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Abstract

Biological systems have the unique ability to self-organize, respond to environmental

stimuli, and generate autonomous motion and work. The fields of biomaterials and syn-

thetic biology seek to recapitulate these remarkable properties of biological systems in

in-vitro reconstitutions of biological systems, and in abiotic or biotic-abiotic hybrid ma-

terials to better understand the underlying rules of life and to predict the design princi-

ples of biomimetic smart materials. Motivated by this, we create bottom-up mathemat-

ical models, rooted in experiments, of network-based synthetic and biological materials.

These encompass two-dimensional colloidal networks connected by rhythmic crosslinkers,

and three-dimensional biopolymer networks assembled via depletion interactions, physical

crosslinking, and adhesive proteins. We use Langevin Dynamics simulations to investigate

the spatiotemporal evolution of these systems, probing and characterizing their emergent

collective dynamics and structural properties. We refine our models by comparing our re-

sults with experimental data when available and make predictions of mechanisms driving

the observed collective behavior and possibilities for modulation. By providing insights

on what kinds of behavior to expect in different areas of the phase space, we use results

from our model studies to help inform the rational design of bio-inspired soft materials

with desired properties.
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Introduction
Biological systems have the unique ability to self-organize, respond to environmental stim-
uli, and generate autonomous motion and work. The fields of biomaterials and synthetic
biology seek to recapitulate these remarkable properties of biological systems in in-vitro
reconstitutions of biological systems, and in abiotic or biotic-abiotic hybrid materials
to better understand the underlying rules of life and to predict the design principles of
biomimetic smart materials. Motivated by this we construct and investigate a series of
model systems of network-based soft synthetic and biological materials, with focus on their
emergent collective structural and dynamic properties and how these properties can be
tuned. A commonality among all the different systems is that they undergo self-assembly
and phase transitions to non-equilibrium and equilibrium states. Combinations of ac-
tive and passive components like protein crosslinkers, crowding depletants, and molecular
motors help tune these mechanical and structural properties.

We first investigate a 2D in silico model colloidal system closely aligned with a col-
laboratively studied experimental system of colloids and bacterial proteins KaiABC that
maintain circadian rhythms (oscillations) and can be engineered to crosslink the colloidal
particles. We use Langevin dynamics to investigate the time-dependent changes in struc-
ture and collective properties of this system by tuning the valency of crosslinker binding
and crosslinking kinetics. Our simulations show that when the crosslinker attachment and
detachment probabilities are entrained to their circadian cycles, the valency of crosslinking
between a pair of colloidal particles determines whether we achieve a rapid self-assembly of
a colloidal network robustly connected to the circadian timescale, or a disordered colloidal
system.

Next, we explore an in silico model where we decouple the detachment probability of
the crosslinkers from their oscillation periods, and instead prescribe crosslinker lifetimes
that are coupled to the period. As before, we use Langevin dynamics to examine the
time-dependent changes in structure and collective properties of this system as a function
of colloidal packing fractions and crosslinker oscillation periods and characterize the de-
gree of order in the system by using network connectivity, bond length distributions, and
collective motion. Our simulations suggest the conditions for producing distinct states of
this colloidal system with pronounced differences in the degree of microstructural order
and residence times. In particular, even for very dilute systems, we obtain sustained tran-
sitions between states of distinct degree of structural order by just varying the crosslinker
oscillation period.

The next chapter in this thesis focuses on the organization of biopolymers in crowded
environments into networks and compact assemblies. We study two model systems, one
focused on biopolymers found in eukaryotic systems and one on biopolymers in prokary-
otic systems. While direct physical crosslinking mechanisms can induce or manipulate
self-assembly of biopolymers, they are not the only mechanisms that can achieve this.
For example, when actin filaments, the biopolymers from the network-like scaffold (cy-
toskeleton) mainly responsible for eukaryotic cells’ mechanical properties, are immersed
in a solution of crowding agents such as polyethylene glycol (PEG), they can undergo
transitions from an unconnected system to an entangled network of filaments or filament
bundles due to depletion forces which cause the actin filaments to effectively be closer.
To understand this behavior, we construct and investigate a 3D model of actin filaments



modeled as chains made of connected beads, and PEG modeled as colloidal spheres, and
explore how tuning the molecular weight and concentration of the depletant PEG leads
to the emergence of different phases of networks of actin filaments or their bundles. We
further show that when the total mass or total number density of the PEG is held fixed,
the strength of the depletion interactions increases and this is reflected in the degree of
bundling in our simulations. Our results align with our analytical scaling predictions
in limiting cases, as well as with observations from experimental studies by our collabo-
rators that the increase in molecular weight of PEG yields bundling of actin filaments.
Next we study self-organization in models of biopolymers (DNA) in prokaryotic systems,
namely starved E. Coli bacteria, via proteins called DPS, short for DNA protecting pro-
tein under starved conditions. The DNA in these bacteria cells is not contained within a
membrane-bound organelle but are compacted by DPS proteins, which shields the DNA
from damage. Here the self-assembly and phase separation of DNA is primarily driven
by the DPS protein binding. We construct a 3D model of the DNA chains immersed in a
solution of DPS proteins to understand and predict how tuning strength of the heterotypic
interactions and DPS concentration affects the condensate formation of DNA.

Finally, we turn to self-assembly and collective properties of composite biopolymer
systems in equilibrium, as well as driven out of equilibrium by molecular motors. Cy-
toskeletal networks are the motivation for our final study. The cytoskeleton plays a key
role in cellular force generation, shape change, and movement. Characterizing the physics
of this dynamic structure is challenging. More specifically, the interactions between the
two main biopolymers that constitute the cytoskeleton, actin and microtubules, and the
associated molecular motors myosin and kinesin, have been recently recognized as critical
to cytoskeletal functions but the mechanisms of their interactions are not easily under-
stood. With the 3D bead-chain model now extended to a model of actin and microtubules
without and with motors, we study the actin-microtubule interplay and how various mo-
tor proteins and crosslinkers impact the spatial organization of these networks in and
out of equilibrium. An area of interest in our theory-experiment collaboration on this
project lies in developing a set of high-throughput in-house software to analyze metrics
like mechanical stiffness and contractility, and propagation of mechanical stresses in ex-
perimental and simulated data. To address this, we take a toy-model approach where we
implement nucleation sites to generate global and local contractions (asters) in separate
actin and microtubule channels. Overall, our studies lay the foundation to study the
emergent collective equilibrium and active mechanics arising in cytoskeletal composites
in cells.
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Chapter 1

Time-Dependent Colloidal

Self-Assembly Controlled By Circadian

Proteins

1.1 Background

Living organisms have active components that allow for generation of coherent motion and

self-organized dynamics.[1] They are robust to time-varying environments [2] and often

undergo dynamic changes in properties based on internal time-keeping machinery such as

the cell cycle and the circadian clock [3]. Recent studies have also suggested the existence

of “autonomous clocks” which can run independently to support living systems’ functions

[4]. A mechanistic understanding of such biological systems can advance the engineering

of new smart materials that can self-organize, self-stimulate, and evolve independently

according to the application environment. In the past decade, studies of active soft ma-

terials have sought to understand the layers of complexities and mechanistic structures

in biological systems.[5–9] However, the rational design of active synthetic materials that

can recapitulate the autonomous, persistent, and reversible dynamics of living materials

without external intervention remains a challenge. We discover new insights on this re-

1



1.1 Background 2

search field by using bacterial circadian clock proteins KaiA, KaiB, and KaiC, to facilitate

time-dependent self-assembly and dissolution of colloids, via crosslinking.

Figure 1.1: Schematic of circadian proteins KaiABC. These rhythmic proteins are engi-
neered to serve as oscillatory crosslinkers for synthetic materials. (A), The blue hexamer
represents KaiC, the green particles are KaiB proteins, and KaiA is not pictured. (B),
Over a period of 24 hours, The Kai proteins are able to transition from being free and
dissociated to forming a complex, based on the phosphorylation state of KaiC. (C), To
utilize these proteins as crosslinkers, we biotinylate some of the KaiB proteins, which is
visualized in magenta outlines in (A). The biotinylation allows the KaiB to serve as sticky
connections that can attach to the colloids.

KaiA, KaiB, and KaiC are three proteins that make up the circadian oscillator in

the cyanobacterium Synechococcus elongatus [10]. These set of bacterial proteins help

regulate the circadian rhythms in cyanobacteria [10, 11]. KaiA binds to KaiC, which

promotes phosphorylation of KaiC. Once there is a sufficient amount of phosphorylation,

KaiB are then able to bind to KaiC, forming that complex structure in Figure 1.1(B). The

complex formation of KaiB and KaiC then inactivates the KaiA protein.This inactivation

means that KaiA no longer promotes phosphorylation of KaiC, and the dephosphorylation
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of KaiC causes the KaiB to unbind from the hexamer. These proteins have a robust 24-

hr phosphorylation rhythm as it has been shown that these proteins can be removed

from their original cyanobacteria medium and still retain their circadian cycle in in-vitro

[11, 12].

To get the KaiABC complexes to crosslink with the colloids or other synthetic materi-

als, a certain number of the KaiB connections have to be mutated. The experimentalists

achieve this by biotinylating or coating some the KaiB with biotin so that they can attach

to the streptavidin-coated colloids [11]. The KaiB proteins are not naturally biotinylated,

Figure 1.2: Fluorescence polarization of KaiABC complex formation characterizes the
oscillatory behavior of proteins with 3 percentages of biotinylated KaiB.

and we track the oscillatory dynamics of the mutated proteins as they form complexes

and then dissociate back to free protein molecules. Figure 1.2 shows the fluorescence

polarization for the KaiBC complexes. High levels of polarization correspond to a large

amount of protein complexes that crosslink colloids. Low levels of polarization indicate

the majority of the complexes dissociate and cannot crosslink colloids.

We explore 3 different experimental cases: one where 80% of the KaiB’s were biotiny-

lated in that sticky coating, 55% were biotinylated, and a case where none of the KaiB’s

were biotinylated. From the pink curve here, we see that when they coat 80% of the
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proteins in biotin, there is an absence of any cyclic pattern and the proteins remain in

the complex state. If 55% of the KaiB connections are sticky then we get these distinct

oscillations with large amplitude within the first 24 hours in the purple curve. If there is

no biotinylated KaiB (the 0% case/control), we still get this oscillatory pattern, but po-

larization levels are much lower with a decrease in amplitude. Furthermore the complexes

cannot attach to the colloids since the KaiB proteins are not biotinylated.

1.2 Model and Method

1.2.1 Mathematical Model

Using Brownian Dynamics and C++ programming, we develop a 2D model of a colloidal

system that corresponds to the experimental cases. Our system has 500 colloid particles

that have a diameter σ = 1µm. The simulation box is 50µm by 50µm and periodic

boundary conditions are applied. The packing fraction of the colloids is set to 16% to

match the bead density in the imaging plane estimated from the binarized experimental

images at t = 0. At the beginning of each simulation, all the colloids are separate,

unlinked particles undergoing Brownian diffusion in 2D. When the surfaces of two colloids

are within a distance l = 10nm of each other, they have a non-zero probability of linking

together. If a pair of particles gets too close, they experience hard sphere repulsion. We

simulate three cases that correspond to the experimental studies:

(1) Permanent crosslinking, where, once formed, bonds between colloidal particles are

permanent.

(2) No crosslinking, where bonds never form between colloidal particles regardless of

their proximity.

(3) Oscillatory crosslinking, where bond formation and dissolution follow the oscillatory

activation and deactivation of the KaiBC complex.
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For the cases (1) and (3), when a pair of particles are within a center-to-center distance

of r0 = 1.01, they can become crosslinked with a certain probability. This probability of

attachment at simulation time t is pa = p0 cos
2(πt/T ), where T represents the crosslinker

oscillation period, and is set to 24 hours commensurate with the 24-hr rhythm of the Kai

clock. The probability amplitude p0 is a phenomenological parameter and we determine

its value from the fluorescence polarization data for pS KaiC. We fit an exponential

Figure 1.3: The plotted fluorescence polarization data for the experimental pS case,
which corresponds to 80% of the KaiB proteins being biotinylated. An exponential func-
tion has been plotted alongside the pS data to determine an appropriate probability
coefficient and timescale.

function y(t) = yss+(y0−yss)e
−t/τF to this data, where y0 and yss denote the fluorescence

polarization value at the onset of the experiment and at the time when the system has

reached a steady state, respectively (see Figure 1.3). We measure τF ≈ 4 × 104s from

this fit, which we obtain the corresponding probability p0 ≈ 1 − e−τ/τF ≈ τ/τF . Here,

τ = 2.5s is the timescale used to non-dimensionalize the simulation and is set to the time

for a colloid to diffuse across its own diameter in water. In cases where the particles

can rhythmically unlink, we implement a detachment probability, pd = pn0 sin
2(πt/T ),

where n is the number of bonds (KaiABC crosslinkers) connecting the particle pair under
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consideration. At the beginning of each simulation, the system has a maximum probability

of attachment and a minimum probability of detachment to simulate the KaiABC reaction

beginning in a phase corresponding to the KaiB-KaiC complex formation.

The translational motion of the ith colloidal particle is governed by the overdamped

Langevin equation:
dri

dt
=

D

KbT

∑
j

(FLJ,ij + Fc,ij) +
√
2Dη, (1.1)

where kB is the Boltzmann constant, temperature T is set to room temperature, D is the

colloid diffusion coefficient, and η represents Gaussian noise with a mean of zero and a

unit variance. The interparticle interaction force consists of two contributions. The first

contribution comes from the hard-sphere interaction between particles, modeled by the

repulsive part of the 12-6 Lennard-Jones potential,

VLJ = 4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (1.2)

where ϵ is the interaction strength. We non-dimensionalize equations by scaling distances

by the particle diameter σ, times be the diffusion timescale τ = σ2/D, and energies by

kBT . We run the simulations for 69120τ , corresponding to 48 hrs of experimental time,

and show averages over 5 runs in the results presented in this chapter.

1.2.2 Simulation Parameters

Simulation parameters and their values used in the model and simulations. Numerical

estimates of all parameters are based on experimental values as described in the Source

column.
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Simulation Parameters Value Source

2D colloid packing fraction 16% Area fraction of pixels above

threshold in binarized images of

pT colloids

Simulation unit lengthscale, σ 1 µm Colloid particle diameter

Simulation unit timescale, τ 2.5 s Time for colloid to diffuse its own

diameter in water, τ = σ2/D

Crosslinker oscillation period, T 34560τ ∼24hrs, set to match KaiABC pe-

riod

Brownian dynamics timestep, dt 0.001τ Ensures numerical stability

Characteristic timescale of KaiB-

KaiC interaction, τF

4 x 104 s Obtained by fitting experimental

FP data for pS to an exponential

Probability of colloid crosslink-

ing, p0

6e−5 p0 ≈ 1− e−τ/τF ≈ τ/τF

Equilibrium distance between

centers of crosslinked colloids, r0

1.01σ Sum of colloid diameter and ∼10

nm size of KaiBC complex

Spring constant of crosslinks, K 9kBT/σ Phenomenological estimate

1.2.3 Measured Quantities

Spatial Image Autocorrelation

We perform the same SIA algorithms used to analyze experimental images on system

configuration images from simulations generated using MATLAB at time points corre-

sponding to experimental time points 1, 7, 14, 21, and 28 hrs. Prior to SIA analysis, the

images are converted to binary images with colloids being filled with dark gray circles and

the empty space being white, similar to experimental binarized images. To determine the

average g(r) and ξ for each time point, we analyze images for 5 consecutive time points

centered on the time of interest, consistent with experiments. The g(r) and ξ values
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shown are averages of the values determined from the 5 different images with error bars

representing standard error.

Colloid Connectivity Number

We measure the Colloid Connectivity Number (CCN) as a way of determining how con-

nected our colloidal system was over time. This was done by counting the number of

connections each colloid had and then finding the sum of the number of connections.

That sum is then averaged by the system size.

1.3 Results and Discussion

To qualitatively characterize the crosslinking kinetics of the KaiABC complex that pro-

duce the colloidal clustor formation, microscopic images of the systems are sampled at 9

different timepoints over the course of 28 hours. Then, the stack of images are overlayed

temporally, with a colorscale indicating change in time as each color goes from dark to

light, as seen in Figure 1.4. In Figure 1.4(C), colloid sedimentation and clustering is

evident in the pS-system, with an emergent structure appearing with the lighter colors

shown in Figure 1.4(A), which is emphasized in the zoomed-in inset on the upper right

of the color-coded image. By comparison, the experimental pT case has little to no clus-

ter formation in the system in Figure 1.4(B). The zoomed-in insets further demonstrate

the lack of colloid clustering and connectivity for the KaiC complex with no biotinylated

KaiB.

Next, we produce colorized temporal projections of simulation snapshots for colloids

with permanent crosslinking in Figure 1.4)(C), which align the experimental pS-system

and colloids with no crosslinking (shown in Figure 1.4)(D)), which relates to the experi-

mental pT control case. There are qualitative similarities between each corresponding set

of colorized images. The time frames of the simulations used in the projections are the

same as the ones in experiments, with colorscales showing change in time from dark to
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Figure 1.4: Colorized temporal projections of time-lapsed snapshots for the experiments
and simulations. These snapshots were captured over a period of 28 hours, with corre-
sponding colorscales showing change in time from dark to light. (A), The temporal overlay
for the experimental pS case, where 80% of the KaiB are biotinylated. (B), Temporal pro-
jections of the pT experiments, the control case where no KaiB were biotinylated. (C),
Temporal projections from the simulation case that corresponds to the experimental pS-
colloidal system. (D), Temporal overlays of the simulation snapshots for a system with
no crosslinking, which relates to the pT experimental system.

light. When comparing the temporal overlays of the simulation images vs their respec-

tive experimental overlays, we observe qualitative similarities between each set. The set

of projections for the control case with no crosslinking in Figure 1.4(B,D), in both the

simulations and experiment images, the colloids remain in a disordered state and there’s

minimal clustering occurring over the 28 hr period. For the permanent bonds case, we see

an emergent structure forming over time in simulation temporal overlays, which matches

what is seen in the corresponding pS-experimental projections.

The colloid clusters in Figure 1.4(C) from the model system are larger than the experi-

mentally observed clusters. This is expected because the model colloidal network can only

grow in the 2D plane since the model is in 2D. The experiments are in 3D and based on

the pixel intensities and z-stacks the experimentalists looked at, the experimental clusters
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likely extend perpendicular to the 2D plane [11].

Figure 1.5: Simulated results that correspond to the experimental systems. (A), Col-
orized temporal projections of simulation configurations that represent the monovalent
case and the 2- and 3- bond valency case with oscillatory crosslinking dynamics. (B),
Colloid Connectivity Number (CCN) for all 3 valency cases plotted over time.

Next, we analyze the simulation case with cyclic crosslinking kinetics. In Figure 1.5(A),

are the temporal overlay images of the colloid time-lapses for 3 subsets of simulations. The

top image colored in gray, is a monovalent case where a colloid connection is equivalent

to a single crosslink or protein complex. From this temporal projection in 1.5(A), we

observe little to no cluster formation in the system. When measuring the CCN over time,

we observe oscillatory behavior in the connectivity curve, with peaks occurring at time

points that correspond to the peaks in the phosphorylation of KaiC, when the probability

of attachment is at its highest. The heights of the peaks are at a CCN value of 1 and

then 2 and these values are low, emphasizing that there’s minimal clustering and a lack

of a network formation in the colloid system present; this agrees with the qualitative

observation from the temporal overlay.

In the experiments, there is a high concentration of KaiABC proteins and the size of

the complexes are 2 orders of magnitude smaller than the surface area of a colloid [11].

Thus, it is highly likely that multiple KaiABC protein complexes constitute a single con-

nection between 2 colloids. To incorporate this into our model, we explore cases where
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colloid connections consist of either 2 or 3 crosslinkers/complexes. When we measure

the CCN for the 2- and 3-bond valency cases, the CCN increases sharply at at the be-

ginning, which is similar to the permanent bond case (represented by the cyan curve in

Figure 1.5(B)). The CCN does not experience a significant decrease during the dissembly

phase, when KaiABC proteins start to dissociate and the probability of detachment is

higher. Instead, only a small number of connections are lost during this phase and the

system still maintains a well-connected structure and approaches saturating connectivity

levels during the second phosphorylation period. The multi-valent cases of 2- and 3-bond

are qualitatively comparable while the monovalent case indicates that dissolution of the

colloidal network will not occur unless a majority of the crosslinker bonds detach.

Figure 1.6: Simulations and experiments are in qualitative agreement for the 55% bi-
otinylated KaiB system. (A), Colorized temporal overlay of colloid images over the course
of a 28 hr period, showing that clusters are forming over time. (B), Colorized temporal
overlays of simulation configurations for the monovalent case and the 2- and 3- bond va-
lency case with oscillatory crosslinking dynamics.

When we compare the temporal overlays of the 2- or 3- bond valency cases against the

corresponding 55% experimental KaiB case, we observe qualitative similarities between

the simulations and experiments. Particularly in Figure 1.6(A), the zoomed-in inset for

the experimental system shows an emergent structure forming over time as indicated by

the lighter colors, which corresponds to the colloid cluster formation in the 2- or 3- bond

valency overlay images in Figure 1.6(B).
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Figure 1.7: The time-course of colloid clustering is mediated by the KaiC phospho-
rylation state and the bonding valency of the KaiABC complex. (A), Spatial Image
Autocorrelation g(r) curves for the pS case (in light cyan), the 55% biotinylated KaiB
experiment (in magenta shades), and the pT case (in grey/yellow). Five different times
were sampled for the g(r) curves within the 28 hour period. (B), The degree of relative
clustering in the experiments was quantified by the correlation lengths (ξ, open squares),
full width 1% (half-filled triangle), and the median cluster size (filled circle).

To further examine the structural properties of the systems, we utilize the spatial

image autocorrelation (SIA), also known as g(r). This metric is often used by the ex-

perimentalists on our team and provides clearer insight on the structural order or spatial

arrangement of the colloids. The SIA measures the correlation between pixels in an image

separated by a radial distance r, which we have set to be units of colloid diameters (1µm).

We measure the SIA at a series of 5 different time-points in both experiments (Figure

1.7(A)) and simulations (Figure 1.7(C)) to understand the degree of spatial order of the

colloids over time. From the g(r) trajectories, we also extract a correlation length from
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each of the systems. The correlation length tells us the spread size of the colloids and this

length is obtained by finding the point at where each g(r) curve hits the x-axis in Figure

1.7(A) and (C)

The yellow/gray curves in Figure 1.7(A) correspond to the control/no bonds pT-

experimental system and we see that the simulation cases with no bonds and monovalent

bonds are qualitatively similar; both simulation cases and the pT-experimental case show

no time-dependence or cluster formation as their g(r) curves have a very fast decay rate.

The correlation lengths for the pT-system and monovalent simulation case, in Figure

1.7(B) and (D), respectively, remain at values of 1-2r, which also indicates minimal cluster

formation and that the systems remain in a disordered state over time.

For the permanent bonds case, in both the experiments and simulations, the g(r)

have the slowest rates of decay, which suggests a larger characteristic size of features in

the images. In Figure 1.7(A), the pS-experimental autocorrelation curves hit the x-axis

around 5r, which signifies a cluster size of 5 colloids. For the corresponding simulation

curves (Figure 1.7(C)), the characteristic spread size of the colloids is closer to 12r. The

characteristic correlation length from the simulations is comparatively larger than the

corresponding pS-experimental correlation lengths. A reason for this difference is because

the simulations are in 2D, which restricts the colloid clusters to grow only in the 2D plane.

Because the images are only projections of the 2D plane for experiments, it is likely that

the colloid structures in experiments are growing perpendicular to the 2D plane [11].

The correlation length trends in Figures 1.7(B) and (D) show that the cluster size of

the colloids steadily grows over time which further suggests emergent structure formation

occurring over time.

For the multivalent cases, the g(r) lie in between the two extreme cases of no bonds

and permanent bonds. The g(r) curves show similar qualitative trends to the oscillatory,

55% biotinylated KaiB case. The autocorrelation curves show that the decay rate is

faster than that for the permanent bonds case but are still significantly slower than the

no bonds/monovalent cases. We examine the correlation lengths of the multivalent cases
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and the simulation trajectories of the increasing correlation length over time aligns with

the degree of clustering observed in the experiments.

1.4 Conclusion

Engineering classes of smart active materials that can autonomously regulate their mor-

phology and wield user-defined dynamic properties remains a challenge in soft active

matter research. Our contribution to this research question was to engineer KaiABC cir-

cadian oscillators as functional crosslinkers and couple them to a system of colloid beads.

We demonstrate that we can develop a material system that can undergo timed self-

assembly and that the KaiABC oscillations are governed by the phosphorylation cycles of

KaiC. Using modeling to inform the mechanisms, we find that the valency of the KaiABC

crosslinkers tunes the structural properties of the system-sustained self-assembly can be

achieved with multivalent bonds while monovalent bonds leads to a disordered colloidal

system. Our work establishes the strategy of pairing biological clock proteins to synthetic

materials like colloids and suggests that these proteins can be utilized in a variety of other

materials like hydrogels, cytoskeletal composites, and granular materials [11]. From this,

our foundational system platform can aid in the development of technologies like nanofiber

sutures that dynamically respond to wound healing and soft robotics that can be applied

in applications like camouflage, drug delivery, biomimetic electronics [11, 13–15].

1.5 Future Works

We are currently exploring other strategies to engineer a system that can undergo distinct

phase transitions of network-like states, where colloids have high levels of connectivity,

to disordered states, where things are less connected. From the experimental side, this

involves exploring different crosslinker concentrations and different sizes of colloids. And

with the simulations, we are able to test out different systems that align well with the
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new experiments. Next steps also include having two types of crosslinking valencies in

the system: a fraction of the crosslinkers will have monovalent bond kinetics and the rest

will have multivalent bonds to see if this will generate colloidal systems that can oscillate

between the different states.



Chapter 2

Sustained Order-Disorder Transitions

of a Colloidal Network Crosslinked via

Rhythmic Crosslinkers

2.1 Background

Colloidal systems offer an attractive platform for constructing bottom-up minimal models

that can offer insights into the rational design of such materials, given colloidal suspension

and self-assembly have been studied extensively and are well understood[16, 17]. Most

studies of colloidal systems, however, investigate phase separations and transitions caused

by changes in colloidal density or by external actuation via changes in temperature, light,

and pressure [18–22], and the role of crosslinker-driven phenomena is less well studied

[23, 24]. Furthermore, although oscillatory dynamics have been studied in the context

of polymerization in soft and biomaterials [25–27], most active material prototypes and

models are unable to attain autonomous, reversible transitions between states at a level

consistent with living systems. For example, while some experiments and models of col-

loids do incorporate polymer attachments, the exceedingly small lifetimes (∼ milliseconds

to seconds) of these polymeric attachments do not allow for enough time to form large,

16
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well-connected, crosslinked networks, that can completely dissolve into an unconnected,

disordered state upon unlinking of the crosslinkers. As a result, these attachments do not

induce reversible transitions between distinct ordered and disordered states [28, 29] which

are a hallmark of living systems.

What are the principles underlying the rational design of a system that can repeat-

edly transition between states with distinct structural and material properties at reliable

user-defined periods, without the need of external actuators? To obtain insights into this

question, we construct and investigate a model system consisting of colloids that can be

connected via crosslinkers with oscillatory dynamics such that they can autonomously

cycle between states with distinct degree of order and material properties. The crosslink-

ers regulating these oscillatory dynamics in our computational model are inspired by

the bacterial clock proteins, KaiABC. These circadian oscillator proteins are found in

cyanobacteria S. elongatus and have demonstrated a steady, regular 24-hr rhythm in

vitro.[30] Here, we demonstrate the potential for effectively harnessing such rhythms to

drive transitions in material properties of model colloidal systems. Through our predictive

mathematical modeling of persistent order-disorder transitions in such systems of colloids

and rhythmic crosslinkers, we hope to inform experiments by predicting the time-evolving

collective properties as a function of crosslinker oscillation periods and colloidal packing

fractions. Our results will also provide insights into the mechanisms that lead to emergent

properties in these systems.

2.2 Model and Method

2.2.1 Mathematical Model

We simulate a model two-dimensional system consisting of colloidal particles and crosslink-

ers with oscillatory kinetics. The main ingredients and assumptions are as follows:

(1) The colloidal particles interact with each other via Lennard Jones (LJ) interaction
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potential VLJ [31], given by

VLJ = 4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (2.1)

where rij is the interparticle distance, which is the measured distance between the

centers of the two particles, σ is the particle diameter, and ϵ is the depth of the

potential well. To reduce the computational expense, for our model, the interparticle

distance rij is cut off at 2
1
6σ, which encodes the resulting force as a repulsive-only

force.

(2) When two particles are within a center-to-center distance r0 equal to the sum of

the particle diameter and the length of the crosslinker when it is neither stretched

nor compressed, they can become connected via this crosslinker with an attachment

probability Pa. The probability is dependent on the fraction of free crosslinkers pk

available to connect the particles and the time-period T of the crosslinkers as Pa =

pkp0 sin
2(πt/T ), where p0 is a phenomenological parameter corresponding to the

initial crosslinker concentration. We assume the crosslinker is dilute on the particle

surface; while there are multiple crosslinking attachment sites on each colloid, we

limit the number of crosslinks between any two particles to one.

(3) Once two particles are crosslinked, they stay attached for a given lifetime, unless

the bonds are stretched beyond a length of 3σ, leading to particles unlinking pre-

maturely. For simplicity, we associate the timescale of oscillations to also govern

the lifetime of the crosslinkers. This lifetime is drawn from a Gaussian Distribution

with a mean of T/2 and a standard deviation of T/8, where T is the crosslinker

oscillation period mentioned earlier. This ensures the particles remain attached for

a significant amount of time and avoids too many particles simultaneously attaching

or detaching.
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(4) The particle motion follows the overdamped Langevin equation:

dr
dt

=
D

kBTR

(FLJ + Fc) +
√
2Dη, (2.2)

where the interparticle interaction force consists of two components: a force FLJ

obtained from the Lennard Jones potential defined earlier, and an elastic force Fc

due to the stretching or compression of the crosslinker connecting the particles which

is modeled as a Hookean spring[32]. The latter is defined as Fc = −K(rij − r0),

where r0 is the crosslinker rest length and K is the spring coefficient. The constants

kB and TR represent the Boltzmann constant and room temperature, respectively.

The diffusive motion of the particles is described by the third term
√
2Dη, where D

is the diffusion coefficient and η represents Gaussian noise with zero mean and unit

variance.

We initialize the system with five hundred unlinked colloid particles randomly dis-

tributed in the simulation box. When two colloidal particles are crosslinked, the length

of the bond connecting them is the sum of the radii of the colloids and the length of the

biomimetic crosslinker between them; for colloids of radius 0.5µm, r0 is approximately

1.01µm, assuming a crosslinker length of 10nm which is the size of typical proteins. We

set the value of the spring constant of this bond to be 0.036pN/µm such that the forces

arising from the LJ interactions and spring forces are of comparable magnitude. We solve

equation 2.2 for the particle positions, using first-order Euler integration. Periodic bound-

ary conditions are used to avoid the computational expense of a large number of particles

or a large simulation box size.[33]. The ratio of the number of colloids to crosslinkers is set

to 1 : 4 to allow for a considerable amount of crosslinking of the colloids while also ensur-

ing the system is not over-saturated with crosslinkers and can revert back to an unlinked,

disordered state. The attachment probability Pa is calculated at every time step across

all the particles within r0 of each other, and the phenomenological parameter p0 is set to

0.005 to yield clear transitions between crosslinked and unlinked states, as illustrated in
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Figure 2.1: A model schematic of the colloidal system with a packing fraction of 30%
and T = 18000. (a) The colloids are initially unlinked and diffusing in the simulation
box. (b) When the system reaches an ordered state, the colloids are crosslinked via the
oscillating crosslinkers

Fig. 2.1. The diffusion constant is set to 0.483µm2/s to be within experimentally mean-

ingful range. All of the lengths are scaled by the diameter of a colloid, which is σ = 1µm,

all times by the time τD taken by a colloid to freely diffuse across its diameter, which is

2.07 seconds in our simulations, and energies by KBTR ∼ 4pNnm, which is the energy

associated with thermal fluctuations at room temperature. Coming to the period of os-

cillation T of the crosslinkers, while the duration of a 24-hr circadian rhythm of KaiABC

oscillators is equivalent to 43200τD, biological oscillators in nature have a wide range of

oscillation periods, including values much smaller than that of the KaiABC proteins [34].

To decrease the computational expense, we explore shorter crosslinker oscillation peri-

ods, ranging from T=18 to T=18000. The main variables and parameters in this model

are presented in the following tables below and chosen to mimic a system of 1µm beads

suspended in water with 2D area fractions of 10− 30%.

2.2.2 Varied Quantities

The two parameters varied in our simulations are the crosslinker oscillation period, and

the colloidal packing fraction i.e., the fraction of area occupied by the particles in the

simulation box.

• Crosslinker oscillation period: We investigate a model system with a colloid packing
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fraction fixed at 30% and 4 crosslinker oscillation periods T = 18, 180, 1800, and

18000, which are equivalent to 0.01, 0.1, 1, and 10 hours, respectively. The colloid

concentration is kept intentionally dilute to allow the crosslinker proteins to induce

system-wide oscillations between ordered and disordered states; too high of a packing

fraction would automatically lead to an ordered state being formed, regardless of

crosslinker dynamics.

• Packing fraction of colloidal particles: We keep the crosslinker oscillation period

fixed at 1800 while varying the colloid packing fraction from 10− 30%.

2.2.3 Measured Quantities

To determine transitions between liquid-like, disordered states and gel-like, ordered states,

we investigate and quantitatively characterize the degree of order of our model system

by calculating the connectivity, the ensemble average squared displacement, the mean

squared displacement, the radial distribution function, and the bond length distribution

as described below.

• The connectivity is calculated by finding the number of neighbors each colloidal

particle is crosslinked to and averaging over all the particles. This average is cal-

culated at every time step and plotted over time. The connectivity informs us of

how network-like or connected our colloidal system is throughout the simulation.

The difference in the values of the connectivity at its largest and smallest provides a

measure of the amplitude of oscillations in connectivity where the amplitude equals

one-half of this difference. Large, pronounced amplitudes demonstrate that the

system is transitioning between states with significantly different degree of order.

• The ensemble average squared displacement (EASD) measures the network move-

ment as a function of time. The equation for the ensemble average squared dis-

placement is
〈
[r(t0 + t)− r(t0)]

2 〉 where r represents the particle position and t
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represents the time-period of interest. In our model, t0 is set to t = 0 to demon-

strate how the system changes over real time, starting from the beginning of the

simulation. At each time t, we sum the square of the displacements of each particle

and then average over the total number of particles.

• The mean squared displacement (MSD) is a sliding average given by
〈
[r(t+ τ)− r(t)]2

〉
and describes the motion of particles over certain lag times. The particle position

at time t is denoted by r(t) and the lag time is given by τ . From this measurement,

we measure particle motion over small and large time intervals. Note that there are

two main differences between the MSD and the EASD. The first is that the MSD

tells us about the nature of the mobility of the systems as a function of lag time,

while the EASD tells us this as a function of time. So the change in mobility as a

result of the order disorder transitions will be more clearly seen in the EASD than

the MSD. The second difference is that the MSD is averaged over both particles and

time-origins, while the EASD is only averaged over particles.

• The radial distribution function (RDF) describes the probability of finding a par-

ticle within a shell of width dr at a distance rn from a reference particle n. It is

obtained by calculating the distance between all particle pairs and binning them

into a histogram. The histogram is normalized with respect to a system with no

correlations between particle positions, i.e., where the particles do not interact with

each other. From this metric, we gain a better understanding of how ordered our

system is. Sharp regular peaks in the plotted results indicate a ordered, network-like

state, while fewer, less distinct peaks mean the system is less-ordered.

• The distribution of the lengths of the bonds between particles in the ordered states

provides insights into network and cluster properties. A sharply peaked distribu-

tion suggests a well-connected network with a high degree of order, while a broad

distribution indicates the presence of smaller clusters.

We also examine the general particle positions and movement and generate system
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Figure 2.2: Four systems with different crosslinker oscillation periods ranging from T =
18 to 18000 with a packing fraction of 30% are simulated. (a) The levels of connectivity
are plotted over time for each of the oscillation periods, measuring the average number
of bonds each colloid is connected to over 4 cycles. (b) The EASD curves are plotted,
measuring the network movement beginning at t = 0. (c) The MSD for the systems,
with the free diffusion slope. (d) and (e) The RDF curves are sampled at the ordered
and disordered states, respectively. (f) The bond length distributions are sampled at the
ordered state.

configurations that illustrate the behavior of the network and provide insight into the

structure of the network and clustering for different parameters.

2.3 Results and Discussion

2.3.1 Impact of varying crosslinker oscillation period

First, we discuss the time evolution of the structure and dynamics of the system as

we vary the crosslinker oscillation period for a fixed colloid packing fraction of 30%. Our

measurements of system-wide connectivity, ensemble average squared displacement, mean

squared displacement, radial distribution function, and bond length distribution, shown in

Fig. 2.2, demonstrate that the system repeatedly transitions between a highly crosslinked,

ordered state, and an unlinked, disordered state.
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We observe clear oscillations in the average connectivity of the colloidal system, and

these oscillations between states of high connectivity and low connectivity are more strik-

ing as the oscillation period T is increased as shown in Fig. 2.2(a). For example, when

T = 18, the connectivity oscillates between 0.5 to 2 indicating that the system stays in a

disordered, fluid-like state, and the colloids do not form any noticeable spanning networks.

Because the smaller oscillation periods yield shorter bond lifetimes, they effectively reduce

the time the system takes to attain peak connectivity. Increasing the crosslinker period

to T = 18000 yields a peak connectivity of ∼ 6, which corresponds to the largest coor-

dination number for a two-dimensional network in equilibrium, indicating a very ordered

state, and a trough of ∼ 2 indicating a disordered state. Intermediate values of T lead to

intermediate values of the peak connectivity and the amplitude of oscillation. We also see

that for T = 180 the system spends comparable times in the ordered and ordered states,

and as we increase T , the residence time in the ordered state increases while that in the

disordered state decreases. These observations can be attributed to the direct dependence

of the lifetime of individual crosslinkers on the crosslinker oscillation period T , and to the

separation between T and the diffusion time of the colloids. As T increases, both these

quantities increase allowing the system to form states with larger and larger connectivi-

ties until a maximum value of 6 is reached, and these connected, ordered states also stay

intact for longer times before the crosslinkers come apart and the colloids are unlinked.

Since the residence times in an ordered and a disordered state for a given T should add

up to give half the oscillation period, as the former increases, the latter decreases. We

also observe that the residual order at the disordered states increases in proportion to the

oscillation period. This is a consequence of the residence time imbalance. Larger oscilla-

tion periods produce well-ordered states with high levels of connectivity, and since those

systems spend severely reduced times in the disordered state, they do not have enough

time to dissolve back to a completely unconnected state before the next oscillation cycle

starts and the crosslinkers begin to connect particles together.

When T = 1800, the fixed lifetime lasts long enough for a spanning cluster formation
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Figure 2.3: System configurations sampled over (a) the disordered states and (b) the
ordered states.

to occur and although the relaxation time for the colloids is still reduced, the system

connectivity drops from nearly 5.5 to 1.75 bonds per particle. For the T = 18000 case,

the fixed lifetime of the ordered state is much longer, as demonstrated by the flatter

peaks in Fig. 2.2(a). While the difference in ordered-disordered state is about 4 bonds

per particle, the relaxation intervals become even shorter, implying that the growing

separation between the relaxation timescale and oscillation timescale leads to a greater

imbalance of residence times in the ordered and disordered states.

We show the ensemble average squared displacement(EASD) as a function of time in

Fig. 2.2(b). For a given time interval, the slope of the EASD curves indicates the mobility

of the system. For the system with the shortest period of T = 18, the connectivity remains

small even in the ordered state, and the difference in the slopes during the “ordered” and

“disordered” intervals is small. The EASD curves for the systems with the three larger

T values, however, show distinct oscillations in mobility, with the plateaus indicating

network formation. For T = 1800 and 18000, the slopes of the EASD curves stay ∼ 0
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for longer times than that of T = 180, which is expected since the smaller period of

180 corresponds to shorter bond lifetimes, leading to particles having the opportunity to

unlink and move about more frequently. The insets in Fig. 2.2(b) show the same data but

are plotted in linear scale and with the time scaled by the crosslinker oscillation period.

This illustrates the patterns of mobility in the system as each oscillation period occurs;

here, a stair-stepping pattern can be clearly seen for all the above cases. When the slopes

become approximately zero, this signifies the systems’ movement slowing down as they

cycle up to an ordered state. Then, as the slopes begin to increase, the systems dissolve

back to a disordered state.

The MSD curves in Fig. 2.2(c) show that the smallest oscillation period T = 18 yields

the highest rate of diffusive motion. This is expected as shorter crosslinker periods produce

correspondingly shorter bond lifetimes, so the system is weakly connected throughout the

simulation. As T increases, the data shows that the particles are diffusing significantly

slower. Because the bond lifetimes are related to the oscillation period, more particles

remain connected for longer time intervals and cannot diffuse as freely, consequently

resulting in lower rates of diffusive motion. Across all four systems, the particle motion,

while still largely diffusive, has a noticeable departure from free diffusion, particularly as

the crosslinker time-period increases.

To gain more insight into the translational order in the system in the ordered and

disordered states, we calculate the RDF for each of the systems. In both Fig. 2.2(d) and

(e), as the oscillation period increases, the number of peaks increases, signifying the longer

oscillation periods yield systems that achieve distinctly well-ordered states, confirming the

observations made from the connectivity curves. In the RDF curves, there is a pronounced

difference between the ordered and disordered states for T = 1800 and 18000. The number

of peaks in the curves and the heights and sharpness of those peaks increase in comparison

to those in Fig. 2.2(e). For the two shorter oscillation periods T = 18 and 180, the RDF

curves are nearly identical in terms of the peak heights and noise, which implies that the

degree of order in the system does not change much between the ordered and disordered
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Figure 2.4: Three systems with different packing fractions ranging from 10% to 30% and
a fixed oscillation period of 1800 are simulated. (a) Connectivity is plotted over time for
3 packing fractions with the oscillation period T = 1800. (b) The EASD curves, starting
from the beginning of the simulation. (c) The MSD curves, with the free diffusion curve
plotted alongside. The RDF is sampled at (d) the ordered state, located at the peaks
of the connectivity curve, and (e) the disordered state, occurring at the troughs of the
connectivity results. (f) The bond length distribution corresponds to the particle bonds
that are formed in the ordered state.

states. The colloids do not have the chance to form a large, well-connected network, and

stay in a weakly connected state, leading to a subtler distinction between the two states.

Next, we study the bond length distributions in the ordered states to understand the

connectivity properties of the clusters (see Fig. 2.2(f)). For larger T , the bond length

distributions are narrower. The systems with longer oscillation periods form large single

spanning networks in the ordered states, subsequently leading to most particles with

∼ 5−6 nearest neighbors. Because a majority of the particles have a similar high nearest

neighbor count, the minimum energy configuration of the system will correspond to a

narrow distribution of bonds lengths which is peaked very close to the crosslinker rest

length. As the oscillation periods decrease, the bond length distribution becomes wider.

This is due to the formation of smaller and less connected clusters at smaller T . Since

the colloids do not form one large single spanning cluster, some of the particles may have
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close to 6 nearest neighbors or connections, while particles belonging to other clusters

may have significantly fewer nearest neighbors.

In Fig. 2.3, we show particle configurations at the disordered and ordered states of each

of the systems. For the shortest oscillation period T = 18, the system only transitions

between disordered to slightly connected states. In the ordered state, the system has

slightly larger connectivity, but the particles do not form distinct clusters. However, as

we increase T to 180 and 1800, the system begins to oscillate between disordered states

with minimal connectivity to ordered states with larger cluster formations. At the longest

period T = 18000, the system can repeatedly form a large, strongly connected network

and transition back to a disordered, weakly connected network.

2.3.2 Impact of varying colloidal packing fraction

We next examine the effect of varying the packing fraction. We explore systems with

an oscillation period of T = 1800 and simulate 3 cases with a packing fraction range of

10−30%. We keep the oscillation period constant at 1800 so as to allow clearer transitions

between ordered and disordered states compared to T = 18 and 180 and to reduce the gap

between residence times in these states compared to that obtained with T = 18000. The

system is again kept dilute to allow oscillations based on the rhythm of the crosslinkers

rather than spontaneous formation of a large connected network, which happens in a

dense system.

Higher packing fractions generate systems with more particles within a given distance

corresponding to the crosslinker rest length, thereby leading to a larger level of connectiv-

ity on average. All three systems in Fig. 2.4(a) can transition between states with ∼ 5.5

to 1 bonds per particle, which confirms the colloidal networks are able to oscillate between

well-connected to very weakly connected states. Across the packing fractions, the systems

still produce reduced residence times in the disordered states and comparatively larger

durations in the ordered states. The packing fraction does not affect this imbalance of

residence times. The results from the ensemble averaging in Fig. 2.4(b) show that the
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EASD steadily increases with time at the beginning of the simulation but after t = 180,

there is decreased mobility in the network as the slopes of the EASD curves become nearly

zero, suggesting that particles become locked into a network or cluster relatively early in

the first cycle. A stair-stepping phenomenon is present in all 3 cases, emphasizing the

network movement increasing and decreasing over each of the oscillation cycles as the

system transitions between ordered to disordered states. The MSD curves show that all

three systems are diffusive, but the diffusivity decreases as the packing fraction increases,

which is seen clearly when compared against free diffusion in Fig. 2.4(c). Systems with

the two higher packing fractions have smaller diffusivities; with larger packing fractions,

the systems will be able to form larger networks that can eventually span the system (see

system with pf=0.3), which leads to more particles having restricted mobility.

We next examine the RDF for the systems at low and high periods of connectivity.

There is a considerable difference in the degree of order between the states. As a general

trend, as the packing fraction increases, the height of peaks in the RDF curves decreases

as a result of a larger normalization factor in the denominator. This effect is seen in

both the ordered and disordered states (Fig. 2.4(d) and (e)). For the higher packing

fractions, large spanning clusters are formed while for lower packing fractions, we observe

several smaller clusters, which is why the RDF curve for the 10% packing fraction case has

the highest peak at an interparticle distance of 1. In the disordered state (Fig. 2.4(e)),

the RDF curves for all three systems have about two discernible peaks and a similar

amount of noise, indicating the systems have a low degree of system order during this

state. However, in the ordered state, the RDF curves demonstrate the systems achieve a

significant increase in the level of order as the number of peaks increases for each of the

cases and the sharpness of those peaks is more apparent. The bond length distribution

for the ordered states of the system is shown in Fig. 2.2(f). The highest packing fraction

of 30% yields a well-connected state with a narrow bond length distribution, and the two

systems with the smaller packing fractions produce several smaller clusters that are less

connected and lead to a wider distribution of bond lengths.
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Figure 2.5: System configurations sampled over (a) the disordered states and (b) the
ordered states.

Sample configurations of each system at low and high network connectivity are gener-

ated for all 3 systems in Fig. 2.5. The configurations illustrate that the systems tend to

oscillate between weakly connected structures with minimal cluster formation and tightly

connected networks with bigger clusters. As the packing fraction is increased, the clusters

become larger and the particles experience more instances of crosslinking.

2.3.3 Phase Diagrams

Next we show the results for the residence times in the ordered and disordered states as

a function of the oscillation time-period (T ) and colloid packing fraction. In Fig. 2.6,

the ratio of peak-to-trough durations (t/T ) are plotted on a bar chart. From this, the

results suggest there is a significant imbalance in residence times for systems with larger
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crosslinker periods. We see that across all three packing fractions, the systems with

T = 18000 spend disproportionately long times in the ordered states and markedly brief

times in the disordered states. The system with a packing fraction of 10% and a period

Figure 2.6: Bar chart describing the ratio of peak-to-trough residence times.

of 18000 has the highest ratio; that is because the system is capable of cycling down to

an acutely disordered state that is only maintained for a very brief amount of time. As

we decrease T , the residence times between the two intervals become smaller as the gap

between the separation of the relaxation timescale and crosslinker oscillation timescale is

reduced. The smallest period of 18 leads to systems having comparable times in the peak

and trough intervals, but the system did not reach a distinctly well-ordered state and only

achieves a disordered state that is weakly connected, with no cluster formation.

To systematically illustrate how the colloidal packing fraction and crosslinker oscilla-

tion period T influence the degree of connectivity in the ordered and disordered states, we

show how twice the amplitude of the oscillations in the measured connectivity varies with

these quantities in Fig. 2.7(a)-(c). Figure 2.7(a) shows that T controls the amplitudes.

Larger values of T produce systems with pronounced differences in the connectivity of

the ordered and disordered states, with the packing fractions having very little effect.

The phase diagram shows that the oscillation period of T = 18 produces the smallest
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amplitude while the largest oscillation period T = 18000 yields the largest amplitude of

about 2.75 bonds per particle.

Figure 2.7: Phase diagrams demonstrating the impact of the packing fraction and
crosslinker oscillation period. (a) Phase diagram illustrating twice the amplitude of con-
nectivity oscillations between disordered and ordered states. (b) Phase diagram charac-
terizing the duration of the ordered states. (c) Phase diagram emphasizing the residence
times of the relaxed states at the trough.

We next show how the residence times in the ordered states are influenced by the

packing fraction and T (see Fig. 2.7(b)). This is done by measuring the widths of the peaks

from the connectivity results, where time is further scaled by T . For the smaller crosslinker

periods T = 18 and 180, all three systems have similar durations spent in the ordered state

and the packing fraction has no impact on the lengths of those intervals. As T is increased

to 1800 and 18000, the systems with the larger packing fractions have longer residence

times in the ordered states, with the packing fraction of 30% and T = 18000 producing the

largest residence time. For the smallest packing fraction of 10%, the residence times in the

ordered states are shortest across all four periods, due to particles being farther apart and

having to diffuse more to interact and form bonds. Similar to the patterns of amplitude

heights in Fig. 2.7(c), the driving factor behind the residence times of the disordered

states is the crosslinker period length rather than the packing fraction; we observe that

the time spent in the disordered state decreases as the crosslinker time-period is increased

and vice-versa.
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2.4 Conclusion

We constructed and investigated a colloidal system that can repeatedly undergo order-

disorder transitions when rhythmically crosslinked. We explored systems with colloidal

packing fractions ranging from 10% to 30% and crosslinker oscillation periods of 18 to

18000. We observed sustained oscillations between distinct states with substantially dif-

ferent degrees of connectivity. Larger oscillation periods lead to ordered states with larger

connectivity and residence times, but also greater imbalances in residence times between

the ordered and disordered states. This is presumably due to several orders of magnitude

of separation between the diffusion time of the colloids and the oscillation time-period of

the crosslinkers. When these timescales are comparable in magnitude (for example, when

T = 18), the system spends comparable times in the ordered and disordered states but

the difference in the degree of order between these two states is very small.

Our results demonstrate that we can achieve distinct states of this colloidal system with

pronounced differences in order and material properties when the crosslinker kinetics are

governed by the oscillation period. Furthermore, large residence times in the ordered state

can be obtained when the crosslinker lifetime depends directly on the oscillation period

and this oscillation period is much larger than the colloidal diffusion time. These findings

provide insights into the rational design of soft materials that can rhythmically transition

between states with different material properties on a pre-determined schedule. Bottom-

up construction of such materials, both in experiments as well as in-silico, will provide

an understanding of the general principles and mechanisms underlying how time-varying

environments and time-keeping machineries shape the dynamic collective properties of

living systems [2–4] with potential for application in soft robotics [35]. We published our

results from this model in the Soft Matter journal in March 2022 [36].



Chapter 3

Self-organization of Eukaryotic and

Prokaryotic Biopolymers in-vitro

Driven by Depletants and Attractive

Intermediaries: I. Actin and PEG, and

II. DNA and DPS.

3.1 Actin and PEG

3.1.1 Background

Biological systems have the unique ability to self-assemble and respond to external me-

chanical stimuli. The mechanical integrity and mechanical response of cells is largely due

to the cytoskeleton, a polymeric scaffolding which gives structure and shape to living cells

[37]. The cytoskeletal network is made up biopolymers, crosslinkers, and motor proteins

[38]. The biopolymer actin is a major component of the cytoskeleton. These filaments are

semi-flexible, i.e. it costs energy to both stretch and bend these filaments. They can form

34
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Figure 3.1: Schematic of depletion interactions of larger colloid particles immersed in a
solute of smaller, non-adsorbing particles.

large spanning networks or bundles. Previous studies have shown formation of networks

and bundles of actin filaments when connected via crosslinking proteins [39–42]. This

involves the direct, physical binding of proteins such as myosin, fascin, α-actinin, and

filamin to actin filaments to be the driving mechanism for complex networks to form [43–

46]. However, protein-binding mechanisms are not the only way to induce or manipulate

self-assembly of networks and bundles.

Depletion forces are a recent focus for self-assembly of smart active materials [47–49].

Depletion interactions occur when larger-sized particles, such as colloids, are in a solution

surrounded by a greater ratio of smaller particles called depletants. The free energy of

the larger colloids reaches a minimized energy state, when they are in relatively close

proximity of one another. There is a region around each colloid that the smaller particles

are excluded from occupying due to steric repulsion. When the colloids get sufficiently

close these excluded volume regions can overlap, leading to a decrease in the net volume

that the smaller particles are excluded from accessing. The result is an effective attractive

interaction between the colloids, while the excluded smaller particles end up surrounding

the colloids but cannot break through the depletion zone due to excluded volume, keeping

the colloids close together, as visualized in Fig. 3.1. So the smaller particles act as the

depletant, keeping the large colloids in a cluster. The concentration and size of the smaller

particles can effectively tune the effects of the depletion interactions. Similar depletion

interactions can be recapitulated in actin systems with appropriate crowding agents or
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depletants as shown in Fig. 3.2. In the first panel of Fig. 3.2, the actin filaments

Figure 3.2: Model schematic of actin and PEG polymers. Actin filaments experience
depletion interactions in a crowding environment with PEG proteins as the depletant.
Initially, the actin filaments are individual and in random positions. Then as the actin
begin to cluster together, due to the repulsive actin-PEG interactions and attractive PEG-
PEG interactions, they gradually reach a more bundled state.

and smaller particles are in a random, disordered state, with no visible bundling and the

solution of smaller particles is also assumed to be evenly well-mixed in the box. Due to the

depletion interactions described above, the actin filaments experience effective attractive

interactions with one another and transition from a phase made of individual filaments

to one that is more network-like (see the third panel of Fig. 3.2) and eventually, if the

depletion interaction forces are large enough, they lead to a network of actin bundles. In

our simulations, we do not explicitly introduce depletion interactions. We use a modified

Lennard Jones potential to model interactions which is discussed further in section 3.1.3.

The impact of depletion interactions is an emergent behavior of our model.

Polyethylene glycol (PEG) is a well-known polymer with a sufficiently small radius of

gyration that it can replicate a crowding environment and cause depletion interactions in

solutions with colloids or filamentous proteins, like actin and microtubules [47, 50, 51].

Rather than the PEG polymers directly binding to actin, the natural crowding behavior

of the PEG can help an actin system transition from individual filaments to a strongly

bundled system [47]. Previous studies have shown that varying the concentration ratio of

actin to PEG and simply increasing the PEG concentration by itself will yield systems of

actin with corresponding degrees of bundling [47, 50–52]. However, understanding how

to tune the actin system transitions based on the molecular characteristics of the PEG
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polymers is still unclear [47]. Experimentalists are exploring how varying the concentra-

tion and molecular weight drives the depletion-induced bundling of actin filaments [47].

In tandem, we construct and simulate a theoretical model of actin filaments immersed in

a PEG solution to make predictions and help guide the experimental study design.

3.1.2 Scaling Arguments: Fixed Number Density vs. Fixed Mass

Density

Over the past decades, studies have been done to explore how increasing the concen-

tration of depletants and depletant size leads to increased depletion interaction strength

[48, 53–55]. However its been observed that cells tend to keep a fixed total protein den-

sity throughout their internal cycle [56]. Thus, examining systems with a fixed mass

density and number density is important to understanding the dynamic properties of liv-

ing systems. We want to understand how fixing the mass density or number density tunes

depletion interaction strength. In particular, the research question of fixed mass den-

sity has not been thoroughly explored as most experimental in-vitro studies of depletion

interactions keep volume fractions fixed instead.

Colloid Depletion

To determine how the fixed number density of PEG affects the depletion interaction

strengths, we explore the Asakura-Oosawa (AO) model [57] for the fixed number density

case. We consider a system where we have 2 colloid particles, with a fixed diameter σ, in

a system with smaller spherical particles acting as the depletants, with a diameter τ and

density n (this system is depicted earlier in Figure 3.1). We then describe the interaction

potential between the 2 colloids by the following equation:

U(d) = −nkBTVoverlap(d), d ≤ 1 (3.1)
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Figure 3.3: Plot of q-dependent part of the depletion interaction potential U∗

kBT
to em-

phasize how q tunes the depletion interaction strength for 2 colloid spheres.

The Boltzmann constant is given by kB, temperature is represented by T , and Voverlap =

π
6
σ3(1 + q)3

(
1− 3

2
d+ 1

2
d3
)

represents the overlap volume. The distance normalized by

the maximal extent of the depletion interaction is given by d = D
σ(1+q)

, where D = σ,

representing the center-to-center distance between 2 colloids, and q = τ
σ

is the size ratio.

To find the maximum value U∗ of the depletion interaction potential and explore how the

number density n affects U∗, which is when two colloids are in contact, we can first set

d = 1
1+q

. For the fixed number density case, we have the following expression for U∗:

U∗

kBT
= −n

π

6
σ3(1 + q)3

(
1− 3

2
d+

1

2
d3
)

(3.2)

For the Asakura-Oosawa model, this interaction potential holds for q values less than

1 [57]. In this expression for fixed number density (Equation 3.2), we can Taylor expand

the expression which gives us a dependence of maximal depletion force going as q2. Note

that this pertains only to the smaller PEG sizes in simulations. These simulations allow

us to examine what happens beyond this limit when q is equal to or greater than 1.



3.1 Actin and PEG 39

For the fixed mass density case, we let ρ represent the fixed mass density of the

depletants. Using the Flory scaling relation for polymers [58], we set ρ = MWn ∼

R
5/3
g n, where MW stands for molecular weight and Rg is the radius of gyration. We then

substitute our expression for ρ into Equation 3.1 and get the following:

U∗

kBT
∼ −π

6
ρσ4/3 (1 + q)3

q5/3

(
1− 3

2

1

1 + q
+

1

2

1

(1 + q)3

)
(3.3)

This results in the interaction potential U∗ scaling with q1/3, which indicates that the

depletion interaction strength increases as the size of the depletant increases for a case

with fixed mass density. This leads us to theorize that as the PEG radius increases, the

strength of the depletion interactions also increases for systems with a fixed mass density.

In Figure 3.3, the q-dependent part of the depletion interaction potential, |U |/|U0|

is plotted against q to show how the strength of depletion interactions scale for cases

with fixed number density and mass density, where |U0| is the q− independent prefactor

in the expression for U∗. For fixed number density, |U |/|U0| increases approximately

exponentially, while for fixed mass density, it increases more slowly, approximately as

a power law curve; this scaling is exact below the limit q = 0.1547 where the AO pair

depletion potential is the only interaction contributing to the exact effective interaction

between the colloids [59].

Cylindrical Rod Depletion

Our system involves actin filaments as the components experiencing depletion. So, we

also explore a case where we approximate the actin filaments as cylindrical rods with

a cross-sectional diameter σ. We explore two cases for U∗: non-parallel rods and then

parallel rods. For the non-parallel case, the maximum depletion interaction potential is

described by U∗

kBT
= −π

2
nστ 2 = −π

2
nq2σ3 [60], where q = τ

σ
. For a system with fixed

number density, n, U∗ ∝ q2. For the parallel cylinders, U∗

kBT
= −2

√
2

3
Lnτ

3
2σ

1
2 , where L is

the length of an actin filament. For fixed number density, U∗

kBT
= −2

√
2

3
Lnσq

3
2 .
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Figure 3.4: Plot of q-dependent part of the depletion interaction potential U∗

kBT
to em-

phasize how q tunes the depletion interaction strength for a case of cylindrical rods.

For a system with fixed mass density, ρ = MWn ∼ τ
5
3n, we get U∗

kBT
= −π

2
σ

4
3ρq

1
3 ,

giving U∗ ∝ q2. For a case with parallel rods, U∗

kBT
= −2

√
2

3
Lnτ

3
2σ

1
2 . This expression

simplifies to U∗

kBT
= −2

√
2

π
Lσ

2
3 q

1
6 .

These expressions only hold in the dilute and semi-dilute limit where πnτ3

6
<< 1.

For dense systems, where this condition is violated, the PEG number density n in the

expression for U∗

kBT
should be replaced by nZ, where Z = 1+η+η2−η3

(1−η)2
and η = πnτ3

6
.

We plot |U |/|U0|, the q-dependent part of the depletion interaction potential, against

q for both the parallel and non-parallel cases for fixed number and mass density in Figure

3.4. The fixed number density trajectories show a positive exponential rate for both

the non-parallel and parallel case. For the curves corresponding to fixed mass density,

the scaling resembles a log-curve with the magnitude of the interaction potential being

slightly higher for the parallel case. With the analytical scaling arguments, the depletion

strength increases as the depletant size increases with a fixed mass. Note that these scaling

arguments are only valid for small size ratios q as described earlier. We use simulations

to explore the size ratios q beyond the small q− limit of AO theory.
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3.1.3 Model and Method

Mathematical Model

In order to understand the underlying depletion mechanisms, our approach is to com-

pare the experimental results to our 3D phenomenological model, which consists of actin

filaments interacting with PEG particles in three dimensions. Each actin filament is mod-

eled as a chain made of beads, and the relative cost of stretching and bending the chain

is informed by known mechanical properties of actin filaments. We model the pairwise

interactions between any two particles, whether belonging to actin bead-chains, or PEG,

or between actin and PEG using a Lennard Jones potential,

VLJ = 4ϵ

[(
σab

rij

)12

−
(
σab

rij

)6
]
, (3.4)

where σab = (σa + σb)/2, where σa and σb represent the diameters of two reference

beads. The interparticle distance between two reference particles with indices i and j

is denoted by rij and the strength of the interaction’s potential is defined by ϵ. The

interaction potential is truncated to incorporate only repulsive interactions representing

a hard core for actin-PEG interactions, while for PEG-PEG and actin-actin interactions

we additionally allow attractive interactions to mimic the Van-der Waals interactions.

The motion of the PEG particles follows the overdamped Langevin equation,

dr
dt

=
D

kBT
FLJ +

√
2Dη (3.5)

where the interparticle interaction force FLJ is derived from the Lennard Jones potential

defined above, and the thermal diffusion is represented by the noise term
√
2Dη, where D

is the diffusion constant and η is a vector drawn from a Gaussian distribution with a mean

of 0 and variance of 1; kB and T are the Boltzmann constant and room temperature. The
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motion of an actin bead in strand i is also given by an overdamped Langevin equation,

dr
dt

=
D

kBT

(∑
FLJij +

∑
FLJjk +

∑
FLJil

)
+

D

kBT

(∑
Fsij +

∑
Fbij

)
+
√
2Dη (3.6)

where FLJij , FLJik , and FLJil are the Lennard Jones interparticle forces, and indices i and j

describe intra-strand pairwise interactions, i and k describe inter-strand interactions, and

i and l describe interactions between actin and PEG particles. The actin filaments resist

stretching (or compression) and bending with forces Fsij and Fbij , respectively, obtained

from the corresponding stretching and bending deformation energies, Us =
αS

2
(l− l0)

2 and

Ub =
αB

2
(θ − θ0)

2. In the equations above, l represents the distance between two nearest-

neighbor actin beads in a strand, and l0 describes the equilibrium rest length for actin

beads which is given by the actin bead diameter. The stretching stiffness is αS = 100,

the bending rigidity is αB = 100 and θ is the angle between three sequential actin beads

and the equilibrium value of this angle, θ0, is set to π.

We solve both Langevin equations using the Forward Euler-Maruyama approach. The

timestep dt is set to 10−3 and each simulation was run up to 500τ , so the system had

enough time to equilibrate and reach a steady state.

Simulation parameters

The actin bead-chains and have a uniform length of 160nm and bead diameter (σ) of 8nm,

and the diameter of the PEG spheres is varied from 0.25σ to 0.75σ . All distances in the

simulations are scaled by σ, and all times by the time (τ) it takes for a bead in an actin

bead-chain to diffuse across a distance σ. The diffusion coefficient for a freely diffusing

actin monomer is estimated to be 101µm2s−1, which gives τ = 0.1s [61]. All energies in

the model system are scaled by kBT . The simulation box size is set to 75σ by 75σ by 10σ

across all simulations, and periodic boundary conditions are enforced.

To understand how the (1) concentration and (2) molecular weight of the PEG particles

influenced the actin bundling, we vary (1) the number of PEG particles from 4000 to 10000
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while keeping the simulation box volume unchanged and (2) PEG particle radius from 2nm

to 6nm, respectively. To convert from PEG radius of gyration (Rg) to molecular weight

(M), we assumed the classic result from Flory theory, Rg ∝ M
3
5 . This gives molecular

weights of 6k, 20k, and 37.4k for radii of 0.25σ, 0.5σ, and 0.75σ respectively. The PEG

concentration is varied from 4000 Vρ

Vbox
, 5000 Vρ

Vbox
, 6000 Vρ

Vbox
, and 10000 Vρ

Vbox
, where Vρ =

4
3
πr3,

r representing the effective radius of and Vbox is the volume of the simulation box which is

56250 σ3. We explore 12 different systems to determine the effects of PEG concentration

and effective molecular weight. The number of actin filaments is held constant at 200 for

all 12 systems.

For the Lennard Jones pairwise interactions, ϵPEG−PEG is set to 1.25 for attractive

interactions and 1.0 for repulsive interactions; ϵactin−actin is set to 0.3 for attractive inter-

actions and 1.0 for repulsive interactions. We encode only repulsive interactions between

the PEG beads and the actin strands, and ϵPEG−actin is equal to 2.0. We use a modified

Lennard Jones potential in which we independently tune the strengths of the attrac-

tive and repulsive interactions to mimic the interactions between the PEG and actin in

a way that is experimentally meaningful. The depletion effect of PEG is an emergent

phenomenon in our simulations. Furthermore, by tuning the PEG-PEG attractive in-

teractions from the Lennard Jones potential, this allows us to include the PEG-based

chemistry observed in experiments [47].

3.1.4 Results and Discussion

Fixed Number Density

The 12 systems simulated qualitatively agree with the experimental results measuring the

degree of bundling. Fig. 3.5(a) shows the configurations of the equilibrated actin-PEG

model systems juxtaposed with the phase diagram describing the degree of bundling in

the experiments. With the PEG molecular weight set to 6k, the configurations show a

disordered actin system with minimal bundling present across all four concentrations of
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Figure 3.5: (a), The figures shows the simulated equilibrium morphologies of the net-
works and bundles of actin filaments in the presence of PEG, and demonstrates the role of
PEG molecular weight and concentration on the actin filament bundling. As the molecu-
lar weight increases (y-axis), significant bundling of actin filaments is observed. Similarly,
increasing the concentration of PEG (x-axis) also leads to appreciably more pronounced
bundles of actin once the molecular PEG weight is greater than 6k. (b), Degree of
bundling results show that the model system moves toward more bundled structures
when the molecular weight and concentration of PEG molecules are increased. The term
Nd represents the number density of each component. As the PEG molecular weight and
concentration is increased, the actin solutions have stronger formation of bundling.
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PEG. These model images are directly comparable to the phase diagram of the experi-

mental results measuring the degree of bundling in Fig. 3.5(b). To quantify the degree of

bundling in simulations, we sampled simulation snapshots at the final time-frame t = 500.

Then we use in-house Python code for skeletonizing the images and quantifying the iden-

tifiable nodes in the actin network was used to establish the degree of actin bundling [47].

A larger number of nodes in an actin image indicates a higher degree of bundling for that

system. The results in Fig. 3.5(b) show that all four simulated cases yield similar low

degrees of bundling for the smaller PEG radii.

As the PEG molecular weight is increased to 20k, a noticeable amount of bundling is

present as the PEG concentration is increased from 6,000 Vρ

Vbox
to 10,000 Vρ

Vbox
. Between these

two systems, we begin to see distinct bundling formation, but the system configurations

still show the system forming a network-like structure instead of distinct stacks of parallel

filaments forming bundles. This increase in degree of bundling is also observed in systems

for a molecular weight of 20k and concentration of 10,000 Vρ

Vbox
.

For the largest PEG molecular weight, 37.4k, the amount of bundling increases sig-

nificantly along with the concentration of PEG. In particular, the first 3 PEG concentra-

tions show a defined, mesh-like actin network formed by defined filament bundles. The

sharpness of these bundles grows as the PEG concentration is increased. The largest con-

centration of 10,000 Vρ

Vbox
yields a very distinct system of strongly bundled actin filaments

with decreased network formation. The model configurations illustrate a smooth gradual

transition from a random individual filaments to distinct spanning networks to a system

with appreciable bundled filaments with the largest PEG molecular weight of 37.4k [47].

Fixed Mass Density

We also analyze in-vitro systems of actin and PEG undergoing bundling. The experi-

mental systems are then imaged with a confocal microscope and from those images, the

degree of bundling can be extracted with the same algorithm used in Figure 3.6. By

varying the PEG molecular weight and PEG concentrations, we observe that the systems
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Figure 3.6: (a), Phase diagram of the experimental actin (12 µM) systems with various
concentrations of PEG on the x-axis and the PEG molecular weight on the y-axis. The
experimental systems are imaged with a confocal microscope. The blue line signifies the
critical regions of bundling for PEG molecular weights 6k and 2k. (b), To represent the
degree of bundling in each of the experimental systems, heat maps were generated from
an in-house skeletonizing algorithm.

separate into 2 clear morphologies–below the blue line in Figure 3.6(a) and (b), the sys-

tems remain weakly bundled. For the lower concentrations and smaller PEG molecular

weight, the actin do not form bundled structures and are in a disordered state. The area
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of the diagram above the blue line highlights a region of the phase space where the actin

systems reach a strongly bundled regime in Figure 3.6(a).This indicates that once the

PEG molecular weight is sufficently high and the a critical PEG concentration is reached,

the actin filaments start to form bundled network structures. These qualitative results

are reinforced by heatmap depicting the degree of bundling in Figure 3.6(b).

The PEG have a fixed mass density in experimental systems depicted in Figure 3.6.

For the simulations, the PEG particles vary in mass density but have a fixed number

density. To provide a better clearer insight on the effects of increasing PEG molecular

weight with a fixed mass, we simulate cases where the PEG concentration has a fixed mass

density, instead. We choose a reference system size of 6,000 PEG particles and a PEG

radius of 0.5σ, which corresponds on the phase diagram in Figure 3.5(a) to a PEG-to-

actin radius ratio of 1.0 and a PEG-to-actin number density of 1.50. We then increase the

PEG radius and adjust the PEG concentration to keep the mass density fixed, according

to Flory theory proportion of the radius of gyration and molecular weight.

We then explore 3 systems with a fixed PEG density: r1 = 0.5σ and 6,000 PEG

particles, r2 = 1.0σ and 1,890 PEG particles, and r3 = 2.5σ and 410 PEG particles. We

generate system configurations over early time at t = 100 and t = 1000 to examine the

phase transitions of the actin filaments.

In Figure 3.7, at t = 100, each of the systems has a high degree of actin bundling,

with thicker bundles as the PEG radius of gyration increases. However at the later time

frame t = 1000, the actin transitions to a regime where there is little to no bundling. This

transition from bundled to un-bundled is not observed in experiments as the experimental

systems stay bundled over time as the actin filaments experience electrostatic and van

der Waals interactions [47, 51]. In simulations, the actin-actin attractive interaction

strength being scaled by 0.3, which means that once the bundles form, there is only a

weak attractive interaction that is not sufficiently high enough to preserve the bundled

actin structures which leads to those disordered states in Figure 3.7. The PEG are likely

acting as a crowding agent for early times in the simulation, as the PEG have a stronger
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Figure 3.7: System configurations of each of the 3 radii ranging from 0.5σ to 2.5σ at
t = 100 and t = 1000

homotypic attractive interaction. Once the PEG tightly clump and form clusters, the actin

begin to transition out of their bundles and start to crowd the PEG, instead. Because of

this discrepancy between simulations and experiments, we decide to focus on the system

during the intervals when the depletion interactions are the strongest.

A way to characterize the strength of depletion interactions is by calculating the mesh

size of the actin structures. The experimentalists have an in-house Python algorithm for

measuring the mesh size; they track the mesh size over time for each of the 3 cases to

determine which time frames yielded the maximum mesh size. The smallest PEG radius

r1, yields a maximum mesh size around t = 30, the PEG radius r2 leads to a peak mesh

size at t = 50, and the system with the largest PEG radius r3 reaches its maximum mesh

size at t = 150. We measure the mesh size of each of the 3 cases at their corresponding

specific time-points explore how the increase in PEG radius impacts the maximum mesh

size of the actin network.

We plot the mesh size results in Figure 3.8 and include system configuration insets
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Figure 3.8: Mesh size of the actin system for r1 = 0.5σ at t = 30, r2 = 1.0σ at t = 50,
and r3 = 2.5σ at t = 150. The mesh size values were averaged over 5 replicates.

along the upper half to show what the systems look like at their respective time-frames.

The mesh size of the actin network increases along with the PEG radius. This suggests

that even though the mass density of the PEG concentrations are fixed, the molecular

weight is an effective way to tune the size of the actin bundles. For the smallest radius

r1 = 0.5σ, the mesh size average is around 11nm. This is expected since there is evident

bundling occurring in the system, but the actin bundles are not as tightly bundled com-

pared to the system cases with larger PEG radii. Instead, small gaps are present in the

bundling structures, which leads to smaller mesh size values, bringing down the overall

average mesh size. When the PEG radius is increased from 0.5 to 1.0σ, the average mesh

size is around 19nm, nearly double that of the mesh size for r1. We see that in the corre-

sponding system configuration, the bundles are tighter with fewer gaps within each stack

of actin filaments, which contributes to the higher mesh size value. For the largest radius

r3, the actin filaments are tightly bundled, with large stacks being formed, rather than a

network-like morphology that is present in the systems for the lower radii values r1 and

r2. The average mesh size value is around 30nm and the respective system configuration
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reinforces this mesh size as there are minimal gaps visible within the actin bundles. By

varying the PEG radius while keeping the mass density fixed, we produce systems of actin

morphologies with larger bundles as the PEG radius increases. The simulation trends for

fixed mass show qualitative agreement with the scaling arguments for fixed mass density

for the Asakura-Oosawa (Figure 3.3 and 3.4). The simulations suggest that maximal de-

pletion force increasing with PEG size persists even when q = 1 or slightly larger than 1

in systems where the total mass is held fixed. This qualitative trend is also reflected in

the experimental systems (Figure 3.6), where the degree of bundling increases along with

the PEG molecular weight.

Contrastingly, the respective experimental results in Figure 3.6 indicate more abrupt

transitions between the different structural phases than in the simulation configurations

[47]. This is presumably a consequence of finite size effects; while the simulation study

consists of 200 actin filaments, the experimental study systems have 10000 actin fila-

ments. Furthermore, for computational simplicity, the actin filaments in the simulations

are assumed to be about an order of magnitude shorter than in experiments. The shorter

actin filament length effectively reduces the separation between the actin and peg length-

scales in the simulations compared to the experiments, potentially making the transition

in simulations less sharp compared to the experiments. However, we found one difference

between simulation and experiment, namely the nature of the transition between single

filament, weakly bundled, and strongly bundled regimes. In the model, we observe a

smooth gradient in the degree of bundling (see Figure3.5(a)), whereas in experiment the

transition is much sharper.

3.1.5 Conclusion

We develop a mathematical 3D model of actin filaments immersed in a PEG-concentrated

solute. Two model cases are explored: systems where the PEG number density is fixed

and a systems with a fixed mass PEG density. The system configurations in both cases

demonstrate that varying the molecular weight of the PEG polymers can effectively mod-
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ulate actin bundling. Our results show that we can tune the actin morphology just by

changing the molecular weight of PEG, while keeping the total mass of in the system

constant. The trend of increased PEG molecular weight yielding strongly bundled actin

is also reflected in experimental results [47]. This research enhances the current under-

standing of depletion interaction in crowded biomolecular environments. This is a new

insight for this research field as previous studies have had to increase or decrease the mass

of the solvent to tune the degree of phase separation or bundling in in-vivo biopolymer

assemblies [62, 63]. Our exploration of depletion interactions where the total mass of

the depletant is held fixed contributes to the application of fueled biomimetic materials

that are motivated by biological living systems that can respond to stress and regulate

their structural properties [64–66]. With the total mass of the depletants held fixed, our

modeling efforts can provide a potential platform for engineered materials that can yield

dynamic properties without the need to add additional materials or components to the

system [47].

3.1.6 Future Work

The next step for this collaboration is to refine the model by increasing system size

and the length of the actin filaments so the configurations from the model can be more

easily compared against the images from experiments. Once the model system is more

aligned with the coexisting experimental system, inputting the model configurations in

the Python package for measuring the degree of bundling would help us refine the model

parameters and reinforce this proof-by-concept of depletion interactions influencing the

phase transitions of actin from single-filament to bundled states.

Further direction in both experiment and model studies involves incorporating external

actuation, such as light, to mediate PEG activity so the actin system can smoothly and

predictably cycle between strongly bundled and weakly bundled regimes. Our research

will aid the design and engineering photo-responsive biotic-abiotic materials that can

rearrange their structural properties, which would have real-world application in self-
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healing technologies, solar devices, and adaptive optics.

3.2 DPS and DNA

3.2.1 Background

Spatial organization and compartmentalization of various organelles and biomolecules is

essential for cellular functions like mitosis, division, and motility. Many common eukary-

otic organelles like mitochondria and the cell nucleus are membrane-bound, meaning that

their molecular components are bound by a biological membrane. However, even in eu-

karyotic cells, some organelles such as the nucleolus are not membrane bound. Moreover,

prokaryotic cells like bacteria do not have membrane-bound organelles and are still suc-

cessfully able to compartmentalize their content. In the past decade, liquid-liquid phase

separation (LLPS), an equilibrium phase separation or de-mixing of thermodynamically

interacting components of a mixture of two or more liquids, has emerged as the lead-

ing paradigm to describe the containment and organization of membrane-less organelles

[67–69].

A significant difference between bacteria and eukaryotic cells is that the structure,

known as the nucleoid, which contains bacterial DNA, is a membrane-less organelle as

opposed to the membrane-bound nucleus in eukaryotic cells [70, 71]. The nucleoid contains

DNA, RNA, and various proteins but lacks the biological membrane to physically contain

the various molecules [71]. The collective localization and containment of the bacterial

chromosome requires continuous phase separation and dynamic self assembly. However,

the established research context regarding LLPS as the main form of organization in

DNA condensates is being re-examined and broadened as these condensates sometimes

show structure and properties that are more characteristic of liquid-crystals rather than

liquids. For example, recent studies have shown the nucleoid compartmentalizing and

organizing DNA strands through proteins binding the molecules together, forming a liquid-
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crystalline structure [72]. There is increasing interest in exploring the various interactions

and mechanisms that mediate protein-driven phase separation in the nucleoid, whether

LLPS or involving liquid-crystalline or even crystalline phases, and how these assemblies of

membrane-less organelles affect cell division and transport [70, 73–75]. My work explores

these questions in starved bacterial cells.

DNA-binding proteins from starved bacterial cells (DPS) are an abundant protein

naturally found in the nucleoid of the bacteria E. Coli [76, 77]. A unique characteristic of

DPS is that it is one of the few bacterial proteins in the nucleoid that can bind to DNA,

compacting it in a way that doesn’t affect the transcription function but also minimizes

damage from oxidative stress [73, 78–80]. The DPS-DNA interactions are of particular

interest due to the DPS being a major protein that is induced when cells are triggered by

external stress [78, 80].

Problem Statement: Characterizing the biophysical mechanisms that lead to the

formation and disassociation of DPS-DNA complexes has not yet been achieved and our

main objective is to use experimentally informed predictive modeling to advance cur-

rent understanding of the DPS-DNA phase separation dynamics. Beyond the formation

of the condensates, a comprehension of the underlying mechanical and structural proper-

ties of the complexes is also needed to understand just how these properties enhance the

phase separation process. We seek to obtain answers and insights into these questions

by developing a computational model of the DPS-DNA system that can be directly com-

pared against concurrent experimental studies and provide a broader understanding of the

biophysics of such protein-induced phase separation and organization of membrane-less

organelles. With the combination of phenomenological modeling and experimental stud-

ies, we expect to build on the existing knowledge of these DPS-DNA condensates, which

will help build a foundation for engineering antibiotics that target bacterial synthesis

induced by DPS proteins or similar enzymatic activity [81, 82].
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3.2.2 Model

We approach this research question by developing a 3D model of the DPS-DNA system

to understand the phase separation and organization of the DNA chains when interacting

with the DPS proteins. The system has 6 DNA chains and varied concentrations of DPS

particles. The DNA chains are modeled as beads on a string to help simplify the model;

we estimate the diameter of the DNA beads to be 3nm, which is roughly equivalent to the

distance between 6 base pairs of DNA[83]. To reduce computational expense and time,

we limit the strands to be 500 beads long, translating to a length of 1.5 µm, which is

considerably shorter than the in-vitro DNA lengths of 15 µm, but still long enough to

provide qualitative predictions for the DPS-DNA solutions. We implement a hard-wall

repulsive interaction to prevent the DNA strands from winding around the simulation

box. The DPS proteins are active components in the system and are modeled as colloid

particles, with a diameter of 9 nm, which is 3 times larger than the diameter of the DNA

beads, a ratio reflected in experiments [83, 84].

An overdamped Langevin equation describes the translational motion of a single bead

a in a strand:

dra

dt
=

D

kBT

(
FLJi + FLJj + FLJk

)
+

D

kBT
(Fs,i + Fb,i) +

√
2Dη (3.7)

The diffusion constant, Boltzmann constant and temperature are described by D, kb, and

T , respectively. We scale our simulation length in units of DNA bead diameter σ = 3nm.

Our timescale is scaled by τ = 0.3µs, which is the time it takes for a single DNA bead to

diffuse its diameter; the estimated diffusion coefficient is based on previous literature and

theory [85, 86]. The forces FLJi and FLJj describe the Lennard Jones pairwise interaction

forces between the beads. Index i represents intra-strand pairwise interactions,index j

represents bead-to-bead interactions between two separate DNA strands, and index k

denotes the interaction force between a DNA bead and a DPS particle. The Lennard
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Jones potential is given below,

VLJ = 4ϵ

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (3.8)

where rij denotes the inter-bead distance between beads i and j, ϵ represents the strength

of the potential, and σij is the average diameter of bead i and bead j.

Stretching and bending can occur within strands and Us = Ks

2
(l − l0)

2 and Uθ =

αB

2
(θ − θ0)

2 represent the respective stretching and bending potentials. In the following

above equations, αS is the extensional stiffness coefficient and is set to 544, l denotes the

distance between the two sequential beads in a strand, and l0 is the equilibrium rest-length

between two beads on the strand and is set to the bead diameter. The bending rigidity is

αB = 25 and the angle between two beads is represented by θ and we set the equilibrium

angle θ0 to π. The last term
√
2Dη introduces thermal noise into the system. We also use

a similar overdamped Langevin equation to describe the translational motion of a DPS

bead b:
drb

dt
=

D

kBT
(FLJl + FLJm) +

√
2Dη (3.9)

The index l denotes interparticle interactions between DPS beads and m represents in-

terparticle interactions between DPS and DNA beads; similar to the DNA dynamics, we

implement a Lennard-Jones 12-6 potential from which the interparticle interaction forces

are derived.

For the Lennard-Jones pairwise homogeneous (specifically DNA-DNA or DPS-DPS)

interactions, we set the range to be repulsive only, effectively making it a Weeks-Chandler-

Anderson interaction potential. For heterogeneous interactions, DNA beads interacting

with DPS beads, we allow both short-range repulsive and long-range attractive interac-

tions. Because the experiments have various concentrations of NaCl and crowding agents–

such as PEG–we tune ϵ for attractive interactions to phenomenologically represent the

effects of NaCl and PEG in the system. We vary ϵ from a range of 0 to 2.0, to explore

systems where DPS and DNA do not bind or interact and when the two components
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experience a large attractive strength of interactions. Another quantity we explore is the

concentration of DPS particles. We do so by varying the number of DPS beads to 100 to

3000.

At the beginning of the simulation, we initialize DNA strands in the box and allow

them to equilibrate for t = 1000. Then, we populate the simulation box with DPS particles

and run the simulations for up to 4000t.

3.2.3 Results and Discussion

To qualitatively examine how the concentration of DPS and attractive interaction strength

tune the spatial organization of the system, we generate a phase diagram of 2D-projected

simulation configurations in Figure 3.9. The DNA strands are colored in red and the

DPS particles are in green. The number of DPS, represented by Nd ranges from 100 to

3000 and the heterotypic attractive strength is tuned by the parameter ϵhetero. For the

system with 100 DPS, the smallest DPS concentration, the DNA strands do not become

condensed into a cluster and remain in a disordered state. Even as the ϵhetero parameter is

increased, the DPS do form into very small clusters and clump near the DNA strands, the

DPS concentration is still too small to lead to DNA compaction. For ϵhetero = 0 and 0.1,

across all 4 concentrations of DPS, the DNA strands remain in a disordered randomized

state with no condensate formation. This demonstrates that even for systems with higher

concentrations of DPS, the heterotypic interactions are still too weak to mimic the DPS

binding interactions observed in experiments.

However, we do see a qualitative shift in the phase diagram in the DPS as Nd ranges

from 1000 to 3000 and ϵhetero ranges from 1.0 to 2.0. DNA strands begin to experience

compaction as DPS begin to form clusters within the DNA regions as the DPS concen-

tration and ϵhetero are increased. Each of the systems appears to reach a non-equilibrium

steady state. Regions of the box have uneven concentrations of DPS; the local DNA

regions tend to have fewer isolated DPS particles while areas without DNA have a higher

local concentration of DPS. Once all the DPS within close proximity of the DNA get pulled
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Figure 3.9: Phase diagram of the simulation configurations sampled at t = 4000. The
number of DPS (Nd) is represented on the y-axis and ϵheter represents the strength of
heterotypic attractive interactions is on the x-axis. The DNA strands are visualized first
(in red) and the DPS particles are drawn in next (in green). Within the phase diagram,
we see a qualitative separation (blue line) occur when Nd is 1000 or more and ϵhetero ranges
from 1.0 to 2.0.

into a cluster, the remaining DPS that are further away from the DNA regions tend to

stay in their local regions there as the attractive interactions are not strong enough to

overcome the longer distances.

To explore the degree of translational order in the systems, we sampled the radial

distribution function (RDF) at t = 4000 for the systems where condensate formation was

present (blue line in Figure 3.9). As the attractive strength of heterotypic interactions

increases, more peaks in the RDF curves for each DPS concentration and the heights and

sharpness of those peaks increase as well. These trends are indicative of systems with

higher degrees of translation order, which agree with the corresponding phase diagram

snapshots showing the systems reaching those condensate structures. For each of the
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Figure 3.10: The RDF is sampled for all 20 cases at the final time-frame t = 4000. The
radial distance r is scaled in units of the DNA bead diameter. For each case, we run 5
replicates and then average the RDF data for systems with (a) 100, (b) 1000, (c) 2000,
and (d) 3000 DPS

ϵhetero values, the peak values for g(R) decrease as the DPS concentration increases. This is

because the systems with lower DPS concentrations produce systems with a large majority

of DPS particles forming small clusters as they interact with the DNA strands over time.

Because a large fraction of the DPS particles become locked into clusters within the DNA-

occupied regions, this leads to higher g(R) peak values for short distances r. The heights

of the peaks in the RDF curves for the higher DPS concentrations decrease due to a larger

normalization factor in the denominator. The system snapshots in Figure 3.9 show that

while a considerable fraction of the DPS form compacted condensates with the DNA,

there is still a large proportion of DPS that remain in a disordered state with no cluster

formation due to sufficient distance between them and the DNA-occupied regions.

To gain insight on the compacted-ness and spread size of the condensates, we extract
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from the RDF data the full width tenth maximum (FWTM). This is obtained by finding

the value of the maximum peak in each RDF curve and then For our simulations, the

FWTM is the width of the RDF at a level that is 1/10 the value of the maximum peak.

We measured the FWTM for the systems that experienced condensate formation (the

regions sectioned off by blue line in Figure 3.9).

Figure 3.11: The full width tenth maximum (FWTM) values for the simulation cases
with condensate formation. The x-axis represents each DPS concentration and the radial
distance is given be r, which is units of the diameter of a DNA bead.

From Figure 3.11, the FWTM values suggest the cluster size increases as the DPS

concentration increases, which is expected as there are more DPS particles available to

interact with the DNA and form condensates. For the smallest concentration of DPS,

the FWTM demonstrates that the spread size of the DPS clusters decreases slightly

as the attractive interaction strength increases. This indicates that the clusters aren’t

necessarily smaller in numbers (as evidenced by the configurations in Figure 3.9 but

are more tightly compacted because of the higher attractive interaction strength. The

decrease in the FWTM is more distinct for higher DPS concentrations; the difference
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between the FWTM for ϵhetero=1.0 and 2.0 increases. Higher DPS concentrations lead to

more DPS particles interacting with the DNA strands. This greater interaction leads to

more compact clusters, and this is more clearly seen for larger system sizes ranging from

1000-3000 DPS particles.

3.2.4 Conclusion

We develop a 3D microscopic model of DNA in a solution of DPS proteins. We show that

the condensate formation of DPS-DNA structures can be tuned by the concentration of

DPS and the strength of interactions between DNA and DPS. This is particularly insight-

ful as the attractive interaction parameter can be used to phenemenologically represent

the various concentrations of salt and PEG that are implemented in experiments to mimic

the crowded environment of bacterial cells. When the attractive interactions are scaled

down by factors of 0.1 and below, we observe little to no condensate formation regard-

less of the concentration levels of DPS. For higher DPS concentrations and moderate to

high attractive interaction strengths, we produce systems that can undergo condensate

formation. And within the systems with higher attractive interactions, those lead to more

tightly compacted clusters of DPS-DNA, which lead to higher structural and translational

order in those localized regions of condensation.

3.2.5 Future Work

The next steps include comparing the conditions and parameters to ensure it is aligning

well with the current experiments. With this 3D model, we will be able to understand the

mechanisms of this unique condensate by determining the degree of orientational order of

the DNA chains. We may use measurements like the nematic order parameter to measure

the alignment of the system at different time points. These results from our agent-based

model may be comparable against nematic ordering results from a continuum model of

the DPS-DNA environment and will allow us to evaluate whether the system reaches a
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liquid-crystalline structure or remains in a disordered liquid state.

To understand how the collective transport properties are affected by the DPS-DNA

interactions, tracer particles can be added in experiments, placing them within, between,

and outside of condensate regions to measure the mean square displacement (MSD). We

can also extract MSD trajectories since the particle coordinates for both DPS and DNA

can be recorded for simulations. The MSD trajectories of the DPS regions and DPS-

DNA complexes can then be compared directly against single-particle tracking results

from experiments. The rates of diffusion derived from the MSD curves will indicate when

the system has reached a compacted, ordered state (if the rate is sub-diffusive) and the

curves will also allow us to quantify the varying levels of collective movement of the DPS

proteins and DNA strands at different lagtimes.



Chapter 4

Collective Mechanics and Dynamics of

Engineered Cytoskeletal Composites of

Two Different Types of Biopolymers

and Motor Protein

4.1 Background

The cytoskeleton is an extremely dynamic network. It is responsible for generating

mechanical forces within the cell, determining cell shape, and mediating cell mobility.

Cytoskeletal networks themselves are quite complex. The main components of the cy-

toskeleton are the biopolymers actin filaments and microtubules, and their associated

motor proteins and crosslinkers. Actin filaments are semiflexible and microtubules are

more like rigid fibers on the scale of a cell and are approximately three orders of magni-

tude stiffer than actin filaments. The actin filaments play a critical role in cell mechanical

response and their lower bending rigidity allows the cytoskeleton to remodel and respond

to external mechanical forces and facilitate variability in cell shape to avoid deforma-

tion of the composite network [87–89]. The microtubule network facilitates long-range

62
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force transmission, and allows the cell to maintain mechanical memory of its structural

integrity and stiffen under small amounts of mechanical stress [88, 90]. The structure,

shape, and collective motion of the filamentous network can be modulated by molecu-

lar motors and crosslinking proteins. Myosin and kinesin are two main types of motor

proteins found in eukaryotic cells that are essential to cytoskeletal functions, such as cell

division, motility, and internal organization within the cytoplasm [91]. The myosin mo-

tors are mainly associated with actin filaments and aid cell contraction and movement

[39, 92, 93]. Kinesin interacts with the microtubules, aiding intracellular transport and

formation of microtubule networks [94–96].

Previous experimental and simulation studies have characterized how actin filaments

and microtubules aid the cytoskeleton [97, 98]. The current research context in cy-

toskeletal networks indicates an established preference to treat the actin- and microtubule-

based systems as individual, separated networks. Many in-vitro experimental and theory

studies have focused on actomyosin networks to make predictions about their active me-

chanics and contraction and shown how the sliding mechanism of the myosin leads to

actin network contractility [99–102]. Active cytoskeletal materials made of microtubule

and kinesin have also been well studied [103–105] and provided a platform for new dis-

coveries in the area of active nematics (See papers by Dogic + Baskaran + Marchetti et

al). Most studies have not looked at composite systems of actomyosin and microtubule-

kinesin networks, and without the understanding the impact of their interplay, a full

picture of the cytoskeletal networks and their mechanical structure-function properties

remains incomplete.

In cells these two biopolymer networks usually do not act independent of each other,

they interact to regulate various cell functions [106–110]. Problem Statement: While

there is emerging interest in studying the actin-microtubule interactions, modeling the

complex physical interactions between actin and microtubules and their associated mo-

tor proteins is still not as well characterized and their collective properties are not well

understood [90, 111]. Working alongside experimentalists studying these dynamic actin-
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microtubule composite networks, we aim to develop a robust, agent-based model that

can provide insights into the dynamic relationship between motor proteins and actin and

microtubule composites. Our main objective is understanding the mechanisms that un-

derlie the emergent structure patterns, mechanics, and dynamics the actin-microtubule-

motors model network. This will allow us to directly compare results with experimental

observations and improve and fine-tune the models to provide accurate predictions on

the what kinds of mechanisms arise in certain areas of the parameter space and what

factors drive these unique biological processes. The modeling and experimental of these

autonomous biotic-abiotic systems will serve as a foundation for real-world application

in self-regulated soft robotics, artificial muscle tissue, and self-assembled micro-electronic

devices [112–115].

4.1.1 Model

Our approach is to construct a 3D model network consisting of actin and microtubule

filaments. Both the actin and microtubule are modeled as beaded chains. The diameter

for both sets of filaments is set to 200nm. The actin filaments have a uniform length of

8µm, which is equivalent to 40 beads per chain and the microtubule composites have a

shorter length of 4µm, which is 20 beads per chain in the simulations. To mimic the dense

cytoskeletal network composites from experimental studies, we simulate 450 actin strands

and 300 microtubule strands. We incorporate 3 types of proteins: myosin, kinesin, and

passive crosslinkers to drive the various network formations.

An overdamped Langevin equation is used to model the translational motion of a

single bead in strand i of an actin or microtubule:

dr
dt

=
D

kBT

(∑
FLJij +

∑
FLJik

)
+

D

kBT

(∑
Fpik +

∑
Fcik +

∑
Fsij +

∑
Fbij

)
+
√
2Dη (4.1)
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The interparticle interaction forces are represented by FLJij and FLJjk , where indice

pair ij denotes inter-bead interactions within the same strand and ik describes inter-bead

interactions between different strands. These pairwise interactions are governed by a

truncated 12-6 Lennard Jones potential given by,

VLJ = 4ϵ

[(
σ

rab

)12

−
(

σ

rab

)6
]
, (4.2)

where the distance between beads a and b is denoted by rab, σ represents the bead diam-

eter, and ϵ is the well depth of the potential.

When a motor binds two filaments together, we model this interaction with the motor

protein as a spring force Fpik = −Kp(rij − r0) between the two filament beads, where Kp

denotes the spring coefficient of the motor protein, the interparticle distance is denoted

by rij, and the rest length is given by r0. The two filament beads must be within the

rest length r0 in order to trigger the probability of a molecular motor binding the two

filaments together. When myosin binds two actin filaments together, only a contractile

force is exerted from the spring. However, for kinesin-microtubule interactions, the ki-

nesin can exert a contractile and extensile forces between the two beads. To mirror the

experimental conditions, the concentration ratios of myosin to actin is 4 to 1 and the

kinesin to microtubule concentration ratio is 50 to 1 in the simulations.

Currently, the probabilities of attachment and detachment of the motor proteins are

set to be equivalent to simplify the model. The motor proteins can bind filaments together

based on an exponential probability rate,

Pa = cm
(
1− e−kOnt

)
(4.3)

where cm describes the concentration of free motor proteins in the system and kOn denotes

the experimental binding rate of myosin [38]. For motor proteins to detach, we implement
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a similar exponential probability function,

Pd =
(
1− e−kOff t

)
(4.4)

where this time the unbinding rate kOff is derived from a dynamic formula,

kOff = 10
(
γce

F∗xC/kBT + γse
FxS/kBT

)
(4.5)

where γc and γs represent the prefactors determining the catch and slip dynamics of the

motor proteins, F = −kbridge(rij − r0) represents the spring force from the connected

motor protein with kbridge denoting the cross-bridge stiffness of the motors, and xC and

xS are the experimental bond lengths of the motors [38, 116].

We also consider the addition of passive crosslinkers in the actin-microtubule network

and model these crosslinks as Hookean springs, too; Fcik = −K(rij − r0) represents the

crosslinker spring force, where K describes the crosslinker spring constant and r0 is the

rest length that the two filament beads must be from each other in order for a crosslink

to occur. For every simulation, the crosslinkers will link to only one set of the filaments-

actin or microtubules; the ratio of crosslinkers to filaments is 80 to 1. They have a

constant probability of attachment p0 = 0.005 and once they are crosslinked between two

filament beads, they stay attached unless overstretched. The last term
√
2Dη represents

the thermal noise in the system.

The actin and microtubule filaments can also experience stretching and bending; the

corresponding potentials for the forces Fsij and Fbij are Us = αS

2
(l − l0)

2 and Uθ =

αB

2
(θ − θ0)

2, the stretching and bending deformation energies. The extensional stiffness

coefficient and bending stiffness coefficient are given by αS and αB, respectively. For

actin, αS = 10 and αB = 4 and for microtubules, αS = 100 and αB = 100. The length

and angle between the two consecutive beads is denoted by l and θ and the equilibrium

length and angle are denoted by l0 and θ0. To closely align with experimental conditions
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and observations, the bending and extensional stiffness of actin is set to be two orders of

magnitude lower than that of the microtubules.

4.1.2 Actin-Microtubule Composites Configurations

We simulate an actin-microtubule model network and sampled system configurations at

6 time points to analyze the transitions in the structure. In this system, crosslinking

proteins and myosin are able to bind to the actin. For the microtubule channel, kinesin is

present in the system. When we initialize the system with actin and microtubules, nothing

is connected. At the first timeframe t=10, you can see that the myosin begin to attach

to actin and the actin also become crosslinked to form a network via the crosslinkers.

The actin filaments form a network of actin bundles. Contrastingly, in the microtubule

channel, the filaments start to get connected by the kinesin motors but they do not form

networks over time. The microtubules are being bound by kinesin but form clumps of

filaments rather than a mesh-like network as seen in Fig. 4.1. Another observation for this

framework is that global contraction or extensile behavior isn’t observed in this system.

The current steps for this model include identifying separate parameter values related

to the kinesin attachment dynamics and types of forces the proteins exert on the micro-

tubules; rather than model the kinesin as Hookean springs, another avenue of interest is

encoding these motor-filament interaction forces as force dipoles, to effectively model the

extensile and contractile behavior seen in kinesin-microtubule structures.

4.1.3 Characterizing simulation videos

An overarching goal of this research collaboration is to characterize different properties

like stress propagation and stiffness. These collective properties are of interest because

the cytoskeletal networks can have contractile network dynamics. Due to the low rigidity

of actin, when the myosin motors bind actin filaments together and begin to assemble

into bundles, these bundled structures undergo contraction [117]. Because of the muscle-
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Figure 4.1: Preliminary system configurations of the model actin-microtubule network
sampled at 6 time frames: t = 10, 100, 200, 400, 500, 990. Within this system, kinesin
(blue) is binding microtubules (red strands), myosin (purple) binding actin (green strands)
filaments and passive crosslinking proteins (black) have been encoded for additional actin-
actin interactions.

like activity that results from myosin binding to actin, experimental studies by Gardel

et al. show that once a critical density of myosin is reached, the composite network ex-

periences large-scale contraction [118]. Modeling efforts by MacKintosh et al. have also

demonstrated how the myosin binding activity leads to an increase in bulk elastic mod-

uli of the filamentous network and that the unbinding dynamics of the myosin governs

the timescale of force fluctuations in the system [119]. The microtubule channel is also

capable of exhibiting contractile dynamics with the help of kinesin motors. Kinesin has

a high-duty ratio compared to myosin II, the specific myosin motors used in our collab-

orators’ experiments. This means the kinesin motors stay attached to the microtubules

for significantly longer [120, 121]. Kinesin have the ability to walk along microtubule

filaments. Microtubules have polarized (+/-) ends and kinesin have a tendency to walk

towards the polymerized (+) ends of the filaments [122]. Then, the microtubules will
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begin to form aster or spindle-like structures due to kinesin binding the microtubules

together and clustering towards the (+) ends of the strands [55, 123]. The formation of

these asters also generates contractile forces in the network. A model study conducted

by Kruse et al. demonstrated that a system of polar filaments undergoing bundling via

molecular motors can still contract regardless of the degree of spatial organization [124].

Extensile behavior can also be generated in the cytoskeletal network. In systems where

there is either a sufficient concentration of static crosslinkers or depletants like PEG that

aid in the bundling of microtubules, extensile behavior can arise if microtubule bundles in

close proximity are oriented in such a way that their adjacent ends have opposite polarity

[55, 125]. The kinesin motors will still walk towards the respective (+) ends of the pair

of bundles, which causes the microtubule bundles to slide apart in opposing directions,

resulting in bundle extension [55]. Najma et al. present a joint experiment/theory in-

vestigation of microtubules, depletants, and kinesin motors to determine how the kinesin

binding kinetics, the different component concentrations, and polar alignment interactions

drive the extensile and contractile behavior [126]. Experimental systems with depletants

and crosslinkers are able to produce extensile forces and by varying the concentration

ratios of the different model components, they can generate systems that transition from

bundle-like structures that can experience extension to asters with contractile behavior

[126].

With our current simulations, we have cytoskeletal composites with filaments, motors,

and crosslinkers. A goal with the simulations is to be able to produce a self-assembled

structure that can have a network of filaments, bundles, networks of bundles, and asters.

With these dynamic structures, we aim to explore how we can generate contractile and

extensile behavior. Two avenues of this research question have to be addressed: how to

develop a simulation that can exhibit these kinds of properties and how to use the data

from simulations to study large scale contraction and aster formation.

The strategy of using simplified models with fewer parameter combinations to de-

scribe dynamic properties and emergent mechanisms has been successfully implemented
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in areas of active matter and materials research [127–129]. In a computational study of

motor activity in a cell nucleus, Saintillan et al. implement a coarse-grained model by

modeling chromatin as a polymer chain and use force dipoles to characterize molecular

motor interactions in the system [128]. Ronceray et al. also use force dipoles to mimic

the molecular motor proteins in fiber networks in order to study the force propagation in

cytoskeletal composites [129].

We implement a similar approach for our 6-component model of actin, microtubules,

myosin, kinesin, and 2 types of crosslinkers. Our goal is to downselect from this large

parameter space to a set of 150 filaments that have a uniform length of 40σ and passive

crosslinkers. Each system will have only one kind of filaments as well, rather than the

actin-microtubule composite network we have previously explored. We alter the box depth

dimension to be z = 40σ, so its equivalent to the length of the filament. With this toy-

model approach we implement nucleation or pinning sites to generate local contractions

(asters) in the system. At the beginning of the simulation, filaments are allowed to diffuse

and equilibrate for a set amount of time (1000t). Then, we implement crosslinking kinetics

to allow the filaments to form a network. After a network had formed, then the nucleation

site switches on at 1000t, and this attractive site is characterized by an inverse potential,

U(r) =
C(r2 + 2R2)

2R3
− C

r
(4.6)

where C is a term to scale the attractive strength and is set to 200, r is the distance

between each endpoint of a filament and R is the radial distance of 10σ. The force from

this inverse potential is only applied to the endpoints of the filaments and is represented

by be the following piece-wise function:

|
−→
F | =


C
R3 r, r < R

C
R
, r ≥ R

(4.7)

This function allows for the filament endpoints to be attracted to the nucleation sites
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but also appropriately scales the magnitude of the attractive force once the filaments are

sufficiently close to the nucleation site (within a distance of 10σ).

We explore 2 cases of simulations for the semi-flexible actin filaments and the stiffer

microtubule filaments. In one system, we have one nucleation site in the center of the

simulation box to generate global contraction in the network and in a second case, we

have 4 equidistant nucleation sites to produce local contraction and local aster formation.

Within each of the 2 nucleation site arrangements, we implement a case with crosslink-

ing, where every filament bead can have 1 crosslink bond and a case where there’s no

crosslinking occurring.

We use openGL programming to develop 2D projected system configurations. Re-

cently, Dr. Jonathan Michel has developed a post-processing C++ program that pro-

duces pseudo-micrographs that mimic the experimental images that are obtained from a

confocal microscope. We choose a z-stack height of 20 for the pseudo micrographs; the

nucleation sites are all located at z = 20, so the global contraction and formation of

asters can be clearly seen when sampling images at that height. We chose to look at the

simulation after the filaments had the chance to diffuse and equilibrate. So for the times

at which the snapshots were sampled, time t = 0 refers to time immediately after the

equilibration step.

Central nucleation site with crosslinking

In Figure 4.2(a), the actin channel has formed a crosslinked network and you can see the

crosslinks drawn in black. In the successive simulation snapshots, we see more instances

of crosslinking and a global contraction towards the central nucleation site. In the final

frame for t = 4000, it appears that a few filaments are winding around the box or being

pulled from opposite ends; this is the effect of the reflective periodic boundary conditions

in our simulation. In the psuedo micrographs (Figure 4.2(b)), the ball of actin filaments

in the center is visible and the filaments located further from the nucleation site are not

as bright, indicating they are in a different z-stack slice.
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Figure 4.2: Simulation images of the actin channel sampled at 4 time frames: t =
20, 1050, 2520, 4000. (a), the system configurations of the actin network. (b), pseudo
micrographs of the simulation snapshots.

Figure 4.3: Simulation images of the microtubule channel sampled at 4 time frames: t
= 20, 1050, 2520, 4000. (a), the system configurations of the microtubule network. (b),
pseudo micrographs of the simulation snapshots.

We run a similar simulation but instead of actin filaments, we have a channel of stiffer

filaments to mimic microtubules. In the first frame of Figure 4.3(a) and (b), crosslink-

ing is occurring in the network but things look fairly disordered and no contraction is

present since the nucleation site has not been switched on yet. Then at t = 1020, we start

to see crosslinked bundles of microtubules and a bundled network formation emerging
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in the system and this is visible in both the system configuration and the correspond-

ing micrograph. However, the system doesn’t appear to change much in the later time

frames t = 2520 and 4000; there is no global contraction present in the network and

the orientation of the microtubules remains the same. The lack of contraction and aster

formation in this system is likely due to the rigidity of the microtubule strands and the

crosslinking. Crosslinks that bind at a fixed location will place constraints on the posi-

tions, orientations, and topology of microtubules. This in turn impairs aster formation

and the flexibility of the network as crosslinked bundles form.

Central nucleation site without crosslinking

Figure 4.4: Simulation images of the actin channel with a central nucleation site sampled
at 4 time frames: t = 20, 1050, 2520, 4000. (a), system configurations of the actin network.
(b), pseudo micrographs of the simulation snapshots.

Next, we explore a system with a central nucleation site with the absence of crosslink-

ers. Figure 4.4 shows the case with actin filaments. Over time, actin strands accumulate

as the endpoints experience attractive interactions with the centralized nucleation site and

over time, this accumulation begins to resemble a yarn ball-like structure. This a natural

effect of a low persistence length, lack of crosslinkers, and imposition of a constraint only

at the central point of the box.
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Figure 4.5: Simulation images of the microtubule channel with a central nucleation site
sampled at 4 time frames: t = 20, 1050, 2520, 4000. (a), system configurations of the
microtubule network. (b), pseudo micrographs of the simulation snapshots.

In Figure 4.5, we also observe the effects of a central nucleation site in a system with

the absence of crosslinking for the stiffer microtubule filaments. We see a gradual aster

formation at the center point of the box, which is expected since the endpoint beads of

the microtubules are the only beads experiencing the attractive forces from the nucleation

site and without crosslinking, the microtubules do not form bundles or networks and are

able to move towards the center more easily. The aster is also clearly visualized in the

micrographs as well, with the brightest point located at the nucleation site.

Multiple nucleation site with crosslinking

We then explore systems where we have 4 equidistant nucleation sites with equal attractive

interaction strengths. For the actin channel with crosslinkers in Figure 4.6, we see that

each of the 4 nucleation site accumulates clumps of actin over time. The strands experience

a large amount of crosslinking at each of the 4 sites as well, and the balls of actin are

connected by filaments that stretch diagonally, vertically and horizontally across. So

by t = 4000, we have a square-shaped structure with the majority of the actin strands

clumping at each of the nucleation sites. It also appears that there are 1-3 filaments
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Figure 4.6: Simulation images of the actin channel sampled at 4 time frames: t = 20,
1050, 2520, 4000. (a), system configurations of the actin network. (b), pseudo micrographs
of the simulation snapshots.

stretching out from each of the attractive sites and wrap around the edges of the box;

again, similar to the corresponding configuration in Figure 4.2, this is due to the periodic

boundary conditions of our model. For the corresponding case with microtubules (Figure

Figure 4.7: Simulation images of the microtubule channel sampled at 4 time frames:
t = 20, 1050, 2520, 4000. (a), system configurations of the MT network. (b), pseudo
micrographs of the simulation snapshots.

4.7) instead of actin, we see that over time, microtubules form bundles by the crosslinkers.

Then, these bundles then form a network of microtubules. At each of the nucleation sites,
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we see that the microtubule bundles become more tightly compacted but it seems that

this compaction occurs in the localized regions of the nucleation site. The areas of the

network that are further away from the nucleation sites do seem to experience a degree of

contraction, but do not form tight bundles. Again, this is expected as the microtubules

have a larger persistence length and coupling that with the static crosslinkers leads to a

network that is less flexible and responsive to the nucleation sites.

Multiple nucleation site without crosslinking

We then examine systems where systems have the 4 nucleation sites but no crosslinking

component. Figure 4.8 shows the time-course of a system with actin filaments with no

Figure 4.8: Simulation images of the actin channel with 4 nucleation sites sampled at 4
time frames: t = 20, 1050, 2520, 4000. (a), the system configurations of the actin network.
(b), pseudo micrographs of the simulation snapshots.

crosslinkers. Over time, most of the actin filaments go from being in a disordered state

to forming clumps at each of the nucleation sites. The ball-like structures look roughly

the same size and only a few actin filaments remain free from the nucleation sites which

indicates that if this simulation is run for longer times than 4000t, all of the actin filaments

would eventually be part of a clump at a nucleation site. The microtubule filaments begin

in a disordered state in Figure 4.9(a) and (b), but form well-defined aster-like structures
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Figure 4.9: Simulation images of the MT channel with 4 nucleation sites sampled at 4
time frames: t = 20, 1050, 2520, 4000. (a), the system configurations of the MT network.
(b), pseudo micrographs of the simulation snapshots.

at each of the nucleation sites. And like the actin network in Figure 4.8, a large majority

of the microtubules belong to an aster which suggests that for longer simulation runs,

nearly all of the filaments are likely to be part of an aster formation.

4.1.4 Conclusion

We explore the qualitative properties of 2 kinds of models: one with in-vitro cytoskele-

tal composites with filaments, motors, and crosslinkers. While we are able to develop

a computational model based on experiments and experimentally-observed kinetics, the

simulated systems did not produce the large-scale contractile behavior observed in exper-

iments. Part of this is due to the smaller system size limiting the macroscopic properties.

A way of mitigating this was to constrain some of the model parameters and com-

ponents. We constructed a second model where we limit the simulation to one set of

filaments and passive crosslinkers. With this simplified model, we are able to explore

the large-scale stress by implementing nucleation sites in the system space. Our system

configurations show that aster formation occurs for microtubule-like filaments with no

crosslinking and global contraction is present in the systems with actin filaments and
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static crosslinkers. With these new simulations, we can produce psuedo micrographs that

mimic confocal microscopy images used for experiments.

This technique can be used to determine whether analysis of the pseudo micrograph

images using digital image processing tools meant for experimental data yields results

consistent with experimental findings. Metrics like particle image velicometry (PIV) can

be measured from these psuedo micrographs and compared against experimental images to

determine stress propagation properties. A method for measuring contraction in a network

is being developed in this collaboration; measuring the pixel intensity distribution over

time has been proposed and the pseudo micrographs could serve as optimal data from the

simulations.

4.1.5 Future Work

The next steps for this research involve running the simplified models for larger systems

sizes and longer run-times to capture a clearer picture of the system evolution. From

there, we would aim to start using the psuedo micrographs and start using metrics like

PIV to gain clearer insight on the stress propagation in the networks.

Another future goal involves enhancing the kinesin and myosin motors in our model,

as this could help bridge the gap between the simplified model with the nucleation site

and the 6-component model. For example, aster formation is common in microtubules,

due to their high persistence lengths, and the high duty ratio of kinesin. Kinesin also

have the ability to walk along the microtubule lengths and will eventually accumulate on

the ends of the filaments [130]. If we can effectively model the processivity of these motor

proteins, that would eliminate the need for the artificial nucleation sites that currently

induce contraction and aster formation in the systems.
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Conclusion

In all 4 projects, we have created mathematical models, based in experiments and current

theory, of bio and bio-inspired materials to help us understand and predict the roles of

living systems and self-assembly of network-based materials. Our model studies focus on

two types of substrates-colloids and biopolymers. And, the assembly drivers that produce

the network-like behaviors in our various model systems are physical crosslinking pro-

teins and depletants. We study the Langevin Dynamics of these systems and implement

Lennard Jones or modified Lennard Jones potentials to model the interactions between

the different components.

We first begin with a 2D model of colloidal beads undergoing dynamic network forma-

tion via bacterial proteins that are functionalized as timing circuits for the connectivity

behavior. With protein crosslinker interactions effectively modeled as spring forces be-

tween attached colloids, we demonstrate that we can construct model colloidal systems

that experience sustained self-assembly, oscillations between connected and disconnected

states, or minimal connectivity or cluster formation.

From this, we extend our bead model to a 3D bead-spring/bead chain model to explore

other systems with network-like properties with filament-like components. This includes

microtubules, actin—the main components of the cytoskeleton and lambda DNA from

bacterial cells. These polymers are made up of sub-units—microtubules are made up of
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these proteins called tubulin, actin strands consist of monomers, and DNA of course, con-

sist of nucleotide pairs. To explore these polymer dynamics and reduce the computational

expense, we’re taking a coarse-grained approach by modeling these different polymers as

bead chains. With this bead chain model, we can simulate many types of polymer chains

or networks by tuning the bending rigidity and extensional stiffness parameters. We con-

tinue to implement similar inter-bead/strand interactions by using modified forms of the

Lennard Jones potential to explicitly model mechanisms like depletion interactions and

adhesive protein interactions.

In the dilute actin system undergoing depletion interactions with the help of PEG

polymers, we are still able to maintain the interparticle interactions with a Lennard Jones

potential and by tuning the repulsive and attractive force magnitudes, we effectively

capture depletant interactions implicitly by the Lennard Jones interactions. We continue

to use a piecewise Lennard Jones potential to mimic the adhesive interactions between

the DPS and the DNA strands to show how these components form condensates when

the number density and strength of heterotypic interactions are sufficiently large enough.

For both the PEG and DPS structures, we model these as 3D colloidal spheres, analogous

to the 2D colloid particles in the first and second chapters, since the radii of gyration are

sufficiently small for both.

For the final research project, we examine a system with a 6-dimensional phase space to

broaden our understanding of the cytoskeletal network and actin-microtubule interplay.

2 kinds of filaments, microtubules and actin, with their associated passive crosslinker

proteins, and molecular motors make up the components of this model system. Similar

to the KaiABC proteins in the colloid project, we also use spring forces to characterize

the passive actin and microtubule crosslinkers and motors and tune the binding rates

and probabilities of detachment. While we are currently enhancing the active motors, we

develop another set of simulations exhibit the contractile dynamics that is present in the

experiments but not in the 6-component model. This is achieved by using nucleation sites

to explicitly generate the contractile and extensile behavior in the different networks.
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With all of these different projects, there’s been active feedback between the models

and current experiments being done. Models help us understand the mechanisms and

experiments help us make better models. In particular, for complex structures like the

cytoskeletal composites, the biophysics is not as easily understood, and it can be diffi-

cult to obtain analytical solutions. So the simulations help us go beyond the limitations

of the analytical scaling arguments and characterize their emergent collective and struc-

tural properties in areas of the phase space that can’t be validated by theory. From our

simulations, we gain a better understanding of the experimental design of network-like

soft materials that yield robust and resilient properties. In the model space, we can

explore multi-dimensional parameter spaces by tuning the concentrations of components

like biopolymers, crosslinkers, motors, depletants, and biological timers like clock proteins.

All our simulations are coded in C++ and run on the RIT cluster computing resources.

Post-processing softwares include MATLAB, openGL, Python, and Origin.
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