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Abstract

Software engineers work under strict constraints, balancing a complex, multi-phase devel-
opment process on top of user support and professional development. Despite their best
efforts, software engineers experience human errors, which manifest as software defects.
While some defects are simple bugs, others can be costly security vulnerabilities. Practices
such as defect tracking and vulnerability disclosure help software engineers reflect on the
outcomes of their human errors (i.e. software failures), and even the faults that led to those
failures, but not the underlying human behaviors. While human error theory from psychol-
ogy research has been studied and applied to medical, industrial, and aviation accidents,
researchers are only beginning to systematically reflect on software engineers’ human errors.
Some software engineering research has used human error theories from psychology to help
developers identify and organize their human errors (mistakes) during requirements engi-
neering activities, but developers need an improved and systematic way to reflect on their
human errors during other phases of software development. The goal of this dissertation is
to help software engineers confront and reflect on their human errors by creating
a process to document, organize, and analyze human errors . To that end, our re-
search comprises three phases: (1) systematization (i.e. identification and taxonomization)
of software engineers’ human errors from literature and development artifacts into a Taxon-
omy of Human Errors in Software Engineering (T.H.E.S.E.), (2) evaluation and refinement
of T.H.E.S.E. based on software engineers’ perceptions and natural language insights, and
(3) creation of a human error informed micro post-mortem process and the Human Error
Reflection Engine (H.E.R.E.), a proof-of-concept GitHub workflow facilitating human error
reflection. In demonstrating the utility of T.H.E.S.E. and our micro post-mortem process,
the software development community will be closer to inculcating the wisdom of historical
developer human errors, enabling them to engineer higher quality and more secure software.
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“To err is human but a human error is nothing to what a computer
can do if it tries.”

Agatha Christie, Author

“The difference between us and a computer is that, the computer
is blindingly stupid, but it is capable of being stupid many, many
million times a second.”

Douglas Adams, Author

“At the source of every error which is blamed on the computer,
you will find at least two human errors, one of which is the error
of blaming it on the computer.”

Tom Gilb, Software Engineer

“Children aren’t afraid to try things and make mistakes because
you learn from those. We grown-ups must learn from experience,
of course, but we can’t be afraid to do something and risk making
a mistake. We’ve got to remember that we can keep learning
throughout our entire lives. And play our entire lives.”

Kjeld Kirk Kristiansen, Former Owner of Lego

“A young apprentice applied to a master carpenter for a job. The
older man asked him, ‘Do you know your trade?’ ‘Yes, sir!’ the
young man replied proudly. ‘Have you ever made a mistake?’ the
older man inquired. ‘No, sir!’ the young man answered, feeling
certain he would get the job. ‘Then there’s no way I’m going
to hire you,’ said the master carpenter, ‘because when you make
one, you won’t know how to fix it.’”

Mister Fred Rogers, Neighbor to All

“The only real mistake is the one from which we learn nothing.”

Henry Ford, Innovator

“Mistakes are the portals of discovery.”

James Joyce, Poet

“To the scientist, the universality of physical laws makes the cos-
mos a marvelously simple place. By comparison, human nature—
the psychologist’s domain—is infinitely more daunting.”

Neil deGrasse Tyson, Science Communicator

“Think of people as people, not problems that need to be solved.”

Hank Green, Science Communicator
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Chapter 1

Introduction

Software development is a complex process of gathering requirements from stakeholders, designing a software system,
and implementing, testing, deploying, and maintaining that software. Each stage of the software development lifecycle
encompasses many activities intended to improve software quality—risk assessment, threat modeling, code review,
a wide range of testing, responding to bug reports, patching vulnerabilities, and deploying updates—in addition to
communicating with peer developers, managers, and stakeholders. No complex process is inherently safe [76], so
software developers, despite their best efforts, inevitably make mistakes.

Mistakes, or human errors, have been extensively documented and studied in psychology research for well over
50 years. Sigmund Freud drew attention to human error in 1901 as he studied slips of the tongue, forgetfulness, and
omissions [105]. In 1937, Kollarits conducted one of the first studies of human error, examining about 1,200 human er-
rors experienced by himself, his wife, and colleagues. Kollarits arrived at four categories of human error: substitution,
omission, repetition, and insertion [169]. Later in the 1980s, Jens Rasmussen studied human error primarily in the
context of industrial accidents [294, 296], and classified human errors as skill-, rule-, or knowledge-based [293, 295].
Building on Rasmussen’s work, James Reason categorized human errors under his Generic Error-Modelling System
(GEMS) [298] as slips, lapses, and mistakes (failures of attention, memory, and planning, respectively).

Software engineers and security practitioners have also been concerned with human errors (albeit indirectly),
defining, studying, and cataloging the consequences of software developers’ human errors—defects (faults and failures),
weaknesses, bugs, and vulnerabilities. With open source software, software engineers have documented their mistakes
and put them on display, adopting vulnerability disclosure as an industry standard so that current and future
developers can learn from their mistakes. The Common Vulnerabilities and Exposures (CVE) database [237], for
example, provides a timestamp and a brief description of thousands of documented vulnerabilities, along with links to
related security advisories, changelogs, bug reports, patches, and severity measures. Further, the Common Weakness
Enumeration (CWE) [235] taxonomizes vulnerabilities into technical faults and their mitigations. While the CVE and
CWE are not perfect, they are systematic endeavors which enable learning from critical software security mistakes.

Vulnerability assessment is a noble and valuable endeavor, but it’s only one piece of the puzzle: human errors
lead to software faults [349]. However, adoption of human error research from psychology into software development
has been relatively slow and short-lived (except for work by Anu et al. [12, 15, 18, 22, 23]). While some software
developers and researchers have paid attention to human error, Wood & Banks expressed concern in 1993 that “many
contemporary information security practitioners appear to have forgotten about [362]” human error, and 12 years
later Im & Baskerville expressed “the serious need for research and practical knowledge about the management of
human error in secure information systems [147].” Human error is particularly impactful in software engineering (a
process-oriented domain) because

“people are key components of processes. They are involved in process design, operation, maintenance,
etc. No step in the process life cycle is without some human involvement. Based on human
nature, human error is a given and will arise in all parts of the process life cycle. Also,
processes are generally not well-protected from human errors since many safeguards are focused
on equipment failure. Consequently, it is likely that human error will be an important contributor to risk
for most processes [35].” (emphasis added)

Examining faults and failures on their own does not allow software engineers to assess their human errors; software
engineers need to dig deeper and consider the underlying human errors behind their software defects. Figure 1.1 shows
conceptually how developers’ human errors have a lasting impact on software development, leading to faults in code,

1
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Human Error   Software FailureCoding Fault

Failure Report? Fault Patch/Fix
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Figure 1.1: Lifecycle of Human Error in Typical Software Engineering
Each stage of error in software development has its own solution. Software failures are addressed with
failure reports and their underlying faults are patched/fixed. However, we are unaware of any standard
software engineering process/solution for addressing the human errors leading to faults.

which manifest as software failures [350]. Failures are reported, and faults patched, but to our knowledge, typical
software engineering does not include evidence-based human error assessment. The goal of this work is to help
software engineers confront and reflect on their human errors by creating a process to document,
organize, and analyze human errors. To that end, this dissertation comprises three phases:

Phase 1: Systematization (i.e. identification and taxonomization) of software engineers’ human errors from
literature and development artifacts into a Taxonomy of Human Errors in Software Engineering
(T.H.E.S.E.)

Phase 2: Evaluation of T.H.E.S.E. based on software engineers’ perceptions and natural language insights

Phase 3: Creation of a human error informed micro post-mortem process and the Human Error Reflection
Engine (H.E.R.E.), a proof-of-concept GitHub workflow facilitating human error reflection

At this point, we must reassure the reader that the goal of our work is not to provide a framework for placing
blame on individual software engineers. Blaming humans for the human errors they experience is the old view of
human error; the new view is that human errors are a symptom of environmental factors and constraints [76]. Software
engineers

“confront different evolving situations, they navigate and negotiate the messy details of their practice to
bridge gaps and to join together the bits and pieces of their system, creating success as a balance between
the multiple conflicting goals and pressures imposed by their organizations [363].”

Human errors are not the result of malice1 on the part of the software engineer, but an unavoidable part of the
process. Our goal is not to place blame or remove human error altogether, but to provide a process for software
engineers to document and reflect on their experienced human errors so they can implement mitigations and process
improvements, and help future developers avoid similar human errors.

1.1 Overview
In this section, we provide an overview of the remaining chapters in this dissertation. Chapter 2 provides a brief
background on concepts related to human error, natural language processing, software engineering, computer security,
and taxonomies. In Chapter 3, we outline related work on human error and taxonomy development in software
engineering.

In Chapter 4, we describe the first phase of this dissertation, which consists of two research studies. First, we
conducted a systematic literature review (SLR) of 68 research studies about human errors in software engineering.
Using established terminology and multiple taxonomies from existing psychology research, we systematically examined
a subset of 81,007 search results from three research paper databases, and aggregated software engineers’ human
errors (192 in total) into Version 1 of our Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.). Next,
we collected 88.6 million developer comments from GitHub. Using apology lemmas from linguistics research, we
created an automatic apology classification process. We manually categorized a random subset of 332 apology
comments according to the experienced human error. We compared human error categories derived from software
engineers’ apologies with Version 1 of T.H.E.S.E. and updated T.H.E.S.E. (Version 2) with categories of human error
in software engineering that were not previously documented in literature. These two studies address the following
research questions:

1See Section 2.1.2 for a discussion of violations.
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RQ 1: Human Error Discovery
What human errors experienced by software engineers are documented in previous research?

RQ 2: Human Error Appraisal
What are the strengths and weaknesses of previous research about human error in software engineering?
We define strengths and weaknesses in terms of software engineering scope, category ambiguity, and
category completeness.

RQ 3: Human Error Usefulness
How comprehensive is existing research about human errors in software engineering? We define use-
fulness in terms of coverage of human error theories from cognitive psychology and coverage of human
errors in software engineering activities.

RQ 4: Identifying Developers’ Apologies
Can apology lemmas reliably identify developers’ apologies in development artifacts?

RQ 5: Anatomy of Developers’ Apologies
How often do developers apologize and which apology lemmas are most common?

RQ 6: Developers’ Self-Admitted Human Errors
Which human errors from literature do developers admit to? Which human errors from developer
apologies do not exist in literature?

In the second phase of this dissertation (Chapter 5), we evaluated T.H.E.S.E. with two approaches. First,
we conducted a user study in which software engineering students at the Rochester Institute of Technology were
provided training on human error and T.H.E.S.E., then tasked with documenting and categorizing their human
errors. Throughout the user study, participants met weekly with the author of this dissertation to discuss their
human errors and categorization further. We used insights from the user study to improve T.H.E.S.E. category titles
and definitions (Version 3 of T.H.E.S.E.), as well as design a formal micro post-mortem process for human error
assessment in software engineering. Next, we refined T.H.E.S.E. using pretrained natural language models. Based on
classification results, we further improved T.H.E.S.E. category titles and definitions (Version 4 of T.H.E.S.E.). Phase
2 of this dissertation addresses the following research questions:

RQ 7: Ease of Use
How clear, unambiguous, and simple is T.H.E.S.E. for software engineers to use?

RQ 8: Comprehensiveness
How well does T.H.E.S.E. cover human errors in software engineering?

RQ 9: Assessment Value
How well does T.H.E.S.E. facilitate human error reflection?

RQ 10: Category Ambiguity
How well can ambiguity of T.H.E.S.E. category descriptions be reduced based on semantic similarity?

RQ 11: Assisted Categorization
How useful is Sentence-BERT for refining human error definitions?

For the third and final phase of this dissertation, Chapter 6 describes (1) a formal human error informed micro
post-mortem process for software engineering, and (2) a proof-of-concept Human Error Reflection Engine (H.E.R.E.)
to facilitate micro post-mortems on GitHub. In Chapter 7, we summarize our work and provide recommendations
for future work.

1.2 Contributions
This dissertation makes the following contributions to the field of software engineering.

1.2.1 Publications
Throughout my academic career (both undergraduate and graduate), I have contributed to 10 research publications,
which are listed below. Those that do not directly relate to this dissertation—marked with an asterisk (∗)—are
included as they eventually led me to my dissertation topic. Those that are currently undergoing peer-review are
denoted by a dagger (†):
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1. ∗Natural Language Insights from Code Reviews that Missed a Vulnerability. (2017). Nuthan Munaiah, Ben-
jamin S. Meyers, Cecilia O. Alm, Andrew Meneely, Pradeep K. Murukannaiah, Emily Prud’hommeaux,
Josephine Wolff, and Yang Yu. Proceedings of the 9th International Symposium for Engineering Secure Software
and Systems (ESSoS). Bonn, Germany. [245]

This study examined the characteristics of software vulnerabilities that were missed. Since there
is human error behind every bug and vulnerability [349], this work indirectly fueled my interest in
software engineers’ human errors.

Abstract: Engineering secure software is challenging. Software development organizations leverage
a host of processes and tools to enable developers to prevent vulnerabilities in software. Code
reviewing is one such approach which has been instrumental in improving the overall quality of a
software system. In a typical code review, developers critique a proposed change to uncover potential
vulnerabilities. Despite best efforts by developers, some vulnerabilities inevitably slip through the
reviews. In this study, we characterized linguistic features—inquisitiveness, sentiment and syntactic
complexity—of conversations between developers in a code review, to identify factors that could
explain developers missing a vulnerability. We used natural language processing to collect these
linguistic features from 3,994,976 messages in 788,437 code reviews from the Chromium project. We
collected 1,462 Chromium vulnerabilities to empirically analyze the linguistic features. We found
that code reviews with lower inquisitiveness, higher sentiment, and lower complexity were more
likely to miss a vulnerability. We used a Naïve Bayes classifier to assess if the words (or lemmas) in
the code reviews could differentiate reviews that are likely to miss vulnerabilities. The classifier used
a subset of all lemmas (over 2 million) as features and their corresponding TF-IDF scores as values.
The average precision, recall, and F-measure of the classifier were 14%, 73%, and 23%, respectively.
We believe that our linguistic characterization will help developers identify problematic code reviews
before they result in a vulnerability being missed.

2. ∗An Analysis and Visualization Tool for Case Study Learning of Linguistic Concepts. (2017). Cecilia O. Alm,
Benjamin S. Meyers, and Emily Prud’hommeaux. Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP). Copenhagen, Denmark. [7]

This study was my first introduction to pedagogy and my first experience designing learning tools.
T.H.E.S.E. is ultimately a tool for learning, and I credit this work with steering my research in that
direction.

Abstract: We present an educational tool that integrates computational linguistics resources for
use in non-technical undergraduate language science courses. By using the tool in conjunction with
evidence-driven pedagogical case studies, we strive to provide opportunities for students to gain an
understanding of linguistic concepts and analysis through the lens of realistic problems in feasible
ways. Case studies tend to be used in legal, business, and health education contexts, but less in
the teaching and learning of linguistics. The approach introduced also has potential to encourage
students across training backgrounds to continue on to computational language analysis coursework.

3. ∗A Dataset for Identifying Actionable Feedback in Collaborative Software Development. (2018). Benjamin S.
Meyers, Nuthan Munaiah, Emily Prud’hommeaux, Andrew Meneely, Cecilia O. Alm, Josephine Wolff, and
Pradeep Murukannaiah. Proceedings of the 2018 Meeting for the Association for Computational Linguistics
(ACL). Melbourne, Australia. [218]

This study was a valuable experience orchestrating the mining of a large natural language dataset.
The skills established during this study were invaluable in mining software engineers’ apologies in
Section 4.2.

Abstract: Software developers and testers have long struggled with how to elicit proactive responses
from their coworkers when reviewing code for security vulnerabilities and errors. For a code review
to be successful, it must not only identify potential problems but also elicit an active response from
the colleague responsible for modifying the code. To understand the factors that contribute to this
outcome, we analyze a novel dataset of more than one million code reviews for the Google Chromium
project, from which we extract linguistic features of feedback that elicited responsive actions from
coworkers. Using a manually-labeled subset of reviewer comments, we trained a highly accurate
classifier to identify “acted-upon” comments (AUC = 0.85). Our results demonstrate the utility of
our dataset, the feasibility of using NLP for this new task, and the potential of NLP to improve
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our understanding of how communications between colleagues can be authored to elicit positive,
proactive responses.

4. ∗Pragmatic Characteristics of Security Conversations: An Exploratory Linguistic Analysis. (2019). Benjamin
S. Meyers, Nuthan Munaiah, Andrew Meneely, and Emily Prud’hommeaux. Proceedings of the 12th In-
ternational Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). Montréal, QC,
Canada. [219]

This study further honed my data mining and statistics experience, while also inspiring me to think
about the variety of things we can learn from software engineering artifacts.

Abstract: Experts suggest that engineering secure software requires a defensive mindset to be in-
grained in developer culture, which could be reflected in conversation. But what does a conversation
about software security in a real project look like? Linguists analyze a wide array of characteristics:
lexical, syntactic, semantic, and pragmatic. Pragmatics focus on identifying the style and tone of
the author’s language. If security requires a different mindset, then perhaps this would be reflected
in the conversations’ pragmatics. Our goal is to characterize the pragmatic features of conversations
about security so that developers can be more informed about communication strategies regarding
security concerns. We collected and annotated a corpus of conversations from 415,041 bug reports
in the Chromium project. We examined five linguistic metrics related to pragmatics: formality,
informativeness, implicature, politeness, and uncertainty. Our initial exploration into these data
show that pragmatics plays a role, however small, in security conversations. These results indi-
cate that the area of linguistic analysis shows promise in automatically identifying effective security
communication strategies.

5. ∗Developing a Geographic Information Capacity (GIC) Profile for Disaster Risk Management Under United Na-
tions Framework Commitments. (2020). Brian M. Tomaszewski, Elizabeth A. Moore, Kyle Parnell, Alexandra
M. Leader, William R. Armington, Omar Aponte, Leslie Brooks, Brienna K. Herold, Benjamin S. Meyers,
Tayler Ruggero, Zachary Sutherby, Madeline Wolters, Sandy Wua, Jörg Szarzynski, Klaus Greve, and Robert
Parody. International Journal of Disaster Risk Reduction (IJDRR). [341]

While unrelated to software engineering, this study examined risk factors and remediations. Software
engineers frequently assess risk, and human error management (T.H.E.S.E. could be considered a
human error management tool) is itself a form of risk management.

Abstract: The capacity to utilize geographic information is a critical element of disaster risk man-
agement. Although access to and use of geographic information system (GIS) technology continues
to grow, there remain significant gaps in approaches used by disaster risk management stakeholders
to understand geographic information needs, sources, and information flow—ultimately limiting the
efficacy of management efforts. To address this problem, we introduce the concept of geographic
information capacity (GIC) to measure and analyze the ability of stakeholders to understand, access,
and work with geographic information for disaster risk management. We propose a framework for as-
sessing GIC, the GIC Profile, which we situate within a review of disaster risk management-relevant
frameworks. We evaluate the GIC Profile using two case study countries at the first (sub-national)
geo-administrative boundary level. Chi-square analyses suggest GIC across equivalent regional units
within each country is relatively uniform, and that this uniformity is comparable between nations
despite significant difference in overall capacity. Contributions of the GIC Profile to disaster risk
management research are twofold. First, this is a first attempt to develop a profile based on key
indicators for quantifying GIC highlights critical areas for capacity improvement, allowing deci-
sion makers to identify and prioritize pathways to strengthen disaster risk management programs.
Through this initial effort, a decision tool has been developed which may enhance decisions on how
to utilize GIS in support of disaster risk management. This tool is iterative and can be updated as
new events occur to maximize GIS benefits, ultimately reducing disaster risks and their potential
consequences.

6. ∗An Automated Post-Mortem Analysis of Vulnerability Relationships using Natural Language Word Embeddings.
(2021). Benjamin S. Meyers and Andrew Meneely. Proceedings of the 3rd International Symposium on
Machine Learning and Big Data Analytics for Cybersecurity and Privacy at (ANT/EDI40). Warsaw, Poland
(virtual due to COVID-19). [213]
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This study involved identifying relationships between software vulnerabilities using word embeddings
(which motivated our use of Sentence-BERT in Section 5.3) and continued my interest in learning
from software engineers’ mistakes.

Abstract: The daily activities of cybersecurity experts and software engineers—code reviews, issue
tracking, vulnerability reporting—are constantly contributing to a massive wealth of security-specific
natural language. In the case of vulnerabilities, understanding their causes, consequences, and mit-
igations is essential to learning from past mistakes and writing better, more secure code in the
future. Many existing vulnerability assessment methodologies, like CVSS, rely on categorization
and numerical metrics to glean insights into vulnerabilities, but these tools are unable to capture
the subtle complexities and relationships between vulnerabilities because they do not examine the
nuanced natural language artifacts left behind by developers. In this work, we want to discover
unexpected relationships between vulnerabilities with the goal of improving upon current practices
for post-mortem analysis of vulnerabilities. To that end, we trained word embedding models on two
corpora of vulnerability descriptions from Common Vulnerabilities and Exposures (CVE) and the
Vulnerability History Project (VHP), performed hierarchical agglomerative clustering on word em-
bedding vectors representing the overall semantic meaning of vulnerability descriptions, and derived
insights from vulnerability clusters based on their most common bigrams. We found that (1) vul-
nerabilities with similar consequences and based on similar weaknesses are often clustered together,
(2) clustering word embeddings identified vulnerabilities that need more detailed descriptions, and
(3) clusters rarely contained vulnerabilities from a single software project. Our methodology is au-
tomated and can be easily applied to other natural language corpora. We release all of the corpora,
models, and code used in our work.

7. ∗Examining Penetration Tester Behavior in the Collegiate Penetration Testing Competition. (2022). Benjamin
S. Meyers, Sultan Fahad Almassari, Brandon N. Keller, and Andrew Meneely. ACM Transactions on Software
Engineering and Methodology (TOSEM). [220]

This study provided an unique experience to learn about software engineers’ mistakes from the
perspective of an attacker. This study provided my first experience systematizing software engineers’
mistakes, a skill set that was invaluable in Chapter 4.

Abstract: Penetration testing is a key practice toward engineering secure software. Malicious actors
have many tactics at their disposal, and software engineers need to know what tactics attackers will
prioritize in the first few hours of an attack. Projects like MITRE ATT&CK™ provide knowledge,
but how do people actually deploy this knowledge in real situations? A penetration testing compe-
tition provides a realistic, controlled environment with which to measure and compare the efficacy
of attackers. In this work, we examine the details of vulnerability discovery and attacker behavior
with the goal of improving existing vulnerability assessment processes using data from the 2019
Collegiate Penetration Testing Competition (CPTC). We constructed 98 timelines of vulnerability
discovery and exploits for 37 unique vulnerabilities discovered by ten teams of penetration testers.
We grouped related vulnerabilities together by mapping to Common Weakness Enumerations and
MITRE ATT&CK™. We found that (1) vulnerabilities related to improper resource control (e.g.
session fixation) are discovered faster and more often, as well as exploited faster, than vulnerabil-
ities related to improper access control (e.g. weak password requirements), (2) there is a clear
process followed by penetration testers of discovery/collection to lateral movement/pre-attack. Our
methodology facilitates quicker analysis of vulnerabilities in future CPTC events.

8. ∗What Happens When We Fuzz? Investigating OSS-Fuzz Bug History. (2023). Brandon N. Keller, Benjamin
S. Meyers, and Andrew Meneely. International Conference on Mining Software Repositories (MSR). [160]

While mitigations for human errors in software engineering are outside the scope of my dissertation,
tools are often suggested countermeasures for human error [285]. This study explored fuzzers, an
often ignored type of tool aimed at assisting software engineers.

Abstract: Software engineers must be vigilant in preventing and correcting vulnerabilities and other
critical bugs. In servicing this need, numerous tools and techniques have been developed to assist
developers. Fuzzers, by autonomously generating inputs to test programs, promise to save time by
detecting memory corruption, input handling, exception cases, and other issues. The goal of this
work is to empower developers to prioritize their quality assurance by analyzing the history of bugs
generated by OSS-Fuzz. Specifically, we examined what has happened when a project adopts fuzzing
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as a quality assurance practice by measuring bug lifespans, learning opportunities, and bug types.
We analyzed 44,102 reported issues made public by OSS-Fuzz prior to March 12, 2022. We traced
the Git commit ranges reported by repeated fuzz testing to the source code repositories to identify
how long fuzzing bugs remained in the system, who fixes these bugs, and what types of problems
fuzzers historically have found. We identified the bug-contributing commits to estimate when the
bug containing code was introduced, and measure the timeline from introduction to detection to
fix. We found that bugs detected in OSS-Fuzz have a median lifespan of 324 days, but that bugs,
once detected, only remain unaddressed for a median of 2 days. Further, we found that of the 8,099
issues for which a source committing author can be identified, less than half (45.9%) of issues were
fixed by the same author that introduced the bug. The results show that fuzzing can be used to
makes a positive impact on a project that takes advantage in terms of their ability to address bugs
in a time frame conducive to fixing mistakes prior to a product release. However, the rate at which
we find authors are not correcting their own errors suggests that not all developers are benefiting
from the learning opportunities provided by fuzzing feedback.

9. †T.H.E.S.E. are the Human Errors Experienced by Software Engineers. (Under Review). Benjamin S.
Meyers, Brandon N. Keller, and Andrew Meneely. ACM Transactions on Software Engineering and Method-
ology (TOSEM).

This study is discussed in detail in Chapter 4.

Abstract: Software engineers work under strict time constraints, balancing a complex, multi-phase
process on top of user support and professional development. Despite their best efforts, software
engineers experience human errors. Practices such as defect tracking help developers reflect on
the outcomes of their errors (i.e. software failures), and even the faults that led to those failures,
but not the underlying human behaviors. While human error theory from psychology research
has been studied and applied to medical, industrial, and aviation accidents, researchers are only
beginning to systematically reflect on developers’ human errors. Modern software engineering affords
massive, rich records of socio-technical, natural language interaction in public venues, such as with
open source software development on GitHub. Specifically, these records can provide insight into
developers’ self-admitted human errors, as evidenced by their apologies. Our broad goal is to help
software engineers identify their human errors by systematically aggregating their human errors
from existing research and software development artifacts. To that end, this work explores two
research studies. We conducted a systematic literature review, called Study 1 (SLR), of 68 research
studies about human errors in software engineering. Using established terminology and multiple
taxonomies from existing psychology research, we systematically examined a subset of 81,007 search
results from three research paper databases, and aggregated software engineers’ human errors (192
in total) into a Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.). Study 1 (SLR)
resulted in a taxonomy with 12 categories of human error spanning slips, lapses, and mistakes from
James Reason’s popular Generic Error-Modelling System. We found that mistakes (both rule- and
knowledge-based) were the most frequent human errors discussed in literature, a differing result
from the psychologist Reason’s findings for general-purpose human errors. We also found that over
half (53%) of studies did not explore specific categories of human error (beyond high-level theory
categories) and only 15% of studies had a scope general to all phases of the software development
lifecycle. In Study 2 (Mining), we collected 88.6 million developer comments from GitHub. Using
apology lemmas from linguistics research, we created an automatic apology classification process.
We manually categorized a random subset of 332 apology comments according to the experienced
human error. We compared human error categories derived from developers’ apologies with the
Study 1 (SLR) version of T.H.E.S.E. Our automatic apology classification achieved near perfect recall
(99%) with high accuracy (91%). 2.7 million developer comments were classified as apologies. We
found that software engineers apologize in 3.15% of all of the comments in our dataset, a frequency
of apologies over one thousand times greater than those documented in the Switchboard corpus.
We identified 15 categories of human error not previously documented in literature. We present
T.H.E.S.E. as a combination of human errors identified in both studies, containing 30 categories
(7 slips, 8 lapses, 15 mistakes) of human error. This work reveals that slips, lapses, and mistakes
from cognitive psychology can meaningfully describe software engineers’ self-admitted human errors.
By identifying their human errors, software engineers can better find areas of improvement, while
managers can identify systemic human errors across development teams and implement process
improvements in response.
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10. Taxonomy-Based Human Error Assessment for Senior Software Engineering Students. (Forthcoming 2024).
Benjamin S. Meyers and Andrew Meneely. Special Interest Group on Computer Science Education (SIGCSE)
Technical Symposium.

This study is discussed in detail in Chapter 5.

Abstract: Software engineering is a complex symphony of development activities spanning multi-
ple engineering phases. Despite best efforts, software engineers experience human errors. Human
error theory from psychology has been studied in the context of software engineering, but human
error assessment has yet to be adopted as part of typical post-mortem activities in software engi-
neering. Our goal in this work is to evaluate an existing Taxonomy of Human Errors in Software
Engineering (T.H.E.S.E.) as a learning tool for software engineering students. We conducted a user
study involving five software engineering students at RIT. In two experimental phases (17 weeks to-
tal), participants self-reported 162 human errors that they experienced during software development.
Participants’ feedback collected via surveys indicates that T.H.E.S.E. is clear, simple to use, and
general to all phases of software engineering. Participants also indicated that human error assess-
ment guided by T.H.E.S.E. (1) would benefit other students and professional software engineers and
(2) enhanced their understanding of human errors in software engineering and of their own human
errors. These are promising results indicating that human error assessment facilitated by T.H.E.S.E.
is a valuable learning experience for software engineering students. We release anonymized survey
responses and reported human errors. Future work should examine T.H.E.S.E. as a learning tool
for professional software developers and examine other software engineering artifacts to identify
categories of human error that are not presently captured by T.H.E.S.E.

1.2.2 Data, Source Code, and Tools
In addition to the publications listed in the previous section, this dissertation makes the following contributions:

1. Data: 88.6 Million Developer Comments from GitHub [214]

This is a collection of software developer comments from GitHub issues, commits, and pull requests.
We collected 88,640,237 developer comments from 17,378 repositories. In total, this dataset includes:
54,252,380 issue comments (from 13,458,208 issues), 979,642 commit comments (from 49,710,108
commits), and 33,408,215 pull request comments (from 12,680,373 pull requests). Details on data
collection and organization can be found in Meyers & Meneely [214]. This dataset was collected
in pursuit of the results presented in Chapter 4.2. This dataset will save future researchers a large
amount of time and effort, enabling them to focus on data analysis rather than collection.

2. Data: 1,237 Annotated Developer Apologies from GitHub [215]

This is a collection of software developer comments from GitHub with automated apology anno-
tations (as described in Section 4.2.2.2). This dataset also includes manual apology classifications
from two annotators and resolutions for their disagreements. Apology mining is a relatively new
area of study, so we hope this dataset can serve as a gold standard for future researchers.

3. Data: 200 Annotated Developer Human Errors from GitHub [216]

This is a collection of software developer comments from GitHub with manual human error catego-
rizations (as described in Section 4.2.2.3). Since human error in software engineering is a growing
research domain, we hope this dataset will provide value to future researchers.

4. Data: 162 Human Errors Descriptions [217]

This is a collection of human error descriptions with T.H.E.S.E. categorizations and related discus-
sion collected during our user study with software engineering students in Section 5.2. Since human
error in software engineering is a growing research domain, we hope this dataset will provide value
to future researchers.
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5. Data: Systematic Literature Review of Human Errors in Software Engineering

As described in Section 4.1, we conducted a systematic literature review of 68 research studies
(identified from 284 total papers) which yielded 192 total human errors. Discussion of these research
studies can be found in Section 3.1. This SLR should serve as a concrete foundation for future
researchers exploring human error in software engineering.

6. Tool: Automated Apology Classifier

In Section 4.2.2.2, we outline a naïve keyword-based approach to automatically classifying apologies
in natural language. This approach accounts for false-positives and yields near perfect recall (99%)
and high F1 (87%). Apology mining is a relatively new area of study, so we believe this approach
will be beneficial to future researchers.

7. Tool: Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.)

The core contribution of this work is T.H.E.S.E., a taxonomy of 31 categories of human error
in software engineering spanning slips, lapses, and mistakes. Details on how this taxonomy was
developed can be found in Chapter 4. T.H.E.S.E. is the distillation of 192 human errors from related
literature and 200 human errors from developer comments on GitHub. We envision T.H.E.S.E.
serving as a shared vocabulary for software engineers to discuss their human errors.

8. Tool: Human Error Informed Micro Post-Mortem Process

In Section 6.1, we outline a human error reflection process that we designed to accompany T.H.E.S.E.
This process makes it easy for software engineers to confront and reflect on their human errors, as
indicated by our user study participants in Section 5.2.

9. Tool: Human Error Reflection Engine (H.E.R.E.)

In Section 6.2, we describe a semi-automated workflow that facilitates our human error informed
micro post-mortem process on GitHub. This workflow serves as a proof-of-concept while also low-
ering the barrier to entry for software engineering teams who wish to adopt human error reflection
with T.H.E.S.E.

10. Code: Downloading Developer Comments & Apology Classification2

We release the code used to collect software developer comments from GitHub and classify their
apologies. We provide this code in part to ensure reproducibility of our work, but primarily because
apology mining is a relatively new area of study, and we hope researchers can build on our novel
approach.

11. Code: Evaluating Sentence-BERT Models for Human Error Classification3

We release the Jupyter notebooks used to evaluate pretrained Sentence-BERT models for human
error classification. We provide this code for reproducibility of our classification experiment and to
encourage future researchers to explore their models and data.

2https://github.com/meyersbs/developer-apologies/
3https://github.com/meyersbs/sbert-these

https://github.com/meyersbs/developer-apologies/
https://github.com/meyersbs/sbert-these


Chapter 2

Background

2.1 Human Error
Human errors are actions that lead to unintended, unexpected, or undesirable outcomes [320]. In cognitive psychology,
a human error is an action that results in something that was “not intended by the actor; not desired by a set
of rules or an external observer; or that led the task or system outside its acceptable limits [320].” Human errors
are typically classified using one of three theories of human error—Rasmussen’s SRK Model [293], Reason’s GEMS
Framework [298], or errors of omission and commission. A visual summary of these theories is provided in Figure 2.1.
All three theories are discussed, with examples, in the remainder of this section.

2.1.1 Rasmussen’s SRK Model
Jens Rasmussen classified human behavior as either skill-based, rule-based, or knowledge-based, with each type of
human behavior having an associated type of error [293, 295]. Skill-, rule-, and knowledge-based behavior (and errors)
exist on a continuum of least-to-most conscious involvement, respectively [87]. These human error types are defined
as follows:

• Skill-Based Errors: Unconscious errors in highly-practiced/learned automatic sensorimotor tasks, such as
starting a car, flipping a light switch, or locking a computer screen. Errors of this type might be putting the
wrong key in the ignition, flipping the wrong light switch, or forgetting to lock a computer screen.

• Rule-Based Errors: Semi-conscious errors in rule-based behaviors (i.e. defined processes), such as following
the instructions to build a Lego® set, following a recipe, or installing software dependencies in the correct
order. Errors in these examples might include skipping a step when building a Lego® set, mixing ingredients
in the wrong order, or trying to install scikit-learn before numpy has been installed.

• Knowledge-Based Errors: Conscious improvisation in unfamiliar situations where no rules or routines exist,
such as free-hand climbing a mountain for the first time, navigating in a forest with no marked trails, or driving
a car with a manual transmission for the first time. In these examples, errors might be stepping on a loose
rock, turning North instead of South, or not shifting gears at the appropriate speeds.

Rasmussen’s human error theory, commonly referred to as the Skill-Rule-Knowledge (SRK) model, has been
applied to domains such as human-computer interaction [39, 185, 186, 370], aircraft maintenance [130], industrial
installation [294], aviation [318], police accountability [337], and medicine [71, 182].

2.1.2 Reason’s GEMS Framework
Influenced heavily by the work of Rasmussen [295], James Reason combined two previously distinct areas of human
error research—slips and lapses, and mistakes—in his Generic Error-Modelling System (GEMS) [298]. Slips and
lapses are “the failure of actions to go as intended [298]”, while mistakes are “the failure of intended actions to achieve
their desired consequences [298].” Put differently, mistakes are errors that result from an inadequate plan [298, 320].
Formally, slips, lapses, and mistakes are defined as follows, with examples from Anu et al. [22]:

10
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Figure 2.1: Summary of Human Error Theories
James Reason [298] places all human errors and malicious actions (i.e. violations) under the umbrella
of unsafe actions, which can be divided into unintended actions (slips and lapses) and intended actions
(mistakes and violations). Mistakes are further divided into rule-based and skill-based mistakes, while
slips and lapses are both skill-based errors. Slips result from a failure of attention; lapses from a failure
of memory; rule-based mistakes from a lack of expertise; knowledge-based mistakes from a failure of
expertise; and violations from malicious intent.

• Slips: Failing to complete a properly planned step due to inattention [261, 320], such as putting the wrong
key in the ignition. Another example would be Freudian slips of the tongue [105] where a person misspeaks in
a way that could reveal what they are currently thinking.

• Lapses: Failing to complete a properly planned step due to memory failure [298, 301, 320], such as forgetting
to put the car in reverse before backing up, or forgetting to check if a pointer is non-null before dereferencing
it. Lapses likely occur when the load on working memory is high [56].

• Mistakes: Planning errors that occur when the plan is inadequate [298, 320], such as getting stuck in traffic
because you didn’t consider the impact of the bridge closing, or choosing an inadequate sorting algorithm.

There is some overlap with Rasmussen’s skill-, rule-, and knowledge-based errors: slips and lapses are both skill-
based errors, while mistakes can be rule-based or knowledge-based errors [87, 298, 318]. Reason says knowledge-based
mistakes usually result from failures of expertise, while rule-based mistakes usually result from a lack of expertise [298].
Additionally, Reason mapped slips, lapses, and mistakes to the cognitive stages where these errors occur:

• Cognitive Planning: Mistakes originate from failures in the cognitive “processes concerned with identifying
a goal and deciding upon the means to achieve it [298].”

• Cognitive Storage: Lapses originate from failures in the cognitive storage and retrieval of information related
to a plan [298].

• Cognitive Execution: Slips originate from cognitive execution failures in the “processes involved in actually
implementing the stored plan [298].”

Reason also describes violations, which are actions motivated by malicious intent. Violations are outside the scope
of this work, since a malicious software engineer (e.g. an insider threat) is not likely to admit to their violations
publicly. Reason’s GEMS framework has mainly been applied in the medical domain [98, 159, 305] and to study
automobile accidents [300, 332].
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2.1.3 Errors of Omission & Commission
While discussed in psychology and medical research, we could not identify the original source or definitions for errors
of omission and commission. Sigmund Freud’s discussion of omissions in writing [105] may be the first occurrence
of omissions in psychology. Or perhaps errors of omission and commission evolved from the Christian concepts of
sins of omission (i.e. choosing not to do something that you should do) and sins of commission (i.e. performing a
reprehensible act), first recorded in English in the 1400s [270, 271]. Aside from the medical domain, errors of omission
and commission have made their way into legal definitions [49, 129]. Based on general consensus, we provide the
following definitions:

• Errors of Omission: Failure to perform a required action, such as choosing not to file your taxes, choosing
not to stop at a red light, and storing sensitive data without encryption.

• Errors of Commission: Failure to perform an action in an appropriate manner or at the appropriate time,
such as rolling stops at a stop sign, turning in an assignment late, or implementing client-side instead of
server-side authentication.

Lapses are commonly considered to be errors of omission [298, 320] and slips are considered errors of commis-
sion [203, 318]. At least one definition also considers mistakes to be errors of commission [203].

Noteworthy work using errors of omission and commission outside the medical domain includes Swain & Guttman’s
human reliability analysis focused on nuclear power plants [336]. Swain & Guttman classified errors in individual
discrete actions as omissions (i.e. leaving something out) or commissions (i.e. doing something incorrectly). Com-
mission errors are further divided into sequence errors (i.e. doing something out of order), timing errors (i.e. doing
something too late/early), and qualitative errors (i.e. doing too much/too little).

2.2 Natural Language Processing (NLP)
Natural Language Processing (NLP), at the intersection of linguistics and computer science, is the process of analyzing
natural language (i.e. human languages, rather than programming languages). There are too many techniques
and applications of NLP to discuss them all here, but some basics and specifics relevant to this work are outlined
in this section. Note that this section focuses on NLP applied to written language, but NLP is also used to analyze
spoken language.

2.2.1 Preprocessing
The first step in most applications of NLP is to preprocess a corpus of natural language text (i.e. a collection of
related natural language texts, such as all of Shakespeare’s plays). Preprocessing involves cleaning up the text or
converting it into a specific form before applying advanced NLP techniques. Preprocessing usually involves removing
punctuation and/or converting all of the words to lowercase. Some other common preprocessing steps include:

• Stop Word Removal: Stop words are words that contribute to grammatical structure, but convey little-to-no
meaning, such as prepositions (e.g. at, by, of, to), conjunctions (e.g. for, and, but, so), and sometimes pronouns
(e.g. I, my, our, they).

• Tokenization: Tokenizing involves splitting strings of natural language into a list of individual words (called
tokens).

• Sentence Splitting: Strings of natural language are often split into a list of individual sentences.

• Lemmatization: Lemmatizing involves converting tokens into lemmas, simpler and common base forms. For
example, the words “bug”, “bugs”, and “bug’s” all have the same lemma, bug.

• Parts-of-Speech Tagging: Parts-of-Speech (POS) reveal grammatical information about words in context.
Some common POS include nouns (e.g. bug, vulnerability, attacker), verbs (e.g. programming, fixed, updates),
adjectives (e.g. dangerous, robust, inconsequential), adverbs (e.g. maliciously, diligently), determiners (e.g.
the, some, those), and pronouns.
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2.2.2 Word Embeddings
Researchers are frequently interested in the semantic content of words—the meaning of words in the context of the
words surrounding them. Word Embeddings (WE) are “vector-space representations of the semantic meaning of
words within a corpus [222].” Simple feed-forward neural networks can be trained to derive embeddings of individual
words based on their context, resulting in fixed-length vectors (called word vectors) of real numbers. The individual
numeric values in a word vector represent an unique dimension of the different meanings associated with a word. For
example, the words “vulnerability” and “bug” will have similar word vectors since they are used in similar contexts,
whereas the words “hacker” and “kitchen”, being used in different contexts, will have dissimilar word vectors.

For an individual document in a corpus, word vectors can be summed to yield a document vector. Document
vectors can be compared to assess the semantic similarity between two texts using machine learning techniques like
clustering [213, 244, 275]. The downside of word and document vectors is that they are not human-interpretable.

2.2.3 BERT, Sentence-BERT, and Cosine Similarity
Bidirectional Encoder Representations from Transformers (BERT) models also output embeddings that
represent the meaning of words within a corpus. The key difference between BERT and word embeddings is that
BERT models derive meaning from the entire sentence, rather than individual words. BERT models learn mean-
ing bidirectionally with two pre-training phases: (1) Masked Language Modeling (MLM), and (2) Next Sentence
Prediction (NSP). In MLM, tokens in a sentence are masked (i.e. hidden) from the model at random. The model
then attempts to predict the masked tokens using the context on either side (bidirectionally) of the masked token.
Bidirectional learning enables BERT models to represent semantic context better than traditional language models.
BERT models are also more powerful than previous language models because they consider sentence relationships
using NSP. In NSP, the model is shown pairs of sentences, with Sentence A preceding Sentence B. 50% of the time,
Sentence B is the actual sentence that follows Sentence A, and 50% of the time, Sentence B is a random sentence
from the corpus [77].

Sentence-BERT (or S-BERT) is an expansion of BERT with an extra pooling function that results in fixed-
length sentence embeddings. This allows sentence embeddings from Sentence-BERT models to be compared using
cosine similarity—the cosine of the angle between two vectors (e.g. sentence embeddings); vectors with similar
direction (i.e. representing similar semantic content) will have high cosine similarity [250]. Both BERT and Sentence-
BERT models can be fine-tuned for specific tasks using labeled data. Fine-tuning BERT and Sentence-BERT models
is beyond the scope of this dissertation, so we will not discuss it further, but details can be found in Devlin et al. [77]
and Reimers & Gurevych [303].

In this work, we make use of various pre-trained Sentence-BERT models using the sentence-transformers
package (version 2.2.2) from HuggingFace 1.

2.2.4 Linguistic Characteristics
Linguistic characteristics discussed in Section 1.2.1 (my prior work) are defined below, along with a brief description
of how they were collected/computed. While the main contributions of this dissertation do not make use of these
linguistic characteristics, we include them here as they were a key part of our journey.

• Inquisitiveness: The inquisitiveness metric (from [245]) is an attempt to quantify speculative types of con-
versations in code review. This naïve metric is simply the count of question marks (?) in text.

• Sentiment: We computed sentiment—a measure of how positive or negative the tone of natural language
is—using the model in Stanford CoreNLP [197], which uses information about words and their relationships to
assign a sentiment value (on a 5-point scale from very negative to very positive) to a natural language text. In
our prior work [218, 245], we collapsed “very positive” and “positive” into a single “positive” label, and did the
same for “negative” labels.

• Syntactic Complexity: Early metrics aimed at measuring syntactic complexity—how complex a sentence’s
structure is—focused mainly on sentence length (number of words) [100]. We used two metrics, Yngve [368] and
Frazier [102, 103, 104], which assign a complexity score to sentences based on structural information extracted
from syntactic parse trees. The algorithms for computing these scores are discussed in prior work [245]. The
key distinction is that Yngve measures the breadth of the syntactic parse tree, while Frazier measures the
depth.

1https://huggingface.co/sentence-transformers

https://huggingface.co/sentence-transformers
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• Information Content: In our prior work [218], we computed two measures of information content. The first,
content density, is a ratio of open-class (i.e. POS types that commonly accept new words, such as nouns and
verbs) to closed-class (i.e. POS types that rarely accept new words, such as prepositions) words in a natural
language text. The second, propositional density, is the ratio of propositions to the number of words in a
text [310]. Propositions were identified using a similar approach to Brown [52].

• Politeness: Danescu-Niculescu-Mizil et al. [70] collected 10,000 natural language utterances from Wikipedia
and Stack Exchange conversations, and used Amazon Mechanical Turk to crowdsource politeness annotation.
Each utterance was assigned a label of “very polite”, “polite”, “neutral”, “impolite”, or “very impolite” by five
annotators. The final politeness score for each utterance was the average of the five individual scores. These
annotations were used to train a classifier which assigns a label of “polite” or “impolite” to new utterances. In
our previous work [219], we used the classifier from Danescu-Niculescu-Mizil et al. [70] to compute politeness
scores.

• Uncertainty: Uncertainty in natural language manifests itself as a lack of information required to confirm
whether a proposition is true [348]. There are four types of uncertainty—epistemic, doxastic, investigative,
and conditional—with definitions and examples provided in our prior work [219]. We used the corpus from
Farkas et al. [97] and the feature set described by Vincze [348] to train a multi-label regression model capable
of classifying each uncertainty type [218].

• Formality: Lahiri [176] annotated a corpus of 7,032 sentences on a numerical scale from 1 to 7 for three
metrics: formality, informativeness, and implicature, all rooted in Grice’s pragmatic theory [122]. Formality
is a measure of the observance of etiquette taken in forming a sentence [128, 176]. We reduced the 7-point
scale to a binary scale and trained a formality classifier on Lahiri’s SQUINKY corpus using the same model
algorithm and features used in uncertainty classification. Our classifier outputs a numerical value between 0
and 1 indicating low to high formality, respectively [218, 219].

• Informativeness: The informativeness metric measures the ability of language to lead to mutual agreement.
Informative language should be clear, direct, and unambiguous [128, 176]. We used the same classification
method described for formality to compute informativeness scores in our prior work [219].

• Implicature: Implicature measures how much context is missing from natural language [128]. We computed
implicature using the same classification method described for formality [219].

2.3 Software Engineering Concepts

2.3.1 Software Development Lifecycle
There are a variety of models used to organize software development processes, each with their own benefits and
drawbacks. Rather than discussing them all here, we discuss the six main processes involved in these models:

• Requirements & Planning: Software must meet the needs of the stakeholder(s) (i.e. customers). During
the requirements & planning process, software engineers elicit requirements from the stakeholder(s) by asking
questions about their goals for the software, what it should and should not do, the scope of its usage, etc. The
information gained in this phase of software development is essential to designing, implementing, and deploying
the best (as defined by the requirements) software product.

• Design: During the design phase, software engineers translate the stakeholders’ requirements into “a repre-
sentation of the software that can be assessed for quality before coding begins [288].” The design serves as
blueprints for the implementation phase.

• Implementation: During implementation, the design for the software system is translated into source code.
The majority of coding occurs during this phase. Code reviews primarily take place during implementation,
but also during maintenance.

• Testing: The testing phase involves designing and writing tests (e.g. unit tests, integration tests), running
those tests, and evaluating the state of the system based on the outcome of the tests. If tests fail, the source
code is modified to ensure that the tests pass.

• Deployment: During deployment, the software system (in a stable form) is installed in a production envi-
ronment that the stakeholders and their users will access. Configuration for the software itself occurs during
deployment, as does configuration of any software dependencies.
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• Maintenance: Despite best efforts to produce robust software, bugs and vulnerabilities inevitably fall through
the cracks. During maintenance, fixes/patches for bugs and vulnerabilities are implemented, tested, and de-
ployed to the production environment.

2.3.2 Version Control, Code Review, and Pull Requests
Version control systems allow development teams (or individual developers) to document changes to the source
code stored in a repository. Version control tools also allow (1) changes by multiple developers to the same code to
be merged with conflict resolution processes, (2) changes to be reverted, and (3) separate branches (i.e. copies of the
main source code) to facilitate implementation of new features and/or distinct versions of the software [48]. Modern
examples of version control systems are Git and Subversion.

The process of examining proposed changes to source code is called code review. Code review aims to improve
the overall quality of software systems through the following activities: identifying changes to source code that need
to be reviewed, determining and prioritizing which aspects of the changed source code need to be reviewed, reviewing
the changed code, providing feedback to the author of the changed code, and implementing feedback from the code
review. Code reviews identify potential bugs and vulnerabilities in software and afford developers the opportunity to
fix those errors before they can impact the production system and/or the software’s users.

Historical code reviews occurred in person, but much of modern software development occurs remotely, with
developers located all over the world. Pull requests now serve as a form of code review, allowing (1) developers
to notify each other that they have proposed changes to the source code that require review, (2) other developers
to provide feedback on the changed code, and (3) implementation of that feedback prior to merging the accepted
changes into the primary version control branch.

2.3.3 Open vs. Closed Source Software
Software’s source code can either be open—publicly visible—or closed—visible only to authorized people. Further
characteristics of open source software are defined by the Open Source Initiative [272], but they do not need to be
discussed here. Closed source software projects are usually only accessible to employees at a specific company working
on a specific project. For example, Microsoft2 has many closed source projects, including Skype3, 365 (previously
“Office”)4, and the Windows OS5. Conversely, open source software projects often have a mix of company employees
and non-affiliated volunteer developers, such as the Ubuntu OS6, which has developers from Canonical7 and volunteer
developers.

2.3.4 Git & GitHub
Git is an open source version control system and supply-chain management tool designed to handle any size project
with speed and efficiency, which is used by major software companies like Google, Microsoft, and the Linux kernel [55].
Git stands apart from other version control systems due to the flexibility of its branching functionality. Developers
can create any number of branches, allowing them to quickly test ideas in separate branches and delete or keep those
branches with ease. Branches can also contain separate versions of the source code for different platforms, or just
stable and experimental points in the development lifecycle [54].

GitHub is a website that hosts git repositories for users and organizations, which include popular companies—
such as Netflix, AirBnB, Reddit, Shopify, and Lyft [330]—and government organizations [111]. Users and organiza-
tions can create, update, and delete both public and private repositories. GitHub also facilitates bug/issue tracking,
pull requests, and continuous integration for repositories. At the time of writing, GitHub has over 200 million
repositories, spanning over 65 million developers and over three million organizations [110].

A GitHub bot is a program that automatically interacts with GitHub repositories. Common GitHub bots
include Dependabot8, which monitors repositories for out-of-date dependencies and submits pull requests updating
those dependencies, and probot-stale9, which closes issues and pull requests that have been inactive for too long.

2https://www.microsoft.com/
3https://www.skype.com/
4https://www.microsoft.com/en-us/microsoft-365
5https://www.microsoft.com/en-us/windows/default.aspx
6https://ubuntu.com/
7https://canonical.com/
8https://dependabot.com/
9https://github.com/probot/stale

https://www.microsoft.com/
https://www.skype.com/
https://www.microsoft.com/en-us/microsoft-365
https://www.microsoft.com/en-us/windows/default.aspx
https://ubuntu.com/
https://canonical.com/
https://dependabot.com/
https://github.com/probot/stale
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GitHub Actions allow for automated software workflows on GitHub, such as building, testing, and deploying
code, and issue tracking management [114]. GitHub actions can also leverage docker containers—sandboxed,
standalone software applications packaged with their dependencies and configurations [82].

2.4 Computer Security Concepts

2.4.1 Bugs, Vulnerabilities, and Defects
McGraw defines a bug as “an implementation-level software problem [204].” Bugs manifest in unexpected system
behavior. A vulnerability is a bug or a design flaw with security consequences—vulnerabilities violate the con-
fidentiality, integrity, or availability of a piece of software. Bugs (e.g. text displaying with the unintended font)
and vulnerabilities (e.g. lack of authentication) are defects that may lie dormant in software for years before being
noticed, or they may never be observed at all.

2.4.2 Exploits & Threats
An exploit is a piece of software, a chunk of data, or a sequence of commands that takes advantage of a vulnerability to
cause unintended or unexpected behavior. Exploits can be manual (i.e. an attacker typing commands) or automated
(i.e. malware). A threat is either a malicious actor (i.e. hacker or attacker) capable of violating the confidentiality,
integrity, and/or availability of software, or a class of exploits (e.g. spoofing) [208].

2.4.3 Errors, Faults, and Failures
In computing, an error is “a human action that produces an incorrect result [145].” Faults are the manifestation of
errors in software (i.e. the cause of a malfunction) which lead to failures, an undesired effect observed in software
(i.e. the malfunction) [48, 145]. For example, a common failure is a segmentation fault due to array boundaries not
being checked (fault). The actual error leading to this fault could be that the developer didn’t know they needed
to check array boundaries, the developer improperly implemented array boundary checking, or perhaps some other
human error. Note that the term defect is sometimes used to refer to either a fault or a failure when the distinction
is unimportant [48].

2.4.4 CIA: Confidentiality, Integrity, and Availability
During vulnerability assessment (e.g. CVSS assessment [207]), software engineers and security practitioners are
typically interested in the impact of the vulnerability on the confidentiality, integrity, and availability (CIA) of the
software system. We summarize these terms briefly here:

• Confidentiality is violated when the system discloses information that was intended to be kept secret/hidden
to unauthorized parties [101, 267]. For example, credit card numbers transferred over the internet without
encryption, or access to medical records by unauthorized family members.

• Integrity is violated when the system can no longer be trusted [101, 267]. For example, not being able to
trust whether database information is accurate, not being able to trust the source of information, or executing
malicious code.

• Availability is violated when the system becomes (completely or partially) inaccessible to the user, or so
slow that it is effectively inaccessible [101, 267]. For example, the Google Maps application not being able to
communicate with GPS satellites, resulting in users getting lost.

2.5 Psychology Concepts
Related work in Chapter 3 references a handful of psychology concepts, which we summarize in this section.
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2.5.1 Working Memory
Working memory refers to a system of the human brain that “is responsible for keeping track of multiple task-
related goals and subgoals, or integrating multiple sources of information [242].” In the theory of working memory,
information can only be held for a temporary period of time and the amount of information that can be held is
limited. Short-term memory is a common synonym for working memory in colloquial speech, but working memory
is considered a separate system from short-term memory, the distinction being that items in working memory can be
modified, whereas short-term memory is just a storage mechanism [28]. Miller et al. [224] coined the term “working
memory” in the context of the computational theory of mind (i.e. the human mind is an information processing
system, much like a computer). It is commonly assumed that working memory has a limit of seven plus-or-minus two
items [223].

2.5.2 Bounded Rationality
When humans make decisions, their rationality is bounded (i.e. limited) by factors such as the difficulty of the
problem at hand, cognitive capability, and available time. Due to these limitations, humans often choose an adequate
solution to a problem, rather than an optimal solution based on a full cost-benefit analysis [57]. Herbert Simon
proposed the idea of bounded rationality [327, 328] as an alternative model of decision-making to the classical
model, which assumes that all decision-making is purely rational [108].

2.6 Taxonomies
Broadly, a taxonomy is a system of classification. Among the most well-known taxonomies are the Dewey Decimal
System for organizing books in a library [78] and the phylogenetic tree of life, which describes the evolution and
relationships between organisms, popularized by Charles Darwin [72]. Many taxonomies have been proposed in
the field of security (see Section 3.3). A well-defined security taxonomy, according to Lough [192] and others before
him [9, 44, 136, 173, 188], should be generally accepted by the target community, easily understood, objective, specific,
and unambiguous. Additionally, the categories in a taxonomy should be mutually exclusive, and classification should
be repeatable. Further discussion of these properties of a well-defined taxonomy is provided in Section 4.1.4.

2.7 Statistical Concepts
In Section 4.2 and Section 5.3 we use standard statistical measures of model performance, briefly described here:

• True Positives (TP) and True Negatives (TN) are correct predictions, when a model correctly classifies
a data point as the target-class or not-the-target-class, respectively [361].

• False Positives (FP) are incorrect classifications when the model classifies a data point that is not-the-target-
class as the target-class. False Negatives (FN) are the opposite of FPs, when the model incorrectly classifies
a data point that is the target-class as not-the-target-class [361].

• Precision is the proportion of true positives to the sum of true positives and false positives, i.e. TP/(TP + FP )
[361]. For example, when classifying a software developers’ error as a slip with a binary model, classifications
will either be slip or not a slip—precision is then the proportion of correctly classified slips to all entries
(correctly and incorrectly) classified as slips.

• Recall is the proportion of true negatives to the sum of true positives and false negatives, i.e. TP/(TP + FN)
[361]. Using the same example, recall is the proportion of correctly classified slips to the total number of entries
that should have been classified as slips.

• F-measure is the proportion of (2 × TP )/(2 × TP + FP + FN). F-measure (or F1 score) is the harmonic
mean of precision and recall. In many classification problems, high scores for precision and recall are desired,
but comparing two or more models using two metrics is difficult; F1 provides a combined form of precision and
recall that can be used to compare models when both precision and recall are important [361].
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Related Work

3.1 Human Errors in Software Engineering
This section outlines research related to human errors in software engineering and general computing.

3.1.1 Skill-, Rule-, and Knowledge-Based Errors
In 1987, Rizzo et al. [309] gave 16 human subjects with minimal computer experience two hours of training on how
to use the Appleworks database system. Then, subjects were split into two groups to perform separate experiments.
In the first experiment, subjects were asked to (1) identify if a specific item was present in the database, (2) find
three items in the database and change their values, (3) create a new file using items from the database, and (4)
create three new files with specific database items and print them out. In the second experiment, participants were
tasked with finding an item in the database, modifying its value, and printing it out; this was completed four times
with different target items. In both experiments, participants were recorded while thinking aloud. Then, errors were
classified as slips, rule-based, or knowledge-based errors. In the first experiment, participants detected and corrected
82-86% of their own errors, with little variation between error type and rate of detection. Results of the second
experiment showed that participants detected 94% and 95% of rule-based errors and slips, respectively, but only 68%
of knowledge-based errors.

Zapf et al. [370] observed 198 (out of 259) office workers—from 15 departments spanning public/private companies
and small firms—using office software. Questionnaire data was also collected from 232 office workers. Office workers
were asked about their level of computer expertise, how they tend to work, how they react to errors, etc. In total,
1,306 distinct errors were observed and collected into a taxonomy, inspired by Rasmussen’s [294, 297], Norman’s [261],
and Reason’s [297, 298] work with human errors. The taxonomy (summarized in Table 3.1) had four major error
types: inefficiency (e.g. bad habits), usability (e.g. sensorimotor and knowledge-based errors), functionality (e.g.
repetitive actions, interruptions), and interaction errors. About one third of observed errors were knowledge-based
or other cognitive errors. This is perhaps the first work using Rasmussen’s SRK model to understand human error
in a true human–computer interaction setting.

In 1994, Cockram et al. [64] conducted a survey of past, ongoing, and new software projects. Details of the survey
questions, survey respondents, and final results are not available. However, Cockram et al. did report two skill-based,
two rule-based, and nine knowledge-based errors from one case study. Specific categories beyond skill-, rule-, and
knowledge-based errors were not discussed.

In his 2003 doctoral dissertation, David Trepess [345] studied human error in collaborative systems with the goal
of improved understanding. Trepess created a classification model for human error in collaborative systems. In this
model, human errors can occur at each of three contextual levels—local interactions (i.e. tools and users produce
tasks), situation context (i.e. opportunities and interests produce plans), and social context (i.e. structure and action
produce goals). Failures in local interactions are classified under Rasmussen’s SRK model (see Table 3.2), with the
addition of technical failures (resulting from human errors in the social and situation contexts). Human errors in the
situation context are classified as conflicts between opportunities, interests, and plans. Similarly, human errors in the
social context are classified as conflicts between structures, actions, and goals.

Im & Baskerville [147] replicated a 1993 study by Baskerville [31]—related to information technology hazards
(e.g. physical assault, malicious code, cracking, programmer error)—and found that, contrary to popular perception
(in 2005), human error remained a significant contributor to security issues. In response, Im & Baskerville expanded

18



CHAPTER 3. RELATED WORK 19

Table 3.1: Human Errors Identified by Zapf et al. [370]

Category Human Error SRK Category

Inefficiency Habit Rule

Inefficiency Knowledge Knowledge

Usability Knowledge Knowledge

Usability Sensorimotor Skill

Usability Intellectual Regulation: Thought Knowledge

Usability Intellectual Regulation: Memory Knowledge

Usability Intellectual Regulation: Judgement Knowledge

Usability Flexible Action Patterns: Habit Skill

Usability Flexible Action Patterns: Omission Rule

Usability Flexible Action Patterns: Recognition Skill

Functionality Action Blockades N/A

Functionality Action Repetitions N/A

Functionality Action Interruptions N/A

Functionality Action Detours N/A

Interaction Interaction N/A

on the 1993 threat taxonomy by further classifying accidental threats as skill-, rule-, and knowledge-based errors.
Im & Baskerville found that the percentage of skill- and knowledge-based errors had increased since the original
study, while the percentage of rule-based errors had decreased. Im & Baskerville concluded with a plea for security
practitioners to focus on safeguards (e.g. training, work aids) to protect information systems from human error.

In the same year, Ko & Myers [168] identified six distinct actions that occur during programming activities
(creating, reusing, modifying, designing, exploring, and understanding of requirements, design, code, documentation,
etc.) and suggested three types of cognitive breakdowns that occur during these activities—skill, rule, and knowledge
breakdowns based on Rasmussen’s SRK model1. Cognitive breakdowns are further divided into two subcategories—
skill breakdowns due to inattention or over-attention, rule breakdowns due to using a wrong rule (applicable to most
contexts, but not all) or a bad rule (i.e. a rule with problematic conditions/actions), and knowledge breakdowns due
to bounded rationality (i.e. not exploring the entire problem space because working memory is limited) or faulty
(i.e. incomplete or inaccurate) models of the problem space. Each of these six subcategories is further divided
into specific human errors. Developers were recorded thinking aloud in a series of experiments using the Alice 3D
programming system. Starting from an observed software error, runtime fault/failure, or cognitive breakdown, Ko
& Myers identified the cause and documented chains of causes (i.e. chains of cognitive breakdowns) until no further
cause could be identified. Ko & Myers observed 102 software errors stemming from 159 cognitive breakdowns. The
average breakdown chain consisted of 2.3 breakdowns. The notable contribution of Ko & Myers’ work is the idea
that chains of cognitive breakdowns between specification, implementation, and runtime activities can compound,
i.e. errors in software can be the result of multiple human errors at different stages of software development.

In 2008, Keller et al. [161] presented ConfErr, a tool that generates realistic software configuration errors, injects
them, and measures their effects to assess the resilience of software systems to human errors in configuration. ConfErr
generates configuration errors representative of skill-, rule-, and knowledge-based human errors, including spelling
mistakes, incorrect structure in a configuration file, repeated/missing configuration options, and configuration values
that do not meet the constraints. Through experiments, Keller et al. found that MySQL and PostgreSQL often (83%
and 76%, respectively) detected spelling mistakes in configurations at startup, while Apache typically (57% of the
time) ignored misspellings. Testing unexpected ordering of configuration sections/options, case sensitivity, redundant
whitespace, and other structural errors in configuration files revealed that MySQL could not handle mixed-case
configuration options, while PostgreSQL and Apache could not handle truncated option names. Finally, Keller et al.
tested common DNS configuration errors in BIND and djbdns and found that both systems have poor resilience to

1However, Ko & Myers only cite Reason’s [298] discussion of the SRK model, not Rasmussen’s original work [293].
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Table 3.2: Human Errors Identified by Trepess [345]

Category Human Error SRK Category

Interaction: Tool Misrepresentation of Tool Skill

Interaction: Tool Inappropriate Tool Selected Rule

Interaction: Tool Lack of Knowledge of Tool Knowledge

Interaction: Tool Technical Breakdown N/A

Interaction: Users Misrepresentation of Users Skill

Interaction: Users Inappropriate User Selected Rule

Interaction: Users Lack of Knowledge of Users Knowledge

Interaction: Task Misrepresentation of Task Skill

Interaction: Task Inappropriate Task Selected Rule

Interaction: Task Lack of Knowledge of Task Knowledge

Social Context Conflicting Structures (Social Norms) Knowledge

Social Context Conflicting Histories (Policies) N/A

Social Context Conflicting Goals Knowledge

Situation Context Conflicting Opportunities N/A

Situation Context Conflicting Interests Knowledge

Situation Context Conflicting Plans Knowledge

configuration errors.
Yanyan et al. [366] investigated knowledge-based errors by interviewing software developers, but their method-

ology is unclear. Their findings—that knowledge-based errors can involve incomplete/wrong knowledge or using
correct knowledge inappropriately—suggest that they were misidentifying rule-based errors (using correct knowledge
inappropriately) as knowledge-based errors. The study identified incomplete domain knowledge and general planning
failures as human errors in software engineering.

Huang et al. [143] developed a Taxonomy System of Software Developers (TSSD), which initially grouped human
errors into four broad categories: cognitive errors, communication failures, procedure violations, and tool misuse.
The first version of TSSD was evaluated through a series of interviews with three senior test engineers, three senior
software development engineers, and one human error researcher. Feedback from interviews was used to revise TSSD
into the version shown in Table 3.3. Note that the human error category column was not provided by Huang et al.
In addition to the human errors outlined in Table 3.3, Huang et al. also identified process errors, tool problems, and
task problems as potential software engineering problems outside of human error.

In 2016, Huang et al. [142] examined post-completion errors (e.g. forgetting to remove your debit card from the
ATM, forgetting to remove the original document from a photocopier) in software engineering. Huang et al. designed
a programming task to (1) calculate multiple nesting levels of a Chinese word, and (2) print a blank line between
the results of each nesting level. The study had 55 participants, all undergraduate computer science or software
engineering students. Results indicate that participants experienced post-completion errors (forgetting to print a
blank line between the results of each nesting level) significantly more often than other errors (e.g. code logic errors,
syntax errors [144]).

In 2020, Nagaria & Hall [253] conducted semi-structured interviews with 27 professional software developers to
investigate eight types of skill-based errors: omitting necessary steps, repeating already completed steps, reversal of
actions due to inattention, “unintentionally activating a strongly related action pattern [253]” (e.g. if you intended to
remove your shoes, but also remove your socks), delays between intention and execution, inattention during repeated
tasks, multiple plans or portions of a single plan becoming unintentionally entangled, and general memory lapses.
Interviewees identified complexity of development environments as the most common reason for human errors, and lack
of concentration (attentional failures) as the most prevalent human error. Interviewees indicated that they struggle
to identify effective mitigation strategies for their human errors, “reporting strategies largely based on improving their
own willpower to concentrate [253].” Nagaria & Hall conclude with the suggestion that software developers adopt
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Table 3.3: Human Errors Identified by Huang et al. [143]

Category Human Error H.E. Category

Knowledge Shortage Insufficient Domain Knowledge Knowledge

Knowledge Shortage Insufficient Programming Knowledge Knowledge

Knowledge Shortage Insufficient Strategy Knowledge Knowledge

Knowledge Shortage Insufficient Linguistic Knowledge Knowledge

Schema Mismatching Assuming Problem is the Same as Similar Problems Knowledge

Working Memory Overload Problem Too Complicated to Handle Knowledge

Evaluation Error Overconfidence Knowledge

Evaluation Error Confirmation Bias Knowledge

Problem Representation Error Misunderstanding the Problem Knowledge

Inattention Interruptions Slip

Inattention Perceptual Confusions Slip

Inattention Reduced Attention Over Time Slip

Inattention Multitasking Slip

Inattention Memory Failures Lapse

Communication Problems Expression Error ∗

Communication Problems Comprehension Error Knowledge

Communication Problems Unidentified Mutual Error ∗

Procedure Violations Intentional Violation N/A

Procedure Violations Insufficient Procedure Knowledge Knowledge

Procedure Violations Inattention-Based Procedure Violations Slip

Tool Misuse Insufficient Tool Knowledge Knowledge

Tool Misuse Operation Lapses Slip

Other Human Errors N/A N/A
∗ Not enough detail/discussion to categorize

James Reason’s swiss cheese model [299] to reduce human errors by providing multiple layers of tool, process, and
management mitigations to software engineering processes. Nagaria also summarized this study in their doctoral
dissertation [251].

Other applications of Rasmussen’s SRK model include designing smart home user interfaces [372], research per-
taining to fault diversity [144], and autonomous system design [67, 68].

3.1.2 Slips, Lapses, and Mistakes
While it does not directly utilize Reason’s GEMS framework, the work of Walia & Carver [351, 352] is discussed
here to provide background for Anu’s work [12, 15, 18, 22, 23]. In 2009, Walia & Carver performed a systematic
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Table 3.4: Human Error Taxonomy (HET) from Anu et al. [15]

Human Error GEMS Category

Clerical Errors Slip

Lack of Consistency in Requirements Specification Slip

Loss of Information from Stakeholders Lapse

Accidentally Overlooking Requirements Lapse

Application Errors Mistake

Environment Errors Mistake

Information Management Errors Mistake

Wrong Assumptions Mistake

Poor Understanding of Each Other’s Roles Mistake

Mistaken Belief that it is Impossible to Specify Non-Functional Requirements in a
Verifiable Form Mistake

Not Having a Clear Demarcation Between Client and Users Mistake

Lack of Awareness of Sources of Requirements Mistake

Problem-Solution Errors Mistake

Inadequate Requirements Process Mistake

Syntactic Errors Mistake

literature review of 149 papers spanning software engineering, psychology, and human cognition domains to identify
sources (human errors) for software requirements faults. Walia identified 14 requirements error classes from software
engineering and human cognition literature and placed them into the Requirement Error Taxonomy (RET) with
three major requirements error types: (1) people (i.e. communication, participation, domain knowledge, specific
application knowledge, process execution, and other cognition errors), (2) process (i.e. management and requirement
elicitation/analysis/traceability errors, in addition to errors related to having inadequate methods of achieving goal-
s/objectives), and (3) documentation (i.e. organization and specification errors, in addition to having no standard for
documenting errors). The RET served as a building block for Anu’s Human Error Taxonomy (HET), which further
organized human errors in the software requirements phase into Reason’s slips, lapses, and mistakes.

Starting in 2016, Vaibhav Anu’s doctoral dissertation work presented, refined, and evaluated the HET to help
aid developers in early fault detection with the goal of improving overall software quality [12, 15, 18, 22, 23]. Human
error classes which occur during the requirements phase (identified by Walia [352]) were mapped to slips, lapses, and
mistakes to create the HET (recreated in Table 3.4). Slips include clerical errors and lack of consistency in require-
ments specifications. Lapses include loss of information from stakeholders and accidentally overlooking requirements.
Mistakes include wrong assumptions, poor understanding of team member roles, lack of clear distinction between
clients and users, lack of awareness of requirements sources, inadequate requirements process, “mistaken belief that it
is impossible to specify non-functional requirements in a verifiable form [15]”, and various error categories (application,
environment, information management, syntactic, problem-solution) [12, 15, 18, 22, 23].

In [15], Anu et al. found that slips and lapses together make up 65% of requirements errors, which is inline
with Reason’s findings that 61% of human errors are slips and lapses [298]. In experiments, Anu et al. found that
using HET improved fault detection effectiveness by 225% compared to just using fault checklists. Experimental
subjects gave positive reviews of the HET, indicating that it was simple/intuitive, easy to understand/use, and
comprehensive [15]. This feedback is consistent with similar HET studies by Hu et al. [138, 139].

While the majority of Anu’s work focused on human error during the requirements phase [12, 13, 15, 17, 18, 21,
22, 23], his other work has studied the incorporation of human error in software engineering education [16, 19] and
programmer-induced vulnerabilities [20].

In 2017, Anu et al. [16] conducted an experiment where 16 graduate students in a Software Requirements Def-
inition and Analysis course inspected software requirements documents for faults. Then—after receiving training
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Table 3.5: Developer Human Error Taxonomy (Dev-HET) from Anu et al. [20]

Human Error GEMS Category

Overlooking the Design Documentation Slip

Overlooking or Failure to Read the API Documentation Slip

Forgetting to Remove Debug Log Files when Software is Transitioned from a Debug
State to Production Lapse

Forgetting to Remove Test Code Before Deploying Their Applications Lapse

Forgetting to Fix Those Issues that are Bookmarked in Earlier System Versions
(i.e. Bookmarked to be Fixed in Later Versions) Lapse

Forgetting to Fix “Self-Injected” Backdoors in the System Lapse

Forgetting to Check Every Access to Every Object Because Security Relevant Code
is Distributed Between Functional Code Lapse

Bounded Rationality When Choosing Libraries Mistake

Incorrect Assumptions or Lack of Knowledge About the Type of Environment in
Which His Program Would be Running Mistake

Lack of Knowledge About Handling Exceptional Conditions Mistake

Wrong Assumptions About the Potential Program Inputs Mistake

Wrong Assumptions About User Authorization Mistake

Blind Trust on Code from Reputable Sources (e.g. API Code) Mistake

Incorrect Assumption that Blindly Following the Specifications Generated During
the Design Stage of SDLC Guarantees Security Mistake

Incorrect Assumption that Developers Should Only Perform Functional Testing and
Security Testing is Testing Team’s Responsibility Mistake

on Reason’s slips, lapses, and mistakes, and how to use HET—these students re-inspected their assigned software
requirements documents using human errors to identify faults. Students found an average of six faults in the initial
inspection and an average of 14 new faults in the re-inspection using HET to identify faults—a 233% increase in
fault detection effectiveness. A second experiment with a different requirements document and 34 different graduate
students was conducted, and post-inspection survey responses were collected. Survey results indicated that students
could confidently distinguish between slips, lapses, and mistakes and saw the benefit of using HET during error-based
inspections of software requirements documents.

Two years later, Anu et al. [19] again evaluated the effectiveness of using HET to improve fault detection in
software requirements document inspections in two experiments—one with industry professionals and another with
undergraduate students. In the first experiment, 11 employees at PowerObjects (an organization focused on creating
high-quality requirements for their clients) were given training on HET and a Human Error Abstraction Assist
(HEAA) tool [14] (intended to aid inspectors in human error identification). Then the participants were shown 15
faults in a requirements document and asked to identify (1) at what stage of requirements engineering (analysis,
specification, elicitation, or management) the human error was made, (2) whether the human error was a slip, lapse,
or mistake, and (3) what specific error from the HEAA was made. Participants also answered questions about
whether they had encountered this type of error before, what extra information would have helped them understand
this type of error, and how they would prevent that error in the future. Results indicated that the majority of
participants believed they had committed or seen the human errors from HET in previous software projects. In the
second experiment, 36 undergraduate students in a Principles of Software Engineering course worked in teams to
create their own software requirements specification documents. Students were given similar training on HET and
HEAA as the industry professionals and tasked with performing a traditional fault checklist-based inspection and a
re-inspection informed by HET/HEAA. Similar to the findings of [16], students were able to identify more faults in
requirements specifications using HET/HEAA than traditional fault-checklists [19].
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In 2020, Anu et al. [20] examined the common human errors committed by software developers that lead to
vulnerabilities in software. From an analysis of 104 vulnerabilities from the National Vulnerability Database (NVD)
and a literature survey, Anu et al. produced the Developer Human Error Taxonomy (Dev-HET), which contains two
human error classes considered slips, five considered lapses, and eight considered mistakes (recreated in Table 3.5).
Slips include overlooking design documentation and overlooking/failing to read API documentation before using the
API. Lapses include forgetting to remove debug log files and test code before deploying software systems, forgetting
to fix previously identified issues, forgetting to remove intentional back doors into the system, and forgetting to
check every access to every object in the source code. Finally, mistakes include bounded rationality when choosing
libraries, incorrect assumptions/lack of knowledge about the production environment, wrong assumptions about
potential inputs and user authorization, lack of knowledge about exception handling and exception conditions, blind
trust in third-party code, and the incorrect assumptions that (1) blindly following design guarantees security and (2)
security testing is the responsibility of the testing team, not the implementation team.

Aside from significant contributions by Anu et al., other computing research utilizing slips, lapses, and mistakes
includes Ahmed’s brief literature review of human factors/errors in information security [3], Kraemer & Carayon’s
conceptual framework intended to identify the organizational factors that lead to human errors, which can lead to
computer and information security vulnerabilities [171], and Nagaria & Hall’s work in reducing software developers’
human errors by improving situational awareness [252].

Kraemer & Carayon [171] interviewed eight network administrators from two academic computer laboratories and
eight information security specialists from five domains (retail, finance, energy, health care, and manufacturing) about
errors that contribute to security breaches and factors that precipitate these errors. Interview responses indicated that
vulnerabilities are often the result of unintentional errors (i.e. mistakes) made by network administrators and inten-
tional errors (i.e. violations) made by end users. Notable factors contributing to human error identified in interview
responses include disparities among individual network administrators’ security priorities (i.e. subjectivity regarding
the importance of various security practices), end users’ misunderstanding or lack of security knowledge, keeping up
with large workloads/backlogs, workplace environment (e.g. noise and lighting), lack of adequate hardware/software
to maintain proper security, and poor communication between employees at different organizational levels. Kraemer
& Carayon identified Reason’s GEMS framework as being consistent with how network administrators and security
specialists view human errors.

Borrowing from other domains (e.g. medicine and transportation), Nagaria & Hall [252] sought to reduce human
error by improving situational awareness, the “understanding of what is going on around you while performing
a task [252]” (e.g. perceiving the environment, comprehending the current situation, and predicting the future
situation). Nagaria & Hall asked 10 software developers to record their errors over a five-day period, then provided
OODA loop (observe, orient, decide, act) training to the developers. The OODA loop process is intended to increase
situational awareness. Developers again recorded their errors over the five days following the training. Nagaria &
Hall identified seven themes among reported developer errors (e.g. poor internal/external communication, poor code
structure/increased code complexity, over-complicated development environments, errors in sequence-based tasks,
syntax errors, and special cases). Developer responses and self-reported errors indicate that OODA loop training (1)
is perceived as useful and (2) can reduce the number of errors made by software developers on a daily basis. Then,
Nagaria & Hall mapped reported errors to slips (74 total), lapses (71 total), and mistakes (30 total), but they do
not discuss these classifications in detail, except to note that communication-based errors tend to be mistakes, rather
than slips or lapses. Nagaria also summarized this study in their doctoral dissertation [251].

Other work using Reason’s GEMS framework to study human error in computing includes research by Hu et al.
which suggests that using HET to find software faults makes developers less likely to introduce those faults during
future requirements engineering [140, 141], and a study by Manjunath et al. in which professional software engineers
suggested improvements to HET/HEAA training and recommended mitigations (e.g. creating a communication plan,
consulting subject-matter experts) to prevent human errors in requirements engineering [194]. Note that the work
by Hu et al. and Manjunath et al. was in collaboration with Vaibhav Anu.

3.1.3 Errors of Omission and Commission
In 1986, Basili & Rombach [30] classified software faults as omissions (i.e. the fault stems from something missing) or
commissions (i.e. the fault stems from something that is incorrect) as part of a methodology for improving software
engineering processes by tailoring those processes to the specific goals of the project. Examination of a single project
using the proposed methodology revealed that the majority of faults (76%) were commission faults, which aligns
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Table 3.6: Omission and Commission Requirements Defects from Kirner & Abib [165]

Human Error Category

Missing Functionality Omission

Missing Environment Omission

Missing Performance Omission

Missing Interface Omission

Ambiguous Information Commission

Inconsistent Information Commission

Incorrect Fact Commission

Wrong Section Commission

with observations made by Marick [200] and Basili & Perricone’s previous findings [29]. Marick [200] further notes
that while the majority of faults are errors of commission, omission errors are still important. Basili notes that
omission faults are harder to detect with source code-based detection methods/tools (e.g. structural testing) than
with functional testing or code review.

Glass [115] studied faults in two military aircraft software systems (in total, 600,000 instructions written by 180
developers). Based on post-delivery problem reports, Glass found that omitted logic faults (i.e. code with missing
functionality) were the most common fault to make it into production (as opposed to inadequate requirements,
referencing the wrong variable, timing, and other faults). Similarly, Ostrand & Weyuker [273] reported that 55% of
faults stemmed from omitted code and, of the faults stemming from a decision, 81% were the result of omitted code.
These findings are contrary to previous findings by Basili et al. [29, 30].

Wright et al. [364] described a process to analyze interactions between users and a software system as a method to
derive human error based requirements for the behavior of software systems. While errors of omission and commission
are described and discussed, Wright et al. suggests that their process is human error theory agnostic.

Kirner & Abib [165] inspected software requirements specifications and found that the majority of defects (84%
in an ATM system and 92% in a parking garage control system) were commission defects. Kirner & Abib described
four types of omission defects and four types of commission defects for requirements documents. Omission defects in
requirements documents included missing functionality (i.e. missing information about the desired internal operation
behavior of the system), missing environment (e.g. missing details about required hardware, software, and/or database
systems), missing performance (i.e. missing information about the desired performance specification), and missing
interface (i.e. missing details about how the system will interact with external systems). The types of commission
defects outlined by Kirner & Abib were ambiguous information, inconsistent information, incorrect facts (i.e. assertion
of a fact that cannot be true based on the software requirements specification), and wrong section (i.e. misplaced
information).

Bass et al. [32] evaluated 18 software architectures with the goal of discovering patterns in risk themes (i.e.
common types of risks related to software architecture, process, and organization) identified by those evaluations.
Contrary to findings for commission/omission faults/defects in earlier work, Bass et al. found that the majority of
99 risk themes were classified as omissions (i.e. risk themes resulting from a failure to perform necessary activities),
rather than commissions (i.e. risk themes resulting from problematic decisions in the architecture). Bass et al. only
summarize the classification of omission/commission risk themes without providing examples.

Park et al. [279] examined open source Java bugs that were fixed multiple times to understand why omission
errors occur and how they can be prevented. The noteworthy contribution of this work is that previous works [106,
164, 256, 374] focused on detecting omission errors, while Park et al. sought to understand what kinds of omission
errors occur. To that end, Park et al. presented a list (which they refer to as a taxonomy) of omission errors for
bugs that required supplementary fixes. The omission errors that Park identified include: porting initial patches to
another OS/system/branch, incorrect conditional statements, failing to update subclasses of the same type at the
same time, incomplete refactoring, missing null-pointer checks, and others.

Itkonen et al. [148] studied the role of a tester’s knowledge in exploratory software testing. Software failure
symptoms were classified as omissions or commissions. Commission failures were further classified by how their
symptoms manifested; failures were observed either in the presentation/layout (e.g. on screen or in report printouts),
as error messages, as extraneous functionality, as inconsistent states, or as incorrect results. Omission failures were also
further classified based on how they were observed, either in the presentation/layout (e.g. missing visual elements),
as missing functionality, as lack of feedback (i.e. expected feedback from the system is not given), or as lack of
capability (i.e. some part of a function/feature is missing). As with most findings in earlier work, the majority of



CHAPTER 3. RELATED WORK 26

failures were commissions.
Niu et al. [260] proposed a scenario-based method “to assess how software architecture affects the fulfillment of

business requirements [260]” to help developers choose an appropriate software architecture for their needs. Niu et
al. classified risks when completing non-functional requirements as commissions (i.e. caused by suspicious decisions
related to the system architecture), omissions (i.e. caused by unfinished activities), and others (i.e. not omission or
commission errors). This work found that risks of commission and omission occur in equal numbers, noting that this
is an unexpected result based on the findings of Bass et al. [32].

The work of Santos et al. [315, 316, 317] catalogs architectural software weaknesses using the concepts of omission
(i.e. missing a necessary security tactic) and commission (i.e. choosing an incorrect security tactic) in addition to
realization (i.e. incorrectly implementing a properly chosen security tactic). We have not encountered the concept
of realization in other works using omission and commission. Specific classifications for omissions and commissions
are not available.

In 2018, Lin et al. [187] studied the programmatic syntax of bugs in the Defects4J bug repository [157] and
found that 46.4% of bugs were omissions (which they define as faults caused by missing the execution of some
code). Lin et al. divided omission bugs into data omissions (e.g. missing variable assignments, incorrectly evaluated
conditionals, incorrect boolean logic in conditionals statements, missing function calls) and control omissions (e.g.
missing return statements, missing if blocks, missing exception throw statements, missing exception handling, calling
an incorrect function, passing the wrong parameter to a function). The impact of specific omission categories on
software engineering is not discussed.

Other research has considered errors of omission and commission for safety analysis for complex programmable
electronic systems [276], evaluation of faults in system architectures [353], general software safety/reliability engi-
neering [277, 355, 356], and software evaluation [319].

3.2 Human Error Assessment
An estimated 60-90% of system failures result directly from human error [132]. Indeed, human error is a primary
cause of failure in the nuclear [298], chemical [158], aviation [321], and maritime [304] sectors. As a result, human
error assessment (HEA) has been an ongoing area of interest. Human reliability analysis (HRA) is one form of HEA
that aims to determine the impact of human error on a system [335] by systematically assessing the probability
of human error based on human actions and decisions [124]. HRA typically involves five stages: (1) defining the
problem and scope of analysis, (2) task modeling, (3) analysis of human errors, (4) human error quantification, and
(5) recommendations for error management [134]. HEA has taken other forms over the years, such as probabilistic
safety assessment for nuclear power plants [4] and human reliability analysis in manufacturing [79] and medicine [193].

A related concept is After-Event Reviews (AER)—processes for learning from experience. AERs enable learners
to “systematically analyze the various actions that they selected to perform a particular task, to determine which of
them was wrong or not necessary, which should be corrected, and which should be reinforced [86].” AERs typically
involve a facilitator (e.g. instructor) who aids the learner in trying to understand why their actions led to a specific
outcome. AERs enable learners (and groups of learners) to (1) reflect on their performance, (2) understand why
expected outcomes/objectives were not met, (3) identify lessons learned from past experience, and (4) evaluate
how lessons learned can be incorporated and internalized to improve performance [86]. Put simply, AERs are a
form of guided self-reflection, which helps learners become more aware of their personal experiences and thus learn
from them [10, 120]. AERs have been shown to change individuals’ mental models in four ways: “by intensifying
self-explanation, by advancing data verification, by providing process feedback, and by enhancing self-efficacy [86].”
AERs have been applied to enable learning in the military [6], for learning from wildfires [75], for learning in the
workplace [107], and to learn from errors during motorcycle production [118].

Software quality improvement has traditionally been focused on software faults [18]. Root cause analysis (RCA)—
tracing faults to their origin—was developed to identify the first software fault in a chain of faults [183, 202]. The
goal of RCA is to enable software engineers to modify their processes to eliminate the first fault, thus preventing the
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whole fault chain [18]. However, RCA is time-consuming, so researchers developed orthogonal defect classification
(ODC), a structured process of identifying the trigger for a fault, instead of tracing the full chain of faults [62]. ODC
is less time-consuming than RCA, but relies on statistical analysis and large datasets of fault reports, which may
not be available or feasible [18]. The notable shortcoming of RCA and ODC is that neither approach can identify
the human error behind the fault [18]. In 1998, Lanubile et al. [181] shifted from emphasizing faults to focusing on
errors, faults, or flaws “in the human thought process that occurs while trying to understand given information, while
solving problems, or while using methods and tools [18].” This shift motivated Anu et al. [12, 15, 18, 22, 23].

As discussed in Section 3.1.2, Anu et al. created the HET and HEAA [12, 15, 18, 22, 23] to assess human errors
during the software requirements phase, and evaluated their approach with a series of studies. Results were favorable,
showing improved fault detection using HET [16, 19]. The work by Anu et al. is, however, the only research we
found that examines human error assessment in software engineering. But software engineers are not unfamiliar with
post-mortem reflection.

In addition to traditional fault inspection (e.g. RCA, ODC), there are a variety of post-mortem reflection
processes. For example, Microsoft at one point employed post-mortem reports, discussions of what worked well
in a project, what didn’t work well, and what the team could do to improve the next project [69]. Tiedeman [339]
discusses three types of post-mortems in software engineering: (1) planning post-mortems to assess requirements
elicitation, (2) design/verification post-mortems following software design and implementation, and (3) field post-
mortems to assess the project some time after deploying it to production.

Dingsøyr [80] summarizes three proposed methods for conducting post-mortems in software engineering from
Whitten [359], Collison & Parcell [66], and Birk et al. [40, 81, 85, 162, 331]. These three approaches have five shared
aspects, which we considered when designing our human error informed micro post-mortem process in Section 6.1:

• Select relevant (ideally objective) participants; exclude managers

• Identify what went well and why

• Identify what didn’t go so well, including any challenges faced by project team members

• Identify (and implement) improvements for future projects

• Document the post-mortem

Dingsøyr [80] goes on to suggest some requirements for a good post-mortem process:

• For participants: openness, patience, politeness, the ability to listen, and courage

• For facilitators: a skilled leader who encourages open dialogue and establishes a good atmosphere

• For the process: adequate time—this varies based on company goals, project size, number of participants,
and other factors—and an atmosphere of safety

3.3 Software Engineering & Security Taxonomies
Various security-centered taxonomies have been proposed since at least the 1970s [192]. These taxonomies primar-
ily catalog two aspects of security—vulnerabilities (and weaknesses) and attack patterns—and serve as tools for
vulnerability discovery and assessment, guidance for engineering more secure software, and formal security educa-
tion. Another goal of security taxonomies is to provide a common language for the study of vulnerabilities and
attacks [135, 235]; however, there is no universally accepted gold standard [146]. The subsections that follow pro-
vide a summary of proposed vulnerability and attack taxonomies, informed heavily by the work of Lough [192] and
Igure & Williams [146]. We make no claim that the taxonomies discussed below form an exhaustive list. Note that
Section 3.3.1 also discusses a handful of noteworthy vulnerability databases/lists, which are not taxonomies.

3.3.1 Vulnerability Taxonomies
In 1974, McPhee [205] developed one of the first vulnerability lists (not a true taxonomy [146]), but it was very
limited in scope, collecting only seven integrity flaws (e.g. concurrent use of serial resources, user data passed as
system data) in IBM’s OS/VS2. Another early attempt was that of Attanasio et al. [26], who studied the results of
penetration testing experiments and collected a list of 16 OS features (based on 35+ flaws) likely to have flaws (e.g.
add-on features, error handling, violating design principles).
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Perhaps the first true vulnerability taxonomy was produced in 1976 by the Research in Secured Operating Systems
(RISOS) project, which placed 18+ vulnerabilities into seven classes of vulnerabilities in operating systems (e.g.
incomplete parameter validation, authentication/authorization) [1]. The Protection Analysis (PA) project was very
similar to RISOS, but yielded 10 vulnerability categories (e.g. interrupted atomic operations, data consistency over
time) from 100 vulnerabilities in various OSs (e.g. TENEX, MULTICS, UNIX) [41]. Both of these taxonomies
organize vulnerabilities into categories based on operations or functions in the OS.

The Stanford Research Institute analyzed over 350 security breaches and placed them into one of seven major cat-
egories: intentional violation—internal; intentional violation—computer department; intentional violation—external;
aura of computer; disaster; accidents; and miscellaneous. These seven categories are further divided into 71 subcate-
gories (e.g. insertion of data, forced entry, disclosure of data) based on the type of violation that occurred [257]. The
noteworthy contribution of this work is that seven categories of violations are also related to four major categories
of safeguards—management, system, industrial security, and educational/legal—in a matrix. These four categories
are further divided into 34 sub-categories (e.g. audit practices, hardware monitors, password controls, storage and
backup).

Moving into the 1980s, we could not find any work in the area of vulnerability taxonomies, but there was work
with general bug taxonomies, including Ostrand & Weyuker’s, which placed 173 faults from UNIVAC into seven
categories [273], and Knuth’s, which classified 850 bugs from TEX into 15 categories [167]. Knuth’s taxonomy is
noteworthy, as it is comprehensive and unambiguous.

In 1990, a textbook by Beizer [37] proposed a taxonomy of software bugs categorized by when they are introduced
into software, either during design, implementation, or maintenance. Landwehr et al. [180], in 1994, proposed three
distinct vulnerability taxonomies based on how the vulnerability was introduced, when it was introduced (in terms
of the software development lifecycle), and the location of the program in the system. Jiwnani & Zelkowitz [152, 153]
combined the three taxonomies from Landwehr et al. to build a matrix relating 1,013 vulnerabilities based on their
causes, locations in the program, and their impact. Du & Mathur [84] also adapted Landwehr et al.’s taxonomy,
classifying 150 vulnerabilities into three categories (and 15 subcategories), based on their cause, impact, and fix.

In 1995, Bishop [42, 43] reworked the RISOS and PA taxonomies, classifying vulnerabilities based on six charac-
teristics: nature of the flaw, introduction time, exploitation domain, effect domain, minimum number of components
required for exploit, and identification source. In the same year, Aslam [25] proposed a taxonomy of security flaws in
UNIX systems, with three high-level fault categories—operation, environmental, and coding faults—and 14 specific
faults, including syntax errors and race conditions. Krsul [174] extends Aslam’s taxonomy, focusing mainly on envi-
ronmental assumptions and classifying 210 vulnerabilities. Richardson [306, 307] adapts and expands on Aslam’s and
Krsul’s work to create a vulnerability database for Denial-of-Service (DoS) attacks, containing 630 attacks spanning
categories such as brute force and data poisoning.

In 1997, Jayaram & Morse [149] organized security threats to networks into five categories: physical, system weak
spots (exploited for unauthorized access), malign problems (i.e. placing malicious code in the system), access rights
(i.e. spoofing legitimate users), and communication-based (e.g. eavesdropping).

While not a true taxonomy, perhaps the most widely used vulnerability database today is Common Vulnerabil-
ities and Exposures (CVE), first conceived in 1999 [195]. At the time of writing, CVE has collected over 208,000
vulnerabilities spanning 25 years (1999-2023) [237]. Each CVE entry contains a description of and references (e.g.
security advisories, bug reports) to the vulnerability. For example, CVE-2020-9371 describes a Cross-Site Scripting
(XSS) vulnerability in a WordPress plugin [234]. While CVE’s goal is to “identify, define, and catalog publicly dis-
closed [237]” vulnerabilities, it is not a taxonomy because it lacks any classification of vulnerabilities. The National
Vulnerability Database (NVD) [46], created in 2000, expands on CVE by including Common Vulnerability Scoring
System (CVSS) [207] severity scores and a mapping to Common Weakness Enumerations (CWE) [235] entries.

Knight [166] proposed a vulnerability taxonomy in which each vulnerability was defined by its fault, severity,
consequences, the level of authentication necessary to exploit the vulnerability, and the tactic used to exploit the
vulnerability. These vulnerability properties are still used in modern vulnerability assessment in tools such as the
CVSS [207] and the Common Weakness Scoring System (CWSS) [201].

Since 2003 [360], the Open Web Application Security Project (OWASP) has maintained a ranking of the top ten
security risks for web-based applications [274], but this is not a true taxonomy.

In 2003, Wang & Wang [354] released a taxonomy focusing on security risks in the application-layer (e.g. credential
theft, data exposure), platform-layer (e.g. unauthorized administrative access), and network-layer (e.g. DoS, network
traffic exposure). In the same year, Gray [119] extended the work of Landwehr et al. [180], Bishop [42], and Wang &
Wang [354] to develop a new vulnerability taxonomy, including details about the method of discovery (e.g. manual
or automatic source code analysis), exploit detection, and mitigation strategies.

In the following year, Pothamsetty & Akyol [286] presented a taxonomy for vulnerabilities in network protocols
with seven categories, including clear text communication (i.e. lack of strong encryption), non-robust message parsing
(protocols that handle unexpected properties of messages poorly), lack of authentication mechanisms, and entropy
problems (i.e. insufficiently strong pseudo-random number generating algorithms). A strong contribution of this
work is the inclusion of testing techniques (e.g. protocol field fuzzing, packet sniffing) and metrics (e.g. CPU
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utilization, amount of logging to the console), as well as some best practices for engineering secure protocol software
(e.g. validating buffer/input data, rate limiting).

In 2005, Tsipenyuk et al. [347] presented Seven Pernicious Kingdoms, a taxonomy of security errors, which
contained seven categories related to source code errors and one category for environmental/configuration errors.
Notably, Tsipenyuk et al. listed the categories in “order of importance to software security [347]:” input validation
and representation, API abuse, security features, time and state (i.e. concurrency errors), errors (related to exception
handling), code quality, encapsulation, and environment. The motivation behind seven (plus one) categories is that
humans have a limited working memory; on average, humans can remember seven (plus-or-minus two) things at a
time [223]—restricting the taxonomy to eight categories keeps it simple for security practitioners to use.

CWE, first released in 2006 [236], collects the (mostly software-agnostic) underlying weaknesses that lead to a
CVE. The goal of CWE is to be “a baseline for weakness identification, mitigation, and prevention efforts [235]”, as
well as a resource for security tools. Each CWE entry includes a wealth of information, including short and extended
descriptions, background details, consequences of vulnerabilities based on the weakness, and mitigation strategies.
CWE is organized in a hierarchy of related weaknesses; top-level parents (called pillars) have related child classes
(smaller categories) and bases (specific weaknesses). For example, the CWE entry describing the underlying weakness
(XSS) of CVE-2020-9371 would be CWE-79 [240], which is a type of injection weakness (CWE-74 [239]), falling under
the top-level pillar CWE-707: Improper Neutralization [238].

In 2010, Howard et al. [137] suggested 24 deadly sins of software security, a collection of programming flaws
with security consequences, grouped into four categories: web application (e.g. SQL injection, hidden form fields),
implementation (e.g. command injection, information leakage, poor usability), cryptographic (e.g. incorrect usage
of or inadequate cryptography), and networking (e.g. unencrypted network traffic, improper use of public key
infrastructures) sins. While not presented as a taxonomy, this work contains a wealth of taxonomic information, such
as links to CWE, information on affected languages, steps for identifying and testing flaws, and defensive measures.

Hajian et al. [126] presented a taxonomy of network vulnerabilities organized by their location/activities (e.g.
network infrastructure, network services, network-based applications, management activities, control activities, end-
user activities), cause (i.e. CWE entries), and impact (e.g. confidentiality, availability, privacy, authentication).

Zhao & Dai [375] proposed categorizing vulnerabilities into a taxonomy based on five information security at-
tributes: confidentiality, integrity, availability, controllability, and reliability. While interesting, the taxonomy suffers
from subjective ranking (high-medium-low scale) within categories.

In 2019, Alkhalifah et al. [5] studied 65 security incidents involving blockchain to create a taxonomy of threats
and vulnerabilities specific to blockchain, however the details of this taxonomy are not yet available.

The Vulnerability History Project (VHP) [209] is a museum of security mistakes curated by Dr. Andrew Meneely
and computing students at the Rochester Institute of Technology (RIT). VHP collects CVE entries for large open-
source software projects, including Chromium, Django, ffmpeg, and some Apache products. Software engineering
students and student researchers at RIT dive deep into each CVE to improve descriptions and CWE mappings, outline
specific mistakes that were made by developers, and fill in missing information, such as applicable bug bounties,
discovery dates, how vulnerabilities were discovered, and the commits where vulnerabilities were introduced and
fixed. While not presented as a taxonomy, the VHP website does categorize vulnerabilities based on programming
language, the size of the vulnerability fix, severity metrics, vulnerability lifetime, CWE, bounty information, and
other characteristics.

3.3.2 Attack Taxonomies
Perhaps the first attack taxonomy was that of Perry & Wallich [283] in 1984, which organized computer attacks as a
two-dimensional matrix. On one axis was one of six types of users: operators, programmers, data entry, internal users,
outside users, and intruders. The second axis had six types of computer crimes: physical destruction, information
destruction, data diddling (i.e. altering data), theft of services, browsing, and theft of information. Unfortunately,
these types of users, representing sources of attack, are not mutually exclusive [146].

Neumann & Parker developed the SRI Computer Abuse Methods Model based on the analysis of almost 3,000
computer misuse cases spanning almost 20 years [254, 255, 280, 281]. This resulted in nine categories of misuse
that encompass 26 types of attacks, such as shoulder surfing, physically damaging hardware, spoofing people and
accounts, virus- and malware-based attacks, and side-channel attacks [254]. Lindqvist & Jonsson [188] expanded on
three categories from Neumann & Parker [254], adding seven attacks (e.g. automated searching, resource exhaustion).

In 1997, John Howard categorized six years of Community Emergency Response Team (CERT) incidents into
a taxonomy based on the types of malicious actors, the tools they use, information on access levels and accessed
information, and the goals and results of an attack [136]. The following year, Howard & Longstaff [135] presented a
similar taxonomy, focused on the tools used in the attack, the vulnerability exploited in the attack, the actions taken
by the attacker, the intended target of the attack, and the outcome of the attack. However, Howard’s taxonomy
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suffered shortcomings, notably that its categories were not mutually exclusive. The Sandia Laboratory Taxonomy [63]
was very similar to Howard’s, but suffered from the same shortcomings.

In 1997, Ranum [292] presented a taxonomy of attacks with eight categories based solely on the techniques used
by the attacker: social engineering, impersonation (e.g. network sniffing to obtain valid credentials), exploits (i.e.
attacks that exploit a specific vulnerability), transitive trust (i.e. exploiting host-to-host or network-to-network
trust), data driven (e.g. viruses, malware), infrastructure (e.g. DNS spoofing, ICMP bombing), denial of service,
and magic (i.e. attacks not invented/observed yet).

Weber [357] proposed a taxonomy of computer intrusions based on the level of privilege required for the attack
to succeed (e.g. root access, remote network access), the means by which the attack is executed (e.g. abusing
features, exploiting bugs), and the intended impact of the attack (e.g. DoS). Weber’s taxonomy was later adapted
by Lippmann et al. [189, 190], including categories based only on the impact of the attack.

In his Ph.D. dissertation, Lough sought to reconcile the limitations of these previous attack taxonomies (and
others not mentioned here) by proposing his own VERDICT: Validation Exposure Randomness Deallocation Improper
Conditions Taxonomy, based on commonalities of previous taxonomies [192], but VERDICT was not widely adopted.

Welch & Lathrop [358] presented the Wireless Threat Taxonomy used to build security into the wireless network at
West Point, which organized security threats into seven categories: traffic analysis, passive and active eavesdropping,
unauthorized access, man-in-the-middle, session hijacking, and replay attacks.

In 2004, Killourhy et al. [163] proposed a defense-centered attack taxonomy, which organizes attacks based on the
way they manifest as anomalies in sensor data (e.g. how they appear to IDS systems). Through examining sensor
data and known attacks, Killourhy et al. observed four categories of attack manifestations: system calls that never
appear in normal records, minimal foreign sequences (system calls that never appear normally, but subsequent calls
that do), sequences that only partially match normal ones, and sequences that completely match normal ones.

Hansman & Hunt [127] presented a taxonomy of network and computer attacks with four dimensions: attack
vector (e.g. viruses, buffer overflows, DoS), target of the attack (from general OS to specific software versions), the
vulnerabilities and exploits used in the attack, and the capability of the attack to have an impact beyond itself (e.g.
a virus that causes harm, but also installs a Trojan horse; the Trojan horse has an impact beyond the initial virus).
Hansman & Hunt also discuss other potential dimensions, including relative damage from the attack, cost to clean
up after the attack, and defensive strategies for an attack.

Yu et al. [369] placed types of attacks into 10 categories, including authentication management (e.g. default
passwords, brute force), information disclosure, input manipulation (e.g. XSS, SQL injection), and cryptographic
(e.g. weak or missing encryption). Yu et al. also mapped vulnerabilities to each category of attack, making this a
sort of hybrid taxonomy [146].

Introduced in 2007, Common Attack Pattern Enumeration and Classification (CAPEC) [233] is a catalog of over
500 common attacks intended to help security practitioners understand how malicious actors exploit weaknesses
in software. CAPEC entries include information on prerequisites for the attack, consequences of the attack, and
mitigations for the attack, as well as mappings to related CWE entries.

Lai et al. [177] proposed a taxonomy of web attacks with dimensions focused on the type of attack (e.g. zero-day,
session hijacking), the HTTP method involved (e.g. GET, POST, DELETE), the web server software (e.g. Apache, IIS),
the markup language used (e.g. ASP, PHP), and the resulting damage (e.g. remote access, resource exhaustion).

In 2009, Meyers et al. [221]2 proposed an attack taxonomy with nine non-mutually exclusive categories of attack
based on the type of attack (viruses, worms, Trojans, buffer overflows), the goal of the attack (DoS, information
gathering, password/account compromise), and the attack vector (network, physical).

In 2013, MITRE released the first version of ATT&CK™ [334], which currently documents over 200 techniques
(e.g. phishing, network service scanning, and data obfuscation) that malicious actors use during an attack. Techniques
are collected in 14 categories (called tactics), including reconnaissance, discovery, and lateral movement. Tactics and
techniques are intended to describe why and how the attacker performed an action, respectively. In 2021, MITRE
released the complementary D3FEND™ [241], a taxonomy of countermeasures and mitigations. If we consider security
a game between offense (malicious actors) and defense (security practitioners), ATT&CK™ catalogs actions taken by
the offense, while D3FEND™ describes actions taken by the defense.

Simmons et al. [326] proposed an attack taxonomy called AVOIDIT (Attack Vector, Operational Impact, Defense,
Information Impact, and Target), with five major categories: attack vector (e.g. kernel flaws, race conditions),
operational impact (e.g. DoS, installed malware), defense (both in terms of mitigation and remediation), information
impact (e.g. disruption, disclosure), and target of the attack (e.g. network, user, database).

Juliadotter & Choo [154] proposed an attack and risk assessment taxonomy for cloud-based services, classifying
attacks based on aspects of the attacker (e.g. skill level, motivation), the attack vector (e.g. ease of exploit and
discovery), the target of the attack (e.g. data centers, networks, accounts), the impact of the attack, and defensive
measures against the attack.

2No relation to the author of this work.
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While not purely an attack taxonomy, Rizvi et al. [308] presented a security taxonomy for Internet-of-Things (IoT)
systems that included details on attacks. This taxonomy outlined the architectural layer where a vulnerability may
exist (e.g. data collection, application, and network layers), the types of attacks that could occur (e.g. communication-
based attacks such as DoS, physical attacks like reverse engineering and radio interference, and software-based attacks
such as exploiting misconfigurations), the trust that the user has in the IoT system (e.g. privacy of user data, the
availability of the system, and the reliability of transmitted information), and compliance of IoT systems with
policies and organizational oversight (both government and non-government oversight). While significant work went
into developing this taxonomy intended to help researchers identify security challenges in IoT and existing solutions
to those challenges, Rizvi et al. did not demonstrate its application to real-world IoT security systems.

3.3.3 Miscellaneous Security Taxonomies
Aside from categorizing vulnerabilities or attacks, another aspect of security that has given rise to taxonomies is the
attackers themselves. Landreth & Rheingold [179] made one of the first attempts to classify different types of hackers
as novices (i.e. entry-level mischief-makers), students (i.e. academics hacking for the challenge with minimal malicious
intent), tourists (e.g. thrill-seekers), crashers (i.e. those hacking for pride), and thieves (e.g. true criminals hacking
for profit). Later, Hollinger [131] grouped hackers into pirates (i.e. minimally technical hackers focused on pirating
copyrighted material), browsers (i.e. casual hackers who enjoy browsing people’s private files), and crackers (i.e. serial
offenders focused on sabotage). Chantler [61] suggested three types of hackers: losers/lamers (i.e. minimally technical
attackers motivated by greed/vengeance), elites (i.e. highly skilled hackers motivated by excitement/achievement),
and neophytes (i.e. semi-skilled learners trying to achieve elite status). While all interesting categorizations, these
were not true taxonomies.

Perhaps the first true taxonomy of attackers was presented by Rogers [313, 314], who studied 66 cyber-adversaries,
documenting social/demographic characteristics such as gender, race/ethnicity, relationship status, and education
level. Following Rogers’ work, Meyers et al. [221]3 placed attackers into eight adversary classes and described the
skill-level, level of malicious intent, motivations, and methods of attack of attackers in each class. The eight classes
include novices (e.g. script kiddies, newbies), hacktivists (i.e. political activists), crashers/cyber punks (i.e. those
motivated by thrill), insider threats, coders (i.e. script/tool writers and mentors), white hat hackers (i.e. non-
malicious hackers), black hat hackers (i.e. professional, malicious hackers), and cyber-terrorists.

Other security related taxonomies that have been proposed include a taxonomy of information security risk
assessment approaches [323], a taxonomy of operational security risks (e.g. the actions of people, external events, and
technology failures) [58], a taxonomy of IDS systems [27], a taxonomy of exploit monitoring approaches [322], a hybrid
taxonomy of attacks and vulnerabilities in embedded systems [278], a taxonomy of botnet detection techniques [371], a
taxonomy of network fuzz testing techniques [248], a taxonomy of collaborative security mechanisms [210], a taxonomy
of bug tracking process smells [290], and a requirements taxonomy based on website privacy policies [11].

3.4 Apology Mining
Apologies in natural language have been studied in socio-linguistic contexts [47, 65], including dialog act research [342],
and used as features in machine learning contexts, such as assigning politeness scores to natural language [70] and
mining software engineering artifacts for emotions [249]. However, we found little work using apologies directly to
study software developers and/or software development. This suggests a new area of study for software engineering
research.

Li et al. [184] examined developers’ negative sentiment in open source software projects on GitHub and outlined
nine negative sentiment-related events, including apologies, which they define as “apologizing or expressing guilt due
to delays in work progress or inconvenience inflicted on other developers [184].” Similar to our work, keywords (e.g.
apologize, sorry, apology, pardon) were used to identify apologies for a rule-based classifier (0.906 accuracy), but Li
et al. did not use lemmatization or provide a full list of keywords.

3No relation to the author of this work.



Chapter 4

Systematization of Software Engineers’
Human Errors

In this chapter, we describe two studies that systematically identify human errors experienced by software engineers.
The first study (Section 4.1) outlines a systematic literature review of human error research in the software engineering
domain, which leads to Version 1 of T.H.E.S.E. The second study (Section 4.2) outlines a process for identifying human
errors from software engineers’ natural language on GitHub, leading to Version 2 of T.H.E.S.E.

4.1 Systematic Literature Review of Human Errors in Software
Engineering

4.1.1 Motivation & Research Questions
Software engineering is a complex process of gathering requirements from stakeholders, designing a software system,
and implementing, testing, deploying, and maintaining that software. Each phase of the development lifecycle encom-
passes many activities, including risk assessment, threat modeling, code review, a wide range of testing, responding
to bug reports, patching vulnerabilities, and deploying updates—all while communicating with peer developers, man-
agers, stakeholders, and users. No complex process is inherently safe [76], so software engineers, despite their best
efforts, inevitably make mistakes.

Mistakes, or human errors, have been extensively documented and studied in psychology research for well over
50 years. Sigmund Freud drew attention to human error in 1901 as he studied slips of the tongue, forgetfulness, and
omissions [105]. In 1937, Kollarits conducted one of the first studies of human error, examining about 1,200 human
errors experienced by himself, his wife, and colleagues. Kollarits proposed at four categories of human error: substitu-
tion, omission, repetition, and insertion [169]. Later, in the 1980s, Jens Rasmussen studied human error primarily in
the context of industrial accidents [294, 296], and classified human errors as skill-, rule-, or knowledge-based [293, 295].
Building on Rasmussen’s work, James Reason categorized human errors under his Generic Error-Modelling System
(GEMS) [298] as slips, lapses, and mistakes (failures of attention, memory, and planning, respectively).

Software engineers have also been concerned with human errors (albeit indirectly), defining, studying, and cat-
aloging the consequences of their human errors: defects (software faults and failures) [48, 145], weaknesses, bugs,
and vulnerabilities. With open source software, software engineers have documented their mistakes and put them
on display, adopting vulnerability disclosure as an industry standard so that current and future developers can learn
from their mistakes. The Common Vulnerabilities and Exposures (CVE) database [237], for example, provides a
timestamp and a brief description of thousands of documented vulnerabilities, along with links to related security
advisories, changelogs, bug reports, patches, and severity measures. Further, the Common Weakness Enumeration
(CWE) [235] taxonomizes vulnerabilities into technical faults and their mitigations. While the CVE and CWE are
not perfect, they are systematic endeavors which enable learning from critical software security mistakes. Vulnera-
bility assessment is a noble and valuable endeavor, but it’s only one piece of the puzzle; software faults are caused
by human errors [349].

However, adoption of human error research from psychology into software development has been relatively slow
and short-lived (except for work by Anu et al. [12, 15, 18, 22, 23]). While some software developers and researchers
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have paid attention to human error, Wood & Banks expressed concern in 1993 that “many contemporary information
security practitioners appear to have forgotten about [362]” human error. 12 years later, Im & Baskerville expressed
“the serious need for research and practical knowledge about the management of human error in secure information
systems [147].” So if human errors are major concerns, where is human error assessment in software engineering?
To date, post-mortem assessment of software engineers’ defects is widely adopted in the software security domain.
Figure 1.1 shows visually how human error has a lasting impact on software development, leading to faults in code,
which manifest as software failures. Failures are reported, and then their faults patched, but the current landscape
of software engineering does not take their faults and failures a step further to confront their underlying human
errors. Our broad aim is to build upon the practice of vulnerability assessment by making human error assessment
as well-defined and accessible to software engineers.

With that goal in mind, we address the following research questions regarding discovery, appraisal, and usefulness
(as suggested by Brereton et al. [50]):

RQ 1: Human Error Discovery
What human errors experienced by software engineers are documented in previous research?

RQ 2: Human Error Appraisal
What are the strengths and weaknesses of previous research about human error in software engineering?
We define strengths and weaknesses in terms of software engineering scope, category ambiguity, and
category completeness.

RQ 3: Human Error Usefulness
How comprehensive is existing research about human errors in software engineering? We define use-
fulness in terms of coverage of human error theories from cognitive psychology and coverage of human
errors in software engineering activities.

4.1.2 Methodology
This section outlines our methodology for identifying literature related to human errors in software engineering, se-
lecting relevant literature, and reviewing selected literature. Brereton et al. [50] analyzed systematic literature reviews
(SLR) in software engineering and outlined the key components of a SLR, which we adopted into our methodology.

We began by specifying our research questions, which Brereton et al. identifies as the most critical step in any
SLR [50]. Our study was exploratory, with the goal of identifying human errors documented in previous software
engineering research (i.e. RQ 1). Section 4.1.2.1 describes our review protocol, i.e. our process for identifying
primary studies [50]. In Section 4.1.2.2 we outline the information we extracted and how we assessed the quality of
selected literature (i.e. RQ 2). Finally, in Section 4.1.2.3 we describe our process for synthesizing the human errors
from existing software engineering literature into a Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.)
(i.e. RQ 3). Our SLR was originally conducted from June 1, 2021 through November 30, 2021, and re-conducted from
October 2, 2022 through January 7, 2023 to identify newly published work on human error in software engineering.

4.1.2.1 Systematic Literature Review Protocol

For our SLR, we searched for literature in Google Scholar1, IEEE Xplore2, and the ACM Digital Library3. For IEEE
Xplore and the ACM Digital Library, we formed search queries using boolean logic based on five domain strings and
19 scope strings, as outlined in Figure 4.2. Figure 4.3 shows the exact boolean logic query we used. We attempted
to use the same boolean logic query for Google Scholar, but the search results were (more often than not) unrelated
to software engineering or human error (e.g. the first page of search results contained papers related to bankruptcy,
computing accreditation, corporate taxes, civil service, and law). As a result, we used a more targeted boolean logic
query for Google Scholar, as shown in Figure 4.4. Figure 4.1 contains a visual summary of our SLR process.

We did not restrict our search to any specific time period or any specific type of literature (e.g. short vs. long
papers, journal vs. conference vs. book). We did not change any of the default search options for any search engine.
For each search engine, we examined search hits to determine whether they were relevant to human errors in software
engineering with a three-stage process:

1https://scholar.google.com/
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://dl.acm.org/browse/

https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/browse/
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Figure 4.1: Visual Summary of Our Systematic Literature Review Process
Step 1 of our SLR involved querying the literature. In Step 2 we reviewed the title and abstract of each
search result to determine relevancy to human error in software engineering. When the title and abstract
did not provide enough information to determine relevancy, we examined keywords within the body of
the paper in Step 3. For selected papers, we repeated Steps 2 and 3 for references to find more relevant
work. Steps 2 and 3 were repeated for each of the three search engines we queried.

1. Review Title & Abstract: We read the title and abstract of each paper and determined whether or not
the paper was relevant to human errors in software engineering. To eliminate false positive search hits, we
considered the following cases:

• Generic Software Errors: To eliminate papers discussing generic software errors (i.e. faults, failures,
and/or defects), we specifically looked for mentions of human error theory or psychological concepts. If
no mention of human error theory or psychological concepts was present in a paper, we considered that
paper irrelevant. If a paper’s abstract mentioned human factors, we erred on the side of caution and
continued onto the next step.

• Generic Software: To eliminate papers discussing software outside the domain of software engineering
(e.g. medical software, point-of-sale systems), we looked specifically for the strings software engineer-
ing and/or software development, as well as software engineering concepts. If no mention of software
engineering was present in a paper, we considered that paper irrelevant.

• Non-Research Sources: We rejected a handful of search hits that were not research papers or software
engineering books (e.g. workshop descriptions, standards documents, and opinion pieces).

Papers deemed relevant were selected for review. If we could not make an informed accept/deny decision based
on the title and abstract of a paper alone, we erred on the side of caution (following Brereton et al. [50]) and
continued onto the next step.

2. Examine Keywords in Context: If the title and abstract were not enough to determine relevance, we
searched the body of the literature for the search strings outlined in Figure 4.2. For searchable PDFs and web
pages, we used the built-in search functionality for the PDF viewer and web browser, respectively. For non-
searchable PDFs and physical papers/books, we manually examined the body text for keywords. We examined
the keywords in context to determine whether or not the literature was discussing human errors in software
engineering. Some examples:

• If we got a search hit for “human error”, but the paper only briefly mentioned human error during
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Domain Strings Scope Strings
software engineering human error omission SRK
software engineers slip omissions skill-rule-knowledge
software development slips commission James Reason
programmers lapse commissions Jens Rasmussen
computing lapses skill errors generic error modeling system

mistake rule errors
mistakes knowledge errors

Figure 4.2: List of Domain and Scope Strings
We used a combination of domain and scope strings to form search queries.

("software engineering" OR "software engineers" OR "software development" OR
"programmers" OR "computing")

AND
("human error" OR "slip" OR "slips" OR "lapse" OR "lapses" OR "mistake" OR "mistakes"

OR "omission" OR "omissions" OR "commission" OR "commissions" OR "skill errors" OR
"rule errors" OR "knowledge errors" OR "SRK" OR "skill-rule-knowledge" OR
"generic error modeling system" OR "James Reason" OR "Jens Rasmussen")

Figure 4.3: Boolean Logic Query used for IEEE Xplore and the ACM Digital Library
For IEEE Xplore and the ACM Digital Library, querying for the occurrence of any domain string and
any scope string yielded good results.

the introduction/background/motivation and did not have results grounded in human error in software
engineering, we considered that paper irrelevant.

• If we got a search hit for “lapse”, but the paper only mentioned time lapses, we considered that paper
irrelevant.

• If we got a search hit for “commission” in the copyright text of a paper, and no other mention of human
error occurred, we considered that paper irrelevant.

• If we got a search hit for “rule-based”, but the term was used in the context of rule-based classifiers, we
considered that paper irrelevant.

3. Review Related Work: We repeated the above two steps for references in the related works sections of
relevant papers to identify more relevant studies.

We repeated this process for each search hit until we encountered 40 search hits in a row that were deemed
irrelevant or had already been found in a previous search engine. We used spreadsheets to keep track of search hits,
their relevancy, and seen status. We reviewed a total of 284 studies, of which 16 were deemed relevant. Reviewing
related work for relevant papers resulted in 52 more relevant studies, for a total of 68 studies related to human error
in software engineering. Figure 4.5 visually summarizes our literature selection.

4.1.2.2 Data Extraction & Literature Quality

We read each paper deemed relevant to human errors in software engineering and took notes before summarizing
each paper in Section 3.1. For each study, we examined:

• Methodology: What experiment(s) were conducted, who were the participants, and how was any collected
data analyzed?

• Results: What human errors in software engineering were identified and documented in the literature? Were
those human errors discussed in the context of a human error theory?

• Conclusions: What, if any, interesting findings or conclusions were presented?
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software engineering human error OR software engineering slips lapses mistakes OR
software engineering skill rule knowledge OR software engineering omission commission

Figure 4.4: Boolean Logic Query used for Google Scholar
Google Scholar’s search engine yielded many false positives with the query from Figure 4.3, so we used
a more targeted search query. Quotes were not used because they changed how Google Scholar parses
the query.

Figure 4.5: Visual Summary of Systematic Literature Review Results
Sankey diagram visually summarizing the results of our systematic literature review protocol (Sec-
tion 4.1.2.1).

We took particular interest in papers that presented a taxonomy, or were themselves systematic literature reviews.
After summarizing each study, we assessed the quality and coverage of each study.

Quality: Inspired by the properties of a high quality taxonomy described in previous work [9, 43, 127, 136, 174,
188, 192], we assessed the strengths and weaknesses of each previous research study about human errors in software
engineering. We define strengths and weaknesses in terms of the following:

• Scope: Human error categories should be general to all phases of software engineering. We assigned a value
of 0 or 1 indicating whether the human error categories in the study are general to all phases of software
engineering (1) or not (0). For example, if a paper specifically discussed human errors during a single phase of
software engineering (e.g. the work of Anu et al. [12, 15, 18, 22, 23] focusing only on requirements engineering),
that paper received a scope score of 0.

• Ambiguity: Human error categories and their definitions should be clear and unambiguous. We assigned a
value of 0, 1, or 2 indicating whether a study’s human error categories were completely ambiguous (0), somewhat
ambiguous (1), or completely unambiguous (2). For example, if a paper only presented human errors in terms
of a human error theory without providing specific human errors (e.g. Im & Baskerville [31, 147]), that paper
received an ambiguity score of 0. If some of the specific human errors presented in a paper were unclear (e.g.
“expression errors” in Huang et al. [143]), that paper received an ambiguity score of 1.

• Completeness: Human error categories should be exhaustive; edge cases should fit within an existing category.
We assigned a value of 0 or 1 to each study, indicating whether we could imagine an edge case that does not fit
within a study’s human error categories (0) or not (1). For example, the taxonomy presented in Zapf et al. [370]
does not have a category that time management errors could fit into, so this paper received a completeness
score of 0.

We then aggregated the scores for scope, ambiguity, and completeness into an overall quality score on a scale of
0 to 4, with 4 being the highest quality and 0 the lowest. Studies that did not provide specific categories of human
error (beyond the high level categories of slip/lapse/mistake, skill/rule/knowledge, and/or omission/commission)
were automatically assigned a quality score of 0.

Usefulness: We also evaluated the usefulness of each study based on their coverage of human error theories from
cognitive psychology and their coverage of human errors in software engineering.
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Figure 4.6: Visual Summary of T.H.E.S.E. Creation
Sankey diagram visually summarizing the creation of T.H.E.S.E. (Section 4.1.2.3). Key: HE—Human
Error.

Table 4.1: Summary of Software Engineers’ Human Errors from Literature

SRK Model GEMS Framework Omission/Commission
Type Frequency Type Frequency Type Frequency

Skill-Based 28 Slip 10 Omission 30
Rule-Based 15 Lapse 9 Commission 16
Knowledge-Based 36 Mistake 21 Realization 6

Combination 5 Combination 16
Total 79 Total 45 Total 68

• Coverage of Human Error Theories: For each human error theory (GEMS Framework, SRK Model,
Omission/Commission), we assigned a value of 0, 1, or 2 indicating whether a study’s human error categories did
not cover the human error theory at all (0), only partially covered the human error theory (1), or fully covered
the human error theory (2). For example, Huang et al. [143] has human error categories spanning slips and lapses
(but not mistakes), and knowledge (but not skill or rule) errors, so that paper received theory coverage scores
of 1, 1, and 0 for Reason’s GEMS framework, Rasmussen’s SRK model, and errors of omission/commission,
respectively.

• Coverage of Human Errors in Software Engineering: We mapped the human error categories from each
study to the categories in T.H.E.S.E. For each category in T.H.E.S.E. that overlaps with categories in the
study, the study received one point (maximum of 12).

An aggregate usefulness score was calculated as the sum of both coverage scores. Usefulness ranges from 0 to 18,
with 18 being the most useful and 0 the least useful.

4.1.2.3 Creation of T.H.E.S.E.

To create our taxonomy, we needed to examine all of the human errors from literature and group them into categories
of related human error. Following established good practices for taxonomy development from previous research [9, 43,
127, 136, 174, 188, 192], we wanted to avoid having too many categories while ensuring that the categories included
were mutually exclusive and well-defined. We used the following process to create categories:

1. Extract Human Errors: We extracted specific human error categories (and their descriptions) from relevant
papers into a list.

2. Group Based on Theory: Each human error theory groups human errors differently. Human errors discussed
in the context of Rasmussen’s SRK model were grouped into skill-, rule-, and knowledge-based categories;
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Table 4.2: Summary of SLR Quality Scores

Study Scope
(0-1)

Ambiguity
(0-2)

Completeness
(0-1)

Total Quality
(0-4)

[142, 253, 370] 1 2 0 3
[345] 1 1 0 2
[168] 1 1 0 2
[143, 161] 1 1 0 2
[20, 187] 0 2 0 2
[115] 0 2 0 2
[165] 0 2 0 2
[279] 0 2 0 2
Studies Involving HET∗ 0 2 0 2
[366] 0 1 0 1
Studies w/o Specific Categories† 0 0 0 0

∗ [12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 138, 139, 140, 141, 194, 349]
† [3, 29, 30, 31, 32, 39, 64, 67, 68, 144, 147, 148, 171, 185, 186, 200, 252, 260, 273, 309, 315, 316, 317, 319]

human errors discussed in the context of Reason’s GEMS framework were grouped into slip, lapse, and mistake
categories; and human errors discussed in terms of omission and commission were grouped as such.

3. Group Within Theory Categories: Human errors within each category (e.g. slip, skill-based, omission)
were compared with each other to determine whether or not they were the same human error, different human
errors, or part of a subcategory of human error.

4. Group Into Slips, Lapses, and Mistakes: Since research indicates that the GEMS framework is consistent
with how network administrators and security specialists view human errors [171], we created categories in
T.H.E.S.E. that fall under slips, lapses, and mistakes.

(a) SRK to GEMS: Since both rule- and knowledge-based human errors are considered mistakes, we placed
those errors into the mistake category. Skill-based errors can be slips or lapses, so we placed them into
one of those categories based on whether the skill-based human error was due to an attentional failure
(slip) or a memory failure (lapse).

(b) Omission/Commission to GEMS: Omissions are strictly lapses, so we placed them as such. Commis-
sions can be slips or mistakes, so we placed them into the slip or mistake category based on their cause
(attentional or planning failure, respectively).

5. Repeat Step 3: With skill-, rule-, and knowledge-based errors and errors of omission/commission grouped
into their respective GEMS categories, we repeated Step 3 to eliminate any remaining duplicates.

For example, overlooking design documentation [20] (slip) and overlooking or failure to read API documenta-
tion [20] (slip) were grouped into a subcategory of human error, Overlooking Documented Information (LS2). As
another example, inappropriate tool selected [345] (rule-based mistake) and problem solution errors [15] (mistake)
were considered the same category of human error, Solution Choice Errors (LM6).

4.1.3 Results
In this section, we discuss our qualitative and quantitative results for RQ1-3. Note that while we reviewed 68
studies, some [276, 277, 353, 355, 356] were not included in our analysis for RQ2 and RQ3 because they did not
fit the scope of software engineering. Additionally, we grouped all studies involving the Human Error Taxonomy
(HET) [12, 14, 15, 16, 17, 18, 19, 21, 23, 138, 139, 140, 141, 194, 349] together for our analysis. Percentages reported
for RQ2 and RQ3 are based on a total of 49 studies.
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Table 4.3: Summary of SLR T.H.E.S.E. Coverage

Study LS1 LS2 LL1 LL2 LL3 LM1 LM2 LM3 LM4 LM5 LM6 LM7 Total
(0-12)

Studies Involving HET∗ 1 1 0 0 0 0 1 1 1 1 1 0 7
[20] 0 1 1 1 1 0 1 1 0 0 1 0 7
[168] 1 0 1 0 0 1 1 1 0 0 1 0 6
[345] 0 0 0 0 0 0 1 1 1 1 1 0 5
[15] 1 1 0 0 0 0 0 1 1 0 1 0 5
[370] 0 1 0 0 0 0 1 1 0 0 1 0 4
[161] 1 1 0 0 0 0 0 1 0 0 0 1 4
[143] 0 0 0 0 0 0 1 1 0 0 0 1 3
[142] 1 0 0 0 0 1 0 0 0 0 0 0 2
[115, 187, 279] 0 0 0 0 0 1 0 0 0 0 0 0 1
[366] 0 0 0 0 0 0 1 0 0 0 0 0 1
[165, 253] 0 0 0 0 0 0 0 0 0 0 0 0 0
Studies w/o Specific Categories† — — — — — — — — — — — — 0
∗ [12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 138, 139, 140, 141, 194, 349]
† [13, 22, 29, 30, 32, 64, 67, 68, 148, 165, 171, 185, 186, 200, 252, 253, 260, 273, 309, 315, 316, 317, 319, 372]

4.1.3.1 Human Error Discovery

RQ 1: What human errors experienced by software engineers are documented in previous research?

We identified 192 human errors in software engineering from 68 research studies. 79 human errors
were based on Rasmussen’s skill-, rule-, and knowledge-based human error theory, 45 were based on Rea-
son’s slips, lapses, and mistakes, and 68 were errors of omission or commission. Mistakes (both rule-
and knowledge-based) were the most frequent type of human error discussed in literature, differing from
results in domain-independent psychology research from Reason [298].

Our systematic literature review of 68 studies about human errors in software engineering revealed 192 human
errors spanning three theories of human error. Figure 4.5 visually summarizes the results of our systematic literature
review protocol. Table 4.1 summarizes the number of each type of human error. Specific categories of human
error are outlined in Section 3.1. We found that the majority of human errors discussed in previous literature are
mistakes (mistakes, skill-based errors, and rule-based errors). This finding is inconsistent with previous findings from
Reason [298]. However, we believe this finding makes sense in the context of software engineering; mistakes are
planning failures and software engineering is a highly plan-oriented domain.

After reviewing literature for human errors in software engineering, we grouped related human errors together
into a Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) following the process in Section 4.1.2.3.
Our taxonomy (Table 4.6) has 12 categories of human error spanning slips, lapses, and mistakes. Figure 4.6 visually
summarizes the creation of T.H.E.S.E. We chose to use slips, lapses, and mistakes as the basis for our taxonomy
following Kraemer & Carayon’s finding that Reason’s GEMS framework is consistent with how network administrators
and security specialists view human errors [171]. Additionally, Rasmussen’s SRK model and errors of omission and
commission overlap with Reason’s GEMS framework. The majority of categories in T.H.E.S.E. are mistakes, mirroring
the frequency of mistake categories compared to slips and lapses found during our systematic literature review.

Interestingly, the human errors in software engineering studies that we examined did not include time management
errors or inadequate testing. The absence of these colloquially common human errors suggests that existing research
about human errors in software engineering is incomplete; notably that none of the 68 studies we reviewed examined
software engineers’ human errors in the wild (e.g. bug reports, vulnerability disclosures).
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Table 4.4: Summary of SLR Usefulness Scores

Study Theory Coverage
(0-6)

T.H.E.S.E. Coverage
(0-12)

Total
(0-18)

[168] 3 6 9
Studies Involving HET∗ 2 7 9
[20] 2 6 8
[161, 370] 3 4 7
[15, 345] 2 5 7
[143] 2 3 5
[3] 4 0 4
[144, 147] 3 0 3
[142] 1 2 3
Studies w/o T.H.E.S.E. Coverage† 2 0 2
[115, 187, 279, 366] 1 1 2
[39] 1 0 1
[31] 0 0 0
∗ [12, 14, 16, 17, 18, 19, 21, 23, 138, 139, 140, 141, 194, 349]
† [13, 22, 29, 30, 32, 64, 67, 68, 148, 165, 171, 185, 186, 200, 252, 253, 260, 273, 309, 315, 316, 317, 319, 372]

Table 4.5: Summary of SLR Human Error Theory Coverage

Study GEMS SRK OC Total (0-6)

[3] 2 2 0 4
[161, 168, 370] 0 2 1 3
[144, 147] 1 2 0 3
[253] 1 1 1 3
[143, 309] 1 1 0 2
[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 138, 139, 140, 141,
171, 194, 252, 349] 2 0 0 2

[64, 67, 68, 185, 186, 345, 372] 0 2 0 2
[29, 30, 32, 148, 165, 200, 260, 273, 315, 316, 317, 319] 0 0 2 2
[39, 142, 366] 0 1 0 1
[115, 187, 279] 0 0 1 1
[31] 0 0 0 0

4.1.3.2 Human Error Appraisal

RQ 2: What are the strengths and weaknesses of previous research about human error in software engineering?
We define strengths and weaknesses in terms of software engineering scope, category ambiguity, and
category completeness.

Nearly half (49%) of studies did not include specific human error categories, 59% of studies contained
some level of ambiguity in categories and their descriptions, and 0% of studies were able to accommodate
all potential human errors experienced by software engineers. Only 15% of the literature we reviewed had
a scope general to all software engineering phases.

As described in Section 4.1.2.2, we assessed the quality of previous research studies’ human error categories based
on three properties of a high quality taxonomy: software engineering scope, human error category ambiguity, and
human error category completeness. Each of those properties was assigned a numerical score, and scores were summed
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for each study to yield an overall human error quality score. Table 4.2 summarizes these scores.
We found that 49% (24/49) of the research studies about human error in software engineering did not report spe-

cific human error categories beyond the high level slip/lapse/mistake, skill/rule/knowledge, and omission/commission
categories. This is concerning because without specific categories, replications of these studies cannot compare re-
sults. Further, the lack of specific human error categories limits the insights that software engineers can glean from
these studies.

59% (29/49) of the research studies that we reviewed contained some level of ambiguity within human error
categories and their descriptions. Software engineers will find that categorizing their own human errors will be much
more difficult when the definitions are ambiguous.

Only 15% (7/49) of the studies we reviewed had a scope general to all phases of software engineering. The
other 85% of studies had narrow scopes, primarily focused on requirements engineering and implementation. While
the human error categories from these studies may be useful in specific contexts, software engineers are involved in
all phases of software engineering and thus need to be able to categorize and confront the human errors that they
experience during every phase.

None of the studies we reviewed had human error categories capable of accommodating all potential human errors
that software engineers could experience. To reach this conclusion, we closely examined T.H.E.S.E. and proposed a
new category of human error: errors related to time management. We reexamined all of the studies and found that
none of them considered time management errors.

These results indicate that we do not yet have a complete understanding of human errors in software engineering,
but previous research has laid the groundwork for T.H.E.S.E., and in Section 4.2, we explored one of the gaps present
in existing research.

4.1.3.3 Human Error Usefulness

RQ 3: How comprehensive is existing research about human errors in software engineering? We define use-
fulness in terms of coverage of human error theories from cognitive psychology and coverage of human
errors in software engineering activities.

Of the human error studies, the highest usefulness score was 9 out of 18. Coverage of human error
theories varied; no study fully covered all three human error theories, 16% of studies partially covered
two human error theories, and 84% of studies covered only one human error theory. Coverage of human
errors in software engineering was also poor, with 53% of studies having no coverage.

As described in Section 4.1.2.2, we assessed the usefulness of previous research studies’ human error categories
based on both their coverage of human error theories and their coverage of human errors in software engineering.
Each human error theory and each category in T.H.E.S.E. was assigned a numerical score, and scores were summed
for each study, yielding an overall human error usefulness score. Table 4.4 summarizes total human error usefulness
for each study. Table 4.3 and Table 4.5 summarize coverage of human errors in software engineering and coverage of
human error theories, respectively.

We found that 4% (2/49) of studies about human error in software engineering had an overall usefulness score
of 50%. All other studies had a usefulness score less than 50%. This reveals that individual studies about human
errors in software engineering are not particularly useful on their own. Only one study that we reviewed partially
covered all three human error theories (no studies fully covered all three human error theories) and 53% (26/49) of
studies had no overlap with T.H.E.S.E. (because these studies did not describe the specific human errors experienced
by developers).

16% (8/49) of studies partially covered two human error theories, typically a combination of Reason’s GEMS
framework and Rasmussen’s SRK model. The other 84% of studies only (fully or partially) covered a single human
error theory. This reveals that the majority of reviewed research about human errors in software engineering only
considered more narrowly focused aspects of human error. As a developer confronts their human errors, knowing only
that a human error they have experienced is a mistake does not provide a full understanding. Was the human error
a rule-based or knowledge-based mistake? Knowing only that the human error experienced was skill-based does not
reveal whether the human error was due to an attentional (slip) or memory (lapse) failure. To prevent human errors
in the future, software engineers need a complete understanding of their human errors.

The finding that 53% of studies that we reviewed had no overlap with T.H.E.S.E. is because those studies did not
reveal the specific human error categories beyond the high level categories in each human error theory. As discussed in
Section 4.1.3.2, without specific categories, these studies cannot be exactly replicated, and the insights that software
engineers can gain from them are limited.

Of the 47% of studies that do have some overlap with T.H.E.S.E., most did not consider human errors related
to code complexity (LM7), communication with project stakeholders/users (LM5), or code logic (LM1). Additionally,
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Table 4.6: Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) Version 1

ID Category/Definition

Slips

LS1 Syntax Errors: Any error in coding language syntax that impacts the executability of the code.
Note that Logical Errors (e.g. += instead of +) are not Syntax Errors.

LS2
Overlooking Documented Information: Errors resulting from overlooking documented in-
formation, such as project descriptions, stakeholder requirements, API/library/tool/framework
documentation, coding standards, programming language specifications, and bug/issue reports.

Lapses

LL1 Forgetting to Fix a Defect: Forgetting to fix a defect that you encountered, but chose not to
fix right away.

LL2 Forgetting to Remove Development Artifacts: Forgetting to remove debug log files, dead
code, informal test code, commented out code, test databases, backdoors, etc.

LL3 Forgetting to Save Work: Forgetting to push code, or forgetting to backup/save data or doc-
umentation.

Mistakes

LM1

Code Logic Errors: A code logic error is one in which the code executes, but produces an
incorrect output/behavior due to incorrect logic. Examples include using incorrect operators (e.g.
+= instead of +), erroneous if/else statements, incorrect variable initializations, problems with
variable scope, and omission of necessary logic.

LM2 Incomplete Domain Knowledge: Errors resulting from incomplete knowledge of the software
system’s target domain (e.g. banking, astrophysics).

LM3
Wrong Assumption Errors: Errors resulting from an incorrect assumption about system re-
quirements, stakeholder expectations, project environments (e.g. coding languages and frame-
works), library functionality, and program inputs.

LM4 Internal Communication Errors: Errors resulting from inadequate communication between
development team members.

LM5 External Communication Errors: Errors resulting from inadequate communication with
project stakeholders, third-party contractors, or users.

LM6
Solution Choice Errors: Misunderstood problem-solving methods/techniques result in analyz-
ing the problem incorrectly and choosing the wrong solution. For example, choosing to implement
a database system in Python rather than using SQL.

LM7
Code Complexity Errors: Errors resulting from misunderstood code due to poor documentation
or unnecessary complexity. Examples include too many nested if/else statements or for-loops and
poorly named variables/functions/classes/files.

most of these studies did not consider lapses at all. The categories of human error often considered in these studies
included wrong assumption errors (LM3) and solution choice errors (LM6).

4.1.4 Limitations
Taxonomy developers should strive to meet certain criteria to ensure their taxonomies are beneficial. To be widely
accepted and beneficial, our taxonomy needs to be of high quality. According to previous research [9, 43, 127, 136,
174, 188, 192], a good taxonomy should have the following properties:

• Accepted: Our taxonomy should be “logical and intuitive [136]” to ensure that it can be accepted by developers
and researchers.

• Complete/Exhaustive: Any developer error should be able to be categorized using our taxonomy; there
should be no edge cases that our taxonomy does not cover.
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• Comprehensible/Understandable: Developers at all skill-levels, security professionals, and researchers
should be able to easily understand our taxonomy.

• Deterministic: The process for classifying developer errors within our taxonomy should be clearly defined. We
will ensure this by creating a methodology to use our taxonomy, similar to the goal of Anu et al.’s HEAA [14].

• Mutually Exclusive: Developers errors should be able to be categorized into one, and only one, class of
human error (i.e. slip, lapse, or mistake), and one and only one specific category of human error.

• Objective: The classification process for our taxonomy should combat any subjectivity on the part of the
person performing the classification.

• Primitive: Questions used to guide classification should have simple “yes” or “no” answers.

• Repeatable: Classification of developer errors into human error should be repeatable. Our classification
methodology will also serve to meet this goal.

• Unambiguous: Each class of human error (i.e. slips, lapses, and mistakes) in our taxonomy should be
well-defined to ensure no ambiguity in the classification process.

• Useful: Our taxonomy should be useful and provide a benefit to developers.

• Well Defined Terminology: All terms used in our taxonomy should be clearly defined to avoid confusion.
Terminology should also be specific enough to avoid ambiguity, and outdated or not-yet-adopted terms should
be avoided.

Since this was an exploratory systematic literature review, we cannot ensure that all these properties of a high
quality taxonomy are met. Chapter 5 addresses some of these concerns.

Brereton et al. notes specifying research questions as the “most critical element of a systematic review [50].”
We addressed this concern by forming our research questions before conducting our SLR. As Brereton et al. notes,
revision of research questions is to be expected as understanding of the problem grows [50]; as we encountered more
relevant studies, RQ2 and RQ3 evolved based on the measurable aspects of study quality we observed. Brereton et
al. also recommends developing a detailed plan (e.g. a review protocol) to guide the SLR, noting that all members
of the study need to be involved in designing the review protocol and that piloting the review protocol is essential.
Our initial review protocol (not discussed previously in this work) was rather unsystematic; we queried Google
Scholar with a not-previously-defined set of search strings and ill-defined stopping criteria. This pilot revealed that
the literature we were looking for existed, but our methodology needed improvement, which prompted us to create
defined search queries, stopping criteria, and other elements of a review protocol. Additionally, we used three different
search engines (Google Scholar, IEEE Xplore, and ACM Digital Library) and modeled our review protocol following
suggestions made by Brereton et al. [50].

4.1.5 Summary
In this section, we performed a systematic literature review of research about human errors in software engineering.
We identified 192 human errors from 68 research studies and aggregated those human errors into 12 categories within
a Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.). Categories in T.H.E.S.E. span slips (attention
failures), lapses (memory failures), and mistakes (planning failures) from James Reason’s Generic Error-Modelling
Framework. Our key results are summarized as follows:

• The majority of human error categories discussed in software engineering literature are mistakes (in the GEMS
sense of the word)

• 49% of studies do not detail specific human error categories beyond the high level categories of slip/lapse/mis-
take, skill/rule/knowledge, and omission/commission

• 59% of studies have human error categories (and descriptions) that are (at least partially) ambiguous

• 85% of studies have a scope too narrow to cover all software engineering activities

• 84% of studies only consider one human error theory
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apology, n.: “justification, explanation, or excuse, of an incident or course of action [269].”

Figure 4.7: Oxford English Dictionary Apology Definition
This apology definition is used throughout Chapter 4.2.

Our systematic literature review outlines an almost 40-year history of concern about human error in software
engineering. Despite all of that effort and the insights from 68 studies, the software engineering domain still lacks
an established and accepted human error assessment process, a process which could improve the quality and security
of software, as it has done in the medical [98, 159, 305] and transportation [300, 332] domains. Our findings reveal
that this area of research is vast, and the effort to study human error in software engineering has only begun,
with most studies being narrow in software engineering and human error scope, as well as lacking specific details
about observed human errors. We do not intend to belittle these studies as they have been valuable in our ongoing
effort to help software engineers confront and reflect on their human errors by creating a process to
document, organize, and analyze human errors. We envision T.H.E.S.E. as an integral step toward assessment.
By confronting their human errors, software engineers can identify areas of improvement, and their managers can
identify systemic human errors within development teams and implement process improvements in response. This
study was our first step toward making human error assessment accessible to software engineers, which, we believe,
will ultimately lead to improved quality and security stature of future software products.

4.2 Human Errors from Software Engineering Artifacts

4.2.1 Motivation & Research Questions
As we established in Section 4.1, software engineering is a complex process, and despite their best efforts, software
engineers inevitably experience human errors. While software developers’ human errors have been documented in
controlled experiments and interviews, to our knowledge, developers’ self-admitted human errors in development
artifacts have not been studied. One way to identify (some of) developers’ self-admitted human errors is to mine
apologies—admissions of error [211]—in development artifacts. Throughout this work, we used the apology definition
shown in Figure 4.7. Modern software engineering affords massive, rich records of socio-technical, natural language
interaction in public venues, such as with open source software development on GitHub. Specifically, these records
can provide insight into developers’ self-admitted human errors, as evidenced by their apologies.

Our long-term aim is to help software engineers confront and reflect on their human errors with a formal human
error assessment process, but before we can do so, we need to understand how human error theories from cognitive
psychology manifest themselves in software engineering artifacts. In this study, we addressed the following research
questions:

RQ 4: Identifying Developers’ Apologies
Can apology lemmas reliably identify developers’ apologies in development artifacts?

RQ 5: Anatomy of Developers’ Apologies
How often do developers apologize and which apology lemmas are most common?

RQ 6: Developers’ Self-Admitted Human Errors
Which human errors from literature do developers admit to? Which human errors from developer
apologies do not exist in literature?

4.2.2 Methodology
This section outlines our methodology for collecting, annotating, and analyzing a subset of software engineers’ self-
admitted human errors. The dataset we collected is available on Zenodo [214] and the code used throughout this
study is available on GitHub [212].

4.2.2.1 Data Collection & Preprocessing

We used GitHub’s GraphQL API [112] to download developers’ comments from 17,378 repositories spanning 45
programming languages. We chose repositories that were open source and widely used (i.e. at least 850 GitHub
stars), and had a primary language that is commonly used. We define commonly used languages as those appearing
in the top 50 of the TIOBE Index [340] and/or those marked popular in GitHub’s advanced search page [109] as of
August 31, 2021. These languages are outlined in Figure 4.8.
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Table 4.7: Summary of GitHub Data Collected

Number Comments

Commits 49,710,108 979,642
Issues 13,458,208 54,252,380

Pull Requests 12,680,373 33,408,215
Total — 88,640,237

ABAP COBOL Fortran LabVIEW Perl SAS TSQL
Ada CoffeeScript Go Lisp PHP Scala TypeScript
Apex CSS Groovy Logos PowerShell Scheme VBScript
Assembly D HTML Lua Prolog Scratch VHDL
C Dart Java MATLAB Python Shell VB .NET
C# DM JavaScript Nim R SQL
C++ Elixir Julia Objective-C Ruby SQLPL
Clojure F# Kotlin Pascal Rust Swift

Figure 4.8: Commonly Used Programming Languages
As of August 31, 2021, these are the top 50 commonly used programming languages as reported by the
TIOBE Index [340].

We queried GitHub’s GraphQL API for repositories whose primary language is one of the commonly used lan-
guages in Figure 4.8. GitHub’s GraphQL API returns at most 1000 repositories for each target language. We then
downloaded developers comments on commits, issues, and pull requests for each matching repository using GitHub’s
GraphQL API. We downloaded the title, ID number, author, creation date, URL, and raw description text for each
commit, issue, and pull request. For each comment, we collected the raw text, author, creation date, and URL. Data
received from GraphQL queries was converted from JSON into CSV before saving to disk.

Of the 17,491 repositories matching our criteria, 113 could not be accessed due to various GraphQL API errors.
Seven target languages—Ada, Apex, LabVIEW, Logos, SAS, SQL, and SQLPL—had no repositories matching the
above criteria, and no repositories for VB .NET could be accessed due to the aforementioned API errors. In total,
we collected over 88.6 million developer comments, as summarized in Table 4.7.

We preprocessed the raw developer comments from our GitHub dataset by lowercasing all text, removing punc-
tuation (i.e. periods, commas, colons, semicolons, question marks, and exclamation points), and lemmatizing. Lem-
matizing reduces grammatically related words into lemmas, simpler common base forms, using the word’s context
(the words surrounding it) and morphology [196]. For example, the words “bug”, “bugs”, and “bug’s” all have the
same lemma, bug. We used regular expressions to remove punctuation and the natural language processing library
SpaCy [243] to lemmatize developer comments.

4.2.2.2 Apology Annotation

A common way for human errors to be apparent in natural language is through apologies. We used the Oxford English
Dictionary’s definition of an apology (Figure 4.7) throughout this work. We reviewed 12 linguistics research papers
about apologies and documented the common apology lemmas in Table 4.8, along with example apology statements
from our dataset. In addition to the 12 apology lemmas identified from linguistics literature, we also considered the
lemmas apology, mistake, and mistaken to be indicative of an apology (e.g. My apologies; that’s my mistake; I was
mistaken). We automatically classified developer comments containing at least one apology lemma as apologies.

Two researchers—both native English speakers from the United States and graduate computer science students—
independently annotated a random subset of 1,237 developer comments to verify whether developer comments contain-
ing at least one apology lemma were apologies. We used scikit-learn [282] to compute inter-annotator agreement
(Cohen’s κ). All disagreements between annotators were discussed until resolved.

We implemented a naïve classifier that simply counts the number of apology lemmas present in a developer
comment. If one or more apology lemmas are present, our classifier assigns a label of ‘1’ indicating that the developer
comment contains an apology, or ‘0’ if no apology lemmas are present. We report results for this initial classifier
with the label v1. After completing our classifier, we manually examined false positives (i.e. comments automatically
classified as apologies when they should not have been). Our manual examination yielded a set of lemma phrases that
result in false positive classifications. We updated our classifier with special rules to handle common false positive
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Table 4.8: Apology Lemmas Identified from Linguistics Literature

Lemma Sources Example Apology from Our Dataset

admit [178, 346] I admit I missed that part of the doc so it’s definitely
not a bug.

afraid [36, 133] I’m afraid I can’t really help debugging it.
apologize/se [36, 65, 172, 178, 206, 311, 346] I apologize for leaving this issue hanging.
blame [133, 346] I think I’m to blame for this.

excuse [36, 47, 65, 133, 172, 206, 268,
346] Excuse my beginner’s incompetence.

fault [133, 311, 346, 365] Yes that’s my fault.
forgive [36, 65, 133, 172, 178, 206, 346] Please forgive my ambiguity.
forgot [133, 268] I forgot to evaluate using multiple metrics.

oops [133] Oops looks like I had connection_fileds instead of con-
nect_fields.

pardon [36, 133, 206, 311, 346] Please pardon my misunderstanding.

regret [36, 133, 178, 268, 311] I regret that we didn’t manage to add this back at the
time.

sorry [36, 47, 65, 133, 172, 178, 206,
268, 311, 346, 365] I’m sorry for the terribly delayed response.

lemma phrases (outlined in Table 4.9). We report results for this updated classifier with the label v2. Upon closer
inspection, we identified three apology lemmas—“admit”, “afraid”, and “forgot”—that were missing from our classifier.
We added these apology lemmas (with relevant false positive lemma phrases) to the final version of our classifier,
labeled v3.

We also evaluated our classifier against manual dialog act annotations in the Switchboard corpus [116] of sponta-
neous telephone conversations. The Switchboard corpus is included in popular natural language processing libraries—
such as the Cornell Conversational Analysis Toolkit [60] and the Natural Language Toolkit [38]—and has over 10,000
and 36,000 search hits on Google Scholar and GitHub, respectively. The 221,616 utterances in the Switchboard corpus
are annotated with 43 dialog act labels (e.g. apology, yes-no-question, statement-opinion). 79 (0.0004% ) utterances
are labeled as apologies. We used the SWDA python code [156, 287, 325, 333] to access the Switchboard corpus and
accompanying dialog act annotations.

4.2.2.3 Human Error Categorization

In Section 4.1, we examined 68 research papers about human error in software engineering to create a Taxonomy of
Human Errors in Software Engineering (T.H.E.S.E.). Our literature review yielded 12 categories of human error in
software engineering, spanning slips, lapses, and mistakes. These categories are outlined in Table 4.6. Using these
categories, we manually annotated a random subset of 332 apology comments, labeling each with a specific human
error (from T.H.E.S.E.). We used the following process to categorize apology comments as human errors. Our process
is also summarized visually in Figure 4.9.

Step 1: Evaluate Comment: Read the comment text, the comment author’s name, the comment author’s descrip-
tion, and the comment author’s role.

• Evaluate Apology: Determine if the author’s comment is apologizing or if the apology lemma(s)
present are a false positive (e.g. apology lemma is part of quoted text; “It’s ok, I’m not blaming you.”).
If the apology lemma(s) present are a false positive, do not continue with categorization.

• Disregard Bots: If the comment author is a bot (e.g. ‘ti-srebot’), do not continue with categorization.
We manually examined author names and related metadata to determine if a comment author was a
bot. For example, we identified the GitHub user ‘dependabot’ as a bot, since the word ‘bot’ is in the
username and the accompanying description indicates that it is an automated tool.

• Identify Author Role: If the comment author is not a bot, determine whether they are a developer
or a user based on role labels (e.g. Contributor, Author, Member, Collaborator, Owner, or no label)
and context. If the comment author is a user, see the special case in Step 3.
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Table 4.9: False Positive Apology Lemma Phrases

Lemma Phrase Example from Our Dataset

not afraid But as you are not afraid to tinker, let’s see if I can just point you in
the right direction.

n’t afraid You can change whatever you want if you aren’t afraid of getting dirty
with the dlib code.

not apologize/se You should not apologize for the bug report, just the opposite.

n’t apologize/se Can’t apologize enough for the delay–hate to see that this one slipped
through the cracks.

git blame Pointing fingers is best left to git blame.

n’t blame Doing that consistently... would have been tricky, so I can’t blame the
team for that!

not to blame Turns out it was a deadlock problem after all, but SciPy is not to blame.
seg fault I was also getting seg faults due to timeouts of this coroutine.
segmentation fault I tried compiling with 3.0.0a8 and there was no segmentation fault.
page fault Map will trigger page faults, which can be very inefficient.
permission fault It’s obviously a permission fault.
protection fault It’s more like a general protection fault.
not <PRONOUN> fault This is crazy (and obviously not your fault).
not a mistake It’s likely not a mistake on your part.
not mistaken If I’m not mistaken, the socket should be in blocking mode.
n’t regret Anyway, I don’t regret reverting this changeset.

better safe than sorry No idea whether this is even worth reporting, but better safe than
sorry.

not sorry We are not sorry for any of the actions on the pull request or the issue
thread.

Step 2: Categorize Slip/Lapse/Mistake: Determine whether the human error being discussed is a slip, lapse, or
mistake.

• Ambiguous Human Errors: If there is not enough context to categorize a human error, do not
continue with categorization. Note that developers categorizing their own human errors will have all of
the necessary context to do so.

Step 3: Categorize Human Error: Choose the most accurate category for the human error being discussed.

• User Apology: If the apology comment author is a user, determine whether a communication error
between the user and developers has occurred. If so, categorize as External Communication Errors
(LM5). If not, do not continue with categorization.

• Ambiguous Human Errors: If the human error doesn’t quite fit into an existing category, continue
to Step 4.

Step 4: Disambiguate Human Errors: Determine what to do about ambiguous human errors that don’t quite fit
into an existing category or human errors that are categorized as a general slip, lapse, or mistake.

• Imperfect Fits: If the human error doesn’t quite fit into an existing category, but could fit if the cate-
gory definition is slightly modified (and can be modified without invalidating previous categorizations),
update the category definition.

• General Slip/Lapse/Mistake: If the human error is a general slip, lapse, or mistake and does not fit
in an existing category, define a new category if necessary. Any potential new categories were discussed
with other researchers before being finalized.
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Figure 4.9: Visual Summary of Our Manual Human Error Categorization Process
Key: H.E.—Human Error; S/L/M—Slip, Lapse, or Mistake; Red Octagon—Do Not Continue with
Categorization. External Communication Errors (LM5) and other human error categories are outlined
in Table 4.6 and Table 4.16.

Table 4.10: Automatic Apology Classification Performance on Manually Annotated Apologies

Classifier # Samples Precison Recall F1 Accuracy

v1 1,237 0.417 0.997 0.829 0.879
v2 1,237 0.417 0.997 0.869 0.911
v3 1,237 0.417 0.997 0.869 0.911

To reach a reasonable level of convergence, we repeated this process until we had 50 human error categorizations, at
which point we counted how many new categories had been created. We continued in increments of 50 categorizations
until we were able to categorize 50 human errors without creating a new category.

4.2.3 Results
In this section, we discuss our qualitative and quantitative results for RQ4-6.

4.2.3.1 Identifying Developers’ Apologies

RQ 4: Can apology lemmas reliably identify developers’ apologies in development artifacts?

91% of developer comments containing at least one apology lemma matched our manual apology an-
notation. Our approach to automatic apology classification achieved near perfect recall (99%) with a
high F1 score (87%).

After automatically classifying developer comments as apologies based on apology lemmas (see Section 4.2.2.2),
two researchers independently annotated 1,237 developer comments with almost perfect agreement (Cohen’s κ =
0.94). 91% of developer comments containing at least one apology lemma matched our manual apology annotation.
Our automatic classification process achieved near perfect recall with high accuracy and F1 score, as outlined in
Table 4.10.

Of the 1,237 developer comments manually annotated, automatic apology annotation resulted in one false negative
and 109 false positives. The false negative was due to a typo in the developer’s original comment. The majority of
false positives were due to the apology lemmas “mistake” (e.g. I found a mistake), “fault” (e.g. discussing a faulty
package) and “sorry” (e.g. saying sorry to be polite). Other false positives were due to apology lemmas appearing in
quoted text, URLs, or email signatures (e.g. please excuse my brevity).
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Table 4.11: Automatic Apology Classification Performance on the Switchboard Corpus

Classifier # Apologies Precision Recall F1 Accuracy

v1 491 (0.0022%) 0.149 0.924 0.256 0.998
v2 469 (0.0021%) 0.156 0.924 0.266 0.998
v3 598 (0.0027%) 0.122 0.924 0.216 0.998

Table 4.12: Summary of Apology Comments in GitHub Dataset

Apology Comments
Comments v1 v2 v3

Commits 979,642 25,214 (2.57%) 24,710 (2.52%) 26,910 (2.75%)
Issues 54,252,380 1,698,186 (3.13%) 1,657,114 (3.05%) 1,793,460 (3.31%)

Pull Requests 33,408,215 915,607 (2.74%) 899,015 (2.69%) 971,476 (2.91%)
Total 88,640,237 2,639,007 (2.98%) 2,580,839 (2.91%) 2,791,846 (3.15%)

Our apology classification process labels 598 (0.0027%) utterances from the Switchboard corpus [116] as apologies,
with very high recall (0.92) and accuracy (0.99). Table 4.11 summarizes our classification results. While our apology
lemma based approach to classifying apologies yields different results from manual annotation on the Switchboard
corpus, the high recall indicates that our approach is very good at identifying apologies with few false negatives, but
tends to over-predict (e.g. low precision). This discrepancy is likely due to human annotators using conversational
context to annotate apologies in the Switchboard corpus; our automatic apology classification process does not use
conversational context.

The majority of false positives in the Switchboard corpus included the apology lemmas sorry, excuse, admit, or
mistake. While some of these false positives are just that (e.g. “it makes you feel really sorry for her [116]”; “It was
a tragic mistake [116]”), others could be considered apologies. For example, speakers often said “I’m sorry [116]”
or “excuse me [116]” after coughing/sneezing or when they did not hear something that was said—these would be
considered apologies according to Kramer & Moore [172] and the definition used throughout this work (see Figure 4.7).

4.2.3.2 Anatomy of Developers’ Apologies

RQ 5: How often do developers apologize and which apology lemmas are most common?

Software engineers apologize to each other on GitHub frequently, with an apology lemma density over
one thousand times greater than speakers in the Switchboard corpus. On average, developers’ apologies
are 36 words (67%) longer than other developer comments. “Sorry” is the most common apology lemma,
followed by “mistake”, “fault”, “apology”, and “afraid.”

Of the 88.6 million developer comments we collected, 2.7 million (about 3%)4 contained at least one apology
lemma. Ordinarily, apologies are relatively rare in human conversations, occurring in less than 0.0004% of utterances
in the popular Switchboard corpus [116] of telephone conversations. We suspect that this higher propensity to apolo-
gize among software developers5 is likely due to the impact of human errors on peer developers, project stakeholders,
and users. Since apologies are an aspect of politeness in conversations [53], frequent apologies made by developers
may be an attempt to maintain positive working relationships. A breakdown of apology comments for commits,
issues, and pull requests is provided in Table 4.12.

Developers’ apology comments are 36 words (67%) longer than their other comments on average (Table 4.13).
Human errors in software engineering have a lasting impact, so this result makes sense—to improve software, devel-
opers’ apologies need to go beyond admitting that something went wrong, they should explain what went wrong and
how it can be addressed. An example of one such apology is included in Figure 4.10.

4If we consider the 8.8% false positive rate from manual apology annotation (see Section 4.2.3.1), then the total number of
apology comments in our dataset drops to about 2.5 million comments (2.9%)—which is still an apology lemma density over
one thousand times greater than in the Switchboard corpus.

5We must note that direct comparison with the Switchboard corpus is dubious given the difference in annotation schemes
and conversational context; the different rate of apologies among software engineers is intriguing and should be explored in
future work.
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Table 4.13: Word Count Statistics for Developer Comments (Classifier v3)

Word Count
# Comments Average Median Minimum Maximum

Apology 2,791,846 91.32 40 1 130,140
Non-Apology 85,848,391 54.68 22 1 257,291

Table 4.14: Apology Lemma Frequency in Developer Comments

Lemma Frequency Lemma Frequency Lemma Frequency

admit 48,447 excuse 33,645 mistaken 24,467
afraid 127,040 fault 141,156 oops 69,965
apology 137,040 forgive 16,957 pardon 8,331
apologize/se 64,111 forgot 65,008 regret 7,502
blame 60,616 mistake 291,384 sorry 1,923,163

Table 4.14 lists the frequencies of apology lemmas in our dataset and shows that sorry is by far the most common
apology lemma, which makes sense since sorry appears in example apologies in 11 of the 12 linguistics papers we
reviewed for apology lemmas. After sorry, the most frequent apology lemmas are mistake, fault, apology, and afraid.

4.2.3.3 Developers’ Self-Admitted Human Errors

RQ 6: Which human errors from literature do developers admit to? Which human errors from developer apolo-
gies do not exist in literature?

Developers apologized for 15 categories of human error that were not previously documented in research
related to human errors in software engineering. Developers primarily apologize for mistakes, which is
inconsistent with findings from previous literature.

We followed the categorization process outlined in Section 4.2.2.3 with a random sample of comments containing
at least one apology lemma. We reviewed 332 apology comments resulting in 200 categorized human errors. The
other 132 comments we reviewed could not be categorized, either because the comment author was a bot, the apology
lemma(s) present were a false positive, the developer was not apologizing for a development mistake (e.g. apologizing
for making a joke), the comment was deleted, the authoring user was deleted, or there simply was not enough context
for us to accurately categorize the human error experienced.

While categorizing human errors, we identified 11 new categories of human error in the first 50 human error
categorizations, three new human error categories in the second 50, and only one new category in the third 50. No
new categories were created during the fourth set of 50.

We identified 15 human error categories that were not documented in previous research related to human errors in
software engineering. These categories are described in Table 4.16. A comparison of software engineers’ human errors
from literature, from apologies on GitHub, and their overlap is included in Figure 4.11. We found that developers
primarily admit to mistakes (66%), followed by slips (23%) and lapses (11%). As outlined in Table 4.15, the most fre-
quent among developers’ self-admitted human errors are Time Management Errors (AM1), Overlooking Documented
Information (LS2), Code Logic Errors (LM1), External Communication Errors (LM5), Working with Outdated
Source Code (AL1), Wrong Assumption Errors (LM3), Workflow Order Errors (AM7), and Internal Communica-
tion Errors (LM4). For two self-admitted slips, we did not have enough context to determine what kind of slip
occurred.

The finding that developers primarily apologize for mistakes differs from previous findings that 49% of soft-
ware engineers’ human errors are slips, 17% are lapses, and 34% are mistakes [15]. Additionally, three cate-
gories of human error from T.H.E.S.E.—Forgetting to Fix a Defect (LL1), Forgetting to Remove Development
Artifacts (LL2), and Incomplete Domain Knowledge (LM2)—were not applicable to the developer apologies we
categorized, further suggesting that developers experience more mistakes than previously thought.

Our findings are also different from James Reason’s finding that only 39% of human errors are mistakes [298].
We believe this difference is due to the highly plan-oriented nature of software engineering. While implementation is
a key component of software engineering, the discipline as a whole depends heavily on effective planning and sticking
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“I would not disable the test if flip is not present, but rather replace old line 167 by plot(m(end:-1:1)-
0.5,’x–’);. Sorry for not noticing that flip is not widely available. This works in octave (just checked in
ancient 3.2.4) [284].”

Figure 4.10: Example Developer Apology from GitHub
This developer is apologizing for being unaware that a library feature is not standard.
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Figure 4.11: Venn Diagram of Human Errors from Literature and Developers’ Apologies
Left: literature. Right: developers’ apologies. See Table 4.6 and Table 4.16 for Human Error Identifiers.

to plans. Since mistakes are planning failures, it would make sense that a discipline heavily oriented around planning
experiences more planning failures than attentional (i.e. slips) or memory (i.e. lapses) failures.

4.2.4 Limitations
When working with natural language, one concern is whether the data represents real human discourse. We chose
to collect developers’ conversations from GitHub, since pull requests (i.e. modern code review [113, 338]) and issue
tracking are representative of open source software engineering activities. We also collected a large dataset (88.6
million developer comments) to ensure that our sample size for developer comments (especially apology comments)
was ample. Additionally, we targeted conversations related to commonly used programming languages to ensure that
our dataset contains typical developer conversations. While there are comments made by bots in our dataset, we took
care when manually annotating apologies and categorizing human errors to identify and disregard bot comments.
Further methodological details on how we collected our data can be found in Section 4.2.2.1.

We assessed our automatic apology classification in two ways. First, two researchers manually annotated a subset
of apology comments using a well-defined and shared definition for apologies (see Section 4.2.2.2). Our very high
inter-annotator agreement (Cohen’s κ = 0.94) reflects this. Second, we evaluated our apology classifier using the
well-known Switchboard corpus, which has apology annotations. In both cases, we examined false positives and false
negatives, and had clear directions for improving our apology classification model. Even adjusting for our model’s
high false positive rate, our reported results remain valid: Of the 332 apology comments reviewed during human error
categorization, 11 (3%) were manually identified as bots, and ten of those 11 bot comments were manually identified
as apologies. If this percentage holds true throughout the entire dataset, then 77,426 out of 2.7 million apology
comments were posted by bots, changing the percentage of apologies in our dataset to 2.82% (down from 2.91%),
which is still over one thousand times greater than the 0.0004% of apologies found in the Switchboard corpus.

A high quality taxonomy should be unambiguous, complete, and sound/logical [192]. To reduce ambiguity,
we defined a clear and rigid process for human error categorization in Section 4.2.2.2. Our categorization process
handles special cases, such as using comment metadata to identify comments made by bots and users, and identifying
false positive apology lemmas in quoted text, URLs, and email signatures. To address completeness, we reached
a reasonable level of convergence by categorizing human errors for sets of 50 developer apologies until we were
able to categorize 50 self-admitted human errors without creating a new category (as discussed in Section 4.2.3.3).
Finally, our human error categories are both inspired by James Reason’s well-established and well-defined Generic
Error-Modelling System (GEMS) framework, and informed by previous findings in literature.
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Table 4.15: Frequency of Self-Admitted Human Errors from Manual Categorization

Slips Lapses Mistakes
ID Frequency ID Frequency ID Frequency ID Frequency

LS2 22 AL1 15 AM1 29 AM5 7
AS1 9 LL3 3 LM1 21 LM7 5
AS3 7 AL3 2 LM5 17 AM2 3
AS4 3 AL2 1 LM3 14 AM6 3
AS2 2 AL4 1 AM7 12 AM4 2
Slip 2 LL1 0 LM4 10 LM6 1
LS1 1 LL2 0 AM3 8 LM2 0

We note that this study is based on open source software development discussions, and we do not differentiate
between paid and unpaid developers; the results presented in Section 4.2.3 may not generalize to closed source software
engineering. Getting access to closed source software development artifacts would have been challenging, and the
nature of workplace environments and social constraints may not encourage self-admission of errors.

We must point out that plenty of self-admitted human errors exist beyond what is recorded in apologies, and
plenty of human errors are not self-admitted. This is a matter of our intended scope, not a limitation of this study
per se. We hope future researchers understand this when expanding upon this study.

4.2.5 Summary
In this section, we collected 88.6 million developer comments from commits, issues, and pull requests on GitHub.
Using apology lemmas identified from linguistics literature, we created and tested an automated apology classification
process. Finally, we categorized developers’ self-admitted human errors using categories from Version 1 of T.H.E.S.E.
Our key findings are:

• Apology lemmas can reliably identify developers’ apologies in software engineering artifacts, with near perfect
recall (99%) and high F1 score (87%)

• Developers apologize frequently, with an apology lemma density over one thousand times greater than speakers
in the Switchboard corpus

• Developers’ apologies are, on average, 36 words (67%) longer than their other comments

• Developers primarily apologize for mistakes (as opposed to slips and lapses), which differs from previous findings
by Anu et al. [15] and Reason [298]

• We identified 15 categories of human error in software engineering not previously documented in literature

This study is an important step in examining developers’ apologies and self-admitted human errors in software
engineering artifacts. Our findings have revealed an incomplete understanding of software engineers’ human errors
by showing that human errors documented in controlled experiments (i.e. literature) are typically not representative
of developers’ self-admitted human errors.
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Table 4.16: Human Errors in Software Engineering Identified from Developers’ Apologies

ID Category/Definition

Slips

AS1 Typos & Misspellings: Typos and misspellings may occur in code comments, or when typing
the name of a variable, function, or class.

AS2 Multitasking Errors: Errors resulting from multitasking.

AS3
Hardware Interaction Errors: Attention failures while using computer peripherals, such as
mice, keyboard, and cables. Examples include copy/paste errors, clicking the wrong button, using
the wrong keyboard shortcut, and incorrectly plugging in cables.

AS4 Overlooking Proposed Code Changes: Errors resulting from lack of attention during for-
mal/informal code review.

Lapses

AL1 Working With Outdated Source Code: Forgetting to git-pull (or equivalent in other version
control systems), or using an outdated version of a library.

AL2 Forgetting an Import Statement: Forgetting to import a necessary library, class, variable, or
function, or forgetting to include arguments in a function call.

AL3 Forgetting Previous Development Discussion: Errors resulting from forgetting details from
previous development discussions.

AL4 Forgetting to Implement a Feature: Forgetting to implement a required feature.
Mistakes

AM1 Time Management Errors: Errors resulting from a lack of time management, such as failing
to allocate enough time for the implementation of a feature.

AM2
Inadequate Testing: Failure to implement necessary test cases, failure to consider necessary
test inputs, or failure to implement a certain type of testing (e.g. unit, penetration, integration)
when it is necessary.

AM3 Incorrect/Insufficient Configuration: Errors in configuration of libraries/frameworks/envi-
ronments or errors related to missing configuration options.

AM4 Internationalization/String Encoding Errors: Errors related to internationalization and/or
string/character encoding.

AM5 Inadequate Experience Errors: Errors resulting from inadequate experience with a language,
library, framework, or tool.

AM6
Insufficient Tooling Access Errors: Errors resulting from not having sufficient access to neces-
sary tooling. Examples include not having access to a specific operating system, library, framework,
hardware device, or not having the necessary permissions to complete a development task.

AM7
Workflow Order Errors: Errors resulting from working out of order, such as implementing
dependent features in the wrong order, implementing code before the design is stabilized, releasing
code that is not ready to be released, or skipping a workflow step.



Chapter 5

Taxonomy of Human Errors in Software
Engineering (T.H.E.S.E.)

We begin this chapter by summarizing how T.H.E.S.E. was created. Then, we discuss an evaluation of T.H.E.S.E.
and human error reflection based on human perceptions in a user study (Section 5.2), and a process for refining
T.H.E.S.E. category definitions using semantic similarity (Section 5.3).

5.1 Creation
As we discussed in Chapter 4, Version 1 of T.H.E.S.E. was created by systematically identifying research related
to human errors in software engineering, and aggregating those human errors into categories of slips, lapses, and
mistakes. Version 1 of T.H.E.S.E. (shown in Table 4.6) consists of 12 categories of human error (2 slips, 3 lapses, and
7 mistakes). Next, we examined software engineers’ self-admitted human errors in GitHub comments, and identified
15 new categories of human error (4 slips, 4 lapses, and 7 mistakes) that were not previously documented in literature
(see Table 4.16). To begin this chapter, we present Version 2 of T.H.E.S.E. in Table 5.1, which is a combination
of those 27 human errors, with the addition of three general catch-all categories (one each for slips, lapses, and
mistakes).

5.2 Evaluation of T.H.E.S.E. by Software Engineering Students

5.2.1 Motivation & Research Questions
Software engineers must balance complex development activities spanning multiple engineering phases (e.g. re-
quirements elicitation, design, implementation, testing, deployment, and maintenance) while working under strict
constraints. Despite their best efforts, software engineers experience human errors. Human error theory from psy-
chology has been studied in the context of software engineering, but human error assessment has yet to be adopted
as part of typical post-mortem activities in software engineering.

Anu et al. [16] created and evaluated a Human Error Taxonomy (HET) aimed at requirements engineering.
Graduate software engineering students inspected software requirements documents for faults. Students found, on
average, 233% more faults [16] upon re-examining the requirements documents after receiving human error training.
In a second study, students were able to identify more faults in requirements documents using HET than with
traditional fault-checklists [19]. These are promising results, but the HET only addresses human errors during the
requirements phase.

T.H.E.S.E. aggregates 30 categories (shown in Table 5.1) of human error spanning slips, lapses, and mistakes
(failures of attention, memory, and planning, respectively) from human error literature and software engineering
artifacts on GitHub. The broad goal of T.H.E.S.E. is to help software engineers confront and reflect on their human
errors during all phases of software engineering, but the effectiveness of T.H.E.S.E. as a learning tool has yet to be
assessed.

Our goal in this study was to evaluate T.H.E.S.E. as a learning tool for software engineering students. To that
end, we conducted a user study involving five undergraduate software engineering students at the Rochester Institute

54
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Table 5.1: Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) Version 2

ID Source Category

Slips
S01 Artifacts (Section 4.2) Typos & Misspellings
S02 Literature (Section 4.1) Syntax Errors
S03 Literature (Section 4.1) Overlooking Documented Information
S04 Artifacts (Section 4.2) Multitasking Errors
S05 Artifacts (Section 4.2) Hardware Interaction Errors
S06 Artifacts (Section 4.2) Overlooking Proposed Code Changes
S07 — General Attentional Failure
Lapses
L01 Artifacts (Section 4.2) Forgetting to Implement a Feature
L02 Literature (Section 4.1) Forgetting to Fix a Defect
L03 Literature (Section 4.1) Forgetting to Remove Development Artifacts
L04 Artifacts (Section 4.2) Working with Outdated Source Code
L05 Artifacts (Section 4.2) Forgetting an Import Statement
L06 Literature (Section 4.1) Forgetting to Save Work
L07 Artifacts (Section 4.2) Forgetting Previous Development Discussion
L08 — General Memory Failure
Mistakes
M01 Literature (Section 4.1) Code Logic Errors
M02 Literature (Section 4.1) Incomplete Domain Knowledge
M03 Literature (Section 4.1) Wrong Assumption Errors
M04 Literature (Section 4.1) Internal Communication Errors
M05 Literature (Section 4.1) External Communication Errors
M06 Literature (Section 4.1) Solution Choice Errors
M07 Artifacts (Section 4.2) Time Management Errors
M08 Artifacts (Section 4.2) Inadequate Testing
M09 Artifacts (Section 4.2) Incorrect/Insufficient Configuration
M10 Literature (Section 4.1) Code Complexity Errors
M11 Artifacts (Section 4.2) Internationalization/String Encoding Errors
M12 Artifacts (Section 4.2) Inadequate Experience Errors
M13 Artifacts (Section 4.2) Insufficient Tooling Access Errors
M14 Artifacts (Section 4.2) Workflow Order Errors
M15 — General Planning Failure

NOTE: See Table 4.6 and Table 4.16 for category definitions.
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of Technology (RIT). In two experimental phases spanning 17 weeks total, participants self-reported and categorized
(according to T.H.E.S.E.) human errors that they experienced during software development. We conducted weekly
interviews and collected survey responses to evaluate T.H.E.S.E. We considered the following research questions:

RQ 7: Ease of Use
How clear, unambiguous, and simple is T.H.E.S.E. for software engineers to use?

RQ 8: Comprehensiveness
How well does T.H.E.S.E. cover human errors in software engineering?

RQ 9: Assessment Value
How well does T.H.E.S.E. facilitate human error reflection?

5.2.2 User Study Methodology
Our user study was conducted in two experimental phases. Phase 1 spanned four weeks from April 7, 2022 to May
5, 2022; Phase 2 spanned 13 weeks from September 9, 2022 to December 9, 2022.

5.2.2.1 Participants & Training

Participants in this study were undergraduate software engineering students at RIT. Demographic information was
not collected. Participants were not aware of whom else was participating in the study. Participants will be referred
to as Participant 1-5 throughout this work. Participants 1-2 participated in Phase 1; Participants 2-51 participated
in Phase 2. Participants in Phase 1 were student employees of Dr. Meneely (this dissertation author’s advisor) and
thus were compensated at their normal hourly rate. Participants in Phase 2 were compensated with a $150 Amazon
gift card2 upon completion of the phase.

Each participant received one hour of human error training facilitated by the author of this dissertation. During
training, the facilitator introduced participants to the concept of human error, emphasizing that everyone experiences
human error [320] and that human errors are valuable learning opportunities [34, 199]. Training continued with (1)
an introduction to slips, lapses, and mistakes, and (2) an introduction to T.H.E.S.E. and its categories. Participants
were given example human errors with categories already labeled, and some practice human errors without labels.
Participants worked through the steps to categorize human errors according to T.H.E.S.E. with the training facilitator
and were given ample opportunity to ask questions.

5.2.2.2 Weekly Interviews

Following training, participants were tasked with documenting and reflecting on their human errors each week, leading
up to a weekly interview. Throughout each week, participants documented the human errors that they experienced
using a digital human error reporting form. In addition to the questions shown in Figure 5.1, the human error reporting
form also displayed human error definitions and T.H.E.S.E. category definitions. During the weekly interviews, the
study facilitator went through the participants’ documented human errors to ask the follow-up questions shown in
Figure 5.2. Weekly interviews were recorded for note-taking purposes.

5.2.2.3 Final Survey

After the final weekly interview, participants were given a final survey, in which all responses were anonymous. The
final survey questions are shown in Figure 5.3, with questions (1), (2), (3), and (9) being answered on a Likert
scale (strongly agree, somewhat agree, neither agree nor disagree, somewhat disagree, strongly disagree). Note that
Participant 2 took the Phase 2 version of the final survey; they did not take the final survey at the end of Phase 1.

5.2.2.4 Phase 2 Improvements

After conducting Phase 1, we made improvements based on feedback from participants and our observations.

• Participants in Phase 1 found it difficult to answer Question 6 in Figure 5.2; for Phase 2, participants were
able to see all of their previous submissions in a spreadsheet while answering this question.

1Participant 2 participated in both phases
2Participant 4 only participated in the first half of Phase 2 due to academic obligations, and thus was compensated with a

$75 Amazon gift card.
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1. Please briefly describe the human error that you experienced.

2. If the human error you experienced resulted in a defect that was committed, please provide a link
(or Git commit hash) to the commit below.

3. Is your human error a slip, lapse, or mistake?

4. Now, please examine the Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) and
choose the specific human error that most accurately describes the human error you experienced.
If you experienced multiple human errors, please submit this form once for each human error.

5. If there are other categories of human error that also describe the human error that you experi-
enced, please note them here.

6. If you chose a “General” or “Other” category in Question 4, this question is required. Do you
believe there is a missing human error category that better describes the human error that you
experienced? If yes, please describe it below.

7. On a scale of 1 (not at all confident) to 5 (completely confident), how confident are you in your
classification in the previous question?

8. Do you have any additional comments about this human error?

Figure 5.1: Human Error Reporting Form
Participants submitted a Google Form with these questions once per human error experienced. Human
error type definitions and category descriptions were provided directly in the Google Form for quick
reference. Questions 1, 2, 5, 6, and 8 were open ended. Questions 3 and 4 were multiple choice.
Question 7 was answered on a 5-point Likert scale from not-at-all-confident to completely-confident.

Per Human Error:

1. Can you provide a little more detail about this human error?

2. Can you walk me through your process for categorization?

3. Was this human error particularly time consuming?

4. What might the consequences have been if this human error was not discovered?

5. How could this human error be avoided in the future?

In General:

6. How were the human errors you experienced this week different from or similar to previous weeks?

7. Did you experience any human errors that you could not categorize using T.H.E.S.E.? How would
you categorize them?

8. Did you find yourself using human error terminology this week?

9. Phase 1: Did you have any difficulties that were not related to human error?
Phase 2: Did you find yourself thinking in terms of human error as you experienced them, or
was that a more reflective process?

10. Do you have any comments, questions, or feedback for me?

Figure 5.2: Weekly Interview Questions
Each week, participants were asked questions 1-5 for each human error that they reported, and then
asked questions 6-10 in a general context. Participants in Phase 1 found Question 9 confusing, so this
question was replaced for Phase 2. All questions were open ended.
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1. This research project...

(a) was engaging.
(b) had clear instructions.
(c) enhanced my understanding of my own human errors.
(d) involved a reasonable time commitment.
(e) was a valuable learning experience.
(f) enhanced my understanding of human errors in SE.
(g) reinforced theoretical concepts related to human error.
(h) involved a useful human error reporting form.
(i) would benefit other SE students.
(j) involved meaningful weekly discussions.

2. The taxonomy...

(a) had clear descriptions and examples.
(b) was simple to use for classifying my human errors.
(c) was general enough to apply to all SE phases.
(d) led to meaningful reflection on my human errors.
(e) made it easy to organize and confront my human errors.
(f) would be a beneficial tool for professional software engineers.
(g) had categories that adequately described my human errors.
(h) led to unambiguous classifications.
(i) was confusing.
(j) was overwhelming.

3. The taxonomy adequately covers potential human errors during...

(a) software requirements engineering.
(b) software design.
(c) software implementation.
(d) software testing.
(e) software deployment.
(f) software maintenance.

4. Please elaborate on your answers in the previous question.
5. Which type of human error (i.e. slips, lapses, or mistakes) do you believe has the most impact (i.e. consequence) on

a software project and why?
6. What strategies, activities, processes, or tools would you recommend for identifying and/or preventing slips? Which

strategy, activity, process, or tool would you say can best identify and/or prevent most slips? Please be specific.
7. What strategies, activities, processes, or tools would you recommend for identifying and/or preventing lapses? Which

strategy, activity, process, or tool would you say can best identify and/or prevent most lapses? Please be specific.
8. What strategies, activities, processes, or tools would you recommend for identifying and/or preventing mistakes?

Which strategy, activity, process, or tool would you say can best identify and/or prevent most mistakes? Please be
specific.

9. Based on your experience during this research project, please indicate your level of agreement with the following
statements.

(a) Human errors in SE typically fall into one category.
(b) Human errors in SE often span multiple categories.
(c) One human error in SE can lead to others.
(d) I can usually identify slips as they occur.
(e) I can usually identify lapses as they occur.
(f) I can usually identify mistakes as they occur.

10. If multiple developers experienced the same human error, do you believe they would place it into the same category?
11. Please explain your answer to the previous question.
12. Do you believe that assessing human errors is a beneficial activity for software engineers?
13. Please explain your answer to the previous question.
14. Please explain what you learned about your own human errors during this project.
15. Please describe whether or not you feel like you can better avoid your own human errors in the future.
16. Please describe any difficulties you had while learning about human errors (slips, lapses, and mistakes) or while using

T.H.E.S.E. to classify your human errors.
17. Do you have any recommendations for improving T.H.E.S.E.?
18. If this research project were repeated (in a class, for example), what changes would you like to see?
19. Would you be interested in seeing your human errors in some aggregate form? Please describe what form would be

useful for you.
20. Do you have any additional comments, concerns, or suggestions that you would like to share?

Figure 5.3: Final Survey Questions
At the end of the user study, participants completed this survey. Questions 3-9 were added for Phase
2. Questions 1, 2, 3, and 9 were answered on a five-point Likert scale (strongly agree, somewhat agree,
neither agree nor disagree, somewhat disagree, strongly disagree). Questions 10 and 12 were multiple
choice (Yes / No / Maybe). All other questions were open ended.
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Table 5.2: Summary of Human Errors Reported by User Study Participants

Phase 1 Phase 2 Phase 1 Phase 2
P1 P2 P2 P3 P4 P5 Total P1 P2 P2 P3 P4 P5 Total

Slips Mistakes
S01 — — — 1 1 14 16 M01 1 3 2 — 1 13 20
S02 — 1 — 4 — — 5 M02 — — — 1 — 1 2
S03 1 2 — 2 — 4 9 M03 — 4 3 1 — 10 18
S04 — 1 — — — — 1 M04 1 — — 3 — 1 5
S05 — 1 — — — 10 11 M05 — — — 1 — 1 2
S06 — — — — — — 0 M06 2 1 1 — — — 4
S07 1 1 1 — 1 3 7 M07 1 — — 3 — 5 9

NEW 1 — — — — 1 2 M08 — — — — — — 0
Lapses M09 — 1 — 1 2 2 6
L01 — 2 — — — 1 3 M10 3 — — — — — 3
L02 1 — — — — 1 2 M11 — — — — — 1 1
L03 4 1 — — — 1 6 M12 — — — 2 2 6 10
L04 1 — — 1 — — 2 M13 — — — 2 — 1 3
L05 — 1 1 — — — 2 M14 — — — 1 — 2 3
L06 1 — — — — 2 3 M15 1 — — — — — 1
L07 — — — — — 1 1 Other
L08 — — — 1 — 4 5 — — — — — — 0

• Participants found Question 9 in Figure 5.2 confusing, so we opted for a different question in Phase 2: Did you
find yourself thinking in terms of human error as you experienced them, or was that a more reflective process?

• For Phase 2 we implemented a special portion for participants’ final weekly interview. After completing the
normal weekly interview process, participants were shown a spreadsheet of all of the human error categories from
T.H.E.S.E. that they did not document human errors for, and were asked (1) whether they have experienced
that human error at any point during their software engineering career, and (2) if not, if they believe it is
possible for software engineers to experience that human error.

• Questions 3-9 in Figure 5.3 were added for Phase 2 to collect additional information.

• Question 8 in Figure 5.1 was added for Phase 2.

5.2.2.5 Institutional Review Board Approval

Institutional Review Board approval for this research involving human subjects was granted by the Human Subjects
Research Office at the Rochester Institute of Technology on March 18, 2022. The full form is provided in Appendix B.
Participants read and signed an informed consent (see Appendix C) form acknowledging that (1) their participation
was entirely voluntary and had no impact on their grades, and (2) their survey responses would be published in
an anonymized format. All data released from our user study has been anonymized by replacing any personally
identifiable information with participant identifiers. Video recordings taken during weekly interviews will never be
released.

5.2.3 Results
Results for Likert and multiple choice questions in the final survey (Fig 5.3) are shown in Table 5.3. Responses
to open-ended questions are included in Appendix E. Participants reported a total of 162 human errors (38 during
Phase 1; 124 during Phase 2). Categories of human error reported are shown in Table 5.2, including a new category
(discussed in Section 5.2.3.1). While discussing results, “agree” and “disagree” should be read as “somewhat or strongly
agree” and “somewhat or strongly disagree”, respectively.
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5.2.3.1 Ease of Use

RQ 7: How clear, unambiguous, and simple is T.H.E.S.E. for software engineers to use?

Participants indicated that T.H.E.S.E. has clear definitions/examples and makes it easy to organize
and confront their human errors.

All participants agreed that T.H.E.S.E. (1) has clear definitions and examples, (2) is simple to use for classifying
human errors, and (3) makes it easy to organize and confront their human errors. All participants disagreed with the
notion of T.H.E.S.E. being confusing or overwhelming. When asked if T.H.E.S.E. led to unambiguous classifications,
two participants agreed, while three neither agreed nor disagreed. One participant anonymously indicated that
developers’ “perception of the situation might lead to different placements” of human errors.

The results indicate that T.H.E.S.E. is generally easy to use, but there may be some ambiguity in the human
error reflection process due to developers’ perceptions and experiences.

5.2.3.2 Comprehensiveness

RQ 8: How well does T.H.E.S.E. cover human errors in software engineering?

Participants indicated that T.H.E.S.E. covers all phases of software engineering, but experienced one
category of human error not captured in T.H.E.S.E.

All participants agreed that T.H.E.S.E. has categories that adequately described their human errors. 4/5 par-
ticipants agreed (one neither agreeing nor disagreeing) that T.H.E.S.E. is general enough to apply to all software
engineering activities, but that T.H.E.S.E. does not necessarily adequately cover the software design and maintenance
phases.

During Phase 1, one of the 38 reported human errors could not be placed into an existing category:

Participant 1: “Using a hard-coded value for a width property when one was already set. The width
property... was like a calculated value, like based on the actual size of the page... so that calculated value
was like 365 and that would have been better for the page, and then a few places I just forgot about it
totally and I said 350 and it was just like hardcoded in there.”

As a result, we created a new slip category: Overlooking Existing Functionality: Errors resulting from
overlooking existing functionality, such as reimplementing variables, functions, and classes that already exist, or
reimplementing functionality that already exists in a standard library.

Overlooking Proposed Code Changes (S06) and Inadequate Testing (M08) were not experienced during the
user study, but participants indicated that these human errors could be experienced by other software developers.
The results indicate that T.H.E.S.E. is mostly comprehensive, but there may be some human error edge cases that
are not covered.

5.2.3.3 Assessment Value

RQ 9: How well does T.H.E.S.E. facilitate human error reflection?

Participants indicated that human error assessment assisted by T.H.E.S.E. is a beneficial software engi-
neering activity that leads to meaningful human error reflection.

All participants agreed that (1) T.H.E.S.E. leads to meaningful reflection of their human errors and (2) human
error assessment with T.H.E.S.E. enhanced their understanding of human errors in software engineering and of their
own human errors. 4/5 participants agreed (one neither agreeing nor disagreeing) that (1) T.H.E.S.E. would be a
beneficial tool for professional software engineers, (2) human error assessment would benefit other software engineering
students, (3) human error assessment with T.H.E.S.E. is a valuable learning experience, and (4) the weekly discussions
were meaningful. 3/5 participants believe that assessing human errors in software engineering is beneficial, with the
other 2/5 indicating that human error assessment could be costly in terms of time.

These results indicate that human error assessment assisted by T.H.E.S.E. is a beneficial learning experience for
software engineering students and may also provide benefit to professional software developers.
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Table 5.3: Final Survey Responses for Likert and Yes/No/Maybe Questions

Survey Respondent
Q# A B C D E

(1-a) Somewhat Agree Somewhat Agree Somewhat Agree Strongly Agree Strongly Agree
(1-b) Strongly Agree Strongly Agree Strongly Agree Strongly Agree Strongly Agree
(1-c) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(1-d) Strongly Agree Somewhat Agree Somewhat Agree Strongly Agree Strongly Agree
(1-e) Neither Strongly Agree Somewhat Agree Strongly Agree Somewhat Agree
(1-f) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(1-g) Strongly Agree Neither Strongly Agree Strongly Agree Somewhat Agree
(1-h) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(1-i) Somewhat Agree Neither Somewhat Agree Somewhat Agree Strongly Agree
(1-j) Neither Somewhat Agree Somewhat Agree Strongly Agree Strongly Agree
(2-a) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(2-b) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Somewhat Agree
(2-c) Strongly Agree Neither Somewhat Agree Strongly Agree Somewhat Agree
(2-d) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(2-e) Strongly Agree Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(2-f) Strongly Agree Somewhat Agree Somewhat Agree Neither Strongly Agree
(2-g) Strongly Agree Strongly Agree Strongly Agree Strongly Agree Somewhat Agree
(2-h) Somewhat Agree Neither Neither Strongly Agree Neither
(2-i) Strongly Disagree Somewhat Disagree Somewhat Disagree Strongly Disagree Somewhat Disagree
(2-j) Strongly Disagree Somewhat Disagree Somewhat Disagree Strongly Disagree Somewhat Disagree
(3-a) — Neither Strongly Agree Strongly Agree Somewhat Agree
(3-b) — Somewhat Disagree Strongly Agree Somewhat Agree Strongly Agree
(3-c) — Strongly Agree Strongly Agree Strongly Agree Somewhat Agree
(3-d) — Strongly Agree Strongly Agree Somewhat Agree Strongly Agree
(3-e) — Somewhat Agree Strongly Agree Strongly Agree Strongly Agree
(3-f) — Somewhat Agree Strongly Agree Somewhat Disagree Strongly Agree
(9-a) — Somewhat Disagree Somewhat Disagree Neither Somewhat Disagree
(9-b) — Neither Strongly Agree Somewhat Agree Somewhat Agree
(9-c) — Strongly Agree Strongly Agree Strongly Agree Strongly Agree
(9-d) — Somewhat Agree Strongly Agree Somewhat Disagree Somewhat Agree
(9-e) — Neither Strongly Agree Somewhat Agree Neither
(9-f) — Strongly Disagree Strongly Agree Strongly Agree Somewhat Agree
(10) Yes Maybe Yes Yes Maybe
(12) Yes Yes Maybe Maybe Yes
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5.2.4 Improvements to T.H.E.S.E.
In response to participant feedback, we updated T.H.E.S.E. to Version 3 (Table 5.4). These changes were made to
make category definitions more clear, provide more examples, and broaden the scope of Forgetting to Finish a
Development Task (L03). Specifically, we made the following changes:

• Identifier Changes:

– General Attentional Failure (S07) → General Attentional Failure (S08)

• New Categories:

– Overlooking Existing Functionality (S07) – Errors resulting from overlooking existing functionality,
such as reimplementing variables, functions, and classes that already exist, or reimplementing functionality
that already exists in a standard library.

• Name Changes:

– Forgetting to Implement a Feature (L01) → Forgetting to Finish a Development Task (L01)

• Definition Updates:

– Typos & Misspellings (S01) – Typos and misspellings may occur in code comments, documentation (and
other development artifacts), or when typing the name of a variable, function, or class. Examples include
misspelling a variable name, writing down the wrong number/name/word during requirements elicitation,
referencing the wrong function in a code comment, and inconsistent whitespace (that does not result in a
syntax error).

– Syntax Errors (S02) – Any error in coding language syntax that impacts the executability of the code.
Note that Logical Errors (e.g. += instead of +) are not Syntax Errors. Examples include mixing tabs and
spaces (e.g. Python), unmatched brackets/braces/parenthesis/quotes, and missing semicolons (e.g. Java).

– Overlooking Documented Information (S03) – Errors resulting from overlooking (internally and ex-
ternally) documented information, such as project descriptions, stakeholder requirements, API/library/-
tool/framework documentation, coding standards, programming language specifications, bug/issue reports,
and looking at the wrong version of documentation or documentation for the wrong project/software.

– Forgetting to Finish a Development Task (L01) – Forgetting to finish a development task. Examples
include forgetting to implement a required feature, forgetting to finish a user story, and forgetting to deploy
a security patch.

– Forgetting to Remove Development Artifacts (L03) – Forgetting to remove debug log files, dead code,
informal test code, commented out code, test databases, backdoors, etc. Examples include leaving unnec-
essary code in the comments, and leaving notes in internal development documentation.

– Code Logic Errors (M01) – A code logic error is one in which the code executes (i.e. actually runs), but
produces an incorrect output/behavior due to incorrect logic. Examples include using incorrect operators
(e.g. += instead of +), erroneous if/else statements, incorrect variable initializations, problems with
variable scope, and omission of necessary logic.

– Incorrect/Insufficient Configuration (M09) – Errors in configuration of libraries/frameworks/en-
vironments or errors related to missing configuration options. Examples include misconfigured IDEs,
improper directory structure for a specific programming language, and missing SSH keys.

5.2.5 Limitations
The main limitations of this study are the small number of participants and their relative inexperience. To mitigate
the smaller number of participants, we opted for a longer observation experiment so that we could capture a greater
sampling of their process. For the experience issue, these students are part of a program that requires cooperative
education, so they had some industry experience in the field of software engineering before this study. Finally, James
Reason noted that “a taxonomy is usually made for a specific purpose, and no single scheme is likely to satisfy all
needs [298]”—a taxonomy such as T.H.E.S.E. is likely never to be fully comprehensive, as humankind never stops
being creative in its missteps.



CHAPTER 5. TAXONOMY OF HUMAN ERRORS IN SOFTWARE ENGINEERING (T.H.E.S.E.) 63

5.2.6 Summary
In this work, our goal was to evaluate T.H.E.S.E. as a learning tool for software engineering students. Over 17
weeks, we conducted two experimental phases in which five software engineering students documented, categorized
(according to T.H.E.S.E.), and reflected on their human errors. We conducted weekly interviews and collected survey
responses from participants. All participants agree that (1) T.H.E.S.E. has clear definitions and makes it easy to
organize and confront their human errors, (2) categories in T.H.E.S.E. adequately describe their human errors and
are general enough to apply to all software engineering activities, and (3) human error assessment facilitated by
T.H.E.S.E. was a valuable learning experience which led to meaningful human error reflection, and would benefit
other software engineering students and professional software developers. The key contributions of this research are
as follows:

• Evaluation of T.H.E.S.E. as a learning tool for software engineering students

• Identification of a new category of human error in software engineering not previously documented

• Anonymized human error reports and insights from software engineering students

5.3 Semi-Automated Refinement of T.H.E.S.E. Categories

5.3.1 Motivation & Research Questions
Results from our user study (Section 5.2.3) are promising, indicating that human error assessment with T.H.E.S.E. is a
valuable learning experience for software engineers. However, one challenge for adoption of new processes/technologies
is ease of use [74, 343]3. While participants indicated that T.H.E.S.E. is easy to use, they also indicated that there
may be some ambiguity in human error categorization using T.H.E.S.E., possibly due to software developers’ personal
perceptions and experiences.

To address potential ambiguity in T.H.E.S.E. category definitions, we used state-of-the-art Sentence-BERT
models—models capable of representing sentence-level meaning in natural language—to determine where our hu-
man error data shared a semantic dissimilarity to T.H.E.S.E. category definitions. When such a dissimilarity was
found, we examined the misclassified data and circled back to improve our category definitions. From a modeling
standpoint, this resulted in a model that is overfit to the data. However, from a T.H.E.S.E. standpoint, we have
improved the completeness of our definitions. For example (inspired by our results in Section 5.2.4), a general purpose
Sentence-BERT model might not see a strong similarity between sentences containing the words “whitespace” and
“typo” in similar contexts, so this methodology would lead us to add “whitespace” to our improved definition for
Typos & Misspellings (S01). The automated portion of this study is in finding dissimilarities, and the manual
portion is in refining the category definitions, hence our “semi-automated” approach. Our aim was not to train a
perfect classifier, but instead to use semantic similarity to guide improvement of T.H.E.S.E. category descriptions.

However, this experiment also provided us an opportunity to explore whether automated human error catego-
rization is feasible, which could improve the likelihood of software engineers adopting human error reflection with
T.H.E.S.E. and provide a valuable asset to software quality tools. Our research questions are as follows:

RQ 10: Category Ambiguity
How well can ambiguity of T.H.E.S.E. category descriptions be reduced based on semantic similarity?

RQ 11: Assisted Categorization
How useful is Sentence-BERT for refining human error definitions?

3Agarwal et al. [2] explored this notion in the context of software engineering, but did not find a statistically significant
correlation between ease of use and software engineers’ attitude toward using a new programming language. However, they
noted that it is still important to consider ease of use for the adoption of new technologies.
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Table 5.4: Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) Version 3

ID Source Category

Slips
S01 Artifacts (Section 4.2) Typos & Misspellings
S02 Literature (Section 4.1) Syntax Errors
S03 Literature (Section 4.1) Overlooking Documented Information
S04 Artifacts (Section 4.2) Multitasking Errors
S05 Artifacts (Section 4.2) Hardware Interaction Errors
S06 Artifacts (Section 4.2) Overlooking Proposed Code Changes
S07 User Study (Section 5.2) Overlooking Existing Functionality
S08 — General Attentional Failure
Lapses
L01 Artifacts (Section 4.2) Forgetting to Finish a Development Task
L02 Literature (Section 4.1) Forgetting to Fix a Defect
L03 Literature (Section 4.1) Forgetting to Remove Development Artifacts
L04 Artifacts (Section 4.2) Working with Outdated Source Code
L05 Artifacts (Section 4.2) Forgetting an Import Statement
L06 Literature (Section 4.1) Forgetting to Save Work
L07 Artifacts (Section 4.2) Forgetting Previous Development Discussion
L08 — General Memory Failure
Mistakes
M01 Literature (Section 4.1) Code Logic Errors
M02 Literature (Section 4.1) Incomplete Domain Knowledge
M03 Literature (Section 4.1) Wrong Assumption Errors
M04 Literature (Section 4.1) Internal Communication Errors
M05 Literature (Section 4.1) External Communication Errors
M06 Literature (Section 4.1) Solution Choice Errors
M07 Artifacts (Section 4.2) Time Management Errors
M08 Artifacts (Section 4.2) Inadequate Testing
M09 Artifacts (Section 4.2) Incorrect/Insufficient Configuration
M10 Literature (Section 4.1) Code Complexity Errors
M11 Artifacts (Section 4.2) Internationalization/String Encoding Errors
M12 Artifacts (Section 4.2) Inadequate Experience Errors
M13 Artifacts (Section 4.2) Insufficient Tooling Access Errors
M14 Artifacts (Section 4.2) Workflow Order Errors
M15 — General Planning Failure

NOTE: See Table 4.6, Table 4.16, and Section 5.2.4 for category definitions.
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Table 5.5: Summary of Human Error Descriptions Used for Classification

Category Frequency Percentage Category Frequency Percentage

Slips 96 26.087% Mistakes 225 61.141%
S01 25 6.793% M01 41 11.141%
S02 6 1.630% M02 2 0.543%
S03 32 8.696% M03 32 8.696%
S04 2 0.543% M04 16 4.348%
S05 18 4.891% M05 19 5.163%
S06 3 0.815% M06 7 1.902%
S07 2 0.543% M07 39 10.598%
S08 9 2.446% M08 3 0.815%

Lapses 47 12.772% M09 14 3.804%
L01 4 1.087% M10 8 2.174%
L02 2 0.543% M11 3 0.815%
L03 6 1.630% M12 17 4.620%
L04 17 4.620% M13 6 1.630%
L05 3 0.815% M14 16 4.348%
L06 6 1.630% M15 1 0.272%
L07 4 1.087% Other 0 0.000%
L08 5 1.359%

5.3.2 Methodology
5.3.2.1 Data Selection

This study used two sources of data: (1) 200 self-admitted human errors from GitHub issues, pull-requests, and com-
ments, and (2) 168 human error descriptions4 from our user study (Section 5.2). These 368 human error descriptions
are summarized in Table 5.5. These human error descriptions were manually categorized according to T.H.E.S.E. as
described in Section 4.2.2.3 for the GitHub comments and Section 5.2.2.2 for the user study descriptions.

5.3.2.2 Model Selection

We computed Sentence-BERT embeddings for each human error type description—concatenated definitions for
T.H.E.S.E. categories corresponding to that type (target class)—and for each human error description in our dataset
(data point). We only consider human error types (i.e. slip, lapse, mistake) as target classes, since most human error
categories (e.g. S01, M01, etc.) have fewer than 10 examples in our dataset.

Next, we computed the cosine similarity between the Sentence-BERT embeddings for each data point and each
target class. The higher the cosine similarity between two Sentence-BERT embeddings, the closer their meaning. For
example, the human error description “I used just = in my conditional instead of ==. The IDE didn’t catch it. It
compiled, too.” has a cosine similarity of 0.47225 with the type description for mistakes.

We repeated this process for 21 pretrained Sentence-BERT models (shown in Table 5.8). We chose these models
because they were either “extensively evaluated for their quality to embedded [sic] sentences [302]”, had thousands of
downloads from HuggingFace, or were fine-tuned using software engineering adjacent (e.g. security) natural language.
The model that results in the highest F1 score for a target class was considered the best model for classifying that
target class. In total, we conducted 8 classification experiments (see Table 5.7) for 21 pretrained Sentence-BERT
models (168 different combinations). Experiments varied by three factors:

• Data: Experiments either used all 368 data points or only 168 human errors documented in our user study.
We examined results without apology comments because they tend to be less detailed than the human errors
documented in our user study.

4Participants only formally documented 162 human errors, but 6 additional human errors were informally reported by
Participant 4 in weekly interviews.

5Using the SB08 model.
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Table 5.6: Best Sentence-BERT Models for Classification Before and After Improving T.H.E.S.E. Definitions

Slips Lapses Mistakes
Before After Before After Before After

Model SB03 SB03 SB12 SB20 SB09 SB13
Median Precision 0.368 0.418 0.216 0.182 0.662 0.593
Median Recall 0.500 0.526 0.564 0.809 0.631 0.511
Median F1 0.455 0.475 0.318 0.295 0.638 0.550
Frequency in Dataset 96/368 47/368 225/368

Table 5.7: Summary of Classification Experiments

Data Configurations
Experiment Class Data Preprocessing

1 Multiclass User Study & Apologies No
2 Multiclass User Study & Apologies Yes
3 Multiclass User Study No
4 Multiclass User Study Yes
5 Binary User Study & Apologies No
6 Binary User Study & Apologies Yes
7 Binary User Study No
8 Binary User Study Yes

• Preprocessing: Experiments either used raw human error descriptions or preprocessed descriptions with text
lowercased, punctuation removed, and non-space whitespace characters (e.g. newlines) removed. Sentence-
BERT has built in tokenization, and thus expects unprocessed data. We do not expect improvements from our
preprocessing.

• Classification Type: Experiments were either multiclass (i.e. slip vs. lapse vs. mistake) or binary (i.e. slip
vs. not-slip, lapse vs. not-lapse, mistake vs. not-mistake). For binary experiments, we considered the other
two classes to be the same. For example, for the binary slip classifier, the data labels for lapses and mistakes
were changed to not-slip, and we compute cosine similarities for two target classes—slip and not-slip—using
the Sentence-BERT embedding for the slip description and the concatenated lapse-and-mistake—not-slip—
description.

In practice, we would anticipate that high precision is generally best for a recommendation system that uses
T.H.E.S.E., but the underrepresented lapse class in our dataset resulted in high recall for lapses for the models
we evaluated. To avoid over-classifying human errors as lapses, we selected the models that are well-balanced at
classifying slips, lapses, and mistakes, respectively, based on median F1 score. The models we selected are summarized
in Table 5.6. The full precision, recall, and F1 scores for all 8 experiments are provided in Appendix F.

We must note that our test data (human error descriptions from our user study and GitHub apologies) is our
training data; our results may not generalize to new data. However, this is acceptable for our use case, as our goal
is not robust classification, but instead to create a tool to assist us in refining taxonomy definitions.

5.3.2.3 Classification Process

For RQ11, we used an ensemble of Sentence-BERT models from Table 5.6 for classification. Our ensemble classifi-
cation process is visually summarized in Figure 5.4 and outlined below:

• Step 1: Compute Embeddings: Compute the Sentence-BERT embeddings for each human error type
description, T.H.E.S.E. category definition, and new human error description to be classified.

• Step 2: Compare Cosine Similarities for Types: Compare cosine similarities between the new human
error description and each human error type description.
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Table 5.8: Pretrained Sentence-BERT Models

ID Name ID Name

SB01 all-mpnet-base-v2 [88] SB12 distiluse-base-multilingual-cased-v1 [263]
SB02 multi-qa-mpnet-base-dot-v1 [90] SB13 distiluse-base-multilingual-cased-v2 [264]
SB03 all-distilroberta-v1 [92] SB14 nikcheerla/nooks-amd-detection-v2-full [259]
SB04 all-MiniLM-L12-v2 [91] SB15 jhgan/ko-sroberta-multitask [151]
SB05 multi-qa-distilbert-cos-v1 [89] SB16 ceggian/sbert_pt_reddit_softmax_512 [59]
SB06 all-MiniLM-L6-v2 [96] SB17 BlueAvenir/sti_security_class_model [170]
SB07 multi-qa-MiniLM-L6-cos-v1 [93] SB18 jhgan/ko-sbert-sts [150]
SB08 paraphrase-multilingual-mpnet-base-v2 [265] SB19 nikcheerla/nooks-amd-detection-realtime [258]
SB09 paraphrase-albert-small-v2 [95] SB20 LaBSE [155]
SB10 paraphrase-multilingual-MiniLM-L12-v2 [266] SB21 kwoncho/ko-sroberta-multitask-suspicious [175]
SB11 paraphrase-MiniLM-L3-v2 [94]
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Figure 5.4: Sentence-BERT Based Ensemble Classifier for Human Errors
The full classification process is described in Section 5.3.2.3. Key: Sim.—Similarity.
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Table 5.9: Ensemble Classification Results

Type FP TP FN TN Precision Recall F1

Before Improving T.H.E.S.E. Definitions
Slips 63 46 51 208 0.422 0.474 0.447
Lapses 136 31 16 185 0.186 0.660 0.290
Mistakes 28 64 160 116 0.696 0.286 0.405
Average 75.7 47.0 75.7 169.7 0.435 0.473 0.381
Improvement Attempt 1 – Extra Examples
Slips 70 50 47 201 0.417 0.515 0.461
Lapses 132 28 19 189 0.175 0.596 0.271
Mistakes 26 62 162 118 0.705 0.277 0.397
Average 76.0 46.7 76.0 169.3 0.432 0.463 0.376
Improvement Attempt 2 – Extended Descriptions from CWE
Slips 52 50 47 219 0.490 0.515 0.503
Lapses 144 28 19 177 0.163 0.596 0.256
Mistakes 25 69 155 119 0.734 0.308 0.434
Average 73.7 49.0 73.7 171.7 0.462 0.473 0.398
Improvement Attempt 3 – Extended Descriptions from Anu et al. [12]
Slips 53 52 45 218 0.495 0.536 0.515
Lapses 142 28 19 179 0.165 0.596 0.258
Mistakes 23 70 154 121 0.753 0.312 0.442
Average 72.7 50.0 72.7 172.7 0.471 0.481 0.405

• Step 3: Select Intermediate Type Classification: The human error type with the highest cosine similarity
score is selected. For example, if the cosine similarities are 0.2751, 0.1852, and 0.4722 for slip, lapse, and mistake,
respectively, then the selected classification is mistake.

Steps 1-3 were repeated three times—once using the best slips model, once with the best lapses model, and once
with the best mistakes model—resulting in three classifications.

• Step 4: Select Type Classification: Steps 1-3 result in three intermediate classifications. If two or more
classifications match (e.g. slip, slip, mistake), then we decide that the new description is that class. Otherwise, if
there is no agreement between classifications, we take the classification with the highest overall cosine similarity.

• Step 5: Compare Cosine Similarities for Categories: Repeat Step 2 using the T.H.E.S.E. category
definitions associated with the type classification from Step 4. For example, if the slip type was selected in Step
4, compare cosine similarities between the new human error description and the S01-S08 category definitions.

• Step 6: Select Category Classification: Select the category associated with the highest cosine similarity
from Step 5.

5.3.2.4 Improving T.H.E.S.E. Definitions & Examples

We examined false-positive and false-negative classifications from the selected ensemble classifier for patterns and
opportunities to improve T.H.E.S.E. definitions. A summary of classifications from our ensemble classifier is provided
in Table 5.10. For our first attempt at improving T.H.E.S.E. category definitions, we examined misclassifications
for seven categories—S04, S07, L05, M02, M08, M11, and M15—that were always incorrectly classified, improved their
definitions by adding examples, and repeated classification with our ensemble classifier.

For our second attempt at improving T.H.E.S.E. category definitions, we took a different approach. Instead of
modifying category definitions directly, we created an extended description for each category. To populate extended
descriptions, we identified CWE entries that fall under categories of human error, and copied the CWE titles and



CHAPTER 5. TAXONOMY OF HUMAN ERRORS IN SOFTWARE ENGINEERING (T.H.E.S.E.) 69

Table 5.10: Summary of Human Error Classifications Before Improving T.H.E.S.E. Definitions

Assigned Assigned
Total Slip Lapse Mistake Total Slip Lapse Mistake

Slips Mistakes
S01 25 19 3 3 M01 41 13 9 19
S02 6 6 0 0 M02 2 0 2 0
S03 32 13 12 7 M03 32 12 10 10
S04 2 0 2 0 M04 16 2 12 2
S05 18 7 7 4 M05 19 4 8 7
S06 3 1 1 1 M06 7 1 2 4
S07 2 0 1 1 M07 39 5 27 7
S08 9 2 4 3 M08 3 2 1 0
Lapses M09 14 2 9 3
L01 4 0 4 0 M10 8 2 3 3
L02 2 1 1 0 M11 3 3 0 0
L03 6 1 3 2 M12 17 5 6 6
L04 17 2 12 3 M13 6 1 4 1
L05 3 2 0 1 M14 16 1 13 2
L06 6 0 5 1 M15 1 1 0 0
L07 4 2 2 0 Other
L08 5 1 4 0 — — — —

descriptions into the relevant extended description. We repeated our ensemble classification using concatenated
definitions and extended descriptions for each T.H.E.S.E. category.

For our third attempt at improving T.H.E.S.E. category definitions, we added human error category titles and
descriptions from the HET [12] to the extended descriptions for S08, L08, and M15 (general slips, lapses, and mistakes,
respectively). We repeated our ensemble classification. Note that while we used category descriptions from HET to
classify slips, lapses, and mistakes, we did not use them to classify T.H.E.S.E. categories to avoid over-classifying
human errors as general slips, lapses, or mistakes.

Classification results from all three attempts are shown in Table 5.9. Extended descriptions for T.H.E.S.E.
categories are provided in Appendix G. The improvements we made to T.H.E.S.E. category definitions are as follows:

• Multitasking Errors (S04) – Errors resulting from multitasking, i.e. working on multiple software engineer-
ing tasks at the same time.

• Overlooking Proposed Code Changes (S06) – Attention failures while using computer peripherals, such as
mice, keyboard, and cables. Examples include copy/paste errors, clicking the wrong button, using the wrong
keyboard shortcut, and incorrectly plugging in cables.

• Overlooking Existing Functionality (S07) – Errors resulting from overlooking existing functionality, such
as reimplementing or duplicating variables, functions, and classes that already exist, or reimplementing func-
tionality that already exists in a standard library. Other examples include deleting necessary variables, functions,
and classes.

• Forgetting an Import Statement (L05) – Forgetting to import a necessary library, class, variable, or func-
tion, or forgetting to access a property, attribute, or argument. Examples include forgetting to import python’s
sys library, forgetting to include a header file in C, or forgetting to pass an argument to a function.

• Incomplete Domain Knowledge (M02) – Errors resulting from incomplete knowledge of the software system’s
target domain (e.g. banking, astrophysics). Examples include planning/designing a system without understand-
ing the nuances of the domain.

• Internal Communication Errors (M04) – Errors resulting from inadequate communication between develop-
ment team members. Examples include misunderstanding development discussion, misinterpreting or providing
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ambiguous instructions, communicating using the wrong medium (e.g. oral vs. written), or communicating
ineffectively (e.g. too formal/informal, too much unnecessarily complex language, hostile language/body lan-
guage).

• External Communication Errors (M05) – Errors resulting from inadequate communication with project stake-
holders or third-party contractors. Examples include providing ambiguous or unclear directions to third-parties
or users, or misinterpreting stakeholder feedback, communicating using the wrong medium (e.g. oral vs. writ-
ten), or communicating ineffectively (e.g. too formal/informal, too much unnecessarily complex language,
hostile language/body language).

• Solution Choice Errors (M06) – Misunderstood problem-solving methods/techniques result in analyzing the
problem incorrectly and choosing the wrong solution. For example, choosing to implement a database system
in Python rather than using SQL, or choosing the wrong software design pattern. Overconfidence in a solution
choice also falls under this category.

• Time Management Errors (M07) – Errors resulting from a lack of time management, such as failing to allocate
enough time for the implementation of a feature, procrastinating a development task, or predicting the time
required for a task incorrectly.

• Inadequate Testing (M08) – Failure to implement necessary test cases, failure to consider necessary test
inputs, failure to implement a certain type of testing (e.g. unit, penetration, integration) when it is necessary,
or failure to consider edge cases or unexpected inputs.

• Incorrect/Insufficient Configuration (M09) – Errors in configuration of libraries/frameworks/environ-
ments or errors related to missing configuration options. Examples include misconfigured IDEs or text editors,
improper directory structure for a specific programming language, missing SSH keys, missing or incorrectly
named database fields or tables, missing or incorrectly named/formatted configuration files, or not installing a
required library.

• Internationalization/String Encoding Errors (M11) – Errors related to internationalization and/or string/char-
acter encoding. Examples include using ASCII instead of Unicode, using UTF8 when UTF16 was necessary,
failure to design the system with internationalization in mind, or failing to verify the character length of user
input.

We repeated the process of model selection outlined in Section 5.3.2.2 to see whether our improvements to
T.H.E.S.E. category definitions improved classification using the models that were not selected for our ensemble clas-
sifier. The new best models (those with the highest median F1 scores) are summarized in Table 5.6. See Appendix F
for the full results of our repeated model selection.

5.3.3 Results
We present our results for RQ10 and RQ11 in this section. For RQ11, when we discuss median precision, recall,
and F1, we are referring to the median of all 21 Sentence-BERT models across all experiments.

5.3.3.1 Category Ambiguity

RQ 10: How well can ambiguity of T.H.E.S.E. category descriptions be reduced based on semantic similarity?

By examining classification results from an ensemble of Sentence-BERT classifiers, we were able to
reduce ambiguity of T.H.E.S.E. category definitions by adding examples from CWE and HET [12].
Improving category definitions led to increased precision (+0.073, +0.057) and F1 (+0.068, +0.037)
for classification of slips and mistakes, but a decrease in precision (-0.021) and F1 (-0.032) for lapses.

To address T.H.E.S.E. category ambiguity, we made improvements to category definitions in three ways: (1)
adding examples for categories with high false positive and false negative rates, (2) adding extended descriptions
from related CWE entries, and (3) adding extended descriptions to general slip, lapse, and mistake categories from
the HET [12]. After each improvement attempt, we re-ran classification using our ensemble of selected Sentence-BERT
models. Classification results for each attempt are summarized in Table 5.9.

This first round of improvements resulted in a slight increase in F1 for slips, but a slight decrease in F1 for lapses
and mistakes. Notably, false positives decreased for lapses and mistakes, and false negatives decreased for slips and
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mistakes. The second round of improvements resulted in increased precision and F1 for slips and mistakes, with
continued decrease in precision and F1 for lapses. The third attempt resulted in a slight increase in precision and
F1 for all three human error types, but precision and F1 for lapses remained lower than before we attempted any
improvements.

Attempts 1 and 2 saw a decline in precision and F1 for lapses, while precision and F1 for slips and mistakes
increased. However, improving T.H.E.S.E. category definitions resulted in increased average precision, recall, and
F1 scores for our ensemble classifier, as well as a small increase in average true positives and true negatives, and a
small decrease in average false positives and false negatives. These results indicate that adding more relevant natural
language to the descriptions for slips and mistakes can improve classification (i.e. reduce ambiguity in T.H.E.S.E.
category definitions) using cosine similarity from Sentence-BERT models and cosine similarity, however without more
examples of lapses in our dataset, classification of lapses is not likely to improve.

We find it interesting that CWE entries typically cover human errors related to implementation (e.g. Code
Logic Errors (M01), Forgetting to Remove Development Artifacts (L03)), but not human errors related to the
general process of software engineering (e.g. Internal Communication Errors (M04), Overlooking Proposed Code
Changes (S06)). This may indicate a knowledge gap in existing computer security taxonomies.

5.3.3.2 Assisted Categorization

RQ 11: How useful is Sentence-BERT for refining human error definitions?

Some pretrained Sentence-BERT models can be used to automatically classify human errors as slips and
mistakes with decent precision (maximum: 67.6% and 94.7%) and F1 (maximum: 57.7% and 71.8%),
but precision (maximum: 28.1%) and F1 (maximum: 39.0%) for lapses is poor. Some models perform
better than others, but no model is perfect. Ignoring apology comments generally increased precision
and F1 for all three human error types. Our results indicate that an ensemble of three classifiers—one
each for slips, lapses, and mistakes—yields more stable classifications.

Before improving T.H.E.S.E. category definitions, the best models were SB03 for slips, SB12 for lapses, and SB09
for mistakes, with median F1 scores of 0.455, 0.318, and 0.638, respectively. Our ensemble of these models yielded
overall average precision, recall, and F1 of 0.435, 0.473, and 0.381, respectively. After improving T.H.E.S.E. category
definitions, SB03’s median F1 rose to 0.475, while median F1 decreased for SB12 (0.195) and SB09 (0.502). However,
our ensemble classifier’s average precision, recall, and F1 all improved (0.471, 0.481, 0.405, respectively), despite the
decrease in precision and F1 for lapses.

Mistakes were the easiest type of human error to classify, with most models having a precision over 60% for
mistakes, and some with exceptional precision for mistakes (94.7% for multiclass classification without apologies and
without preprocessing for SB04). This is likely due to mistakes making up the majority (61.1%) of our dataset.
Clearly, lapses are difficult to classify, most likely because they are underrepresented in our dataset (12.8% of the
human error descriptions).

We conducted eight classification experiments varying by three factors: (1) classification with and without apology
comments, (2) classification with and without preprocessing, and (3) multiclass vs. binary classification. Generally,
ignoring apology comments resulted in increased precision and F1 for all three human error types. Results are
tabulated in Appendix F and summarized below:

• Impact of Ignoring Apologies on F1: For binary classification without preprocessing, ignoring apologies
resulted in increased average F1 (range: +[0.020, 0.057]) for slips, lapses, and mistakes. However, for binary
classification with preprocessing, we saw the opposite: decreased average F1 (range: -[0.045, 0.059]) for slips,
lapses, and mistakes. Results were similar for multiclass classification: ignoring apologies without preprocessing
resulted in increased average F1 (range: +[0.024, 0.056]) for all three human error types; ignoring apologies
with preprocessing resulted in increased average F1 for slips (+0.007) and mistakes (+0.191), but decreased
average F1 for lapses (-0.003).

• Impact of Ignoring Apologies on Precision: For multiclass classification, regardless of preprocessing,
ignoring apology comments resulted in increased average precision for slips (range: +[0.074, 0.126]) and lapses
(range: +[0.042, 0.044]), and decreased average precision for mistakes (range: -[0.015, 0.019]). For binary
classification without preprocessing, ignoring apology comments resulted in increased average precision for slips
(+0.090) and lapses (+0.041), and decreased average precision for mistakes (-0.008). For binary classification
with preprocessing, ignoring apology comments resulted in decreased average precision for slips (-0.039), lapses
(-0.025), and mistakes (-0.100).
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• Impact of Preprocessing on F1: For multiclass classification, regardless of whether we ignored apology
comments, preprocessing resulted in an increase in F1 for mistakes (range: +[0.188, 0.191]), but mixed results
for slips (decrease of -0.015 with apologies, increase of +0.007 without apologies) and lapses (increase of
+0.001 with apologies, decrease of -0.003 without apologies). For binary classification, preprocessing resulted
in decreased F1 for lapses (range: -[0.004, 0.105]), increased F1 for mistakes (range: +[0.148, 0.213]), and
mixed results for slips (increase of +0.036 with apologies, decrease of -0.079 without apologies).

• Impact of Preprocessing on Precision: Regardless of whether we ignored apology comments, preprocessing
comments for binary classification resulted in decreased average precision for slips (range: -[0.024, 0.153]),
lapses (range: -[0.007, 0.073]), and mistakes (range: -[0.014, 0.106]). For multiclass classification, preprocessing
generally resulted in increased average precision for slips (-0.026 decrease with apologies; +0.025 increase
without apologies), lapses (range: +[0.010, 0.011]), and mistakes (range: +[0.026, 0.030]).

• Impact of Multiclass vs. Binary on F1: Binary classification without preprocessing resulted in increased
F1 for slips (range: +[0.011, 0.017]), decreased F1 for mistakes (range: -[0.019, 0.023]), and mixed results for
lapses (increase of +0.002 with apologies, decrease of -0.001 without apologies) over multiclass classification.
Binary classification with preprocessing resulted in decreased F1 for lapses (range: -[0.004, 0.103]), and mixed
results for slips (increase of +0.062 with apologies, decrease of -0.069 without apologies) and mistakes (increase
of +0.006 with apologies, decrease of -0.067 without apologies) over multiclass classification.

• Impact of Multiclass vs. Binary on Precision: Binary classification with preprocessing, regardless
of whether we ignored apology comments, resulted in decreased average precision for slips (range: -[0.010,
0.174]), lapses (range: -[0.016, 0.084]), and mistakes (range: -[0.027, 0.108]) than for multiclass classification.
Binary classification without preprocessing generally resulted in increased average precision for slips (-0.012
decrease with apologies; +0.004 increase without apologies, lapses (range: +[0.000, 0.001]), and mistakes (range:
+[0.017, 0.024]) over multiclass classification.

We note that our data is based on descriptions of software defects, not on descriptions of the defect in the context
of human error. As established in Chapter 1, the terminology of human error is not widely used in software engineering
today. Thus, our ensemble classification results are promising, suggesting that in some cases, the semantic content
of a defect description can provide insight into the underlying human error that resulted in the defect.

5.3.4 Limitations
A notable aspect of this experiment is that we did not train any models, we simply evaluated pretrained models.
Training would be a considerable challenge since our dataset is small (368 data points) and imbalanced (26.1% slips,
12.8% lapses, and 61.2% mistakes). We could, in theory, manually categorize more human error descriptions from our
GitHub dataset, but the time required to do so may not be worth it—recall that our goal is not a perfect classifier, our
goal is to use cosine similarity from Sentence-BERT models to reduce ambiguity in T.H.E.S.E. category definitions.
In Section 6.2, we present a proof-of-concept for our human error reflection process that uses our ensemble classifier to
provide a suggested human error type and T.H.E.S.E. category; here, too, a perfect model is not necessary. The goal
of human error reflection is to have software engineers confront and organize their human errors. In this scenario,
a classifier that is typically correct could encourage lazy reflection, whereas a classifier that is sometimes wrong
encourages more active reflection. The classifier for our proof-of-concept is an aid for humans, not a replacement;
replacing humans is the old view of human error [76], instead we want to assist software engineers experiencing human
errors in evaluating what went wrong and what can be improved in the future. Another limitation is the seeming
lack of Sentence-BERT models trained for software engineering tasks. There are a variety of BERT models tailored
to software engineering tasks, notably sentiment analysis [33, 45], but standard BERT models are not suitable for
semantic similarity of sentences or paragraphs of text. Sentence-BERT models were designed for tasks such as that,
but we could not find any usable6 Sentence-BERT models tailored to software engineering text. We also could not
find any Sentence-BERT models trained on human error language.

5.3.5 Summary
In this study, our goal was to (1) reduce ambiguity in T.H.E.S.E. category definitions and (2) evaluate the feasibility
of human error classification with Sentence-BERT models. To that end, we evaluated 21 pretrained Sentence-BERT

6We found one Sentence-BERT model [73] trained on software engineering requirements documents, but the released model
is missing the configuration details needed to use it. Even if we could have tested this model, requirements engineering is only
one phase of software engineering.
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models to identify the best models for classifying slips, lapses, and mistakes, respectively. We implemented an
ensemble classifier based on those best models which initially yielded average precision, recall, and F1 scores of
0.435, 0.473, and 0.381, respectively. We examined false positive and false negative classifications from our ensemble
classifier to improve T.H.E.S.E. category definitions (i.e. reduce definition ambiguity) by adding our own examples
and creating extended descriptions from CWE entries and human error categories in the HET [12]. With these
improvements, our ensemble classifier had improved average precision (0.471), recall (0.481), and F1 (0.405). Our
results indicate that some Sentence-BERT models can classify slips and mistakes, but our dataset does not have
enough examples of lapses to conclude the feasibility of lapse classification. The key contributions of this research
are as follows:

• Demonstration of an ensemble classifier (based on pretrained Sentence-BERT models) for human error classi-
fication

• Improved definitions and extended descriptions for T.H.E.S.E. categories



Chapter 6

Human Error Informed Micro
Post-Mortems

In this chapter, we outline a formal human error informed micro post-mortem process to accompany T.H.E.S.E. and
describe a proof-of-concept GitHub workflow that facilitates human error reflection using T.H.E.S.E. We conclude
this chapter with some illustrative examples of our vision for human error informed micro post-mortems in practice.

6.1 Human Error Reflection Process

6.1.1 Motivation
Software engineers are familiar with a variety of post-mortem activities (e.g. root cause analysis), but typical post-
mortems in software engineering focus on software defects. Behind every software fault and failure lies a human
error [349]. Human error assessment, a form of post-mortem, has reduced the incidence and impact of accidents
in the medical [98, 159, 305] and transportation [300, 332] domains. In keeping with our goal to help software
engineers confront and reflect on their human errors, we designed a formal human error informed micro post-
mortem process inspired by existing software engineering post-mortem processes [14, 40, 66, 81, 85, 162, 331, 359],
human reliability analysis [4, 79, 134, 193, 335, 335], and after-event reviews [10, 86, 120]. We designed this process
keeping five shared aspects of software engineering post-mortems (identified by Dingsøyr [80]) in mind: (1) select
relevant participants, (2) identify what went well and why, (3) identify what did not go well, including challenges
faced, (4) identify improvements for future software development, and (5) document the post-mortem. This process
closely matches the process that participants followed throughout our user study (Section 5.2), incorporates feedback
from our user study, and adds team-based reflection in the final step. The full process is shown visually in Figure 6.1.
Throughout this section, we use the term reviewer to refer to the software engineer currently reflecting on their
human error.

6.1.2 Step 1: Summarize Defect
The first step of the human error reflection process is to summarize the defect (i.e. fault or failure) that occurred.
This step ensures that the reviewer spends some time reflecting on the defect before attempting to categorize their
human error. Some example defect summaries from our user study are included below:

Participant 1: “There’s an offset value that needs to be accounted for when drawing stuff on the matrix.
So far, I’ve fixed this with each component individually rather than making an effort each time something
new is drawn to add padding for this offset. Right now it results in messed up sidebar code that goes too
high.”

Participant 2: “Forgetting to specify the remote server name in my SQL query calls (I tried “select *
from listeners” instead of “select * from server.listeners”)”
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Figure 6.1: Visual Summary of Our Human Error Reflection Process
Categories of slips, lapses, and mistakes are outlined in Table 4.6 and Table 4.16. Key: H.E.—Human
Error.

Participant 3: “My team went ahead and planned out state/process diagrams before meeting with the
sponsor. After meeting them, we realized that the requirements given in the description did not match
requirements given from the sponsor directly.”

Participant 4: “Did not implement a necessary function for Drag and Drop API and was unable to drag
an element.”

Participant 5: “Had my code directory structured wrong so I couldn’t import modules.”

We see from these examples that software developers provide different levels of detail when reporting defects. We
encourage any software engineers adopting our human error reflection process to be as detailed as necessary, without
providing so much detail that they could confuse themselves or their peers. Some recommended questions to consider
when summarizing the defect include:

• Did actions from multiple software developers lead to the defect?

• How was the defect discovered?

• How is the defect related to other defects?

6.1.3 Step 2: Assign Human Error Type
The next step is to determine whether the defect described in Step 1 resulted from a failure of attention (i.e. slip), a
failure of memory (i.e. lapse), or a planning failure (i.e. mistake). We encourage the reviewer to have the definitions
and examples of slips, lapses, and mistakes readily available when making this determination. Some questions that
may aid in assigning a human error type include:
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• During which phase of software engineering did the human error occur?

• Did the error occur while following the steps of a plan? If yes, Anu et al. [14] would consider this a mistake.

• Did the error occur because the software engineer performed a planned step incorrectly? If yes, Anu et al. [14]
would consider this a slip. If no, Anu et al. [14] would consider this a lapse.

Some example assignments from our user study:

Participant 1: “Although there have been some big changes to VHP, my matrix branch is still very
much behind some of the newer code, even though I planned to change that when I had more time. I just
haven’t gotten around to it yet.” → Lapse

Participant 2: “Whitespace was being put in a JS template literal by VS Code’s "Prettier" extension,
I kept removing the white space but it would re-add it every time I saved. Out of confusion, I started
looking for the solution in other places.” → Mistake

Participant 3: “Had a miscommunication with team members in regards to what the team website should
include.” → Mistake

Participant 4: “Wrote arr[3] instead of arr[2] and got out of bounds when running code. Was tired and
I put 3 because it was the third element.” → Slip

Participant 5: “Accidentally made two instances of a class, causing serial port access errors.” →
Mistake

If the defect cannot be assigned a human error type, we recommend that the reviewer revisit Step 1 and provide
more details on the defect in question. If the reviewer truly cannot make a distinction between slip, lapse, and mistake
for the defect in question, it is likely that the reviewer experienced a symphony of human errors leading to the defect;
the reviewer should choose the most relevant human error type. While T.H.E.S.E. does contain an Other category,
we do not recommend using it, since the goal is human error reflection.

6.1.4 Step 3: Assign T.H.E.S.E. Category
After determining whether they experienced a slip, lapse, or mistake, the reviewer should carefully examine the
associated human error categories and identify the category that most closely matches the human error that they
experienced. If none of the specific categories match what occurred, the reviewer should select the general category
for the corresponding human error type (i.e. S08, L08, M15, for general slips, lapses, and mistakes, respectively).
Some example categorizations from our user study:

Participant 1: “Although there have been some big changes to VHP, my matrix branch is still very
much behind some of the newer code, even though I planned to change that when I had more time. I just
haven’t gotten around to it yet.” → Lapse → Working With Outdated Source Code (L04)

Participant 2: “Whitespace was being put in a JS template literal by VS Code’s "Prettier" extension, I
kept removing the white space but it would re-add it every time I saved. Out of confusion, I started looking
for the solution in other places.” → Mistake → Incorrect/Insufficient Configuration (M09)

Participant 3: “Had a miscommunication with team members in regards to what the team website should
include.” → Mistake → Internal Communication Errors (M04)

Participant 4: “Wrote arr[3] instead of arr[2] and got out of bounds when running code. Was tired and
I put 3 because it was the third element.” → Slip → General Attentional Failure (S08)

Participant 5: “Accidentally made two instances of a class, causing serial port access errors.” →
Mistake → Code Logic Errors (M01)
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6.1.5 Step 4: Summarize Human Error
After categorizing their human error, the reviewer should summarize their human error. This summary should go
beyond the defect description and discuss the human error that led to the defect. Some examples corresponding to
the examples from Section 6.1.2 are included below:

Participant 1: “I thought that I accounted for that when I did the whole initial– make the lines of code
and color them, but then I noticed on some files, the lines will extend almost above the darker area. I
knew it was an issue in the past, so I think if I had just like set a hard value to it– because I’m– my idea
on it now is when I find it, it’s gonna be because whatever part that I’m drawing, that line of code is not
accounting for that amount of padding I need to give it. So I think if I just went ahead before and said
‘alright, I know this is probably gonna be an issue’– if I just add a variable called code_padding with a
value of like 50 or something, and then add it to stuff I know is gonna get drawn in the code field, then
I can like solve it for the future when I try to mess around with it.”

Participant 2: “I should have looked at one of our stored procedures before I tried writing it. I usually
look at another query or two before I start writing ours just so I can remember what relation names
are and stuff like that, so just looking at an example for the query would have been helpful. I definitely
wouldn’t have made the mistake if I looked at an example.”

Participant 3 had little more to say about this human error.

Participant 4 indicated that they had never worked with a drag-and-drop workflow and didn’t know
they needed a function to handle that.

Participant 5: “It’s not really a configuration thing, more of me forgetting that python has a specific
structure for importing modules from the same project and not designing my code around that, then
flailing around trying to fix it.”

We encourage the reviewer to consider the following questions when summarizing their human errors:

• Were there multiple human errors that led to this defect? If so, what order did they occur in?

• What mitigation strategies (e.g. tools, techniques, processes) could help prevent similar human errors in the
future?

• During which phase of software engineering did this human error occur?

If the reviewer chose a general category (i.e. S08, L08, M15, Other), then they should also discuss the following:

• What makes this human error different? Why does it not fit in an existing category?

• What would a fitting human error category be called? What other defects could fit within this new category?

6.1.6 Step 5: Consider Previous Human Errors
After providing relevant details about the specific human error, the reviewer should consider their human error in
the following contexts:

Context 1: Individual Human Error Categories:
Has the reviewer experienced human errors in this T.H.E.S.E. category in the past? If so:

• How is the current human error similar to previous ones?
• Were the mitigations suggested for similar previous human errors implemented? If so, why didn’t

they prevent the current human error? If not, are they still relevant mitigations, or should alternative
mitigation strategies be implemented?

Context 2: Individual Human Error Types:
Has the reviewer experienced the same type of human error (i.e. slip, lapse, mistake) in the past? If so:

• How often does the reviewer experience this type of human error compared to the other types?
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• Is this type of human error being experienced more or less frequently? Why?

Context 3: Team Human Error Categories:
What T.H.E.S.E. categories are frequently experienced by developers on the reviewer’s team? Consider
the following:

• For the most frequent categories of human error, why have the suggested mitigations failed to prevent
human errors in those categories?

• Why do infrequent categories of human error occur less often? Are there mitigations in place to
prevent them? If so, why have they been effective?

Context 4: Team Human Error Types:
What types of human errors (i.e. slips, lapses, mistakes) are experienced most often by the reviewer’s
team? Consider the following:

• For the most frequent human error types, why do they occur so often?
• For infrequent human error types, why do they rarely occur?

We encourage software engineering teams to discuss Context 3 and Context 4 as a group. These contexts will
be of particular interest to managers of software engineering teams, as they analyze human error trends within a
software project and/or team.

6.1.7 Summary
In this section, we formally describe our human error informed micro post-mortem process, which utilizes T.H.E.S.E.
for human error reflection. This process is intended to be general to all phases of software engineering and simple to
follow. Our human error reflection process was inspired by existing software engineering post-mortem processes [14,
40, 66, 81, 85, 162, 331, 359], human reliability analysis [4, 79, 134, 193, 335, 335], and after-event reviews [10, 86, 120]
and encompasses five steps: (1) summarize defect, (2) assign human error type, (3) assign T.H.E.S.E. category, (4)
summarize human error, and (5) consider previous human errors. Steps 1-4 of our process were tested and evaluated
in our user study (Section 5.2), where participants agreed that human error reflection with T.H.E.S.E. is a beneficial
software engineering activity.

6.2 Proof-of-Concept: Human Error Reflection Engine (H.E.R.E.)

6.2.1 Motivation
One challenge for adoption of new processes is ease of use [74, 343]. Since software engineers are indeed people, it
follows that software engineers are not likely to use our human error reflection process without first seeing its benefit.

We implemented the Human Error Reflection Engine (H.E.R.E.), a proof-of-concept GitHub workflow, to lower
the barrier to entry and give software engineers a chance to experience human error reflection with minimal setup time
and effort. This section outlines how H.E.R.E. was implemented, how to deploy H.E.R.E. on a GitHub repository,
and how software engineers can interact with H.E.R.E. Figure 6.2 shows visually what actions H.E.R.E. takes in
response to interaction from a software engineer.

6.2.2 Reviewer Experience
To interact with H.E.R.E., the reviewer (i.e. the software developer engaging in human error reflection) first needs to
opt-in by applying the to-err-is-human label to an issue on their repository. Upon doing so, H.E.R.E. feeds natural
language—from the issue’s description and comments—to our Sentence-BERT-based classifier (the final version with
extended descriptions) as described in Section 5.3. The classifier responds to H.E.R.E. with a recommended human
error type and category. H.E.R.E. takes the recommendation and inserts it into a comment template, which is then
posted on the issue. An example of the comment template is included in Figure 6.3.

The reviewer then reflects on their human error by examining the recommended human error type and category,
and determining the human error type (as described in Section 6.1.3). Next, the reviewer categorizes their human
error (as described in Section 6.1.4) and selects one or more of the check boxes in the H.E.R.E. comment corresponding
with their T.H.E.S.E. categorization. H.E.R.E. then applies the relevant labels to the issue. When the reviewer is
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Action: these.yml

labels issue

to-err-is-human 
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Action: on-issue-edited.yml
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comment: 
summary

add/remove 
relevant labels

selects check 
box in comment

Yes

Yes

No

No

Yes

No

Action: on-issue-closed.yml

to-err-is-human 
label?

comment: 
conclusion

Yes

No

closes issue

Action: create-labels.yml

labels exist?

create labels

No

Yes

manually runs

Figure 6.2: Human Error Reflection Engine (H.E.R.E.) Workflow
Key: Yellow—developer action; White—conditional check; Blue—automated action; Red—do nothing.

finished categorizing, they select the Finished check box, and H.E.R.E. posts a new comment with a summary of the
reviewer’s categorization and some self-reflection questions. An example of this comment is included in Figure 6.4.

The reviewer is encouraged to respond with a comment addressing the self-reflection questions (Step 4 of our
human error reflection process, as described in Section 6.1.5). Finally, when the reviewer closes the issue, H.E.R.E.
posts a final comment, congratulating the reviewer for reflecting on their human error and reminding them how to
start this process on future issues. An example of this concluding comment is included in Figure 6.5.

6.2.3 Implementation Details
H.E.R.E. consists of four GitHub Actions scripts and a Docker container with our Sentence-BERT-based classifier
(described in Section 5.3). The code is available on GitHub1. The four GitHub Actions scripts that compose H.E.R.E.
are described as follows:

• create-labels.yml: This action creates the labels that H.E.R.E. uses to organize software developers’ human
errors within a repository. Labels created include a special to-err-is-human label that triggers these.yml
to run, as well as labels corresponding to each human error type and each T.H.E.S.E. category. If the labels
already exist, they are updated. This action must be manually executed by a developer with the appropriate
permissions to do so. This action uses the GitHub CLI2, which is pre-installed for all GitHub Actions.

• these.yml: This action is triggered when the to-err-is-human label is applied to a GitHub issue. Once
triggered, this action uses GitHub’s GraphQL API to collect the natural language from the issue description
and comments. This action sends the natural language to our Sentence-BERT-based classifier (inside a Docker
container). When the classifier responds with a recommended human error type and category, this action
comments on the issue with the comment shown in Figure 6.3.

• on-issue-edited.yml: This action is triggered when the reviewer selects/unselects a check box on the comment
shown in Figure 6.3. When triggered, this action adds/removes the corresponding human error type/T.H.E.S.E.
category labels. If the special Finished check box is selected, this action posts the comment shown in Figure 6.4.

1https://github.com/meyersbs/these-poc
2https://cli.github.com/

https://github.com/meyersbs/these-poc
https://cli.github.com/
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Hello, there! I’m the Human Error Reflection Engine (H.E.R.E.). My purpose is to help you document and reflect on your
Human Errors, actions that result in something that was

“not intended by the actor; not desired by a set of rules or an external observer; or that led the task or system outside
its acceptable limits [Source].”

In other words, human errors are actions that lead to unintended, unexpected, or undesirable outcomes.
Don’t be shy, everyone experiences human errors, and I’m not here to judge. I just want to help you learn from your human
errors, so, let’s get started!

Step 0: My Assessment

Based on the natural language description of this issue, I suspect your human error is: <CLASSIFIER_RESULTS>
Don’t worry, that’s just my best guess. If that’s wrong, you can use the next steps to determine what actually happened.

Step 1: Slip, Lapses, or Mistake?

There are three types of human error that we are concerned with:

• Slips: Failing to complete a properly planned step due to inattention, such as putting the wrong key in the ignition, or
overlooking stakeholder requirements.

• Lapses: Failing to complete a properly planned step due to memory failure, such as forgetting to put the car in reverse
before backing up, or forgetting to check if a pointer is non-null before dereferencing it.

• Mistakes: Planning errors that occur when the plan is inadequate, such as getting stuck in traffic because you didn’t
consider the impact of the bridge closing, or choosing an inadequate sorting algorithm.

Alright, now that you understand slips, lapses, and mistakes, let’s label your human error. Start by deciding if this issue resulted
from a slip, lapse, or mistake. Once you have determined that, move on to Step 2.

Step 2: Assign Human Error Category

Now that you’ve determined whether your human error was a slip, lapse, or mistake, select the human error categories below that
best describe what happened.
Slips (Attentional Failures)

□ S01 Typos & Misspellings: Typos and misspellings may occur in code comments, documentation (and other development
artifacts), or when typing the name of a variable, function, or class. Examples include misspelling a variable name, writing
down the wrong number/name/word during requirements elicitation, referencing the wrong function in a code comment,
and inconsistent whitespace (that does not result in a syntax error).

□ • • •

Lapses (Memory Failures)

□ L01 Forgetting to Finish a Development Task: Forgetting to finish a development task. Examples include forgetting
to implement a required feature, forgetting to finish a user story, and forgetting to deploy a security patch.

□ • • •

Mistakes (Planning Failures)

□ M01 Code Logic Errors: A code logic error is one in which the code executes (i.e. actually runs), but produces an
incorrect output/behavior due to incorrect logic. Examples include using incorrect operators (e.g. += instead of +),
erroneous if/else statements, incorrect variable initializations, problems with variable scope, and omission of necessary
logic.

□ • • •

Other

□ Other: Only use this category if none of the other categories describe your error.

Step 3: Finished Categorizing

When you are finished categorizing (checking boxes above), please check the following box:

□ Finished

Notes

• In Step 0, H.E.R.E. uses natural language processing (cosine similarity with sentence-BERT) to try and categorize your
human error for you. This is an experimental feature and should be verified.

• The human error types in Step 1 come from James Reason’s Generic Error-Modelling System (GEMs). You can read
more about slips, lapses, and mistakes here.

• The specific categories of human error in Step 2 come from the Taxonomy of Human Errors in Software Engineering
(T.H.E.S.E.). You can read more about T.H.E.S.E. here.

Figure 6.3: H.E.R.E. Comment to Guide Human Error Categorization
Key: <CLASSIFIER_RESULTS>—suggested human error type and category; • • •—truncated list of
T.H.E.S.E. categories; Blue—hyperlink.
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You experienced the following human errors:

<LIST_OF_LABELS>

To get the most out of this human error assessment, please take some time to comment below with more details, such as:

• What went wrong?
• If you selected a general category of human error, why doesn’t it fit with an existing category and what would you call it?
• How did each human error that you experienced manifest in the source code?
• How can you avoid similar human errors in the future?

Figure 6.4: H.E.R.E. Comment to Guide Human Error Reflection
Key: <LIST_OF_LABELS>—list of human error labels applied to this issue.

Congratulations on assessing your human errors!
If you wish to keep using the Human Error Reflection Engine (H.E.R.E.), just add the to-err-is-human label to any issue
to get started.

“Mistakes are the portals of discovery.” – James Joyce

“The only real mistake is the one from which we learn nothing.” – Henry Ford

Figure 6.5: H.E.R.E. Comment to Conclude Human Error Reflection
This comment reminds software engineers how to enable H.E.R.E. and provides some reassuring quotes
about human error.

• on-issue-closed.yml: This action is triggered when the issue is closed. When triggered, this action posts the
comment shown in Figure 6.5.

These actions make use of the following open source actions:

• octokit/graphql-action3 to query GitHub’s GraphQL API

• thollander/actions-comment-pull-request4 to comment on the issue

• actions-ecosystem/action-regex-match5 to identify which check boxes are selected

Our Docker container is relatively simple, consisting of a single python script (our Sentence-BERT classifier) and
the python libraries required to run the script. The Dockerfile defining our container is available on GitHub 6. We
have an additional GitHub action, docker-image.yml7, which builds our container and pushes it to DockerHub8 for
easy access from these.yml.

6.2.4 Deployment Process
In this section, we describe the process for deploying H.E.R.E. in a GitHub repository. The process outlined below
assumes the reader has created a valid GitHub repository. The reader must be the owner of the repository to follow
this process. Replace <OWNER> or <REPO> below with the owner of the repository (i.e. the reader’s GitHub username)
and the name of the repository, respectively.

Step 1: Configuration

(a) Go to https://github.com/<OWNER>/<REPO>/settings/actions
(b) Under the Workflow permissions section, select the Read and write permissions option
(c) Click the Save button

3https://github.com/octokit/graphql-action
4https://github.com/thollander/actions-comment-pull-request
5https://github.com/actions-ecosystem/action-regex-match
6https://github.com/meyersbs/these-poc/blob/main/Dockerfile
7https://github.com/meyersbs/these-poc/blob/main/.github/workflows/docker-image.yml
8https://hub.docker.com/repository/docker/meyersbs/these-poc/general

https://github.com/<OWNER>/<REPO>/settings/actions
https://github.com/octokit/graphql-action
https://github.com/thollander/actions-comment-pull-request
https://github.com/actions-ecosystem/action-regex-match
https://github.com/meyersbs/these-poc/blob/main/Dockerfile
https://github.com/meyersbs/these-poc/blob/main/.github/workflows/docker-image.yml
https://hub.docker.com/repository/docker/meyersbs/these-poc/general
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Step 2: Setup

(a) In the repository, ensure that the following path exists: .github/workflows/
(b) Copy four .yml files from https://github.com/meyersbs/these-poc/tree/main/.github/workflows

into .github/workflows/ with the following modifications:
• create-labels.yml Line 10: Replace meyersbs/these-poc with <OWNER>/<REPO>
• these.yml Line 42: Replace meyersbs with <OWNER>
• on-issue-edited.yml Line 721: Replace meyersbs with <OWNER>
• on-issue-closed.yml: No changes necessary

(c) Commit and push these files to your repository
(d) Go to https://github.com/<OWNER>/<REPO>/actions/workflows/create-labels.yml
(e) Click the Run workflow dropdown on the right side of the screen
(f) Click the green Run workflow button to automatically create the necessary issue labels

The remaining GitHub actions (these.yml, on-issue-edited.yml, on-issue-closed.yml) will run automatically
when the necessary conditions are met on an issue in your repository. The Dockerfile and docker-image.yml workflow
can be disregarded by software engineers deploying H.E.R.E.

6.2.5 Limitations
H.E.R.E. does not facilitate team-based human error reflection (Context 3 and Context 4 in Section 6.1.6) directly,
however GitHub does provide a way to view all issues with a specific label, so software engineers (and their managers)
can easily access lists of all of the slips (for example) reported on a repository. Additionally, H.E.R.E. has no way
to force the reviewer to participate in Step 4 of our human error reflection process (as described in Section 6.1.5).
However, a software engineer opting to use H.E.R.E. is unlikely to ignore the process.

The workflow in these.yml takes about three minutes to execute. This is primarily due to how GitHub Actions
handles loading/caching Docker containers. Software development teams adopting H.E.R.E. into their post-mortem
activities could, in theory, speed this process up by using a self-hosted runner9.

6.2.6 Summary
The Human Error Reflection Engine (H.E.R.E.) is a proof-of-concept workflow that facilitates human error informed
micro post-mortems on GitHub. We implemented H.E.R.E. with a series of GitHub actions and a Docker container
with a Sentence-BERT based classifier. The intent of H.E.R.E. is to demonstrate the feasibility of our human error
reflection process while also lowering the barrier to entry for software engineers who wish to adopt human error
reflection with T.H.E.S.E.

6.3 Follow-Up Survey
We sent a follow-up survey (see Appendix I) to our user study participants with an accompanying slide deck (see
Appendix H) outlining our formal human error informed micro post-mortem process and presenting H.E.R.E. One
participant from Phase 2 (anonymously) responded, indicating, almost 7 months after completing Phase 2, that they
(1) have continued thinking about their software defects in terms of slips, lapses, and mistakes, as well as T.H.E.S.E.
categories, and (2) find T.H.E.S.E. and human error reflection valuable in their software engineering activities.

In regards to our human error informed micro post-mortem process, the participant indicated that the process
(1) is clear and general to all phases of software engineering, (2) would lead to meaningful reflection of their human
errors, and (3) would be beneficial to both software engineering teams and individual software engineers. The
participant indicated that H.E.R.E. would make it easy for software engineers to adopt human error reflection assisted
by T.H.E.S.E. and gave no suggestions for improving H.E.R.E.

Full responses are provided in Appendix J. While no conclusions can be drawn from a single survey respondent,
we find these results reassuring.

9https://docs.github.com/en/actions/hosting-your-own-runners

https://github.com/meyersbs/these-poc/tree/main/.github/workflows
https://github.com/<OWNER>/<REPO>/actions/workflows/create-labels.yml
https://docs.github.com/en/actions/hosting-your-own-runners
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6.4 Illustrative Examples
In this section, we provide some examples that illustrate our vision for T.H.E.S.E. and H.E.R.E. in practice. Note
that these examples are purely fictional; all names of individuals, companies, and software systems are products of
our imagination.

6.4.1 Paul’s API Calls (Slip Resulting from Workplace Distractions)
TacoSoft is a software company that creates point-of-sale systems, mobile applications, and websites for restaurants
that sell tacos. Shell Taco (TacoSoft’s biggest customer) has asked for a mobile app that allows customers to order
food for pickup and delivery. TacoSoft assigns Michelle, a manager, to oversee a team of ten software engineers
developing Shell Taco’s mobile app. Paul, one of Michelle’s software engineers, has been tasked with integrating
the mobile app with car GPS systems, online mapping services, and services that track and report local traffic
conditions. Upon finishing his implementation, Paul asks Michelle and two other members of their team to review
his code. During code review, Michelle notices that Paul used deprecated API calls that will be removed at the
end of the year. Michelle provides feedback to Paul, he apologizes, and he fixes his code before merging it into the
production branch.

Paul’s next assignment involves securing communications between the mobile app and car GPS systems. Paul
identifies a well-known encryption library and begins reading through documentation to find the correct functions
for his needs. Paul keeps getting distracted by his coworkers, Jennifer and Emilio, and he misses a warning in the
encryption library’s documentation. After completing his implementation, Michelle and Paul perform another code
review. Again, Michelle notices that Paul has used an improper API call.

Noticing a pattern, Michelle calls Paul into her office for a discussion about his performance. Michelle asks Paul
if he has any ideas about why he keeps making these errors, but he is genuinely unsure. Michelle does some searching
online and comes across T.H.E.S.E. The next day, she calls Paul in for another meeting and shows him T.H.E.S.E.
Following our human error reflection process, Michelle and Paul identify that Paul’s errors are slips, failures resulting
from inattention. Looking closer at T.H.E.S.E., Paul realizes that he has been distracted by Jennifer and Emilio’s
loud conversations.

The following week, while trying to decide which function to use from a credit card processing API, Paul finds
himself distracted by Jennifer and Emilio once again. Paul politely asks Jennifer and Emilio to take their conversation
into the break room and they comply. Returning to his desk, Paul realizes that he initially chose the wrong API call
for his needs and fixes his code. During Paul’s next code review, Michelle notices that Paul did not make the same
kinds of errors she had seen over the past few weeks.

This is an example of a slip, a human error resulting from inattention, due to workplace distractions. Paul’s repeated
slips led to faults in the mobile app source code. Using T.H.E.S.E. and its accompanying human error reflection
process, Paul and Michelle were able to successfully identify the underlying human error behind the faults that Paul
introduced. This process allowed Paul to confront and organize his human errors, and implement a change in his
workplace environment to prevent similar human errors from occurring in the future, ultimately saving time in future
implementation and debugging activities.

6.4.2 Nuthan’s Neglect (Mistake Resulting from Time Constraints)
Anonymoose is a software company that develops and maintains the Anonymoose software, a mobile app that lets
users send encrypted text messages to each other. Version 1.0 of Anonymoose has been out for nearly a year and
has attracted a large user base. The company is working on Version 2.0 and Nuthan is tasked with speeding up the
encryption/decryption process. The current implementation of Anonymoose uses RSA encryption from a well-known
encryption library.

Nuthan searches online for other encryption libraries and identifies CryptQuick, which boasts significantly faster
speeds than the current implementation in Anonymoose. Nuthan examines the documentation for CryptQuick, but
cannot find details about the encryption algorithm; since Version 2.0’s release date is quickly approaching, Nuthan
assumes that CryptQuick must be using RSA. Nuthan demonstrates the improved speeds to his supervisor, Renee,
and she signs off on his changes.

Version 2.0 is released and everything goes well for a few weeks. Late one night, a hacker releases a dump of 10
million user conversations from Anonymoose obtained by breaking the encryption. Renee, Nuthan, and the rest of the
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security team review Nuthan’s changes and dig into the source code for CryptQuick. They discover that CryptQuick
uses an outdated and insecure encryption algorithm. Renee works with Nuthan on a patch and releases the patch,
but not before a significant cost to Anonymoose’s reputation. In the months that follow, the majority of Anonymoose
users switch to an alternative encrypted messaging app, and Anonymoose is not making enough money to stay in
business. Anonymoose declares bankruptcy.

In this example, we demonstrate Wrong Assumption Errors (M03). Specifically, we demonstrate what could happen
when a software engineer is working under strict time constraints, leading them to make incorrect assumptions.
Research indicates that knowledge of human errors can help prevent developers from committing those errors in the
future [140, 141]. If the Anonymoose company had provided human error training to its developers, perhaps this
catastrophic mistake could have been avoided. Using T.H.E.S.E. in tandem with our human error reflection process
can help developers catch mistakes (and other human errors) before they can manifest as bugs and vulnerabilities in
production software systems.

6.4.3 Square Corp’s Snafu (Systemic Mistakes Due to Poor Requirements)
Square Corp is a software company that primarily designs and implements software systems for motor vehicles.
ElectriCar, a brand new car company, asks Square Corp to implement a system that analyzes data from sensors (e.g.
ultrasonics, accelerometers) and provides warnings to the driver when potentially unsafe actions occur (e.g. crossing
over the white line). Square Corp assigns Richard and his team to this project. After developing a prototype,
Richard’s team meets with the stakeholders for a demonstration. The stakeholders are unhappy with many aspects
of this prototype, including the delay between sensor readings and system responses and the type/content of warning
messages provided to drivers.

Richard’s team tweaks their implementation and gives another demonstration to the stakeholders, but they are
still not pleased. This process repeats a few times until Richard’s team produces a software product that meets the
stakeholders’ expectations. Upon paying for this work, ElectriCar informs Square Corp that they will be hiring a
different software company for their future needs.

Square Corp’s lead software engineer, Joanna, meets with Richard’s team for a post-mortem assessment of what
went wrong in this project, but no immediate causes are apparent. Joanna has heard from a friend at another company,
Sid, about a human error informed micro post-mortem process that his team has been using. Sid recommends that
Joanna enable H.E.R.E. on Square Corp’s repository for the ElectriCar code. Joanna takes Sid’s advice and provides
some training on human error before tasking Richard’s team with using H.E.R.E. for a post-mortem inspection of
their errors. Richard reviews his team’s responses to H.E.R.E. and sees a clear pattern in responses:

• H.E.R.E. classifies Issue #39 (Unacceptable Delay in Responses to Sensor Readings) as a mistake. Doug
confirms, saying that “the stakeholders never provided an expected response time during requirements elicitation
and, regretfully, we did not ask them to provide clarification.”

• H.E.R.E. classifies Issue #54 (Threshold for Acceleration Warning Too Low) as a slip. After reviewing his notes
on human error from their training, Andrew replies “Actually, this is a mistake related to blindly following the
requirements specification; the stakeholders provided an unrealistic threshold for warning that the driver is
accelerating too quickly, and I implemented it exactly as documented without considering whether the threshold
was reasonable. I’m sorry about that.”

• H.E.R.E. classifies Issue #67 (User Warnings are Too Specific) as a mistake. Beatrice confirms, adding that
“the content of warning messages was never discussed with the stakeholders during requirements elicitation.
That’s my fault, I should have noticed that when reviewing the requirements specification.”

Richard meets with Joanna and shows her his team’s feedback. They conclude that the requirements elicitation
for this project went poorly. They share their findings with Richard’s team. During the next project, Richard’s team
continues using H.E.R.E., but Richard notices fewer errors compared to the ElectriCar project.
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This example demonstrates how our human error informed micro post-mortem process can help software developers
(and their managers) to identify systemic problems within the development team’s requirements elicitation process
by confronting and organizing their human errors.

6.5 Real World Examples
One of the original inspirations for this dissertation came from reflecting on some of the most infamous human
errors that the field of software engineering has ever experienced. Vulnerabilities tend to be small errors with big
consequences, and understanding how they arise in a system is critical.

In this section, we circle back to our original observations with a new perspective, examining some real-world
software vulnerabilities using our human error reflection process and T.H.E.S.E. to further demonstrate our vision
for T.H.E.S.E. in practice. Recall that our human error reflection process is intended to be conducted by the software
engineer(s) who experienced the human error being reflected upon, so the actual software developers involved in these
software vulnerabilities may arrive at different categorizations and conclusions.

6.5.1 HeartBleed (Code Logic Error Leads to Confidentiality Violations)

In 2014, a vulnerability in OpenSSL10—a popular library intended to provide secure communications over the
internet—called HeartBleed allowed attackers to obtain sensitive information (e.g. usernames, passwords, emails)
from process memory using specially crafted packets that triggered a buffer overflow. HeartBleed could be exploited
without any credentials, allowing anyone on the internet to read memory from devices running vulnerable versions of
OpenSSL. HeartBleed is documented in CVE-2014-0160, which summarizes the vulnerability:

“The (1) TLS and (2) DTLS implementations in OpenSSL 1.0.1 before 1.0.1g do not properly handle
Heartbeat Extension packets, which allows remote attackers to obtain sensitive information from process
memory via crafted packets that trigger a buffer over-read, as demonstrated by reading private keys, related
to d1_both.c and t1_lib.c, aka the Heartbleed bug [225].”

So, what exactly went wrong? Conceptually, HeartBleed is quite simple: Typically, a device sends a heartbeat
request to a server—a periodic request to make sure that the device can still communicate with the server. This
heartbeat request includes some expected response and the length of that expected response. For example, the word
potato and 6 characters. The server responds with the expected potato, which is 6 characters, and everyone is happy.
With HeartBleed, attackers could craft special heartbeat requests that requested a small amount of information, but
specified a large response length. Servers running vulnerable versions of OpenSSL would respond with the expected
information, and then pull information from memory to fill up the remaining characters, violating the confidentiality
of the system [373].

This is quite interesting, but we still don’t know anything about the underlying human error. The underlying
issue was a lack of bounds checking, which was fixed with about 30 lines of code [329]. We have summarized the
defect, which is Step 1 of our human error reflection process. Step 2 involves determining whether the underlying
human error was a slip, lapse, or mistake. We may never know the true human error type for HeartBleed, as the
details of what went wrong are locked in the minds of the developers who first wrote the vulnerable code. However,
if we examine T.H.E.S.E., it seems likely that this was a mistake, specifically Code Logic Errors (M01) (Step 3).
Step 4 is to summarize the human error, which could look something like this:

A code logic error, specifically a lack of bounds checking, allowed remote attackers to gain confidential
information from systems running vulnerable versions of OpenSSL. This human error occurred dur-
ing the implementation phase of software engineering, and likely also involved Inadequate Experience
Errors (M12), Wrong Assumption Errors (M03), and/or General Attentional Failures (S08). A
formal code review with experienced C programmers may have been able to mitigate this human error.

This example demonstrates how software engineers can leverage T.H.E.S.E. to learn from well-known vulnerabilities,
and potentially avoid similar human errors in the future.

10https://www.openssl.org/

https://www.openssl.org/
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6.5.2 StageFright (More to Human Error than Meets the Eye)

In 2015, a collection of vulnerabilities discovered in versions 2.2 through 5.1.1 of the Android11 operating system—
called StageFright—made it possible for attackers to execute arbitrary code on mobile devices and gain elevated
privileges using specially crafted metadata in MP3 (audio) and MP4 (video) files. The exploit involved buffer
overflows and a general lack of data verification. The only information the attacker needed was a phone number.
StageFright is documented in multiple CVE entries:

CVE-2015-1538: “Integer overflow in the SampleTable::setSampleToChunkParams function in Sample-
Table.cpp in libstagefright in Android before 5.1.1 LMY48I allows remote attackers to execute ar-
bitrary code via crafted atoms in MP4 data that trigger an unchecked multiplication, aka internal bug
20139950, a related issue to CVE-2015-4496 [226].”
CVE-2015-1539: “Multiple integer underflows in the ESDS::parseESDescriptor function in ESDS.cpp
in libstagefright in Android before 5.1.1 LMY48I allow remote attackers to execute arbitrary code via
crafted ESDS atoms, aka internal bug 20139950, a related issue to CVE-2015-4493 [227].”
CVE-2015-3824: “The MPEG4Extractor::parseChunk function in MPEG4Extractor.cpp in libstage-
fright in Android before 5.1.1 LMY48I does not properly restrict size addition, which allows remote
attackers to execute arbitrary code or cause a denial of service (integer overflow and memory corruption)
via a crafted MPEG-4 tx3g atom, aka internal bug 20923261 [228].”
CVE-2015-3826: “The MPEG4Extractor::parse3GPPMetaData function in MPEG4Extractor.cpp in lib-
stagefright in Android before 5.1.1 LMY48I does not enforce a minimum size for UTF-16 strings con-
taining a Byte Order Mark (BOM), which allows remote attackers to cause a denial of service (integer
underflow, buffer over-read, and mediaserver process crash) via crafted 3GPP metadata, aka internal bug
20923261, a related issue to CVE-2015-3828 [229].”
CVE-2015-3827: “The MPEG4Extractor::parseChunk function in MPEG4Extractor.cpp in libstage-
fright in Android before 5.1.1 LMY48I does not validate the relationship between chunk sizes and skip
sizes, which allows remote attackers to execute arbitrary code or cause a denial of service (integer under-
flow and memory corruption) via crafted MPEG-4 covr atoms, aka internal bug 20923261 [230].”
CVE-2015-3828: “The MPEG4Extractor::parse3GPPMetaData function in MPEG4Extractor.cpp in lib-
stagefright in Android before 5.1.1 LMY48I does not enforce a minimum size for UTF-16 strings con-
taining a Byte Order Mark (BOM), which allows remote attackers to execute arbitrary code or cause a
denial of service (integer underflow and memory corruption) via crafted 3GPP metadata, aka internal
bug 20923261, a related issue to CVE-2015-3826 [231].”
CVE-2015-3829: “Off-by-one error in the MPEG4Extractor::parseChunk function in MPEG4Extractor-
.cpp in libstagefright in Android before 5.1.1 LMY48I allows remote attackers to execute arbitrary
code or cause a denial of service (integer overflow and memory corruption) via crafted MPEG-4 covr
atoms with a size equal to SIZE_MAX, aka internal bug 20923261 [232].”

Together, this symphony of software bugs created an unique opportunity for attackers. The exploit is conceptually
simple: In affected versions of Android, when a text message containing an audio or video attachment is received, the
media transcoding libraries automatically generate a preview of the attached file before the user even opens the text
message. Using specially crafted metadata for the attached audio or video, attackers could execute arbitrary code
and gain root (complete) access to the operating system on a device [125].

At first glance, it would be tempting to say that the core of this vulnerability, the buffer overflow, was caused
by a software developer who either wasn’t paying attention (i.e. slip) or forgot that they needed to consider buffer
overflows (i.e. lapse). It may also be tempting to call this a code logic error (M01) and move on. These are all
valid conclusions and they could have been in play, but this vulnerability isn’t so simple. There was a clear design
oversight, as the code listening for incoming text messages and generating previews was running as root (with full
privileges). Regardless of the buffer overflows present in the transcoding libraries, the decision to allow code running
as root to operate on untrusted data is a design mistake.

There is yet another layer of human error at play here. Once StageFright was disclosed, the fix was available
quickly, but as Google tried to push the security patch to phone carriers (each with their own customized flavor
of Android), software engineers procrastinated (Time Management Errors (M07)) porting the fix, possibly due to a
lack of security knowledge (Inadequate Experience Errors (M12)), or to a failure on Google’s part to adequately
convey the severity of the vulnerability (External Communication Errors (M05)).

The software developers involved in StageFright might summarize their human error experience this way:

11https://www.android.com/

https://www.android.com/
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A collection of code logic errors (M01) coupled with poor design decisions allowed attackers to gain root
access to Android devices, potentially violating confidentiality, integrity, and availability of the Android
operating system. This vulnerability was further exacerbated by poor communication (M05) and poor time
management (M07). Diligent code review along with significant testing of edge cases and the establishment
of security requirements may have been able to prevent this symphony of human errors, or at least reduce
the impact of the vulnerability.

This example demonstrates the need for careful, deep reflection on human errors in software engineering. The human
error(s) behind a software defect aren’t always simple to discern, and a surface-level examination of human error may
lead to incorrect or incomplete conclusions and mitigation strategies.



Chapter 7

Summary & Future Work

Software engineers, despite their best efforts, experience human errors, which manifest as software defects. While
software defects are routinely studied and categorized, the software engineering domain still lacks an established and
accepted human error assessment process, a process which could improve the quality and security of software, as it
has done in the medical [98, 159, 305] and transportation [300, 332] domains. Our goal in this dissertation is to
help software engineers confront and reflect on their human errors by creating a process to document,
organize, and analyze human errors. To that end, this dissertation comprised three phases:

Phase 1: Systematization (i.e. identification and taxonomization) of software engineers’ human errors from
literature and development artifacts into a Taxonomy of Human Errors in Software Engineering
(T.H.E.S.E.)

Phase 2: Evaluation of T.H.E.S.E. based on software engineers’ perceptions and natural language insights

Phase 3: Creation of a human error informed micro post-mortem process and the Human Error Reflection
Engine (H.E.R.E.), a proof-of-concept GitHub workflow facilitating human error reflection

During Phase 1, we conducted a systematic literature review of research pertaining to human error in software
engineering, which yielded Version 1 of our Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.), con-
sisting of 12 categories of human errors experienced by software engineers spanning slips, lapses, and mistakes (see
Section 4.1). Next, we manually annotated a subset of software engineers’ self-admitted human errors (identified via
apology lemmas) on GitHub, and discovered 15 new categories of human errors in software engineering, resulting in
Version 2 of T.H.E.S.E. (see Section 4.2).

In Phase 2, we evaluated T.H.E.S.E. with a user study in which five software engineering students documented
and reflected on the human errors they experienced during software development over the course of 17 weeks. Survey
responses and discussions from weekly interviews led to Version 3 of T.H.E.S.E. and revealed that (1) T.H.E.S.E.
has clear definitions and makes it easy to confront human errors, (2) T.H.E.S.E. covers all phases of software engi-
neering, and (3) human error assessment assisted by T.H.E.S.E. is perceived as beneficial and meaningful to software
engineers. Survey responses indicated potential ambiguity in T.H.E.S.E. category definitions, which prompted us to
evaluate category definitions based on cosine similarity from pretrained Sentence-BERT models—models capable of
representing the semantic content (meaning) of text. Our evaluation yielded improvements to T.H.E.S.E. category
definitions (Version 4 of T.H.E.S.E.) as well as the addition of extended descriptions, while indicating that human
error classification may be feasible given a larger dataset.

Finally, in Phase 3, we defined a human error informed micro post-mortem process for software engineering—
which closely matches the process followed by participants in our user study—and implemented a proof-of-concept
Human Error Reflection Engine (H.E.R.E.) to facilitate human error reflection on GitHub.

In summary, the immediate implications of our work are as follows:

• We discovered that existing literature does not provide a concrete landscape of human errors in software
engineering. Our SLR (Section 4.1) revealed that 85% of existing studies do not have a scope general to all
phases of software engineering, almost 50% of studies do not go beyond the basic human error types (e.g.
slip, lapse, and mistake), and of those studies that do go beyond surface level categorization, 59% are at least
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Figure 7.1: Complete Human Error Lifecycle in Software Engineering
Each stage of error in software development has its own solution. Software failures are addressed with
failure reports and their underlying faults are patched/fixed. We demonstrate human error assessment
(via micro post-mortems) as a process for addressing human errors in software engineering.

partially ambiguous. Further, our examination of software engineering artifacts (Section 4.2) identified 15 new
categories of human error in software engineering that were not documented in existing literature.

• Our SLR (Section 4.1) and our user study (Section 5.2) revealed that the majority of software engineers’
human errors are mistakes, a finding that is inconsistent with James Reason’s findings [298]. Since mistakes
are planning failures, and software engineering is a highly plan-oriented domain, this finding makes sense, but
it also suggests that human error findings in other domains (e.g. aviation) may not generalize or apply to
software engineering.

• Senior software engineering students believe human error assessment assisted by T.H.E.S.E. is a beneficial
software engineering activity that leads to meaningful human error reflection, which would also be beneficial
to professional software engineers.

• Our semi-automated refinement of T.H.E.S.E. categories (Section 5.3), revealed that classification of human
errors using Sentence-BERT models may show promise.

In demonstrating the utility of T.H.E.S.E. and our micro post-mortem process, the software development commu-
nity will be closer to inculcating the wisdom of historical developer human errors, enabling them to engineer higher
quality and more secure software, closing the loop on the lifecycle of human error in software engineering (Figure 7.1).
In the remainder of this section, we summarize the key contributions of this work, suggest recommendations for future
work, and provide some closing thoughts and cautions.

7.1 Key Contributions
In addition to the findings discussed above, the key contributions of this dissertation are summarized as follows:

1. This dissertation establishes the Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.),
which contains 31 categories of human error spanning slips (8), lapses (8), and mistakes (15). T.H.E.S.E. is
the culmination of nearly three years of research examining software engineers’ human errors as documented
in literature and development artifacts, and experienced during a user study. Version 4 of T.H.E.S.E. —which
we refrain from calling the final version to leave room for and encourage future iterations—is included in
Table 7.1. Extended descriptions for T.H.E.S.E. categories are provided in Appendix G and a full changelog
for each version of T.H.E.S.E. is included in Appendix L.

2. This dissertation presents a formal human error informed micro post-mortem process for software
engineering to accompany T.H.E.S.E. Our process has five steps—(1) summarize defect, (2) assign human
error type, (3) assign T.H.E.S.E. category, (4) summarize human error, and (5) consider previous human
errors—with guiding questions (outlined in Section 6.1). Our process is inspired by existing software engineering
post-mortem processes [14, 40, 66, 81, 85, 162, 331, 359], human reliability analysis [4, 79, 134, 193, 335, 335],
and after-event reviews [10, 86, 120]. Figure 6.1 visually summarizes our human error reflection process.

3. Finally, this dissertation includes the implementation of the Human Error Reflection Engine (H.E.R.E.),
a proof-of-concept workflow to facilitate human error reflection with T.H.E.S.E. on GitHub, lowering the barrier
to entry for software engineers who wish to adopt human error reflection. H.E.R.E. is summarized in Section 6.2.

7.2 Recommendations for Future Work
While conducting this dissertation research, we encountered many interesting ideas and worthy questions that we
deemed outside of our intended scope. In this section, we present some research directions as a starting point for
researchers who wish to continue and build on this work.
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Table 7.1: Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) Version 4

ID Source Category/Definition

Slips

S01 Artifacts (Section 4.2)

Typos & Misspellings: Typos and misspellings may occur in code comments, doc-
umentation (and other development artifacts), or when typing the name of a variable,
function, or class. Examples include misspelling a variable name, writing down the wrong
number/name/word during requirements elicitation, referencing the wrong function in a
code comment, and inconsistent whitespace (that does not result in a syntax error).

S02 Literature (Section 4.1)

Syntax Errors: Any error in coding language syntax that impacts the executability
of the code. Note that Logical Errors (e.g. += instead of +) are not Syntax Errors.
Examples include mixing tabs and spaces (e.g. Python), unmatched brackets/braces/-
parenthesis/quotes, and missing semicolons (e.g. Java).

S03 Literature (Section 4.1)

Overlooking Documented Information: Errors resulting from overlooking (inter-
nally and externally) documented information, such as project descriptions, stakeholder
requirements, API/library/tool/framework documentation, coding standards, program-
ming language specifications, bug/issue reports, and looking at the wrong version of
documentation or documentation for the wrong project/software.

S04 Artifacts (Section 4.2) Multitasking Errors: Errors resulting from multitasking, i.e. working on multiple
software engineering tasks at the same time.

S05 Artifacts (Section 4.2)
Hardware Interaction Errors: Attention failures while using computer peripherals,
such as mice, keyboard, and cables. Examples include copy/paste errors, clicking the
wrong button, using the wrong keyboard shortcut, and incorrectly plugging in cables.

S06 Artifacts (Section 4.2)
Overlooking Proposed Code Changes: Errors resulting from lack of attention during
formal/informal code review. Examples include overlooking incorrect logic, or skipping
files, functions, or classes during a review.

S07 User Study (Section 5.2)

Overlooking Existing Functionality: Errors resulting from overlooking existing func-
tionality, such as reimplementing or duplicating variables, functions, and classes that
already exist, or reimplementing functionality that already exists in a standard library.
Other examples include deleting necessary variables, functions, and classes.

S08 — General Attentional Failure: Only use this category if you believe your error to be
the result of a lack of attention, but no other slip category fits.

Lapses

L01 Artifacts (Section 4.2)
Forgetting to Finish a Development Task: Forgetting to finish a development task.
Examples include forgetting to implement a required feature, forgetting to finish a user
story, and forgetting to deploy a security patch.

L02 Literature (Section 4.1) Forgetting to Fix a Defect: Forgetting to fix a defect that you encountered, but chose
not to fix right away.

L03 Literature (Section 4.1)

Forgetting to Remove Development Artifacts: Forgetting to remove debug log
files, dead code, informal test code, commented out code, test databases, backdoors,
etc. Examples include leaving unnecessary code in the comments, and leaving notes in
internal development documentation.

L04 Artifacts (Section 4.2) Working with Outdated Source Code: Forgetting to git-pull (or equivalent in other
version control systems), or using an outdated version of a library.

L05 Artifacts (Section 4.2)

Forgetting an Import Statement: Forgetting to import a necessary library, class,
variable, or function, or forgetting to access a property, attribute, or argument. Examples
include forgetting to import python’s sys library, forgetting to include a header file in C,
or forgetting to pass an argument to a function.

L06 Literature (Section 4.1) Forgetting to Save Work: Forgetting to push code, or forgetting to backup/save data
or documentation.

L07 Artifacts (Section 4.2) Forgetting Previous Development Discussion: Errors resulting from forgetting
details from previous development discussions.

L08 — General Memory Failure: Only use this category if you believe your error to be the
result of a memory failure, but no other lapse category fits.

continued on next page...
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Table 7.1: Taxonomy of Human Errors in Software Engineering (T.H.E.S.E.) Version 4 (Continued)

ID Source Category/Definition

Mistakes

M01 Literature (Section 4.1)

Code Logic Errors: A code logic error is one in which the code executes (i.e. actu-
ally runs), but produces an incorrect output/behavior due to incorrect logic. Examples
include using incorrect operators (e.g. += instead of +), erroneous if/else statements,
incorrect variable initializations, problems with variable scope, and omission of necessary
logic.

M02 Literature (Section 4.1)
Incomplete Domain Knowledge: Errors resulting from incomplete knowledge of the
software system’s target domain (e.g. banking, astrophysics). Examples include plan-
ning/designing a system without understanding the nuances of the domain.

M03 Literature (Section 4.1)
Wrong Assumption Errors: Errors resulting from an incorrect assumption about sys-
tem requirements, stakeholder expectations, project environments (e.g. coding languages
and frameworks), library functionality, and program inputs.

M04 Literature (Section 4.1)

Internal Communication Errors: Errors resulting from inadequate communication
between development team members. Examples include misunderstanding development
discussion, misinterpretting or providing ambiguous instructions, communicating using
the wrong medium (e.g. oral vs. written), or communicating ineffectively (e.g. too
formal/informal, too much unnecessarily complex language, hostile language/body lan-
guage).

M05 Literature (Section 4.1)

External Communication Errors: Errors resulting from inadequate communication
with project stakeholders or third-party contractors. Examples include providing am-
biguous or unclear directions to third-parties or users, or misinterpreting stakeholder
feedback, communicating using the wrong medium (e.g. oral vs. written), or communi-
cating ineffectively (e.g. too formal/informal, too much unecessarily complex language,
hostile language/body language).

M06 Literature (Section 4.1)

Solution Choice Errors: Misunderstood problem-solving methods/techniques result
in analyzing the problem incorrectly and choosing the wrong solution. For example,
choosing to implement a database system in Python rather than using SQL, or choosing
the wrong software design pattern. Overconfidence in a solution choice also falls under
this category.

M07 Artifacts (Section 4.2)
Time Management Errors: Errors resulting from a lack of time management, such
as failing to allocate enough time for the implementation of a feature, procrastinating a
development task, or predicting the time required for a task incorrectly.

M08 Artifacts (Section 4.2)
Inadequate Testing: Failure to implement necessary test cases, failure to consider nec-
essary test inputs, failure to implement a certain type of testing (e.g. unit, penetration,
integration) when it is necessary, or failure to consider edge cases or unexpected inputs.

M09 Artifacts (Section 4.2)

Incorrect/Insufficient Configuration: Errors in configuration of libraries/framework-
s/environments or errors related to missing configuration options. Examples include mis-
configured IDEs or text editors, improper directory structure for a specific programming
language, missing SSH keys, missing or incorrectly named database fields or tables, miss-
ing or incorrectly named/formatted configuration files, or not installing a required library.

M10 Literature (Section 4.1)
Code Complexity Errors: Errors resulting from misunderstood code due to poor
documentation or unnecessary complexity. Examples include too many nested if/else
statements or for-loops and poorly named variables/functions/classes/files.

M11 Artifacts (Section 4.2)

Internationalization/String Encoding Errors: Errors related to internationaliza-
tion and/or string/character encoding. Examples include using ASCII instead of Unicode,
using UTF8 when UTF16 was necessary, failure to design the system with international-
ization in mind, or failing to verify the character length of user input.

M12 Artifacts (Section 4.2) Inadequate Experience Errors: Errors resulting from inadequate experience with a
language, library, framework, or tool.

M13 Artifacts (Section 4.2)

Insufficient Tooling Access Errors: Errors resulting from not having sufficient access
to necessary tooling. Examples include not having access to a specific operating system,
library, framework, hardware device, or not having the necessary permissions to complete
a development task.

M14 Artifacts (Section 4.2)
Workflow Order Errors: Errors resulting from working out of order, such as imple-
menting dependent features in the wrong order, implementing code before the design is
stabilized, releasing code that is not ready to be released, or skipping a workflow step.

M15 — General Planning Failure: Only use this category if you believe your error to be the
result of a planning failure, but no other mistake category fits.
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7.2.1 Human Errors in Other Software Engineering Artifacts
In Section 4.2 we examined software engineers’ self-admitted human errors (identified using apology lemmas) in
GitHub commits, issues, and pull-requests. While valuable, there is a wide range of other software engineering
artifacts—e.g. security advisories, insider threat stories, developer conversations on platforms such as Bugzilla or
JIRA—that should be examined for human errors. Also, as we noted in Section 4.2.4, plenty of self-admitted human
errors exist beyond what is recorded in apologies, and plenty of human errors are not self-admitted. Those human
errors, while outside of our scope, should also be studied to provide a fuller picture of human error in software
engineering. Some potential research questions in this area include:

• How can software engineers’ non-self-admitted human errors be identified?

• Which software engineering artifacts provide the most insight into human error?

7.2.2 Mitigation of Human Errors in Software Engineering
Peters & Peters [285] devote a chapter of their work to countermeasures (i.e. mitigations) of human error, proposing
12 basic principles for mitigating human error in order of most-to-least effective, which we quote below:

1. Eliminate the source of human error (remove the hazard). Make the error impossible by design.
2. Control the opportunity for error by physical means (engineering controls to prevent error, such as

guards or barriers to prevent access to a source of error or hazard).
3. Mitigate the consequences of an error (risk severity reduction).
4. Ensure detectability of errors before damage occurs (foster immediate error correction).
5. Institute procedural pathways for guidance and to channel behavior (error avoidance restrictions

and narrowing of conduct).
6. Maintain supervisory control and monitoring for errors (error observation, oral directions, and

manual shutdown). Particularly useful for new tasks, new employees, new jobs, and new equipment.
7. Provide instructions that are written, brief, specific, and immediately available. However, unsuper-

vised employees do not always follow instructions.
8. Utilize training to provide general background information, job context, knowledge about company

culture, and safety rules. However, training may be remote in time and not specific to a job task.
9. Have technical manuals available for reference when questions arise or for general self-learning.

They are useful to help avoid troubleshooting errors.
10. Warnings provide an informed opportunity to avoid harm. They are used for residual risks after the

use of other remedies. Effective if well designed, read or heard, understood, and not disregarded.
11. Specify that personal protective equipment or other safety equipment be available when and where

needed (for harm or injury reduction).
12. Assume intentional risk acceptance by no error prevention action and a toleration of the results.

Provide appropriate insurance coverage or company reserves to compensate for the foreseeable
harm. Maintain recall and public relations plans.

Peters & Peters [285] further suggest 26 specific countermeasures (see Appendix K). The countermeasure most rel-
evant to this dissertation is pragmatism, the accurate and human-oriented categorization of human errors. These basic
principles and specific countermeasures should be explored in the context of software engineering. Some suggested
research questions in this area include:

• Which existing tools and processes in software engineering are effective mitigations for human error?

• What countermeasures are effective mitigations for each type of human error in software engineering?

• What countermeasures, if any, are applicable to multiple types of human error in software engineering?
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7.2.3 Impact of Human Errors in Software Engineering
During our user study (Section 5.2), most participants indicated the belief that mistakes are more consequential than
slips or lapses. For example:

Participant 3: “A majority of the slips and lapses affect just development and implementation, whereas
a good chunk of mistakes can affect the entire process”

Anonymous Feedback: “In my experience, the majority of slips and lapses can be fixed pretty easily,
like a typo can be fixed in less than a second after you find it. Even if you misspelled it multiple times,
your IDE will normally have like a refactor feature where you can change all references to a misspelled
variable at once. Mistakes usually mean that you have to take extra time to fix something that went
wrong. You don’t really realize your mistake until it’s too late and you’re dealing with the consequences
of that.”

Anonymous Feedback: “I would say mistakes have the most impact on a software project because slips
and lapses have relatively simple solutions while mistakes lead to bigger changes in a software project.”

However, there is some disagreement:

Anonymous Feedback: “I think lapses are most likely to result from carelessness or a disregard for the
project. These types of errors can result in the downfall of a project faster than the other two because the
developers, who are supposed to be the most attentive to the project, aren’t satisfying this requirement.”

Future work should explore the impact of slips versus lapses versus mistakes on software engineering projects.
Knowing which type of human error impacts software engineering the most can help individual software engineers
and their managers prioritize human error mitigations. Some potential research questions in this area include:

• What kinds of faults and failures typically result from slips, lapses, and mistakes?

• Which type of human error—slips, lapses, or mistakes—has the most impact (i.e. consequence) on a software
project?

7.2.4 Symphonies of Human Errors in Software Engineering
In a study by Ko & Myers [168], developers were recorded thinking aloud in a series of experiments. Starting from
an observed software error, runtime fault/failure, or cognitive breakdown, Ko & Myers identified the cause and
documented chains of causes (i.e. chains of cognitive breakdowns) until no further cause could be identified. Ko &
Myers observed 102 software errors stemming from 159 cognitive breakdowns. The average breakdown chain consisted
of 2.3 breakdowns. This work is noteworthy for identifying that errors in software can be the result of multiple human
errors at different stages of software development. During our user study, (Section 5.2), participants also described
symphonies of human errors:

Participant 2: “Time management is the reason our stereotype is people coding for 24 hours straight,
through the night, overloaded on caffeine... it’s like ingrained in software development culture. Time
management is just like totally, totally crucial and totally contributes to human errors a lot. It’s like one
of the biggest factors in my opinion.”

Participant 5: “I don’t know what I did, but I completely broke debugging on my project. It was skipping
over functions I was trying to step into and going to lines that weren’t even code, just white space and
comments. It might have been something misconfigured in my project, but everything I was doing to make
it better only made it worse because I had no idea what I was doing.”

Some potential research questions in this area include:

• Are there overarching human error themes (e.g. time management) that lead to other human errors in software
engineering?

• How often do symphonies of human errors occur in software engineering?

• Do certain kinds of software defects typically result from a symphony of human errors?

• Are there patterns of human error chains (e.g. Internal Communication Errors (M04) → Solution Choice
Errors (M06)) in software engineering?
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7.2.5 Inculcating a Human Error Mindset
Learning to think like an attacker (i.e. inculcating an attacker mindset) is an essential skill for software engineers,
as an attacker mindset leads software engineers to ask questions such as how can an attacker exploit this feature? or
how can an attacker leverage this configuration to break into the system?—this kind of speculative reasoning can help
software engineers think about potential security flaws and work to prevent or mitigate vulnerabilities before they
occur [204, 246, 247]. Future work should explore whether inculcating a human error mindset has similar benefits.
During Phase 2 of our user study (Section 5.2), participants were asked if they found themselves thinking in terms
of human error as their human errors were experienced, or if assessing human error was a more reflective process. At
the beginning of Phase 2, participants responded with the following:

2022-09-16, Participant 2: “Rather than thinking about it in terms of... slip, lapse, mistake, I’ve been
analyzing my errors closer, definitely because of this... with more focus on the reason itself than ’Oh, this
is a mistake, or this was a lapse’... it’s more like when I come across that mistake and when I eventually
reach that solution, this was because I was rushing, or this is because I had unclear requirements, or a
misunderstanding of my requirements. I think about the reason more closely now.”

2022-09-16, Participant 4: “More of a reflective process... because it was on a time crunch, I was
more focused on like, just getting them fixed.”

2022-09-16, Participant 5: “Right now it’s definitely more reflective, like I’m not seeing it in the
moment.”

In the following weeks, some participants indicated a shift in their thought process, which indicates they may be
internalizing human error:

2022-09-23, Participant 5: “I’m definitely keeping it in my mind more.”

2022-10-14, Participant 3: “When the [human error] actually happens, especially if it’s a slip or lapse,
it usually gets resolved in less than 5 minutes... although if it’s a mistake, where there’s like a long term
consequence to it... I usually look back on that.”

2022-10-17, Participant 5: “A lot more. Like now, before I even fix it, when I realize something’s
wrong... I’ll write it down and categorize it later.”

Future work should explore questions related to human error mindset, such as:

• How can software engineers inculcate a human error mindset?

• Does thinking about human errors in the moment, or before they occur, lead to improved software quality?

• What impact does inculcating a human error mindset have on individual software engineers’ performance and
on the performance of software engineering teams?

7.2.6 Reframing Historical Software Defects
Since every software defect (i.e. fault or failure) is the manifestation of human error [349], we encourage software
engineering taxonomy researchers (notably those discussed in Section 3.3) to revisit their taxonomies and consider
documented software engineering defects under the lens of human error.

For example, CWE collects the (mostly software-agnostic) underlying weaknesses that lead to a vulnerability.
MITRE (the organization that maintains CWE) could re-examine existing CWE entries with human error in mind,
similar to our approach in Section 5.3, and identify CWEs that are related to specific categories of human error.
For example, Code Logic Errors (M01) encompasses many CWE entries, such as CWE-478: Missing Default
Case in Multiple Condition Expression and CWE-480: Use of Incorrect Operator. CWE entries such
as CWE-477: Use of Obsolete Function and CWE-1068: Inconsistency Between Implementation and
Documented Design fall under Overlooking Documented Information (S03).

What new insights can the software engineering community gain by examining historical defects and weaknesses
with human error in mind? Some potential research questions in this area include:

• What types of human errors are documented in historical software defects?

• Are slips, lapses, and mistakes adequately represented in historical software defects?

• Are there new categories of human error documented in historical software defects?

• What relationships exist between human errors and vulnerabilities?
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7.2.7 Automated Human Error Classification
Our classification experiment (Section 5.3) indicates that Sentence-BERT models may be able to accurately classify
slips, lapses, and mistakes. However, we noted some limitations in this line of research that future researchers could
address, including:

• Lack of training data: Our experiment used a small set of 368 manually labeled human errors in software
engineering. We encourage future researchers to collect and annotate more data, and explore training models
capable of classifying slips, lapses, and mistakes—both within software engineering and beyond. With more
data, researchers may even be able to classify human errors beyond the surface level (i.e. classify T.H.E.S.E.
categories).

• Lack of relevant models: With one exception [73], we could not find any Sentence-BERT models trained on
software engineering data. We encourage future researchers to address this lack of software engineering specific
language models. Researchers could also explore adapting other kinds of language models—such as Falcon [8],
LLaMA [344], and GPT [291]—to human error classification and other tasks.

7.2.8 Socio-Linguistic Characteristics of Developers’ Human Errors
In previous work, we examined socio-linguistic characteristics—e.g. politeness, uncertainty, syntactic complexity—of
software engineers’ conversations, revealing new insights into effective software engineering and security commu-
nication strategies [218, 219, 245]. Future work should examine similar socio-linguistic characteristics of software
engineers’ human errors. Some potential research questions in this area include:

• How does politeness impact the effectiveness of team-based human error reflection?

• How uncertain are software engineers when discussing their human errors?

• How much information is present in software engineers’ human error discussions?

• Do software engineers with less experience and/or less project familiarity experience more human errors?

7.2.9 Human Error Prevention Through Existing Processes
In the final survey for our user study (Section 5.2), participants indicated that various tools and processes may be
able to prevent or mitigate certain human errors. Participants indicated that code review, compilers, debuggers,
continuous integration, and IDE tools could help identify and/or prevent slips. For lapses, participants suggested
code review, regular note-taking, requirements testing, defect tracking, and maintaining sprint backlogs. Finally, for
mistakes, participants suggested clearly defining and following processes, having a project manager be responsible for
organization, regular verification with the project stakeholders, and quality assurance (e.g. checklists, control charts).

Some examples: if a software engineer uses an IDE, Syntax Errors (S02) can be mitigated because the syntax
checker will identify syntax errors before they make it into the official source code; if a software engineering team
tracks defects, Forgetting to Fix a Defect (L02) can be mitigated because software engineers can consult the
defect log rather than trying to remember defects that need fixing; if a software engineering team performs regular
code review, then many human errors (e.g. Overlooking Documented Information (S03) and Code Logic Errors
(M01)) can be prevented because there are multiple software engineers examining the software product.

Researchers studying human error in software engineering should consider mapping existing software engineering
processes to the human errors they intend to fix. This may even lead to human error informed risk assessment, e.g.
identifying human errors that could be experienced during a project because certain tools/processes are not being
used. Some potential research questions in this area include:

• Which software engineering processes are most effective at mitigating slips, lapses, and mistakes?

• Why do certain software engineering processes/tools identify or prevent human errors?

• Which human errors are not covered by existing software engineering processes?



CHAPTER 7. SUMMARY & FUTURE WORK 96

7.2.10 Insights from Apologizing Software Engineers
Apology mining is a relatively new area of study, presenting many research opportunities. Future researchers should
examine apologies in natural language across domains and consider the socio-technical factors that contribute to the
culture of admitting to mistakes (in the general sense of the word). Some potential research questions in this area
include:

• How frequently do practitioners apologize in domains such as medicine, transportation, first response, and
politics?

• What factors contribute to the relative frequency of apologies in one domain versus others?

• How can a culture of admitting to mistakes be fostered in various domains?

• What value does admitting to mistakes provide?

• How can apologies be modeled in natural language?

• What socio-linguistic factors (e.g. politeness) are associated with apologies?

• Do open-source software engineers’ admit to their human errors more frequently than closed-source developers?

7.3 Closing Thoughts & Cautions
Human error in software engineering is a growing, maturing domain with promising areas of study. However, there
are some careful considerations to be made. We wish to encourage those reading this dissertation to view human
error not as a human problem, but as an organizational problem. The old approach to human error was “beating the
human until the error goes away [76],” but modern practitioners view human error as an opportunity to understand
what went wrong and work toward prevention strategies [76]. Sydney Dekker, a human factors and safety expert,
illustrates this point when discussing human errors in the aviation domain:

“Go back to the 1947 Fitts and Jones study. This is how their paper opened: “It should be possible
to eliminate a large proportion of so-called ‘pilot-error’ accidents by designing equipment in accordance
with human requirements [99].” ‘Pilot error’ was again put in quotations marks, and once it had been
investigated properly, the solutions to it became rather obvious. The point was not the ‘pilot error.’ That
was just the symptom of trouble, not the cause of trouble. It was just the starting point. The remedy did
not lie in telling pilots not to make errors. Rather, Fitts and Jones argued, we should change the tools,
fix the environment in which we make people work, and by that we can eliminate the errors of people who
deal with those tools. Skill and experience, after all, had little influence on “error” rates: getting people
trained better or disciplined better would not have much impact. Rather change the environment, and you
change the behavior that goes on inside of it. Note also how Fitts and Jones did not call these episodes
“failures.” Instead, they used the neutral term “experiences.” We could all learn a lot from their insights,
their understanding, their open-mindedness and their moral maturity [76].”

Throughout Section 4.2, we read many apologies made by software engineers, but this one effortlessly articulates the
core of the human error mindset—a culture of acceptance, kindness, and progress in the face of human error:

“Apologies for the oversight... Unfortunately my mind is always split between the various Github, Forum,
and Reddit issues (as well as the various features I’m working on), and that does sometimes lead to things
slipping. I assure you it’s not a result of malice, but just me being human. I encourage you to remind
yourself of the human-ness of others when communicating online. I know this bug is frustrating, but
hopefully this time around we’ll get it for good :) [121]”
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Appendix A

Abbreviations & Acronyms

This appendix provides a listing of abbreviations and acronyms used throughout this dissertation:

• AER: After-Event Review

• API: Application Program Interface

• AVOIDIT: Attack Vector, Operational Impact, Defense, Information Impact, and Target (from Simmons et
al. [326])

• BERT: Bidirectional Encoder Representations from Transformers (from Devlin et al. [77] and Reimers &
Gurevych [303])

• CAPEC: Common Attack Pattern Enumeration and Classification (from [233])

• CERT: Community Emergency Response Team (from Howard [136])

• CLI: Command Line Interface

• CPU: Central Processing Unit

• CVE: Common Vulnerabilities and Exposures [237]

• CVSS: Common Vulnerability Scoring System (from [207])

• CWE: Common Weakness Enumeration [235]

• CWSS: Common Weakness Scoring System (from [201])

• Dev-HET: Developer Human Error Taxonomy (from Anu et al. [20])

• DNS: Domain Name System

• DoS: Denial-of-Service

• FN: False Negative

• FP: False Positive

• GEMS: Generic Error-Modelling System (from Reason [300])

• HE: Human Error

• HEA: Human Error Assessment

• HEAA: Human Error Abstraction Assist (from Anu et al. [14])

• H.E.R.E.: Human Error Reflection Engine

• HET: Human Error Taxonomy (from Anu et al. [12, 15, 18, 22, 23])

• HRA: Human Reliability Analysis

• HTTP: Hypertext Transfer Protocol

• ICMP: Internet Control Message Protocol
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• IDE: Integrated Development Environment

• IDS: Intrusion Detection System

• IoT: Internet-of-Things

• JS: JavaScript

• KB: Knowledge-Based

• MLM: Masked Language Modeling

• NLP: Natural Language Processing

• NSP: Next Sentence Prediction

• NVD: National Vulnerability Database

• O/C: Omission/Commission

• ODC: Orthogonal Defect Classification

• OODA: Observe, Orient, Decide, Act (from Nagaria & Hall [251, 252])

• OS: Operating System

• OWASP: Open Web Application Security Project (from [274])

• Pr.: Precision

• PA: Protection Analysis (from Bisbey & Hollingworth [41])

• POS: Parts-of-Speech

• Re.: Recall

• RB: Rule-Based

• RCA: Root Cause Analysis

• RET: Requirement Error Taxonomy (from Walia et al. [351, 352])

• RISOS: Research in Secured Operating Systems (from Abbott et al. [1])

• RIT: Rochester Institute of Technology

• SB: Skill-Based

• SLR: Systematic Literature Review

• SRK: Skill-Rule-Knowledge (from Rasmussen [293, 295])

• SSH: Secure Shell

• T.H.E.S.E.: Taxonomy of Human Errors in Software Engineering

• TN: True Negative

• TP: True Positive

• TSSD: Taxonomy System of Software Developers (from Huang et al. [143])

• VERDICT: Validation Exposure Randomness Deallocation Improper Conditions Taxonomy (from Lough [192])

• VHP: Vulnerability History Project

• WE: Word Embeddings (from Mikolov et al. [222])

• XSS: Cross-Site Scripting



Appendix B

Institutional Review Board Approval

Institutional Review Board (IRB) approval for our research involving human subjects (Section 5.2) was granted by
the Human Subjects Research Office at the Rochester Institute of Technology on March 18, 2022. Figure B.1 shows
the IRB decision form granting approval to this research.
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Revised 10.5.20 

Rochester Institute of Technology 
 

RIT Institutional Review Board for the 
Protection of Human Subjects in Research  
141 Lomb Memorial Drive 
Rochester, New York 14623-5604 
Phone: 585-475-7673 

Fax: 585-475-7990 

Email: hmfsrs@rit.edu 

 

 

Form C 

    IRB Decision Form 

FWA# 00000731 

 
 

 

TO: Benjamin Meyers         

 

FROM: RIT Institutional Review Board 

 

APPROVAL DATE: March 18, 2022 

 

RE: Decision of the RIT Institutional Review Board  

 

Project Title – Studying Human Errors in Software Engineering 

 

HSRO #02030322  

 

SRS Proposal:006102-002 

Sponsor: Department of Defense DARPA SBIR program      Sponsor #140D63-19-C-0018 
 

The Institutional Review Board (IRB) has taken the following action on your project named above. 

 

 Exempt   _46.104 (d) (1)_ 

  

 

Now that your project is approved, you may proceed as you described in the Form A.  

 

You are required to submit to the IRB any: 

 Proposed modifications and wait for approval before implementing them,  

 Unanticipated risks, and  

 Actual injury to human subjects.   

 

 

 

 

 

 

 

 

 

 

______________________________________ 

Heather Foti, MPH 

Associate Director  

Human Subjects Research Office (HSRO) 

Figure B.1: Institutional Review Board Approval
Form C (IRB Decision Form) from the Institutional Review Board at Rochester Institute of Technology.
Signature redacted.



Appendix C

Informed Consent

For the user study described in Section 5.2, we obtained informed consent from participants prior to their participation.
Figure C.1 and Figure C.2 show the informed consent text provided to participants for Session 1 and Session 2,
respectively.
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The purpose of this research is to elicit experiences with human error while refining a Taxonomy of
Human Errors in Software Engineering (T.H.E.S.E.). Human error is an emerging field of study in
software engineering and initial results indicate that learning about and reflecting upon human errors
positively impacts software engineering activities.

If you choose to participate in this research, you will be given an introduction to human error and
T.H.E.S.E. and then tasked with filling out a Google Form for each human error you experience through-
out the study. Each week, you will meet for 30 minutes with Benjamin Meyers to discuss the human
errors you have experienced during the week and answer some questions. You will also be tasked with
manually categorizing some human errors from GitHub according to T.H.E.S.E.

Participation in this research is entirely voluntary. To participate, you must be (1) a current student
or recent graduate of a computing program at RIT and (2) actively developing software every week for
the duration of the research project. The project will span 4 weeks, and at the end you will receive a
$75 gift card. You must complete all of the required tasks in order to receive the gift card.

In summary, the time commitment for this research is about 7-8 hours (60-120 minutes per week), with
the following activities:

(1) 30 minutes, once: brief introduction to human error and T.H.E.S.E.

(2) 30 minutes, weekly: documenting the human errors you experience

(3) 30 minutes, weekly: discussion with Ben Meyers

(4) 1-2 hours, once: categorizing human errors from GitHub

(5) 30 minutes, once: completing a brief survey at the end of the research project

If you choose to participate in this research, you acknowledge that your survey responses may be
published as part of academic research. Your name and any other information that could be used to
identify you will never be published. Please note that your weekly meetings will be recorded, and that
quotes (without attribution) may be published, but audio/video recordings will never be published.

If you have any questions while filling out this form, please email Benjamin Meyers: bsm9339@rit.edu.

Figure C.1: Informed Consent Text for Phase 1 Participants
Study participants digitally signed this form, verifying their understanding of their responsibilities and
how their data would be used.
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The purpose of this research is to elicit experiences with human error while refining a Taxonomy of
Human Errors in Software Engineering (T.H.E.S.E.). Human error is an emerging field of study in
software engineering and initial results indicate that learning about and reflecting upon human errors
positively impacts software engineering activities.

If you choose to participate in this research, you will be given an introduction to human error and
T.H.E.S.E. and then tasked with filling out a Google Form for each human error you experience through-
out the study. Each week, you will meet for 30 minutes with Benjamin Meyers to discuss the human
errors you have experienced during the week and answer some questions.

Participation in this research is entirely voluntary. To participate, you must be a SWEN-561 student.
Alternatively, we are open to accepting RIT students who are actively developing software (either
through coursework or on co-op). The project will span 8 weeks, and at the end you will receive a $75
gift card. You must complete all of the required tasks in order to receive the gift card.

In summary, the time commitment for this research is about 8 hours (1 hour per week), with the
following activities:

(1) 30 minutes, once: brief introduction to human error and T.H.E.S.E.

(2) 30 minutes, weekly: documenting the human errors you experience

(3) 30 minutes, weekly: discussion with Ben Meyers

(4) 30 minutes, once: completing a brief survey at the end of the research project

If you choose to participate in this research, you acknowledge that your survey responses may be
published as part of academic research. Your name and any other information that could be used to
identify you will never be published. Please note that your weekly meetings will be recorded, and that
quotes (without attribution) may be published, but audio/video recordings will never be published.

If you have any questions while filling out this form, please email Benjamin Meyers: bsm9339@rit.edu.

Figure C.2: Informed Consent Text for Phase 2 Participants
Study participants digitally signed this form, verifying their understanding of their responsibilities and
how their data would be used. A few minor changes occurred from Figure C.1: (1) categorizing human
errors from GitHub removed from responsibilities, (2) participation criteria changed, (3) time commit-
ment changed.



Appendix D

Human Error Training Slides

This appendix provides the slides used during human error training in our user study, as described in Section 5.2.
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(a) Slide 1: Title slide

(b) Slide 2: Introduction with common errors that students might make

Figure D.1: Human Error Training Slides
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(c) Slide 3: Discussion of common errors in software engineering

(d) Slide 4: Illustration of typical error lifecycle in software engineering

Figure D.1: Human Error Training Slides (Continued)
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(e) Slide 5: Introduction to the notion of human errors leading to coding faults

(f) Slide 6: Discussion of the goal of human error assessment in software engineering

Figure D.1: Human Error Training Slides (Continued)
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(g) Slide 7: Introduction to slips with definition and examples

(h) Slide 8: Introduction to lapses with definition and examples

Figure D.1: Human Error Training Slides (Continued)
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(i) Slide 9: Introduction to mistakes with definition and examples

(j) Slide 10: Return to examples of typical student human errors

Figure D.1: Human Error Training Slides (Continued)
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(k) Slide 11: Discussion of typical student human errors in context

(l) Slide 12: More examples of human errors in software engineering

Figure D.1: Human Error Training Slides (Continued)
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(m) Slide 13: Introduction to T.H.E.S.E.

(n) Slide 14: Full listing of T.H.E.S.E. categories

Figure D.1: Human Error Training Slides (Continued)
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(o) Slide 15: Guidelines for human error classification using T.H.E.S.E.

(p) Slide 16: Real-world examples of human errors in software engineering from GitHub

Figure D.1: Human Error Training Slides (Continued)
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(q) Slide 17: Real-world examples of human errors in software engineering from GitHub

(r) Slide 18: Discussion of more nuanced, open-ended human errors from GitHub

Figure D.1: Human Error Training Slides (Continued)
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Open-Ended Final Survey Responses

This appendix includes anonymized responses to open-ended final survey questions (from Figure 5.3). Survey ques-
tions are repeated here for quick reference:

1. This research project...

(a) was engaging.
(b) had clear instructions.
(c) enhanced my understanding of my own human errors.
(d) involved a reasonable time commitment.
(e) was a valuable learning experience.
(f) enhanced my understanding of human errors in SE.
(g) reinforced theoretical concepts related to human error.
(h) involved a useful human error reporting form.
(i) would benefit other SE students.
(j) involved meaningful weekly discussions.

2. The taxonomy...

(a) had clear descriptions and examples.
(b) was simple to use for classifying my human errors.
(c) was general enough to apply to all SE phases.
(d) led to meaningful reflection on my human errors.
(e) made it easy to organize and confront my human errors.
(f) would be a beneficial tool for professional software engineers.
(g) had categories that adequately described my human errors.
(h) led to unambiguous classifications.
(i) was confusing.
(j) was overwhelming.

3. The taxonomy adequately covers potential human errors during...

(a) software requirements engineering.
(b) software design.
(c) software implementation.
(d) software testing.
(e) software deployment.
(f) software maintenance.

4. Please elaborate on your answers in the previous question.

5. Which type of human error (i.e. slips, lapses, or mistakes) do you believe has the most impact (i.e. consequence)
on a software project and why?

6. What strategies, activities, processes, or tools would you recommend for identifying and/or preventing slips?
Which strategy, activity, process, or tool would you say can best identify and/or prevent most slips? Please
be specific.
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7. What strategies, activities, processes, or tools would you recommend for identifying and/or preventing lapses?
Which strategy, activity, process, or tool would you say can best identify and/or prevent most lapses? Please
be specific.

8. What strategies, activities, processes, or tools would you recommend for identifying and/or preventing mis-
takes? Which strategy, activity, process, or tool would you say can best identify and/or prevent most mis-
takes? Please be specific.

9. Based on your experience during this research project, please indicate your level of agreement with the following
statements.

(a) Human errors in SE typically fall into one category.
(b) Human errors in SE often span multiple categories.
(c) One human error in SE can lead to others.
(d) I can usually identify slips as they occur.
(e) I can usually identify lapses as they occur.
(f) I can usually identify mistakes as they occur.

10. If multiple developers experienced the same human error, do you believe they would place it into the same
category?

(a) Yes
(b) No
(c) Maybe

11. Please explain your answer to the previous question.

12. Do you believe that assessing human errors is a beneficial activity for software engineers?

(a) Yes
(b) No
(c) Maybe

13. Please explain your answer to the previous question.

14. Please explain what you learned about your own human errors during this project.

15. Please describe whether or not you feel like you can better avoid your own human errors in the future.

16. Please describe any difficulties you had while learning about human errors (slips, lapses, and mistakes) or while
using T.H.E.S.E. to classify your human errors.

17. Do you have any recommendations for improving T.H.E.S.E.?

18. If this research project were repeated (in a class, for example), what changes would you like to see?

19. Would you be interested in seeing your human errors in some aggregate form? Please describe what form would
be useful for you.

20. Do you have any additional comments, concerns, or suggestions that you would like to share?
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Table E.1: Open Ended Final Survey Responses

Q# Respondent/Response

(4) A: —
B: While doing research, I would find that while it was difficult to identify human errors relating to software design
because it is difficult to know if there was human error until after the design process.
C: When doing a lot of design work, I didn’t think the taxonomy would apply. Once Ben pointed out that it could
be applied to the design phase as well, I realized that the taxonomy had a versatility I didn’t realize previously. After
this, I was able to apply the taxonomy to various areas of the SW development process.
D: Requirements engineering can involve communications errors. Design can involve mistakes in understanding
requirements, but depending on how clear the requirements are that’s probably less likely. Implementation can have
errors from all 3 categories (slips, lapses, mistakes). Testing can have errors in understanding what to test, and
also slips and lapses, but can depend on the scope/understand-ability of the project. Deployment can involve slips
and lapses for deployment procedures. Maintenance can have errors, but some errors in maintenance aren’t covered
(mistake in monitoring, recovery procedure errors, etc.).
E: For the most part, it seemed like all the categories were covered. I just got into so odd edge cases during my
requirement where something I did didn’t really fit into a category - like forgetting to finish work I forgot to finish
something I was developing and a diagram I was making. So I didn’t forget to start it, just the wrapping up part.

(5) A: —
B: I would say mistakes have the most impact on a software project because slips and lapses have relatively simple
solutions while mistakes lead to bigger changes in a software project.
C: Lapses. I think lapses are most likely to result from carelessness or a disregard for the project. These types of
errors can result in the downfall of a project faster than the other two because the developers, who are supposed to
be the most attentive to the project, aren’t satisfying this requirement.
D: Mistakes. Harder to recognize and have more long-term consequences.
E: Mistakes. In my experience, the majority of slips and lapses can be fixed pretty easily, like a typo can be fixed
in less than a second after you find it. Even if you misspelled it multiple times, your IDE will normally have like
a refactor feature where you can change all references to a misspelled variable at once. Mistakes usually mean that
you have to take extra time to fix something that went wrong. You don’t really realize your mistake until it’s too
late and you’re dealing with the consequences of that.

(6) A: —
B: I think having a second person look over the code can help check for the minor things that were not caught by
the developer. For coding slips, a compiler or debugger can help.
C: The best way to prevent a slip is to maintain a strong understanding of what your own tasks are and what
those tasks entail. This would involve discussions with your manager/supervisor/senior engineer to clear up and
discrepancies in your understanding of the task.
D: Compiler and IDEs, or CI for automated testing
E: For me, most of my slips were caught by my IDE which checks my syntax and spelling as I go. The other types
of slips tend to occur because you aren’t paying attention to what you’re really doing, so the best way to identify
or prevent slips would be to just slow down and work intentionally. Software development tends to happen under
pressure, like having a deadline or having to work on multiple things at once. I think the best way to identify /
prevent would be to realign your focus before development - getting rid of distractions and taking time to understand
fully what you are working on.

(7) A: —
B: Like slips, I think having someone else look over the code can help catch stuff that is missed. A project manager
might be the best at identifying lapses with requirements.
C: The best way to avoid lapses is to pay attention and take notes during briefings and stand ups. Without this
practice, developers are more likely to entirely forget tasks or parts of tasks.
D: Requirements testing, CI for automated testing, actively keeping track of backlog for current sprint.
E: To prevent a lapse, you need to write stuff down and have it in a place where it can be easily accessed. A lot
of my lapses were prevented by the notes I took during requirement gathering and development. It’s hard to forget
to implement a feature or fix a defect when you have it in your work queue in a program like JIRA or Trello. For
stuff like forgetting an import statement, IDEs can tell you that pretty easily. Lapses like forgetting to save code or
pull new code can be improved with good habit like if you make it habit to save your changes before leaving your
computer or every so often, then you can help mitigate that.

continued on next page...
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Table E.1: Open Ended Final Survey Responses (Continued)

Q# Respondent/Response

(8) A: —
B: A way to prevent mistakes is to clearly define a process and following the process.
C: Mistakes are the hardest to avoid because they are inevitable in the product development process. I think the
best way to avoid mistakes would be to have a project manager + architect with strong understandings of the task
at hand and adequate experience or domain knowledge towards guiding the developers to completing the project.
D: Requirements testing and analysis. Verifying architecture with project owners. Considering process planning and
design plan.
E: To identity / prevent mistakes you need to have good planning practices. Doing even some form of planning can
prevent a lot of mistakes from happening. The more time you take to plan, to establish a system of quality, the less
mistakes you will encounter. Mostof these mistake categories sound like things we talked about in my [REDACTED
COURSE NAME] classes. Like if you want quality testing, then follow the verification and validation model. Using
the “7 Baisc Quality Tools”: cause-and-effect diagram, checklist, pareto diagram, histogram, run chart, scatter plot,
and control chart are all meant to get you to think about where issues in your process might occur, what are root
causes, and what can you do to mitigate it. A lot of these mistakes take experience to identify and prevent - it’s
hard to plan around a problem you don’t understand. If you don’t have your own experience, then you can always
ask someone else for their advice.

(11) A: The labels and descriptions were generic enough to be understood by all, but specific enough to categorize specific
problems generally experienced by all.
B: I think their perception of the situation might lead to different placements of category.
C: Yes, as long as the developers have an understanding of the three categories and the differences between them.
I often found myself confusing lapse and slip towards the beginning because both involve not knowing information.
The distinction, to me, is that a slip is forgetting information you once knew, and a lapse is not ever knowing a piece
of information.
D: Some errors can be a group effort (ex. a mistake in process planning is a mistake that the entire team made.)
E: Some people just experience things differently. They might be thinking of the immediate error that just happened
or they might think of the error that caused the error of the errors that resulted in it. If you misspell a word that
prevents your program from running someone might call that a typo and someone else might call that a code logic
error. Or maybe the word was misspelled in the requirements document so really it was a communication problem.

(13) A: Very much. I can see how it’s a tricky thing to study but it will definitely be worth it. Research like this could
result to improved IDE functionality or even change the way languages are interpreted by humans.
B: I think it is important to reflect on why we experience common errors and be proactive in preventing them rather
than continuing a cycle of making similar mistakes and never knowing why.
C: I think assessing human errors could be a very costly addition to a SW team’s process, so I would only recommend
the assessment of human errors as a part of the process for low priority projects and tasks. If a team used it though,
the project manager would have a significantly better understanding of how individual developers work. I do think
that this research has the potential to help us design new tools for IDE’s and give project managers a new perspective
on how the team is working.
D: Depends on how much errors and how much time it takes to assess them. Overall useful but for some companies
it might also be a waste of time.
E: Understanding your issues is the first step to fixing them. If you log your errors and see you have are making the
same mistake consistently, then that’s a red flag that there’s an issue you should probably fix.

(14) A: I make silly mistakes that I get caught up on for too long
B: I realized a lot of the human errors dealt with non-coding factors such as my stress levels or lack of knowledge.
C: I realized that a lot of my mistakes occur when I’m trying to hit the ground running with a new tool. During
the phase of exploration with a new tool, you’re bound to assume things incorrectly, use bad syntax, or even
misunderstand the concept behind the tool you’re using. I realized I have lapses the least as I try to put effort into
understanding my tasks and requirements before i complete them.
D: Slips are typically made during development/implementation. Mistakes typically happen in pre-planning or
design. Lapses can happen in both but are less likely overall.
E: I learned that your brain autocorrects yourself all the time so a lot of slips / lapses happen without you even
really registering it. Because of that, you can make the same mistake multiple times before you really pick up on it.
I think that’s also why I mostly reported mistakes, because they often had consequences that I had to take effort to
deal with. There are some errors that I will never really be able to fully prevent- like I’m always going to misspell
words, but because of that I know that I need to proofread.

continued on next page...
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Table E.1: Open Ended Final Survey Responses (Continued)

Q# Respondent/Response

(15) A: Definitely will be able to navigate tricky errors better because I will understand what I’m doing wrong.
B: I am unsure if I can avoid my own human errors, but I feel like I can better identify what went wrong when
making human errors.
C: The best way to avoid human errors is to think about what you’re doing after you make a mistake. Trying to
reflect on whether I knew a certain piece of necessary information or if I was properly equipped to handle a task is
the best way to assess yourself.
D: Depends on the error, as I get more experience I can experience the same errors in multiple projects, which would
make me think that those errors are results of an anti-pattern.
E: I feel like I can, having these definitions laid out in a list makes it a lot more digestible and kind of gives me a
checklist of things to think about while I’m working on a project - is my testing strategy good enough? What’s the
best way to communicate something? Will this tool help me correct myself or is that something I need to plan for?

(16) A: None.
B: I did not have difficulty using T.H.E.S.E. to classify the human errors but I had difficulty catching my errors
when they happened. A lot of my identifying was reflective.
C: I felt like slips and lapses were confusing at first. Both terms remind me of “forget”, and so whenever I talk about
the two categories I have to think a little harder about what they specifically mean.
D: N/A
E: Sometimes I was just too busy to stop and think about my errors. Like I’ve made 5 typos in a row, I am not
stopping to write down every single one. Sometimes it was difficult for me to decide if I should log the cause or
effect of an error of the error I noticed. Also, I always forgot to check the document that got updated definitions so
I mis-categorized a few times because of that, I always used the one in the form. The form is kind of long and it
required thinking so for the most part I would just note my errors down and then report them later, but sometimes
I would wait so long that I would forget what really happened so I had to be vague.

(17) A: Ben knows from our discussions, just adding a few categories.
B: I would consider process related errors.
C: I don’t have a good suggestion for fixing the slips/lapses confusion besides thinking of a different word to describe
one or the other. I don’t think that this confusion is enough to warrant larger changes to T.H.E.S.E.
D: Maybe try pairing some of the errors to common anti-patterns in SE
E: Maybe add in something for if an error was caused by another error. For me personally, I think a printed sheet
of paper would have helped me. If I thought I was experiencing and error then I could just whip that out check real
quick, looking stuff up on a computer is just annoying sometimes.

(18) A: N/A
B: I would want to try different projects (individual, group, implementation-related, design-related) to test all
different aspects of software engineering.
C: N/A
D: An average metric for how critical some of these errors can affect a project.
E: In a class, I think having a quota or goal for errors reported each week could help. I wasn’t really sure how
many I was expected to report so I wasn’t always sure if I was doing as much as I was supposed to. I think it
would interesting to have classmates interview each other for weekly reporting, it could give a student a different
perspective on errors and increase their skill in identifying and reporting them.

(19) A: It would be interesting+entertaining to see this info visualized on a web app. Maybe people could voluntarily
add their info to a public web app that visualizes it.
B: N/A
C: I would be interested in seeing the human errors by frequency of category and perhaps with a list of descriptions
in each category.
D: Nah
E: Just having the category and number or percentage reported would be enough for me to be interested. I would
like to see the most common and least common, maybe which errors were reported together the most - like on the
form where you could put if this error fit any other category. The most edge case errors would be interesting too.

(20) A: N/A
B: N/A
C: N/A
D: Cool research topic overall :D
E: :)



Appendix F

Model Evaluation

In this appendix, we include model performance metrics for all 21 pretrained Sentence-BERT models evaluated in
Chapter 5.3, both before and after improving T.H.E.S.E. category definitions. In the following tables, the highest
value, second highest value, and lowest value for an experiment are coded in green, yellow, and red, respectively.
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Table F.1: Multiclass Classification Results Before Improving T.H.E.S.E. Definitions

With Apology Comments Without Apology Comments
Slips Lapses Mistakes Slips Lapses Mistakes

Model Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

Without Natural Language Preprocessing
SB01 0.350 0.711 0.469 0.185 0.468 0.265 0.808 0.188 0.304 0.453 0.667 0.540 0.222 0.560 0.318 0.821 0.256 0.390
SB02 0.309 0.608 0.410 0.197 0.574 0.293 0.725 0.129 0.220 0.437 0.608 0.508 0.257 0.720 0.379 0.720 0.200 0.313
SB03 0.365 0.598 0.453 0.195 0.723 0.308 0.743 0.116 0.201 0.394 0.549 0.459 0.231 0.720 0.350 0.765 0.144 0.243
SB04 0.373 0.588 0.456 0.171 0.596 0.265 0.784 0.179 0.291 0.432 0.627 0.512 0.233 0.680 0.347 0.947 0.200 0.330
SB05 0.324 0.588 0.418 0.174 0.596 0.269 0.613 0.085 0.149 0.414 0.569 0.479 0.210 0.680 0.321 0.533 0.089 0.152
SB06 0.358 0.598 0.448 0.160 0.553 0.248 0.791 0.152 0.255 0.403 0.608 0.484 0.224 0.600 0.326 0.773 0.189 0.304
SB07 0.360 0.557 0.437 0.179 0.532 0.267 0.718 0.250 0.371 0.384 0.549 0.452 0.217 0.520 0.306 0.697 0.256 0.374
SB08 0.518 0.454 0.484 0.156 0.809 0.262 0.825 0.147 0.250 0.551 0.529 0.540 0.211 0.760 0.330 0.778 0.233 0.359
SB09 0.463 0.381 0.418 0.156 0.638 0.251 0.677 0.290 0.406 0.550 0.431 0.484 0.224 0.680 0.337 0.740 0.411 0.529
SB10 0.366 0.495 0.421 0.201 0.766 0.319 0.690 0.179 0.284 0.409 0.529 0.462 0.247 0.760 0.373 0.783 0.200 0.319
SB11 0.510 0.268 0.351 0.178 0.830 0.293 0.653 0.286 0.398 0.548 0.333 0.415 0.247 0.920 0.390 0.643 0.300 0.409
SB12 0.308 0.505 0.383 0.236 0.617 0.341 0.628 0.241 0.348 0.418 0.549 0.475 0.267 0.640 0.376 0.615 0.267 0.372
SB13 0.298 0.402 0.342 0.185 0.532 0.275 0.549 0.250 0.344 0.444 0.392 0.417 0.200 0.560 0.295 0.510 0.289 0.369
SB14 0.346 0.371 0.358 0.198 0.745 0.312 0.736 0.286 0.412 0.460 0.451 0.455 0.228 0.720 0.346 0.730 0.300 0.425
SB15 0.449 0.227 0.301 0.139 0.915 0.241 0.444 0.018 0.034 0.560 0.275 0.368 0.170 0.920 0.287 0.333 0.022 0.042
SB16 0.450 0.186 0.263 0.166 0.787 0.274 0.657 0.308 0.419 0.625 0.196 0.299 0.198 0.960 0.329 0.517 0.167 0.252
SB17 0.364 0.082 0.134 0.136 0.894 0.236 0.486 0.080 0.138 0.556 0.098 0.167 0.170 0.960 0.289 0.500 0.089 0.151
SB18 0.438 0.361 0.395 0.125 0.660 0.210 0.625 0.112 0.189 0.478 0.431 0.454 0.168 0.680 0.270 0.579 0.122 0.202
SB19 0.368 0.072 0.121 0.199 0.681 0.308 0.718 0.603 0.655 0.333 0.078 0.127 0.210 0.680 0.321 0.671 0.544 0.601
SB20 0.430 0.381 0.404 0.188 0.830 0.307 0.760 0.254 0.381 0.525 0.412 0.462 0.244 0.880 0.383 0.750 0.300 0.429
SB21 0.350 0.144 0.204 0.137 0.766 0.232 0.492 0.143 0.221 0.273 0.118 0.164 0.171 0.760 0.279 0.394 0.144 0.211

With Natural Language Preprocessing
SB01 0.370 0.412 0.390 0.172 0.553 0.263 0.725 0.353 0.474 0.514 0.373 0.432 0.210 0.680 0.321 0.708 0.378 0.493
SB02 0.383 0.237 0.293 0.162 0.638 0.259 0.675 0.371 0.478 0.533 0.157 0.242 0.192 0.800 0.310 0.638 0.333 0.438
SB03 0.506 0.402 0.448 0.200 0.660 0.307 0.713 0.433 0.539 0.676 0.451 0.541 0.257 0.760 0.384 0.724 0.467 0.568
SB04 0.365 0.392 0.378 0.210 0.638 0.316 0.744 0.402 0.522 0.472 0.333 0.391 0.243 0.720 0.364 0.732 0.456 0.562
SB05 0.395 0.464 0.427 0.230 0.660 0.341 0.748 0.397 0.519 0.533 0.627 0.577 0.281 0.640 0.390 0.776 0.422 0.547
SB06 0.382 0.433 0.406 0.211 0.596 0.311 0.720 0.402 0.516 0.489 0.451 0.469 0.254 0.600 0.357 0.717 0.478 0.573
SB07 0.402 0.361 0.380 0.188 0.617 0.289 0.701 0.397 0.507 0.583 0.412 0.483 0.214 0.600 0.316 0.700 0.467 0.560
SB08 0.364 0.165 0.227 0.179 0.660 0.282 0.682 0.460 0.549 0.419 0.255 0.317 0.235 0.800 0.364 0.700 0.389 0.500
SB09 0.442 0.351 0.391 0.169 0.511 0.254 0.705 0.469 0.563 0.537 0.431 0.478 0.213 0.400 0.278 0.667 0.578 0.619
SB10 0.374 0.412 0.392 0.217 0.596 0.318 0.742 0.438 0.551 0.543 0.490 0.515 0.278 0.600 0.380 0.712 0.522 0.603
SB11 0.410 0.330 0.366 0.179 0.553 0.271 0.690 0.446 0.542 0.564 0.431 0.489 0.271 0.640 0.381 0.676 0.511 0.582
SB12 0.376 0.423 0.398 0.190 0.511 0.277 0.737 0.438 0.549 0.551 0.529 0.540 0.234 0.440 0.306 0.714 0.556 0.625
SB13 0.391 0.464 0.425 0.178 0.489 0.261 0.766 0.424 0.546 0.610 0.490 0.543 0.267 0.480 0.343 0.725 0.644 0.682
SB14 0.404 0.237 0.299 0.177 0.872 0.295 0.725 0.259 0.382 0.483 0.275 0.350 0.216 0.840 0.344 0.700 0.311 0.431
SB15 0.300 0.433 0.354 0.162 0.468 0.240 0.696 0.286 0.405 0.391 0.529 0.450 0.190 0.480 0.273 0.647 0.244 0.355
SB16 0.365 0.237 0.287 0.176 0.660 0.278 0.674 0.388 0.493 0.526 0.196 0.286 0.232 0.880 0.367 0.596 0.344 0.437
SB17 0.265 0.495 0.345 0.170 0.340 0.227 0.742 0.308 0.435 0.367 0.431 0.396 0.190 0.440 0.265 0.708 0.378 0.493
SB18 0.279 0.402 0.329 0.175 0.298 0.220 0.628 0.415 0.500 0.384 0.549 0.452 0.220 0.360 0.273 0.692 0.400 0.507
SB19 0.245 0.258 0.251 0.201 0.681 0.311 0.645 0.308 0.417 0.256 0.196 0.222 0.254 0.720 0.375 0.625 0.389 0.479
SB20 0.286 0.330 0.306 0.180 0.489 0.263 0.695 0.397 0.506 0.432 0.373 0.400 0.183 0.440 0.259 0.629 0.433 0.513
SB21 0.241 0.268 0.254 0.135 0.596 0.220 0.596 0.138 0.225 0.319 0.294 0.306 0.146 0.560 0.231 0.565 0.144 0.230
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Table F.2: Binary Classification Results Before Improving T.H.E.S.E. Definitions

With Apology Comments Without Apology Comments
Slips Lapses Mistakes Slips Lapses Mistakes

Model Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

Without Natural Language Preprocessing
SB01 0.316 0.825 0.457 0.183 0.723 0.292 0.734 0.308 0.434 0.304 0.804 0.441 0.143 0.440 0.216 0.500 0.200 0.286
SB02 0.326 0.598 0.422 0.188 0.745 0.300 0.633 0.138 0.227 0.302 0.510 0.380 0.165 0.560 0.255 0.538 0.078 0.136
SB03 0.370 0.701 0.484 0.169 0.766 0.277 0.699 0.290 0.410 0.237 0.373 0.290 0.128 0.560 0.209 0.511 0.267 0.350
SB04 0.312 0.742 0.439 0.174 0.638 0.274 0.793 0.290 0.425 0.336 0.725 0.460 0.132 0.400 0.198 0.615 0.267 0.372
SB05 0.303 0.814 0.441 0.199 0.617 0.301 0.750 0.161 0.265 0.320 0.804 0.458 0.121 0.280 0.169 0.619 0.144 0.234
SB06 0.344 0.670 0.455 0.163 0.702 0.264 0.780 0.317 0.451 0.357 0.588 0.444 0.153 0.600 0.244 0.553 0.233 0.328
SB07 0.364 0.536 0.433 0.154 0.723 0.254 0.688 0.384 0.493 0.400 0.471 0.432 0.150 0.640 0.242 0.660 0.344 0.453
SB08 0.419 0.454 0.436 0.148 0.830 0.252 0.706 0.397 0.509 0.303 0.196 0.238 0.150 0.800 0.253 0.542 0.356 0.430
SB09 0.400 0.392 0.396 0.155 0.787 0.259 0.657 0.683 0.670 0.300 0.176 0.222 0.125 0.600 0.207 0.595 0.733 0.657
SB10 0.345 0.526 0.416 0.168 0.787 0.277 0.642 0.424 0.511 0.311 0.373 0.339 0.124 0.520 0.200 0.557 0.433 0.487
SB11 0.469 0.392 0.427 0.153 0.936 0.263 0.662 0.768 0.711 0.312 0.196 0.241 0.149 0.800 0.252 0.537 0.722 0.616
SB12 0.335 0.742 0.462 0.216 0.702 0.330 0.618 0.433 0.509 0.299 0.569 0.392 0.116 0.320 0.170 0.621 0.400 0.486
SB13 0.348 0.588 0.437 0.191 0.830 0.311 0.630 0.594 0.611 0.263 0.412 0.321 0.116 0.400 0.180 0.624 0.589 0.606
SB14 0.315 0.577 0.407 0.168 0.872 0.282 0.629 0.545 0.584 0.325 0.529 0.403 0.143 0.600 0.231 0.542 0.578 0.559
SB15 0.410 0.443 0.426 0.144 0.809 0.244 0.662 0.237 0.349 0.370 0.333 0.351 0.177 0.880 0.295 0.600 0.233 0.336
SB16 0.469 0.237 0.315 0.156 0.872 0.265 0.620 0.299 0.404 0.259 0.137 0.179 0.165 0.640 0.262 0.600 0.367 0.455
SB17 0.263 0.897 0.407 0.122 0.872 0.215 0.643 0.812 0.718 0.306 0.882 0.455 0.135 0.800 0.231 0.551 0.833 0.664
SB18 0.400 0.309 0.349 0.135 0.851 0.233 0.693 0.625 0.657 0.243 0.176 0.205 0.145 0.800 0.245 0.578 0.578 0.578
SB19 0.213 0.330 0.259 0.191 0.723 0.302 0.518 0.460 0.487 0.307 0.451 0.365 0.153 0.440 0.227 0.535 0.511 0.523
SB20 0.406 0.557 0.470 0.182 0.766 0.294 0.738 0.415 0.531 0.333 0.353 0.343 0.160 0.520 0.245 0.583 0.311 0.406
SB21 0.233 0.680 0.347 0.155 0.362 0.217 0.676 0.308 0.423 0.326 0.843 0.470 0.159 0.280 0.203 0.614 0.389 0.476

With Natural Language Preprocessing
SB01 0.316 0.825 0.457 0.183 0.723 0.292 0.734 0.308 0.434 0.304 0.804 0.441 0.143 0.440 0.216 0.500 0.200 0.286
SB02 0.326 0.598 0.422 0.188 0.745 0.300 0.633 0.138 0.227 0.302 0.510 0.380 0.165 0.560 0.255 0.538 0.078 0.136
SB03 0.354 0.639 0.456 0.180 0.787 0.294 0.714 0.246 0.365 0.243 0.353 0.288 0.126 0.520 0.203 0.514 0.211 0.299
SB04 0.312 0.742 0.439 0.174 0.638 0.274 0.793 0.290 0.425 0.336 0.725 0.460 0.132 0.400 0.198 0.615 0.267 0.372
SB05 0.303 0.814 0.441 0.199 0.617 0.301 0.750 0.161 0.265 0.320 0.804 0.458 0.121 0.280 0.169 0.619 0.144 0.234
SB06 0.344 0.670 0.455 0.163 0.702 0.264 0.780 0.317 0.451 0.357 0.588 0.444 0.153 0.600 0.244 0.553 0.233 0.328
SB07 0.364 0.536 0.433 0.154 0.723 0.254 0.688 0.384 0.493 0.400 0.471 0.432 0.150 0.640 0.242 0.660 0.344 0.453
SB08 0.419 0.454 0.436 0.148 0.830 0.252 0.706 0.397 0.509 0.303 0.196 0.238 0.150 0.800 0.253 0.542 0.356 0.430
SB09 0.400 0.392 0.396 0.155 0.787 0.259 0.657 0.683 0.670 0.300 0.176 0.222 0.125 0.600 0.207 0.595 0.733 0.657
SB10 0.345 0.526 0.416 0.168 0.787 0.277 0.642 0.424 0.511 0.311 0.373 0.339 0.124 0.520 0.200 0.557 0.433 0.487
SB11 0.469 0.392 0.427 0.153 0.936 0.263 0.662 0.768 0.711 0.312 0.196 0.241 0.149 0.800 0.252 0.537 0.722 0.616
SB12 0.335 0.742 0.462 0.216 0.702 0.330 0.618 0.433 0.509 0.299 0.569 0.392 0.116 0.320 0.170 0.621 0.400 0.486
SB13 0.348 0.588 0.437 0.191 0.830 0.311 0.630 0.594 0.611 0.263 0.412 0.321 0.116 0.400 0.180 0.624 0.589 0.606
SB14 0.315 0.577 0.407 0.168 0.872 0.282 0.629 0.545 0.584 0.325 0.529 0.403 0.143 0.600 0.231 0.542 0.578 0.559
SB15 0.410 0.443 0.426 0.144 0.809 0.244 0.662 0.237 0.349 0.370 0.333 0.351 0.177 0.880 0.295 0.600 0.233 0.336
SB16 0.469 0.237 0.315 0.156 0.872 0.265 0.620 0.299 0.404 0.259 0.137 0.179 0.165 0.640 0.262 0.600 0.367 0.455
SB17 0.263 0.897 0.407 0.122 0.872 0.215 0.643 0.812 0.718 0.306 0.882 0.455 0.135 0.800 0.231 0.551 0.833 0.664
SB18 0.400 0.309 0.349 0.135 0.851 0.233 0.693 0.625 0.657 0.243 0.176 0.205 0.145 0.800 0.245 0.578 0.578 0.578
SB19 0.213 0.330 0.259 0.191 0.723 0.302 0.518 0.460 0.487 0.307 0.451 0.365 0.153 0.440 0.227 0.535 0.511 0.523
SB20 0.406 0.557 0.470 0.182 0.766 0.294 0.738 0.415 0.531 0.333 0.353 0.343 0.160 0.520 0.245 0.583 0.311 0.406
SB21 0.233 0.680 0.347 0.155 0.362 0.217 0.676 0.308 0.423 0.326 0.843 0.470 0.159 0.280 0.203 0.614 0.389 0.476
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Table F.3: Multiclass Classification Results After Improving T.H.E.S.E. Definitions

With Apology Comments Without Apology Comments
Slips Lapses Mistakes Slips Lapses Mistakes

Model Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

Without Natural Language Preprocessing
SB01 0.306 0.454 0.365 0.183 0.426 0.256 0.626 0.321 0.425 0.404 0.451 0.426 0.211 0.480 0.293 0.558 0.322 0.408
SB02 0.368 0.505 0.426 0.162 0.596 0.255 0.661 0.183 0.287 0.562 0.529 0.545 0.207 0.680 0.318 0.667 0.267 0.381
SB03 0.460 0.474 0.467 0.174 0.723 0.281 0.726 0.237 0.357 0.524 0.431 0.473 0.188 0.640 0.291 0.692 0.300 0.419
SB04 0.383 0.588 0.463 0.158 0.532 0.244 0.754 0.205 0.323 0.493 0.647 0.559 0.192 0.560 0.286 0.846 0.244 0.379
SB05 0.318 0.577 0.410 0.167 0.468 0.246 0.617 0.165 0.261 0.409 0.529 0.462 0.192 0.560 0.286 0.593 0.178 0.274
SB06 0.360 0.639 0.461 0.121 0.340 0.179 0.672 0.192 0.299 0.461 0.686 0.551 0.161 0.400 0.230 0.679 0.211 0.322
SB07 0.429 0.433 0.431 0.164 0.660 0.263 0.654 0.237 0.348 0.500 0.490 0.495 0.187 0.560 0.280 0.634 0.289 0.397
SB08 0.489 0.443 0.465 0.159 0.766 0.264 0.796 0.192 0.309 0.540 0.529 0.535 0.210 0.680 0.321 0.771 0.300 0.432
SB09 0.447 0.392 0.418 0.140 0.617 0.228 0.566 0.192 0.287 0.500 0.529 0.514 0.182 0.560 0.275 0.629 0.244 0.352
SB10 0.394 0.515 0.446 0.184 0.681 0.290 0.657 0.196 0.302 0.469 0.588 0.522 0.225 0.640 0.333 0.677 0.233 0.347
SB11 0.500 0.227 0.312 0.154 0.809 0.259 0.590 0.205 0.305 0.556 0.294 0.385 0.216 0.880 0.346 0.622 0.256 0.362
SB12 0.317 0.526 0.395 0.140 0.319 0.195 0.600 0.268 0.370 0.406 0.549 0.467 0.212 0.440 0.286 0.622 0.311 0.415
SB13 0.338 0.474 0.395 0.150 0.404 0.218 0.571 0.268 0.365 0.451 0.451 0.451 0.188 0.520 0.277 0.543 0.278 0.368
SB14 0.291 0.309 0.300 0.180 0.809 0.295 0.741 0.179 0.288 0.400 0.275 0.326 0.208 0.840 0.333 0.700 0.233 0.350
SB15 0.294 0.361 0.324 0.141 0.617 0.229 0.488 0.094 0.157 0.288 0.294 0.291 0.172 0.680 0.274 0.333 0.056 0.095
SB16 0.545 0.124 0.202 0.166 0.872 0.279 0.576 0.254 0.353 0.786 0.216 0.338 0.202 0.960 0.333 0.515 0.189 0.276
SB17 0.194 0.268 0.225 0.105 0.170 0.130 0.532 0.375 0.440 0.217 0.255 0.234 0.200 0.200 0.200 0.481 0.433 0.456
SB18 0.397 0.278 0.327 0.144 0.787 0.243 0.674 0.129 0.217 0.500 0.314 0.386 0.175 0.800 0.288 0.600 0.133 0.218
SB19 0.347 0.268 0.302 0.076 0.213 0.112 0.506 0.366 0.425 0.372 0.314 0.340 0.133 0.240 0.171 0.449 0.389 0.417
SB20 0.374 0.381 0.378 0.187 0.787 0.302 0.535 0.170 0.258 0.525 0.412 0.462 0.278 0.880 0.423 0.574 0.300 0.394
SB21 0.262 0.175 0.210 0.140 0.638 0.230 0.494 0.196 0.281 0.269 0.137 0.182 0.160 0.600 0.252 0.457 0.233 0.309

With Natural Language Preprocessing
SB01 0.281 0.443 0.344 0.198 0.447 0.275 0.560 0.272 0.366 0.375 0.412 0.393 0.241 0.520 0.329 0.518 0.322 0.397
SB02 0.300 0.845 0.443 0.208 0.319 0.252 0.739 0.076 0.138 0.414 0.804 0.547 0.269 0.560 0.364 0.867 0.144 0.248
SB03 0.434 0.577 0.496 0.175 0.660 0.277 0.742 0.205 0.322 0.500 0.608 0.549 0.169 0.480 0.250 0.758 0.278 0.407
SB04 0.411 0.598 0.487 0.167 0.617 0.262 0.774 0.183 0.296 0.500 0.647 0.564 0.215 0.680 0.327 0.905 0.211 0.342
SB05 0.318 0.660 0.430 0.163 0.426 0.235 0.636 0.125 0.209 0.405 0.627 0.492 0.200 0.520 0.289 0.636 0.156 0.250
SB06 0.359 0.670 0.468 0.126 0.362 0.187 0.731 0.170 0.275 0.453 0.667 0.540 0.167 0.400 0.235 0.710 0.244 0.364
SB07 0.406 0.402 0.404 0.170 0.745 0.277 0.621 0.183 0.283 0.480 0.471 0.475 0.198 0.640 0.302 0.571 0.222 0.320
SB08 0.473 0.443 0.457 0.153 0.787 0.256 0.771 0.121 0.208 0.500 0.529 0.514 0.205 0.720 0.319 0.750 0.200 0.316
SB09 0.452 0.392 0.420 0.152 0.723 0.252 0.623 0.170 0.267 0.510 0.510 0.510 0.200 0.640 0.305 0.743 0.289 0.416
SB10 0.413 0.464 0.437 0.155 0.660 0.251 0.627 0.165 0.261 0.441 0.510 0.473 0.188 0.600 0.286 0.630 0.189 0.291
SB11 0.511 0.237 0.324 0.157 0.830 0.264 0.600 0.201 0.301 0.593 0.314 0.410 0.212 0.880 0.341 0.657 0.256 0.368
SB12 0.349 0.526 0.420 0.124 0.277 0.171 0.624 0.326 0.428 0.481 0.510 0.495 0.192 0.400 0.260 0.633 0.422 0.507
SB13 0.337 0.309 0.323 0.146 0.319 0.200 0.602 0.473 0.530 0.545 0.353 0.429 0.218 0.480 0.300 0.603 0.522 0.560
SB14 0.274 0.330 0.299 0.177 0.809 0.290 0.722 0.116 0.200 0.341 0.275 0.304 0.208 0.840 0.333 0.708 0.189 0.298
SB15 0.269 0.258 0.263 0.139 0.574 0.224 0.506 0.183 0.269 0.289 0.216 0.247 0.177 0.680 0.281 0.406 0.144 0.213
SB16 0.529 0.186 0.275 0.173 0.915 0.291 0.600 0.228 0.330 0.812 0.255 0.388 0.200 0.960 0.331 0.533 0.178 0.267
SB17 0.302 0.134 0.186 0.122 0.319 0.176 0.569 0.513 0.540 0.364 0.157 0.219 0.204 0.400 0.270 0.526 0.556 0.541
SB18 0.396 0.196 0.262 0.133 0.745 0.226 0.632 0.161 0.256 0.524 0.216 0.306 0.168 0.760 0.275 0.594 0.211 0.311
SB19 0.190 0.299 0.232 0.125 0.106 0.115 0.509 0.397 0.446 0.227 0.294 0.256 0.118 0.080 0.095 0.458 0.422 0.439
SB20 0.437 0.464 0.450 0.180 0.787 0.294 0.633 0.170 0.268 0.622 0.549 0.583 0.253 0.840 0.389 0.684 0.289 0.406
SB21 0.224 0.639 0.332 0.158 0.128 0.141 0.453 0.107 0.173 0.248 0.549 0.341 0.208 0.200 0.204 0.414 0.133 0.202
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Table F.4: Binary Classification Results After Improving T.H.E.S.E. Definitions

With Apology Comments Without Apology Comments
Slips Lapses Mistakes Slips Lapses Mistakes

Model Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

Without Natural Language Preprocessing
SB01 0.318 0.794 0.454 0.175 0.468 0.254 0.640 0.388 0.483 0.322 0.765 0.453 0.222 0.400 0.286 0.578 0.411 0.481
SB02 0.335 0.608 0.432 0.161 0.660 0.258 0.663 0.263 0.377 0.301 0.490 0.373 0.165 0.560 0.255 0.371 0.144 0.208
SB03 0.401 0.588 0.477 0.165 0.787 0.273 0.719 0.308 0.431 0.273 0.353 0.308 0.155 0.640 0.250 0.571 0.267 0.364
SB04 0.342 0.691 0.457 0.163 0.596 0.256 0.714 0.312 0.435 0.355 0.647 0.458 0.178 0.520 0.265 0.622 0.311 0.415
SB05 0.321 0.722 0.444 0.169 0.532 0.256 0.643 0.241 0.351 0.278 0.588 0.377 0.172 0.400 0.241 0.459 0.189 0.268
SB06 0.340 0.732 0.464 0.126 0.426 0.194 0.750 0.388 0.512 0.362 0.667 0.469 0.181 0.520 0.268 0.537 0.322 0.403
SB07 0.395 0.619 0.482 0.145 0.681 0.240 0.672 0.411 0.510 0.317 0.392 0.351 0.163 0.680 0.264 0.588 0.444 0.506
SB08 0.417 0.515 0.461 0.145 0.766 0.244 0.688 0.442 0.538 0.368 0.275 0.315 0.164 0.840 0.275 0.514 0.400 0.450
SB09 0.422 0.474 0.447 0.147 0.809 0.248 0.645 0.665 0.655 0.212 0.137 0.167 0.143 0.760 0.241 0.590 0.800 0.679
SB10 0.366 0.649 0.468 0.189 0.787 0.305 0.625 0.357 0.455 0.303 0.392 0.342 0.150 0.600 0.240 0.567 0.378 0.453
SB11 0.485 0.340 0.400 0.147 0.936 0.254 0.663 0.737 0.698 0.286 0.118 0.167 0.152 0.880 0.259 0.533 0.711 0.610
SB12 0.322 0.763 0.453 0.130 0.383 0.195 0.645 0.446 0.528 0.315 0.667 0.428 0.103 0.240 0.145 0.587 0.411 0.484
SB13 0.349 0.773 0.481 0.170 0.553 0.260 0.644 0.549 0.593 0.321 0.686 0.438 0.105 0.240 0.146 0.584 0.500 0.539
SB14 0.289 0.340 0.313 0.159 0.851 0.268 0.675 0.500 0.574 0.237 0.275 0.255 0.142 0.600 0.229 0.518 0.322 0.397
SB15 0.307 0.443 0.363 0.145 0.702 0.240 0.629 0.326 0.429 0.284 0.373 0.322 0.162 0.640 0.258 0.538 0.311 0.394
SB16 0.542 0.268 0.359 0.140 0.957 0.245 0.643 0.714 0.677 0.450 0.176 0.254 0.151 0.880 0.257 0.563 0.789 0.657
SB17 0.273 0.619 0.379 0.115 0.362 0.174 0.564 0.491 0.525 0.283 0.510 0.364 0.122 0.360 0.182 0.547 0.522 0.534
SB18 0.362 0.299 0.328 0.132 0.809 0.227 0.624 0.473 0.538 0.184 0.137 0.157 0.141 0.720 0.235 0.538 0.467 0.500
SB19 0.371 0.268 0.311 0.143 0.830 0.244 0.523 0.402 0.455 0.357 0.196 0.253 0.143 0.720 0.238 0.560 0.467 0.509
SB20 0.388 0.557 0.458 0.170 0.830 0.283 0.612 0.330 0.429 0.258 0.314 0.283 0.183 0.760 0.295 0.442 0.211 0.286
SB21 0.291 0.258 0.273 0.145 0.872 0.249 0.510 0.228 0.315 0.318 0.275 0.295 0.148 0.720 0.245 0.649 0.267 0.378

With Natural Language Preprocessing
SB01 0.320 0.814 0.459 0.190 0.489 0.274 0.583 0.344 0.433 0.314 0.725 0.438 0.208 0.400 0.274 0.542 0.356 0.430
SB02 0.292 0.794 0.427 0.182 0.340 0.237 0.727 0.071 0.130 0.304 0.804 0.441 0.222 0.240 0.231 0.500 0.033 0.062
SB03 0.392 0.670 0.494 0.177 0.745 0.286 0.735 0.272 0.397 0.254 0.353 0.295 0.141 0.560 0.226 0.457 0.178 0.256
SB04 0.379 0.660 0.481 0.156 0.660 0.252 0.738 0.353 0.477 0.338 0.510 0.406 0.135 0.480 0.211 0.642 0.378 0.476
SB05 0.328 0.784 0.462 0.158 0.447 0.233 0.667 0.188 0.293 0.288 0.627 0.395 0.179 0.400 0.247 0.484 0.167 0.248
SB06 0.333 0.763 0.464 0.130 0.404 0.197 0.713 0.321 0.443 0.340 0.686 0.455 0.175 0.440 0.250 0.535 0.256 0.346
SB07 0.383 0.474 0.424 0.148 0.745 0.246 0.655 0.348 0.455 0.360 0.353 0.356 0.152 0.680 0.248 0.642 0.378 0.476
SB08 0.420 0.485 0.450 0.148 0.809 0.251 0.689 0.366 0.478 0.333 0.216 0.262 0.158 0.840 0.266 0.526 0.333 0.408
SB09 0.377 0.443 0.408 0.154 0.830 0.259 0.654 0.549 0.597 0.267 0.157 0.198 0.154 0.840 0.261 0.567 0.611 0.588
SB10 0.392 0.577 0.467 0.156 0.745 0.257 0.625 0.379 0.472 0.327 0.333 0.330 0.149 0.680 0.245 0.530 0.389 0.449
SB11 0.470 0.320 0.380 0.142 0.915 0.246 0.664 0.732 0.696 0.304 0.137 0.189 0.154 0.880 0.262 0.526 0.678 0.592
SB12 0.328 0.773 0.460 0.129 0.383 0.194 0.654 0.531 0.586 0.315 0.667 0.428 0.121 0.280 0.169 0.614 0.478 0.537
SB13 0.338 0.701 0.456 0.156 0.553 0.243 0.642 0.737 0.686 0.317 0.627 0.421 0.092 0.240 0.133 0.548 0.700 0.615
SB14 0.281 0.351 0.312 0.162 0.851 0.272 0.570 0.598 0.584 0.230 0.275 0.250 0.143 0.600 0.231 0.520 0.589 0.552
SB15 0.333 0.443 0.381 0.151 0.766 0.252 0.608 0.464 0.527 0.338 0.431 0.379 0.158 0.640 0.254 0.590 0.511 0.548
SB16 0.493 0.371 0.424 0.152 0.936 0.262 0.641 0.558 0.597 0.400 0.314 0.352 0.172 0.840 0.286 0.576 0.589 0.582
SB17 0.374 0.351 0.362 0.123 0.723 0.210 0.603 0.759 0.672 0.323 0.196 0.244 0.148 0.800 0.250 0.519 0.756 0.615
SB18 0.390 0.237 0.295 0.123 0.809 0.213 0.623 0.701 0.660 0.250 0.137 0.177 0.152 0.840 0.258 0.495 0.589 0.538
SB19 0.196 0.309 0.240 0.164 0.745 0.268 0.519 0.438 0.475 0.278 0.392 0.325 0.152 0.560 0.239 0.524 0.478 0.500
SB20 0.447 0.474 0.460 0.167 0.830 0.279 0.655 0.330 0.439 0.302 0.255 0.277 0.179 0.760 0.290 0.455 0.222 0.299
SB21 0.226 0.649 0.335 0.135 0.255 0.176 0.468 0.129 0.203 0.333 0.882 0.484 0.194 0.240 0.214 0.625 0.167 0.263
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Table F.5: Summary of Human Error Classifications After Improving T.H.E.S.E. Definitions

Assigned Assigned
Total Slip Lapse Mistake Total Slip Lapse Mistake

Slips Mistakes
S01 25 15 3 7 M01 41 7 10 24
S02 6 6 0 0 M02 2 0 2 0
S03 32 18 8 6 M03 32 7 11 16
S04 2 1 1 0 M04 16 4 10 2
S05 18 6 8 4 M05 19 4 11 4
S06 3 0 2 1 M06 7 3 2 2
S07 2 0 1 1 M07 39 12 25 2
S08 9 3 3 3 M08 3 1 2 0
Lapses M09 14 3 8 3
L01 4 3 1 0 M10 8 2 2 4
L02 2 1 0 1 M11 3 2 1 0
L03 6 2 2 2 M12 17 3 8 6
L04 17 9 3 5 M13 6 1 4 1
L05 3 0 2 1 M14 16 2 11 3
L06 6 5 1 0 M15 1 1 0 0
L07 4 2 1 1 Other
L08 5 4 1 0 — — — —

NOTE: See Table 5.10 for this summary before improving T.H.E.S.E. descriptions.



Appendix G

Extended T.H.E.S.E. Descriptions

This appendix includes the extended T.H.E.S.E. category descriptions as described in Section 5.3.2.4. Note that
the CWE identifiers shown in Table G.1 are provided for reference only; they were not included in the classification
experiment discussed in Section 5.3.2.4.
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Table G.1: Extended T.H.E.S.E. Descriptions from CWE [235] and HET [12]

Extended Description

Slips

S02 CWE-1114: Inappropriate Whitespace Style. The source code contains whitespace that is inconsistent
across the code or does not follow expected standards for the product.

S03

CWE-477: Use of Obsolete Function. The code uses deprecated or obsolete functions, which suggests
that the code has not been actively reviewed or maintained.
CWE-1068: Inconsistency Between Implementation and Documented Design. The implementation of
the product is not consistent with the design as described within the relevant documentation.

S07 CWE-1041: Use of Redundant Code. The product has multiple functions, methods, procedures, macros,
etc. that contain the same code.

S08

Clerical Errors. Result from carelessness while performing mechanical transcriptions from one format or
from one medium to another. Requirement examples include carelessness while documenting specifications
from elicited user needs.
Term Substitution Errors. After introducing a term correctly, the requirement author substitutes a
different term that refers to a different concept.

Lapses

L01

CWE-820: Missing Synchronization. The product utilizes a shared resource in a concurrent manner but
does not attempt to synchronize access to the resource.
CWE-325: Missing Cryptographic Step. The product does not implement a required step in a crypto-
graphic algorithm, resulting in weaker encryption than advertised by the algorithm.

L03

CWE-117: Improper Output Neutralization for Logs. The product does not neutralize or incorrectly
neutralizes output that is written to logs.
CWE-489: Active Debug Code. The product is deployed to unauthorized actors with debugging code
still enabled or active, which can create unintended entry points or expose sensitive information.
CWE-561: Dead Code. The product contains dead code, which can never be executed.
CWE-1164: Irrelevant Code. The product contains code that is not essential for execution, i.e. makes
no state changes and has no side effects that alter data or control flow, such that removal of the code
would have no impact to functionality or correctness.

L08

Loss of Information from Stakeholders. Result from a requirement author forgetting, discarding, or
failing to store information or documents provided by stakeholders, e.g. some important user need.
Accidentally Overlooking Requirements. Occur when the stakeholders who are the source of re-
quirements assume that some requirements are obvious and fail to verbalize them.
Multiple Terms for the Same Concept. Occur when requirement authors fail to realize they have
already defined a term for a concept and so introduce a new term at a later time.

continued on next page...
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Table G.1: Extended T.H.E.S.E. Descriptions from CWE [235] and HET [12] (Continued)

Extended Description

Mistakes

M01

CWE-280: Improper Handling of Insufficient Permissions or Privileges. The product does not handle or
incorrectly handles when it has insufficient privileges to access resources or functionality as specified by
their permissions. This may cause it to follow unexpected code paths that may leave the product in an
invalid state.
CWE-478: Missing Default Case in Multiple Condition Expression. The code does not have a default
case in an expression with multiple conditions, such as a switch statement.
CWE-628: Function Call with Incorrectly Specified Arguments. The product calls a function, proce-
dure, or routine with arguments that are not correctly specified, leading to always-incorrect behavior and
resultant weaknesses.
CWE-480: Use of Incorrect Operator. The product accidentally uses the wrong operator, which changes
the logic in security-relevant ways.
CWE-484: Omitted Break Statement in Switch. The product omits a break statement within a switch
or similar construct, causing code associated with multiple conditions to execute. This can cause problems
when the programmer only intended to execute code associated with one condition.
CWE-783: Operator Precedence Logic Error. The product uses an expression in which operator prece-
dence causes incorrect logic to be used.
CWE-835: Loop with Unreachable Exit Condition (’Infinite Loop’). The product contains an iteration
or loop with an exit condition that cannot be reached, i.e. , an infinite loop.
CWE-1025: Comparison Using Wrong Factors. The code performs a comparison between two entities,
but the comparison examines the wrong factors or characteristics of the entities, which can lead to incor-
rect results and resultant weaknesses.
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition. The product checks the state of a
resource before using that resource, but the resource’s state can change between the check and the use
in a way that invalidates the results of the check. This can cause the product to perform invalid actions
when the resource is in an unexpected state.
CWE-128: Wrap-around Error. Wrap around errors occur whenever a value is incremented past the
maximum value for its type and therefore ’wraps around’ to a very small, negative, or undefined value.
CWE-369: Divide by Zero. The product divides a value by zero.

M03
CWE-20: Improper Input Validation. The product receives input or data, but it does not validate or
incorrectly validates that the input has the properties that are required to process the data safely and
correctly.

M06

CWE-308: Use of Single-factor Authentication. The use of single-factor authentication can lead to un-
necessary risk of compromise when compared with the benefits of a dual-factor authentication scheme.
CWE-603: Use of Client-Side Authentication. A client/server product performs authentication within
client code but not in server code, allowing server-side authentication to be bypassed via a modified client
that omits the authentication check.
CWE-547: Use of Hard-coded, Security-relevant Constants. The product uses hard-coded constants in-
stead of symbolic names for security-critical values, which increases the likelihood of mistakes during code
maintenance or security policy change.
CWE-1104: Use of Unmaintained Third Party Components. The product relies on third-party compo-
nents that are not actively supported or maintained by the original developer or a trusted proxy for the
original developer.
CWE-798: Use of Hard-coded Credentials. The product contains hard-coded credentials, such as a pass-
word or cryptographic key, which it uses for its own inbound authentication, outbound communication to
external components, or encryption of internal data.

continued on next page...
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Table G.1: Extended T.H.E.S.E. Descriptions from CWE [235] and HET [12] (Continued)

Extended Description

Mistakes

M08
CWE-754: Improper Check for Unusual or Exceptional Conditions. The product does not check or
incorrectly checks for unusual or exceptional conditions that are not expected to occur frequently during
day to day operation of the product.

M09

CWE-266: Incorrect Privilege Assignment. A product incorrectly assigns a privilege to a particular
actor, creating an unintended sphere of control for that actor.
CWE-1220: Insufficient Granularity of Access Control. The product implements access controls via a
policy or other feature with the intention to disable or restrict accesses (reads and/or writes) to assets in
a system from untrusted agents. However, implemented access controls lack required granularity, which
renders the control policy too broad because it allows accesses from unauthorized agents to the security-
sensitive assets.
CWE-1392: Use of Default Credentials. The product uses default credentials (such as passwords or
cryptographic keys) for potentially critical functionality.

M10

CWE-1099: Inconsistent Naming Conventions for Identifiers. The product’s code, documentation, or
other artifacts do not consistently use the same naming conventions for variables, callables, groups of
related callables, I/O capabilities, data types, file names, or similar types of elements.
CWE-1109: Use of Same Variable for Multiple Purposes. The code contains a callable, block, or other
code element in which the same variable is used to control more than one unique task or store more than
one instance of data.
CWE-1074: Class with Excessively Deep Inheritance. A class has an inheritance level that is too high,
i.e. , it has a large number of parent classes.
CWE-1080: Source Code File with Excessive Number of Lines of Code. A source code file has too many
lines of code.
CWE-1124: Excessively Deep Nesting. The code contains a callable or other code grouping in which the
nesting / branching is too deep.

M11

CWE-176: Improper Handling of Unicode Encoding. The product does not properly handle when an
input contains Unicode encoding.
CWE-173: Improper Handling of Alternate Encoding. The product does not properly handle when an
input uses an alternate encoding that is valid for the control sphere to which the input is being sent.

continued on next page...
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Table G.1: Extended T.H.E.S.E. Descriptions from CWE [235] and HET [12] (Continued)

Extended Description

Mistakes

M15

Application. Arise from a misunderstanding of the application or problem domain or a misunderstanding
of some aspect of overall system functionality.
Environment. Result from lack of knowledge about the available infrastructure (e.g. , tools, templates)
that supports the elicitation, understanding, or documentation of software requirements.
Solution Choice. These errors occur in the process of finding a solution for a stated and well-understood
problem. If RE analysts do not understand the correct use of problem-solving methods and techniques,
they might end up analyzing the problem incorrectly, and choose the wrong solution.
Syntax. Occur when a requirement author misunderstands the grammatical rules of natural language or
the rules, symbols, or standards in a formal specification language like UML.
Information Management. Result from a lack of knowledge about standard requirements engineering
or documentation practices and procedures within the organization.
Wrong Assumptions. Occur when the requirements author has a mistaken assumption about system
features or stakeholder opinions.
Mistaken Belief that it is Impossible to Specify Non-Functional Requirements. The require-
ments engineer(s) may believe that non-functional requirements cannot be captured and therefore omit
this process from their elicitation and development plans.
Lack of Clear Distinction Between Client and Users. If requirements engineering practitioners fail
to distinguish between clients and end users, or do not realize that the clients are distinct from end users,
they may fail to gather and analyze the end users’ requirements.
Lack of Awareness of Requirement Sources. Requirements gathering person is not aware of all
stakeholders which he/she should contact in order to gather the complete set of user needs (including end
users, customers, clients, and decision-makers).
Inappropriate Communication Based on Incomplete or Faulty Understanding of Rules. With-
out proper understanding of developer roles, communication gaps may arise, either by failing to commu-
nicate at all or by ineffective communication. The management structure of project team resources is
lacking.
Inadequate Requirements Process. Occur when the requirement authors do not fully understand all
of the requirements engineering steps necessary to ensure the software is complete and neglect to incorpo-
rate one or more essential steps into the plan.



Appendix H

Follow-Up Slides

This appendix contains the slides accompanying the optional follow-up survey (see Appendix I) sent to user study
participants.
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(a) Slide 1: Title slide

(b) Slide 2: Section title for human error theory

Figure H.1: Optional Follow-Up Survey Slides
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(c) Slide 3: Re-introduction to human error theory

(d) Slide 4: Re-introduction to slips

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(e) Slide 5: Re-introduction to lapses

(f) Slide 6: Re-introduction to mistakes

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(g) Slide 7: Example human errors in software engineering

(h) Slide 8: Section slide for T.H.E.S.E.

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(i) Slide 9: Re-introduction to T.H.E.S.E.

(j) Slide 10: Review of slip categories

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(k) Slide 11: Review of lapse categories

(l) Slide 12: Review of mistake categories

Figure H.1: Optional Follow-Up Survey Slides (Continued)



APPENDIX H. FOLLOW-UP SLIDES 157

(m) Slide 13: Review of mistake categories (continued)

(n) Slide 14: Example human errors from GitHub with categorizations

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(o) Slide 15: Section title for human error assessment

(p) Slide 16: Summary of human error informed micro post-mortem process

Figure H.1: Optional Follow-Up Survey Slides (Continued)



APPENDIX H. FOLLOW-UP SLIDES 159

(q) Slide 17: Step 1 details with example

(r) Slide 18: Step 2 details with example

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(s) Slide 19: Step 3 details with example

(t) Slide 20: Step 4 details with example

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(u) Slide 21: Step 5 details

(v) Slide 22: Section title for H.E.R.E.

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(w) Slide 23: Introduction to H.E.R.E.

(x) Slide 24: H.E.R.E. step 1 with screenshot

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(y) Slide 25: H.E.R.E. step 1 response with screenshot

(z) Slide 26: H.E.R.E. step 2 with screenshot

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(aa) Slide 27: H.E.R.E. step 2 with screenshot (continued)

(ab) Slide 28: H.E.R.E. step 2 response with screenshot

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(ac) Slide 29: H.E.R.E. step 3 with screenshot

(ad) Slide 30: H.E.R.E. step 3 response with screenshot

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(ae) Slide 31: Link to full example for H.E.R.E.

(af) Slide 32: Link to follow-up survey

Figure H.1: Optional Follow-Up Survey Slides (Continued)
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(ag) Slide 33: References

Figure H.1: Optional Follow-Up Survey Slides (Continued)



Appendix I

Follow-Up Survey

After reviewing the slides shown in Appendix H, user study participants were asked to complete the follow-up survey
outlined in this appendix.
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1. Which research study did you participate in?
2. Since completing participation in the research study...

(a) I have continued to think about my software faults/failures in terms of slips, lapses, and mistakes.
(b) I have continued to think about my software faults/failures in terms of T.H.E.S.E. categories.
(c) I find T.H.E.S.E. valuable in my software engineering activities.
(d) I find human error reflection valuable in my software engineering activities.

3. Please explain your answer to the previous question. Please be specific.
4. This human error reflection process using T.H.E.S.E. ...

(a) would lead to meaningful reflection on my human errors.
(b) would be a beneficial process for individual software engineers.
(c) would be a beneficial process for software engineering teams.
(d) has clear instructions.
(e) is general enough to apply to all software engineering phases.
(f) is confusing.
(g) is overwhelming.

5. You may use this space to elaborate on any of your answers to the previous question.
6. What value do you see this human error reflection process providing to software engineers? Please

be specific.
7. Do you have any recommendations for improving the human error reflection process using

T.H.E.S.E.?
8. H.E.R.E. ...

(a) would make it easy for software engineers to adopt human error reflection with T.H.E.S.E.
(b) has a clear process.
(c) is confusing.
(d) is overwhelming.

9. Do you have any recommendations for improving the Human Error Reflection Engine (H.E.R.E.)?
10. Do you have any additional comments, concerns, or suggestions that you would like to share about

T.H.E.S.E., human error reflection, or H.E.R.E.?

Figure I.1: Optional Follow-Up Survey Questions
7 months after the user study concluded, participants were sent this optional follow-up survey. Questions
2, 4, and 8 were answered on a five-point Likert scale (strongly agree, somewhat agree, neither agree
nor disagree, somewhat disagree, strongly disagree). Question 1 was multiple choice with three potential
responses: (A) April-May, 2022, (B) September-December, 2022, and (3) I don’t remember. All other
questions were open ended.



Appendix J

Follow-Up Responses

This appendix includes responses to the follow-up survey questions shown in Appendix I.
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Table J.1: Optional Follow-Up Survey Responses

Q# Respondent/Response

(1) A: September-December, 2022
(2-a) A: Strongly Agree
(2-b) A: Strongly Agree
(2-c) A: Strongly Agree
(2-d) A: Strongly Agree

(3) A: As a developer, I grow form my mistakes. Whether or not I’m aware of them, it’s always important to
make sure they don’t happen (or don’t happen again)

(4-a) A: Strongly Agree
(4-b) A: Strongly Agree
(4-c) A: Strongly Agree
(4-d) A: Strongly Agree
(4-e) A: Strongly Agree
(4-f) A: Somewhat Disagree
(4-g) A: Strongly Disagree
(5) A: N/A
(6) A: Value of improvement, either individual or as a team

(7)
A: Maybe include mistakes outside of the knowledgeable scope of a software engineer. For example, there
are some details that only a sponsor or product owner may know, so their mistakes can be just as critical
as mistakes that engineers make.

(8-a) A: Strongly Agree
(8-b) A: Strongly Agree
(8-c) A: Somewhat Disagree
(8-d) A: Strongly Disagree
(9) A: N/A
(10) A: N/A



Appendix K

Human Error Countermeasures

Peters & Peters [285] suggest 26 general human error countermeasures, which we list below with relevant examples:

• Single-error Tolerance: Products, systems, machines, equipment should tolerate simple human errors with-
out creating dangerous situations.

• The Rule of Two: Human errors do not exist in a vacuum; “designers should consider all of the risk factors
that could increase the propensity or likelihood of human error [285].”

• Interposition: Put up barriers or shields to prevent common, unavoidable errors, e.g. syntax checking in
IDEs and compilers, James Reason’s Swiss Cheese Model [300] (i.e. defense-in-depth).

• Sequestration: Isolate human errors to prevent wide-ranging harm, e.g. sandboxed development environ-
ments.

• Interlocks & Lockouts: Implement access controls to protect against blind spots, e.g. access control lists,
filesystem permissions.

• Channelization: Implement guides to channel human behavior, e.g. traffic lights, road lines, well-defined
requirements.

• Guides & Stops: Implement physical guides to prevent harm, e.g. electrical sensors for table saws.

• Automation: Take the human out of the loop, e.g. unit tests.

• Instructions: Provide detailed, specific, and clear instructions, e.g. documentation, troubleshooting guides.

• Training: Provide training for software, tools, machines, and processes, e.g. domain-specific training, security
certifications, human error training.

• Behavior Modification: “Interventions to improve job satisfaction, interpersonal relationships, and com-
pany cultures [285],” e.g. identifying systemic human errors and altering the software development process
accordingly.

• Safety Factors: Define and measure metrics for risk, e.g. strength-vs-load ratios in material science, number-
of-errors-occurring versus number-of-expected-errors.

• Warnings: Provide warnings for dangerous equipment, processes, software, and tools, e.g. code comments for
complex functions, warnings before root-level operations.

• Protective Equipment: Provide protective equipment to minimize harm, e.g. welding masks, compilers,
IDE tools.

• Redundancy: “The design should provide more than one means to accomplish a task [285],” e.g. data backups,
redundant servers, multiple routes to host, pair-programming.
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• Derating: Reducing the workload on the human, e.g. having the right number of software engineers assigned
to a project.

• Fail-safes: Human errors leading to equipment failure should not create unacceptable risk, e.g. dead-man
switches.

• Stress Reduction: Reduce psychological stress, anxiety, and fatigue, e.g. regular breaks, controlled task-
switching (not multitasking).

• Tools: Provide the right tools for the job to reduce the potential of human error, e.g. risk assessment,
debuggers, syntax checkers, unit tests.

• Replacement: “If all attempted countermeasures prove unequal to the task, at some point in time the person
must be replaced by job reassignment or termination [285].” We caution against blaming human errors on
individual software engineers. Instead of replacing people, we recommend having planned maintenance for
software and hardware.

• Enhancement: Modifications to the human operator, e.g. night vision glasses, feedback on brake pedals.

• Inactivity: Inactive systems should not be able to cause harm, e.g. full shutdown.

• Independent Confirmation: Independently confirm unexpected and/or serious reports.

• Therapy: If the human is irreplaceable, but personal matters are affecting their work, therapy may be neces-
sary.

• Improvisation: “There are situations in which extemporaneous remedies are fashioned, at the scene, to correct
ongoing human errors [285],” e.g. reacting to quality assurance issues in real-time.

• Pragmatism: Behavior based human error classification with descriptive categories.



Appendix L

T.H.E.S.E. Changelog

Throughout this dissertation, T.H.E.S.E. went through many iterations and saw multiple changes, which we summa-
rize in this appendix for quick reference. Note that extended descriptions were added (see Section 5.3.2.4) and are
documented in Appendix G instead of below.

• S01: Typos & Misspellings

– Version 1: N/A
– Version 2: Typos and misspellings may occur in code comments, or when typing the name of a variable,

function, or class.
– Version 3: Typos and misspellings may occur in code comments, documentation (and other development

artifacts), or when typing the name of a variable, function, or class. Examples include misspelling a
variable name, writing down the wrong number/name/word during requirements elicitation, referencing
the wrong function in a code comment, and inconsistent whitespace (that does not result in a syntax
error).

– Version 4: N/A

• S02: Syntax Errors

– Version 1: Any error in coding language syntax that impacts the executability of the code. Note that
Logical Errors (e.g. += instead of +) are not Syntax Errors.

– Version 2: N/A
– Version 3: Any error in coding language syntax that impacts the executability of the code. Note that

Logical Errors (e.g. += instead of +) are not Syntax Errors. Examples include mixing tabs and spaces
(e.g. Python), unmatched brackets/braces/parenthesis/quotes, and missing semicolons (e.g. Java).

– Version 4: N/A

• S03: Overlooking Documented Information

– Version 1: Errors resulting from overlooking documented information, such as project descriptions,
stakeholder requirements, API/library/tool/framework documentation, coding standards, programming
language specifications, and bug/issue reports.

– Version 2: N/A
– Version 3: Errors resulting from overlooking (internally and externally) documented information, such

as project descriptions, stakeholder requirements, API/library/tool/framework documentation, coding
standards, programming language specifications, bug/issue reports, and looking at the wrong version of
documentation or documentation for the wrong project/software.

– Version 4: N/A
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• S04: Multitasking Errors

– Version 1: N/A
– Version 2: Errors resulting from multitasking.
– Version 3: N/A
– Version 4: Errors resulting from multitasking, i.e. working on multiple software engineering tasks at

the same time.

• S05: Hardware Interaction Errors

– Version 1: N/A
– Version 2: Attention failures while using computer peripherals, such as mice, keyboard, and cables.

Examples include copy/paste errors, clicking the wrong button, using the wrong keyboard shortcut, and
incorrectly plugging in cables.

– Version 3: N/A
– Version 4: N/A

• S06: Overlooking Proposed Code Changes

– Version 1: N/A
– Version 2: Errors resulting from lack of attention during formal/informal code review.
– Version 3: N/A
– Version 4: Errors resulting from lack of attention during formal/informal code review. Examples include

overlooking incorrect logic, or skipping files, functions, or classes during a review.

• S07: Overlooking Existing Functionality

– Version 1: N/A
– Version 2: N/A
– Version 3: Errors resulting from overlooking existing functionality, such as reimplementing variables,

functions, and classes that already exist, or reimplementing functionality that already exists in a standard
library.

– Version 4: Errors resulting from overlooking existing functionality, such as reimplementing or duplicating
variables, functions, and classes that already exist, or reimplementing functionality that already exists in
a standard library. Other examples include deleting necessary variables, functions, and classes.

• S08: General Attentional Failure

– Version 1: N/A
– Version 2: Only use this category if you believe your error to be the result of a lack of attention, but no

other slip category fits.
– Version 3: N/A
– Version 4: N/A

• L01: Forgetting to Finish a Development Task

– Version 1: N/A
– Version 2: Forgetting to implement a required feature.
– Version 3: Forgetting to finish a development task. Examples include forgetting to implement a required

feature, forgetting to finish a user story, and forgetting to deploy a security patch.
– Version 4: N/A
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• L02: Forgetting to Fix a Defect

– Version 1: Forgetting to fix a defect that you encountered, but chose not to fix right away.
– Version 2: N/A
– Version 3: N/A
– Version 4: N/A

• L03: Forgetting to Remove Development Artifacts

– Version 1: Forgetting to remove debug log files, dead code, informal test code, commented out code,
test databases, backdoors, etc.

– Version 2: N/A
– Version 3: Forgetting to remove debug log files, dead code, informal test code, commented out code,

test databases, backdoors, etc. Examples include leaving unnecessary code in the comments, and leaving
notes in internal development documentation.

– Version 4: N/A

• L04: Working with Outdated Source Code

– Version 1: N/A
– Version 2: Forgetting to git-pull (or equivalent in other version control systems), or using an outdated

version of a library.
– Version 3: N/A
– Version 4: N/A

• L05: Forgetting an Import Statement

– Version 1: N/A
– Version 2: Forgetting to import a necessary library, class, variable, or function, or forgetting to include

arguments in a function call.
– Version 3: N/A
– Version 4: Forgetting to import a necessary library, class, variable, or function, or forgetting to access a

property, attribute, or argument. Examples include forgetting to import python’s sys library, forgetting
to include a header file in C, or forgetting to pass an argument to a function.

• L06: Forgetting to Save Work

– Version 1: Forgetting to push code, or forgetting to backup/save data or documentation.
– Version 2: N/A
– Version 3: N/A
– Version 4: N/A

• L07: Forgetting Previous Development Discussion

– Version 1: N/A
– Version 2: Errors resulting from forgetting details from previous development discussions.
– Version 3: N/A
– Version 4: N/A
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• L08: General Attentional Failure

– Version 1: N/A
– Version 2: Only use this category if you believe your error to be the result of a memory failure, but no

other lapse category fits.
– Version 3: N/A
– Version 4: N/A

• M01: Code Logic Errors

– Version 1: A code logic error is one in which the code executes, but produces an incorrect output/be-
havior due to incorrect logic. Examples include using incorrect operators (e.g. . += instead of +),
erroneous if/else statements, incorrect variable initializations, problems with variable scope, and omission
of necessary logic.

– Version 2: N/A
– Version 3: A code logic error is one in which the code executes (i.e. actually runs), but produces

an incorrect output/behavior due to incorrect logic. Examples include using incorrect operators (e.g. +=
instead of +), erroneous if/else statements, incorrect variable initializations, problems with variable scope,
and omission of necessary logic.

– Version 4: N/A

• M02: Incomplete Domain Knowledge

– Version 1: Errors resulting from incomplete knowledge of the software system’s target domain (e.g.
banking, astrophysics).

– Version 2: N/A
– Version 3: N/A
– Version 4: Errors resulting from incomplete knowledge of the software system’s target domain (e.g.

banking, astrophysics). Examples include planning/designing a system without understanding the nu-
ances of the domain.

• M03: Wrong Assumption Errors

– Version 1: Errors resulting from an incorrect assumption about system requirements, stakeholder expec-
tations, project environments (e.g. coding languages and frameworks), library functionality, and program
inputs.

– Version 2: N/A
– Version 3: N/A
– Version 4: N/A

• M04: Internal Communication Errors

– Version 1: Errors resulting from inadequate communication between development team members.
– Version 2: N/A
– Version 3: N/A
– Version 4: Errors resulting from inadequate communication between development team members. Ex-

amples include misunderstanding development discussion, misinterpreting or providing ambiguous instruc-
tions, communicating using the wrong medium (e.g. oral vs. written), or communicating ineffectively
(e.g. too formal/informal, too much unnecessarily complex language, hostile language/body language).



APPENDIX L. T.H.E.S.E. CHANGELOG 178

• M05: External Communication Errors

– Version 1: Errors resulting from inadequate communication with project stakeholders, third-party con-
tractors, or users.

– Version 2: N/A
– Version 3: N/A
– Version 4: Errors resulting from inadequate communication with project stakeholders or third-party

contractors. Examples include providing ambiguous or unclear directions to third-parties or users, or
misinterpreting stakeholder feedback, communicating using the wrong medium (e.g. oral vs. written), or
communicating ineffectively (e.g. too formal/informal, too much unnecessarily complex language, hostile
language/body language).

• M06: Solution Choice Errors

– Version 1: Misunderstood problem-solving methods/techniques result in analyzing the problem incor-
rectly and choosing the wrong solution. For example, choosing to implement a database system in Python
rather than using SQL.

– Version 2: N/A
– Version 3: N/A
– Version 4: Misunderstood problem-solving methods/techniques result in analyzing the problem incor-

rectly and choosing the wrong solution. For example, choosing to implement a database system in Python
rather than using SQL, or choosing the wrong software design pattern. Overconfidence in a solution choice
also falls under this category.

• M07: Time Management Errors

– Version 1: N/A
– Version 2: Errors resulting from a lack of time management, such as failing to allocate enough time for

the implementation of a feature.
– Version 3: N/A
– Version 4: Errors resulting from a lack of time management, such as failing to allocate enough time for

the implementation of a feature, procrastinating a development task, or predicting the time required for
a task incorrectly.

• M08: Inadequate Testing

– Version 1: N/A
– Version 2: Failure to implement necessary test cases, failure to consider necessary test inputs, or failure

to implement a certain type of testing (e.g. unit, penetration, integration) when it is necessary.
– Version 3: N/A
– Version 4: Failure to implement necessary test cases, failure to consider necessary test inputs, failure to

implement a certain type of testing (e.g. unit, penetration, integration) when it is necessary, or failure to
consider edge cases or unexpected inputs.

• M09: Incorrect/Insufficient Configuration

– Version 1: N/A
– Version 2: Errors in configuration of libraries/frameworks/environments or errors related to missing

configuration options.
– Version 3: Errors in configuration of libraries/frameworks/environments or errors related to missing

configuration options. Examples include misconfigured IDEs, improper directory structure for a specific
programming language, and missing SSH keys.

– Version 4: Errors in configuration of libraries/frameworks/environments or errors related to missing
configuration options. Examples include misconfigured IDEs or text editors, improper directory structure
for a specific programming language, missing SSH keys, missing or incorrectly named database fields or
tables, missing or incorrectly named/formatted configuration files, or not installing a required library.
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• M10: Code Complexity Errors

– Version 1: Errors resulting from misunderstood code due to poor documentation or unnecessary com-
plexity. Examples include too many nested if/else statements or for-loops and poorly named variables/-
functions/classes/files.

– Version 2: N/A
– Version 3: N/A
– Version 4: N/A

• M11: Internationalization/String Encoding Errors

– Version 1: N/A
– Version 2: Errors related to internationalization and/or string/character encoding.
– Version 3: N/A
– Version 4: Errors related to internationalization and/or string/character encoding. Examples include

using ASCII instead of Unicode, using UTF8 when UTF16 was necessary, failure to design the system
with internationalization in mind, or failing to verify the character length of user input.

• M12: Inadequate Experience Errors

– Version 1: N/A
– Version 2: Errors resulting from inadequate experience with a language, library, framework, or tool.
– Version 3: N/A
– Version 4: N/A

• M13: Insufficient Tooling Access Errors

– Version 1: N/A
– Version 2: Errors resulting from not having sufficient access to necessary tooling. Examples include

not having access to a specific operating system, library, framework, hardware device, or not having the
necessary permissions to complete a development task.

– Version 3: N/A
– Version 4: N/A

• M14: Workflow Order Errors

– Version 1: N/A
– Version 2: Errors resulting from working out of order, such as implementing dependent features in the

wrong order, implementing code before the design is stabilized, releasing code that is not ready to be
released, or skipping a workflow step.

– Version 3: N/A
– Version 4: N/A

• M15: General Planning Failure

– Version 1: N/A
– Version 2: Only use this category if you believe your error to be the result of a planning failure, but no

other mistake category fits.
– Version 3: N/A
– Version 4: N/A



Appendix M

Selected Quotes

This appendix lists quotes from references that we would like to share.

“Software rarely works as intended... things go wrong in the midst of everyday practice, and developers
are commonly understood to form theories and strategies for dealing with them. Errors in this sense
are not bugs left behind in software, they are actively encountered and experienced [191].

“Human errors are the primary cause of software defects, since computer programs are a pure cogni-
tive product that describes its designers’ thoughts. Understanding the human error mechanisms
of software developers will advance various approaches that are currently used to defend against
software defects, such as defect prevention, defect prediction, defect detection and fault tolerance [142].”

“Software errors are human errors, software is written by man, and indeed man does make mis-
takes... errors are always present. Some errors are more harmful, visible or costly than others, and
testing may never be able to reveal all of them. It seems that software errors cannot be totally prevented,
so the best we can do is to try to locate them as early as possible, and at least find and fix the most
harmful ones [198].”

“All of us have experienced human error. When we interact with machines or complex systems, we
frequently do things that are contrary to our intentions. Depending on the complexity of the system and
the intentions of the people interacting with it, this can be anything from an inconvenience (often it is not
even noticed) to a genuine catastrophe. Human error can occur in the design, operation, management,
and maintenance of the complex systems characteristic of modern life. Because we depend increasingly
on these systems for our well being, it is clear that human error is a potent and frequent Link of hazard
to human life and welfare, and to the ecosystems of Earth [320].”

“People are key components of processes. They are involved in process design, operation, main-
tenance, etc. No step in the process life cycle is without some human involvement. Based on human
nature, human error is a given and will arise in all parts of the process life cycle. Also,
processes are generally not well-protected from human errors since many safeguards are focused on equip-
ment failure. Consequently, it is likely that human error will be an important contributor to risk for most
processes [35].”

“Human error continues to be a major computer security issue, although many contemporary
information security practitioners appear to have forgotten about it [362].”

“Targeting the ‘human’ part of the perceived ‘human error’ problem is still quite popular. As in: keep
beating the human until the error goes away. But your ‘human error’ problem is in all likelihood
more about the organization than it is about the human [76].”

“To Err Is Human asserts that the problem is not bad people... it is that good people are working in
bad systems that need to be made safer [83].”

“If the HR department is involved in safety in your organization, then an incident investigation can
quickly degenerate from learning opportunity to performance review [76].”
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“Because of the complexity of human behavior and the characteristics of human errors, it is impossible
to eliminate all the human errors. However, these human errors could and should be reduced to the
utmost. One of the effective ways is to study the root causes of the human errors and then propose the
improvement measure and prevent these errors [367].”

“Unfortunately, modern system designs do not take into account the possibility of human
error. Traditional high-end fault-tolerant systems have a partial solution in that their vendors lock
up their systems and give the keys only to certified, trained service personnel. But even a highly-trained
operator will inevitably make mistakes, so this is hardly a complete solution. Furthermore, it is a solution
that does not apply to modern Internet service environments, where systems consist of collections of
hardware and software from different vendors deployed in highly varied configurations [51].”

“Therefore, instead of blaming the human who happens to be involved, it would be better to try
to identify the system characteristics that led to the incident and then to modify the design either by
elimination of the situation or at least minimization of the impact for future events. One major step
would be to remove the term "human error" from our vocabulary and to re-evaluate the need to blame
individuals. A second major step would be to develop design specifications that consider the functionality
of the human with the same degree of care that has been given to the rest of the system [262].”

“On an individual level, one reason for our dislike of errors is that they cause us distress. Errors show
our deficiencies, including where we did not pay enough attention, or when we misjudged a situation,
thus questioning our reputation and our pride as proficient workers. Besides, errors may be dangerous
and can cause adverse things to happen. On the organizational level, errors can endanger the creation of
economic value and may also put employees, clients, or customers at risk. The research on safety and
accidents has endless examples of minor errors leading to disastrous outcomes [34].”

“There is however a positive face of mistakes, essential in learning, in teaching, in scientific
research and in any creative work [199].”

“On the one hand, professionals as well as companies are keen to avoid errors; on the other hand, scholars
have indicated that errors cannot be completely prevented and that a heavy reliance on error prevention can
have detrimental effects. Instances of such detrimental effects are: the potential occurrence of errors may
be insufficiently anticipated; employees lose their skills in dealing with them; and learning opportunities
are missed. For these reasons, a shift from an exclusive error prevention approach to an error management
strategy has been proposed. Error management concepts suggest, in addition to prevention, an efficient
way of dealing with errors and learning from them. The error management approach is based on the
assumption that a systematic analysis of occurring errors can provide organisations with
information about necessary adjustments of knowledge, strategies, and behaviour. Moreover,
errors may evoke new insights that lead to learning beyond the mere prevention of similar
errors. Hence, although it seems obvious that errors should be avoided in professional work because they
endanger the attainment of desired goals, a prerequisite for avoiding errors as well as for capturing the
potential benefits that arise through errors is to be open to their occurrence and to learn from them [34].”

“Knowledge about possible errors can play an important role when making up plans about how to solve a
task at hand... similarly... the ability of employees to anticipate errors is an important cornerstone of
their performance. If errors are anticipated, they may be avoided entirely or better coped with
when they do occur [34].”

“When you go behind the label ‘human error,’ you see people and organizations trying to
cope with complexity, continually adapting, evolving along with the changing nature of risk in their
operations. Such coping with complexity, however, is not easy to see when we make only brief forays into
intricate worlds of practice. Particularly when we wield tools to count and tabulate errors, with the aim
to declare war on them and make them go away, we all but obliterate the interesting data that is out there
for us to discover and learn how the system actually functions. As practitioners confront different
evolving situations, they navigate and negotiate the messy details of their practice to bridge
gaps and to join together the bits and pieces of their system, creating success as a balance
between the multiple conflicting goals and pressures imposed by their organizations. In fact,
operators generally do this job so well, that the adaptations and effort glide out of view for outsiders and
insiders alike. The only residue left, shimmering on the surface, are the ‘errors’ and incidents to be fished
out by those who conduct short, shallow encounters in the form of, for example, safety audits or error
counts. Shallow encounters miss how learning and adaptation are ongoing—without these,
safety cannot even be maintained in a dynamic and changing organizational setting and environment—
yet these adaptations lie mostly out of immediate view, behind labels like ‘human error [363].” ’
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Behind Human Error

In Behind Human Error [363], the authors argue that human error is not a problem, but a misleading (and perhaps
outdated) label, behind which exists a vast ecosystem of organizational problems and opportunities for learning:

“If you think you have a ‘human error’ problem, don’t think for a minute that you have said anything
meaningful about the causes of your troubles, or that a better definition or taxonomy will finally help
you get a better grasp of the problem, because you are looking in the wrong place, and starting from the
wrong position. You don’t have a problem with erratic, unreliable operators. You have an organizational
problem, a technological one. You have to go behind the label human error to begin the process of learning,
of improvement, of investing in safety. The 10 steps forward summarize general patterns about error and
expertise, complexity, and learning. These 10 steps constitute a checklist for constructive responses when
you see a window of opportunity to improve safety. Here they are:”

1. “Recognize that human error is an attribution.”
2. “Pursue second stories to find deeper, multiple contributors to failure.”
3. “Escape the hindsight bias.”
4. “Understand work as performed at the sharp end of the system.”
5. “Search for systemic vulnerabilities.”
6. “Study how practice creates safety.”
7. “Search for underlying patterns.”
8. “Examine how change will produce new vulnerabilities and paths to failure.”
9. “Use new technology to support and enhance human expertise.”

10. “Tame complexity.”

While my background is not philosophy, philosophical questions keep me up at night. The study of human error
breeds philosophical questions, and the deeper you dig, the more questions you encounter, and the harder you think.
Here, I examine my dissertation under the lens of going behind human error, with the goal of raising philosophical
questions for the reader:

1. “Recognize that human error is an attribution.” — Attributing the cause of a failure to human error results in a
concise post-mortem (i.e. a first story [363]), but it shields us from further knowledge and understanding of the
failure and its causes. To facilitate deeper understanding, our human error reflection process requires software
engineers confronting their human errors to go beyond T.H.E.S.E. categorization and consider questions about
how the resulting defect came to be, how the human error is related to others, and mitigation strategies.
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2. “Pursue second stories to find deeper, multiple contributors to failure.” — The first stories from literature
and GitHub artifacts that we aggregated into T.H.E.S.E. provide a tool for software engineers, but T.H.E.S.E.
categorization should not be considered the resolution of a human error informed micro post-mortem. During
our user study (Section 5.2), we elicited many second stories, which revealed a wealth of nuance in human error
categorization and reflection. T.H.E.S.E. is a shared vocabulary for software engineering teams to discuss their
second stories.

3. “Escape the hindsight bias.” — When we examine a software failures after-the-fact, we are aware of the outcome,
and our conclusions can be biased. Unless we personally experienced the human error(s) behind the software
failure in question, the true details are hidden from us. Our goal, restated, is to help software engineers
confront and reflect on their human errors by creating a process to document, organize, and
analyze human errors. Our human error reflection process is a personal process intended to suss out the
messy details of the human error and wash away first stories by bringing second stories to the surface.

4. “Understand work as performed at the sharp end of the system.” — At the blunt end, the project stakeholders
and the organization place constraints on software engineering. Those at the blunt end are concerned primarily
with the final software product, while the software engineers working at the sharp end have to navigate the
imposed constraints, balancing complexity, security, quality, and functionality. Those working at the blunt end
may be tempted to blame software engineers for the human errors they experience, but this would be a mistake.

5. “Search for systemic vulnerabilities.” — Safety, much like security, is an emergent property of systems [363];
safety must be created through a process of continual reflection on human errors followed by mitigation.
T.H.E.S.E. provides a lens to examine recurrent human errors, which in turn allows systemic human errors to
come to light.

6. “Study how practice creates safety.” — Software engineers can never inherently know what the future will hold
(if they could, software would be perfect and there would be no software defects). But we can examine the past
in an effort to predict the future. Examining trends in CVE and CWE allows software engineers to focus their
efforts on typical vulnerabilities and weaknesses. In that vain, examining trends in experienced human errors
will enable software engineers to focus their attention on implementing the appropriate tools and processes to
mitigate typical human errors.

7. “Search for underlying patterns.” — Patterns help us reduce large sets of information into digestible bullet
points, thus allowing us to make conclusions and decisions. We have done the hard work of aggregating
patterns in software engineers’ human errors—from 192 human errors in literature, 200 self-admitted human
errors on GitHub, and 162 human errors experienced in our user study—into T.H.E.S.E., and we have designed
our human error reflection process to empower software engineers to further identify human error patterns in
their work.

8. “Examine how change will produce new vulnerabilities and paths to failure.” — The computing field is contin-
ually changing as algorithms, languages, tools, and paradigms rise and fall. Human error reflection has to be
a continuous process for software engineers, which, in part, prompted us to implement H.E.R.E., to allow for
easy adoption and integration of human error reflection into existing software engineering workflows.

9. “Use new technology to support and enhance human expertise.” — New technologies can be both an aid and a
hindrance. While it could be argued that human error reflection with T.H.E.S.E. adds too much strain on the
already complex software engineering process, we took care to minimize any potential negative impacts. We
reduced ambiguity of T.H.E.S.E. categories while also verifying that T.H.E.S.E., our human error reflection
process, and H.E.R.E. are easy to use, comprehensive, and valuable to software engineers.

10. “Tame complexity.” — While the complexity of software development can never truly be tamed, it can be
managed through continual human error reflection. In confronting, organizing, and reacting to their human
errors, the software engineering community will be closer to inculcating the wisdom of historical developer
human errors, enabling them to engineer higher quality and more secure software.
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Human Error & Philosophy

Toward the end of my dissertation, I had the pleasure of attending Supercompting ’22 with a coworker, Andy Elble.
One day, after 12 hours of presentations, we decided to grab dinner and a few beers at our hotel. After brain-dumping
what we learned during the day, and planning how we intended to incorporate those lessons and insights into our
work, our discussion diverged. While this discussion is not immediately related to software engineering, it raises some
interesting philosophical questions about human error, which, I feel, would be a shame not to publish. Here is a
summary of the ideas we discussed:

Idea 1: Error is the second law of thermodynamics intruding into our desire for order.
The second law of thermodynamics establishes the concept of entropy—a state of disorder, randomness,
or uncertainty. Entropy succeeds when a system fails, when human error forces the “system outside its
acceptable limits [320].”
So, perhaps our goal shouldn’t be to eliminate all human errors (which is unachievable), but instead to
maximize the amount of time before entropy catches up. After all, there is no order without chaos.

Idea 2: At large timescales, errors are just steps within the process.
Consider natural selection, the process of countless genetic variations being tested and selected over massive
timescales. Selected variations may be overwritten by new variations, or rejected variations may return
based on environmental factors. Those rejected variations could be considered errors, but ultimately, they
are part of the process.
Let’s apply this concept to humans. We are constantly trying new things and exploring new ideas. We
reject hypotheses that we deem too difficult to test and we forget old ideas, only to rediscover them later.
The ancient world (and, unfortunately, some modern humans whom education has failed) believed that the
Earth was flat. Through observation, we later learned that the Earth is spherical, and through measurement
we came to know that the Earth is actually an ellipsoid. We used to believe that the Earth was the center
of the Universe, and the Sun revolved around us. Then we learned that the Earth actually revolves around
the Sun, but we still believed our solar system to be the center of the Universe. Now we know that our solar
system is simply at the center of our observable Universe, and we ask ourselves what’s outside our view.
These old ideas were human errors in logic, but they were important stepping stones in our pursuit of truth.

Idea 3: Rules are the codified version of intent; error is the gap between intent and rules.
Consider the three laws of robotics put forth by Isaac Asimov:

First Law: A robot may not injure a human being or, through inaction, allow a human being to come
to harm.

Second Law: A robot must obey the orders given it by human beings except where such orders would
conflict with the First Law.

Third Law: A robot must protect its own existence as long as such protection does not conflict with the
First or Second Law.
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These laws are a set of rules, a part of the robots’ core programming, intended to prevent them from causing
harm to humans. However, Asimov’s robot stories frequently involve robots behaving in strange and/or
counterintuitive ways as a result of their programming.
For example, in the story Liar! , a telepathic robot named Herbie lies to a human named Susan about a
coworker having romantic feelings for her. Herbie lied to avoid hurting Susan’s feelings, following his First
Law programming. However, Susan later finds out that her coworker does not love her, which hurts her
more because Herbie’s lie gave her hope. Upon receiving this new data—lying or telling the truth could
have caused Susan pain (could have violated the First Law)—Herbie’s brain locks up [24].
Herbie’s error was lying to avoid breaking the First Law, but the intent of the First Law was to cause
minimal harm to humans. This scenario is likely quite familiar to most human readers.

Idea 4: A system that broadens the solution space broadens the opportunity for human error.
Consider the card game War, where a standard deck of 52 cards is randomly shuffled and evenly divided
between two players. Players take turns flipping the top card of their deck over; the player with the higher-
valued card wins the round and takes both cards. If the cards flipped in a round are the same value,
each player flips the next card from the top of their deck, and the player with the higher-valued card wins
the round and takes all of the cards. The game ends when the winning player has taken all of the cards.
Assuming no cheating occurs, there is zero opportunity for human error in the game of War, since there are
no decisions to be made.
Now consider the game of Tic-Tac-Toe, which is played on a 3x3 grid of squares. The first player places
an X in a square. The second player places an O in a different square. Players alternate placing X’s and O’s
until one player has three of their markers in a row (vertically, horizontally, or diagonally), or the grid is
full with no winning chain of markers. There are 19,683 different orientations of X’s and O’s that can be
played—19,683 different solutions to the game [123]. The first player has to decide between 9 squares, the
next player between 8 squares, then 7, and so on. If the game ends after a minimum of 5 turns, then the
first player made 3 decisions, and the second player made 2 decisions. If the game ends after a maximum of
9 turns, then the first player made 5 decisions, and the second player made 4 decisions. With each decision,
there is an opportunity for human error. Assuming any of the decisions can be erroneous, then there are up
to 9 human errors in every game of Tic-Tac-Toe.
Now consider the game of Chess, played on an 8x8 grid of squares, where each player commands a King,
Queen, two Bishops, two Knights, two Rooks, and eight Pawns. The goal of Chess is to force the opponent’s
King into a position where it cannot be moved. The mechanics of Chess are complicated and irrelevant to
this discussion; all we need to know is that there are approximately 1043 possible solutions to Chess [324].
If the average game consists of 40 rounds (one move per player in each round), then there are at least 80
decisions to be made in the average game—at least 80 opportunities for human error.
The solution space for Chess is significantly higher than the solution space for Tic-Tac-Toe, and thus there
is more opportunity for human error in a Chess game.

Let’s consider another example: complexity is the enemy of security [204]. If we think about the attack
surface of a software system—the available entry points for an attacker—as the solution space, then it is
clear that as the complexity of the software system increases, so does its attack surface.
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Meneely’s Meditations

When my advisor graduated, he presented his advisor, Dr. Laurie Williams, with a list of Laurie’s Laws—bits of
wisdom that Dr. Meneely had gained from her throughout his dissertation. In keeping with that tradition, here
I present Meneely’s Meditations, a collection of wisdom and brain-churning comments from Andy, in no particular
order:

1. The word it is a null pointer exception.

2. Papers are a mix of expository and persuasive writing.

3. Science makes for a terrible religion; it is always very unsure of itself.

4. Optimizations are rarely optimal.

5. Good writing is like a good user interface; it reduces the memory allocation required by the user.

6. Science is the worst thing a perfectionist can do.

7. Doing something that’s never been done isn’t necessarily a good idea; maybe it’s never been done before because
it’s a bad idea.

8. If you never look at your data, you’ll never understand your results.

9. Engineering is a series of decisions.

10. Paranoia is counterproductive.

11. It doesn’t exist unless it’s in a repository.

12. Clarity is king. I don’t care about being informal as long as I’m both precise and clear.
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Concerning the Octopus

You may be wondering why you see a small image of an octopus acting as a dinkus (a paragraph separator) throughout
this dissertation. You know, this little guy:

The octopus is a very misunderstood creature, often considered the closest thing to truly “alien” life on Earth.
Indeed, if you just look at an octopus, it does feel alien with its ability to change colors and shapes at whim. The
octopus even lives deep in the ocean, in the hydrosphere, far from the lithosphere and atmosphere that we call home.

But if you look beyond the surface, the octopus is a fascinating creature. With its brain distributed throughout its
whole body, an octopus’ arms can act independently without communicating with its central brain to make decisions.
They are highly intelligent problem solvers, capable of escaping from closed jars, and solving mazes and other puzzles,
and perhaps even communicating with each other. When they are being hunted, they typically choose to hide or
evade their predators with clouds of ink, rather than attack [117]. We also still have a lot to learn about them;
they are notoriously solitary creatures, yet we just recently discovered the fourth known octopus nursery—a small
underwater city where octopuses congregate [289].

Human errors are much like octopuses. They hide behind labels such as “fault”, “accident”, or “mistake,’ and
their nuance is often locked within the minds of the humans who experience them. Outsiders examine human errors
without the full picture and conclude that ‘I never would have done that, why would you? It’s so obvious.’ Human
errors can also be scary, and confronting them can make us feel uncomfortable. But when we look beyond the surface,
and reflect on our human errors, they can teach us about ourselves, and about each other.

This particular octopus was designed by digital artist parkjisun and is available from the Noun Project 1. No
octopuses (or humans) were harmed in the making of this dissertation.

1https://thenounproject.com/icon/octopus-469926/
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