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Abstract 

 

The Internet of Things (IoT) is one of the technical advancements that is progressing swiftly. 

which promises to be revolutionary soon. IoT systems are convenient due to its device 

centralized and computerized control. This technology allows various physical devices, home 

applications, vehicles, appliances, etc., to be interconnected and exposed to the Internet. On the 

other hand, it entails the fundamental need to protect the network from adversarial and 

unwanted alterations. Machine-to-machine protocols like Message Queuing Telemetry 

Transport (MQTT) are typically used by IoT devices to communicate. Numerous techniques to 

attack networks employ the lightweight messaging protocol known as MQTT (Message 

Queuing Telemetry Transport). Due to its heterogeneous nature and the lack of security 

approaches, the publish-subscribe strategy utilized by the MQTT protocol increases the number 

of potential network attacks. This thesis presents a novel approach to detecting cybersecurity 

breaches in MQTT-IoT networks using machine learning techniques. 

We suggest a detection system to address the issue of cybersecurity threats in MQTT-IoT 

networks. Our method involves cleaning the data to pull out relevant features, training the 

ensemble machine learning models on these features, and then using these models to find 

anomaly behavior that could indicate a cyberattack. 

We implemented our plan by using Machine Learning Ensemble techniques and Feature 

selection. To test our system, we ran many experiments using MQTT-IoT-IDS2020, a dataset 

that included both normal MQTT-IoT network activity and simulated attacks of different types. 

Our experimental findings indicate that our detection system, grounded in machine learning, 

can identify cybersecurity threats on MQTT-IoT networks with notable accuracy, precision, 

F1-score, and recall. 

The obtained results for binary and multiclass classification indicate that the proposed system 

can bring a remarkable layer of security. We show how Machine Learning Ensemble 

Techniques applied to small low-cost devices are an efficient and versatile combination 

characterized by a bright future ahead. 

This thesis advances the application of machine learning methodologies in cybersecurity and 

contributes to the enhancement of security protocols within MQTT-IoT networks. 
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Chapter 1 

 
In this chapter, we provide an introduction to the research topic and outline the objectives and 

significance of the study. We present this research's problem statement and motivation, 

emphasizing the need for an effective cybersecurity framework for MQTT-based IoT networks. 

The chapter's conclusion gives a summary of the contributions and thesis structure, setting the 

stage for the subsequent chapters that delve into the detailed analysis, methodology, 

experiments, and findings. 

 

1.1. Introduction 

 
Platforms for the Internet of Things (IoT) have revolutionized both our means of 

communication and our daily lives by enabling remote connections between IoT devices across 

a network architecture. This infrastructure collects data across several domains without 

involving humans or computers [1]. Our daily lives have changed significantly because more 

IoT devices are used in healthcare, industries, and smart homes [2]. Subsequently, the 

Government and people have faced increased cybersecurity threats and privacy violations [3].  

CoAP, MQTT, AMQP, and XMPP application layer protocols enable IoT nodes to share 

data securely and reliably [4]. The MQTT protocol has been deployed in smart homes [5], 

agricultural IoT [6], industrial applications [7], and more. It is the most used publish-subscribe 

protocol because it has low bandwidth, memory, and packet loss. [8].  

IBM launched the MQTT protocol as a message push protocol [9]. It is a lightweight 

client-server message transmission protocol perfect for connecting machines and the Internet 

of Things (IoT). It was developed to reliably transmit a message under conditions of low 

network bandwidth and lengthy network latency. In addition, MQTT uses a publish/subscribe 

communication paradigm. In this configuration, Subscribers are the recipients of messages 

generated by publishers. Subscribers and publishers can only communicate indirectly through 

the broker who serves as the server. The role of this component is to accept messages from 

publishers and then distribute them to the respective subscribers. [10], [11]. 

Because machine learning (ML) and artificial intelligence (AI) algorithms are getting 

better and better so quickly, it is now possible to monitor networks and detect incoming cyber-

attacks [12]. Machine Learning (ML) and Deep Learning (DL) models are now leading 

technologies, with potent capabilities for overcoming situations where typical IDS are 

inadequate [13]. 

Instead of explicitly programming devices, Machine learning is a type of artificial 

intelligence that uses algorithms to teach machines how to do things and facilitates their ability 
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to learn from experience[14]. As a result, Machine Learning methods successfully utilized 

many areas of Information and Communication Technology (ICT), especially those related to 

cyber-security [15]. 

Because of limited resources, low power, and connection of IoT devices, traditional 

network intrusion detection systems (NIDS) may be less effective in IoT systems. Intrusion 

detection is defined by the National Institute of Standards and Technology (NIST) as 

monitoring activities on a computer system or network, analyzing these actions for signs of 

breaches, and reporting the malicious data to the network administrator [16].  

Intrusion Detection Systems (IDSs) operate within two principal categories. The 

Signature-Based Detection method functions by comparing data observed by the IDS to 

predefined intrusion patterns, underscoring its robust reliability and efficacy. This approach has 

gained significant traction owing to its implementation in widely used tools such as Snort [17] 

and Suricata [18]. However, this method has one notable limitation; it is only equipped to 

identify known threats cataloged in a database. 

  Contrastingly, Anomaly Detection operates by establishing a baseline of the system's 

typical behavior and subsequently identifying any deviations within the surveilled data. This 

method's capacity to detect novel threats is noteworthy, yet it is frequently associated with an 

excessive generation of false positives. 

Much research has been focused on Anomaly-Based IDSs in the last twenty years. Their 

propensity for identifying unknown threats is particularly crucial given the current landscape, 

where intrusion attempts are increasing in frequency and becoming progressively diverse in 

nature. 

 

Problem Statement 

IoT platforms generate valuable data that must be safely communicated and analyzed 

[19]. Additionally, the lack of security in IoT devices has highlighted the need to build a more 

effective and secure infrastructure by guarding against numerous security flaws, threats, and 

cyberattacks in IoT networks [20]. 

 MQTT (Message Queuing Telemetry Transport) [10] has gained significant popularity 

in IoT (Internet of Things) networks due to its lightweight and efficient messaging protocol. 

Nevertheless, the extensive embrace of the MQTT protocol has concurrently escalated 

apprehensions regarding the security integrity of IoT systems. Networks utilizing MQTT are 

prone to a multitude of cybersecurity threats, such as unsanctioned access, data infringements, 

and denial-of-service (DoS) assaults. These menacing activities can potentially jeopardize the 

availability, confidentiality, and integrity of IoT devices, thereby resulting in serious 

repercussions.  

In addition, every MQTT-IoT application relies heavily on MQTT brokers. However, 

because of their transparency, they are susceptible to cyber-attacks. Every MQTT-IoT 
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application relies heavily on MQTT brokers. However, their transparency makes them easy to 

cyber-attack [22]. Furthermore, we are communicating sensitive data/information over MQTT-

IoT, which raises the need to secure and protect this information. 

Identifying cybersecurity breaches in MQTT-IoT networks is a considerable hurdle. 

Existing approaches for attack detection often rely on rule-based systems or signature-based 

methods, which have limitations of scalability, and handling of complex attack scenarios [17], 

[23].  

Our proposed research holds significant importance for the cybersecurity of MQTT-IoT 

networks. By harnessing the power of ensemble techniques, detection accuracy and resilience 

against various cyber-attacks can be significantly enhanced. Additionally, the findings of this 

research can benefit industries, organizations, and policymakers involved in securing IoT 

infrastructures against evolving cyber threats. 

 

1.2. Thesis Importance and Objective 

 
This thesis aims to design a robust cybersecurity framework to threat detection and 

mitigation in MQTT-focused IoT networks. The specific goals of this research are as follows: 

1. Investigate the cybersecurity challenges and vulnerabilities in MQTT-IoT networks: 

This study examines the existing condition of MQTT-IoT networks and pinpoint the 

likely security risks and weaknesses these networks might face. 

2. This thesis intends to create a dependable and precise detection system using machine 

learning ensemble methods. The goal is to recognize and categorize different 

cybersecurity breaches in MQTT-IoT networks—the system is designed to detect these 

attack patterns, ensuring proactive security measures. 

3. Evaluate the proposed solution's performance: The developed detection system's 

performance is assessed through extensive experimentation and evaluation. This 

research will analyze the system's accuracy, efficiency, scalability, and resilience 

against cyber threats. 

There is an enormous amount of reviewed literature about applying machine-learning 

algorithms to cyber-attack detection, and it has been proven to be an efficient and reliable 

approach to the problem. However, fewer studies have been conducted regarding machine-

learning-based common attacks such as brute force attacks.  
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1.3. Contributions 
 

By focusing on detecting and mitigating cybersecurity attacks, this thesis will contribute to the 

following: 

1. Enhancing the security posture of MQTT-based IoT networks: The proposed detection 

system enables network administrators and security professionals to determine dangers 

and take appropriate action promptly. Protecting the privacy and integrity of IoT 

devices as well as the broader network architecture, the system works to prevent illicit 

access, compromises of data, and system failures by proactively spotting threats.. 

2. Pushing the boundaries of machine learning-driven cybersecurity: This study adds 

value to the domain of machine learning within cybersecurity by investigating the 

potency of ensemble methods in detecting attacks on MQTT-IoT networks. The 

findings and methodologies developed in this thesis will contribute to the growing body 

of knowledge in cybersecurity and provide insights into building robust defense 

mechanisms against evolving cyber threats. 

3. Fostering trust and adoption of MQTT-IoT networks: As security concerns remain a 

significant barrier to the widespread adoption of MQTT-IoT networks, the outcomes of 

this research will provide valuable insights into addressing these concerns. This thesis 

aims to enhance MQTT-based IoT networks' overall security and dependability, 

promoting their broader adoption in sectors such as smart homes, healthcare, 

transportation, and industrial automation. This enhancement is achieved through the 

introduction of an effective detection strategy. 

4. We undertake a comprehensive analysis encompassing both binary and 

multiclassification. By employing a dual approach, we ensure a thorough examination 

of the security aspects within the MQTT protocol. The binary classification 

distinguishes between benign and attack classes, effectively identifying malicious 

activities. Simultaneously, the multiclassification extends this analysis to categorize 

and differentiate various types of MQTT attacks, providing deeper insights into the 

diverse attack vectors present in the protocol. Our work aims to enhance the overall 

understanding and mitigation of MQTT-based threats through this combined approach, 

facilitating more robust security measures." 
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1.4. Thesis Organization 

 
The structure of the remaining parts of the thesis is outlined below: 

Chapter 2: This chapter delves into the essence of IoT, highlighting the driving technologies 

behind its emergence and laying out its typical applications and components. A review of 

security solutions for IoT, as well as associated challenges, is provided. Basic principles of 

computer security relevant to this thesis are discussed. The chapter also reviews previous 

research related to the topic, differentiating our approach from existing studies. 

Chapter 3: This chapter centers on the MQTT Protocol, including its headers, messages, and 

overarching architecture. A comprehensive discussion on MQTT security and associated 

attacks is also provided in this segment. 

 Chapter 4: This chapter delves into Machine Learning, exploring its concepts and various 

applications. 

Chapter 5: This chapter delves into a comprehensive literature review. Additionally, the 

advantages and constraints of the suggested systems are thoroughly examined. 

Chapter 6: This chapter provides a synopsis of the dataset utilized in our experiments and 

detailed descriptions of the dataset preprocessing and feature selection procedures. In addition, 

the Machine Learning models used in our experiment are explained. Ensemble Techniques are 

explained in this chapter, followed by the methodology and experimental setup.  

Chapter 7: The experiment result and analysis of Binary and Multiclass classification are 

presented. 

Chapter 8: We concluded our thesis in this chapter, followed by future work.  
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Chapter 2 

Concepts and background 
 

This particular chapter offers a comprehensive exploration of the foundational principles of the 

Internet of Things (IoT). The definition of IoT, prospective applications, and the architectural 

framework, including key elements and protocols used within, are all clarified. 

 

2.1 Introduction to IoT  

 
The term "Internet of Things," or simply "IoT," describes the expansive web of tangible 

objects worldwide, interconnected via the Internet, collectively collecting and sharing 

information. It fosters a transformation wherein Internet-capable devices morph into an 

interconnected ecosystem wherein digital data is ubiquitously accessible at all times [24]. IoT 

devices encompass tangible items ranging from tiny to large-scale machinery, and they can 

communicate effortlessly with one another over the Internet without the need for human 

involvement [25].  

 

2.1.1 IoT Characteristics 

 

The Internet of Things, or IoT, combines different hardware and software technologies 

into one system. These solutions leverage information technology, encompassing hardware and 

software capable of storing, retrieving, and processing data [25].  

 

The Internet is the leading way these devices communicate, using technologies like 

RFID and WSNs. These technologies use sensors to keep an eye on the surroundings. These 

devices have limited processing power, memory, storage, and battery life [26].  

 

There are a few crucial features of the IoT: 

 

Interconnectivity: In the realm of IoT, it signifies that any object can establish an internet 

connection and interact with other devices. 

 

Things-related services: It can offer services related to the devices while protecting privacy 

and keeping things consistent. 

 

Heterogeneity: This implies that even while IoT devices may have different underlying 

hardware and networks, they still possess the ability to communicate with one another. 
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 Dynamic changes: Devices in the IoT realm can frequently shift states, including sleep and 

wake patterns, connectivity status, and contextual factors like location and velocity.  

 

 Enormous scale: The number of devices that require management and intercommunication 

will far outnumber the number of devices that are currently online. 

 Safety: While utilizing IoT, safety should always be a priority. This encompasses both the 

protection of our personal information and our physical safety. It emphasises how crucial it is 

to protect networks, and the data that flows between them. 

 

Connectivity: This allows devices to access the network and be compatible with each other. 

Getting on a network is called accessibility, while the ability to share and understand data is 

called compatibility. 

 

2.1.2 IoT Technologies 

 

The Internet of Things (IoT) is a crucial bridge linking various products with the digital 

realm. The web of interconnected devices continues to grow, fueled by technological progress 

in sensors, smartphones, cloud technology, and communication capacities. It constitutes a 

network comprising diverse physical entities, including vehicles, machinery, household 

appliances, and beyond. These entities leverage multiple technologies to facilitate data 

exchange over the Internet [25]. Table 2.1 explains the technologies that underpin the IoT 

concept. 

 

Table 2. 1: The Technologies of IoT 

IoT Technologies  Examples 

Communication and Networking 

Infrastructure 

GSM and WIFI are often utilized in IoT setups 

for connectivity and data exchange. 

Identification WSN, RFID 

Hardware and Software Smart devices with enhanced inter-device 

communication 

  

 

Technologies for Networking and Communication: 

 

Tools such as Bluetooth and ZigBee facilitate device connectivity. It is crucial that 

communications between these interconnected devices are fortified with robust security 

measures to provide users with assured confidence in their network's safety and reliability. 
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Device Identification Technologies: 

 

It is crucial to identify each connected device within an IoT ecosystem. To achieve this unique 

identification, technologies like RFID and WSN are employed. 

 

Hardware and Software Technologies: 

 

Intelligent devices that foster enhanced inter-device communication will pave the way for 

systems with greater intelligence and autonomy, promoting the swift deployment of IoT 

applications. 

 

2.1.3 IoT Applications 

 

The Internet of Things (IoT) incentivizes many applications to augment daily human 

activities [27]. Diverse applications are realized through various sensors, intelligent devices, servers, 

and more, as seen in Figure 2.3 enumerates a range of applications incorporating IoT concepts 

and platforms.  

 

The concept of a smart home is one such application. It encapsulates an array of intelligent 

devices such as smart locks, baby monitors, and fire detectors installed within a household, 

communicating over wireless channels. These home appliances can be accessed remotely via 

a home gateway. 

 

Innovative healthcare is another notable application of IoT, which facilitates the gathering, 

transmitting, and preserving of a patient's physiological data. For example, medical sensors can 

record a patient's heartbeat and transmit this data to a hospital's server for evaluation and 

tracking. 

 

Within the domain of intelligent transportation, a vast system of smart vehicles has the 

capability to communicate with one another, with infrastructure elements, and with individuals 

on foot through wireless channels. These automobiles can gauge real-time traffic situations, 

adjust speed, and share information to ensure efficient and secure driving experiences. 

 

 Environmental systems provide distant management of factors like temperature, humidity, 

water levels, soil wetness, and specific climate conditions to optimize production standards and 

reduce economic setbacks. In advanced agriculture, sensors can be attached to animals, offering 

insights into their behavior and ensuring their well-being. 

 

The industrial sector has embraced IoT, giving rise to the smart industry. The main goal of 

IIoT is to improve oversight of the manufacturing process, data, and emerging challenges, 

guaranteeing the end products' efficacy and dependability. 
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Figure 2. 1: IoT Applications 

Smart retail: This application enables monitoring product storage facilities or during transit. 

Sensors can be affixed to retail items to keep tabs on their status. Numerous smart shopping 

systems have been developed to offer sophisticated customer services and attract a more 

extensive customer base. 

 

A smart grid: This is a common use of IoT, made to measure, watch over, and control how 

much electricity is used. It helps users handle their electricity use trustworthy, saves energy, 

and lowers the chance of problems with the power grid. 

 

2.1.4 IoT Architecture 

 

The Internet of Things (IoT) is built on a variety of technology foundational layers that 

make up its structural structure. It delineates the interrelation of diverse technologies and the 

communicability, modularity, and configuration of IoT implementations in assorted scenarios. 

As depicted in Figure 2.2, this architecture is generally stratified into layers, which facilitate 

system administrators in evaluating, observing, and preserving the system's integrity. The IoT 

architecture essentially entails a four-stage process where data is centralized from devices 

linked to sensors, traverses a network, and is subsequently directed to the cloud for processing, 

analysis, and storage [28]. 
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Figure 2. 2: IoT Architecture 

The Perception/Sensing Layer 

The physical layer is the foundation of the internet of things. This layer encompasses 

many IoT devices like sensors, each equipped to gather, process, and relay information through 

the network. These devices can be linked via wired or wireless connections and utilize 

intelligent technologies to collect data. 

The Network Layer 

This Layer is a critical component as it encompasses various communication 

technologies enabling IoT devices' connectivity. The Network Layer also includes Data 

Acquiring Systems (DAS) and Internet/Network gateways, which collect, aggregate, and 

convert analog data into digital data.  

The Processing Layer 

The data undergoes a series of transformations and computations within this layer to 

extract meaningful insights. Moreover, it is an intermediary stage bridging the gap between 

data collection and application layers. This involves readying the data for subsequent utilization 

by software applications, which oversee, control, and implement subsequent actions guided by 

the interpreted data. 
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The Application Layer 

This Layer directly interacts with IoT users through essential facilities. This tier 

receives refined data from the Network Layer and accommodates a diverse spectrum of 

applications, encompassing smart homes, intelligent retail, and advanced power grids.  

 

2.1.5 IoT Challenges 

 

Even though IoT devices manage and produce a substantial amount of data, they are 

typically inexpensive. Consequently, these devices tend to possess limited computational 

power, storage capacity, and memory resources. Similarly, the software implemented in the IoT 

devices is based on open-source solutions or obsolete software and sometimes even with faulty 

software. In a worst-case scenario, we would have one IoT device plugged into a network with 

software with no security patches or updates, without knowing which ports are open and visible 

from the internet, and with no access control or credentials. IoT devices, when connected to 

public networks, can become susceptible to attacks in the absence of adequate security 

measures. Due to this vulnerability, private networks may experience unforeseen disruptions 

that jeopardize service accessibility, the security of data, and user safety. 

 

2.2 Computer Security Fundamentals 

Computer security fundamentals are the core principles and practices that aim to protect 

the various hardware and software components, known as assets, within a computing 

environment. These fundamentals are centered around ensuring the confidentiality, integrity, 

and availability of information for authorized users [29]. 

Confidentiality: Confidentiality focuses on maintaining the secrecy and privacy of assets, 

allowing only authorized individuals to access them. This involves implementing measures to 

control physical and technical access, classifying data, enforcing policies to keep workspaces 

clean and secure, establishing confidentiality agreements, implementing strong password 

policies, defining guidelines for employee IT use, and providing training to detect and prevent 

social engineering attacks [29]. 

Integrity: Integrity ensures that assets can only be modified by authorized users and aims to 

preserve the accuracy and unaltered state of information. Unauthorized modifications, whether 

deliberate or accidental, can compromise the integrity of data. To maintain integrity, 

organizations employ preventive measures to protect against fraudulent changes, both in 

physical and digital documents [30]. 

Availability: Availability is concerned with providing authorized users with timely access to 

information and services as needed [30]. To ensure availability, organizations implement 

backup procedures, adopt business continuity management (BCM) practices, and establish 

disaster recovery systems that allow for the duplication of essential services and applications, 
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even in the face of accidents, natural disasters, or intentional sabotage. Table 2.2 summarizes 

the main objectives or goals of computer security. 

Table 2. 2: Goals of Computer Security 

Objective 

 

Description 

Confidentiality Ensuring that information is kept confidential and accessible only to 

authorized individuals or systems. This includes implementing access 

controls, data encryption, and secure communication channels. 

Integrity Maintaining information's precision, coherence, and dependability across 

its entire lifecycle. This entails preventing illicit modifications, detecting 

and mitigating data corruption, and maintaining the integrity of systems 

and processes. 

Availability Guarantee that data and amenities are available to and usable by approved 

users at the appropriate time. This includes implementing redundancy and 

backup strategies, disaster recovery plans, and mitigating denial-of-

service (DoS) attacks. 

 

2.2.1 Security in IoT 

 

IoT integrates different technologies, which means it inherits each individual 

technology's security vulnerabilities [31]. Furthermore, the sheer scale of IoT connectivity, 

with billions of devices expected to be interconnected, means that a vast amount of data will 

be exposed to the Internet. This increased exposure creates a fertile ground for security attacks, 

including eavesdropping and data tampering. As a consequence, user privacy becomes 

increasingly at risk.  

IoT devices are vulnerable to cyberattacks for three primary reasons: 

▪ Complexity and Heterogeneity: The IoT ecosystem consists of a vast array of 

interconnected devices with different architectures, operating systems, and 

communication protocols. This complexity and heterogeneity make ensuring uniform 

security across all devices challenging. Each device may have unique vulnerabilities, 

and patching or updating them becomes a complex task, leaving vulnerabilities 

unaddressed [32]. 

 

▪ The limited computational power of IoT devices can pose challenges in 

implementing robust security measures, executing complex applications, causing 

delays in response time, and hindering firmware and software updates. Considering 

these limitations while creating and implementing IoT systems is crucial to ensure 

optimal performance and top-notch security [33].  
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▪ Firmware and Software Updates: IoT devices with limited computational power may 

face challenges in performing firmware and software updates. Updating the device's 

firmware or applying security patches requires sufficient computational resources to 

handle the update process. If the device's computational power is insufficient, it may 

not be able to handle these updates effectively, leaving it vulnerable to security 

vulnerabilities or lacking the latest features and improvements. 

 

2.2.2 Security Attacks in IoT Ecosystem 

 

Due to its interconnectedness and the wide variety of devices it includes, the IoT ecosystem is 

vulnerable to several security assaults. In the IoT environment, some frequent security 

assaults include: [34]  

 

Physical Attacks: 

In Physical attacks, attackers may manipulate or steal devices to gain control, extract sensitive 

data, or disrupt device functionality. Physical attacks can be carried out through techniques 

such as device tampering and physical theft,  

 

Network Attacks: 

 

Network attacks target the communication infrastructure of IoT devices [35]. Examples 

include: 

 

• Attacks involving a Man-in-the-Middle (MitM): A malevolent actor expropriates and 

manipulates the conversation, permits them to eavesdrop, modify data, or impersonate 

trusted entities. 

• Attacks using distributed denial of service (DDoS), which compromise, forming a 

botnet, flooding a target network or system with excessive traffic, and rendering it 

inaccessible to legitimate users. 

 

Firmware Attacks: 

Firmware attacks focus on exploiting vulnerabilities in the firmware [36]. 

Examples include: 

• Exploiting Firmware Vulnerabilities: Attackers leverage security vulnerabilities in the 

firmware to gain unauthorized access, execute arbitrary code, or tamper with device 

behavior. 

• Supply Chain Attacks: Malicious actors compromise the manufacturing or distribution 

process of IoT devices, injecting malicious firmware or components into devices. This 

allows them to gain unauthorized access or control over the devices later on. 
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Encryption Attacks: 

Encryption attacks aim to bypass or exploit weaknesses in encryption mechanisms used for 

securing data in IoT devices [37].  Examples include: 

 

• Cryptanalysis: Attackers employ cryptographic analysis techniques to break encryption 

algorithms or discover vulnerabilities, allowing them to decipher encrypted data. 

 

• Side-Channel Attacks: Attackers exploit information leakage from the physical 

implementation of encryption, such as power consumption or electromagnetic 

emissions, to deduce encryption keys or sensitive information. 

 

2.2.3 Impact of Cyber Attacks on IoT 

 

Cyber-attacks on IoT can have far-reaching consequences that can impact various aspects of 

individuals' lives, organizations, and even critical infrastructure. Some notable consequences 

of cyber-attacks on IoT include:  

 

• Data Breaches: 

 

Data breaches in IoT occur when sensitive information collected or transmitted by IoT 

devices is accessed or exposed without authorization. Research shows that attackers 

can easily obtain passwords, credit card information, or other confidential information 

from IoT devices through techniques such as brute force attacks and malware injection 

[38]. In a corporate setting, cyber-attacks on IoT devices such as industrial sensors can 

be used to steal intellectual property or sensitive business data [39]. 

 

▪ Physical Harm: 

 

In certain IoT deployments, cyber-attacks can have physical consequences. For 

instance, in critical sectors like energy, transportation, or healthcare, attacks on IoT 

systems can disrupt essential services, leading to transportation disruptions or 

compromised patient safety [40].  

 

▪ Disruption of Services: 

 

Cyber-attacks can disrupt the normal operation of IoT devices and services. This can 

lead to service outages, rendering devices temporarily or permanently unusable. For 

example, DDoS attacks targeting IoT devices can overload networks or cloud 

infrastructures, causing service disruptions for both individuals and organizations [41].  
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▪ Reputation Damage: 

 

Cyber-attacks on IoT can result in reputation damage for organizations. Breaches and 

vulnerabilities in IoT devices can erode brand trust, decrease customer confidence, 

strain business relationships, lead to legal consequences, and provide a competitive 

advantage to more secure competitors [42]. 

 

▪ Financial Losses: 

 

Cyber-attacks on IoT can result in significant financial losses for both individuals and 

organizations. In cases of ransomware attacks, victims may be extorted to pay a ransom 

to regain control of their compromised devices or to prevent the release of sensitive 

data. Furthermore, the costs associated with incident response, recovery, and potential 

legal consequences can be substantial [42]. 

 

2.2.4 Cyber-Attacks Mitigation 

 

Mitigating cyber-attacks requires a comprehensive approach that combines proactive 

measures, ongoing monitoring, and effective incident response [43]. The strategies discussed 

below can help secure IoT devices and prevent cyber-attacks. 

 

▪ Secure Communication:  

 

One of the most effective ways to mitigate cyber-attacks on IoT devices is to use secure 

communication protocols. This includes implementing encryption, authentication, and 

access control mechanisms [44]. Secure communication ensures that data is encrypted 

and transmitted safely, making it harder for attackers to intercept and steal sensitive 

information. 

 

▪ Device Authentication: 

 

Institute comprehensive security measures across the entire spectrum of the IoT 

ecosystem. This entails the establishment of robust device authentication protocols, 

implementing data encryption protocols for both transit and storage, regular and 

punctual deployment of security updates and patches, and adopting secure coding 

practices throughout the developmental phase of IoT devices [45].  

 

▪ Regular Software Updates:  

 

Maintain the currency of all IoT devices, firmware, and software by consistently 

integrating the most recent security updates and patches. Regularly assess and 

implement patches provided by vendors to rectify acknowledged vulnerabilities. 
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▪ Network Segmentation: 

 

Segregate IoT devices into discrete sections of the network, isolating them from critical 

systems and sensitive data. This helps contain potential attacks and limit the impact of 

compromised devices [46]. 

 

2.3 Intrusion Detection Systems (IDS) 
 

IDS for IoT refers to security systems designed to monitor IoT networks for any 

suspicious activities or breaches. These systems analyze and identify potential threats to the 

IoT infrastructure, enabling appropriate defensive measures to be taken to protect the network's 

integrity, confidentiality, and availability [47]. Figure 2.3 illustrates the two broad 

classifications under which intrusion detection systems (IDS) can be categorized [48]. 

 

Host-based Intrusion Detection System (HIDS): 

 

It is implemented on specific devices or hosts within a network. It vigilantly observes and 

assesses the internal operations, in tandem with the network traffic that are routed through its 

network ports. 

 

Network-Based IDS (NIDS):  

 

NIDS, or Network-based Intrusion Detection System, constitutes a security mechanism 

strategically situated within a network to oversee incoming and outgoing traffic to all devices 

encompassed by the network. Its purpose is to identify potentially unauthorized or malicious 

actions through the scrutiny of network traffic and the surveillance of numerous hosts 

concurrently. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 3: Categorization of Intrusion Detection Systems (IDS) 
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It can be categorized according to their learning methods into the following types [49] 

 

▪ Anomaly detection 

Anomaly-based IDS: These systems establish a standard of acceptable behavior for the 

system or network, monitor for activities that significantly deviate from this normal 

baseline. These deviations are considered potential threats. 

 

▪ Signature-based detection 

These systems detect known threats using predefined rules or patterns (signatures). 

They compare these patterns against observed events to identify potential security 

breaches. 

 

• Machine learning IDS 

They are used to anticipate and recognize malicious activities. These systems undergo 

training using a network traffic dataset, enabling them to categorize incoming traffic as 

either typical or malicious, drawing insights from the patterns acquired during training. 

 

Consequently, IDSs designed for IoT devices must prioritize efficiency and minimal resource 

utilization. Furthermore, these IDSs need to possess scalability to accommodate expansive IoT 

networks composed of a multitude of devices [50].  
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Chapter 3 

 
In this chapter, we explore the MQTT, a lightweight and efficient communication protocol 

designed for the Internet of Things (IoT). We discuss MQTT's simplicity, openness, and high 

bandwidth efficiency, making it an ideal choice for constrained environments. Additionally, we 

delve into MQTT's topic-based architecture, its components (publishers, subscribers, and 

brokers), and how messages are routed based on topic interests. Furthermore, we touch upon 

the importance of MQTT security and the potential vulnerabilities it may face, along with an 

overview of common MQTT attacks in IoT environments. Understanding MQTT and its 

security considerations is essential for ensuring robust and secure communication in IoT 

systems. 

 

3.1 MQTT Protocol 
 

The MQTT (Message Queuing Telemetry Transport) protocol, known for its 

lightweight nature, is a highly favorable. The publish/subscribe communication pattern used 

by this open standard protocol, approved by OASIS [51], is particularly well suited for 

machine-to-machine (M2M) communication. Owing to its functionality over TCP, the MQTT 

protocol showcases exemplary reliability, ensuring an organized, lossless, and bidirectional 

mode of communication. 

 

It operates on the theory of topics, which are essentially hierarchically organized 

categories under which users can publish messages. Subsequent to this, any additional client 

who has a subscription to the specific topic will receive these messages, establishing an 

organized and targeted communication framework. 

 

The three nodes comprising the MQTT physical structure are publishers, subscribers, 

and brokers, as shown in Figure 3.1. Publishers are nodes that send messages, subscribers are 

nodes that receive messages, and brokers act as middlemen to coordinate message delivery 

from publishers to subscribers [52].  
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Figure 3. 1: MQTT Architecture  

 

The architecture of the MQTT protocol is intentionally crafted to be straightforward and 

resource efficient. This design facilitates seamless communication between clients and the 

central broker, which is responsible for disseminating messages to all relevant subscribers. 

Incorporating topics and quality-of-service levels enhances the versatility and dependability of 

client communication. 

 

QoS Level 0 (At most once): Often referred to as "fire and forget," this level offers the least 

assurance. Messages are dispatched at most once, possibly not at all, and no confirmation or 

overhead is involved. While it is the swiftest transmission mode, it lacks a delivery guarantee. 

 

QoS Level 1 (At least once): The message is transmitted at least once through a single 

PUBLISH message exchange. Resending the PUBLISH message is an option for the sender if 

no acknowledgment (PUBACK) is received. However, this approach can lead to the 

duplication of messages. 

 

QoS Level 2 (Exactly once): This level ensures the message's exact once-only delivery by 

representing the highest QoS tier. It entails a four-step handshake process between sender and 

receiver, making it highly suitable for applications demanding message delivery assurance. 

However, this level imposes the most substantial overhead. The handshake components 

encompass PUBLISH, PUBREC, PUBREL, and PUBCOMP messages. 

 

The selection of the QoS level depends upon the particular specifications of the IoT 

application. If speed is more crucial than reliability, a lower level might be used. If assurance 

of delivery is the most crucial factor, then a higher level would be suitable. Figure 3.3. shows 

the three modes of QoS that can be defined in the PUBLISH messages exchanged between 

client and broker [52]: 

 

 

 

 

 

 

 

 

 



20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2: MQTT Quality of Service (QoS) levels 

 

3.3 MQTT Messages 

 
MQTT communication messages are the main mechanism for transmitting data 

between clients and the broker. There are several MQTT messages, each with a specific purpose 

and format. The different types of MQTT messages provide the necessary functionality for 

efficient and reliable communication between clients and the broker [53]. 

 

There are several types of MQTT messages, including: 

 

Connect: This is the first message sent. 

Connack: This is the response from the broker to the client acknowledging the Connect 

request. It contains a return code indicating whether the connection was accepted or rejected. 

Publish: This message serves the purpose of conveying application messages either from the 

broker to the client or the other way around within the MQTT communication framework. 

Puback: This message is the acknowledgment from the broker to the client for a Publish 

message received at QoS level 1. 

Pubrec: The sender is the recipient of this message to acknowledge a Publish message received 

at QoS level 2. 

Pubrel: This message is sent from the sender to the receiver to ensure that the Publish message 

at QoS level 2 was received. 

Pubcomp: The sender is the recipient of this message to confirm the Pubrel message. 

Subscribe: This message is used by the client to register interest in one or more topics from 

the broker. 

Suback: This is the acknowledgment from the broker to the client indicating that the 

subscription to a specific topic was successful. 

Unsubscribe: This message is dispatched by the client with the intent of retracting its 

subscription from one or multiple topics within the MQTT system.. 

Ping request (Pingreq): This message is used by the client to verify that the network 

connection is alive. 
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Pingresp: This is the response from the broker to the Pingreq message. 

Disconnect: This message is conveyed by the client to signal its desire for disconnection. Upon 

transmitting this message, the client is required to conclude the network connection. 

 

 

.3.4 MQTT header 

 
The MQTT header [53] is the first byte of each MQTT message allowing the broker to 

properly handle and distribute the message to subscribers. It is the fixed portion of an MQTT 

message, which contains information about the message type, topic, quality-of-service (QoS), 

and message flags. The MQTT header is followed by the variable-length payload, which 

contains the actual data being transmitted. The MQTT header includes the following fields: 

 

Message Type: This is a 4-bit field that specifies the type of message being transmitted, such 

as a publish message, subscribe message, or acknowledge message. 

 

Duplicate Delivery Flag: This is a 1-bit field that indicates whether the message being 

transmitted is a duplicate of a previously transmitted message. It is only used for QoS level 1 

and 2 messages. 

 

Quality-of-Service (QoS) Level: This attribute, occupying a 2-bit field, denotes the standard 

of assurance for the delivery of a particular message. It outlines the degree to which message 

delivery is guaranteed, offering three distinct levels. 

 

Retain Flag: This is a 1-bit flag that indicates whether the broker should retain the message 

for later delivery to new subscribers. 

 

Topic Length: This field specifies the length of the topic field in bytes. 

 

Message Identifier: This field is used to identify messages and track their delivery. It is only 

present in messages with QoS levels greater than 0. 

 

 

3.5 MQTT Security 

 
MQTT is designed to be efficient and lightweight, and it is a popular IoT communication 

protocol used in smart homes and industrial IoT systems. However, as with any communication 

protocol, it can be vulnerable to various types of attacks [54]. Securing MQTT communications 

and various security measures are essential to prevent security threats and attacks. Some 

common MQTT attacks in IoT include: 

 

Eavesdropping 

 

An Eavesdropping attack in MQTT-IoT contexts signifies the illicit interception of data being 

transferred between a client device (such as a sensor or an IoT device) and a broker (the entity 

managing MQTT communications). The aggressor taps into the communication channel, 
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decoding the messages exchanged between the client and broker. This action might potentially 

lead to the acquisition of confidential information, including user credentials or sensor data. 

 

Man-in-the-Middle (MitM) Attack 

 

It targets circumstances where an evildoer intercepts and changes the transmission taking place 

between a client device (such as a sensor) and a broker.  

 

Spoofing 

 

A Spoofing attack in MQTT-IoT communications refers to a scenario where an attacker 

impersonates a legitimate client device (i.e., a sensor or an IoT device) or a broker (i.e., a server 

that manages MQTT communications) in order to manipulate the communication between the 

two. The attacker sends messages to the broker or the client that appear to be from a trusted 

source but are actually from the attacker. 

 

 

 

Denial of Service (DoS) Attack 

 

In MQTT-IoT communications, a DoS attack refers to an attack where an attacker disrupts the 

normal functioning of a broker (i.e., a server that manages MQTT communications) by 

overwhelming it with a large volume of requests, resulting in a complete or partial disruption 

of service. The assailant can induce widespread disruption in the functionality of IoT systems.  

 

Injection Attack  

 

An injection attack in MQTT-IoT communications refers to an attack where an attacker 

manipulates the data being transmitted between a client device (i.e., a sensor or an IoT device) 

and a broker (i.e., a server that manages MQTT communications) by injecting malicious 

payloads into the communication channel, causing devices to malfunction or behave 

unexpectedly. In an IoT environment, the attacker can alter sensor readings to cause damage or 

disrupt the operation of the IoT system, or they can inject malicious payloads into the 

communication channel to compromise the security of the system. 

 

Sniffing 

 

A sniffing attack in MQTT-IoT communications refers to an attack where an attacker intercepts 

MQTT traffic and listens to the communication between a client device (i.e., a sensor or an IoT 

device) and a broker (i.e., a server that manages MQTT communications). This type of attack 

aims to eavesdrop on the communication channel and obtain confidential information, such as 

passwords, usernames, or other sensitive data. 

 

MQTT brute-force attack (MQTT BF) 

 

This attack pertains to the methodical trial of several login and password combinations to 

illicitly gain access to an MQTT broker. Primarily utilized in IoT devices, MQTT is a 

streamlined messaging protocol developed to perform efficiently in networks characterized by 

low bandwidth, high latency, or unreliable connections [55]. 
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Chapter 4 
 

In this chapter, we delve into the diverse spectrum of machine learning algorithms and covers 

their wide range  of applications where machine learning is making significant strides and 

revolutionizing industries. Additionally, we dive into ensemble techniques, their types, 

advantages, and disadvantages.  

 

4.1 Machine Learning 
 

Machine learning (ML), enhances computer systems to evolve and adapt over time by 

learning from data, without the need for explicit programming [56].  

There are three types of machine learning: supervised learning, unsupervised learning, and 

reinforcement learning. These systems are increasingly used in various applications, from 

recommendation systems to autonomous vehicles, cybersecurity, and beyond [57]: 

 

• Supervised Learning 

 

An algorithm learns from labeled training data using the machine learning technique of 

supervised learning in order to produce predictions or decisions. In supervised learning, the 

input characteristics (variables) are represented by target values or labels in the training 

data. It develops to match the input features to the appropriate output labels by generalizing 

patterns and relationships present in the training data [58]. Figure 4.1 depicts the supervised 

learning algorithm system.  
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Figure 4. 1: Supervised learning algorithm 

Two further categories of supervised learning exist: 

▪ Classification: predicts categorical or discrete output labels. The algorithm 

learns to categorize new instances into established groupings or categories from 

labeled training data. It can classify email spam detection (classifying emails as 

spam or non-spam), image recognition (classifying images into different 

categories), and sentiment analysis (classifying text as positive, negative, or 

neutral sentiment). 

 

▪ Regression: Regression attempts to predict output values that are either 

continuous or numerical. Training data with labels are used to train the 

algorithm to estimate or approximate a numerical value based on the input 

features. Regression tasks involve making predictions, such as the number of 

rooms, or forecasting stock prices based on historical data and market 

indicators. 

 

One of the advantages of supervised learning is that it can achieve high accuracy in 

predictions, provided that the dataset is large and the features are relevant. However, a 

significant challenge in supervised learning is the need for labeled data, which can be expensive 

and time-consuming. Supervised learning models may overfit the training data, meaning they 

may perform poorly on new, unseen data. 

 

• Unsupervised Learning  

 

With this category [58] an algorithm can learn from unlabeled data to find patterns, structures, 

or correlations without using explicit input-output pairs. The algorithm identifies meaningful 

patterns or groups without prior knowledge or labels, as shown in Figure 4.2.  
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Figure 4. 2: Unsupervised Learning 

Unsupervised learning can be further classified into two types: 

▪ Clustering:  

Clustering involves segregating a dataset into distinct groups or clusters, 

wherein the data points within each cluster share a notable degree of similarity 

or proximity. 

 

▪ Dimensionality Reduction: 

By minimizing a dataset's input features or variables, dimensionality reduction 

attempts to preserve the most important data. This involves transforming high-

dimensional data into a representation with fewer dimensions. 

Anomaly detection, data compression, and data visualization are just some areas where 

unsupervised learning is practical.  

Unsupervised learning offers the advantage of uncovering hidden patterns or 

relationships in data that may go unnoticed when relying solely on labeled data. Furthermore, 

unsupervised learning proves helpful when labeled data is unavailable or the cost of labeling 

the data is excessively high. 

Nevertheless, assessing the efficacy of an unsupervised learning algorithm poses 

challenges, given the absence of labeled output data for comparison against the projected 

outcomes. 

• Reinforcement Learning 

An agent learns how to interact with its environment using reinforcement learning [59] in 

order to maximize cumulative compensation. In this method, decisions are made based on the 

condition of the environment, which reacts by sending a reward signal. It aims to develop a 

policy that connects states to actions. The agent continually improves its policy through 

iterative interactions and learning from input, making better decisions in the environment.  

As shown in Figure 4.3, Reinforcement learning can be broken down into: 
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• Agent: refers to the entity that interacts with the environment. The environment condition 

affects the agent's behavior, and it responds to the feedback by adjusting its actions accordingly. 

• Environment: The agent engages with its surroundings, which is an external system. 

Depending on the agent's behaviors, the environment responds by sending a reward signal. 

• Reward Function: The reward function transforms Each state-action pair into a reward 

indication that reflects the efficacy of the agent's activities. 

 

 

 

 

 

 

 

 

Figure 4. 3: Reinforcement learning algorithm 

Reinforcement learning algorithms : 

 

▪ Value-Based Methods:  

In these techniques, the agent determines the worth of the states or state-action 

pairings. The objective is to arrive at an ideal value function that maximizes 

long-term cumulative benefits. 

 

▪ Policy-Based Methods: 

In this category, the agent directly optimizes the policy function, dictating 

actions in each state. Finding that optimizes the accumulation of rewards over a 

given timeframe. 

Reinforcement learning has diverse applications in robotics, personalized medicine, 

natural language processing, resource management, recommendation systems, and financial 

trading. It can learn to make decisions in complex and dynamic environments, where the 

optimal policy may be unknown or change over time.  

However, a major challenge in reinforcement learning is the need for extensive 

exploration of the environment, which can be time-consuming and computationally expensive.  

 Table 4.1 summarizes the differences between the categories, algorithms, and their 

explanations. 
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Table 4. 1: Classification of Machine Learning Algorithms [58] 

Category Algorithms Explanation 

Supervised DT, LR, SVM, and KNN. These algorithms learn from labeled data. 

The algorithm is given an input and 

produces the right result in response.  

Unsupervised K-Means, and PCA. are trained using unlabeled data. Without 

output labels, the algorithm attempts to 

find hidden patterns in the data. 

Reinforcement Q-Learning, and Deep Q-

Network. 

They are used when the data is not labeled, 

and the only feedback is based on the 

model actions taken. 

 

4.2 Machine Learning Applications 
 

Machine learning has become a ubiquitous technology that is being used in various 

applications across different fields. Machine learning has found its way into almost every 

industry, from image and speech recognition to fraud detection and autonomous vehicles[60]. 

Machine learning applications continuously grow, and researchers are exploring new and 

innovative ways to incorporate this technology into their work [61].  

There are numerous uses for machine learning [62] : 

Speech and Image Recognition: can recognize items in images or recognize speech. 

Natural Language Processing (NLP): Human language is interpreted and understood by 

machine learning algorithms enabling tasks like sentiment analysis and translation. 

Predictive Modeling: Machine learning algorithms can make predictions based on historical 

data, such as predicting customer behavior or stock prices. 

Anomaly Detection: Machine learning algorithms can identify unusual or anomalous behavior 

in data, such as detecting fraudulent activity or network intrusions. 

Robotics: Machine learning trains robots to perform various tasks, such as object recognition, 

navigation, or manipulation. 

Health care: Machine learning is used for medical applications, such as analyzing medical 

data and diagnosing diseases (Obermeyer and Emanuel, 2016) or developing personalized 

treatment plans. 

Energy management: Machine learning is used for optimizing energy usage in various 

applications, such as in smart homes. 
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Environmental monitoring: Machine learning is used for analyzing and predicting 

environmental data, such as in climate modeling.  

 

 

 

 

 

 

 

 

 
Figure 4. 4: Machine Learning Applications 

 

4.3 Machine Learning Models  
 

An overview of the machine learning algorithms used in this study is given in this 

section, each presenting  advantages and limitations. Machine learning models [63] are 

algorithms that learn from data and then apply what they have learned to make informed 

decisions or predictions.  

 

4.3.1 Logistic Regression 

 

Logistic regression, a renowned statistical methodology, facilitates the elucidation of 

the relationship between a dichotomous dependent variable (y) and its associated predictor 

variables (x). By using the values of the predictor variables, it primarily aims to estimate the 

likelihood of the binary outcome variable. [64]. Figure 4.5 shows the Logistic Regression 

model. 
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Figure 4. 5: Logistic Regression 

Logistic regression is easy to implement and interpret. It can resist overfitting, 

especially in low-dimension datasets. It can provide output probabilities, making it useful in 

scenarios requiring probabilistic assessment. However, Logistic regression assumes linearity, 

which might not always hold true. It requires a large sample size for reliable predictions and 

may struggle with numerous categorical features.  

 

4.3.2  Decision Trees 

 

It uses a structure resembling a tree to create predictions and choices. It is a well-liked 

algorithm as a result of its simplicity [65].  

 

A Decision Tree splits the data based on features, starting at a root node and creating 

branches for each outcome. This process repeats on each branch (or "child node") until specific 

criteria are met, forming a "leaf" or end node with a prediction value, as shown in Figure 4.6. 

The main types of decision trees are: 

 

Classification trees: are employed when dealing with response variables that are of a 

categorical or qualitative nature. The leaf represents a class. 

Regression trees: Used when the response variable is numeric or quantitative. The leaf 

represents a value. 

 

Decision Trees are highly transparent, interpretable models that require minimal data 

preprocessing and can manage missing values effectively. As non-parametric models, they 

make no assumptions about data distribution, accommodating non-linear relationships. They 

are also useful for feature selection, with top nodes often representing the most significant 

features. 

However, Decision Trees do come with some drawbacks. They can be prone to 

overfitting, especially when dealing with complex, noisy datasets, leading to overly complex 
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models that do not generalize well. This issue can be addressed to an extent by pruning, but it 

requires careful tuning. 

 

  

 

                

 

 

             

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6: Decision Tree 

 

4.3.3 K-nearest Neighbors (KNN) 

 

This algorithm functions by identifying the 'k' most proximate data points within the 

training dataset relative to a new, unseen data point. The label of this new point is then chosen 

depending on the labels of its closest neighbors. [66]. 

 

The KNN algorithm exhibits proficiency in handling binary and multiclass 

classification tasks. It predicts the class predominating among the 'k' nearest neighbors. In 

multiclass classification scenarios, it leverages distinct strategies to combine the neighbors' 

labels, such as majority voting or distance-weighted voting, in relation to the new data point. 

Figure 4.7 shows how KNN classifies new data points. 

 

One of the defining strengths of the KNN algorithm is its simplicity coupled with 

versatility. It does not necessitate any preliminary assumptions regarding the data distribution 

or the functional form correlating the features and the target variable. Furthermore, it can 

manage nonlinear and nonparametric relationships between features and the target variable. 

However, KNN also has some limitations, such as the problem of dimensionality, which refers 

to the increased sparsity and the sensitivity to the choice of K and the distance metric.  
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Figure 4. 7: KNN Classifier. 

4.3.4 Adaboost  

 

A popular machine learning technique called AdaBoost, or adaptive boosting, is made 

for classification and regression applications [67]. AdaBoost's fundamental concept revolves 

around fitting a series of weak learners, models that slightly surpass random guesswork such 

as small decision trees, to consistently adjusted data sets. These weak learners are subsequently 

combined to form a final prediction rule. 

The data is altered by giving each training sample a particular weight during each 

boosting iteration. It is possible to train a weak learner in the first step using the original data 

because these weights are initially evenly distributed and set at 1/N. The learning process is 

then applied to the weighted data in subsequent iterations after the sample weights are 

individually changed. The predictions from all of the weak learners are then merged to create 

the final prediction, as shown in Figure 4.8, using a weighted majority vote (or sum for 

regression). The weights of each weak learner are determined during the training process, with 

higher weights given to the more accurate learners. 

One of the main advantages of AdaBoost is that it is a fast algorithm and less prone to 

overfitting. However, noisy data and outliers in the data can negatively impact the algorithm's 

performance, so preprocessing is crucial. 
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Figure 4. 8: AdaBoost Model 

 

4.3.5 XGBoost 

 

XGBoost, an acronym for Extreme Gradient Boosting, is a robust and favored machine 

learning algorithm [68]. The algorithm belongs to the gradient boosting methods category, 

constructing a robust predictive model via an ensemble of weaker prediction models, 

commonly in the form of decision trees, as depicted in Figure 4.9. The "Extreme" in XGBoost 

offers several notable advantages: 

 

▪ Speed and Performance: XGBoost delivers superior efficiency, particularly when 

handling large datasets. 

 

▪ Core Algorithm is Parallelizable: XGBoost employs parallel processing, making it 

significantly faster compared to other algorithms. Additionally, it can handle sparse data 

and missing values. 

 

• Integrated Cross-Validation: Cross-validation is a feature of XGBoost that enables 

users to determine the ideal number of boosting iterations in a single run by performing 

it at each stage of the boosting process. 
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Figure 4. 9: XGBoost Model 

 

4.4 Machine Learning Ensemble Techniques 

Machine learning ensemble techniques combine multiple individual models to create a 

more powerful, accurate, and robust model [69]. The ensemble model can perform better 

overall by integrating the benefits of each model and minimizing its drawbacks. There are 

several ensemble techniques and algorithms. Some of the most popular ones include [70]: 

 

4.4.1 Bagging (Bootstrap Aggregating) 

 

Bagging, also known as bootstrap aggregating, seeks to minimize variance and prevent 

overfitting. This method creates a large number of bootstrap samples (random samples with 

replacement) and trains a different base model on each of them. For classification, the final 

ensemble prediction is obtained using a majority vote, as shown in Figure 4.10. Some popular 

Bagging Algorithms: 

 

Random Forest: This algorithm constructs multiple decision trees and merges their outcomes. 

For the construction of each tree, a subset of the dataset is utilized, along with a random 

selection of feature values. 

 

Extra Trees: Similar to Random Forest, but it builds more randomized decision trees by 

selecting random split points for each feature. 
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Figure 4. 10: Bagging (Bootstrap Aggregation) scheme 

 

Advantages of Bagging include [71]: 

 

Reduces overfitting: Bagging minimizes overfitting by generating numerous base models. 

The averaging of their predictions can smooth out the decision boundaries, yielding a more 

generalized model.  

 

Improves stability: Bagging models are resilient to noise and outliers, delivering more 

consistent and reliable predictions. The ensemble model becomes less sensitive to outliers 

because of the averaging process and the diversity introduced by bootstrapping. This diversity 

allows different aspects of the data to be captured, enhancing the model's stability.  

 

Parallelizable: Each base model in bagging can be trained independently, which suits parallel 

or distributed computing well. This parallel training process expedites the overall training time, 

particularly for large datasets or complex base models. 

 

However, bagging has some drawbacks: 

 

Computationally expensive: Training numerous base models can be time-consuming, 

particularly for complex models or large datasets. The model aggregation process, although 

less resource-intensive than model training, also adds to the overall computational cost. 

 

Memory requirements: As bagging necessitates multiple base models, it may require more 

memory to store the individual models and their predictions. This can be problematic with 

limited resources or during model deployment in production. 
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4.4.2 Stacking (Stacked Generalization) 

 

Stacking, alternatively known as Stacked Generalization, constitutes an ensemble 

strategy that incorporates the training of numerous foundational models on the identical dataset 

[72]. Subsequently, these models' predictions are utilized as input attributes for a more 

sophisticated meta-learner. The meta-learner is designed to ascertain the best way to combine 

the predictions made by the foundational models, thereby generating the final output, as 

demonstrated in Figure 4.11. KNN, DT, and neural networks, are frequently deployed as 

foundational learners in stacking scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 11: The Stacking Scheme 

Stacking's advantages include leveraging model diversity by integrating predictions from 

various base models, hence improving the overall performance. Furthermore, stacking allows 

for customizability, permitting the utilization of different base models and meta-models, which 

can be beneficial in addressing specific problems. Stacking's flexibility manifests in several 

ways: 

• Diverse model complexities: Stacking allows for the usage of base models with 

varying complexity levels, helping balance bias and variance and leading to enhanced 

performance. 

• Customizable meta-model: The user is free to choose the meta-model that merges the 

predictions of base models, optimizing ensemble performance. 

• Meta-model feature engineering: Stacking allows for the incorporation of additional 

features to improve the meta-model's and overall ensemble's predictive prowess. 

• Customization of cross-validation strategy: Stacking utilizes cross-validation to 

generate out-of-sample base model predictions, and this strategy can be customized to 

suit specific problems and dataset characteristics. 
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Conversely, stacking also comes with drawbacks. It is more complex and computationally 

demanding due to its multi-layered structure. The training process is also longer since it 

involves training both base models and the meta-model. This can be particularly taxing if the 

base models are inherently complex. The typically used cross-validation strategy can also add 

to the training time. 

 

4.4.3 Boosting 

 

Boosting represents another ensemble method striving to minimize both bias and variance 

by integrating the outcomes of several weak learners in successive order, as depicted in Figure 

4.12. Every learner following the initial one endeavors to rectify the inaccuracies of its 

predecessor leading to an improved overall model [73]. Popular Boosting Algorithms: 

 

▪ AdaBoost (Adaptive Boosting): The first boosting algorithm, which combines 

multiple weak classifiers by assigning different weights to each based on their accuracy. 

 

▪ The Gradient Boosting Machine (GBM): leverages the gradient descent method to 

gradually reduce the loss function. It achieves this by sequentially training each weak 

learner on the residuals, or prediction errors, resulting from the prior learner. 

 

▪ XGBoost (eXtreme Gradient Boosting): An optimized implementation of GBM, 

which provides better performance and is more scalable. 

 

▪ LightGBM: A variation of gradient boosting that uses a histogram-based algorithm for 

faster training and improved performance on large datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

Figure 4. 12: The Boosting Scheme 
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Boosting Advantages: 

 

•  Bias and Variance Reduction: Boosting combines weak base models to lower both 

bias and variance, often leading to improved accuracy. 

• Adaptability: Boosting adjusts to different subsets of data depending on difficulty, 

iteratively learning from its mistakes to improve performance. 

 

• High Predictive Performance: Boosting, through algorithms like AdaBoost, Gradient 

Boosting Machines (GBMs), and XGBoost, often yields superior performance across 

diverse problems. 

 

• Noise and Outlier Resilience: Boosting can handle noisy data and outliers fairly well, 

given its use of weak learners and control mechanisms like the learning rate parameter. 

 

• Versatility with Mixed Data: Boosting can handle various data types, such as 

continuous, categorical, and ordinal features, making it a flexible technique. 

 

Boosting Disadvantages: 

 

• Computational Cost: Boosting can be computationally expensive compared to other 

models or ensemble techniques. 

 

• Sensitivity to Noise: In certain circumstances, boosting can be sensitive to noise, focusing 

on fitting the noise rather than the true underlying pattern. Table 4.2 gives a summarized 

comparison between Bagging, Stacking, and Boosting ensemble techniques. 

 

Table 4. 2:  Comparison between Ensemble Techniques 

  

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Common Types of Ensemble Techniques 

 

 

Bagging 

 

➢ Reduce variance and increase accuracy. 

➢ Often used with Decision Trees. 

➢ Overcome outliers or noisy Data. 

 

Stacking 

➢ Used to ensemble group of strong learners. 

➢ Involves training a “meta learner” 

algorithm to learn the optimal combination 

of the base learners. 

 

Boosting 

➢ Flexible (can be used with any loss 

function). 

➢ Reduce variance and increase accuracy. 

➢ Not robust against outliers or noisy Data. 
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Chapter 5 

 

In this chapter, we carry out a comprehensive examination of the existing literature related to 

our research topic. We delve into various studies, research papers, and academic sources that 

discuss the attacks detection in MQTT-IoT networks. In addition, we explore the strengths and 

limitations of different approaches, including ensemble techniques, for addressing 

cybersecurity challenges in this context.  

 

5.1 Literature Review 
 

In today's world, IoT has seen substantial growth, with a vast array of devices now 

connected to the web [74]. Nevertheless, this enhanced integration has also escalated the risk 

of cyber threats [75]. In response, various studies proposed intrusion detection systems (IDS), 

utilizing different algorithms, such as CNN, LSTM, DT, SVM, and ensemble learning 

[76],[77],[78],[79]. Even though applying machine learning to protect the Internet of Things 

(IoT) has been the subject of numerous studies in recent years, more efforts have yet to be made 

to ensure the safety of the MQTT protocol when used on the Internet of Things [80]. Table 5.1 

summarizes the information covered in this section.  

When writing their research, the authors in [81] used machine learning to spot security 

holes in an MQTT network. First, the authors created a new IoT-MQTT dataset named MQTT-

IOTIDS2020 and then identified MQTT-based attacks. The system includes three main 

components: feature extraction, selection, and classification. The weighted average recall and 

precision were 93% and 97%, respectively. Yet, the authors failed to offer adequate details 

about data preprocessing and feature extraction. 

 The IDS suggested in [76] combined a multi-objective optimization approach for 

reducing data dimensions with a deep learning strategy that employs various models to detect 

DDoS attacks such as LSTM and CNN. The suggested approach was tested on the recent 

CISIDS2017 dataset for DDoS attacks and attained a 99.03% accuracy rate. While the proposed 

IDS appears promising, there are some limitations to consider: 

▪ Lack of Comparative Analysis: The comparative analysis is limited to a few specific 

algorithms. A more detailed comparison would aid in better understanding how the 

proposed method performs relative to other approaches. 

▪ Limited Scope: While the proposed method addressed DDoS attacks in IoT networks, 

it does not consider other cyber-attacks that may threaten these networks. A more 
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comprehensive approach that considers multiple cyber-attack types would be more 

beneficial. 

Authors in [77] suggested that the Deep Residual CNN model protects IoT systems against 

Botnet attacks. As a result, LSTM, CNN, and RNN models were implemented on Real traffic 

data and the “N-BaIoT Dataset” to test the method. The findings indicated that the Deep 

Residual DCNN achieved the top training accuracy of 88.67%, trailed by LSTM and then CNN 

with RNN.  

However, the study has only evaluated the proposed system's performance against the N-

BaIoT dataset and real traffic data from the Mirai and BASHLITE botnets, which may limit 

the generalizability of the results to other IoT datasets and botnets. In addition, the research did 

not address the proposed system's scalability for expansive IoT networks. Moreover, the study 

needs to give information on the computational resources required to implement the proposed 

system on low-end IoT devices, which may have limited processing capabilities.  

In [78], the authors introduced ARTEMIS IDS, which discerns the system's standard 

operation and sends warnings during anomalies. The system used a dataset from a simulated 

IoT network and evaluated its performance against various attack scenarios. The study found 

that ARTEMIS achieved a low false positive rate. With a good accuracy of 99.98% when 

utilizing One-Class SVM, the ARTEMIS IDS employed various ML techniques to identify 

fraudulent MQTT messages. However, the study used a dataset collected from a simulated IoT 

network. Therefore, it is unclear how well the system will perform in real-world IoT networks 

with different network topologies, traffic patterns, and IoT devices. 

  Authors [79]  proposed an ensemble classification model using an automatic model 

selection method and implemented three classifiers, DT, RF, and Gradient boosting, in their 

study. The authors calculated the efficiency scores for NSL-KDD, UNSW-NB15, BoTNeTIoT, 

and BoTIoT datasets to choose the top three models. The model obtained a high F score of 99% 

even though their study looked at zero-day attacks as a binary classification problem. 

Moreover, the study did not compare their system with others which may limit the ability to 

evaluate the system's performance against different approaches. 

Authors in [82] suggested feature clustering instead of classification in the UNSW-

NB15 Data set. The dataset was pre-processed into an executable form for the algorithm, and 

then the accuracy results were evaluated. Using the entire features, the authors used supervised 

Machine Learning (ML) approaches to train Random Forest (RF), Support Vector Machine, 

and Artificial Neural Networks (ANNs) on the clusters. For binary and multi-class 

classification, RF attained accuracy rates of 98.67% and 97.37%, respectively. However, they 

still need to provide a comprehensive discussion on how this approach affects the performance. 

Deep Learning (DL) based Network IDS was proposed in [83] to detect MQTT 

intrusions. The authors have implemented CNN, RNN, and LSTM using the MQTT-IoT-

IDS2020 Dataset. The Aggressive scan, UDP-scan, and MQTT brute-force attacks were 

evaluated using weighted average evaluation metrics. On average, the DL-based Network IDS 

detected MQTT attacks with 97.09% accuracy and an F1 score of 98.33%. While the proposed 
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system achieved high accuracy and F1 score, other performance metrics were not discussed in 

detail. 

The NSL-KDD Dataset was utilized in the solution of Dhanabal and Shantharajah's 

[84]. The study examined the Dataset using the C4.5 algorithm (J48), SVM, and Naive Bayes 

algorithms and found that the J48 analysis yielded the most accurate findings. In addition, the 

research used data mining techniques and the WEKA tool to analyze the dataset and find out 

which protocols were more vulnerable. The study, however, relies solely in a synthetic data 

which may not represent real-world intrusion attempts accurately.  

Authors in [85] assessed five models: NB, ANN, XGB, DT, and KNN algorithms on 

the MiTM Dataset (an open-source Dataset from Dataset (joseaveleira.es). All the models gave 

accuracy above 95 percent. The extreme Gradient boosting algorithm showed a high accuracy 

rate, although it took much more training time than other algorithms. 

Even though their paper is a conference proceeding, it is relatively short and provides limited 

details about the methodology and experimental setup. Furthermore, the study was conducted 

on a small-scale testbed and the study only focused on detecting one type of attack on a specific 

IoT communication protocol (MQTT.  

In the study [86], DT and SVM were utilized in constructing a hybrid model to identify 

intrusions this study. The KDD99 intrusion detection dataset was mined for nine features that 

were deemed particularly significant and pertinent. Their study demonstrated an accuracy of 

99%, while also having a low false alarm rate (FAR), coming in at 0.9%. The authors claimed 

their hybrid system achieved better accuracy and detection rates than individual DT and SVM 

models. However, the paper needs to provide its limitations or drawbacks. 

In the study [23] the authors presented an IDS that used supervised learning to monitor 

potential signals of intrusion. To increase accuracy and decrease false positives, the suggested 

strategy employed an ensemble of support vector machines (SVM) and Nave Bayes classifiers. 

They used a true historical log dataset that had been standardized and pre-processed. The 

suggested system achieved accuracy and precision of 95%, and the classifier's efficiency 

improved after adding session-based characteristics. In addition, the suggested technique was 

compared with other techniques and showed significant reductions in false positives. 

However, using this dataset could limit the applicability of the results to other datasets. 

Secondly, the proposed method demands a significant amount of computational time. This is 

especially true when employing the SVM and hybrid classifier, which might render it 

unsuitable for systems requiring real-time detection. Lastly, the method is dependent on event 

logs. Such logs might not encompass all indications of intrusions, leaving out potential threats 

like those originating at the network layer. 

Another study [87] examined the effectiveness of numerous traditional machine 

learning methods by applying them to several ID-based datasets and analyzing the results. The 

authors conducted a study comparing machine learning techniques for intrusion detection 

across multiple datasets, namely UNSW-NB15, CIDDS-001, and NSL-KDD. After 

standardizing these datasets, they employed SVM, KNN, and DT. DT was superior to other 

https://joseaveleira.es/dataset
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classifiers since it had a detection prediction accuracy that ranged between 99 and 100% for all 

datasets. 

 However, some potential limitations may include the fact that the experiments were conducted 

on specific datasets and attack scenarios, which may only be representative of some possible 

cyberattacks or network configurations. Additionally, the study's evaluation metrics and 

methods may only be appropriate for some use cases or scenarios. 

The study in [88] introduced a lightweight system which used an SVM-based classifier 

to detect unwanted data injections by malicious actors. Recognizing the unique constraints of 

IoT networks—like limited computational power, restricted memory, and tight energy 

capacities—the IDS was meticulously designed. To assess the SVM's performance, the authors 

employed a Poisson process for generating training and test samples. Their results highlighted 

the SVM algorithm's efficacy when complemented by two or three straightforward features, 

achieving impressive classification accuracy and swift detection times. Notably, when 

compared to other machine-learning-based IDSs, the proposed SVM-centric approach 

excelled. This underscores its potential as a rapid response tool against DoS attacks on IoT 

networks. 

 Even though the study achieved good results regarding classification accuracy and detection 

time, it has some limitations. First, it could not find intrusions without slowing down traffic 

flow. Second, the proposed system was tested only in a simulated environment using a limited 

number of attack scenarios. Third, the authors used a Poisson process for traffic modeling, 

which may not accurately reflect the traffic patterns of real IoT networks. Finally, the study 

only considers DoS attacks. 

A machine learning (ML)-driven botnet attack detection system was introduced in [89]. 

The framework reduced the requirement for handling resources by implementing an applicable 

feature extraction technique. The proposed model incorporated three, achieving a detection 

accuracy of 99%. 

Although the suggested method was evaluated against various models, including NB and J48, 

more comparisons with other machine learning and rule-based methods could better understand 

the proposed approach's strengths and limitations. Moreover, the efficacy and execution of the 

proposed framework hinge on the quality of the chosen features. As a result, the selected 

features might be best suited for detecting only certain kinds of attacks. 

In [90] the stacked ensemble learning technique utilized DT, LR, and gradient boosting 

as base models. The research sought to enhance the effectiveness of IDSs by merging the 

advantages of multiple models, aiming for superior IDS. When 23 key characteristics were 

extracted from the CICIDS-2018 , the proposed system achieved a score of 97.9% on the F-

measure and had an accuracy of detection of 98.8%. 

Limitations of the study encompass the notion that the efficacy of the models is contingent 

upon the dataset they are trained with. The CSE-CIC-IDS2018 dataset, in particular, may only 

represent a subset of potential attack scenarios. In addition, the proposed model used only one 

voting method for ensemble learning, and other methods were not compared. 
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The concept of anomaly detection systems for cloud computing was presented in [91]. 

The support vector machine (SVM) was chosen as the main ML method due to its diverse 

kernels. The results of experiments showed an accuracy of 96.24 percent and reduces the false 

alarms number.  

However, the results are only based on one model and one dataset, which may not be 

generalizable to other algorithms or techniques. Using more diverse datasets would make the 

results more generalizable. The study also did not compare the proposed system with existing 

intrusion detection systems, making it difficult to determine how well it performs relative to 

other systems.  

In [92], the efficacy of a contemporary IDS with a hybrid approach for multi-agent 

systems was assessed. When utilizing the NSL-KDD dataset to implement a Deep Neural 

Network (DNN), the proposed system exhibited a 98% success rate in anomaly detection and 

a 97% accuracy in distinguishing between various attack types. 

On the other hand, there are several limitations of this research. Firstly, the proposed system 

was not tested in a real-world IoT environment, so its effectiveness in detecting real-world IoT 

attacks is yet to be demonstrated. Secondly, the system relied heavily on deep learning 

algorithms, which can be resource-intensive and unsuitable for low-power IoT devices. Thirdly, 

the proposed approach used a complex multi-agent system architecture, which may require 

more work to implement and maintain. Fourthly, although the suggested system employed the 

NSL-KDD dataset for testing, this dataset might only capture a fraction of the various attacks 

possible in actual IoT scenarios. In conclusion, the study recognized that the proposed system 

may fall short in accurately detecting infrequent attacks. This indicates a need for continued 

research to enhance the system's precision and efficacy. 

  In another study [93], a method was introduced for identifying DDOS attacks using DT 

and KNN classifiers. The efficacy of the technique was evaluated on two datasets, NSLKDD 

and KDDCup99. With a detection accuracy of 99.51 percent, KNN exceeded DT with an error 

rate of 1.5 percent. 

Yet, the authors offered limited details about the pre-processing methods employed, which 

clouds understanding of their influence on the model's outcomes. Furthermore, the research 

narrowed its lens to just two machine learning algorithms, DT and K-Nearest Neighbor, without 

delving into other potential machine learning algorithms or probing into deep learning 

structures. 

 In [94],  the authors investigated the application of the classifiers RF, AdaBoost, GBM,  

Highly Randomized Trees, Classification and Regression Trees, and MLP  for DoS attacks. 

The research concentrated on both ensemble and individual classifiers. The authors utilized 

different datasets for testing the classifiers, namely CIDDS-001, UNSW-NB15, and NSLKDD. 

The objective of the research was to encourage scholars to craft IDSs using ensemble learning 

and to offer suitable techniques for the statistical evaluation of classifier efficacy. In addition, 

the study demonstrated the versatility of a classifier by showing that the XGB classifier 

performs well for both classification and regression trees. 
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However, the study only evaluated the performance of classifiers on Raspberry Pi, which may 

differ from other IoT hardware platforms. In addition, the study used few evaluation metrics to 

assess the performance of the classifiers, which will not capture the performance of the 

classifiers fully. Other metrics may provide a more comprehensive evaluation. Moreover , the 

study only examined a limited number of ensemble methods, and other ensemble methods may 

perform better on the datasets used. 

 In [95],  the authors introduced an IDS tailored for IoT-MQTT networks, utilizing Elite 

Machine Learning (EML) algorithms. They assessed the proposed approach using a 

lightweight MQTT protocol on a testbed and the SEN-MQTTSET dataset. Out of the seven 

evaluated ML algorithms, they aimed to identify the optimal model for intrusion detection 

based on performance indicators, achieving an accuracy exceeding 99%.  

However, the dataset used in the study may not represent all possible attack scenarios in a real-

world IoT-MQTT network. Additionally, the study might not have fully captured the real-world 

challenges of an IoT-MQTT environment. Also, they only compared their system to existing 

ones and did not look at the latest methods or systems. 

In [96], researchers introduced an IDS for SDN on flow data using the NSL-KDD 

dataset. This method utilized a five-level system that combines KNN, ELM, and H-ELM to 

spot DoS, R2L, U2R, and other unknown attacks and got a top accuracy of 84.29%. Plus, their 

system was fast in terms of computing and worked even when network traffic was encrypted.  

However, it may not be effective in detecting attacks embedded in the packet's payload and 

may require further improvements to detect unknown attacks with a lower false alarm rate. 

Additionally, the proposed IDS was designed based on six flow features, which may only 

capture some of the necessary information required for effective intrusion detection. 

 The goal of the study discussed in [97] aimed to identify DDoS attacks. They wanted 

to find out which algorithm worked best. So, they compared Random Forest (RF), decision tree 

(C5.0), naive Bayes (NB), and support vector machines (SVM) using a normalized 

CICIDS2017 dataset. The results revealed that RF and C5.0 achieved average accuracies of 

86.80% and 96.45%, respectively, with a success probability of 99%, while SVM exhibited 75 

percent of FPR. 

The study provided a comprehensive evaluation of pre-processing techniques, feature selection 

methods, and different classifiers. However, the researchers did not consider other types of 

attacks, such as network intrusion attacks or malware attacks. 

In [98], on the KDDcup99 dataset, using a vote-based ensemble learning technique, the 

researchers assessed different algorithms. The Bayesian network used was more effective with 

small datasets, while the random tree performed better with more extensive sample data.  

However, the study should have discussed the proposed model's computational complexity and 

training time, which could be a concern when dealing with large datasets. 
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Table 5. 1: Summary of the Literature Review 

Ref Models 

Trained 

Dataset 

used 

Attacks MQTT Simulation

/Real 

Testbed 

Ensemble 

Technique 

Feature 

Selection 

Evaluation 

Metrics 

[81] RF, 

SVM, 

NB, LG, 

KNN, 

and DT 

MQTT-

IOTIDS2

020 

Scan_A 

UDP 

Scan 

Brute 

force 

Yes MQTT 

Traffic 

No Yes Recall, 

Precision F1-

score 

[76] CNN 

LSTM 

CISIDS2

017 

DDoS No Simulation No Yes Accuracy 

[77] CNN, 

LSTM, 

and 

RNN 

N-BaIoT Botnet No Real 

Traffic  

No No Accuracy 

[78] SVM IoT 

network 

Binary 

classifi

cation 

Yes Simulated 

IoT 

No Yes Accuracy 

[79] DT, RF, 

Gradient 

boosting 

 NSL-

KDD, 

UNSW-

NB15, 

BoTNeT

IoT, and 

BoTIoT 

Zero-

day 

attacks 

No Network 

Traffic 

Yes Yes F1score-Roc 

curves 

[82] RF, 

SVM, 

and 

ANN 

UNSW-

NB15 

DoS Yes Simulation No Yes Accuracy 

[83] DNN, 

CNN, 

and 

LSTM 

MQTT-

IoT-

IDS2020 

Scan_A

, UDP 

scan, 

Brute 

force 

Yes Simulation No Yes Accuracy 

F1 score 

[84] J48, 

SVM, 

NB 

NSL-

KDD 

DoS, 

R2L 

U2R, 

Probe 

No Simulation No Yes Accuracy 

[85] NB, 

ANN, 

XGB, 

DT and 

KNN 

MiTM 

dataset 

MiTM Yes Real 

Testbed 

No Yes Accuracy, 

precision 

recall,F1 score 



45 
 

[86] DT, 

SVM 

KDD99 Dos, 

probe, 

u2r 

r21 

No Simulation Yes Yes Accuracy 

FAR 

[23] SVM, 

NB 

 

Historica

-l log  

Unkno

wn 

attacks 

No Real 

Testbed 

Yes Yes Accuracy 

Precision 

[87] SVM, 

KNN, 

and DT 

UNSW-

NB15, 

CIDDS-

001, and 

NSL-

KDD 

DDoS, 

Brute 

force 

Exploit 

SQL 

injectio

n 

No Simulation No Yes Accuracy 

Recall 

Precision 

F1score 

[88] SVM Generate

d sample 

traffic 

DoS No Simulation No Yes Accuracy 

[89] DT, NB 

ANN 

N-BaIoT Botnet No Simulation No Yes Accuracy 

[90] DT, LR 

GB 

 

CIC-IDS 

2018 

Brute 

force, 

SQl, 

DoS 

No Simulation Yes Yes Accuracy 

Precision 

Recall 

F1 score 

[91] SVM NSL-

KDD 

Not 

mentio

ned 

No Simulation No Yes Accuracy 

Roc curve 

[92] DNN NSL-

KDD 

DoS, 

Probe, 

R2L 

and 

U2R 

No Simulation No Yes Accuracy 

Precision 

Recall The 1 

score 

[93] DT, 

KNN 

NSLKD

D, 

KDDCup

99 

DDoS No Simulation No Yes Accuracy 

[94] RF, 

AdaBoos

t, 

GBoost,

XGboost 

CIDDS-

001, 

UNSW-

NB15, 

NSLKD

D 

DoS No Simulation Yes Yes Accuracy 

Precision 

Recall The 1 

score 
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[95] LR, 

KNN, 

RF, NB, 

SVM, 

GB, DT 

SEN-

MQTTS

ET 

DoS Yes Real 

Testbed 

Yes Yes Accuracy, F1 

score, Roc 

curve 

[96] KNN, 

ELM, H-

ELM 

NSL-

KDD 

DoS, 

R2L, 

U2R, 

unkno

wn 

attacks 

No Flow-based No Yes Accuracy 

Precision 

Recall, F1 

score, FAR 

[97] RF, DT, 

NB, 

SVM 

CICIDS2

017 

DDoS No Flow-based No Yes Accuracy 

[98] Bayesian 

network  

KDDcup

99 

Probe, 

DoS, 

U2R, 

R2L 

No Simulation Yes Yes Accuracy, 

P,Recall,F1 

score 

 

 

Many studies which have been conducted utilized different techniques. However, there 

is a lack of need to be more research on detecting cyber-attacks specific to the MQTT protocol. 

While fewer studies have proposed machine learning algorithms for detecting MQTT 

intrusions, they have not been extensively evaluated in real-world scenarios, and their 

scalability and generalizability are unknown. Looking ahead, researchers should aim to create 

more robust IDSs capable of identifying a range of cyber-attacks. 

Conversely, the research discussed in this section has demonstrated encouraging outcomes in 

identifying various cyber-attacks on IoT networks. However, most studies have only focused 

on detecting one type of attack or evaluating the performance of a specific set of algorithms on 

a limited dataset. Few studies have looked at the performance of IDS on different network 

topologies, traffic patterns, and IoT devices. 
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Chapter 6 

 

In this chapter, we delve into the MQTT-IoT-IDS2020 dataset, offering an overview of its 

contents and features. We also shed light on the data preparation steps undertaken to make it 

ready for utilization in the machine learning models. In addition, we explain the methodology 

followed to accomplish our thesis goal. We then provide an overview of the experimental setup 

employed in our research. We outline the specific hardware and software setups employed. 

Lastly, we explain the evaluation metrics chosen to gauge the performance outcomes achieved 

through the application of ensemble machine learning methods. 

 

6.1 MQTT-IoT-IDS2020 Dataset Overview 
 

The MQTT-IoT-IDS2020 dataset[81] is a cybersecurity dataset that was created in 2020 

for the purpose of doing IDS research.The MQTT protocol is the primary topic of this dataset, 

which was created with the intention of assisting academics and developers in improving the 

safety of Internet of Things systems. The dataset was created by capturing and analyzing actual 

IoT network traffic, ensuring its authenticity and relevance to real-world scenarios. The dataset 

includes both typical traffic and a variety of cyber-attack traffic, such as: 

 An aggressive scan (Scan A): This type of attack is a variant of network scanning where an 

attacker uses a tool or script to scan a network in an aggressive manner, probing many ports 

across multiple systems in a short time span. These scans can potentially disrupt network 

services or overwhelm systems due to the volume of traffic generated. The purpose is often to 

identify open, vulnerable ports that can be exploited later [99]. 

 A scan of the User Datagram Protocol (UDP) (Scan sU): This refers to a type of UDP scan. 

In terms of network protection, this method is employed to pinpoint open UDP (User Datagram 

Protocol) ports on a designated system [99]. 

 A Sparta SSH brute-force attack (Sparta): This refers to a brute-force attack on the SSH  

(Secure Shell) protocol using a tool like Sparta. SSH [100] is a protocol used to establish a safe 

connection over an insecure network. It is typically used for logging in remotely, executing 

commands, and accessing command-line interfaces on distant machines. It systematically 

attempts all combinations of passwords (or using a list of common passwords) until the correct 

one is found. Tools like Sparta can automate this process [101], [102]. 

 An MQTT brute-force attack (MQTT BF): This refers to a brute-force attack on the MQTT 

protocol. An MQTT_BF attack would typically involve an attacker trying to guess a weak 

password, for MQTT messages, thereby gaining control over the communication and data flow 

[103]. 
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The dataset, which includes these attack scenarios, provides a platform for creating and 

testing machine learning models and intrusion detection systems. This ensures they can 

recognize and categorize cyber assaults aimed at MQTT-based IoT networks effectively. 

The main goal of the dataset is to make it possible for developers and researchers to 

design, train, and evaluate machine learning models that are able to accurately recognize and 

categorize various kinds of cyberattacks that are launched against IoT networks. Researchers 

and developers can leverage the MQTT-IoT-IDS2020 dataset to study the characteristics of 

MQTT-based network traffic, identify attack patterns, and design innovative intrusion detection 

algorithms. The dataset includes both processed features and raw capture files in the popular 

pcap format, providing flexibility for different analysis approaches. 

While IOT-23 Dataset [104] exists, a recent and widely used dataset for IoT security 

research, it does not include MQTT. The MQTT-IoT-IDS2020 dataset specifically targets the 

MQTT protocol, which is widely deployed in IoT platforms. By focusing on MQTT-based 

traffic, we can gain insights into the unique security challenges and attack patterns specific to 

this protocol. Our study adds value by focusing on a specific protocol and addressing the unique 

security challenges associated with MQTT-based IoT networks.  

 

6.2 Description of the Dataset  
 

In this section, we give a thorough overview of the dataset that was produced by 

simulating 12 MQTT sensors. 

The dataset, which can be found in [81], encompasses five recorded scenarios: normal 

operation and four distinct attack scenarios. The attacks performed include an aggressive scan 

(Scan A), a User Datagram Protocol (UDP) scan (Scan sU), a Sparta SSH brute-force attack 

(Sparta), and an MQTT brute-force attack (MQTT BF). The dataset was carefully assembled 

by utilizing the tcpdump tool [105], which specializes in capturing and monitoring Ethernet 

traffic. Once this traffic was recorded, it was then stored in the widely-accepted pcap file format 

for further analysis and use. 

During the research process, a variety of specialized tools were incorporated to ensure 

comprehensive data capture and simulation. Virtual machines were employed to emulate 

different network devices, offering a digital representation of physical computers. The 

renowned security auditing tool, Nmap, was utilized to perform scanning attacks, aiming to 

uncover potential network vulnerabilities. Additionally, the versatile open-source media player, 

VLC (VideoLAN Client), was used to mimic the data streams typically associated with IoT 

devices, especially simulating camera feeds. Lastly, for a more targeted approach, the tool 

MQTT-PWN [106] was harnessed. This specific tool was designed to execute brute-force 

attacks, attempting to break into systems by testing a multitude of credential combinations. 

In the examined network setup [107], 12 MQTT sensors, a central broker, a specific 

machine that replicates camera feeds, and a system that acts as the attacker make up the 
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structure. Under standard conditions, these sensors actively send messages through the 

"Publish" command of MQTT. These messages are characterized by their random nature, both 

in content and length, which varies among the sensors. This variance is designed to imitate the 

diversity found in real-world IoT deployments. Parallelly, a simulation of a camera feed is run 

using the VLC media player, which transmits data through a UDP stream. To further achieve 

authenticity and imitate real-world network conditions, the emulators within the setup have 

been programmed to drop packets at specified rates: 0.2%, 1%, and 0.13%. Notably, while the 

distinct scenarios were being recorded, the operations of the network continued undisturbed. 

To cater to different research needs, the dataset is offered in two formats: the unaltered capture 

format, known as .pcap files, and another that comprises processed features. These features 

span across packet-based, unidirectional, and bidirectional metrics. 

Five pcap files make up the dataset in [107], including normal.pcap, sparta.pcap, scan_A.pcap, 

mqtt_bruteforce.pcap, and scan_sU.pcap. Each file is a recording of a different scenario, 

including normal operation, a Sparta SSH brute-force attack, an aggressive scan, a MQTT 

brute-force attack, and a UDP scan. The background regular operations are included in the 

assault pcap files.The MQTT-IoT-IDS2020 dataset features offer valuable information for 

analyzing the network traffic and developing intrusion detection systems in the IoT domain.  

• Packet flow analysis in MQTT-IoT-IDS2020 involves examining the characteristics of 

individual packets within the network traffic. These features encompass flags, length, 

MQTT message parameters, and more.  

• Unidirectional flow analysis in MQTT-IoT-IDS2020 focuses on capturing and 

analyzing the traffic in one direction only, either from the source device to the 

destination device or vice versa. 

• Bidirectional flow analysis considers the traffic in both directions simultaneously. It 

involves capturing and analyzing the communication between the source and 

destination devices in a bidirectional manner. In the case of two-way traffic flows, some 

features possess a pair of values: one representing the outgoing (or forward) flow and 

the other for the incoming (or backward) flow.  

Table 6.1 and Table 6.2. display the features description and distribution of cases, respectively.  
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Table 6. 1: Dataset Feature Description[108] 

Feature 
Data Type 

Description Packet 
Uniflow Biflow  

ip_src Text Source IP Address yes yes yes 

ip_dest Text Destination IP Address yes yes yes 

protocol Text Last layer protocol yes   

ttl Integer Time to live yes   

ip_len Integer Packet Length yes   

ip_ flag_df Binary Don’t fragment IP flag yes   

ip_flag_mf Binary More fragments IP flag yes   

ip_flag_rb Binary Reserved IP flag yes   

prt_src Integer Source Port yes yes yes 

prt_dst Integer Destination Port yes yes yes 

proto Integer 
Transport Layer protocol 

(TCP/UDP) 

 yes yes 

tcp_flag_res Binary Reserved TCP flag yes   

tcp_flag_ns Binary Nonce sum TCP flag yes   

tcp_flag_cwr Binary 
Congestion Window 

Reduced TCP flag 
yes   

tcp_flag_ecn Binary ECN Echo TCP flag yes   

tcp_flag_urg Binary Urgent TCP flag yes   

tcp_flag_ack Binary 
Acknowledgement TCP 

flag 
yes   

tcp_flag_push Binary Push TCP flag yes   

Tcp_flag_reset Binary Reset TCP flag yes   

tcp_flag_syn Binary Synchronization TCP flag yes   

Tcp_flag_fin Binary Finish TCP flag yes   

num_pkts Integer 
Number of Packets in the 

flow 

 yes Fwd & bwd 

Mean_iat Decimal Average inter arrival time  yes Fwd & bwd 

std_iat Decimal 
Standard deviation of 

inter arrival time 

 yes Fwd & bwd 

min_iat Decimal 
Minimum inter arrival 

time 

 yes Fwd & bwd 

max_iat Decimal 
Maximum inter arrival 

time 

 yes Fwd & bwd 

num_bytes Integer Number of bytes  yes Fwd & bwd 

num_psh_flags Integer Number of push flag  yes Fwd & bwd 

num_rst_flags Integer Number of reset flag  yes Fwd & bwd 

num_urg_flags Integer Number of urgent flag  yes Fwd & bwd 

mean_pkt_len Decimal Average packet length  yes Fwd & bwd 

std_pkt_len Decimal 
Standard deviation packet 

length 

 yes Fwd & bwd 

min_pkt_len Decimal Minimum packet length  yes Fwd & bwd 

max_pkt_len Decimal Maximum packet length  yes Fwd & bwd 

mqtt_messagetype Integer MQTT message type yes   

mqtt_messagelength Binary MQTT message length yes   

mqtt_flag_uname Binary User Name MQTT Flag yes   

mqtt_flag_passwd Binary Password MQTT flag yes   

mqtt_flag_retain Binary Will retain MQTT flag yes   

mqtt_flag_qos Integer Will QoS MQTT flag yes   

mqtt_flag_willflag Binary Will flag MQTT flag yes   

mqtt_flag_clean Binary Clean MQTT flag yes   

mqtt_flag_reserved Binary Reserved MQTT flag yes   

 

is_attack 
 

Binary 
1 if the instance 

represents an attack, 0 

legitimate. 

 

no 
 

no 
 

no 
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Table 6. 2: MQTT-IoT-IDS2020 feature statistics distribution [108] 

 Classes Total Instances Normal  Attack 

 

 

Biflow 

 

Biflow_mqtt_bruteforce  

Biflow_normal  

Biflow_scan_A  

Biflow_scan_sU Biflow_sparta 

 

16,696  

86,008  

25,693  

39,664  

91,318 

 

2152 

86,008 

5786 

17,230 

77,202 

 

14,544 

    X 

19,907 

22,434 

14,116 

 

 

Uniflow 

Uniflow_mqtt_bruteforce   

Uniflow_normal  

Uniflow_scan_A  

Uniflow_scan_sU 

Uniflow_sparta 

33,079 

171,836 

51,358 

25,845 

182,407 

4205 

171,836 

11,561 

34,409 

154,175 

28,874 

    X 

39,797 

22,436 

28,232 

 

 

Packet-flow 

mqtt_bruteforce  

Normal  

scan_A  

Biflow_scan_sU Biflow_sparta  

91,056,230 

1,056,230 

111,392 

233,255 

130,876,584 

70,980,732 

1,056,230 

70,768 

210,819 

90,980,732 

 

19,895,852 

    X 

40,624 

22,436 

39,895,852 

 

In our research, we specifically focus on utilizing the unidirectional flow analysis from 

the MQTT-IoT-IDS2020 dataset. Unidirectional flow analysis allows us to examine the traffic 

in one direction only, providing valuable insights into the network traffic from the source 

device to the destination device or vice versa. This analysis enables us to identify specific 

features and attributes that are indicative of normal operation or potential attacks within the 

MQTT-IoT network. 

 

6.3 Dataset Pre-processing 

 
This part addresses the methods used to prepare the dataset before using it to perform 

machine learning tasks. Data cleansing, feature selection, normalization, and controlling class 

imbalance are among the pre-processing stages. By performing these pre-processing steps, the 

dataset is optimized for training and evaluating machine learning models, ensuring accurate 

and reliable results in the subsequent stages of the study. 

Data preprocessing is essential in preparing the data for machine learning models [109]. 

The first step in the preprocessing involves combining the five files for the uniflow network 

level by implementing a Python script. The resulting combined CSV file contained binary and 

multi-class label attributes. 

The preprocessing involved cleaning the data by removing repeated values and 

handling missing ones. To avoid the bias or undue influence of specific features, the "ip_src" 

(source IP address) and "ip_dst" (destination IP address) features were dropped. By excluding 

these attributes, the analysis and modeling process can focus more accurately on other relevant 

features and their contributions to the dataset.  
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To address the class imbalance, the oversampling technique SMOTE (Synthetic 

Minority Oversampling Technique) [110] is employed. It generates synthetic data points by 

interpolating between existing instances of the minority class and creates additional instances 

of the minority class. However, to avoid introducing bias into the model, we shuffle the dataset 

to randomize the order of the instances before applying SMOTE. 

  To evaluate how effectively the model works, the dataset was partitioned into training 

and testing sets at an 80:20 distribution ratio. All features except the target attribute were then 

normalized to ensure they were on the same scale, which is crucial for optimizing machine 

learning models. This process preserves the relative differences in values while ensuring that 

all features have comparable scales. 

A key factor in obtaining the best outcomes is the choice of data characteristics. We 

used the SelectKBest method for feature selection. This method selects the top k features=10 

in our case that are most impactful in predicting the target variable. These curated features are 

then saved into separate data structures for both binary and multiclass classifications. 

As shown in Figures 6.1 and 6.2, respectively, the feature important scores are calculated for 

both binary and multiclass classification. The features were ranked according to their scores, 

and the top 10 features were chosen to be used in the model.   

 

 

Figure 6. 1: Binary Classification Top 10 Feature Selection 
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Figure 6. 2: Multiclass Classification Top 10 Feature Selection 

 

6.4 Methodology 
 

In our study, we implement Bagging, Boosting, and Stacking Ensemble techniques and 

figure out the effectiveness of these powerful methods in detecting the attacks found in the 

MQTT-IoT-IDS2020 dataset. Figure 6.3 demonstrates our workflow to accomplish our 

proposed IDS. Our approach for this project can be pointed out in these steps: 

▪  Use a most recent real-world Dataset," MQTT-IoT-IDS2020," in an IoT environment 

to determine anomalies in combination with various ML models. The Dataset was pre-

processed, and the most significant features were extracted. 

▪ All intrusion detection algorithms are implemented and validated using Python and 

Sklearn libraries. 

▪ Training the models by using ensemble learning algorithms. 

▪ Evaluation analysis of the models using the standard machine learning classification 

metrics was considered to measure the efficiency of these models and predict the best-

performing model. 
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Figure 6. 3: Methodology Workflow 

Bagging, Boosting, and Stacking ensemble techniques are implemented with 5-fold 

cross-validation to get a reliable performance estimation. Cross-validation provides a means to 

assess the robustness of ensemble techniques by evaluating their performance on different 

subsets of the data. This evaluation helps identify whether the ensemble's performance remains 

consistent or varies significantly across different data partitions, thus providing insights into 

the ensemble's stability and reliability. 

 

6.5 Experimental Setup 

 
We conducted the training and validation of the selected Ensemble models on a laptop running 

a 64-bit Windows 11 operating system and 16 GB RAM. The computer runs on an AMD Ryzen 

7 5700U processor featuring Radeon Graphics and has a speed of 1.80 GHz. 

Every experiment is carried out using the Python programming language (version 3.9.16) via 

several popular machine learning libraries, especially Scikit-learn, found in Google 

Colaboratory, which is also used to derive the performance and statistical results. 

 

6.6 Performance evaluation metrics 

 
In this section, we elucidate the criteria for evaluation that were used to determine whether our 

findings were efficient. when implementing ensemble techniques in machine learning. 

 When evaluating the classification on a test dataset compared to the training dataset, we can 

identify four possible outcomes.  

• True Positives (TP), which represent the packets correctly identified as malicious. 

• True Negatives (TN) denote the packets that have been accurately flagged as benign.  

MQTT-IoT-
IDS2020

Dataset 
Preprocessing

Features 
selection

Training By 
Ensemble 

Algorithms

Testing By 
Testing Dataset

Evaluating the 
Performance 

Measures
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• False Positives (FP) occur when benign packets are mistakenly tagged as malicious. 

• False Negatives (FN) refer to the instances where malicious packets are wrongly 

identified as benign. 

In our study, we employed a range of metrics to evaluate the efficiency of the classifier, 

namely Precision, Recall, F1-score, and Accuracy [111]. Ideally, we aimed to optimize every 

metric, keeping in mind that each has a value scale ranging from 0 to 1. A metric closer to 1 

indicates a better performance of the classifier, whereas a value closer to 0 suggests room for 

improvement. By striving for the upper end of this scale, our goal was to ensure the classifier's 

maximum accuracy and efficiency in its predictions. These include. 

• Precision(P) represents the percent of correctly identified malicious samples (equation 

1). 

• Recall (R) refers to the fraction of all malicious samples that were correctly identified 

(equation 2).  

• The F1 score represents the balance between precision and recall by taking their 

harmonic mean. It is particularly valuable when the distribution of classes is uneven or 

imbalanced, ensuring that neither precision nor recall is disproportionately favored 

(equation 3).  

• The accuracy metric indicates the proportion of samples that were accurately classified 

in equation (4). 

These formulas can be used to calculate these metrics: 

𝑷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … … … … … … … … … … … … … … … … … … … … . . (1) 

      𝑹 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  … … … … … … … … … … … … … … … … … … … … … … … (2)           

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 = 2 ∗
𝑃. 𝑅

𝑃 + 𝑅
… … … … … … … … … … … … … … … … … . . (3) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
… … … … … … … … … … … … … . (4) 

 

• The Confusion matrix [112], a powerful tool, is also utilized for visualizing machine 

learning models' performance. In binary classification (Figure 6.4) it consists of four 

entries: True Positives (correctly detected attacks), True Negatives (correctly identified 

legitimate flows), False Positives (legitimate flows mistaken as attacks), and False 

Negatives (attacks mistaken as legitimate flows). 
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Figure 6. 4: Binary Classification Confusion Matrix 

 

In a multiclass classification (Figure 6.5), the matrix has dimensions corresponding to 

the number of classes. The matrix's columns represent projected class occurrences, whereas 

each row represents actual class occurrences. The values show how many instances were 

rightly classified for every specific class and also point out instances that got classified 

incorrectly.  

 

 

 

 

 

 

 

Figure 6. 5: Multiclass Classification Confusion Matrix 

• The Characteristic curve of the receiver operating (ROC) Curve [113] is also used 

as it offers a glimpse of the model's effectiveness regardless of the threshold.  

• The model's performance utilizing the ROC curve was thoroughly evaluated using the 

AUC metric [114]. It signifies the likelihood that the model will correctly prioritize a 

random positive sample over a random negative one. A higher AUC value reflects a 

more effective model, showcasing its enhanced capability to differentiate between 

positive and negative samples. 
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Chapter 7 

 

Results and Analysis 

 

In this section, we showcase the findings derived from our experimental evaluations, focusing 

on both binary and multiclass classifications based on uniflow features. We highlight the 

efficacy of the detection solution grounded in machine learning methodologies  and also 

explore the effectiveness of the ensemble techniques in classifying the attacks. Through 

extensive testing and in-depth evaluation, our goal is to delve deeper into the capabilities, 

constraints, and overall effectiveness of the approach we have proposed. These results and 

analysis contribute to the advancement of cybersecurity in MQTT-IoT networks and provide 

valuable insights for future research and system enhancements. 

 

7.1 Bagging Binary Classification  

 
For binary classification, our dataset has been used to detect the MQTT-IoT attacks 

mentioned earlier. We utilized the Bagging Classifier, with a Decision tree with a maximum 

depth of 20 as the base estimator. The Bagging technique works by creating several subsets of 

the original data, training a base learner (150 Decision Trees) for each, and then combining the 

outputs.  

We chose Decision Trees (DT) as our base model due to their transparent and 

interpretable decision-making process. Their robustness to outliers, scalability to large datasets, 

and quick training times make them ideal. Furthermore, their compatibility with ensemble 

techniques enhances model performance while mitigating overfitting concerns. 

The Bagging Classifier has been trained on the dataset and then tested on unseen data. 

In terms of how outputs are combined, the ensemble model typically utilizes majority voting 

for our binary classification problem. The predicted class that receives the most votes is chosen 

as the final output, with votes for the predicted class coming from each base model. 

We employed a k-fold cross-validation approach, specifically with five folds. The 

accuracies observed across the folds provide insight into the technique's consistency and 

efficiency on various dataset subsets. 

We handled class imbalance using SMOTE to generate synthetic samples and employed 

a RandomizedSearchCV for hyperparameter tuning, which is an excellent choice when the 
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hyperparameter space is large. It selects random combinations of the parameters for a given 

number of iterations. 

 

Bagging Binary Results and Analysis: 
 

Table 7.1, Figure 7.1, and Figure 7.2 show the results of the bagging ensemble from the 

classification report, which gives an overall picture of the model’s efficiency. We are getting 

precision, recall, and F1 scores of approximately 1.0 for both classes. The ideal balance 

between false positives and false negatives is demonstrated by these reliable results. The 

accuracy for the 'attack' class is 100%, and for the 'benign' class is 100%. The model’s accuracy is 

approximately 100%, showing how well it differentiates between the two groups. Across the five 

folds, it consistently achieved a training accuracy of approximately 99.99%. 

Testing accuracy, which is more indicative of the model's generalization capability to unseen 

data, remained consistently high across the folds, with an average of 99.96%. Only a slight 

variation was noted in the fourth fold, where it marginally dropped to 99.95%, suggesting the 

robustness of our model. 

Out of 75218 instances of class Benign, the model correctly predicted 75216, misclassifying 

only 2. Similarly, out of 75257 instances of the class Attack, the model correctly predicted 

75248, with only nine misclassifications. These results corroborate the high precision and recall 

values observed in the classification report. 

The AUC score is 1.0, which is excellent and indicates a strong model's ability to discriminate 

across classes. 

 

Table 7. 1: Binary bagging Classification Results using 5-fold Cross Validation 

Class  Accuracy Precision  Recall  F1 score Support 

Attack 99.96% 100% 100% 100% 75257 

Benign 99.94% 100% 100% 100% 75218 
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Figure 7. 1: Bagging Binary Confusion Matrix 

 

 

Figure 7. 2: Bagging Binary ROC Curve 

 

7.2 Bagging Multiclassification  

 
For Multiclassification Bagging, the central process involved using Decision Trees as 

the base estimator within a Bagging ensemble.  

Given the presence of a class imbalance in our dataset, we deployed SMOTE ensuring 

our model was not biased towards the majority class and could learn useful patterns from all 

classes equally. 
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The base classifier used was a Decision Tree Classifier with an optimal depth of 20 and 

a minimum sample split of 4. The base classifier was then used in a Bagging Classifier, training 

it with 196 estimators obtained from RandomSearch, and sampling 80% of instances and 

features during the process. After training the classifier, accuracy was calculated on both the 

training and testing datasets. Additionally, KFold cross-validation with five splits was 

performed to validate the robustness of the model. A classification report was generated, 

providing insights into the evaluation metrics. 

 

Bagging Multiclassification Results and Analysis 

 

For multi-classification, we classify instances into one of five classes: Benign, 

MQTT_BF, Scan_A, Scan_sU, and Sparta. The outcomes from the classification report are 

displayed in Table 7.2, Figures 7.3, and 7.4.Table 7. 2: Multi-Classification Bagging Results 

using 5-fold Cross Validation. 

 

Class  Accuracy Precision  Recall  F1 score Support 

Benign 93% 95% 94% 94% 36482 

MQTT_BF 

 

95% 96% 96% 96% 36444 

Scan_A 

 

97% 96% 97% 96% 36455 

Scan_sU 

 

94% 94% 94% 94% 36541 

Sparta 

 

95% 95% 96% 95% 36485 

 

After running the model, the training accuracy achieved was a commendable 99.36%, 

while the testing accuracy stood at 95.20%. The confusion matrix, as shown in Figure 7.3, 

revealed that the classifier was able to tell the classes apart quite well, with the majority of the 

instances correctly classified. The cross-validated classification report further affirmed the 

model's performance, showcasing an overall accuracy of 95% across classes. Individual class 

accuracies were: Benign at 93.66%, MQTT_BF at 95.47%, Scan_A at 97.01%, Scan_sU at 

94.17%, and Sparta at 95.61%. The area under the ROC curve (AUC) shown in Figure 7.4 for 

each class was impressive, with most classes scoring above 0.95, indicating the classifier's 

strong ability to distinguish between positive and negative instances for each class. 
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Figure 7. 3: Multiclassification Bagging Confusion Matrix 

 

Figure 7. 4: Bagging Multiclassification ROC curves 
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7.3 Boosting Binary Classification 
 

For Binary classification, we implemented an ensemble learning model using the 

Adaptive Boosting (AdaBoost) technique with a base estimator being a Decision Tree 

Classifier. The utilization of AdaBoost with a Decision Tree (DT) offers a powerful 

combination for classification tasks. AdaBoost transforms a collection of weak learners, often 

represented by shallow decision trees, into a single strong learner, effectively enhancing overall 

prediction performance. Despite DT's tendency to overfit, AdaBoost curtails this risk by 

aggregating outcomes from several DTs, thus improving generalization to unseen data. 

Additionally, this method is both flexible, as it can handle numerical and categorical data, and 

efficient, due to the computational simplicity of decision trees. 

We employed Random Search for hyperparameter tuning, which effectively explored a 

broader range of parameter values and identified the best parameters for our AdaBoost model: 

a decision tree depth of 10, 150 estimators, and a learning rate of 0.1. To ensure robust 

estimation of the model's performance and to avoid overfitting, we incorporated 5-fold cross-

validation into the Random Search process. This approach divided the dataset into five subsets 

and iteratively used four for training and one for validation.  

We used SMOTE, a powerful technique for creating synthetic samples from the minority class, 

to address difficulties with class imbalance in our data. 

The performance of the implemented AdaBoost model was assessed, along with the model's 

overall accuracy, for each class ('benign' and 'attack'). 

 

Boosting Binary Classification Results and Analysis 
 

In this section, we present the binary classification outcomes derived from the boosting 

ensemble, employing AdaBoost with Decision Tree (DT) as the foundational estimator. 

As shown in Table 7.3, for the 'benign' class, our model yielded a precision of 1.0, a 

recall of 1.0, and an F1-score of 1.0. These figures indicate a high success rate in accurately 

identifying and capturing most of the 'benign' instances. Meanwhile, for the 'attack' class, our 

model achieved a precision of 1.0, a recall of 1.0, and an F1-score of 1.0. The higher precision 

for 'attack' instances demonstrates that our model is cautious and effective in minimizing false 

positives when predicting an 'attack'. The accuracy for the 'benign' class was recorded at 

99.96%, while the 'attack' class had an accuracy of 99.94%, signaling the overall competence 

of our model in making correct classifications. 
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Table 7. 3: Binary Classification Boosting Results using 5-fold Cross Validation 

Class  Accuracy Precision  Recall  F1 score Support 

Attack 99.94% 100% 100% 100% 75237 

Benign 99.96% 100% 100% 100% 75237 

 

As shown in Figure 7.5, the model correctly classified 75207 'benign' and 75193 'attack' 

instances, showcasing its robust performance. However, it also incorrectly classified 30 

'benign' and 44 'attack' instances.  

 

Figure 7. 5: Binary boosting Classification Confusion Matrix 

Figure 7.6 illustrates further study of our model's performance using the ROC curve 

and associated Area Under the Curve (AUC) score. Our AdaBoost model achieved an AUC 

score of 1.0, a significant achievement that demonstrates an excellent capacity to distinguish 

between 'benign' and 'attack' instances. 

 

 

Figure 7. 6: Binary Boosting ROC Curve 
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7.4 Boosting Multiclass Classification 

 
This section describes the model's performance for multiclass classification and 

provides examples of how our boosting ensemble strategy works. 

As mentioned earlier, a key aspect of boosting is that it places more weight on instances 

that were previously misclassified, focusing on the harder-to-classify instances in successive 

iterations, ultimately enhancing the model's performance. 

We focused on the MQTT-IoT-IDS2020 dataset, using the top 10 multi-class features. 

The data underwent a standardization process using the StandardScaler to enhance the model's 

convergence speed and performance. Using SMOTE to handle the imbalance, we employed 

the XGBoost classifier, a gradient boosting algorithm, and tuned its hyperparameters using 

RandomizedSearchCV with a Stratified K-Fold cross-validation scheme which helped ensure 

the selected parameters generalize well to unseen data. 

 

Boosting Multiclass Classification Results and Analysis 

 

The multiclassification outcomes for the boosting ensemble using XGBoost with DT 

as the base estimator are shown in this section.  

As shown in Table 7.4, the training accuracy achieved was an impressive 99.65%, while 

the testing accuracy stood at 96.93%. A comprehensive cross-validated classification report 

provided further insights: the model showcased all metrics as 97% across all classes, signifying 

high reliability. The individual accuracies for the classes 'Benign,' 'MQTT_BF,' 'Scan_A,' 

'Scan_sU,' and 'Sparta' were 96.18%, 97.17%, 98.08%, 96.46%, and 96.93% respectively.  

The confusion matrix in Figure 7.7 provided a visual demonstration underscoring the 

model's proficient classification capability. For instance, the class 'Scan_A' witnessed the 

highest true positives (35,756 instances correctly identified) with minimal misclassifications, 

such as 149 mistaken as 'Benign' and 198 as 'MQTT_BF.'  

The ROC curves in Figure 7.8 for each class further highlighted the model's capacity 

to discriminate between the classes, with AUC values accentuating its efficiency. The Area 

Under the Curve (AUC) values obtained effectively demonstrated the model's prowess in 

distinguishing between different traffic types.  Benign, MQTT_BF, Scan_sU, and Sparta 

classes achieved an AUC of 0.98, and the Scan_A class stood out with a near-perfect score of 

0.99. These results highlight the model's robust ability to accurately detect various attack 

patterns and benign traffic, signifying its effectiveness in intrusion detection for IoT contexts. 
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Table 7. 4: Multi-Classification Boosting Results using 5-fold Cross Validation 

Class  Accuracy Precision  Recall  F1 score Support 

Benign 96.18% 97% 96% 96% 36482 

MQTT_BF 

 

97.17% 97% 97% 97% 36444 

Scan_A 

 

98.08% 98% 98% 98% 36455 

Scan_sU 

 

96.46% 97% 96% 96% 36541 

Sparta 

 

96.93% 97% 97% 97% 36485 

 

 

Figure 7. 7: Multiclassification Boosting Confusion Matrix 

 

Figure 7. 8: Multiclassification Boosting ROC Curves 
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7.5 Stacking Binary Classification  
 

In this section, we explore the utilization of a stacking ensemble approach for binary 

classification, specifically focused on distinguishing between the benign and attack classes.  

The ensemble comprises three base classifiers: K-Nearest Neighbors (KNN), XGBoost, 

and Decision Tree (DT), which contribute their individual predictions to a final meta learner, 

Logistic Regression (LR). By combining the strengths of these diverse classifiers, the stacking 

ensemble aims to enhance the overall classification performance, effectively handling the 

complexities and imbalances present in the dataset. We used the SMOTE to correct the class 

disparity. After then, the data was divided into training and testing sets using 

StratifiedShuffleSplit. 

We incorporated 5-fold cross-validation (cv=5) to the Randomized Search procedure to 

more thoroughly evaluate the model's generalizability and reduce the risk of overfitting. The 

dataset is then partitioned into five subsets, or "folds”. The model is then trained and validated 

five times, using various combinations of one validation fold and four training folds. The 

model's capacity to generalize to new data is then estimated using an average of the 

performance measures throughout the five iterations. The integration of Randomized Search 

with 5-fold cross-validation thus ensured an efficient, robust, and rigorous approach to model 

tuning and validation, enabling us to develop a high-performing stacked ensemble model for 

the binary classification task at hand. Finally, we leveraged an array of evaluative metrics, 

encompassing accuracy, classification report, confusion matrix, and the Receiver Operating 

Characteristic (ROC) curve, to assess the efficacy of our results. 

 

Stacking Binary Classification Results and Analysis 

 

The binary classification results for the stacking ensemble model built with the three 

base classifiers Decision Tree (DT), K-Nearest Neighbors (KNN), and XGBoost are presented 

in this section. These classifiers were chosen for their complementary strengths in terms of 

model bias and variance. Logistic Regression (LR) was used as the final estimator, with the 

aim of making the most out of the diverse predictions of the base classifiers. 

The model exhibited an impressive performance with a training accuracy of 0.9999 and 

a testing accuracy of 0.9996. The classification report provided deeper insights, indicating an 

almost perfect precision, recall, and F1-score for both the 'attack' and 'benign' classes, as shown 

in Table 7.5. Both classes saw an accuracy rate of 1.00, indicating a high level of correct 

predictions. 

For the 'benign' class, out of 45,122 instances, 45,099 were correctly predicted, with 

only 22 misclassifications. Similarly, for the 'attack' class, 45,106 out of 45,121 instances were 

predicted accurately, with just 16 instances misclassified. 
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Table 7. 5: Binary Classification Stacking Results using 5-fold Cross Validation 

Class  Accuracy Precision  Recall  F1 score Support 

Attack 100% 100% 100% 100% 45121 

Benign 100% 100% 100% 100% 45122 

 

Figure 7.9 shows the binary confusion matrix providing further detailed insights into 

our model's performance. For the 'benign' class, out of 45,122 instances, 45,099 were correctly 

predicted, with only 22 misclassifications. Similarly, for the 'attack' class, 45,106 out of 45,121 

instances were predicted accurately, with just 16 instances misclassified. 

 

 

 

 

Figure 7. 9: Binary Classification Stacking Confusion Matrix 

 

A ROC AUC score of 1.0, demonstrating its outstanding capacity to differentiate between the 

two classes, also served to support the ensemble's performance.  
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.  

Figure 7. 10: Binary Stacking ROC Curve 

It is clearly shown from these results that the stacking ensemble model, with its tuned 

base classifiers and final estimator, displays excellent performance on the test data. It is 

especially effective in identifying 'MQTT-attack' instances, which was our primary focus.  

 

7.6 Stacking Ensemble Multiclass Classification 
 

In this section, we utilize a stacking ensemble for multiclassification of the MQTT-IoT-

IDS2020 dataset, focusing on distinguishing benign data from four types of attacks: 

'MQTT_BF,' 'Scan_A,' 'Scan_sU,' and 'Sparta.' The ensemble combines the predictions of three 

base classifiers, Decision Tree, K-Nearest Neighbors, and XGBoost, using Logistic Regression 

as a final meta-learner. 

To rectify the pronounced class imbalance , we utilized  SMOTE to achieve 

equilibrium. The hyperparameters are refined by Randomized Search to lessen the risk of 

overfitting and to offer an accurate estimation of the model's capacity for generalization. 

 

 Stacking Multiclassification Classification Results and 

Analysis 

 

The multiclassification results for the stacking ensemble, which combines the 

predictions of the three basic classifiers Decision Tree, K-Nearest Neighbors, and XGBoost, 

are presented in this section. The last meta-learner used was Logistic Regression.  

Our results, shown in Table 7.6, indicated that the stacking ensemble approach was effective 

for this multiclassification problem. The cross-validated classification report highlights that the 

model consistently maintains a high precision, recall, and F1-score of above 0.97 across all 
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categories: Benign, MQTT_BF, Scan_A, Scan_sU, and Sparta. These metrics suggest that the 

model not only correctly predicts positive observations but also successfully captures most of 

the relevant results. The overarching accuracy of approximately 97.44% underscores the 

model's reliable performance. The presented confusion matrix in Figure 7.11 reinforces this, 

showing that the majority of predictions fall on the diagonal, implying correct classifications. 

Delving deeper into individual class accuracies reveals impressive scores, with Scan_A leading 

at 98.29% and the other categories not far behind. The AUC values, as shown in Figure 7.12, 

predominantly hovering around the 0.98 to 0.99 range, further solidify the model's efficiency. 

These scores indicate the classifier's high true positive rate and its ability to minimize false 

positives. Top of Form 

 

Table 7. 6: Multi-Classification Stacking results using 5-fold Cross Validation 

Class  Accuracy Precision  Recall  F1 score Support 

Benign 96.92% 97% 97% 97% 29200 

MQTT_BF 97.93% 98% 98% 98% 29139 

Scan_A 98.29% 98% 98% 98% 29250 

Scan_sU 97.31% 97% 97% 97% 29264 

Sparta 97.45% 97% 97% 97% 29072 

 

 

Figure 7. 11: Multiclassification Stacking Confusion Matrix 
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Figure 7. 12: Multiclassification Stacking ROC Curves 

 

The results clearly show and underscore the efficacy of the stacking ensemble approach 

combined with SMOTE for multiclassification problems on imbalanced MQTT-IoT-IDS. They 

demonstrate that such an approach can deliver robust performance across all classes and handle 

the nuances and complexities of distinguishing between benign. 
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Chapter 8 

 
In this final chapter, we consolidate the major findings of our research, emphasizing their 

implications within the broader context of the security of the MQTT-IoT field. We posed at the 

outset of this study, addressing each with the insights garnered through our research. In light 

of these conclusions, we identify areas that warrant further exploration and suggest potential 

directions for future work. Our objective is not only to draw a conclusive end to this particular 

research journey but also to inspire further investigations and advancements in this significant 

area. 

8.1 Conclusion 

 
In this thesis, we assessed how well ensemble machine-learning approaches performed 

when used to detect cybersecurity attacks for MQTT-IOT networks. The primary focus was on 

the three popular ensemble methods Bagging, Boosting, and Stacking. This study has 

successfully demonstrated the effectiveness of these ensemble methods in addressing both 

binary and multiclassification problems for the MQTT-IoT-IDS2020 dataset.  

The chosen models addressed binary and multiclassification problems, demonstrating 

significant distinguishing between 'benign' and 'attack' instances and among various types of 

attacks such as MQTT_BF, Scan_A, Scan_sU, and Sparta. 

Our binary classification models achieved impressive results, with AUC scores 

reaching up to 1.0, indicating an excellent ability to distinguish between classes. Moreover, we 

observed commendable accuracy, precision, recall, and F1 scores across both the 'benign' and 

'attack' categories, suggesting a balanced and efficient performance. 

The results of multiclassification were equally remarkable, with consistently high 

metrics across all classes and AUC scores extending to a perfect 1.0, reflecting flawless 

classification for some classes.  

The techniques applied in the study were proficient in dealing with the class imbalance 

inherent in the MQTT-IoT-IDS2020 dataset. The use of SMOTE for synthetic sample 

generation and class weights adjustment was instrumental in achieving this balance and 

ultimately enhancing the performance of our models. The study results have reinforced the 

value of carefully tuning hyperparameters to optimize model performance. For this reason, 

RandomizedSearchCV has shown to be a time-effective method in the context of a large 

hyperparameter space. Moreover, the confusion matrices provided detailed insights into correct 

and incorrect classifications, assisting us in understanding the areas where the models excelled 

or needed improvement. 
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8.2 Future Work 

 
While the results were largely positive, they also highlighted areas that could benefit 

from further refinement. Future work could consider more sophisticated oversampling 

techniques or alternative ways of handling class imbalance. Furthermore, given the model's 

success in predicting certain attack types, deeper investigation into the feature importance of 

these classifications might provide valuable insights. 

The models could potentially benefit from further hyperparameter tuning. More 

computationally intensive methods like GridSearchCV could be employed to find the optimal 

parameters, provided sufficient computational resources are available. We could also consider 

exploring other base models for the ensemble methods to see if they provide better results. 

Further validation of the models on additional datasets would be beneficial to ensure 

that the models generalize well across different scenarios and types of attacks. Lastly, the 

exploration of real-time implementation of these models would be a significant advancement 

in MQTT-IoT security.  

This study underscores the promising capabilities of ensemble methods which can open 

the door for more secure and dependable IoT settings with further development and research. 
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