix-n-match) are post hoc techniques, which

require a separate validation set to fine-tune the pa-

rameters. This means we need to further divide the

training data into training and validation sets, which

may negatively impact the generalization capability of the trained model (due to less training data).

To make a comparison, we pick Temperature Scaling (TS) [45], Label Smoothing (LS) [132], and
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a few other techniques proposed in [158], including Ensemble Temperature Scaling (ETS) and

Isotonoic Regression One vs All combined with Temperature Scaling (IROvA-TS). We apply these

calibration techniques on the top of the EP algorithm. Specifically, as LS does not require a sepa-

rate validation set, we train it on the full training dataset using the LS loss (with ϵ = 0.1). Other

calibration techniques require a separate validation set and therefore we divide training data into

training and validation with a 80:20 ratio. EP (No Validation) uses the full training dataset whereas

EP (Validation) is trained using 80% of the training data. Once the model is trained with 80% of

training data using EP, we further calibrate it using the aforementioned calibration techniques. Ta-

ble D.5 shows the results. There are two key observations: (i) the classification accuracy decreases

for all calibration techniques at the expense of improving calibration performance as they require

a separate validation set, and (ii) DRE achieves the best ECE in all cases, which further justifies

its strong calibration performance.

Table D.5: Different calibration techniques on the top of EP Algorithm with K = 9%.

Approach

Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE

TS 93.42 0.96 93.42 1.37 73.06 1.72 73.40 2.45

ETS 93.42 0.97 93.42 1.37 73.06 1.76 73.40 2.40

IROvA-TS 89.90 1.45 88.69 0.89 60.87 1.56 60.77 2.86

LS 94.06 7.56 94.21 7.41 75.96 9.36 76.40 7.71

EP (No Validation) 94.20 3.97 94.35 4.03 75.05 14.62 75.68 14.41

EP (Validation) 93.42 4.46 93.42 4.83 73.06 15.56 73.40 15.88

DRE 94.60 0.7 94.28 0.7 74.68 1.20 74.37 2.09

D.4.8 Ablation Study

In this section, we first show the impact of λ values on the prediction and calibration performance.

We then investigate how the size of the ensemble affects it calibration performance. Finally, we

show the effectiveness of the proposed technique as we vary the backbones. In addition to the

backbones used in the main chapter, we will further evaluate two other commonly used backbones,

including WideResNet28 and Vision Transformer (ViT) [28] as backbones.
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(a) K = 5% (b) K = 3%

Figure D.2: (a-b) Impact of λ on ECE using ResNet101 architecture on Cifar100 dataset.

Table D.6: ACC and ECE with different: (a) backbones and (b) number of subnetworks.

Approach
WideResNet28-10 ViT

ACC ECE ACC ECE

EP 94.12 4.53 86.16 10.01

DRE 93.98 1.93 85.53 4.18

(a) Different backbones on Cifar10 Dataset.

Approach
ResNet101 ResNet152

ACC ECE ACC ECE

DRE (M = 3) 94.87 1.71 94.74 1.34

DRE (M = 5) 94.79 0.84 94.69 0.62

(b) Different M values on Cifar10 with K = 15%.

Impact of the uncertainty set size. For simplicity, we always keep one sparse sub-network in

our framework to be with λ1 →∞. The ECE performance with respect to different sets of λ value

for the remaining sub-networks is shown using the heatmap given in Figure D.2 (a-b). As can be

seen, it is important to choose λ2 and λ3 with very distinct values to achieve a low calibration error.

Performance analysis of different backbones. Table D.6 (a) reports the performance of

Cifar10 from both DRE and EP using different backbone architectures. In case of WideResNet28-

10, the calibration error is low without sacrificing the accuracy. It also demonstrates that the

superior performance of DRE is not limited to a specific backbone. In case of ViT, DRE still

achieves a much lower calibration error than EP. However, using ViT as a backbone, the accuracy
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from both EP and DRE is lower and ECE is higher than other backbones. Existing studies show

that without pretraining, the lack of useful inductive biases for ViT can cause performance drop

[1]. Since no pretraining is conducted in both EP and DRE, it causes a lower accuracy (and a

higher ECE).

Impact of number of sparse-sub-networks. In this analysis, we study the impact of number

of sparse sub-networks. It should be noted that our work is not limited only for M = 3. We can

instead increase the M value. For example, Table D.6 (b) shows the performance for ensemble

model with M = 5, where each sub-network is trained with K = 3% leading to a total K = 15%.

We also show the performance with M = 3, where each sub-network is trained with K = 5%.

As can be seen, if there is a sufficient learning capacity for each sub-network, the ECE score can

further improve with the increase of M .

D.4.9 Parameter Size and Inference Speed

Table D.7: Parameter size and inference speed.

Approach
ResNet50 ResNet101

Params Flops (×109) Params Flops (×109)

Dense† 23.6M 4.14 42.5M 7.88

SNE 3.5M 1.31 6.3M 2.53

DRE 3.5M 1.31 6.3M 2.53

We compare parameter size and inference speed

of different types of sparse networks. Table D.7

shows the FLOPS along with number of param-

eters associated with each technique. As can

be seen, the proposed DRE has a comparable

parameter size as that of the sparse network

ensemble. In terms of computational times, our approach is comparable to the sparse network

ensemble. Compared to a dense network, our technique has a much smaller parameter size with

less FLOPS.

D.4.10 Diversity on Sparse Sub-networks

To justify our claim that our technique ensures the diverse sparse sub-networks, we adapt the

disagreement metric (ddist) from [81]. This metric measures the disagreement among sub-networks

in terms of class label prediction. Table D.8 below shows the results for Cifar10 and Cifar100

datasets. As shown, compared to Sparse Network Ensemble, DRE achieves higher disagreement

which implies that the sparse sub-networks are more diverse.
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Table D.8: Accuracy, ECE, and prediction disagreement performance with a K = 15% density.

Approach

Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ddist ACC ECE ddist ACC ECE ddist ACC ECE ddist

SNE 94.85 3.05 0.048 94.96 3.18 0.049 76.82 11.12 0.20 77.23 11.63 0.20

DRE (Ours) 94.87 1.71 0.088 94.74 1.34 0.069 75.86 4.90 0.24 76.46 5.81 0.24

D.4.11 Qualitative Analysis

In this section, we provide illustrative examples to further justify the proposed DRE is better

calibrated compared to existing baselines. Figure D.3 (a)-(d) show the confidence values for the

wrongly classified samples using different baselines. As can be seen, all of the baselines suffer from

the overfitting issue, resulting into the incorrect predictions with high confidence. In contrast,

as shown in Figure D.3 (e)-(f), the sparse sub-networks provide the confidence values in different

ranges, where sub-network in (a) is learned from representative samples and (c) from the difficult

ones. As these sub-networks are complementary with each other, the DRE has a much better

confidence distribution for both the correct as well as incorrect samples. Figure D.4 shows the

confidence score of correctly classified data samples from the CIFAR100 dataset with different

techniques. As shown, our DRE technique remains confident on the correct data samples while

being not confident on the incorrect data samples. This result shows our approach is well calibrated

and trustworthy compared with the competitive baselines. In summary, our proposed technique

remains uncertain for incorrect samples while being confident on the correct samples resulting in a

much improved calibration.

D.5 Broader Impact, Limitations, and Future Work

In this section, we first describe the potential broader impacts of our work. We then discuss the

limitations and identify some possible future directions.
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(a) Dense network (b) EP Sparse network 1 (c) EP Sparse network 2 (d) Sparse ensemble

(e) DRO sparse Network 1(f) DRO sparse network 2 (g) DRO sparse network 3 (h) DRE

Figure D.3: Confidence scores of incorrectly classified samples in CIFAR100 with ResNet101

(a) Dense network (b) EP sparse network 1 (c) EP sparse network 2 (d) Sparse ensemble

(e) DRO sparse network 1(f) DRO sparse network 2 (g) DRO sparse network 3 (h) DRE

Figure D.4: Confidence scores of correctly classified samples in CIFAR100 with ResNet101
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D.5.1 Broader Impact

Sparse network training provides a highly promising way to significantly reduce the computational

cost for training large-scale deep neural networks without sacrificing their predictive power. Besides

energy savings, it also opens the gate for deploying deep neural networks to lightweight computing

or edge devices that can further broaden the applications of AI in more diverse and resource

constrained settings. The proposed robust ensemble framework provides a general solution to

achieve calibrated training of deep learning models. As a result, the trained model is expected to

provide more reliable uncertainty predictions, which could be an important step towards using AI

in safety-critical domains.

D.5.2 Limitations and Future Works

As an ensemble model, DRE involves multiple base learners (i.e., sparse sub-networks). Con-

sequently, it may lead to more computational overhead. This could create issues for real-time

application as during the inference time, the input needs to be passed through all base learners to

get the final output, which can slow down the prediction speed. A straightforward way to speed

up the inference process is to execute all the base learners in parallel, which still incurs additional

computational overhead. One interesting future direction is to investigate knowledge distillation

and train a single sparse network from the ensemble model. Theoretical evidence [1] shows that

knowledge distillation has the potential to largely maintain the ensemble performance while pro-

viding a promising way to train a single sparse network with an even higher sparsity level and

improved inference speed.
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