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Abstract

In the realm of hyperspectral (HS) sub-pixel target detection, the Lin-

ear Mixing Model (LMM) proposes that the macroscopic interaction between

incident light and materials in a scene may be modeled as linear. For individ-

ual pixels in hyperspectral data which contain multiple materials, this means

that they may be accurately represented by a linear combination of the spectra

of those pure materials, which are often called endmembers. However, when

nonlinear mixing, such as shadowing and adjacent reflections, are present, the

foundational assumptions of the LMM are violated and its accuracy in predict-

ing target detection performance is reduced. This thesis aims to investigate

the impact of such nonlinear effects on the performance of the LMM with

regards to a HS sub-pixel target detection task.

To quantify the impact of nonlinear effects, an experimental data col-

lect was completed in September 2022 with a Headwall Nano HSI sensor at

RIT’s Tait Preserve. The Headwall Nano has 272 bands in the visible to

the near-infrared (VNIR) region of the electromagnetic spectrum. This data

collect utilized five novel sub-pixel targets designed by Chase Cañas with pre-

determined fill fractions of 100%, 80%, 60%, 40%, and 20%. In addition to

the collection of experimental data, two types of modeling software were lever-

aged to produce results that were based on the LMM and that utilized a
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path-tracing technique which is better able to deal with nonlinear effects.

The Forecasting and Analysis of Spectroradiometric System Perfor-

mance (FASSP) model was designed to predict HS sub-pixel target detection

performance. The LMM is foundational to FASSP’s systems’ performance

computations and is used by FASSP to model the propagation of spectral

radiance from a user-specified scene through a MODTRAN-informed atmo-

sphere to a user-defined sensor. FASSP relies on a vast array of user inputs to

specify the sensor parameters and post-processing algorithms used to detect

a target spectrum. FASSP also includes parameters that can account for the

shadowing of the target class. As FASSP has been validated in previous stud-

ies, it is a reliable reference that can be used to simulate the performance of

the LMM both when nonlinear effects are and aren’t present.

The Digital Imaging and Remote Sensing Image Generation (DIRSIG)

model was first developed in the 1990s by the Digital Imaging and Remote

Sensing (DIRS) lab at the Chester F. Carlson Center for Imaging Science (CIS)

at the Rochester Institute of Technology (RIT). DIRSIG utilizes a path-tracing

model and the three-dimensional geometry of a scene and the spectral proper-

ties of the materials within to generate radiometrically-accurate synthetic data

that is able to capture nonlinear effects. As a result of the differences in their

modeling paradigms, FASSP and DIRSIG provide two different perspectives

on a systems’ performance analysis of a HS sub-pixel target detection task.

Four setups were designed for the experimental collect to investigate the
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effects of shadowing and non-linear mixing on the performance of the LMM.

These four setups were replicated within FASSP and DIRSIG. Five targets

with varying fill fraction percentages were painted a distinct color and served

as the target class within the scene. To replicate the effects of shadowing,

five panels were constructed and placed to shadow the five targets. To induce

multiple reflections and spectral contamination, five treeshine reflector (TR)

panels were constructed and painted with a bright red paint. To determine the

effectiveness of this contamination and to inform specular material descriptions

in DIRSIG, the Bi-Directional Reflectance Factor (BRF) of the TR panels was

also measured with RIT’s Goniometer at the Rochester Institute of Technology

version Two (GRIT-T) instrument.

The four setups consisted of a base setup with no shadowing or TR

panels, a shadowing panel setup, a TR-S panel setup with both the shadowing

and TR panels, and a TR panel setup. Results were produced in the form

of predicted mean target radiances, Signal-to-Noise-Ratios (SNRs) and tar-

get detection performances in the form of Receiver-Operating Characteristic

(ROC) curves, and Area-Under-the-Curves (AUCs).

By leveraging the three sources of data (experimental, the LMM-based

FASSP, and the path-tracing DIRSIG), a unique parallel analysis was per-

formed to determine the ability of each modeling approach to deal with shad-

owing and adjacent reflections. It was found that FASSP’s ability to accurately

predict mean target radiances, SNRs, and target detection performances was
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degraded dramatically relative to DIRSIG when shadowing was present. Its

accuracy was also degraded when adjacent reflections were present, but not to

the same degree.

Results were also produced to examine the impact of including a de-

scription of the TR panel specularity in the DIRSIG simulations; it was found

that utilizing a Lambertian TR panel resulted in higher mean target radiances

than a specular one, but only when the shadowing was also present. The

results from DIRSIG indicated a high level of accuracy, however, more work

could be conducted to improve the user inputs to ensure optimal settings.
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Chapter 1

Introduction

Since the development of the Airborne Imaging Spectrometer (AIS)

in the early 1980s, remote Hyperspectral Imaging (HSI) sensors have flown

above the Earth and collected high resolution spectral and spatial information

about its surface and atmosphere [10]. These passive optical sensors collect

photons from narrow spectral bands in both the reflective and emissive parts

of the electromagnetic spectrum and use that data to create three-dimensional

hypercubes with spatial width, x, spatial height, y, and spectral depth, λ.

The design of HSI sensors has undergone many improvements over the

years, but despite these iterative steps forward, there exist many complications

that still make the accurate collection of Hyperspectral (HS) information dif-

ficult. The rest of this introduction will provide some of the basics of HSI

(Section 1.1), some relevant previous work which this thesis builds upon (Sec-

tion 1.2), and the objectives and hypothesis of this work (Section 1.3).
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1.1 Fundamentals of Remote Hyperspectral Imaging

Any object that is warmer than absolute zero emits some form of en-

ergy, some of which is in the form of Electromagnetic (EM) radiation. Most

types of passive Electric-Optical and Infrared (EO/IR) sensors collect EM

radiation that has been emitted by either the Sun or by the Earth itself. Ra-

diation which is captured by these sensors is converted to an electrical signal

and then quantized into a Digital Count (DC) through the electrical systems

of the sensor. This conversion process from EM radiation (photons) to elec-

trons is not 100% efficient, and as a result, characterization of this process is

important in order to properly calibrate a sensor. As a part of this conversion

process, all EO/IR sensors possess a Relative Spectral Response (RSR) which

characterizes their sensitivity to various wavelengths of light.

The amount of photons emitted for a given wavelength can be theoret-

ically determined by Planck’s Blackbody Equation, which itself is a function

of temperature and wavelength [8]. For the sun, which has a temperature of

approximately 5800 K, the peak of its blackbody curve resides within the vis-

ible portion of the electromagnetic spectrum, around 500 nanometers (nm).

For the Earth, which has a temperature around 290 K, most of the photons

are emitted in the Midwave Infrared (MWIR) and Longwave Infrared (LWIR)

regions of the EM spectrum [8]. Passive optical sensors collect these emitted

photons and are often designed so that they only capture those photons in

certain regions of the spectrum. Many of these restrictions in wavelength-
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dependent sensitivity is due as well to the type of photodiode which is used -

for example, silicon photodiodes generally have optimal sensitivity to photons

with wavelengths in the visible region of the EM spectrum but lose sensitivity

in the Ultraviolet (UV) and Near-infrared (NIR) regions of the spectrum [25].

Most commercial cameras (such as the one on a cell phone) possess three

spectral bands (red, green, and blue), which are sensitive to EM radiation at

many wavelengths in the visible part of the spectrum. These sensors attempt

to mimic the RSRs of the cones in the average human eye [8]. However,

because the individual bands in an RGB sensor are sensitive to many different

wavelengths of light, these sensors are not generally signal-starved in ‘well-

illuminated’ scenes. As a result, over time, the spatial dimensions of the

individual pixels in these sensors have been reduced and the quantity of pixels

has been increased. This improves the spatial resolution of a sensor which

allows for finer resolution of the spatial irregularities of a scene. However,

because these sensors only have three bands, a given pixel in an RGB sensor

captures very little spectral information about the incident EM radiation.

Hyperspectral imaging (HSI) sensors are often designed with the aim of

increasing the number of spectral bands within a sensor without significantly

reducing the spatial resolution. This is a challenge - when spectral bands are

narrower, it is easier for individual pixels in HSI sensors to become ‘signal-

starved’. To address this, the physical dimensions of the individual pixels

within an HSI sensor are made larger, which in turn reduces the spatial reso-
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lution [8]. As a result of this reduction of spatial resolution, it becomes more

difficult (if not impossible) to resolve objects that are physically smaller than

the size of one projected pixel. This is the defining motivation for research into

the realm of sub-pixel target detection; detecting sub-pixel targets with HSI

sensors often relies on leveraging the additional spectral information within a

pixel, rather than attempting to spatially resolve a target.

The situation is made more complex when dealing with remote sensors

- that is, those sensors that are physically distant from the scene which is to

be imaged. Despite the challenges, the ability to remotely collect HSI data

with high spectral and spatial resolution carries with it many applications.

HSI sensors have been used for a myriad of applications, including geological

analysis and mineral mapping [39], and target detection [27]. The collection

of HSI data may be best described as an ‘imaging chain’, which may broken

down into several parts: material spectroscopy, radiative transfer, imaging

spectrometry, and data processing [8]. These components of the imaging chain

will be discussed in more detail in Chapter 2.

There exists at least two theoretical models that attempt to describe

the structure of HSI data: the Linear Mixing Model (LMM) and the Stochas-

tic Mixture Model (SMM) [8]. Both of these models endeavor to accurately

describe what the interaction of light with materials in a scene looks like to

an HSI sensor. The focus of this thesis is on the LMM, which proposes that,

on a macroscopic scale of meters, the interaction of incident photons with a
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material may be modeled as essentially linear. This means that the HSI data

that is recorded for a given pixel may be represented as a linear combination of

all present pure materials’ spectra weighted by the proportion of the area that

these materials occupy within the ground-projected area of that pixel. These

pure materials are often called endmembers. The accuracy of the LMM is de-

pendent on the validity of some vital assumptions: that the sensor response is

linear, that illumination conditions within a projected pixel are uniform, and

that there exists no nonlinear interactions between the incident light (such as

the light reflected off of one surface before striking another) [8].

As mentioned above, to support the work of this thesis, two types of

modeling software have been used to generate results for our analysis. The

Forecasting and Analysis of Spectroradiometric System Performance (FASSP)

model [23, 24, 42] utilizes the LMM to perform system requirement analyses

with respect to sub-pixel target detection tasks. The most important results

from FASSP that are used for comparison are target radiances and Receiver

Operating Characteristic (ROC) curves. ROC curves depict the ability of a

sensor (and the accompanying data processing) to distinguish between target

pixels (successful detections) and non-target pixels (false alarms). As it is

based on the LMM and has been validated by various tasks, FASSP serves as

an accurate assessment of LMM performance.

The other type of modeling software used in this thesis is the Digi-

tal Imaging and Remote Sensing Image Generation (DIRSIG) model, which

5



was developed and is maintained by RIT’s Digital Imaging and Remote Sens-

ing (DIRS) Lab. DIRSIG has been validated in numerous publications as its

functionalities have been expanded and improved upon since the early 1990s

[11, 28, 33]. DIRSIG utilizes a three-dimensional rendering of a scene with

spectral and specular descriptions of the materials within that scene to gen-

erate radiometrically-accurate synthetic data. To calculate how this scene

‘looks’ to a sensor, DIRISG utilizes a path-tracing model which propagates

EM radiation to generate synthetic data for a wide variety of remote sensing

platforms. As it is not based on the LMM, DIRSIG offers an alternative per-

spective from which it is possible to analyze how the LMM breaks down when

its fundamental assumptions are violated. More background on FASSP and

DIRSIG will be given in Chapter 2.

1.2 Previous Work

There exists a wealth of previous work upon which this thesis aims to

build on. This work can be best broken down into three main types: the

theoretical modeling of HSI data, the development of modeling software for

system analysis and the collection of experimental data with setups that incur

nonlinear impacts on the target spectra.

In their 2012 paper, Bioucas-Dias et. al. examined the multitude of

mixing models which have been used to assist with the problem of spectral

unmixing in HSI data [2]. In their paper, they note the nuances associated with
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defining the endmembers and their associated abundances within a given pixel;

one particularly interesting observation they make is that when examining the

spectra of a specific pixel, the spectrum of a small, but reflectively-bright

object can dominate that of a larger, but less-bright object. They state that

Linear Mixing (LM) holds when the scale of mixing is ‘macroscopic’, that is

when the minimum dimensions of the individual materials are larger than a

few centimeters, as was noted in the 1979 paper from Dr. Robert Singer and

Dr. Thomas McCord when they examined the mixing of spectra of dark and

bright materials on the surface of Mars [37].

Bioucas-Dias et. al. also observe that when nonlinear mixing occurs

due the scattering of light by multiple materials in a scene, it can viewed as

occurring on one of two levels: the classical/multilayered level and the mi-

croscopic level. The classical level examines light on the macroscopic scale;

the multilayered model views these multiple reflections as an infinite sequence

in which the first term is often sufficient for most applications. The micro-

scopic level views nonlinear mixing as occurring when photons are emitted

from molecules of one material and absorbed by the those of another material,

and in turn, emitted again: the apparent albedo of a mixture of materials is

viewed as the mixture of a linear average of the albedos of the constituent

materials. The work presented in this thesis uses the classical level view of

nonlinear mixing.

In 2012, to improve the identification of endmember abundances in
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HSI data, Somers et. al. published their work on the development of a new

endmember extraction algorithm (EEA), which by reducing the variability

of endmember spectra, yielded improved abundance estimations [38]. They

note that currently available automated EEAs fail to deal properly with the

natural variation that exists within and between endmember spectra, and so by

utilizing subsets of the data to better define in-scene variability of endmember

spectra, they can use reduction techniques to improve endmember abundance

estimates.

This thesis aims to build upon the wealth of research behind the LMM

and spectral unmixing by conducting a data collect which in which controlled

nonlinear effects will be imposed. These nonlinear effects will allow us to ex-

amine the independent effects that shadowing and multiple reflections have

on a spectral unmixing task, by attempting to determine whether a known

target endmember exists within a pixel. This research will also be examined

in the data analysis of our FASSP and DIRSIG results. In contrast to [38],

this work does not aim to necessarily improve the identification of endmem-

ber abundances, but to instead understand the impact that various nonlinear

effects have on the ability of a system to determine whether an endmember is

present in a pixel.

As mentioned above, the two types of modeling software that are rele-

vant to this thesis are FASSP and DIRSIG. FASSP was developed first in the

early 2000s by Dr. John Kerekes and Jerrold Baum to predict system perfor-
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mance analysis in the solar reflective portion of the EM spectrum (0.4 microns

to 2.5 microns) [23]; it was initially validated when it accurately predicted tar-

get radiances, sensor SNRs, and detection performance that matched up with

experimental data from HYDICE [32]. FASSP was later expanded to operate

in the thermal-emissive portions of the EM spectrum (2.5 microns out to 14

microns) [24] and was validated with LWIR HSI data collected by SEBASS

[13].

DIRSIG was initially developed in 1990s by the DIRS lab at RIT and

it is currently available in its fifth iteration (DIRSIG5) [11]. The first version

of DIRSIG3 to be publicly-distributed was DIRSIG3 in 2003 [22]. DIRSIG

was first validated with MWIR/LWIR imagery of a parking lot at RIT in two

separate data collects in 1994 and 1995 [4, 28] and later with VIS/NIR/SWIR

HSI data from HYDICE [3]. DIRSIG has also been validated with respect to its

ability to accurately simulate low-light sources [20], spectral texture variability

[34], polarized Bi-directional Reflectance Distribution Functions (BRDFs) [36],

and Light Detection and Ranging (LIDAR) [5], as well as others.

This thesis aims to utilize FASSP and DIRSIG to produce results for a

subpixel target detection task. These results are produced for when nonlinear

effects are and are not present, and as such, should allow for an exploration

into FASSP and DIRSIG accuracy relative to the experimental results for when

nonlinear effects are and are not present. This analysis allows for an exam-

ination of how well a LMM-based model (FASSP) and a path-tracing model
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(DIRSIG) deals with the phenomena of shadowing and multiple reflections.

A plethora of work has also been conducted to collect HSI experimental

data that is relevant to the work in this thesis. In 2010 and 2012, HSI data

was collected in various locations in upstate New York as a part of the Spec-

TIR Hyperspectral Airborne Rochester Experiment (SHARE) effort [9, 15]. In

these collection campaigns, a pair of 3× 3 meter and 2× 2 meter red and blue

felt target panels were placed in nine configurations with varying illumination

conditions and backgrounds. The target panels were placed in the open, in

full shade, and in partial shade; they were also placed on dirt, gravel, roof tar

paper, and grass. Notably, the targets were also placed under and around tree

canopies so as to investigate the impact of the spectral contamination from the

surrounding vegetation (the so-called ‘treeshine effect’). The objective behind

this was to examine the impact of varying illumination conditions, background

setups, and the adjacency effect on a target detection task.

Follow-on research to the SHARE 2010/2012 collect included an analy-

sis of the impacts of varying the illumination conditions and background type

[16]. Ientilucci noted that placing the targets on the gravel versus on the grass

resulted in significant differences; this is attributed to the adjacency effect

from the grass background. Ientilucci also examined the impact of shadowing

on the spectral radiances of the red and blue felt panels and notes a large

magnitude difference between those panels placed out in the open and those

placed in the shade. With the blue panels, specifically, he noticed that the
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target radiances and reflectances are increased in the blue region of the EM

spectrum due to the indirect blue scattered light from the atmosphere for

those targets in shadow. Finally, Ientilucci took a look at the target detection

task and found that unstructured and covariance-based algorithms have the

ability to whiten spectra, and as such, are able to locate those target pixels in

shadow better with the Adaptive Cosine Estimator (ACE) and the Matched

Filter (MF) algorithms than other algorithms.

Subsequent research also included an assessment of the target detec-

tion task, when Ientilucci utilized the SHARE 2010/2012 data to determine

detection capabilities of the targets in the various illumination conditions and

background setups [17]. This analysis was performed on the red and blue felt

target panels on grass, gravel, and roof tar paper backgrounds and in fully

illuminated and heavy and light shadowed areas. Ientilucci utilized several

target detection algorithms including the Spectral Angle Mapper (SAM), the

Matched Filter (MF), and the Adaptive Cosine Estimator (ACE). He also gen-

erated truth masks using ENVI. In addition to validating the SHARE 2012

data with that from the SHARE 2010, it was determined that the target pixels

which were in shadow were more difficult to find than those in the open.

In addition to his other analyses, Ientilluci utilized LIDAR data in con-

junction with HSI data to investigate conduct a target detection analysis by

using the LIDAR data to obtain pixel-specific solar and sky-loading scaling

factors to better estimate the spectra of shadowed targets in the HSI data
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[18]. In his 2012 paper, Ientilucci investigated the impact of reducing and

eliminating direct solar illumination has on a target’s spectral radiance. He

also discussed the target spectral contamination that occurs as a result of

nearby objects/materials. By leveraging the LIDAR point cloud data to gen-

erate per-pixel to estimate estimates of the viewable sky and the direct solar

illumination, Ientilucci was able to improve target detection capabilities of a

shadowed blue felt panel.

In addition to examining the SHARE 2010/2012 data, Ientilucci and

Gartley have also examined the impact of specular behavior (BRDF) on target

detection and found that the spectral character of different materials tended to

converge with one another as the specularity of those materials increased; they

ultimately concluded that BRDF effects could cause potential false alarms in

a target detection task [21].

This work aims to add to the vast repository of HSI data sets that

currently exist. The data set produced by this work is different in several

ways. It imposed controlled nonlinear effects with precisely-constructed and

arranged panels. In addition, the targets used by this work’s data set were

novel sub-pixel targets [7] which were sampled with a high spatial resolution

of approximately 4 cm Ground Sample Distance (GSD).

This work aims to build upon prior work with the SHARE 2010/2012

data by further investigating the impact of various illumination conditions on a

target detection setup by utilizing panels which are painted bright red and are
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intended to contaminate the target panels’ spectra. In contrast to Ientilucci’s

and Gartley’s work investigating the impact of a target’s specularity on its

ability to be detected [21], this thesis aims to investigate the impact of an

adjacent ‘bright’ panel which is meant to contaminate the spectra of the target

panels. This work also aims to build upon Ientilucci’s work attempting to

compensate shadowed pixels with LIDAR data [18], by better investigating

the impact that this shadowing has on a sub-pixel target.

New target detection algorithms have been developed and tried in or-

der to deal with the effects of shadowing and poor illumination. Wiseman and

et. al. presented an enhanced ACE detection algorithm, ACE-shadow, which

utilized scene-based atmospheric correction methods to more accurately model

the shadowed target spectra [40] and ultimately, obtain improved results for

shadowed target pixels. This thesis utilizes the Constrained Energy Minimza-

tion (CEM) algorithm to produce target detection performance statistics.

1.3 Objectives and Hypothesis

This thesis aims to complete the following objectives in order to con-

tribute meaningfully to the existing body of work in this regime and also to

fulfill the requirements of this degree program.

1. Produce a hyperspectral dataset with controlled nonlinear effects (shad-

owing and adjacent reflections) which impact a sub-pixel target detection

task
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2. Evaluate the accuracy of a LMM-based model (FASSP) and a path-

tracing model (DIRSIG) at predicting target radiances and target detec-

tion performance when these nonlinear effects are present

3. Identify limitations of LMM and opportunities to explore further im-

provements for more accurate modeling of nonlinear effects

Based on the previous work discussed above in Section 1.2, it is logi-

cal to hypothesize that both the LMM-based model (FASSP) and the path-

tracing model (DIRSIG) will have reduced accuracies when nonlinear effects

are present in our data, however, due to its modeling approach and its abil-

ity to capture nonlinear effects, it is anticipated that DIRSIG will be able to

more closely approximate the experimental results than FASSP will be able

to. This is also because the LMM relies on there existing only linear interac-

tions between incident light and the materials within a scene, so altering the

scene setup such that there exists nonlinear interactions should, theoretically,

result in inaccurate predictions. DIRSIG can also take as an input an object’s

BRDF, so by including in the DIRSIG simulations a description of relevant

objects’ specularity, DIRSIG has a better chance of accurately predicting the

impact of adjacent reflections on a target object.

The rest of this thesis is organized as follows. Chapter 2 covers much

of the context needed to understand the work in the remainder of this thesis.

Chapter 3 discusses the methods that were used to conduct an experimen-

tal data collect at Rochester Institute of Technology’s (RIT) Tait Preserve in
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September 2022, as well as the methods used to process the resulting exper-

imental data and data from two types of modeling software: the Forecasting

and Analysis of Spectroradiometric System Performance (FASSP) model and

the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model.

Chapter 4 presents the results and analysis from these data sources. Chapters

5 and 6 summarizes this work and outlines future avenues that may be worth-

while to pursue. Finally, the Appendix includes relevant, supplemental data

that is useful to the especially invested reader.
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Chapter 2

Background

This Chapter will discuss all of the context required to explain the work

conducted to fulfill the Objectives described in Section 1.3. For the sake of

clarity, This Chapter will be broken into several sections: Optical Radiation

in Remote Sensing Applications (Section 2.1), Hyperspectral Target Detection

(Section 2.2), and Modeling Software (Section 2.3). Section 2.1 will discuss

the basics of how EM radiation interacts with materials in a scene, radiative

transfer, the science of imaging spectrometry, and data models. Section 2.2

will discuss statistical basis of HS target detection and present some relevant

target detection algorithms. Finally, Section 2.3 will discuss the basics of

DIRSIG and FASSP.

2.1 Optical Radiation in Remote Sensing Applications

As mentioned in Chapter 1, every passive EO/IR system collects elec-

tromagnetic (EM) radiation (light). As this radiation travels around, it in-

teracts with matter in its states (gases, solids, and liquids) in the Earth’s

atmosphere and on its surface. EM radiation is often described with respect

to its wavelength, λ. There exists many different regimes within the EM spec-
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Figure 2.1: The electromagnetic spectrum from 0.4 to 14.0µm. Figure is used
courtesy of Eismann [8].

trum that HSI sensors operate in. The first is the VISible (VIS) region, which

stretches from 0.4 to 0.7 microns (µm) and represents the extent of the EM

spectrum that our eyes can reliably see. Beyond this, there exits the Near-

Infrared (NIR, 0.7 to 1.1µm) region, the Shortwave Infrared (SWIR, 1.1 to

3.0µm) region, the Midwave Infrared (MWIR, 3.0 to 5.0µm) region, and the

Longwave Infrared (LWIR, 5.0 to 14.0µm) region. Figure 2.1 shows the EM

spectrum with the regions described. Incoming EM radiation from the sun

dominates in the VIS, the NIR, and the SWIR regions, and as such, this range

is referred to as the solar reflective region of the spectrum; EM radiation is

also emitted by the Earth and dominates in the LWIR region - this range is

referred to as the thermal emissive region of the spectrum. Due to the unique

challenges present in detecting radiation for each of these regions, sensors are

often designed to be sensitive in either the reflective or the emissive regions,

but not both.

The study of remote HSI can be broken down into 4 basic compo-

nents: material spectroscopy, radiative transfer, imaging spectrometry, and

data models [8]. These parts will be discussed independently in the following
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subsections.

2.1.1 Material Spectroscopy

In the most fundamental sense, material spectroscopy seeks to explain

how the physical makeup of atoms and molecules impact their resulting in-

teraction with EM radiation. Remote HSI assumes that the features of light

that emerge as a result of these interactions may be detected by a remote

platform which is physically distant from the location of these interactions. A

full understanding of the nature of these interactions is only possible from a

quantum mechanics perspective, however, in the realm of HSI, it is helpful to

focus on those properties those that can be detected with either lab-based or

remote sensors, called the apparent spectral properties. These properties con-

sist of spectral reflectance, absorbance, and transmittance for remote sensors.

Of these, reflectance is generally the most important quantity for the purposes

of this thesis, which focuses primarily on the solar reflective portion of the EM

spectrum.

There exists several ways to describe the spectral reflectance of a ma-

terial, however this thesis will focus its discussion on the Bidirectional Re-

flectance Distribution Function (BRDF) and the Directional Hemispherical

Reflectance (DHR). As mentioned in the Introduction (Ch. 1), the BRDF is a

measure of a material’s specularity. To do this, the BRDF relates the incident

irradiance, E(θi, ϕi, λ), to the reflected radiance, L(θr, ϕr, λ), of a material. It
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Figure 2.2: Three cases describing three types of materials: a specular material
which reflects light in a manner consistent with Snell’s Law, a diffuse material
which scatters the light uniformly in all directions, and a general (realistic)
material, which is a combination of the specular and diffuse materials. Figure
is used courtesy of Eismann [8].

has units of sr−1 and is dependent on both the incident and reflected angular

directionality of the irradiance and radiance. The BRDF is defined in Equa-

tion 2.1. A depiction of the BRDF is also shown in Figure 2.2, where three

separate types of materials are shown: a specular material, a diffuse material,

and a general (realistic) material [8]. In HSI, it is often assumed that a mate-

rial is Lambertian: that is, that it reflects light equally in every direction, and

as such, BRDF effects do not need to be considered.

ρBRDF (θr, ϕr, θi, ϕi) =
L(θr, ϕr, λ)

E(θi, ϕi, λ)
(2.1)
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The DHR is a measure of the ratio of the total reflected irradiance to the

incident irradiance; it is only dependent on the incident angular directionality

(θi and ϕi). Its definition with respect to the BRDF is given in Equation 2.2.

ρDHR(θi, ϕi, λ) =

∫ π/2

0

∫ 2π

0

ρBRDF (θr, ϕr, θi, ϕi)cos(θr)sin(θr) dϕrdθr (2.2)

It takes a specialized instrument to measure the BRDF of a material.

One of these is the Goniometer at the Rochester Institute of Technology version

Two (GRIT-T), which was used to measure a closely-related quantity, the

Bi-directional Reflectance Factor (BRF) of several materials relevant to this

thesis [14]. The BRF is the ratio of the measured radiance of a material to a

Spectralon panel with a known radiance [14, 29]. The Spectralon panels are

manufactured by Labsphere, Inc. and are designed to be Lambertian; however

they are not perfect and measurements are made to account for this post-

processing. To make its measurements, GRIT-T uses an ASD FieldSpec4 High

Resolution Spectrometer from Malvern Panalytical. To take into consideration

the directionality of these measurements, the reflected spectrum is measured

at constant intervals over the entire hemisphere above a material.

The spectral DHR is easier to measure and can be done with any Mul-

tispectral Imaging (MSI) or HSI sensor. When a material can be reasonably

assumed to be Lambertian, the relationship ρBRDF (λ) =
ρDHR(λ)

π
is commonly

used to relate the DHR to the BRDF of a material. Figure 2.3 shows the
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detected spectral reflectances of various natural materials from the VIS to the

SWIR regions of the EM spectrum.

Figure 2.3: The spectra of various natural materials in terms of their rela-
tive reflectances. Note the sharp ‘red edge’ of the green vegetation at 0.7µm.
Figure is used courtesy of Ossietzky [35] as a part of the Creative Commons
Attribution-Non-Commercial-ShareAlike 2.0 Generic (CC BY-NC-SA 2.0) li-
cense.

Each of these materials have a distinct spectrum; these differences come

from the unique atomic makeups and physical arrangements that each of these

materials possess. The same material can appear quite dissimilar in varying

circumstances to an HS sensor: the illumination source, the atmosphere, and

BRDF-effects all impact the resulting spectrum. The atmosphere, in particu-

lar, is responsible for a large source of variance and noise in HSI. Fortunately,

various modeling methods have been developed to better understand and com-

pensate for the atmosphere’s effect.
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2.1.2 Radiative Transfer

For an airborne or spaceborne HS sensor, EM radiation must invariably

travel through some portion of the Earth’s atmosphere. During this trip, there

exists a chance of it being absorbed or scattered by the various atmospheric

gases. These interactions are spectral in their nature as they occur at widely-

varying rates for different wavelengths of light.

Atmospheric absorption occurs when a molecule in the atmosphere ab-

sorbs incident radiation. Not all of the gases which are prevalent in the atmo-

sphere readily absorb light. For example, nitrogen, which is by far the most

abundant gas within the atmosphere, absorbs and scatters relatively small

quantities on the incoming radiation, whereas water vapor, carbon dioxide,

ozone, and liquid water all have much more significant impacts [8]. Water

vapor, in particular, can play a severely detrimental impact on remote sensing

capabilities. The location and magnitude of the so-called ‘absorption bands’

created by these gases is dependent on their respective molecular compositions.

Atmospheric scattering occurs when an incoming photon strikes a molecule

in the atmosphere and is deflected from its original course. In general, there

are two basic models which describe the amount of scattering as a function of

wavelength. Rayleigh scattering accurately describes the amount of scatter-

ing in the atmosphere due to small diameter molecules in the atmosphere; it

proposes that the amount of scattering is proportional to 1
λ4 , and as a result,

scattering due to smaller molecules increases to the power of 4 with shorter
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wavelengths [8]. Mie scattering accurately describes the scattering due to

larger molecules within the atmosphere, such as smog and smoke. As such, it

is often more prevalent over cities and regions with large amounts of human

activity [8].

In formal terms, the study of Radiative Transfer (RT) is the study of the

way EM radiation interacts with objects within a scene and the atmosphere,

which ultimately results in the spectral radiance which is measured at the

sensor aperture. There are several mechanisms by which light from a source

may interact with objects in a scene. Figure 2.4 shows several of these for

the solar reflective part (VIS, NIR, and SWIR) of the EM spectrum. As

it is emitted by objects with much cooler temperatures than the sun, EM

radiation from the thermal emissive portion of the EM spectrum has other

mechanisms which are not depicted in Figure 2.4, but those are outside the

scope of this research, which focused solely on the solar reflective portion of

the EM spectrum.

Path 1 depicts the direct solar irradiance component which is the part

of the incoming light that reflects off of the object in the scene and is trans-

mitted through the atmosphere to the sensor aperture. Path 2 shows the

contribution from the indirect solar irradiance, which is scattered by the at-

mosphere, reflects off the object, and is transmitted through the atmosphere

to the sensor. Path 3 shows the contribution from the solar irradiance which

is scattered from a local object before reflecting off of the object of interest
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and being transmitted to the sensor. Path 4 shows the ground-scattered radi-

ance which is scattered by the atmosphere (which possesses a Single-Scattering

Albedo (SSA)), reflects off the object, and is transmitted to the sensor (the

so-called ‘adjacency effect, which plays an important role in two of our exper-

imental setups). Finally, Path 5 shows the upwelling path radiance which is

scattered by the atmosphere directly into the sensor [8].

Figure 2.4: Radiative transfer methods for solar reflective part of the EM
spectrum. Figure is used courtesy of Eismann [8].

Several models exist that accurately simulate the atmospheric effects
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on remotely sensed radiation (often called RT modeling) One of these is the

MODerate-resolution atmospheric TRANsmission and radiance (MODTRAN)

code, which was developed and is maintained by Spectral Sciences, Incorpo-

rated [1]. MODTRAN uses a well-known differential equation which charac-

terizes the transfer of solar radiation through the atmosphere and accepts a

multitude of input parameters to accurately simulate the propagation of light

from the VIS region to the LWIR region of the EM spectrum. Some of these

parameters include the solar zenith angle, the atmospheric conditions (includ-

ing visibility and haze conditions), and the temperature of the Earth. Both

FASSP and DIRSIG utilize a MODTRAN plugin to describe atmospheric ef-

fects.

2.1.3 Imaging Spectrometry

HSI sensors are designed to accurately and precisely convert the at-

sensor spectral radiance to a Digital Count (DC). This initial radiance-to-DC

conversion is possible because of the onboard electronics of the HS sensor; the

hardware required to complete this conversion will be the focus of this section.

However, it should be noted that the DC signal does not need to be the final

product of the sensor; this signal may be converted back to radiance by cali-

brating the sensor with respect to a source with a known radiance. In addition,

the signal may also be converted from radiance to reflectance to compensate

for the various impacts of the atmosphere that were discussed in Section 2.1.2.

The techniques that exist to complete this conversion come in two flavors:
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scene-based methods like the Empirical Line Method (ELM) and QUick At-

mospheric Correction (QUAC), and physics-based methods like ATmospheric

REMoval (ATREM) and Fast Line-of-sight Atmospheric Analysis of Spectral

Hypercubes (FLAASH). Ientilucci and Adler-Golden provide a comprehensive

outline of many of the existing the various atmospheric compensation tech-

niques in their 2019 paper [19].

To capture data and convert the at-aperture radiance to some DC value,

several hardware components are required; these are the scanning mechanism,

the foreoptic (which focuses the light onto a spectrometer), the spectrometer,

and finally, the focal plane array (FPA).

There exists two main types of scanning mechanisms in remote HSI.

The whiskbroom scanning mechanism utilizes the sensor’s forward motion and

a rapidly-oscillating mirror to construct a three-dimensional hypercube of a

scene. With this design, the FPA generally consists of either a single pixel,

but may also consist of a row of pixels that is oriented in the direction of the

platform’s motion (along-track); while the platform moves forward, a mirror

oscillates in a direction that is perpendicular to this motion (cross-track) to

capture a two-dimensional image. While whiskbroom scanners were used in

earlier HSI designs such as the Airborne Visible/Infrared Imaging Spectrome-

ter (AVIRIS) [12] because of their ability to utilize a one-dimensional detector

(a single detector element), the oscillating mirror component utilizes a moving

component that is prone to breaking and requires regular maintenance.
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The most prominent scanning mechanism used today is the pushbroom

scanner. These mechanisms become more commonplace with the develop-

ment of reliable two-dimensional Complementary Metal Oxide Semiconductor

(CMOS) FPAs, which collect the spectra for a row of pixels simultaneously

[8]. Unlike the whiskbroom design, the pushbroom FPA is oriented in the

cross-track dimension and a two-dimensional image is created solely with its

forward motion. Figure 2.5 depicts the manner by which an airborne pushb-

room scanner creates a two-dimensional image.

Perhaps the most important component of the remote HSI sensor is its

spectrometer, which separates out the spectrum of the incident radiance across

the FPA. Spectrometer designs come in two main forms: dispersive prisms or

diffraction gratings, which each carry their respective benefits and drawbacks

and are useful in different regions of the EM spectrum.

Prisms are certainly the older design, and achieve angular dispersion

of the incident light through their material properties. Prisms are able to

confine energy from a monochromatic source of light to a constricted spatial

band with minimal contamination from other wavelengths of light, and as a

result, they don’t require order filtering. However, prisms are limited in their

resolving power, R, when compared to diffraction gratings in the VNIR region

of the EM spectrum [8].

In contrast to the dispersive effect of prisms, gratings separate light

through diffraction. To do this, gratings are designed with precise, periodic
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Figure 2.5: An airborne pushbroom scanner mounted on a drone captures
the scene below. The pushbroom scanner forms a two-dimensional image by
‘pushing’ a one-dimensional array across the scene below. The one-dimensional
array collects data from each projected pixel simultaneously. Figure is used
courtesy of Eismann [8].

features to achieve resolving powers that are often larger than prisms. Due

to the laws of diffraction, however, gratings mix different wavelengths of light,
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and so the use of order-sorting filters is quite common to prevent contamina-

tion between different wavelengths of light. Gratings come in many different

arrangements, with the Offner and Dyson designs being most popular in con-

temporary top-of-line HSI sensors [8]. The Headwall Nano-Hyperspec used in

our experiments uses a Offner diffraction grating design to separate incident

light into 272 bands, with each band possessing a width of approximately 2.2

nanometers (nm) [30]. The Nano utilizes a 2nd order filter to prevent order

mixing.

The hardware components up to this point have collected, focused and

separated out the incident radiation; the FPA is the component which actually

converts this light into a quantized DC. FPAs generally come as a one- or two-

dimensional array of pixels. One-dimensional arrays only allow for collection

of spectral data for a single pixel at a time, and so are limited in their ability

to capture spectral information for a large scene. As a result of this limita-

tion, one-dimensional FPAs necessitated the use of the whiskbroom scanning

mechanism. With improvements to the technology of two-dimensional FPAs,

one-dimensional arrays have become less popular. Two-dimensional FPAs al-

low for the capture of spectral data for an entire row of pixels simultaneously.

Figure 2.6 shows the basic two-dimensional FPA; spectral information for each

pixel is mapped onto a column for that pixel (in the Wy dimension). The rows

consist of individual pixels and run in the Wx dimension. FPA’s are designed

such that a central wavelength λ0 falls on the center of the FPA at y = 0.
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Figure 2.6: The basic layout of a two-dimensional FPA. The spatial dimension
runs along Wx and the spectral dimension along Wy. Figure is used courtesy
of Eismann [8].

As with any hardware component, FPAs suffer from imperfections

(mainly in the form of optical aberrations). However, these can be, and of-

ten are, corrected for in either post-processing the data or by calibrating the
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sensor itself [41].

2.1.4 Data Models

HSI data is often represented in two types of theoretical data models:

statistical and geometric. Each of these models brings their own perspective

of HSI data and make different assumptions.

For an HS sensor with k bands, the statistical data model represents

HSI data as a multidimensional Gaussian Probability Density Function (PDF)

with a mean vector, µ, and a symmetric covariance matrix Σ with size k × k.

In the covariance matrix, the diagonal represents the variance of each band

with respect to itself while the off-diagonal values represent the covariance of

each band with respect to the others.

The geometric data model represents each pixel in an HSI hypercube

as a vector with each element in that vector as the spectral radiance at a

specific wavelength; for a sensor with k bands, each pixel would look like

xi = [Li(λ1) Li(λ2) · · ·Li(λk)]
T , where i is the index of each pixel. Rep-

resenting the data in this way creates allows each pixel to be visualized as a

vector in a k-dimensional space. The geometric data model is the fundamental

basis of the LMM, which is the theoretical foundation that I am seeking to

test. In the geometric representation, if two pure materials (x1 and x2) are

captured by a single pixel, a (k − 1)-dimensional ‘simplex’ is formed. This

simplex represents the theoretical boundary where any linear combination of
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the two pure materials (called endmembers) would reside. This describes the

foundation of Linear Spectral Mixing (LSM), which says that with pure lin-

ear mixing, the signal of a pixel (which captures a combination of two pure

endmembers) may be represented as x = α1x1 + (1 − α1)x2, where α1 is the

abundance of one of the endmembers. The statistical and geometric data rep-

resentations of HSI data are the foundation on which the analysis of HSI data

are performed. One of the most prominent types of analysis in the realm of

HSI data is target detection.

2.2 Hyperspectral Target Detection

HS target detection aims to find objects of interest within HSI by uti-

lizing those objects’ spectral features. It is assumed that these targets are

present relatively rarely in the scene. In HS target detection, it must be de-

cided whether a given pixel, x, contains the target spectrum or not: to do this,

statistical hypotheses testing is used, with which a decision rule is applied to

distinguish all pixels within an HSI data cube into either containing the target

and the background, H1, or only containing the background, H0. Equation

2.3 shows these two decision rules.

x ∈ R0 ⇒ Accept H0

x ∈ R1 ⇒ Accept H1

(2.3)

If decision rule H0 is chosen and the target is indeed absent from that

pixel, it is a correct rejection; likewise, if decision rule H1 is chosen and the
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target is present in that pixel, it is a correct detection. There exists, of course,

error the ability to determine if a pixel contains the target or not. These

errors come in two types: Type 1 and Type 2. Type 2 errors arise when

a pixel is incorrectly classified as not containing the target when it actually

does (a miss) and Type 1 errors occur when we classify a pixel as containing

the target when the target is not present (a false alarm). There exists several

theoretical decision rules to suit different applications. The Neyman-Pearson

(NP) criterion seeks to minimize the probability of false alarms (PFA) while

maximizing the probability of successful detections (PD). By utilizing the

NP criterion the user may determine what an acceptable PFA is and make it

constant (a so-called Constant False Alarm Rate (CFAR)).

In a graphical sense, it is possible to envision the distribution of pixels

into two sets of Gaussian or near-Gaussian PDFs, where one PDF corresponds

with the background pixels and the other with the target pixels. Figure 2.7

shows this depiction. The total PFA may be calculated by integrating the area

right of the NP criterion, (η), of the H0 PDF; the total PD may be calculated

by integrating the area right of η of the H1 PDF.

This trade off between PD and PFA may also be depicted in a Receiver

Operating Characteristic (ROC) curve, in which, the PD is plotted on the

vertical axis and PFA is plotted on the horizontal one; both are on a normalized

scale. Oftentimes with HSI data, the PFA is shown on a logarithmic scale. The

ROC curve is commonly-used method to depict HS detector performance.
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Figure 2.7: A graphical depiction of the hypothesis testing discussed above.
The left PDF above corresponds to the background pixels while the right PDF
corresponds to the target pixels. The critical threshold may be set by the user;
with the NP criterion, it is set to an acceptable, constant value. Figure is used
courtesy of Eismann [8].

To determine whether a pixel actually contains a target or not, a user-

defined ‘truth mask’ must be created, in which the user clearly delineates which

pixels actually contain the target and which do not. The art of defining truth

masks can be subjective, and as a result, two users may define two different

truth masks which will result in different ROC curves, even with the same

data and target spectrum.

2.2.1 Relevant Target Detection Algorithms

Having discussed the theoretical basis of HS target detection, a brief

overview of some of the relevant HS target detection algorithms will be given.

These algorithms may be broken down into two basic categories: full-pixel and

sub-pixel. For the purposes of this thesis, we will focus on the sub-pixel algo-

34



rithms and specifically on those that are based on the stochastic background

models. These stochastic models assume that the spectrum of each pixel may

be represented as a vector in k-dimensional space (for an HS sensor with k

bands) and that the variability of these spectra may be modeled as multivariate

probability distributions [26]. The relevant algorithms that will be discussed

here are the Adaptive-Cosine Estimator (ACE), the Constrained Energy Mini-

mization (CEM) algorithm, and the Spectral Angle Mapper (SAM) algorithm.

Note that all of these algorithms compute normalized scores for every pixel

which grade the likelihood of each pixel in the HSI data possessing the target.

Only results from the CEM algorithm are shown in Section 4.3 of this thesis.

The ACE algorithm models the variability of the background pixels

(those not containing the target) using a mean vector, µb, and a covariance

matrix, Σb, and the known target spectrum as a vector, s. In HS target

detection, it is common for the mean and covariance values of the background

pixels are estimated from the HSI data while the target spectrum is often found

from a known spectral library [26]. Equation 2.4 shows the ACE algorithm,

where x is the pixel spectrum being tested. Note that in every instance of s

and x in Equation 2.4, the mean of the background spectra, µb, is subtracted

off.

rACE(x) =
[(s− µb)

TΣ−1
b (x− µb)]

2

(s− µb)TΣ
−1
b (s− µb)(x− µb)TΣ

−1
b (x− µb)

(2.4)
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The CEM algorithm relies not on the covariance representation of the

background pixels, but on the correlation, R. It is especially important to

the purposes of this thesis, as it is one of the primary algorithms used in the

processing of FASSP. Equation 2.5 depicts the CEM algorithm.

rCEM(x) =
(s− µb)

TR−1(x− µb)

(s− µb)TR−1(s− µb)
(2.5)

The SAM algorithm is magnitude-invariant which means that it treats

‘bright’ signals the same as it does ‘dim’ ones; to find targets in HSI data,

it only compares the shape of a pixel’s spectrum to that of a known target

spectrum. To do this, SAM computes the angle between the two k-dimensional

spectra. This is shown in Equation 2.6. Note that SAM produces smaller

values for those pixels which appear more similar to the known target spectrum

and larger values for those that appear more dissimilar [8].

rSAM(x) = arccos[
(s− µb)

T (x− µb)√
((s− µb)T (s− µb))((x− µb)T (x− µb))

] (2.6)

Only the CEM algorithm was utilized for this research; its application

will be discussed in more detail in Section 3. A more comprehensive explana-

tion and list of HS target detection algorithms has been explored by Manolakis

and Shaw [26].
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2.3 Modeling Software

To accurately model the challenges facing HSI in remote sensing tasks,

software has been developed to understand and predict sensor performance.

Among these (and pertinent to this research) is the Digital Imaging and Re-

mote Sensing Image Generation (DIRSIG) developed by the Digital Imaging

and Remote Sensing (DIRS) group at the Rochester Institute of Technology’s

Carlson Center for Imaging Science [11]. This program utilizes atmospheric

modeling data from MODTRAN, which itself was created by Spectral Sciences

Incorporated [1]. The current iteration of DIRSIG, DIRSIG5, allows for cus-

tom scene generation with accurate reflectance statistics and synthetic data

generation for many different sensing modalities.

Another program is the Forecasting and Analysis of Spectroradiomet-

ric System Performance model (FASSP). Unlike the path-tracing paradigm of

DIRSIG, FASSP relies on the LMM as the foundational model in its compu-

tations. As mentioned in Section 1.2, FASSP was first developed by Dr. John

Kerekes and Jerrold Baum and introduced in their 2002 paper [23, 24]. FASSP

uses statistical reflectance and emissivity characteristics of a scene, which it

then propagates through the atmosphere (which is described using user inputs)

to a user-defined sensor, where various results are generated to illustrate target

detection performance. FASSP is especially adept at generating ROC curves

and predicted target radiances. DIRSIG and FASSP are explained more in

their respective subsections below.
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2.3.1 DIRSIG

DIRSIG utilizes a unified path-tracing method to generate a three-

dimensional simulation environment that is capable of synthetically generating

data for various sensing modalities [11]. Its development began in the 1990s;

DIRSIG5 is the latest iteration of the program and currently possesses the

capability to generate datasets for hardware trade studies and algorithm per-

formance analysis in a multitude of operating regimes (including Multispectral

Imaging (MSI), HSI, LIght Detection and Ranging (LIDAR), and Synthetic

Aperture Radar (SAR)). DIRSIG5’s path-tracing method constructs the path

of light backwards from a sensor aperture, through a scene, and back to its

source (i.e. the sun), or to a terminating event (i.e. being absorbed in the

atmosphere).

Generating a scene in DIRSIG requires a scene model which incorpo-

rates the geometry of objects within a scene. For an urban scene, for exam-

ple, this would involve constructing three-dimensional polygon objects for the

buildings; these objects can then be instanced within the scene at specific lo-

cations and times. The scene model also incorporates an optical description

of the materials present within the scene. These material properties can in-

clude spectral reflectance, emissivity, and transmission descriptions, BRDFs,

and thermodynamic characteristics. The material properties can then be as-

sociated with the three-dimensional geometry to describe specific facets. In

addition, DIRSIG supports a variety of tools that can take MSI or HSI data

38



and utilize the spatial and spectral characteristics of this data to project it

onto a scene’s geometry.

DIRSIG also relies on a sensor model, which utilizes a description of

a remote sensor to determine what the scene would ‘look like’ to that sensor.

This model is platform-centric, meaning that FPAs are attached onto a vehicle

with a defined location and motion. The FPAs may be defined with a variety

of independent characteristics, including Spectral Response Functions (SRFs),

Point Spread Functions (PSFs), band descriptions, ‘unprogrammed motion’

(like platform jitter), and sensor response. DIRSIG also incorporates data

from MODTRAN to compute the atmospheric effects on the final product

[11].

DIRSIG utilizes various plug-ins, which can be enabled to use vari-

ous features (hopefully for increased simulation accuracy). Some of the most

important relevant to this research are:

1. MODTRAN plug-in: allows for user descriptions of accurate modeling

of the atmosphere scattering and absorption

2. Solar and Lunar Ephemeris plug-in: allows for user descriptions

of temporally-static or dynamic scenes with time-specific illumination

conditions

3. FASSP plug-in: allows for the incorporation of FASSP sensor descrip-

tions, which is incredibly pertinent to our DIRSIG and FASSP data
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comparisons (more will be given on this in Section 3.2.2)

These plug-ins work in coordination with each other: for example, the Solar

and Lunar Ephemeris plug-in would take as an input as user-defined time and

date, calculate the resulting solar and lunar zenith and azimuth angles, and

use that to inform the MODTRAN runs, and thus the atmospheric conditions.

In addition to these plug-ins, the ClassicEmissivity model was uti-

lized to include a simple description of the Treeshine Reflector (TR) panel

BRF in the DIRSIG simulations. This model takes as an input a ‘.ems’ file

type and utilizes a simple scalar quantity to describe how specular a material

is. Section 3.2.2 describes the work with this model in more detail.

2.3.2 FASSP

FASSP was first developed to enhance remote sensor system design and

functionality [23]. It is an end-to-end analytical model that takes as inputs

a description of the scene, the sensor parameters, and the desired processing

settings. Using these inputs, FASSP uses statistical models to predict detector

performance by applying analytical equations [23] that utilize the core assump-

tions of the LMM. FASSP is specifically adept at modeling the detection of

sub-pixel targets in a multi-background scene. Figure 2.8 depicts a block dia-

gram of the FASSP modeling software. The diagram shows the computations

performed on the spectral mean and covariances from the scene description as

they are propagated to the sensor model, and finally, to the processing model.
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The model can most simply broken down into three components: the scene,

the sensor, and the processing.

Figure 2.8: Block diagram of the FASSP modeling software which shows the
flow of spectral mean and covariances from the scene model to the sensor
model, and finally, to the processing model. Figure is used courtesy of Kerekes
and Baum [23].

The scene model consists of a single target class and M background

classes. The user inputs a proportion of the scene filled by each background

class and the fraction of a pixel filled by the target class (0 < fT ≤ 1) that

possesses a direct line-of-sight to the sensor. Another user input, 0 ≤ fS ≤ 1,

denotes how much of the target is covered by shadow. If fS > 0, the fraction

of the sky’s hemisphere that is fully visible from the target, fsky must also
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be specified. These shadowing variables allow for the specification of a scene

where the downwelling sky irradiance on the target is partially blocked. In

this situation, the amount of diffuse radiance on the target is reduced pro-

portionally by fsky. FASSP assumes that the target is somewhere in one

of the background classes, which is denoted m∗ to differentiate it from the

other background classes. Each of these classes is described by their first and

second-order spectral reflectance statistics: their means and variances. FASSP

assumes a simple area-weighted LMM for the sub-pixel target and does not

simulate a specific spatial layout.

To accurately describe the target and background classes, spectral re-

flectance statistics must be provided for each class. These statistics consist

of a spectral mean reflectance vector ρ and a reflectance spectral covariance

matrix, Σρ of size K × K. FASSP assumes that the reflectance distribution

of each background or target is unimodal, and as a result, it is sometimes

necessary to break up individual background classes with more than one mode

into multiple classes to ensure unimodal behavior. FASSP uses MODTRAN

to compute atmospheric effects for each of the M background classes and also

for the total scene average.

FASSP computes the mean spectral radiance and spectral radiance co-

variance matrices for each of the M background classes. FASSP also computes

the mean and covariance radiance for the target class. It should be noted that

the calculations that FASSP does to compute the mean spectral radiance for
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either the fully-illuminated target or for the target which is either partially

or fully shadowed are different so that it can better consider the impact of

shadowing and the reduction of illumination from that portion of the sky in

its calculations.

The FASSP sensor model takes as an input the spectral radiance statis-

tics that were computed from the scene and applies sensor effects to produce a

form of the scene that would be imaged by an MSI or HSI sensor. These sensor

effects include radiometric noise and the sensor spectral response. The radio-

metric noise calculations include calculations for total detector noise, which are

scaled by a user-specified noise factor gn before being added to the diagonals

of the spectral covariance matrices; they also include the relative calibration

error, quantization noise to account for errors in the analog-to-digital con-

version. The Signal-to-Noise Ratio (SNR) is then calculated for each of the

background classes and the target class [23].

The final component of the FASSP modeling software is the processing

model. There are three facets of the processing model: atmospheric compen-

sation, feature selection, and performance metrics. The user has the option

to determine whether they want the spectral radiance output from the sen-

sor model to be atmospherically compensated for via the ELM discussed in

Section 2.1.3.

Within the feature selection, the user also has the option to specify

whether they want to include all bands or reduce them to avoid specific spectral
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regions (like water absorption bands), whether they want to utilize principle

components via eigenvector decomposition, and whether they want to average

bands in order to simulate a MSI sensor.

There exists three algorithms to determine the performance of the sen-

sor at the subpixel target detection task: Spectral Characterization Accuracy

(SCA), the target detection performance (as a result of applying one of the

target detection algorithms discussed in the Section 2.2.1) and total error.

The SCA measures how well the spectral reflectance can be retrieved from

the sensor data and is calculated as the mean difference between the com-

puted surface reflectance and the known reflectance; the SCA also includes

the standard deviation for each spectral channel as well.

To graphically show target detection performance, FASSP generates

ROC curves by plotting the PDs versus the PFAs. To generate ROC curves,

FASSP has several options for target detection algorithms: the one important

for the scope of this thesis is the Constrained Energy Minimization (CEM)

algorithm. FASSP assumes that the output of these algorithms is a normally-

distribution, which is generally justified by the Central Limit Theorem when

there exists a large enough number of random variables.

The total error metric approximates the total error as Pe ≈ 1
2
(1−PD)+

1
2
PFA when there exists a two-class equal a priori probability case. It serves

as a single scalar that can be utilized for relative performance comparisons

and does not distinguish between errors that are due to false alarms or missed
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detections [23].

As mentioned in Section 1.2, FASSP has been validated in several stud-

ies, including with data from a collection performed with the Hyperspectral

Digital Imagery Collection Experiment (HYDICE) sensor in 1995 [32], in which

it predicted mean spectral radiance curves to within 5% to 10% of the mea-

sured values. Additional information on FASSP can be found in Kerekes’ and

Baum’s 2002 and 2005 papers [23, 24].
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Chapter 3

Methods

In this Chapter, the design of the testing setups used in the September

2022 Tait Preserve data collect and the methods used to process the result-

ing experimental data, as well as the data from FASSP and DIRSIG will be

explained.

3.1 Tait Preserve Testing Setup

In order to test the impact of nonlinear effects on the LMM, four testing

setups were designed in order to collect empirical data with the Headwall

Nano-Hyperspec HSI sensor at RIT’s Tait Preserve in Rochester, New York

on September 9, 2022. Figure 3.1 shows two views of Tait Preserve from a DJI

Mavic.

The left image is more zoomed-out and shows the main building as well

as a gardening area, some fields, and the adjacent lake. The red square in this

image is the area of interest and is shown more closely in the right image.

The right image shows the base setup, which includes the five green sub-pixel

targets placed on the gravel, as well as some felt panels below that and two
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Figure 3.1: Two views from above of Tait Preserve on the day of our data
collect from a DJI Mavic. The left image is more zoomed-out; the right image
shows a close-up (deliminated by the red box in the left image) of the first of
the four experimental setups: the base setup.

permaflect panels above them. The other three experimental setups were all

variations of this one, incorporating additional panels which either shadowing

or spectrally contaminated the green sub-pixel target panels.

Each of these setups included five sub-pixel targets that were designed

to have specific pixel fill fractions (FF) for a GSD of approximately 4.5 cen-

timeters. The targets were designed to have FF of 100%, 80%, 60%, 40%,

and 20% and measured 45.28 inches by 33.71 inches, with the exception of

the 100% target, which measured 3 foot by 4 foot. The sub-pixel targets were

painted green on one side and gray on the other; only the green side is relevant

to this thesis. These novel targets were designed and constructed by Chase

Cañas and are an enlarged version of an earlier design [6]. A close-up of the

47



Figure 3.2: The five subpixel FF targets designed by Chase Cañas and con-
structed by he and Colin Maloney in September 2022 prior to the data collect.

targets after painting are shown in Figure 3.2.

In addition to these targets, two sets of five panels were constructed

from Oriented Strand Board (OSB) to provide the desired nonlinear effects.

The first set of panels were Shadowing (S) panels and were designed to be

stood up vertically in order to shadow the entire area of the sub-pixel targets.

The second set of panels constructed were the Treeshine Reflector (TR) panels

which were painted a bright red color. A semi-matte paint was chosen in an

attempt to reduce the specular nature of the TR panel and to increase the

probability of producing spectral contamination in the detected spectra of the

green targets. The intent with the TR panels was to contaminate the spectra
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Figure 3.3: The four target setups used at Tait Preserve for the data collect.
The top-left image shows the base setup of green sub-pixel targets with no
shadowing or TR panels. The 20% FF target is closest in the field-of-view
(FOV). The top-right image shows the shadowing panel setup. The bottom-
left image shows the TR panel and shadowing panel (TR-S) setup. The TR
panel setup is shown in the bottom-right image. The spectral contamination
from the TR panel may be seen on the shadowing panel in the bottom-left
image.
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of the green targets, much like tree leaves and vegetation often contaminate the

spectra of objects near them (thus inspiring the term, the ‘treeshine effect’). To

accomplish this, the panels needed to reflect the direct and indirect components

of light onto the target panels through both specular and diffuse means. All of

these panels measured 4 foot by 4 foot; these dimensions were chosen for two

reasons: to ensure that the shadowing panels were large enough to completely

shadow the targeting panels with the predetermined solar zenith angle for the

day the data collect would take place and also for ease of construction.

There were four testing setups designed using the TR panels, the shad-

owing panels, and the sub-pixel targets. These setups are shown in Figure 3.3,

which depicts a ground-level view of the four setups on the day of the collect.

1. Base Setup: Green sub-pixel targets laid out on gravel

2. Shadowing Panel Setup: Shadowing panels were placed to fully shadow

the green targets

3. Treeshine Reflector and Shadowing Panel (TR-S) Setup: Shad-

owing panels were left in place and TR panels were set up on opposite

side of target

4. Treeshine Reflector (TR) Setup: TR panels left in place and shad-

owing panels were removed, allowing targets to be in direct solar illumi-

nation again
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With the experimental design process of the work completed, the drone

flights at Tait Preserve were completed on September 9, 2022. Eleven drone

flights were completed in total, but only the four with the described setups

were relevant to this thesis. The sensor that was used to collect all of the HSI

data was the Headwall Hyperspec Nano, which possesses 272 bands covering

the EM spectrum from approximately 400 nm to 1000 nm. The weather on

the day of the data collect was very clear and sunny; towards the latter end of

the missions, however, some clouds began to arrive and so flights were timed

when the sun was not blocked.

The flights were all conducted from 10:31 to 13:30 Eastern Time (ET),

during which time the solar zenith angle ranged from approximately 46◦ to 53◦.

As the sun moved in the sky (and the projected shadows from the shadowing

panels changed), it become necessary to rotate the sub-pixel targets so that

they continued to be shadowed to the greatest extent possible throughout the

various target setups. This rotation is visible in the top right, bottom left,

and bottom right images of Figure 3.3. One consequence of the design of

the sub-pixel targets, however, was that the predetermined target FF could

be obtained no matter how the targets are rotated, so this slight rotation

throughout the day shouldn’t have impacted our data substantially.

As mentioned above, the TR panel was painted with a matte paint and

with a paint roller with a 1
2
-inch nap so as to ensure that it was successful in

contaminating the spectrum of the adjacent sub-pixel targets. However, when
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Figure 3.4: The BRF of the Treeshine Reflector (TR) panel which shows that
the TR panel is largely ‘specular’; this behavior is evidenced by the region of
large reflectivity (the bright red, yellow, and green area) on the bottom of the
diagram, where light is reflected in accordance with the law of reflection [8].
On this diagram, the light source was placed where the black circle is on the
center top. Note that the BRF is a unit-less quantity.

it was noticed that the TR panel appeared to be quite specular on the day

of the data collect, the plan was made to quantify the specular nature of the

TR panel Bi-directional Reflectance Factor (BRF) using RIT’s goniometer

(GRIT-T), which was discussed above in Section 2.1. These measurements

were performed with a light source placed at 46.7◦ above the horizon, which
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was what the solar zenith angle was approximately 11:30 ET, when the TR-S

setup was being imaged in our drone flights.

As shown in Figure 3.4, the measured BRF of the TR panel shows that

it still possessed a large specular lobe. This figure shows the BRF measured

at 750 nm, which was representative of the panel’s behavior at all wavelengths

from 400 nm to 2500 nm.

The BRF is a measurement that is similar to the BRDF discussed in

Sections 1.2 and 2.1.1. It is defined as the ratio of the measured spectra defined

by the spectra that would have been measured from a perfectly Lambertian

surface; as it is defined as the ratio of two radiances, it is a unit-less quantity.

The specular nature of the TR panel may also be seen in the TR-S and TR

setups of Figure 3.3.

In addition to the collection of HSI data, a HR-1024i field spectrometer

from Spectra Vista Corp (SVC), was used to collect ‘ground truth’ spectral

data for all of the target panels, as well as colored felt panels and Spectralon

panels, and many of the other materials in the scene (the gravel, grass, con-

crete, and metal and wood docks nearby). The SVC measures spectral ra-

diance; the reflectance is obtained by ratioing the measured radiance to a

‘known’ Spectralon calibration panel. This data was collected with a 4 deg

lens. Figure 3.5 shows some of the SVC measurements of felt panels from the

day of the data collect from various felt panels that were placed on the gravel

path at Tait Preserve for calibration purposes.
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Figure 3.5: Some of the measured reflectance spectra from the felt panels
nearby the targets in our September data collect. These measurements were
taken by the HR-1024i field spectrometer from the SVC.

3.2 Data Processing Paradigms

The goal in processing the data from each of data sources (experimental,

FASSP, and DIRSIG) was to process the data in such a way as to have as

comparable results as possible from each source. To do this, the operations

of FASSP were emulated in the processing of our DIRSIG and experimental

data processing to the greatest extent possible. This is because altering the

operations of FASSP (which are mostly done ‘under the hood’, and as such, are

somewhat inaccessible) was seen as excessively laborious and not conducive to

the successful completion of the objectives of this research. Only by closely
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aligning the data processing techniques could reasonably-comparable results

be obtained.

This thesis aimed to produce two main types of results for comparison:

target radiances and target detection performances in the form of Receiver-

Operating Characteristic (ROC) curves. Both of these results, and the high-

level methods to obtain them from each data source are shown in Figure 3.6.

These types of results were chosen for two main reasons: both are good indica-

tors of model performance in predicting sub-pixel target detection performance

and both are produced by FASSP without any requisite processing. The tar-

get radiances indicate the accuracy of the LMM-based model (FASSP) and the

path-tracing model (DIRSIG) in predicting what the spectrum of the green

Figure 3.6: Data workflow from the three sources. In contrast to the raw
data that was collected from the data collect and DIRSIG, most of FASSP’s
operation are completed under the hood, and as such, the results shown in
Chapter 4 were produced automatically.
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target ‘looks like’ to the sensor. These predictions can also be compared to

the empirical results - that is, what the Headwall Nano detected on the day

of the data collect. On the other hand, the ROC curves quantify the models’

accuracy at predicting target detection performance.

As mentioned in Section 2.2, the target detection algorithm that was

utilized in the processing of the Experimental and DIRSIG data was the Con-

strained Energy Minimization (CEM). The CEM was chosen because it is

an oft-used measure of detection performance and it is already coded up in

FASSP.

For all of the data sources, the target detection performance analysis

was performed in the reflectance domain with the target spectrum taken as

the average of the 100% green target ROI from the base setup from each data

source. The transformation to the reflectance domain was performed in a

unique manner for each data source.

For FASSP, this was computed under the hood using its internal pro-

cesses which will not be explored in depth here but can be found in [23]. For

the experimental data, the Headwall Nano’s in-house calibration process was

used to convert from raw DCs to reflectance. This process utilizes a 1-point

ELM process with a single panel (with known radiance and reflectance) that

is imaged prior to each flight. Re-sampling and geo-rectification of the data

was also completed prior to any processing. This process was also used to

convert the experimental DCs to spectral radiance. The DIRSIG data genera-
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tion process utilized a new plug-in created by Scott Brown of DIRS, called the

‘FASSP plug-in’. Generating synthetic data with this plug-in did not follow

conventional DIRSIG practices, and as a result, only raw DCs were produced

out of DIRSIG. To convert these DCs to spectral radiance and reflectance, the

linear relationships (least-squares parameters) between the experimental DCs

and radiance and reflectance were produced for each of the four setups and

used to convert the DIRSIG DCs to reflectance and radiance for comparison.

This process will be detailed more in Section 3.2.2.

It is important to note, that as a result of atmospherically compensating

Figure 3.7: Average spectral reflectances of 100% green target ROI from
DIRSIG data (dashed lines) and experimental data (solid lines) for each of
the four setups.
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all of our data in the manner that we did, although we did compensate the

pixels belonging to the sub-pixel targets in the three setups with nonlinear

effects (the shadowing panel setup, the TR-S panel setup, and the TR panel

setup) in the same manner as those target pixels in the base setup, we should

not have if we were aiming to achieve optimal target detection performance.

These pixels experience different illumination conditions compared to those in

the base setup and so compensating them in the same way effectively deals

them a bad hand - especially because the target spectrum used for each of the

setups was the average of the 100% green target ROI from the base setup for

each of the data sources.

A better way to compensate these pixels would be to take into consider-

ation the unique illumination conditions they each experienced. In Section 1.2,

one such method was described where LIDAR data was leveraged to determine

pixel-specific solar and sky-loading scaling factors to adjust the compensation

approach accordingly [18]. As mentioned, the intent of this work was on com-

paring the accuracy of the different methodologies (Experimental, FASSP, and

DIRSIG data), not to optimize target detection performance.

Figure 3.7 shows the predicted target reflectances from DIRSIG (dashed

lines) and from the experimental data (solid lines) for each of the four setups;

from it, the reader can see just how much the average target reflectance of

the 100% green target ROI changes for each of the setups, both in shape

and in magnitude. Using the reflectance spectra shown by the red lines (base
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setup) to find the other spectra is understandably not optimal and will result

in reduced performance for our setups with imposed nonlinear effects.

3.2.1 Experimental Data Processing

Following the Headwall calibration process, there were three nearly-

identical forms of our experimental data in different domains: DC, reflectance,

and radiance. To process the experimental data from the data collect, truth

masks were first generated in ENVI, an image processing program from L3Harris

GeoSpatial Solutions, Inc. for each of the four experimental setups described

above. These truth masks contained ROIs for each of the five sub-pixel tar-

gets, a guard region around these targets to prevent unnecessary false alarms,

and 14 natural and man-made materials in the scene. These 14 materials

are specified in Table 3.1. Due to some sampling differences between the

DC/reflectance domains and the radiance domain, it was necessary to gen-

erate separate truth masks for each. As a result, six total truth masks (two

extra for each the shadowing and TR-S setups where the tolerances were a bit

tighter) were made.

The reflectance statistics from the Headwall Nano from the base setup

for the 14 natural and man-made background classes and the single 100% green

target class were used to inform its computations. As discussed in Section 3.2,

the target spectrum was taken as an average of the 100% green target class:

the target radiance results that will be shown in Section 4 are simply the
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Figure 3.8: Screenshot in ENVI showing the base setup from the experimental
data. Truth masks like this one were generated for the other setups. This
screenshot shows the response from three bands of the Headwall Nano which
approximations of a RGB sensor. 20 ROIs were specified for each setup: 5 for
each of the sub-pixel FF targets, a guard region, and 14 others consisting of
various man-made and natural materials in the scene. These are specified in
Table 3.1.

average of this class from the radiance domain of experimental data.

There were a couple of extra steps to compute our target detection

performance for the experimental results. To get the best comparison possible

to the FASSP data processing (which will be discussed in Section 3.2.3, our

target detection algorithm was not run over the entire HSI data cube; instead

the truth masks that were created for the reflectance domain were used to

create a new 1 × N × 272 image chip where each of the N pixels was simply

extracted from those ROIs discussed above. Then, the average background

for each of the 272 bands was subtracted off of every pixel - these background
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averages were also subtracted off of the target spectrum. When computing the

score for the CEM algorithm, the correlation matrix, R, was then computed

using the computation R = x·xT and the inverse was calculated with the built-

in NumPy matrix inverse tool (numpy.linalg.inv) and the score was computing

using the equation given in Section 2.2.

From this, ROC curves were generated using the truth masks for each

of the setups and by sorting the algorithm scores from most target-like to

least target-like and comparing those pixels with the truth masks to determine

whether the algorithm had successfully detected a target pixel (detection) or

incorrectly assumed a target when only the background was present (false

alarm). Area-Under-the-Curve (AUC) plots were also generated using the

ROC curve data for an additional level of comparison between the three data

types. Percent differences between the experimental data and DIRSIG and

FASSP were also calculated for the mean target radiances and ROC curves.

3.2.2 DIRSIG Data Processing

The DIRSIG data processing methodology began with the construction

of a three-dimensional scene of Tait Preserve. The final Tait DIRSIG scene

contains three-dimensional geometry which describe the geography of the local

area around where the sub-pixel targets were placed, reflectance statistics that

describe the spectral properties of the many natural and man-made materials

in the Tait area and their natural variation, an atmospheric model that closely
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resembles that of the atmospheric conditions that were present when the data

collect was conducted, and finally, a sensor model which is a relatively accurate

approximation of the Headwall Nano. This process underwent many iterations

to ensure accuracy with the experimental parameters and took approximately 7

months to work out all the bugs and ensure good spatial and spectral validation

with the empirical data.

In the DIRSIG simulations, a description of the specular nature of the

TR Panel was also included by utilizing the ‘ClassicEmissivity’ model. This

model allowed for a description of the specular nature of the TR panel with a

scalar value. In the DIRSIG simulations, this value was set to 0.9, indicating

a highly specular panel that aligns with the measurements from the GRIT-T

shown in Figure 3.4.

As a part of this development process, as mentioned in Sections 2.3.1

and 3.2, a new DIRSIG plug-in, the ‘FASSP plug-in’ was developed by Scott

Brown to allow for an easy transfer of scene, atmosphere, and sensor descrip-

tions from the pre-existing FASSP descriptions to DIRSIG. Figure 3.9 shows

two screenshots of the FASSP sensor plug-in for DIRSIG. The left image shows

a screenshot of some of the scene, sensor, and atmosphere parameters that are

being inputted into DIRSIG to describe those conditions; the right shows a

screenshot of the FASSP sensor description used to describe the spectral re-

sponse and noise characteristics of the Headwall Nano. Of particular interest

in the right image is the optical transmission variable column (‘opt trans’)
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Figure 3.9: Two screenshots of the FASSP sensor plug-in used to inform the
DIRSIG simulations. The left shows a screenshot of the scene, sensor, and
atmosphere descriptions that are being inputted into DIRSIG for the base
setup; the right shows a screenshot of the FASSP sensor description used to
describe the spectral response and noise characteristics of the Headwall Nano.
Of particular interest is the ‘opt trans’ column, which was updated to get an
accurate approximation of the real Headwall Nano sensor.

which describes the spectral transmission of light in the sensor for every band.

The FASSP sensor plug-in enabled a simple transfer of the scene, sensor,

and atmosphere descriptions to inform the DIRSIG computations. As a result

of the novelty of the FASSP sensor plug-in, however, there did not exist a

method to produce spectral radiances and reflectances out of DIRSIG. To

transfer the raw DIRSIG DCs to the radiance and reflectance domains, a two-
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Figure 3.10: Workflow showing the process to generate comparable results
for predicted mean target radiances, SNRs, and target detection performance
(ROC curves and AUCs) from DIRSIG.

step process was utilized to ensure that it was as true to the experimental

data as possible; in following this process, several assumptions were made.

This data workflow process is shown graphically in Figure 3.10.

The first step in the DIRSIG data curation process was to check that

the atmospheric model that was being used in DIRSIG closely emulated the

conditions of the data collect. By utilizing the NewAtmosphere plug-in within

DIRSIG and inputting the correct dates/times and predicted atmosphere trans-

mission values (rural 5 km atmosphere model with 25 km visibility), the pre-

dicted atmospheric conditions were found to match up with the empirical ones.

Note that these conditions were determined, in part, from FASSP through sev-

eral iterations of testing.

Having ensured the correct atmospheric conditions, the predicted DIRSIG
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DCs of a light gray felt panel in the Tait Scene were compared to the same

felt panel in the experimental DC data. When this was done, it was observed

that after subtracting off the Headwall Nano dark noise, DIRSIG predicted

higher DCs at every wavelength than what evident in the experimental data.

By making the assumption that DIRSIG should be producing the same DCs

for this felt panel (in the base setup with no nonlinear effects), a simple ‘ratio’-

ing of the DIRSIG predicted DC of the light gray felt panel in the scene was

used to update the optical transmission (‘opt trans’) variable of the Headwall

Nano sensor description shown on the right image of Figure 3.9 which was in-

forming the DIRSIG calculations. Upon doing this, it was possible to produce

accurate predictions from DIRSIG for the various materials in the scene in the

now-corrected DC domain.

Figure 3.11 shows four renderings from DIRSIG of the four experimen-

tal setups. These renderings were completed with a basic RGB sensor with

only three bands to aid with visualization purposes, but with comparison to

the experimental data, they also show the radiometric-accuracy that DIRSIG

is capable of producing.

Figure 3.12 shows the full extent of the DIRSIG-generated base setup

in ENVI in the DC domain. The sub-pixel targets, felt panels, and spectralon

panels are visible on the gravel path, but note that the DIRSIG scene is rotated

differently than the experimental data.

To convert from the corrected DC domain to radiance and reflectance, a
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least squares fit conversion (slopes and offsets) between the experimental DCs

and radiances and reflectances were used to convert the corrected DIRSIG

DCs to radiance and reflectance. This method utilized four felt panels in the

scene (white, light gray, dark gray, and black), which allowed for a high fidelity

approximation of the linear relationships (slope and offset) between DCs and

radiance and DCs and reflectance with which to convert the corrected DIRSIG

Figure 3.11: Screenshots showing a DIRSIG rendering of the four setups. Top
left is the base setup, top right is the shadowing setup, bottom left is the TR-S
setup, and bottom right is the TR setup.
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Figure 3.12: Screenshot of the full extent of the DIRSIG-generated base setup
in ENVI. Note that the three-dimensional rendering of Tait Preserve is larger
than this, but DIRSIG only produces data for what the sensor would have
seen given flight and location inputs.

DCs to these other domains for analysis and comparison.

From this point forward, the processing of the DIRSIG data was com-

puted in much the same way as the experimental data. A single truth mask

was generated for each of the four DIRSIG-generated scenes (for each of the

setups). The reason that only one truth mask was needed for the DIRSIG

data compared to the six for the experimental data is because the DIRSIG
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data lacked geo-rectification and so a single truth mask could accurately be

used for all the setups. Upon generating the truth mask, the mean target

radiances for each of the setups was taken as the average of the 100% green

target ROI, and the target detection performance analysis was performed in

the reflectance domain in the same manner as the experimental data. AUC

curves and percent differences were also produced. The results for all of these

and an accompanying discussion is given in Section 4.

It was discovered in the processing of the DIRSIG data that the setting

of the so-called ‘convergence’ parameter was essential in producing accurate

mean target radiances (and Signal-to-Noise Ratios (SNRs)) for the DIRSIG

data. The ‘convergence’ parameter takes as input three variables: a minimum

number of samples per pixel, a maximum number of samples per pixel, and a

minimum radiance threshold. DIRSIG uses these variables to determine just

how many paths of light it should trace for a given pixel in the scene.

If these variables are not set appropriately, the pixel-to-pixel variability

in the resulting DIRSIG data was found to be larger than expected, which

impacted the accuracy of the resulting SNRs. It is necessary to ensure that

enough samples are being used for every pixel such that the resulting variability

in the scene is due to the sensor, and not to the Monte Carlo techniques used

to produce the data.

For the mean target radiances and SNRs, the convergence setting was

set as –convergence=100,10000,1e − 10, which translated to a minimum
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number of samples of 100 and a maximum number samples of 10, 000 per

pixel, and a minimum radiance threshold of 10−10 W
cm2srµm

, which was below

the calculated Noise Equivalent Radiance (NER) of the Headwall Nano sensor

model used for the DIRSIG and FASSP simulations.

Due to the long computations that were required to attain this high

level of convergence, the DIRSIG simulation was limited to only capture the

100% green target panel in the DIRSIG scene using the ‘start capture’ and

‘end capture’ parameters. Lines 1752 to 1781 contained the green target panel.

For the target detection performance analysis, the convergence setting

was set as –convergence=60,1000,1e − 6, which translated to a minimum

number of samples of 60 and a maximum number samples of 1000 per pixel,

and a minimum radiance threshold of 10−6 W
cm2srµm

. This lower convergence

setting allowed for quicker computation times, so a larger portion of the scene

was captured which contained all of the user-defined ROIs. The ‘start capture’

and ‘end capture’ parameters were used to limit the scene between lines 600

and 2120.

3.2.3 FASSP Data Processing

To produce predicted target radiances and target detection perfor-

mances in FASSP, the reflectance statistics of 14 background classes (shown

in Table 3.1) and the 100% green target class from the base setup were uti-

lized. To generate these first- and second- order statistics (mean and covari-
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ance), a large number of samples were needed, so the reflectance data from the

Headwall Nano was used so several hundred samples for each class could be

collected. These statistics were converted into the necessary format for input

into FASSP using a Python script written by Chase Cañas. The classes shown

in Table 3.1 were chosen to get a good variety of the natural and man-made

endmembers present in the data collect so that the most accurate recreation

of the experimental collect could be possible.

Table 3.1: Background classes chosen for FASSP runs

Grass Concrete
Shaded Concrete Wood Deck

Shaded Wood Deck Gravel
Red Felt Panel Light Gray Felt Panel
Gray Felt Panel Dark Gray Felt Panel
Black Felt Panel Green Felt Panel

Dark Permaflect Panel White Permaflect Panel

To ensure a good match with the DIRSIG simulations, the same sensor

description was utilized for both DIRSIG and FASSP. This sensor description is

shown by the right image in Figure 3.9; it takes as inputs various spectral sen-

sitivities, noise descriptions, bit depth, and sensor dimensions (IFOV/aperture

dimensions).

Both the sensor description and the various background and target

class descriptions are called by a main script, which contains some important

parameters that were edited for each of the setups to get as close of a match

up to the DIRSIG simulations and experimental setups. A screenshot of the
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Figure 3.13: A screenshot of the main script which was used to run the FASSP
simulation for the base setup with its various inputs for the scene, sensor,
atmosphere. Not shown here are the inputs for the processing model.

main script which was used to inform the base setup simulation is shown in

figure 3.13. The most important parameters utilized for the FASSP runs, as

well as their chosen values and descriptions are shown in Table 3.2. The values

which change for each setup are in bold.

Using these parameters, FASSP was run for each of the four setups

described above and ROC curve results and target radiance spectra were ex-
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Table 3.2: Chosen FASSP Parameters for each setup

Variable
Name

Base
Setup

Shade
Setup

TR-S
Setup

TR
Setup

Description

metrange 25 25 25 25 meteorological range (km)
solangle 53.05 50.31 48.41 47.19 Solar zenith angle (deg)

gndaltitude 0.0 0.0 0.0 0.0 Ground altitude relative to
sea level (km)

shadeperc 0.0 100.0 100.0 0.0 Percent of target in shade
skyperc 100.0 75.0 50.0 75.0 Percent of sky visible from

target
viewangle 5.0 5.0 5.0 5.0 Sensor view angle (degrees,

nadir is 0.0)
noisefac 1.0 1.0 1.0 1.0 Sensor noise factor
gainfac 1.0 1.0 1.0 1.0 Gain factor
relcal 0.5 0.5 0.5 0.5 Relative calibration error, %
nbits 12 12 12 12 Number of radiometric bits
platalt 0.064 0.064 0.064 0.064 Sensor altitude (km)
tint 0.009993 0.009993 0.009993 0.009993 Integration time (s)

tracted for comparison to the experimental and DIRSIG results. For the base

setup, the shadeperc variable was set to 0.0 and the skyperc variable was set to

100.0; for the shadowing panel setup, shadeperc was set to 100.0 (because the

target was completely shadowed) and skyperc was set at 75.0; for the TR-S

panel setup, shadeperc was set at 100.0 and skyperc was set to 50.0; and finally,

for the TR panel setup, shadeperc was set to 0.0 and skyperc was set to 75.0

again.

In addition to altering these parameters for each of the setups, the

background class percentages and solar angle parameters were altered to align

as closely as possible with the experimental conditions. The background class
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percentages were set to be equal to the relative size of the ROIs generated

with the experimental data. Using these settings, the predicted mean target

radiances, SNRs, and ROC Curves were extracted from the FASSP results.

These were used, in turn, to produce AUCs and percent differences from the

experimental data. They are presented in Chapter 4, along with the DIRSIG

and experimental results.
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Chapter 4

Results

This Chapter will present the results from each of the aforementioned

data sources: experimental results from the Tait Preserve data collect and

predicted results from the LMM-based model (FASSP) and the path-tracing

model (DIRSIG). Section 4.4 will summarize the performance of the LMM.

4.1 Target Radiance Results

The first result which was analyzed from each of the three data sources

was the target radiances, which are shown in Figure 4.1. These four plots

show the mean target radiances for the four setups: base setup (top left),

shade setup (top right), TR-S setup (bottom left), and TR setup (bottom

right). Each plot shows results from the experimental data and the predicted

results from DIRSIG and FASSP. All of the plots are shown on the same scale

for easy comparison.

From these plots, it is possible to examine how well the LMM-based

model (FASSP) and the path-tracing model (DIRSIG) predict the mean radi-

ance of the 100% green target panel for each of the setups. For the base setup,
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it is evident that both FASSP and DIRSIG make quite accurate predictions

- both match up quite well with the experimental data across all measured

wavelengths.

The shadowing (shade) panel setup results show that both DIRSIG and

FASSP tend to overestimate the mean target radiance at shorter wavelengths

(particularly with the peak at 550 nm, however, DIRSIG seems to more closely

align with the experimental results than FASSP, indicating that DIRSIG’s

Figure 4.1: The mean target radiances for each of the four setups. Each plot
shows the experimental and predicted radiances from DIRSIG and FASSP.
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Table 4.1: Target Radiance Percent Differences, %

Modeling Source Base Setup Shade Setup TR-S Setup TR Setup

DIRSIG 3.5 35.1 30.5 9.1
FASSP 0.6 84.7 32.2 14.0

path-tracing technique may account for shadowing better than FASSP.

The results from the TR-S and TR panel setups (bottom row) both

show a divergence between the results from DIRSIG and FASSP at wave-

lengths longer than 600 nm. With each of these plots, it is evident that

at longer wavelengths, DIRSIG tends to overestimate mean radiance relative

to the experimental results while FASSP tends to underestimate it. Both

FASSP’s and DIRSIG’s predictions align quite well with the experimental re-

sults at shorter wavelengths. A close examination of the TR setup results

shows that the DIRSIG predictions are slightly more in-line with the experi-

mental results than FASSP’s are.

Overall, it is evident from Figure 4.1 that DIRSIG predicts mean target

radiances that are more in line with the experimental results whenever non-

linear effects (shadowing and adjacent reflections) are present. The percent

differences shown in Table 4.1 corroborates this fact. These percent differ-

ences were calculated relative to the experimental results and show that in

every setup other than the Base Setup, DIRSIG’s predictions are closer to the

experimental results than FASSP. The difference in accuracy is especially large

with the shade setup.
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In addition to examining the accuracy of DIRSIG and FASSP relative to

the experimental results, the mean target radiances for the 100% green target

were also computed for two different types of DIRSIG simulations for the TR-

S and TR setups to examine the impact of including the BRF measurement

of the TR panel on the resulting target radiances. Figure 4.2 shows the mean

target radiances from two DIRSIG simulations and the experimental data.

The first DIRSIG simulation utilized a Lambertian assumption for the

TR panel - that is, it assumed that the magnitude of reflected light is in-

dependent of the relative location of the sensor. This is in contrast to the

second simualtion, which assumed the presence of specular behavior with the

TR panel. This simulation utilized the ‘ClassicEmissivity’ model, which takes

as an input a scalar quantity which describes how specular a material is over

all wavelengths. A value of 0 indicates Lambertian behavior; a value of 0.9

was used. More information on this plug-in is available in the DIRSIG docu-

mentation.

The left plot in Figure 4.2 shows that, when shadowing is present in

the DIRSIG scene, a Lambertian TR panel results in a higher mean target

radiance at higher wavelengths than a specular TR panel does. In this case, it

appears that using a specular TR panel results in more accurate predictions

relative to the experimental results than using a Lambertian TR panel does.

The right plot of Figure 4.2 indicates that when shadowing is not

present, the specularity of the TR panel does not have any impact on the
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resulting mean target radiances of the 100% green target panels. However,

these results do show that, overall, the spectrum of TR panel did in fact con-

taminate the mean target spectra of our 100% green target panels - and that

incorporating a description of the specularity of the TR panel in the DIRSIG

simulations resulted in a better accuracy when shadowing was present.

The mean target radiance results show that

1. Both the LMM-based model (FASSP) and the path-tracing model (DIRSIG)

are capable at predicting target radiances when nonlinear effects are not

present.

2. Both models overestimate the mean target radiance at shorter wave-

lengths when shadowing is present, however, DIRSIG has better perfor-

mance than FASSP at all wavelengths.

Figure 4.2: The mean target radiances of the 100% green target in the TR-S
and TR setups for two DIRSIG simulations with a Lambertian TR panel and
Specular TR panel assumption, and also the experimental results.
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3. Both FASSP and DIRSIG accurately predict the mean target radiances

when the TR and shadowing panels are present at shorter wavelengths;

at longer wavelengths, however, DIRSIG overestimates and FASSP un-

derestimates. This is also true when just the TR panel is present.

4. Adjusting the specularity of the TR panel in the DIRSIG simulations

impacts the resulting mean target radiances only when shadowing is

present. A Lambertian TR panel results in higher radiance predictions.

4.2 Signal-to-Noise Ratios

The 100% green target Digital Counts (DCs) were also utilized to pro-

duce Signal-to-Noise Ratios (SNRs) for the DIRSIG and Experimental results.

FASSP produced the SNRs as a natural output. The SNRs for each of the

four setups are shown in Figure 4.3. Each plot shows the SNRs from FASSP,

DIRSIG, and the experimental data. For DIRSIG and the experimental re-

sults, the SNR was calculated by dividing the mean of the 100% green target

ROI by the square root of the variance of the signal of the pixels in this ROI.

In each of the SNR plots, it is evident that, while FASSP produces

accurate SNRs relative to the experimental results for both the base and TR

setups, DIRSIG accurately predicts the 100% green target SNRs in all circum-

stances, even when shadowing and adjacent reflections are present. DIRSIG

especially outperforms FASSP in the Shade and TR-S setups: an examination

of these two plots reveals that FASSP is grossly overestimating the peak sensor
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Figure 4.3: The SNRs for each of the four setups of the 100% green target.
Each plot shows the results from each of the three data sources.

SNR at 550 nm relative to the experimental results. This matches up with

FASSP’s mean target radiance predictions in Figure 4.1 for these two setups,

where FASSP was predicting much higher radiances relative to the experimen-

tal data. In contrast, DIRSIG predicts SNRs that tend to resemble both the

shape and magnitude of the experimental results.
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4.3 Target Detection Performance Results

This section will review the results from the target detection perfor-

mance predictions from each of the data sources with the Constrained Energy

Minimization (CEM) target detection algorithm. Figure 4.4 shows the detec-

tion results from each of the data sources for the base setup.

For each plot shown here (and for the rest in this Section), the prob-

ability of detection, PD, is shown on the vertical axis on a normalized scale

and the probability of a false alarm, PFA, is shown on the horizontal axis; it is

normalized and on a logarithmic scale. The ROC curve results are plotted for

each fill fraction (FF) of sub-pixel target that was placed on the gravel path.

It is important to note that while only the 20% FF line is visible at in

the middle of these plots, this is because the rest of the FF targets achieved

perfection PDs and were found with no false alarms. They are visible - just at

the very top of each graph, plotted on top of each other.

Figure 4.4: Target detection performance from all three data sources for the
base setup. Plots include a line for each FF sub-pixel target.
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Figure 4.5: Shadowing Panel setup target detection results.

The ROC curves in Figure 4.4 indicate that the LMM-based model

(FASSP) is capable of accurately predicting target detection performance when

there exists no imposed nonlinear effects in the scene. The fact that the results

from DIRSIG do not match up perfectly with the experimental data indicate

that it was easier for the sensor and target detection algorithm to find the

target pixels than it was in the experimental data or analytical (FASSP) data.

This mismatch could be due to a couple of factors, the most likely of

which are that either the DIRSIG data does not contain the correct quan-

tity/quality of noise that is accurate to either the experimental or analytical

data or it could be due to user-defined truth mask. The data from the experi-

mental and DIRSIG data require subjective input to indicate where the target

and background pixels are present in an image - a slightly more conservative

selection with DIRSIG could arbitrarily increase its performance.

Figure 4.5 depicts the target detection predictions with the shadowing

panel setup. Through comparison with the experimental data, it is evident
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Figure 4.6: TR-S panel setup target detection results.

that FASSP appears to overestimate detection performance for every FF target

in the shadowing panel setup. While DIRSIG still delivers overestimates, its

predictions are better across the board and better resemble the shape of the

experimental ROC curves.

When considering the target radiance predictions for the shadowing

setup shown in Figure 4.1, this is not all that surprising - FASSP consistently

predicts a higher target radiance than DIRSIG and the experimental results

across all wavelengths. This higher target radiance would indicate that FASSP

is predicting a higher signal from the target than is actually present, which

would make it easier to be detected.

Figure 4.6 depicts the detection performance for the TR-S panel setup.

From these plots, it is apparent that, with the exception of the 20% FF target

DIRSIG’s detection performance predictions align quite well with that of the

experimental data. This is in contrast to FASSP’s predictions, which appear to

align well for the 80% and 60% FF targets, but not as well for the 40% and 20%
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Figure 4.7: TR panel setup target detection results.

targets. DIRSIG’s accuracy with its detection performance predictions with

both the shadowing and TR panels present indicate that it is able to replicate

both nonlinear effects quite accurately in its synthetic data generation process.

Figure 4.7 shows the target detection performance in the TR panel

setup. From these plots, it is apparent that, with respect to the experimen-

tal data, FASSP predicts the 20% target performance more accurately than

DIRSIG, but DIRSIG is able to accurately predict the existence of several false

alarms with the 40% target that cause it to have an imperfect PD. This is in

contrast to the FASSP results, which predict perfect detection for the higher

FF targets.

Figure 4.8 shows the Area-Under-the-Curves (AUCs) for the three data

sources. The AUC is calculated by summing up the total normalized area

under the ROCs in the corresponding setup for the corresponding Fill Fraction

(FF) target. An AUC of 1.00 indicates perfect detection and no false alarms

for that FF target.
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The vertical axis on each plot is limited between 0.70 and 1.00 to high-

light the differences in magnitude between the different setups. For this reason,

the results in the Base and TR setups appear as lines at the very top of the

plot - the AUCs for all of the FF targets in these setups are very nearly equal

to 1.00. This is in contrast to the Shade and TR-S setups, where it is evident

that the AUCs drop-off quickly for the lower FF targets. The results in the

Shade and TR-S plots also show that, in both setups, DIRSIG predicts the

drop-off more accurately than FASSP does. The AUCs further emphasize the

conclusion that when shadowing is present, DIRSIG is able to more accurately

account for its impact on a target detection task than FASSP is.

Table 4.2 shows the percent differences between the DIRSIG and FASSP

AUCs and the experimental AUCs. This table shows the percent differ-

ences for each Fill Fraction (FF) target in each of the four setups. The

DIRSIG percent differences are shown in boldface. Together, the AUCS

and AUC percent differences highlight that both DIRSIG and FASSP both

predict similar performances to the experimental results in the Base and TR

Table 4.2: ROC Curve Percent Differences, DIRSIG/FASSP, %

Target Fill Fraction Base Setup Shade Setup TR-S Setup TR Setup

100% 0.0/0.1 0.0/4.2 0.3/5.8 0.0/0.1
80% 0.0/0.0 0.2/0.7 2.4/4.7 0.0/0.0
60% 0.0/0.0 2.3/6.0 8.1/0.0 0.0/0.0
40% 0.0/0.0 9.3/25.7 16.1/18.5 0.0/0.0
20% 0.1/0.2 68.6/162.4 134.1/321.0 0.1/0.4
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Figure 4.8: Area-Under-the-Curves (AUCs) plotted for each of the data sources
in all four setups. Note that the vertical axis on each plot is limited between
0.70 and 1.00 for an easier comparison of the magnitude of difference between
the setups.

setups, but in the Shade and TR-S setups, DIRSIG performs quite a bit bet-

ter than FASSP does. In both of these setups, this gap in performance is

quite large, especially with the 20% FF target, where DIRSIG is more than

twice as accurate than FASSP. These percent differences were calculated using

Error% = prediction−experimental
experimental

∗ 100% for each of the AUC data points in each

of the four setups.
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From these results, it is possible to make the following conclusions:

1. As they are currently configured, both models (FASSP and DIRSIG)

perform similarly when no nonlinear effects are present (base setup).

2. The impact of the TR panel does not result in significant predictive per-

formance differences for either DIRSIG or FASSP when the target is not

in shadow. This is evident by minuscule changes in percent differences

in the Base and TR setups found in Table 4.2 and the AUCs in Figure

4.8.

3. The LMM-based model (FASSP) is able to accurately predict target

detection performances when the target is not in shadow. When the

shadow is in target, the path-tracing model (DIRSIG) is essential to

ensure better predictive performance. The large percent differences in

Table 4.2 and the performance predictions evident in the AUCs in Figure

4.8 corroborate this.

4.4 Linear Mixing Model Performance

Given the results in the above sections, it is hopefully more apparent

what environmental conditions are necessary to cause a significant reduction

in accuracy of any LMM-leveraged model, such as FASSP.

With the predicted mean target radiances, the LMM (FASSP) is able

to produce more accurate results when shadowing is not present (the Base and
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TR setups). However, the presence of the TR panel (adjacent reflections) and

the inability of FASSP to utilize any description of this effect in its simulations,

did result in a higher error with the TR setup than was present with just the

Base setup. An examination of Figure 4.1 and Table 4.1 both show this.

On the other hand, DIRSIG appears to more accurately consider the

impact of shadowing (shade panel) and adjacent reflections (TR panel) in its

simulations. It is the belief of this thesis that the accuracy of DIRSIG’s results

could further be improved upon to reduce the errors present in the mean target

radiances and SNRs.

The SNRs (Figure 4.3) show a significant difference between the em-

pirical and FASSP results when shadowing is present. It appears that some of

the error in FASSP’s SNR predictions are due to its mean target radiance pre-

dictions in Figure 4.1; the higher-than-realistic predicted signal from FASSP

in the shadowing and TR-S setups would contribute to a higher SNR than is

being seen with the empirical data. In contrast, DIRSIG appears to be bet-

ter considering the impact of shadowing. Both FASSP and DIRSIG appear

to consider the impact of adjacent reflections (the TR setup) in their SNR

calculations.

As there are so many data points present in the ROC curves and as

they are plotted on a logarithmic horizontal scale, the overall performance of

the target detection performances is probably best assessed using Table 4.2

and Figure 4.8. Table 4.2 indicates that the performance of both DIRSIG and
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FASSP with higher FF targets (100%, 80%, and 60%) are on the same scale.

With the lower FF targets (40% and 20%), however, higher error is

seen with the LMM-based model (FASSP) than with the path-tracing model

regardless of the setup. As seen with the mean target radiances and SNRs,

shadowing has the most detrimental impact on the accuracy of the LMM (and

also DIRSIG). Adjacent reflections (the TR panel), appear to have an almost-

negligible impact. With both, DIRSIG appears to better consider these effects.

The AUCs in Figure 4.8 corroborate these statements.
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Chapter 5

Summary

Since its advent in the early 1980s, Hyperspectral Imaging (HSI) sen-

sors have collected high-resolution spectral information of the Earth’s surface.

Despite many design improvements in the approximately 3 decades since, chal-

lenges in using HSI sensors to detect sub-pixel sized targets in cluttered back-

grounds still exist. To address these difficulties, much work has been accom-

plished, specifically to develop better theoretical models which more accurately

describe HSI data, to develop modeling software which can produce accurate

system analyses, and to collect high fidelity HSI data to inform research efforts.

The Linear Mixing Model (LMM) is a HSI data model that proposes

that the interaction between light and materials in a scene occurs in a linear

manner, and as such, the signal detected by a given HSI pixel can be expressed

as the linear combination of the pure materials present in the pixel’s projected

area on the ground weighted by their relative abundances. As a result of the

general veracity of its claims, the LMM is a well-established and relied upon

basis within the regime of HSI target detection. However, when nonlinear

effects, such as shadowing and multiple reflections, are present, LMM-based

methods tend to break down.

90



The primary objective of this thesis is to investigate the impact of non-

linear effects on HSI target sub-pixel target detection. To this end, an experi-

mental data collect with a novel experimental design that imposed controlled

nonlinear effects was conducted in September 2022 at Rochester Institute of

Technology’s (RIT) Tait Preserve in Rochester, New York. The results of this

experimental collect were compared with those from two types of modeling

software: the Forecasting and Analysis of Spectroradiometric System Perfor-

mance (FASSP) model [23, 24] and the Digital Imaging and Remote Sensing

Image Generation (DIRSIG) model [11].

FASSP’s computations are founded on the basis of the LMM, and as

such, its results are representative of what the LMMmodel would predict given

numerous parameters describing a scene setup, atmospheric conditions, and a

sensor. In contrast, the DIRSIG model utilizes a path-tracing model which

is able to capture the impact of nonlinear effects which are present here. To

inform its computations, DIRSIG includes in its inputs a 3-dimensional scene

geometry, material properties, a description of a sensor and its motion relative

to the scene, and material specularity.

Work was then conducted to produce comparable results from each

of these data sources for comparison, which would allow for an inspection of

LMM performance when nonlinear effects are present. Two main types of

data were produced using this methodology: mean target radiances (and by

extension, Signal-to-Noise Ratios (SNRs)) and target detection performances
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in the form of Receiver Operating Characteristic (ROC) Curves and Area-

Under-the-Curves (AUCs).

From the results, the following conclusions could be made:

1. Both the LMM-based model (FASSP) and the path-tracing model are

capable at predicting mean target radiances/SNRs when nonlinear ef-

fects are not present. The impact of shadowing is significantly more

detrimental to the accuracy of these models than adjacent reflections

are.

2. The path-tracing paradigm of DIRSIG is better able to consider the

impact of both shadowing and adjacent reflections in its simulations.

However, it should be noted that careful attention should be given to

the ‘convergence’ setting within DIRSIG.

3. In the prediction of target detection performance (ROC Curves and

AUCs) the impact of shadowing was found to be substantially more

detrimental to the performance of the LMM-based model than adjacent

reflections were. DIRSIG appears to better consider both of these effects.

In the context of our experimental collect and subsequent modeling,

the LMM appears to suffer most dramatically when shadowing is present.

The adjacent reflections which were imposed in our data, both empirically

and in our modeling, appear to certainly result in some differences in the
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mean target radiances, and target detection performance, but to a degree that

could be described as minor when compared to the impact of shadowing. This

is not necessarily true for all circumstances containing adjacent reflections.

These results indicate the need for future work to continue to investi-

gate the performance of FASSP and DIRSIG with respect to the experimental

data. The results from DIRSIG, specifically, have undergone many iterations

to determine the proper input parameters; more work in this regard would be

helpful to determine exactly where its modeling limitations are.
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Chapter 6

Future Work

The work which was conducted for this thesis was certainly a good step

to investigate the impact of some controlled nonlinear effects on the perfor-

mance of the Linear Mixing Model (LMM). However, the modeling software

which was used for this research (FASSP and DIRSIG), both contain numer-

ous user inputs for scene, atmosphere, sensor, and post-processing descriptions,

and as such, there exists many seemingly-minor changes that could be made

to improve the final results. Some avenues of future work include:

1. Improve understanding and performances of both FASSP and DIRSIG

both when nonlinear effects are and are not present. This work has iden-

tified shadowing of a target to be largely responsible for the breakdown

of the LMM relative to a path-tracing model (DIRSIG), however, further

work could be aimed to better quantify this breakdown.

2. Better characterize the role that atmospheric conditions play in DIRSIG

simulations when nonlinear effects are present. It was found that adjust-

ing the atmospheric parameters resulted in substantial impacts on the

resulting data.
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3. Improve the implementation of FASSP such that it better considers non-

linear effects in its computations. Such improvements could include de-

scriptions for adjacent objects’ spectral contamination of a target.

4. Improve the Tait Preserve scene that has been generated for DIRSIG sim-

ulation purposes. The current scene that exists and the newly-implemented

FASSP sensor plug-in could be responsible for much of the error present

in the DIRSIG predictions relative to the empirical results.

5. Apply Dr. Ientilucci’s LIDAR-informed atmospheric compensation method

[18] to optimize target detection performance in the setups where the

shadowing and TR panels are present.
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Appendix

The following tables provide additional information about the data pro-

cessing for the Experimental, FASSP, and DIRSIG data.

Table A1 shows some relevant information pertaining to the experimen-

tal data collect conducted at Tait Preserve on September 9, 2022. With access

to the Rochester Institute of Technology (RIT) Chester F. Carlson Center for

Imaging Science (CIS)’s Linux database of collected Unmanned Aircraft Sys-

tem (UAS) data, the mission and flight numbers could be used to extract the

Digital Count (DC), radiance, and reflectance data that was used within the

data processing used for this thesis.

Table A2 shows the pixel counts for the target ROIs (100%, 80%, 60%,

40%, and 20%) FF targets) for each of the four setups for the experimental

and DIRSIG data. Note that the experimental ROI pixel counts (and also

the resulting background class percentages) are what was used to inform the

FASSP simulations.

Table A1: Headwall Nano information used for experimental data analysis

Setup Type Mission
Number

Flight
Number

Time of Flight (ET) Solar Zenith Angle

Base 1453 4432 10:50 50.048◦

Shadowing 1515 4528 11:15 53.310◦

TR-S 1537 4528 11:35 48.414◦

TR 1557 4544 11:50 47.187◦
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Table A2: Experimental/DIRSIG data target ROI pixel counts. Note that
the FASSP pixel counts are equal to the experimental ones.

Target ROIs 100% FF 80% FF 60% FF 40% FF 20% FF

Base Setup 337/278 294/320 285/304 269/327 245/300
Shadowing Setup 211/278 180/320 194/304 202/327 211/300

TR-S Setup 238/278 231/320 222/304 239/327 224/300
TR Setup 309/278 270/320 286/304 278/327 252/300

Table A3 shows the pixel counts for every background class used in the

experimental and DIRSIG data analyses for each of the target setups. Note

Table A3: Experimental/DIRSIG data background ROI pixel counts. Note
that the FASSP pixel counts are equal to the experimental ones.

ROIs Base Setup Shadowing
Setup

TR-S Setup TR Setup

Grass 3,183,184/
796,622

3,124,629/
796,622

3,161,658/
796,622

3,133,202/
796,622

Concrete 169,356/
137,339

125,291/
137,339

127,466/
137,339

187,430/
137,339

Shaded Concrete 5,416/11,577 4,119/11,577 4,195/11,577 5,703/11,577
Wood Deck 1,442/ 846/ 464/ 581/

Shaded Wood Deck 1,387/ 997/ 577/ 715/
Gravel 3,269/2,043 2,632/2,043 1,265/2,043 1,186/2,043

White Permaflect 2,754/5,886 1,549/5,886 1,822/5,886 1,834/5,886
Dark Permaflect 420/ 391 248/ 391 322/ 391 381/ 391

Red Felt 306/ 320 267/ 320 180/ 320 277/ 320
Green Felt 636/ 500 422/ 500 159/ 500 464/ 500
Black Felt 495/ 517 390/ 517 453/ 517 518/ 517

Dark Gray Felt 427/ 501 354/ 501 482/ 501 499/ 501
Light Gray Felt 486/ 539 378/ 539 436/ 539 429/ 539

White Felt 434/ 529 376/ 529 465/ 529 426/ 529
Guard Region 425/ 552 317/ 552 486/ 552 428/ 552
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Figure A1: Screenshots in ENVI of the user-defined truth masks used for the
experimental data processing. Top left image is the base setup, top right is
the shadowing setup, bottom left is the TR-S setup, and bottom right is the
TR setup.

that the FASSP pixel counts for these background classes are equal to the

experimental ones. It is also important to note that while there were ROIs

generated for the ‘Wood Deck’ and ‘Shaded Wood Deck’ classes in the experi-

mental data, these classes were not present in the DIRSIG Tait Preserve scene.

Instead those, regions of the Tait Preserve scene belonged to the ‘Concrete’

and ‘Shaded Concrete’ ROIs, so those pixels, although named as belonging to

the ‘Wood Deck’ and ‘Shaded Wood Deck’ ROIs, instead counted towards the

‘Concrete’ and ‘Shaded Concrete’ ROIs.

Figure A1 shows screenshots of the user-defined truth masks that were
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Figure A2: Screenshot in ENVI showing the DIRSIG truth mask. This truth
mask was used for all of the setups, as the DIRSIG data was not georectified.

used for the experimental data processing for each of the four setups. There

were 20 classes generated in total: 5 target classes, 1 guard region to prevent

unnecessary false alarms, and 14 background classes.

Figure A2 shows a screenshot in ENVI of the truth mask which was

defined and used with the DIRSIG data. As the DIRSIG data is not georec-

tified, this truth mask was used for all of the setups (base, shadowing, TR-S,

and TR). In addition, as noted above, although they are named as such, the

‘Wood Deck’ and ‘Shaded Wood Deck’ ROIs are instead a part of the ‘Con-
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crete’ and ‘Shaded Concrete’ classes. This is because the wood deck next to

the lake at Tait Preserve was not represented in the Tait scene, instead, it

was treated as more concrete. This fact means that while there existed 14

background classes for the experimental data analysis, there only existed 12

for the DIRSIG analysis.
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