
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-2023

Cybersecurity Attacks Detection For MQTT-IoT Networks Using Cybersecurity Attacks Detection For MQTT-IoT Networks Using

Machine Learning Ensemble Techniques Machine Learning Ensemble Techniques

Sahar Mohamed Bukhari Abdelbasit
sa1364@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Abdelbasit, Sahar Mohamed Bukhari, "Cybersecurity Attacks Detection For MQTT-IoT Networks Using
Machine Learning Ensemble Techniques" (2023). Thesis. Rochester Institute of Technology. Accessed
from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11592?utm_source=repository.rit.edu%2Ftheses%2F11592&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Cybersecurity Attacks Detection For MQTT-IoT

Networks Using Machine Learning Ensemble

Techniques

By

Sahar Mohamed Bukhari Abdelbasit

A Thesis submitted

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

in

Computing Security

Supervised by

Dr. Wesam Almobaideen

Professor of Computing Security and Networking

Department of Electrical Engineering and Computing

Rochester Institute of Technology-Dubai Campus

United Arab Emirates

July 2023

ii

RIT
Master of Science in

Computing Security

Thesis Approval

Cybersecurity Attacks Detection For MQTT-IoT Networks

Using Machine Learning Ensemble Techniques

Student Name: Sahar Mohamed Bukhari AbdelBasit

 --

 Dr. Wesam Almobaideen _ __

 Professor (Thesis Adviser)

Dept. of Electrical Engineering and Computing

 --

 Dr. Huda Saadeh _

Assistant Professor (Committee Member)

Dept. of Electrical Engineering and Computing

 --

Dr. Kevser Akpinar _

 Assistant Professor (Committee Member)

 Dept. of Electrical Engineering and Computing

 --

iii

iv

Acknowledgments

All gratitude belongs to the Mighty Allah, the benevolent and merciful, who granted me the

capability to complete this thesis.

The successful completion of this thesis was made possible due to the invaluable guidance

and support of numerous individuals, to whom I extend my sincere appreciation.

Firstly, I sincerely appreciate my academic supervisor Dr. Wesam Almobaideen for his

expert advice, valuable feedback, and encouragement throughout the thesis. The successful

completion of this thesis owes much to his expert guidance.

I want to sincerely thank the thesis committee members for their important advice and

support during this journey. Thanks to Professor Kevser Akpinar and Professor Huda Saadeh

for their continued support and assistance.

Finally, I want to convey my deepest appreciation to my family members, whose unwavering

support and encouragement have been pivotal throughout my academic pursuits. They have

been an invaluable source of inspiration and my biggest motivation.

v

Abstract

The Internet of Things (IoT) is one of the technical advancements that is progressing swiftly.

which promises to be revolutionary soon. IoT systems are convenient due to its device

centralized and computerized control. This technology allows various physical devices, home

applications, vehicles, appliances, etc., to be interconnected and exposed to the Internet. On the

other hand, it entails the fundamental need to protect the network from adversarial and

unwanted alterations. Machine-to-machine protocols like Message Queuing Telemetry

Transport (MQTT) are typically used by IoT devices to communicate. Numerous techniques to

attack networks employ the lightweight messaging protocol known as MQTT (Message

Queuing Telemetry Transport). Due to its heterogeneous nature and the lack of security

approaches, the publish-subscribe strategy utilized by the MQTT protocol increases the number

of potential network attacks. This thesis presents a novel approach to detecting cybersecurity

breaches in MQTT-IoT networks using machine learning techniques.

We suggest a detection system to address the issue of cybersecurity threats in MQTT-IoT

networks. Our method involves cleaning the data to pull out relevant features, training the

ensemble machine learning models on these features, and then using these models to find

anomaly behavior that could indicate a cyberattack.

We implemented our plan by using Machine Learning Ensemble techniques and Feature

selection. To test our system, we ran many experiments using MQTT-IoT-IDS2020, a dataset

that included both normal MQTT-IoT network activity and simulated attacks of different types.

Our experimental findings indicate that our detection system, grounded in machine learning,

can identify cybersecurity threats on MQTT-IoT networks with notable accuracy, precision,

F1-score, and recall.

The obtained results for binary and multiclass classification indicate that the proposed system

can bring a remarkable layer of security. We show how Machine Learning Ensemble

Techniques applied to small low-cost devices are an efficient and versatile combination

characterized by a bright future ahead.

This thesis advances the application of machine learning methodologies in cybersecurity and

contributes to the enhancement of security protocols within MQTT-IoT networks.

vi

Contents

Abstract………………………………………………………………………………………………... ⅴ

List of figures………………………………………………………………………………………... ⅷ

List of Tables………………………………………………………………………………………...... ⅸ

List of Acronyms and Abbreviations……………………………………………………………….......ⅹ

Chapter 1 ... 1

1.1. Introduction ... 1

1.2. Thesis Objective/Importance .. 3

1.3. Contributions ... 4

1.4. Thesis Organization .. 5

Concepts and background ... 6

2.1 IoT Introduction .. 6

2.1.1 IoT Characteristics .. 6

2.1.2 IoT Technologies .. 7

2.1.3 IoT Applications ... 8

2.1.4 IoT Architecture .. 9

2.1.5 IoT Challenges .. 11

2.2.1 Security In IoT .. 12

2.2.2 Security Attacks in IoT Ecosystem ... 13

2.2.3 Impact of Cyber Attacks on IoT.. 14

2.2.4 Cyber-Attacks Mitigation ... 15

2.3 IoT Intrusion Detection Systems (IDS) .. 16

3.1 MQTT Protocol ... 18

3.3 MQTT Messages ... 20

3.5 MQTT Security ... 21

Chapter 4 ... 23

4.1 Machine Learning ... 23

4.2 Machine Learning Applications .. 27

4.3 Machine Learning Models .. 28

4.3.1 Logistic Regression ... 28

4.3.2 Decision Trees.. 29

4.3.3 K-nearest Neighbors (KNN) ... 30

4.3.4 Adaboost ... 31

4.3.5 XGBoost ... 32

vii

4.4 Machine Learning Ensemble Techniques ... 33

4.4.1 Bagging (Bootstrap Aggregating) ... 33

4.4.2 Stacking (Stacked Generalization) .. 35

4.4.3 Boosting .. 36

Chapter 5 ... 38

5.1 Literature Review .. 38

Chapter 6 ... 47

6.1 MQTT-IoT-IDS2020 Dataset Overview ... 47

6.2 Description of the Dataset ... 48

6.3 Dataset Pre-processing .. 51

6.4 Methodology ... 53

6.5 Experimental Setup ... 54

6.6 Performance evaluation metrics .. 54

Chapter 7 ... 57

Results and Analysis ... 57

7.1 Bagging Binary Classification .. 57

Bagging Binary Results and Analysis: .. 58

7.2 Bagging Multiclassification .. 59

Bagging Multiclassification Results and Analysis .. 60

7.3 Boosting Binary Classification ... 62

Boosting Binary Classification Results and Analysis ... 62

7.4 Boosting Multiclass Classification.. 64

Boosting Multiclass Classification Results and Analysis ... 64

7.5 Stacking Binary Classification .. 66

Stacking Binary Classification Results and Analysis ... 66

7.6 Stacking Ensemble Multiclass Classification ... 68

Stacking Multiclassification Classification Results and Analysis .. 68

Chapter 8 ... 71

8.1 Conclusion .. 71

8.2 Future Work .. 72

References ... 73

viii

List of Figures

Figure 2. 1: IoT Applications .. 9

Figure 2. 2: IoT Architecture ... 10

Figure 2. 3: Classification of IDS ... 16

Figure 3. 1: MQTT system .. 19

Figure 3. 2: MQTT Quality of Service (QoS) levels .. 20

Figure 4. 1: Supervised learning algorithm ... 24

Figure 4. 2: Unsupervised Learning .. 25

Figure 4. 3: Reinforcement learning algorithm ... 26

Figure 4. 4: Machine Learning Applications .. 28

Figure 4. 5: Logistic Regression ... 29

Figure 4. 6: Decision Tree ... 30

Figure 4. 7: KNN Classifier. ... 31

Figure 4. 8: AdaBoost Model .. 32

Figure 4. 9: XGBoost Model .. 33

Figure 4. 10: Bagging (Bootstrap Aggregation) scheme ... 34

Figure 4. 11: The Stacking Scheme .. 35

Figure 4. 12: The Boosting Scheme .. 36

Figure 6. 1: Binary Classification Top 10 Feature Selection .. 52

Figure 6. 2: Multiclass Classification Top 10 Feature Selection ... 53

Figure 6. 3: Methodology Workflow... 54

Figure 6. 4: Binary Classification Confusion Matrix .. 56

Figure 6. 5: Multiclass Classification Confusion Matrix .. 56

Figure 7. 1: Bagging Binary Confusion Matrix .. 59

Figure 7. 2: Bagging Binary ROC Curve .. 59

Figure 7. 3: Multiclassification Bagging Confusion Matrix ... 61

Figure 7. 4: Bagging Multiclassification ROC curves .. 61

Figure 7. 5: Binary boosting Classification Confusion Matrix ... 63

Figure 7. 6: Binary Boosting ROC Curve ... 63

Figure 7. 7: Multiclassification Boosting Confusion Matrix .. 65

Figure 7. 8: Multiclassification Boosting ROC Curves .. 65

Figure 7. 9: Binary Classification Stacking Confusion Matrix ... 67

Figure 7. 10: Binary Stacking ROC Curve ... 68

Figure 7. 11: Multiclassification Stacking Confusion Matrix ... 69

Figure 7. 12: Multiclassification Stacking ROC Curves ... 70

ix

Listing of Tables

Table 2. 1: IoT Technologies ... 7

Table 2. 2: Goals of Computer Security .. 12

Table 4. 1: Classification of Machine Learning Algorithms [60] ... 27

Table 4. 2: Comparison between Ensemble Techniques .. 37

Table 5. 1: Summary of the Literature Review ... 44

Table 6. 1: Dataset Feature Description[109] ... 50

Table 6. 2: MQTT-IoT-IDS2020 feature statistics distribution [109] ... 51

Table 7. 1: Binary bagging Classification Results ... 58

Table 7. 2: Multi-Classification Bagging Results .. 60

Table 7. 3: Binary Classification Boosting Results .. 63

Table 7. 4: Multi-Classification Boosting Results ... 65

Table 7. 5: Binary Classification Stacking Results ... 67

Table 7. 6: Multi-Classification Stacking Results .. 69

x

Listing of Acronyms and Abbreviations

Abbreviations Meaning

AdaBoost Adaptive Boosting

ACM Association for Computing Machinery

AIDS Artificial Intelligence and Data Science

AMD Advanced Micro Devices

AMQP Advanced Message Queuing Protocol

ANN Artificial Neural Network

AUC Area Under the Curve

API Application Programming Interface

CART Communication Access Realtime Translation

CoAP Constrained Application Protocol

CIA Confidentiality, Integrity, and Availability

CNN convolutional neural network

CPU Central Processing Unit

CV Cross Validation

DCNN Deep convolutional neural networks

DDOS Distributed denial of service

DL Deep Learning

DNN Deep Neural Network

ELM Extreme Learning Machine

FAR False Acceptance Ratio

FN False Negative

FP False Positive

FPR False Positive Rate

GBM Gradient boosted machines

GSM A global system of mobile communication

GUI Graphical User Interface

HIDS Host-Based Intrusion Detection System

IBM International Business Machines

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

KNN K-Nearest Neighbour

LR Logistic Regression

LSTM long short-term memory networks

MITM Man in the middle

ML Machine Learning

MQTT Message Queuing Telemetry Transport

xi

NB Naïve Bayes

NIDS Network Intrusion Detection System

OASIS

The Organization for the Advancement of Structured

Information Standards

QoS Quality of Service

PCA Principal Component Analysis

PUBACK Publish Acknowledgment

PUBCOMP Publish Complete

PUBREC Publish Received

PUBREL Publish Release

PCAP Packet Capture

PWN Pwning

RBF Radial Basis Function

RFID Radio Frequency Identification

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

SDN Software-Defined Networking

SMOTE Synthetic Minority Over-sampling

SQL Structured Query Language

SSH Secure Shell

SVM Support Vector machine

TCP Transport Control Protocol

TTL Time to Live

UDP User Datagram Protocol

VLC VideoLAN Client

WEKA Waikato Environment for Knowledge Analysis

WAN Wide area network

WSN Wireless Sensor Network

XGBOOST Extreme Gradient Boosting

XMPP Extensible Messaging and Presence Protocol

Chapter 1

In this chapter, we provide an introduction to the research topic and outline the objectives and

significance of the study. We present this research's problem statement and motivation,

emphasizing the need for an effective cybersecurity framework for MQTT-based IoT networks.

The chapter's conclusion gives a summary of the contributions and thesis structure, setting the

stage for the subsequent chapters that delve into the detailed analysis, methodology,

experiments, and findings.

1.1. Introduction

Platforms for the Internet of Things (IoT) have revolutionized both our means of

communication and our daily lives by enabling remote connections between IoT devices across

a network architecture. This infrastructure collects data across several domains without

involving humans or computers [1]. Our daily lives have changed significantly because more

IoT devices are used in healthcare, industries, and smart homes [2]. Subsequently, the

Government and people have faced increased cybersecurity threats and privacy violations [3].

CoAP, MQTT, AMQP, and XMPP application layer protocols enable IoT nodes to share

data securely and reliably [4]. The MQTT protocol has been deployed in smart homes [5],

agricultural IoT [6], industrial applications [7], and more. It is the most used publish-subscribe

protocol because it has low bandwidth, memory, and packet loss. [8].

IBM launched the MQTT protocol as a message push protocol [9]. It is a lightweight

client-server message transmission protocol perfect for connecting machines and the Internet

of Things (IoT). It was developed to reliably transmit a message under conditions of low

network bandwidth and lengthy network latency. In addition, MQTT uses a publish/subscribe

communication paradigm. In this configuration, Subscribers are the recipients of messages

generated by publishers. Subscribers and publishers can only communicate indirectly through

the broker who serves as the server. The role of this component is to accept messages from

publishers and then distribute them to the respective subscribers. [10], [11].

Because machine learning (ML) and artificial intelligence (AI) algorithms are getting

better and better so quickly, it is now possible to monitor networks and detect incoming cyber-

attacks [12]. Machine Learning (ML) and Deep Learning (DL) models are now leading

technologies, with potent capabilities for overcoming situations where typical IDS are

inadequate [13].

Instead of explicitly programming devices, Machine learning is a type of artificial

intelligence that uses algorithms to teach machines how to do things and facilitates their ability

2

to learn from experience[14]. As a result, Machine Learning methods successfully utilized

many areas of Information and Communication Technology (ICT), especially those related to

cyber-security [15].

Because of limited resources, low power, and connection of IoT devices, traditional

network intrusion detection systems (NIDS) may be less effective in IoT systems. Intrusion

detection is defined by the National Institute of Standards and Technology (NIST) as

monitoring activities on a computer system or network, analyzing these actions for signs of

breaches, and reporting the malicious data to the network administrator [16].

Intrusion Detection Systems (IDSs) operate within two principal categories. The

Signature-Based Detection method functions by comparing data observed by the IDS to

predefined intrusion patterns, underscoring its robust reliability and efficacy. This approach has

gained significant traction owing to its implementation in widely used tools such as Snort [17]

and Suricata [18]. However, this method has one notable limitation; it is only equipped to

identify known threats cataloged in a database.

 Contrastingly, Anomaly Detection operates by establishing a baseline of the system's

typical behavior and subsequently identifying any deviations within the surveilled data. This

method's capacity to detect novel threats is noteworthy, yet it is frequently associated with an

excessive generation of false positives.

Much research has been focused on Anomaly-Based IDSs in the last twenty years. Their

propensity for identifying unknown threats is particularly crucial given the current landscape,

where intrusion attempts are increasing in frequency and becoming progressively diverse in

nature.

Problem Statement

IoT platforms generate valuable data that must be safely communicated and analyzed

[19]. Additionally, the lack of security in IoT devices has highlighted the need to build a more

effective and secure infrastructure by guarding against numerous security flaws, threats, and

cyberattacks in IoT networks [20].

 MQTT (Message Queuing Telemetry Transport) [10] has gained significant popularity

in IoT (Internet of Things) networks due to its lightweight and efficient messaging protocol.

Nevertheless, the extensive embrace of the MQTT protocol has concurrently escalated

apprehensions regarding the security integrity of IoT systems. Networks utilizing MQTT are

prone to a multitude of cybersecurity threats, such as unsanctioned access, data infringements,

and denial-of-service (DoS) assaults. These menacing activities can potentially jeopardize the

availability, confidentiality, and integrity of IoT devices, thereby resulting in serious

repercussions.

In addition, every MQTT-IoT application relies heavily on MQTT brokers. However,

because of their transparency, they are susceptible to cyber-attacks. Every MQTT-IoT

3

application relies heavily on MQTT brokers. However, their transparency makes them easy to

cyber-attack [22]. Furthermore, we are communicating sensitive data/information over MQTT-

IoT, which raises the need to secure and protect this information.

Identifying cybersecurity breaches in MQTT-IoT networks is a considerable hurdle.

Existing approaches for attack detection often rely on rule-based systems or signature-based

methods, which have limitations of scalability, and handling of complex attack scenarios [17],

[23].

Our proposed research holds significant importance for the cybersecurity of MQTT-IoT

networks. By harnessing the power of ensemble techniques, detection accuracy and resilience

against various cyber-attacks can be significantly enhanced. Additionally, the findings of this

research can benefit industries, organizations, and policymakers involved in securing IoT

infrastructures against evolving cyber threats.

1.2. Thesis Importance and Objective

This thesis aims to design a robust cybersecurity framework to threat detection and

mitigation in MQTT-focused IoT networks. The specific goals of this research are as follows:

1. Investigate the cybersecurity challenges and vulnerabilities in MQTT-IoT networks:

This study examines the existing condition of MQTT-IoT networks and pinpoint the

likely security risks and weaknesses these networks might face.

2. This thesis intends to create a dependable and precise detection system using machine

learning ensemble methods. The goal is to recognize and categorize different

cybersecurity breaches in MQTT-IoT networks—the system is designed to detect these

attack patterns, ensuring proactive security measures.

3. Evaluate the proposed solution's performance: The developed detection system's

performance is assessed through extensive experimentation and evaluation. This

research will analyze the system's accuracy, efficiency, scalability, and resilience

against cyber threats.

There is an enormous amount of reviewed literature about applying machine-learning

algorithms to cyber-attack detection, and it has been proven to be an efficient and reliable

approach to the problem. However, fewer studies have been conducted regarding machine-

learning-based common attacks such as brute force attacks.

4

1.3. Contributions

By focusing on detecting and mitigating cybersecurity attacks, this thesis will contribute to the

following:

1. Enhancing the security posture of MQTT-based IoT networks: The proposed detection

system enables network administrators and security professionals to determine dangers

and take appropriate action promptly. Protecting the privacy and integrity of IoT

devices as well as the broader network architecture, the system works to prevent illicit

access, compromises of data, and system failures by proactively spotting threats..

2. Pushing the boundaries of machine learning-driven cybersecurity: This study adds

value to the domain of machine learning within cybersecurity by investigating the

potency of ensemble methods in detecting attacks on MQTT-IoT networks. The

findings and methodologies developed in this thesis will contribute to the growing body

of knowledge in cybersecurity and provide insights into building robust defense

mechanisms against evolving cyber threats.

3. Fostering trust and adoption of MQTT-IoT networks: As security concerns remain a

significant barrier to the widespread adoption of MQTT-IoT networks, the outcomes of

this research will provide valuable insights into addressing these concerns. This thesis

aims to enhance MQTT-based IoT networks' overall security and dependability,

promoting their broader adoption in sectors such as smart homes, healthcare,

transportation, and industrial automation. This enhancement is achieved through the

introduction of an effective detection strategy.

4. We undertake a comprehensive analysis encompassing both binary and

multiclassification. By employing a dual approach, we ensure a thorough examination

of the security aspects within the MQTT protocol. The binary classification

distinguishes between benign and attack classes, effectively identifying malicious

activities. Simultaneously, the multiclassification extends this analysis to categorize

and differentiate various types of MQTT attacks, providing deeper insights into the

diverse attack vectors present in the protocol. Our work aims to enhance the overall

understanding and mitigation of MQTT-based threats through this combined approach,

facilitating more robust security measures."

5

1.4. Thesis Organization

The structure of the remaining parts of the thesis is outlined below:

Chapter 2: This chapter delves into the essence of IoT, highlighting the driving technologies

behind its emergence and laying out its typical applications and components. A review of

security solutions for IoT, as well as associated challenges, is provided. Basic principles of

computer security relevant to this thesis are discussed. The chapter also reviews previous

research related to the topic, differentiating our approach from existing studies.

Chapter 3: This chapter centers on the MQTT Protocol, including its headers, messages, and

overarching architecture. A comprehensive discussion on MQTT security and associated

attacks is also provided in this segment.

 Chapter 4: This chapter delves into Machine Learning, exploring its concepts and various

applications.

Chapter 5: This chapter delves into a comprehensive literature review. Additionally, the

advantages and constraints of the suggested systems are thoroughly examined.

Chapter 6: This chapter provides a synopsis of the dataset utilized in our experiments and

detailed descriptions of the dataset preprocessing and feature selection procedures. In addition,

the Machine Learning models used in our experiment are explained. Ensemble Techniques are

explained in this chapter, followed by the methodology and experimental setup.

Chapter 7: The experiment result and analysis of Binary and Multiclass classification are

presented.

Chapter 8: We concluded our thesis in this chapter, followed by future work.

6

Chapter 2

Concepts and background

This particular chapter offers a comprehensive exploration of the foundational principles of the

Internet of Things (IoT). The definition of IoT, prospective applications, and the architectural

framework, including key elements and protocols used within, are all clarified.

2.1 Introduction to IoT

The term "Internet of Things," or simply "IoT," describes the expansive web of tangible

objects worldwide, interconnected via the Internet, collectively collecting and sharing

information. It fosters a transformation wherein Internet-capable devices morph into an

interconnected ecosystem wherein digital data is ubiquitously accessible at all times [24]. IoT

devices encompass tangible items ranging from tiny to large-scale machinery, and they can

communicate effortlessly with one another over the Internet without the need for human

involvement [25].

2.1.1 IoT Characteristics

The Internet of Things, or IoT, combines different hardware and software technologies

into one system. These solutions leverage information technology, encompassing hardware and

software capable of storing, retrieving, and processing data [25].

The Internet is the leading way these devices communicate, using technologies like

RFID and WSNs. These technologies use sensors to keep an eye on the surroundings. These

devices have limited processing power, memory, storage, and battery life [26].

There are a few crucial features of the IoT:

Interconnectivity: In the realm of IoT, it signifies that any object can establish an internet

connection and interact with other devices.

Things-related services: It can offer services related to the devices while protecting privacy

and keeping things consistent.

Heterogeneity: This implies that even while IoT devices may have different underlying

hardware and networks, they still possess the ability to communicate with one another.

7

 Dynamic changes: Devices in the IoT realm can frequently shift states, including sleep and

wake patterns, connectivity status, and contextual factors like location and velocity.

 Enormous scale: The number of devices that require management and intercommunication

will far outnumber the number of devices that are currently online.

 Safety: While utilizing IoT, safety should always be a priority. This encompasses both the

protection of our personal information and our physical safety. It emphasises how crucial it is

to protect networks, and the data that flows between them.

Connectivity: This allows devices to access the network and be compatible with each other.

Getting on a network is called accessibility, while the ability to share and understand data is

called compatibility.

2.1.2 IoT Technologies

The Internet of Things (IoT) is a crucial bridge linking various products with the digital

realm. The web of interconnected devices continues to grow, fueled by technological progress

in sensors, smartphones, cloud technology, and communication capacities. It constitutes a

network comprising diverse physical entities, including vehicles, machinery, household

appliances, and beyond. These entities leverage multiple technologies to facilitate data

exchange over the Internet [25]. Table 2.1 explains the technologies that underpin the IoT

concept.

Table 2. 1: The Technologies of IoT

IoT Technologies Examples

Communication and Networking

Infrastructure

GSM and WIFI are often utilized in IoT setups

for connectivity and data exchange.

Identification WSN, RFID

Hardware and Software Smart devices with enhanced inter-device

communication

Technologies for Networking and Communication:

Tools such as Bluetooth and ZigBee facilitate device connectivity. It is crucial that

communications between these interconnected devices are fortified with robust security

measures to provide users with assured confidence in their network's safety and reliability.

8

Device Identification Technologies:

It is crucial to identify each connected device within an IoT ecosystem. To achieve this unique

identification, technologies like RFID and WSN are employed.

Hardware and Software Technologies:

Intelligent devices that foster enhanced inter-device communication will pave the way for

systems with greater intelligence and autonomy, promoting the swift deployment of IoT

applications.

2.1.3 IoT Applications

The Internet of Things (IoT) incentivizes many applications to augment daily human

activities [27]. Diverse applications are realized through various sensors, intelligent devices, servers,

and more, as seen in Figure 2.3 enumerates a range of applications incorporating IoT concepts

and platforms.

The concept of a smart home is one such application. It encapsulates an array of intelligent

devices such as smart locks, baby monitors, and fire detectors installed within a household,

communicating over wireless channels. These home appliances can be accessed remotely via

a home gateway.

Innovative healthcare is another notable application of IoT, which facilitates the gathering,

transmitting, and preserving of a patient's physiological data. For example, medical sensors can

record a patient's heartbeat and transmit this data to a hospital's server for evaluation and

tracking.

Within the domain of intelligent transportation, a vast system of smart vehicles has the

capability to communicate with one another, with infrastructure elements, and with individuals

on foot through wireless channels. These automobiles can gauge real-time traffic situations,

adjust speed, and share information to ensure efficient and secure driving experiences.

 Environmental systems provide distant management of factors like temperature, humidity,

water levels, soil wetness, and specific climate conditions to optimize production standards and

reduce economic setbacks. In advanced agriculture, sensors can be attached to animals, offering

insights into their behavior and ensuring their well-being.

The industrial sector has embraced IoT, giving rise to the smart industry. The main goal of

IIoT is to improve oversight of the manufacturing process, data, and emerging challenges,

guaranteeing the end products' efficacy and dependability.

9

Figure 2. 1: IoT Applications

Smart retail: This application enables monitoring product storage facilities or during transit.

Sensors can be affixed to retail items to keep tabs on their status. Numerous smart shopping

systems have been developed to offer sophisticated customer services and attract a more

extensive customer base.

A smart grid: This is a common use of IoT, made to measure, watch over, and control how

much electricity is used. It helps users handle their electricity use trustworthy, saves energy,

and lowers the chance of problems with the power grid.

2.1.4 IoT Architecture

The Internet of Things (IoT) is built on a variety of technology foundational layers that

make up its structural structure. It delineates the interrelation of diverse technologies and the

communicability, modularity, and configuration of IoT implementations in assorted scenarios.

As depicted in Figure 2.2, this architecture is generally stratified into layers, which facilitate

system administrators in evaluating, observing, and preserving the system's integrity. The IoT

architecture essentially entails a four-stage process where data is centralized from devices

linked to sensors, traverses a network, and is subsequently directed to the cloud for processing,

analysis, and storage [28].

10

Figure 2. 2: IoT Architecture

The Perception/Sensing Layer

The physical layer is the foundation of the internet of things. This layer encompasses

many IoT devices like sensors, each equipped to gather, process, and relay information through

the network. These devices can be linked via wired or wireless connections and utilize

intelligent technologies to collect data.

The Network Layer

This Layer is a critical component as it encompasses various communication

technologies enabling IoT devices' connectivity. The Network Layer also includes Data

Acquiring Systems (DAS) and Internet/Network gateways, which collect, aggregate, and

convert analog data into digital data.

The Processing Layer

The data undergoes a series of transformations and computations within this layer to

extract meaningful insights. Moreover, it is an intermediary stage bridging the gap between

data collection and application layers. This involves readying the data for subsequent utilization

by software applications, which oversee, control, and implement subsequent actions guided by

the interpreted data.

Sensing/Perception Layer

Data gathering(physical objects,
sensors and actuators

Network Layer

Data transmission internet/netwtork
gateways Data acquision system

Data Processing Layer

Process Information

Application Layer

Intelligent application and
administration.

11

The Application Layer

This Layer directly interacts with IoT users through essential facilities. This tier

receives refined data from the Network Layer and accommodates a diverse spectrum of

applications, encompassing smart homes, intelligent retail, and advanced power grids.

2.1.5 IoT Challenges

Even though IoT devices manage and produce a substantial amount of data, they are

typically inexpensive. Consequently, these devices tend to possess limited computational

power, storage capacity, and memory resources. Similarly, the software implemented in the IoT

devices is based on open-source solutions or obsolete software and sometimes even with faulty

software. In a worst-case scenario, we would have one IoT device plugged into a network with

software with no security patches or updates, without knowing which ports are open and visible

from the internet, and with no access control or credentials. IoT devices, when connected to

public networks, can become susceptible to attacks in the absence of adequate security

measures. Due to this vulnerability, private networks may experience unforeseen disruptions

that jeopardize service accessibility, the security of data, and user safety.

2.2 Computer Security Fundamentals

Computer security fundamentals are the core principles and practices that aim to protect

the various hardware and software components, known as assets, within a computing

environment. These fundamentals are centered around ensuring the confidentiality, integrity,

and availability of information for authorized users [29].

Confidentiality: Confidentiality focuses on maintaining the secrecy and privacy of assets,

allowing only authorized individuals to access them. This involves implementing measures to

control physical and technical access, classifying data, enforcing policies to keep workspaces

clean and secure, establishing confidentiality agreements, implementing strong password

policies, defining guidelines for employee IT use, and providing training to detect and prevent

social engineering attacks [29].

Integrity: Integrity ensures that assets can only be modified by authorized users and aims to

preserve the accuracy and unaltered state of information. Unauthorized modifications, whether

deliberate or accidental, can compromise the integrity of data. To maintain integrity,

organizations employ preventive measures to protect against fraudulent changes, both in

physical and digital documents [30].

Availability: Availability is concerned with providing authorized users with timely access to

information and services as needed [30]. To ensure availability, organizations implement

backup procedures, adopt business continuity management (BCM) practices, and establish

disaster recovery systems that allow for the duplication of essential services and applications,

12

even in the face of accidents, natural disasters, or intentional sabotage. Table 2.2 summarizes

the main objectives or goals of computer security.

Table 2. 2: Goals of Computer Security

Objective

Description

Confidentiality Ensuring that information is kept confidential and accessible only to

authorized individuals or systems. This includes implementing access

controls, data encryption, and secure communication channels.

Integrity Maintaining information's precision, coherence, and dependability across

its entire lifecycle. This entails preventing illicit modifications, detecting

and mitigating data corruption, and maintaining the integrity of systems

and processes.

Availability Guarantee that data and amenities are available to and usable by approved

users at the appropriate time. This includes implementing redundancy and

backup strategies, disaster recovery plans, and mitigating denial-of-

service (DoS) attacks.

2.2.1 Security in IoT

IoT integrates different technologies, which means it inherits each individual

technology's security vulnerabilities [31]. Furthermore, the sheer scale of IoT connectivity,

with billions of devices expected to be interconnected, means that a vast amount of data will

be exposed to the Internet. This increased exposure creates a fertile ground for security attacks,

including eavesdropping and data tampering. As a consequence, user privacy becomes

increasingly at risk.

IoT devices are vulnerable to cyberattacks for three primary reasons:

▪ Complexity and Heterogeneity: The IoT ecosystem consists of a vast array of

interconnected devices with different architectures, operating systems, and

communication protocols. This complexity and heterogeneity make ensuring uniform

security across all devices challenging. Each device may have unique vulnerabilities,

and patching or updating them becomes a complex task, leaving vulnerabilities

unaddressed [32].

▪ The limited computational power of IoT devices can pose challenges in

implementing robust security measures, executing complex applications, causing

delays in response time, and hindering firmware and software updates. Considering

these limitations while creating and implementing IoT systems is crucial to ensure

optimal performance and top-notch security [33].

13

▪ Firmware and Software Updates: IoT devices with limited computational power may

face challenges in performing firmware and software updates. Updating the device's

firmware or applying security patches requires sufficient computational resources to

handle the update process. If the device's computational power is insufficient, it may

not be able to handle these updates effectively, leaving it vulnerable to security

vulnerabilities or lacking the latest features and improvements.

2.2.2 Security Attacks in IoT Ecosystem

Due to its interconnectedness and the wide variety of devices it includes, the IoT ecosystem is

vulnerable to several security assaults. In the IoT environment, some frequent security

assaults include: [34]

Physical Attacks:

In Physical attacks, attackers may manipulate or steal devices to gain control, extract sensitive

data, or disrupt device functionality. Physical attacks can be carried out through techniques

such as device tampering and physical theft,

Network Attacks:

Network attacks target the communication infrastructure of IoT devices [35]. Examples

include:

• Attacks involving a Man-in-the-Middle (MitM): A malevolent actor expropriates and

manipulates the conversation, permits them to eavesdrop, modify data, or impersonate

trusted entities.

• Attacks using distributed denial of service (DDoS), which compromise, forming a

botnet, flooding a target network or system with excessive traffic, and rendering it

inaccessible to legitimate users.

Firmware Attacks:

Firmware attacks focus on exploiting vulnerabilities in the firmware [36].

Examples include:

• Exploiting Firmware Vulnerabilities: Attackers leverage security vulnerabilities in the

firmware to gain unauthorized access, execute arbitrary code, or tamper with device

behavior.

• Supply Chain Attacks: Malicious actors compromise the manufacturing or distribution

process of IoT devices, injecting malicious firmware or components into devices. This

allows them to gain unauthorized access or control over the devices later on.

14

Encryption Attacks:

Encryption attacks aim to bypass or exploit weaknesses in encryption mechanisms used for

securing data in IoT devices [37]. Examples include:

• Cryptanalysis: Attackers employ cryptographic analysis techniques to break encryption

algorithms or discover vulnerabilities, allowing them to decipher encrypted data.

• Side-Channel Attacks: Attackers exploit information leakage from the physical

implementation of encryption, such as power consumption or electromagnetic

emissions, to deduce encryption keys or sensitive information.

2.2.3 Impact of Cyber Attacks on IoT

Cyber-attacks on IoT can have far-reaching consequences that can impact various aspects of

individuals' lives, organizations, and even critical infrastructure. Some notable consequences

of cyber-attacks on IoT include:

• Data Breaches:

Data breaches in IoT occur when sensitive information collected or transmitted by IoT

devices is accessed or exposed without authorization. Research shows that attackers

can easily obtain passwords, credit card information, or other confidential information

from IoT devices through techniques such as brute force attacks and malware injection

[38]. In a corporate setting, cyber-attacks on IoT devices such as industrial sensors can

be used to steal intellectual property or sensitive business data [39].

▪ Physical Harm:

In certain IoT deployments, cyber-attacks can have physical consequences. For

instance, in critical sectors like energy, transportation, or healthcare, attacks on IoT

systems can disrupt essential services, leading to transportation disruptions or

compromised patient safety [40].

▪ Disruption of Services:

Cyber-attacks can disrupt the normal operation of IoT devices and services. This can

lead to service outages, rendering devices temporarily or permanently unusable. For

example, DDoS attacks targeting IoT devices can overload networks or cloud

infrastructures, causing service disruptions for both individuals and organizations [41].

15

▪ Reputation Damage:

Cyber-attacks on IoT can result in reputation damage for organizations. Breaches and

vulnerabilities in IoT devices can erode brand trust, decrease customer confidence,

strain business relationships, lead to legal consequences, and provide a competitive

advantage to more secure competitors [42].

▪ Financial Losses:

Cyber-attacks on IoT can result in significant financial losses for both individuals and

organizations. In cases of ransomware attacks, victims may be extorted to pay a ransom

to regain control of their compromised devices or to prevent the release of sensitive

data. Furthermore, the costs associated with incident response, recovery, and potential

legal consequences can be substantial [42].

2.2.4 Cyber-Attacks Mitigation

Mitigating cyber-attacks requires a comprehensive approach that combines proactive

measures, ongoing monitoring, and effective incident response [43]. The strategies discussed

below can help secure IoT devices and prevent cyber-attacks.

▪ Secure Communication:

One of the most effective ways to mitigate cyber-attacks on IoT devices is to use secure

communication protocols. This includes implementing encryption, authentication, and

access control mechanisms [44]. Secure communication ensures that data is encrypted

and transmitted safely, making it harder for attackers to intercept and steal sensitive

information.

▪ Device Authentication:

Institute comprehensive security measures across the entire spectrum of the IoT

ecosystem. This entails the establishment of robust device authentication protocols,

implementing data encryption protocols for both transit and storage, regular and

punctual deployment of security updates and patches, and adopting secure coding

practices throughout the developmental phase of IoT devices [45].

▪ Regular Software Updates:

Maintain the currency of all IoT devices, firmware, and software by consistently

integrating the most recent security updates and patches. Regularly assess and

implement patches provided by vendors to rectify acknowledged vulnerabilities.

16

▪ Network Segmentation:

Segregate IoT devices into discrete sections of the network, isolating them from critical

systems and sensitive data. This helps contain potential attacks and limit the impact of

compromised devices [46].

2.3 Intrusion Detection Systems (IDS)

IDS for IoT refers to security systems designed to monitor IoT networks for any

suspicious activities or breaches. These systems analyze and identify potential threats to the

IoT infrastructure, enabling appropriate defensive measures to be taken to protect the network's

integrity, confidentiality, and availability [47]. Figure 2.3 illustrates the two broad

classifications under which intrusion detection systems (IDS) can be categorized [48].

Host-based Intrusion Detection System (HIDS):

It is implemented on specific devices or hosts within a network. It vigilantly observes and

assesses the internal operations, in tandem with the network traffic that are routed through its

network ports.

Network-Based IDS (NIDS):

NIDS, or Network-based Intrusion Detection System, constitutes a security mechanism

strategically situated within a network to oversee incoming and outgoing traffic to all devices

encompassed by the network. Its purpose is to identify potentially unauthorized or malicious

actions through the scrutiny of network traffic and the surveillance of numerous hosts

concurrently.

Figure 2. 3: Categorization of Intrusion Detection Systems (IDS)

IDS

According to

the usage

According to

the learning

methods

Network

IDS

Host

IDS

Signature

based

IDS.

Anomaly

based

IDS.

Machine

Learning-

based

17

It can be categorized according to their learning methods into the following types [49]

▪ Anomaly detection

Anomaly-based IDS: These systems establish a standard of acceptable behavior for the

system or network, monitor for activities that significantly deviate from this normal

baseline. These deviations are considered potential threats.

▪ Signature-based detection

These systems detect known threats using predefined rules or patterns (signatures).

They compare these patterns against observed events to identify potential security

breaches.

• Machine learning IDS

They are used to anticipate and recognize malicious activities. These systems undergo

training using a network traffic dataset, enabling them to categorize incoming traffic as

either typical or malicious, drawing insights from the patterns acquired during training.

Consequently, IDSs designed for IoT devices must prioritize efficiency and minimal resource

utilization. Furthermore, these IDSs need to possess scalability to accommodate expansive IoT

networks composed of a multitude of devices [50].

18

Chapter 3

In this chapter, we explore the MQTT, a lightweight and efficient communication protocol

designed for the Internet of Things (IoT). We discuss MQTT's simplicity, openness, and high

bandwidth efficiency, making it an ideal choice for constrained environments. Additionally, we

delve into MQTT's topic-based architecture, its components (publishers, subscribers, and

brokers), and how messages are routed based on topic interests. Furthermore, we touch upon

the importance of MQTT security and the potential vulnerabilities it may face, along with an

overview of common MQTT attacks in IoT environments. Understanding MQTT and its

security considerations is essential for ensuring robust and secure communication in IoT

systems.

3.1 MQTT Protocol

The MQTT (Message Queuing Telemetry Transport) protocol, known for its

lightweight nature, is a highly favorable. The publish/subscribe communication pattern used

by this open standard protocol, approved by OASIS [51], is particularly well suited for

machine-to-machine (M2M) communication. Owing to its functionality over TCP, the MQTT

protocol showcases exemplary reliability, ensuring an organized, lossless, and bidirectional

mode of communication.

It operates on the theory of topics, which are essentially hierarchically organized

categories under which users can publish messages. Subsequent to this, any additional client

who has a subscription to the specific topic will receive these messages, establishing an

organized and targeted communication framework.

The three nodes comprising the MQTT physical structure are publishers, subscribers,

and brokers, as shown in Figure 3.1. Publishers are nodes that send messages, subscribers are

nodes that receive messages, and brokers act as middlemen to coordinate message delivery

from publishers to subscribers [52].

19

Figure 3. 1: MQTT Architecture

The architecture of the MQTT protocol is intentionally crafted to be straightforward and

resource efficient. This design facilitates seamless communication between clients and the

central broker, which is responsible for disseminating messages to all relevant subscribers.

Incorporating topics and quality-of-service levels enhances the versatility and dependability of

client communication.

QoS Level 0 (At most once): Often referred to as "fire and forget," this level offers the least

assurance. Messages are dispatched at most once, possibly not at all, and no confirmation or

overhead is involved. While it is the swiftest transmission mode, it lacks a delivery guarantee.

QoS Level 1 (At least once): The message is transmitted at least once through a single

PUBLISH message exchange. Resending the PUBLISH message is an option for the sender if

no acknowledgment (PUBACK) is received. However, this approach can lead to the

duplication of messages.

QoS Level 2 (Exactly once): This level ensures the message's exact once-only delivery by

representing the highest QoS tier. It entails a four-step handshake process between sender and

receiver, making it highly suitable for applications demanding message delivery assurance.

However, this level imposes the most substantial overhead. The handshake components

encompass PUBLISH, PUBREC, PUBREL, and PUBCOMP messages.

The selection of the QoS level depends upon the particular specifications of the IoT

application. If speed is more crucial than reliability, a lower level might be used. If assurance

of delivery is the most crucial factor, then a higher level would be suitable. Figure 3.3. shows

the three modes of QoS that can be defined in the PUBLISH messages exchanged between

client and broker [52]:

20

Figure 3. 2: MQTT Quality of Service (QoS) levels

3.3 MQTT Messages

MQTT communication messages are the main mechanism for transmitting data

between clients and the broker. There are several MQTT messages, each with a specific purpose

and format. The different types of MQTT messages provide the necessary functionality for

efficient and reliable communication between clients and the broker [53].

There are several types of MQTT messages, including:

Connect: This is the first message sent.

Connack: This is the response from the broker to the client acknowledging the Connect

request. It contains a return code indicating whether the connection was accepted or rejected.

Publish: This message serves the purpose of conveying application messages either from the

broker to the client or the other way around within the MQTT communication framework.

Puback: This message is the acknowledgment from the broker to the client for a Publish

message received at QoS level 1.

Pubrec: The sender is the recipient of this message to acknowledge a Publish message received

at QoS level 2.

Pubrel: This message is sent from the sender to the receiver to ensure that the Publish message

at QoS level 2 was received.

Pubcomp: The sender is the recipient of this message to confirm the Pubrel message.

Subscribe: This message is used by the client to register interest in one or more topics from

the broker.

Suback: This is the acknowledgment from the broker to the client indicating that the

subscription to a specific topic was successful.

Unsubscribe: This message is dispatched by the client with the intent of retracting its

subscription from one or multiple topics within the MQTT system..

Ping request (Pingreq): This message is used by the client to verify that the network

connection is alive.

QoS

2

QoS

1
QoS

0

Broker
Broker

Server
Broker

PUBLISH PUBLISH

PUBACK

PUBLISH

PUBREL

PUBREC

PUBCOMP

21

Pingresp: This is the response from the broker to the Pingreq message.

Disconnect: This message is conveyed by the client to signal its desire for disconnection. Upon

transmitting this message, the client is required to conclude the network connection.

.3.4 MQTT header

The MQTT header [53] is the first byte of each MQTT message allowing the broker to

properly handle and distribute the message to subscribers. It is the fixed portion of an MQTT

message, which contains information about the message type, topic, quality-of-service (QoS),

and message flags. The MQTT header is followed by the variable-length payload, which

contains the actual data being transmitted. The MQTT header includes the following fields:

Message Type: This is a 4-bit field that specifies the type of message being transmitted, such

as a publish message, subscribe message, or acknowledge message.

Duplicate Delivery Flag: This is a 1-bit field that indicates whether the message being

transmitted is a duplicate of a previously transmitted message. It is only used for QoS level 1

and 2 messages.

Quality-of-Service (QoS) Level: This attribute, occupying a 2-bit field, denotes the standard

of assurance for the delivery of a particular message. It outlines the degree to which message

delivery is guaranteed, offering three distinct levels.

Retain Flag: This is a 1-bit flag that indicates whether the broker should retain the message

for later delivery to new subscribers.

Topic Length: This field specifies the length of the topic field in bytes.

Message Identifier: This field is used to identify messages and track their delivery. It is only

present in messages with QoS levels greater than 0.

3.5 MQTT Security

MQTT is designed to be efficient and lightweight, and it is a popular IoT communication

protocol used in smart homes and industrial IoT systems. However, as with any communication

protocol, it can be vulnerable to various types of attacks [54]. Securing MQTT communications

and various security measures are essential to prevent security threats and attacks. Some

common MQTT attacks in IoT include:

Eavesdropping

An Eavesdropping attack in MQTT-IoT contexts signifies the illicit interception of data being

transferred between a client device (such as a sensor or an IoT device) and a broker (the entity

managing MQTT communications). The aggressor taps into the communication channel,

22

decoding the messages exchanged between the client and broker. This action might potentially

lead to the acquisition of confidential information, including user credentials or sensor data.

Man-in-the-Middle (MitM) Attack

It targets circumstances where an evildoer intercepts and changes the transmission taking place

between a client device (such as a sensor) and a broker.

Spoofing

A Spoofing attack in MQTT-IoT communications refers to a scenario where an attacker

impersonates a legitimate client device (i.e., a sensor or an IoT device) or a broker (i.e., a server

that manages MQTT communications) in order to manipulate the communication between the

two. The attacker sends messages to the broker or the client that appear to be from a trusted

source but are actually from the attacker.

Denial of Service (DoS) Attack

In MQTT-IoT communications, a DoS attack refers to an attack where an attacker disrupts the

normal functioning of a broker (i.e., a server that manages MQTT communications) by

overwhelming it with a large volume of requests, resulting in a complete or partial disruption

of service. The assailant can induce widespread disruption in the functionality of IoT systems.

Injection Attack

An injection attack in MQTT-IoT communications refers to an attack where an attacker

manipulates the data being transmitted between a client device (i.e., a sensor or an IoT device)

and a broker (i.e., a server that manages MQTT communications) by injecting malicious

payloads into the communication channel, causing devices to malfunction or behave

unexpectedly. In an IoT environment, the attacker can alter sensor readings to cause damage or

disrupt the operation of the IoT system, or they can inject malicious payloads into the

communication channel to compromise the security of the system.

Sniffing

A sniffing attack in MQTT-IoT communications refers to an attack where an attacker intercepts

MQTT traffic and listens to the communication between a client device (i.e., a sensor or an IoT

device) and a broker (i.e., a server that manages MQTT communications). This type of attack

aims to eavesdrop on the communication channel and obtain confidential information, such as

passwords, usernames, or other sensitive data.

MQTT brute-force attack (MQTT BF)

This attack pertains to the methodical trial of several login and password combinations to

illicitly gain access to an MQTT broker. Primarily utilized in IoT devices, MQTT is a

streamlined messaging protocol developed to perform efficiently in networks characterized by

low bandwidth, high latency, or unreliable connections [55].

23

Chapter 4

In this chapter, we delve into the diverse spectrum of machine learning algorithms and covers

their wide range of applications where machine learning is making significant strides and

revolutionizing industries. Additionally, we dive into ensemble techniques, their types,

advantages, and disadvantages.

4.1 Machine Learning

Machine learning (ML), enhances computer systems to evolve and adapt over time by

learning from data, without the need for explicit programming [56].

There are three types of machine learning: supervised learning, unsupervised learning, and

reinforcement learning. These systems are increasingly used in various applications, from

recommendation systems to autonomous vehicles, cybersecurity, and beyond [57]:

• Supervised Learning

An algorithm learns from labeled training data using the machine learning technique of

supervised learning in order to produce predictions or decisions. In supervised learning, the

input characteristics (variables) are represented by target values or labels in the training

data. It develops to match the input features to the appropriate output labels by generalizing

patterns and relationships present in the training data [58]. Figure 4.1 depicts the supervised

learning algorithm system.

24

Figure 4. 1: Supervised learning algorithm

Two further categories of supervised learning exist:

▪ Classification: predicts categorical or discrete output labels. The algorithm

learns to categorize new instances into established groupings or categories from

labeled training data. It can classify email spam detection (classifying emails as

spam or non-spam), image recognition (classifying images into different

categories), and sentiment analysis (classifying text as positive, negative, or

neutral sentiment).

▪ Regression: Regression attempts to predict output values that are either

continuous or numerical. Training data with labels are used to train the

algorithm to estimate or approximate a numerical value based on the input

features. Regression tasks involve making predictions, such as the number of

rooms, or forecasting stock prices based on historical data and market

indicators.

One of the advantages of supervised learning is that it can achieve high accuracy in

predictions, provided that the dataset is large and the features are relevant. However, a

significant challenge in supervised learning is the need for labeled data, which can be expensive

and time-consuming. Supervised learning models may overfit the training data, meaning they

may perform poorly on new, unseen data.

• Unsupervised Learning

With this category [58] an algorithm can learn from unlabeled data to find patterns, structures,

or correlations without using explicit input-output pairs. The algorithm identifies meaningful

patterns or groups without prior knowledge or labels, as shown in Figure 4.2.

Supervisor

Training

dataset

Output

desired

ML algorithm Processing

Raw Data Output

25

Figure 4. 2: Unsupervised Learning

Unsupervised learning can be further classified into two types:

▪ Clustering:

Clustering involves segregating a dataset into distinct groups or clusters,

wherein the data points within each cluster share a notable degree of similarity

or proximity.

▪ Dimensionality Reduction:

By minimizing a dataset's input features or variables, dimensionality reduction

attempts to preserve the most important data. This involves transforming high-

dimensional data into a representation with fewer dimensions.

Anomaly detection, data compression, and data visualization are just some areas where

unsupervised learning is practical.

Unsupervised learning offers the advantage of uncovering hidden patterns or

relationships in data that may go unnoticed when relying solely on labeled data. Furthermore,

unsupervised learning proves helpful when labeled data is unavailable or the cost of labeling

the data is excessively high.

Nevertheless, assessing the efficacy of an unsupervised learning algorithm poses

challenges, given the absence of labeled output data for comparison against the projected

outcomes.

• Reinforcement Learning

An agent learns how to interact with its environment using reinforcement learning [59] in

order to maximize cumulative compensation. In this method, decisions are made based on the

condition of the environment, which reacts by sending a reward signal. It aims to develop a

policy that connects states to actions. The agent continually improves its policy through

iterative interactions and learning from input, making better decisions in the environment.

As shown in Figure 4.3, Reinforcement learning can be broken down into:

Learning

Algorithm

Processing Interpretation

Output unknown.

No training dataset

Raw Data Output

26

• Agent: refers to the entity that interacts with the environment. The environment condition

affects the agent's behavior, and it responds to the feedback by adjusting its actions accordingly.

• Environment: The agent engages with its surroundings, which is an external system.

Depending on the agent's behaviors, the environment responds by sending a reward signal.

• Reward Function: The reward function transforms Each state-action pair into a reward

indication that reflects the efficacy of the agent's activities.

Figure 4. 3: Reinforcement learning algorithm

Reinforcement learning algorithms :

▪ Value-Based Methods:

In these techniques, the agent determines the worth of the states or state-action

pairings. The objective is to arrive at an ideal value function that maximizes

long-term cumulative benefits.

▪ Policy-Based Methods:

In this category, the agent directly optimizes the policy function, dictating

actions in each state. Finding that optimizes the accumulation of rewards over a

given timeframe.

Reinforcement learning has diverse applications in robotics, personalized medicine,

natural language processing, resource management, recommendation systems, and financial

trading. It can learn to make decisions in complex and dynamic environments, where the

optimal policy may be unknown or change over time.

However, a major challenge in reinforcement learning is the need for extensive

exploration of the environment, which can be time-consuming and computationally expensive.

 Table 4.1 summarizes the differences between the categories, algorithms, and their

explanations.

Input

Agent

Environment

Best Action

Selection of

algorithm

Reward

State

Output

27

Table 4. 1: Classification of Machine Learning Algorithms [58]

Category Algorithms Explanation

Supervised DT, LR, SVM, and KNN. These algorithms learn from labeled data.

The algorithm is given an input and

produces the right result in response.

Unsupervised K-Means, and PCA. are trained using unlabeled data. Without

output labels, the algorithm attempts to

find hidden patterns in the data.

Reinforcement Q-Learning, and Deep Q-

Network.

They are used when the data is not labeled,

and the only feedback is based on the

model actions taken.

4.2 Machine Learning Applications

Machine learning has become a ubiquitous technology that is being used in various

applications across different fields. Machine learning has found its way into almost every

industry, from image and speech recognition to fraud detection and autonomous vehicles[60].

Machine learning applications continuously grow, and researchers are exploring new and

innovative ways to incorporate this technology into their work [61].

There are numerous uses for machine learning [62] :

Speech and Image Recognition: can recognize items in images or recognize speech.

Natural Language Processing (NLP): Human language is interpreted and understood by

machine learning algorithms enabling tasks like sentiment analysis and translation.

Predictive Modeling: Machine learning algorithms can make predictions based on historical

data, such as predicting customer behavior or stock prices.

Anomaly Detection: Machine learning algorithms can identify unusual or anomalous behavior

in data, such as detecting fraudulent activity or network intrusions.

Robotics: Machine learning trains robots to perform various tasks, such as object recognition,

navigation, or manipulation.

Health care: Machine learning is used for medical applications, such as analyzing medical

data and diagnosing diseases (Obermeyer and Emanuel, 2016) or developing personalized

treatment plans.

Energy management: Machine learning is used for optimizing energy usage in various

applications, such as in smart homes.

28

Environmental monitoring: Machine learning is used for analyzing and predicting

environmental data, such as in climate modeling.

Figure 4. 4: Machine Learning Applications

4.3 Machine Learning Models

An overview of the machine learning algorithms used in this study is given in this

section, each presenting advantages and limitations. Machine learning models [63] are

algorithms that learn from data and then apply what they have learned to make informed

decisions or predictions.

4.3.1 Logistic Regression

Logistic regression, a renowned statistical methodology, facilitates the elucidation of

the relationship between a dichotomous dependent variable (y) and its associated predictor

variables (x). By using the values of the predictor variables, it primarily aims to estimate the

likelihood of the binary outcome variable. [64]. Figure 4.5 shows the Logistic Regression

model.

Image &speech

recognition

Natural

language

recognition

Predictive

modeling

Anomaly

Detection

Robotics

Health Care

Energy

management

Environmental

monitoring

Machine

Learning

29

Figure 4. 5: Logistic Regression

Logistic regression is easy to implement and interpret. It can resist overfitting,

especially in low-dimension datasets. It can provide output probabilities, making it useful in

scenarios requiring probabilistic assessment. However, Logistic regression assumes linearity,

which might not always hold true. It requires a large sample size for reliable predictions and

may struggle with numerous categorical features.

4.3.2 Decision Trees

It uses a structure resembling a tree to create predictions and choices. It is a well-liked

algorithm as a result of its simplicity [65].

A Decision Tree splits the data based on features, starting at a root node and creating

branches for each outcome. This process repeats on each branch (or "child node") until specific

criteria are met, forming a "leaf" or end node with a prediction value, as shown in Figure 4.6.

The main types of decision trees are:

Classification trees: are employed when dealing with response variables that are of a

categorical or qualitative nature. The leaf represents a class.

Regression trees: Used when the response variable is numeric or quantitative. The leaf

represents a value.

Decision Trees are highly transparent, interpretable models that require minimal data

preprocessing and can manage missing values effectively. As non-parametric models, they

make no assumptions about data distribution, accommodating non-linear relationships. They

are also useful for feature selection, with top nodes often representing the most significant

features.

However, Decision Trees do come with some drawbacks. They can be prone to

overfitting, especially when dealing with complex, noisy datasets, leading to overly complex

S

shaped

Curve

X
y=0

Y

y=1

Y predicted

lies between 0

and 1

Logistic

Regression

30

models that do not generalize well. This issue can be addressed to an extent by pruning, but it

requires careful tuning.

Figure 4. 6: Decision Tree

4.3.3 K-nearest Neighbors (KNN)

This algorithm functions by identifying the 'k' most proximate data points within the

training dataset relative to a new, unseen data point. The label of this new point is then chosen

depending on the labels of its closest neighbors. [66].

The KNN algorithm exhibits proficiency in handling binary and multiclass

classification tasks. It predicts the class predominating among the 'k' nearest neighbors. In

multiclass classification scenarios, it leverages distinct strategies to combine the neighbors'

labels, such as majority voting or distance-weighted voting, in relation to the new data point.

Figure 4.7 shows how KNN classifies new data points.

One of the defining strengths of the KNN algorithm is its simplicity coupled with

versatility. It does not necessitate any preliminary assumptions regarding the data distribution

or the functional form correlating the features and the target variable. Furthermore, it can

manage nonlinear and nonparametric relationships between features and the target variable.

However, KNN also has some limitations, such as the problem of dimensionality, which refers

to the increased sparsity and the sensitivity to the choice of K and the distance metric.

NO

NO

Root Node

Decision Node Decision Node

Leaf Node Leaf Node Leaf Node

Leaf Node

Decision Node

Branch

Yes

NO Yes Yes NO

Yes

Leaf

31

Figure 4. 7: KNN Classifier.

4.3.4 Adaboost

A popular machine learning technique called AdaBoost, or adaptive boosting, is made

for classification and regression applications [67]. AdaBoost's fundamental concept revolves

around fitting a series of weak learners, models that slightly surpass random guesswork such

as small decision trees, to consistently adjusted data sets. These weak learners are subsequently

combined to form a final prediction rule.

The data is altered by giving each training sample a particular weight during each

boosting iteration. It is possible to train a weak learner in the first step using the original data

because these weights are initially evenly distributed and set at 1/N. The learning process is

then applied to the weighted data in subsequent iterations after the sample weights are

individually changed. The predictions from all of the weak learners are then merged to create

the final prediction, as shown in Figure 4.8, using a weighted majority vote (or sum for

regression). The weights of each weak learner are determined during the training process, with

higher weights given to the more accurate learners.

One of the main advantages of AdaBoost is that it is a fast algorithm and less prone to

overfitting. However, noisy data and outliers in the data can negatively impact the algorithm's

performance, so preprocessing is crucial.

Class B

Class A

New Data point

X2

X

1

Before KNN

Class B

Class A

New Data point

assigned to Class A

X2

X

1

After KNN

32

Figure 4. 8: AdaBoost Model

4.3.5 XGBoost

XGBoost, an acronym for Extreme Gradient Boosting, is a robust and favored machine

learning algorithm [68]. The algorithm belongs to the gradient boosting methods category,

constructing a robust predictive model via an ensemble of weaker prediction models,

commonly in the form of decision trees, as depicted in Figure 4.9. The "Extreme" in XGBoost

offers several notable advantages:

▪ Speed and Performance: XGBoost delivers superior efficiency, particularly when

handling large datasets.

▪ Core Algorithm is Parallelizable: XGBoost employs parallel processing, making it

significantly faster compared to other algorithms. Additionally, it can handle sparse data

and missing values.

• Integrated Cross-Validation: Cross-validation is a feature of XGBoost that enables

users to determine the ideal number of boosting iterations in a single run by performing

it at each stage of the boosting process.

Algorithm 1

W …. W1 W2 Wt A

combined with all its precursors.

Algorithm 2

Algorithm...

Algorithm A

33

Figure 4. 9: XGBoost Model

4.4 Machine Learning Ensemble Techniques

Machine learning ensemble techniques combine multiple individual models to create a

more powerful, accurate, and robust model [69]. The ensemble model can perform better

overall by integrating the benefits of each model and minimizing its drawbacks. There are

several ensemble techniques and algorithms. Some of the most popular ones include [70]:

4.4.1 Bagging (Bootstrap Aggregating)

Bagging, also known as bootstrap aggregating, seeks to minimize variance and prevent

overfitting. This method creates a large number of bootstrap samples (random samples with

replacement) and trains a different base model on each of them. For classification, the final

ensemble prediction is obtained using a majority vote, as shown in Figure 4.10. Some popular

Bagging Algorithms:

Random Forest: This algorithm constructs multiple decision trees and merges their outcomes.

For the construction of each tree, a subset of the dataset is utilized, along with a random

selection of feature values.

Extra Trees: Similar to Random Forest, but it builds more randomized decision trees by

selecting random split points for each feature.

residual residual

Instance

T2 T1 T3

R1 R2 R3

Added

Final R

34

Figure 4. 10: Bagging (Bootstrap Aggregation) scheme

Advantages of Bagging include [71]:

Reduces overfitting: Bagging minimizes overfitting by generating numerous base models.

The averaging of their predictions can smooth out the decision boundaries, yielding a more

generalized model.

Improves stability: Bagging models are resilient to noise and outliers, delivering more

consistent and reliable predictions. The ensemble model becomes less sensitive to outliers

because of the averaging process and the diversity introduced by bootstrapping. This diversity

allows different aspects of the data to be captured, enhancing the model's stability.

Parallelizable: Each base model in bagging can be trained independently, which suits parallel

or distributed computing well. This parallel training process expedites the overall training time,

particularly for large datasets or complex base models.

However, bagging has some drawbacks:

Computationally expensive: Training numerous base models can be time-consuming,

particularly for complex models or large datasets. The model aggregation process, although

less resource-intensive than model training, also adds to the overall computational cost.

Memory requirements: As bagging necessitates multiple base models, it may require more

memory to store the individual models and their predictions. This can be problematic with

limited resources or during model deployment in production.

d1

D

dT

d2

….. Original

Dataset

Derived

Dataset

s

M

P1

PT

P2

…..
R P

Learning

Algorithm

Final Prediction

Models

Predictions

Majority

Voting

35

4.4.2 Stacking (Stacked Generalization)

Stacking, alternatively known as Stacked Generalization, constitutes an ensemble

strategy that incorporates the training of numerous foundational models on the identical dataset

[72]. Subsequently, these models' predictions are utilized as input attributes for a more

sophisticated meta-learner. The meta-learner is designed to ascertain the best way to combine

the predictions made by the foundational models, thereby generating the final output, as

demonstrated in Figure 4.11. KNN, DT, and neural networks, are frequently deployed as

foundational learners in stacking scenarios.

Figure 4. 11: The Stacking Scheme

Stacking's advantages include leveraging model diversity by integrating predictions from

various base models, hence improving the overall performance. Furthermore, stacking allows

for customizability, permitting the utilization of different base models and meta-models, which

can be beneficial in addressing specific problems. Stacking's flexibility manifests in several

ways:

• Diverse model complexities: Stacking allows for the usage of base models with

varying complexity levels, helping balance bias and variance and leading to enhanced

performance.

• Customizable meta-model: The user is free to choose the meta-model that merges the

predictions of base models, optimizing ensemble performance.

• Meta-model feature engineering: Stacking allows for the incorporation of additional

features to improve the meta-model's and overall ensemble's predictive prowess.

• Customization of cross-validation strategy: Stacking utilizes cross-validation to

generate out-of-sample base model predictions, and this strategy can be customized to

suit specific problems and dataset characteristics.

D

M P1

P3

P2 R P

Base Learning

Algorithms

Original

Dataset

Models

Predictions

Higher Level

meta–Learning

Algorithm

Final

Prediction

M

M

36

Conversely, stacking also comes with drawbacks. It is more complex and computationally

demanding due to its multi-layered structure. The training process is also longer since it

involves training both base models and the meta-model. This can be particularly taxing if the

base models are inherently complex. The typically used cross-validation strategy can also add

to the training time.

4.4.3 Boosting

Boosting represents another ensemble method striving to minimize both bias and variance

by integrating the outcomes of several weak learners in successive order, as depicted in Figure

4.12. Every learner following the initial one endeavors to rectify the inaccuracies of its

predecessor leading to an improved overall model [73]. Popular Boosting Algorithms:

▪ AdaBoost (Adaptive Boosting): The first boosting algorithm, which combines

multiple weak classifiers by assigning different weights to each based on their accuracy.

▪ The Gradient Boosting Machine (GBM): leverages the gradient descent method to

gradually reduce the loss function. It achieves this by sequentially training each weak

learner on the residuals, or prediction errors, resulting from the prior learner.

▪ XGBoost (eXtreme Gradient Boosting): An optimized implementation of GBM,

which provides better performance and is more scalable.

▪ LightGBM: A variation of gradient boosting that uses a histogram-based algorithm for

faster training and improved performance on large datasets.

Figure 4. 12: The Boosting Scheme

Learning

Algorithm

D

Original

Dataset

P1

PT

P2

…..

R P

Final Prediction

Models

Predictions

Weighted

Majority Voting

M update

wt

Weak learners

37

Boosting Advantages:

• Bias and Variance Reduction: Boosting combines weak base models to lower both

bias and variance, often leading to improved accuracy.

• Adaptability: Boosting adjusts to different subsets of data depending on difficulty,

iteratively learning from its mistakes to improve performance.

• High Predictive Performance: Boosting, through algorithms like AdaBoost, Gradient

Boosting Machines (GBMs), and XGBoost, often yields superior performance across

diverse problems.

• Noise and Outlier Resilience: Boosting can handle noisy data and outliers fairly well,

given its use of weak learners and control mechanisms like the learning rate parameter.

• Versatility with Mixed Data: Boosting can handle various data types, such as

continuous, categorical, and ordinal features, making it a flexible technique.

Boosting Disadvantages:

• Computational Cost: Boosting can be computationally expensive compared to other

models or ensemble techniques.

• Sensitivity to Noise: In certain circumstances, boosting can be sensitive to noise, focusing

on fitting the noise rather than the true underlying pattern. Table 4.2 gives a summarized

comparison between Bagging, Stacking, and Boosting ensemble techniques.

Table 4. 2: Comparison between Ensemble Techniques

Common Types of Ensemble Techniques

Bagging

➢ Reduce variance and increase accuracy.

➢ Often used with Decision Trees.

➢ Overcome outliers or noisy Data.

Stacking

➢ Used to ensemble group of strong learners.

➢ Involves training a “meta learner”

algorithm to learn the optimal combination

of the base learners.

Boosting

➢ Flexible (can be used with any loss

function).

➢ Reduce variance and increase accuracy.

➢ Not robust against outliers or noisy Data.

38

Chapter 5

In this chapter, we carry out a comprehensive examination of the existing literature related to

our research topic. We delve into various studies, research papers, and academic sources that

discuss the attacks detection in MQTT-IoT networks. In addition, we explore the strengths and

limitations of different approaches, including ensemble techniques, for addressing

cybersecurity challenges in this context.

5.1 Literature Review

In today's world, IoT has seen substantial growth, with a vast array of devices now

connected to the web [74]. Nevertheless, this enhanced integration has also escalated the risk

of cyber threats [75]. In response, various studies proposed intrusion detection systems (IDS),

utilizing different algorithms, such as CNN, LSTM, DT, SVM, and ensemble learning

[76],[77],[78],[79]. Even though applying machine learning to protect the Internet of Things

(IoT) has been the subject of numerous studies in recent years, more efforts have yet to be made

to ensure the safety of the MQTT protocol when used on the Internet of Things [80]. Table 5.1

summarizes the information covered in this section.

When writing their research, the authors in [81] used machine learning to spot security

holes in an MQTT network. First, the authors created a new IoT-MQTT dataset named MQTT-

IOTIDS2020 and then identified MQTT-based attacks. The system includes three main

components: feature extraction, selection, and classification. The weighted average recall and

precision were 93% and 97%, respectively. Yet, the authors failed to offer adequate details

about data preprocessing and feature extraction.

 The IDS suggested in [76] combined a multi-objective optimization approach for

reducing data dimensions with a deep learning strategy that employs various models to detect

DDoS attacks such as LSTM and CNN. The suggested approach was tested on the recent

CISIDS2017 dataset for DDoS attacks and attained a 99.03% accuracy rate. While the proposed

IDS appears promising, there are some limitations to consider:

▪ Lack of Comparative Analysis: The comparative analysis is limited to a few specific

algorithms. A more detailed comparison would aid in better understanding how the

proposed method performs relative to other approaches.

▪ Limited Scope: While the proposed method addressed DDoS attacks in IoT networks,

it does not consider other cyber-attacks that may threaten these networks. A more

39

comprehensive approach that considers multiple cyber-attack types would be more

beneficial.

Authors in [77] suggested that the Deep Residual CNN model protects IoT systems against

Botnet attacks. As a result, LSTM, CNN, and RNN models were implemented on Real traffic

data and the “N-BaIoT Dataset” to test the method. The findings indicated that the Deep

Residual DCNN achieved the top training accuracy of 88.67%, trailed by LSTM and then CNN

with RNN.

However, the study has only evaluated the proposed system's performance against the N-

BaIoT dataset and real traffic data from the Mirai and BASHLITE botnets, which may limit

the generalizability of the results to other IoT datasets and botnets. In addition, the research did

not address the proposed system's scalability for expansive IoT networks. Moreover, the study

needs to give information on the computational resources required to implement the proposed

system on low-end IoT devices, which may have limited processing capabilities.

In [78], the authors introduced ARTEMIS IDS, which discerns the system's standard

operation and sends warnings during anomalies. The system used a dataset from a simulated

IoT network and evaluated its performance against various attack scenarios. The study found

that ARTEMIS achieved a low false positive rate. With a good accuracy of 99.98% when

utilizing One-Class SVM, the ARTEMIS IDS employed various ML techniques to identify

fraudulent MQTT messages. However, the study used a dataset collected from a simulated IoT

network. Therefore, it is unclear how well the system will perform in real-world IoT networks

with different network topologies, traffic patterns, and IoT devices.

 Authors [79] proposed an ensemble classification model using an automatic model

selection method and implemented three classifiers, DT, RF, and Gradient boosting, in their

study. The authors calculated the efficiency scores for NSL-KDD, UNSW-NB15, BoTNeTIoT,

and BoTIoT datasets to choose the top three models. The model obtained a high F score of 99%

even though their study looked at zero-day attacks as a binary classification problem.

Moreover, the study did not compare their system with others which may limit the ability to

evaluate the system's performance against different approaches.

Authors in [82] suggested feature clustering instead of classification in the UNSW-

NB15 Data set. The dataset was pre-processed into an executable form for the algorithm, and

then the accuracy results were evaluated. Using the entire features, the authors used supervised

Machine Learning (ML) approaches to train Random Forest (RF), Support Vector Machine,

and Artificial Neural Networks (ANNs) on the clusters. For binary and multi-class

classification, RF attained accuracy rates of 98.67% and 97.37%, respectively. However, they

still need to provide a comprehensive discussion on how this approach affects the performance.

Deep Learning (DL) based Network IDS was proposed in [83] to detect MQTT

intrusions. The authors have implemented CNN, RNN, and LSTM using the MQTT-IoT-

IDS2020 Dataset. The Aggressive scan, UDP-scan, and MQTT brute-force attacks were

evaluated using weighted average evaluation metrics. On average, the DL-based Network IDS

detected MQTT attacks with 97.09% accuracy and an F1 score of 98.33%. While the proposed

40

system achieved high accuracy and F1 score, other performance metrics were not discussed in

detail.

The NSL-KDD Dataset was utilized in the solution of Dhanabal and Shantharajah's

[84]. The study examined the Dataset using the C4.5 algorithm (J48), SVM, and Naive Bayes

algorithms and found that the J48 analysis yielded the most accurate findings. In addition, the

research used data mining techniques and the WEKA tool to analyze the dataset and find out

which protocols were more vulnerable. The study, however, relies solely in a synthetic data

which may not represent real-world intrusion attempts accurately.

Authors in [85] assessed five models: NB, ANN, XGB, DT, and KNN algorithms on

the MiTM Dataset (an open-source Dataset from Dataset (joseaveleira.es). All the models gave

accuracy above 95 percent. The extreme Gradient boosting algorithm showed a high accuracy

rate, although it took much more training time than other algorithms.

Even though their paper is a conference proceeding, it is relatively short and provides limited

details about the methodology and experimental setup. Furthermore, the study was conducted

on a small-scale testbed and the study only focused on detecting one type of attack on a specific

IoT communication protocol (MQTT.

In the study [86], DT and SVM were utilized in constructing a hybrid model to identify

intrusions this study. The KDD99 intrusion detection dataset was mined for nine features that

were deemed particularly significant and pertinent. Their study demonstrated an accuracy of

99%, while also having a low false alarm rate (FAR), coming in at 0.9%. The authors claimed

their hybrid system achieved better accuracy and detection rates than individual DT and SVM

models. However, the paper needs to provide its limitations or drawbacks.

In the study [23] the authors presented an IDS that used supervised learning to monitor

potential signals of intrusion. To increase accuracy and decrease false positives, the suggested

strategy employed an ensemble of support vector machines (SVM) and Nave Bayes classifiers.

They used a true historical log dataset that had been standardized and pre-processed. The

suggested system achieved accuracy and precision of 95%, and the classifier's efficiency

improved after adding session-based characteristics. In addition, the suggested technique was

compared with other techniques and showed significant reductions in false positives.

However, using this dataset could limit the applicability of the results to other datasets.

Secondly, the proposed method demands a significant amount of computational time. This is

especially true when employing the SVM and hybrid classifier, which might render it

unsuitable for systems requiring real-time detection. Lastly, the method is dependent on event

logs. Such logs might not encompass all indications of intrusions, leaving out potential threats

like those originating at the network layer.

Another study [87] examined the effectiveness of numerous traditional machine

learning methods by applying them to several ID-based datasets and analyzing the results. The

authors conducted a study comparing machine learning techniques for intrusion detection

across multiple datasets, namely UNSW-NB15, CIDDS-001, and NSL-KDD. After

standardizing these datasets, they employed SVM, KNN, and DT. DT was superior to other

https://joseaveleira.es/dataset

41

classifiers since it had a detection prediction accuracy that ranged between 99 and 100% for all

datasets.

 However, some potential limitations may include the fact that the experiments were conducted

on specific datasets and attack scenarios, which may only be representative of some possible

cyberattacks or network configurations. Additionally, the study's evaluation metrics and

methods may only be appropriate for some use cases or scenarios.

The study in [88] introduced a lightweight system which used an SVM-based classifier

to detect unwanted data injections by malicious actors. Recognizing the unique constraints of

IoT networks—like limited computational power, restricted memory, and tight energy

capacities—the IDS was meticulously designed. To assess the SVM's performance, the authors

employed a Poisson process for generating training and test samples. Their results highlighted

the SVM algorithm's efficacy when complemented by two or three straightforward features,

achieving impressive classification accuracy and swift detection times. Notably, when

compared to other machine-learning-based IDSs, the proposed SVM-centric approach

excelled. This underscores its potential as a rapid response tool against DoS attacks on IoT

networks.

 Even though the study achieved good results regarding classification accuracy and detection

time, it has some limitations. First, it could not find intrusions without slowing down traffic

flow. Second, the proposed system was tested only in a simulated environment using a limited

number of attack scenarios. Third, the authors used a Poisson process for traffic modeling,

which may not accurately reflect the traffic patterns of real IoT networks. Finally, the study

only considers DoS attacks.

A machine learning (ML)-driven botnet attack detection system was introduced in [89].

The framework reduced the requirement for handling resources by implementing an applicable

feature extraction technique. The proposed model incorporated three, achieving a detection

accuracy of 99%.

Although the suggested method was evaluated against various models, including NB and J48,

more comparisons with other machine learning and rule-based methods could better understand

the proposed approach's strengths and limitations. Moreover, the efficacy and execution of the

proposed framework hinge on the quality of the chosen features. As a result, the selected

features might be best suited for detecting only certain kinds of attacks.

In [90] the stacked ensemble learning technique utilized DT, LR, and gradient boosting

as base models. The research sought to enhance the effectiveness of IDSs by merging the

advantages of multiple models, aiming for superior IDS. When 23 key characteristics were

extracted from the CICIDS-2018 , the proposed system achieved a score of 97.9% on the F-

measure and had an accuracy of detection of 98.8%.

Limitations of the study encompass the notion that the efficacy of the models is contingent

upon the dataset they are trained with. The CSE-CIC-IDS2018 dataset, in particular, may only

represent a subset of potential attack scenarios. In addition, the proposed model used only one

voting method for ensemble learning, and other methods were not compared.

42

The concept of anomaly detection systems for cloud computing was presented in [91].

The support vector machine (SVM) was chosen as the main ML method due to its diverse

kernels. The results of experiments showed an accuracy of 96.24 percent and reduces the false

alarms number.

However, the results are only based on one model and one dataset, which may not be

generalizable to other algorithms or techniques. Using more diverse datasets would make the

results more generalizable. The study also did not compare the proposed system with existing

intrusion detection systems, making it difficult to determine how well it performs relative to

other systems.

In [92], the efficacy of a contemporary IDS with a hybrid approach for multi-agent

systems was assessed. When utilizing the NSL-KDD dataset to implement a Deep Neural

Network (DNN), the proposed system exhibited a 98% success rate in anomaly detection and

a 97% accuracy in distinguishing between various attack types.

On the other hand, there are several limitations of this research. Firstly, the proposed system

was not tested in a real-world IoT environment, so its effectiveness in detecting real-world IoT

attacks is yet to be demonstrated. Secondly, the system relied heavily on deep learning

algorithms, which can be resource-intensive and unsuitable for low-power IoT devices. Thirdly,

the proposed approach used a complex multi-agent system architecture, which may require

more work to implement and maintain. Fourthly, although the suggested system employed the

NSL-KDD dataset for testing, this dataset might only capture a fraction of the various attacks

possible in actual IoT scenarios. In conclusion, the study recognized that the proposed system

may fall short in accurately detecting infrequent attacks. This indicates a need for continued

research to enhance the system's precision and efficacy.

 In another study [93], a method was introduced for identifying DDOS attacks using DT

and KNN classifiers. The efficacy of the technique was evaluated on two datasets, NSLKDD

and KDDCup99. With a detection accuracy of 99.51 percent, KNN exceeded DT with an error

rate of 1.5 percent.

Yet, the authors offered limited details about the pre-processing methods employed, which

clouds understanding of their influence on the model's outcomes. Furthermore, the research

narrowed its lens to just two machine learning algorithms, DT and K-Nearest Neighbor, without

delving into other potential machine learning algorithms or probing into deep learning

structures.

 In [94], the authors investigated the application of the classifiers RF, AdaBoost, GBM,

Highly Randomized Trees, Classification and Regression Trees, and MLP for DoS attacks.

The research concentrated on both ensemble and individual classifiers. The authors utilized

different datasets for testing the classifiers, namely CIDDS-001, UNSW-NB15, and NSLKDD.

The objective of the research was to encourage scholars to craft IDSs using ensemble learning

and to offer suitable techniques for the statistical evaluation of classifier efficacy. In addition,

the study demonstrated the versatility of a classifier by showing that the XGB classifier

performs well for both classification and regression trees.

43

However, the study only evaluated the performance of classifiers on Raspberry Pi, which may

differ from other IoT hardware platforms. In addition, the study used few evaluation metrics to

assess the performance of the classifiers, which will not capture the performance of the

classifiers fully. Other metrics may provide a more comprehensive evaluation. Moreover , the

study only examined a limited number of ensemble methods, and other ensemble methods may

perform better on the datasets used.

 In [95], the authors introduced an IDS tailored for IoT-MQTT networks, utilizing Elite

Machine Learning (EML) algorithms. They assessed the proposed approach using a

lightweight MQTT protocol on a testbed and the SEN-MQTTSET dataset. Out of the seven

evaluated ML algorithms, they aimed to identify the optimal model for intrusion detection

based on performance indicators, achieving an accuracy exceeding 99%.

However, the dataset used in the study may not represent all possible attack scenarios in a real-

world IoT-MQTT network. Additionally, the study might not have fully captured the real-world

challenges of an IoT-MQTT environment. Also, they only compared their system to existing

ones and did not look at the latest methods or systems.

In [96], researchers introduced an IDS for SDN on flow data using the NSL-KDD

dataset. This method utilized a five-level system that combines KNN, ELM, and H-ELM to

spot DoS, R2L, U2R, and other unknown attacks and got a top accuracy of 84.29%. Plus, their

system was fast in terms of computing and worked even when network traffic was encrypted.

However, it may not be effective in detecting attacks embedded in the packet's payload and

may require further improvements to detect unknown attacks with a lower false alarm rate.

Additionally, the proposed IDS was designed based on six flow features, which may only

capture some of the necessary information required for effective intrusion detection.

 The goal of the study discussed in [97] aimed to identify DDoS attacks. They wanted

to find out which algorithm worked best. So, they compared Random Forest (RF), decision tree

(C5.0), naive Bayes (NB), and support vector machines (SVM) using a normalized

CICIDS2017 dataset. The results revealed that RF and C5.0 achieved average accuracies of

86.80% and 96.45%, respectively, with a success probability of 99%, while SVM exhibited 75

percent of FPR.

The study provided a comprehensive evaluation of pre-processing techniques, feature selection

methods, and different classifiers. However, the researchers did not consider other types of

attacks, such as network intrusion attacks or malware attacks.

In [98], on the KDDcup99 dataset, using a vote-based ensemble learning technique, the

researchers assessed different algorithms. The Bayesian network used was more effective with

small datasets, while the random tree performed better with more extensive sample data.

However, the study should have discussed the proposed model's computational complexity and

training time, which could be a concern when dealing with large datasets.

44

Table 5. 1: Summary of the Literature Review

Ref Models

Trained

Dataset

used

Attacks MQTT Simulation

/Real

Testbed

Ensemble

Technique

Feature

Selection

Evaluation

Metrics

[81] RF,

SVM,

NB, LG,

KNN,

and DT

MQTT-

IOTIDS2

020

Scan_A

UDP

Scan

Brute

force

Yes MQTT

Traffic

No Yes Recall,

Precision F1-

score

[76] CNN

LSTM

CISIDS2

017

DDoS No Simulation No Yes Accuracy

[77] CNN,

LSTM,

and

RNN

N-BaIoT Botnet No Real

Traffic

No No Accuracy

[78] SVM IoT

network

Binary

classifi

cation

Yes Simulated

IoT

No Yes Accuracy

[79] DT, RF,

Gradient

boosting

 NSL-

KDD,

UNSW-

NB15,

BoTNeT

IoT, and

BoTIoT

Zero-

day

attacks

No Network

Traffic

Yes Yes F1score-Roc

curves

[82] RF,

SVM,

and

ANN

UNSW-

NB15

DoS Yes Simulation No Yes Accuracy

[83] DNN,

CNN,

and

LSTM

MQTT-

IoT-

IDS2020

Scan_A

, UDP

scan,

Brute

force

Yes Simulation No Yes Accuracy

F1 score

[84] J48,

SVM,

NB

NSL-

KDD

DoS,

R2L

U2R,

Probe

No Simulation No Yes Accuracy

[85] NB,

ANN,

XGB,

DT and

KNN

MiTM

dataset

MiTM Yes Real

Testbed

No Yes Accuracy,

precision

recall,F1 score

45

[86] DT,

SVM

KDD99 Dos,

probe,

u2r

r21

No Simulation Yes Yes Accuracy

FAR

[23] SVM,

NB

Historica

-l log

Unkno

wn

attacks

No Real

Testbed

Yes Yes Accuracy

Precision

[87] SVM,

KNN,

and DT

UNSW-

NB15,

CIDDS-

001, and

NSL-

KDD

DDoS,

Brute

force

Exploit

SQL

injectio

n

No Simulation No Yes Accuracy

Recall

Precision

F1score

[88] SVM Generate

d sample

traffic

DoS No Simulation No Yes Accuracy

[89] DT, NB

ANN

N-BaIoT Botnet No Simulation No Yes Accuracy

[90] DT, LR

GB

CIC-IDS

2018

Brute

force,

SQl,

DoS

No Simulation Yes Yes Accuracy

Precision

Recall

F1 score

[91] SVM NSL-

KDD

Not

mentio

ned

No Simulation No Yes Accuracy

Roc curve

[92] DNN NSL-

KDD

DoS,

Probe,

R2L

and

U2R

No Simulation No Yes Accuracy

Precision

Recall The 1

score

[93] DT,

KNN

NSLKD

D,

KDDCup

99

DDoS No Simulation No Yes Accuracy

[94] RF,

AdaBoos

t,

GBoost,

XGboost

CIDDS-

001,

UNSW-

NB15,

NSLKD

D

DoS No Simulation Yes Yes Accuracy

Precision

Recall The 1

score

46

[95] LR,

KNN,

RF, NB,

SVM,

GB, DT

SEN-

MQTTS

ET

DoS Yes Real

Testbed

Yes Yes Accuracy, F1

score, Roc

curve

[96] KNN,

ELM, H-

ELM

NSL-

KDD

DoS,

R2L,

U2R,

unkno

wn

attacks

No Flow-based No Yes Accuracy

Precision

Recall, F1

score, FAR

[97] RF, DT,

NB,

SVM

CICIDS2

017

DDoS No Flow-based No Yes Accuracy

[98] Bayesian

network

KDDcup

99

Probe,

DoS,

U2R,

R2L

No Simulation Yes Yes Accuracy,

P,Recall,F1

score

Many studies which have been conducted utilized different techniques. However, there

is a lack of need to be more research on detecting cyber-attacks specific to the MQTT protocol.

While fewer studies have proposed machine learning algorithms for detecting MQTT

intrusions, they have not been extensively evaluated in real-world scenarios, and their

scalability and generalizability are unknown. Looking ahead, researchers should aim to create

more robust IDSs capable of identifying a range of cyber-attacks.

Conversely, the research discussed in this section has demonstrated encouraging outcomes in

identifying various cyber-attacks on IoT networks. However, most studies have only focused

on detecting one type of attack or evaluating the performance of a specific set of algorithms on

a limited dataset. Few studies have looked at the performance of IDS on different network

topologies, traffic patterns, and IoT devices.

47

Chapter 6

In this chapter, we delve into the MQTT-IoT-IDS2020 dataset, offering an overview of its

contents and features. We also shed light on the data preparation steps undertaken to make it

ready for utilization in the machine learning models. In addition, we explain the methodology

followed to accomplish our thesis goal. We then provide an overview of the experimental setup

employed in our research. We outline the specific hardware and software setups employed.

Lastly, we explain the evaluation metrics chosen to gauge the performance outcomes achieved

through the application of ensemble machine learning methods.

6.1 MQTT-IoT-IDS2020 Dataset Overview

The MQTT-IoT-IDS2020 dataset[81] is a cybersecurity dataset that was created in 2020

for the purpose of doing IDS research.The MQTT protocol is the primary topic of this dataset,

which was created with the intention of assisting academics and developers in improving the

safety of Internet of Things systems. The dataset was created by capturing and analyzing actual

IoT network traffic, ensuring its authenticity and relevance to real-world scenarios. The dataset

includes both typical traffic and a variety of cyber-attack traffic, such as:

 An aggressive scan (Scan A): This type of attack is a variant of network scanning where an

attacker uses a tool or script to scan a network in an aggressive manner, probing many ports

across multiple systems in a short time span. These scans can potentially disrupt network

services or overwhelm systems due to the volume of traffic generated. The purpose is often to

identify open, vulnerable ports that can be exploited later [99].

 A scan of the User Datagram Protocol (UDP) (Scan sU): This refers to a type of UDP scan.

In terms of network protection, this method is employed to pinpoint open UDP (User Datagram

Protocol) ports on a designated system [99].

 A Sparta SSH brute-force attack (Sparta): This refers to a brute-force attack on the SSH

(Secure Shell) protocol using a tool like Sparta. SSH [100] is a protocol used to establish a safe

connection over an insecure network. It is typically used for logging in remotely, executing

commands, and accessing command-line interfaces on distant machines. It systematically

attempts all combinations of passwords (or using a list of common passwords) until the correct

one is found. Tools like Sparta can automate this process [101], [102].

 An MQTT brute-force attack (MQTT BF): This refers to a brute-force attack on the MQTT

protocol. An MQTT_BF attack would typically involve an attacker trying to guess a weak

password, for MQTT messages, thereby gaining control over the communication and data flow

[103].

48

The dataset, which includes these attack scenarios, provides a platform for creating and

testing machine learning models and intrusion detection systems. This ensures they can

recognize and categorize cyber assaults aimed at MQTT-based IoT networks effectively.

The main goal of the dataset is to make it possible for developers and researchers to

design, train, and evaluate machine learning models that are able to accurately recognize and

categorize various kinds of cyberattacks that are launched against IoT networks. Researchers

and developers can leverage the MQTT-IoT-IDS2020 dataset to study the characteristics of

MQTT-based network traffic, identify attack patterns, and design innovative intrusion detection

algorithms. The dataset includes both processed features and raw capture files in the popular

pcap format, providing flexibility for different analysis approaches.

While IOT-23 Dataset [104] exists, a recent and widely used dataset for IoT security

research, it does not include MQTT. The MQTT-IoT-IDS2020 dataset specifically targets the

MQTT protocol, which is widely deployed in IoT platforms. By focusing on MQTT-based

traffic, we can gain insights into the unique security challenges and attack patterns specific to

this protocol. Our study adds value by focusing on a specific protocol and addressing the unique

security challenges associated with MQTT-based IoT networks.

6.2 Description of the Dataset

In this section, we give a thorough overview of the dataset that was produced by

simulating 12 MQTT sensors.

The dataset, which can be found in [81], encompasses five recorded scenarios: normal

operation and four distinct attack scenarios. The attacks performed include an aggressive scan

(Scan A), a User Datagram Protocol (UDP) scan (Scan sU), a Sparta SSH brute-force attack

(Sparta), and an MQTT brute-force attack (MQTT BF). The dataset was carefully assembled

by utilizing the tcpdump tool [105], which specializes in capturing and monitoring Ethernet

traffic. Once this traffic was recorded, it was then stored in the widely-accepted pcap file format

for further analysis and use.

During the research process, a variety of specialized tools were incorporated to ensure

comprehensive data capture and simulation. Virtual machines were employed to emulate

different network devices, offering a digital representation of physical computers. The

renowned security auditing tool, Nmap, was utilized to perform scanning attacks, aiming to

uncover potential network vulnerabilities. Additionally, the versatile open-source media player,

VLC (VideoLAN Client), was used to mimic the data streams typically associated with IoT

devices, especially simulating camera feeds. Lastly, for a more targeted approach, the tool

MQTT-PWN [106] was harnessed. This specific tool was designed to execute brute-force

attacks, attempting to break into systems by testing a multitude of credential combinations.

In the examined network setup [107], 12 MQTT sensors, a central broker, a specific

machine that replicates camera feeds, and a system that acts as the attacker make up the

49

structure. Under standard conditions, these sensors actively send messages through the

"Publish" command of MQTT. These messages are characterized by their random nature, both

in content and length, which varies among the sensors. This variance is designed to imitate the

diversity found in real-world IoT deployments. Parallelly, a simulation of a camera feed is run

using the VLC media player, which transmits data through a UDP stream. To further achieve

authenticity and imitate real-world network conditions, the emulators within the setup have

been programmed to drop packets at specified rates: 0.2%, 1%, and 0.13%. Notably, while the

distinct scenarios were being recorded, the operations of the network continued undisturbed.

To cater to different research needs, the dataset is offered in two formats: the unaltered capture

format, known as .pcap files, and another that comprises processed features. These features

span across packet-based, unidirectional, and bidirectional metrics.

Five pcap files make up the dataset in [107], including normal.pcap, sparta.pcap, scan_A.pcap,

mqtt_bruteforce.pcap, and scan_sU.pcap. Each file is a recording of a different scenario,

including normal operation, a Sparta SSH brute-force attack, an aggressive scan, a MQTT

brute-force attack, and a UDP scan. The background regular operations are included in the

assault pcap files.The MQTT-IoT-IDS2020 dataset features offer valuable information for

analyzing the network traffic and developing intrusion detection systems in the IoT domain.

• Packet flow analysis in MQTT-IoT-IDS2020 involves examining the characteristics of

individual packets within the network traffic. These features encompass flags, length,

MQTT message parameters, and more.

• Unidirectional flow analysis in MQTT-IoT-IDS2020 focuses on capturing and

analyzing the traffic in one direction only, either from the source device to the

destination device or vice versa.

• Bidirectional flow analysis considers the traffic in both directions simultaneously. It

involves capturing and analyzing the communication between the source and

destination devices in a bidirectional manner. In the case of two-way traffic flows, some

features possess a pair of values: one representing the outgoing (or forward) flow and

the other for the incoming (or backward) flow.

Table 6.1 and Table 6.2. display the features description and distribution of cases, respectively.

50

Table 6. 1: Dataset Feature Description[108]

Feature
Data Type

Description Packet
Uniflow Biflow

ip_src Text Source IP Address yes yes yes

ip_dest Text Destination IP Address yes yes yes

protocol Text Last layer protocol yes

ttl Integer Time to live yes

ip_len Integer Packet Length yes

ip_ flag_df Binary Don’t fragment IP flag yes

ip_flag_mf Binary More fragments IP flag yes

ip_flag_rb Binary Reserved IP flag yes

prt_src Integer Source Port yes yes yes

prt_dst Integer Destination Port yes yes yes

proto Integer
Transport Layer protocol

(TCP/UDP)

 yes yes

tcp_flag_res Binary Reserved TCP flag yes

tcp_flag_ns Binary Nonce sum TCP flag yes

tcp_flag_cwr Binary
Congestion Window

Reduced TCP flag
yes

tcp_flag_ecn Binary ECN Echo TCP flag yes

tcp_flag_urg Binary Urgent TCP flag yes

tcp_flag_ack Binary
Acknowledgement TCP

flag
yes

tcp_flag_push Binary Push TCP flag yes

Tcp_flag_reset Binary Reset TCP flag yes

tcp_flag_syn Binary Synchronization TCP flag yes

Tcp_flag_fin Binary Finish TCP flag yes

num_pkts Integer
Number of Packets in the

flow

 yes Fwd & bwd

Mean_iat Decimal Average inter arrival time yes Fwd & bwd

std_iat Decimal
Standard deviation of

inter arrival time

 yes Fwd & bwd

min_iat Decimal
Minimum inter arrival

time

 yes Fwd & bwd

max_iat Decimal
Maximum inter arrival

time

 yes Fwd & bwd

num_bytes Integer Number of bytes yes Fwd & bwd

num_psh_flags Integer Number of push flag yes Fwd & bwd

num_rst_flags Integer Number of reset flag yes Fwd & bwd

num_urg_flags Integer Number of urgent flag yes Fwd & bwd

mean_pkt_len Decimal Average packet length yes Fwd & bwd

std_pkt_len Decimal
Standard deviation packet

length

 yes Fwd & bwd

min_pkt_len Decimal Minimum packet length yes Fwd & bwd

max_pkt_len Decimal Maximum packet length yes Fwd & bwd

mqtt_messagetype Integer MQTT message type yes

mqtt_messagelength Binary MQTT message length yes

mqtt_flag_uname Binary User Name MQTT Flag yes

mqtt_flag_passwd Binary Password MQTT flag yes

mqtt_flag_retain Binary Will retain MQTT flag yes

mqtt_flag_qos Integer Will QoS MQTT flag yes

mqtt_flag_willflag Binary Will flag MQTT flag yes

mqtt_flag_clean Binary Clean MQTT flag yes

mqtt_flag_reserved Binary Reserved MQTT flag yes

is_attack

Binary
1 if the instance

represents an attack, 0

legitimate.

no

no

no

51

Table 6. 2: MQTT-IoT-IDS2020 feature statistics distribution [108]

 Classes Total Instances Normal Attack

Biflow

Biflow_mqtt_bruteforce

Biflow_normal

Biflow_scan_A

Biflow_scan_sU Biflow_sparta

16,696

86,008

25,693

39,664

91,318

2152

86,008

5786

17,230

77,202

14,544

 X

19,907

22,434

14,116

Uniflow

Uniflow_mqtt_bruteforce

Uniflow_normal

Uniflow_scan_A

Uniflow_scan_sU

Uniflow_sparta

33,079

171,836

51,358

25,845

182,407

4205

171,836

11,561

34,409

154,175

28,874

 X

39,797

22,436

28,232

Packet-flow

mqtt_bruteforce

Normal

scan_A

Biflow_scan_sU Biflow_sparta

91,056,230

1,056,230

111,392

233,255

130,876,584

70,980,732

1,056,230

70,768

210,819

90,980,732

19,895,852

 X

40,624

22,436

39,895,852

In our research, we specifically focus on utilizing the unidirectional flow analysis from

the MQTT-IoT-IDS2020 dataset. Unidirectional flow analysis allows us to examine the traffic

in one direction only, providing valuable insights into the network traffic from the source

device to the destination device or vice versa. This analysis enables us to identify specific

features and attributes that are indicative of normal operation or potential attacks within the

MQTT-IoT network.

6.3 Dataset Pre-processing

This part addresses the methods used to prepare the dataset before using it to perform

machine learning tasks. Data cleansing, feature selection, normalization, and controlling class

imbalance are among the pre-processing stages. By performing these pre-processing steps, the

dataset is optimized for training and evaluating machine learning models, ensuring accurate

and reliable results in the subsequent stages of the study.

Data preprocessing is essential in preparing the data for machine learning models [109].

The first step in the preprocessing involves combining the five files for the uniflow network

level by implementing a Python script. The resulting combined CSV file contained binary and

multi-class label attributes.

The preprocessing involved cleaning the data by removing repeated values and

handling missing ones. To avoid the bias or undue influence of specific features, the "ip_src"

(source IP address) and "ip_dst" (destination IP address) features were dropped. By excluding

these attributes, the analysis and modeling process can focus more accurately on other relevant

features and their contributions to the dataset.

52

To address the class imbalance, the oversampling technique SMOTE (Synthetic

Minority Oversampling Technique) [110] is employed. It generates synthetic data points by

interpolating between existing instances of the minority class and creates additional instances

of the minority class. However, to avoid introducing bias into the model, we shuffle the dataset

to randomize the order of the instances before applying SMOTE.

 To evaluate how effectively the model works, the dataset was partitioned into training

and testing sets at an 80:20 distribution ratio. All features except the target attribute were then

normalized to ensure they were on the same scale, which is crucial for optimizing machine

learning models. This process preserves the relative differences in values while ensuring that

all features have comparable scales.

A key factor in obtaining the best outcomes is the choice of data characteristics. We

used the SelectKBest method for feature selection. This method selects the top k features=10

in our case that are most impactful in predicting the target variable. These curated features are

then saved into separate data structures for both binary and multiclass classifications.

As shown in Figures 6.1 and 6.2, respectively, the feature important scores are calculated for

both binary and multiclass classification. The features were ranked according to their scores,

and the top 10 features were chosen to be used in the model.

Figure 6. 1: Binary Classification Top 10 Feature Selection

53

Figure 6. 2: Multiclass Classification Top 10 Feature Selection

6.4 Methodology

In our study, we implement Bagging, Boosting, and Stacking Ensemble techniques and

figure out the effectiveness of these powerful methods in detecting the attacks found in the

MQTT-IoT-IDS2020 dataset. Figure 6.3 demonstrates our workflow to accomplish our

proposed IDS. Our approach for this project can be pointed out in these steps:

▪ Use a most recent real-world Dataset," MQTT-IoT-IDS2020," in an IoT environment

to determine anomalies in combination with various ML models. The Dataset was pre-

processed, and the most significant features were extracted.

▪ All intrusion detection algorithms are implemented and validated using Python and

Sklearn libraries.

▪ Training the models by using ensemble learning algorithms.

▪ Evaluation analysis of the models using the standard machine learning classification

metrics was considered to measure the efficiency of these models and predict the best-

performing model.

54

Figure 6. 3: Methodology Workflow

Bagging, Boosting, and Stacking ensemble techniques are implemented with 5-fold

cross-validation to get a reliable performance estimation. Cross-validation provides a means to

assess the robustness of ensemble techniques by evaluating their performance on different

subsets of the data. This evaluation helps identify whether the ensemble's performance remains

consistent or varies significantly across different data partitions, thus providing insights into

the ensemble's stability and reliability.

6.5 Experimental Setup

We conducted the training and validation of the selected Ensemble models on a laptop running

a 64-bit Windows 11 operating system and 16 GB RAM. The computer runs on an AMD Ryzen

7 5700U processor featuring Radeon Graphics and has a speed of 1.80 GHz.

Every experiment is carried out using the Python programming language (version 3.9.16) via

several popular machine learning libraries, especially Scikit-learn, found in Google

Colaboratory, which is also used to derive the performance and statistical results.

6.6 Performance evaluation metrics

In this section, we elucidate the criteria for evaluation that were used to determine whether our

findings were efficient. when implementing ensemble techniques in machine learning.

 When evaluating the classification on a test dataset compared to the training dataset, we can

identify four possible outcomes.

• True Positives (TP), which represent the packets correctly identified as malicious.

• True Negatives (TN) denote the packets that have been accurately flagged as benign.

MQTT-IoT-
IDS2020

Dataset
Preprocessing

Features
selection

Training By
Ensemble

Algorithms

Testing By
Testing Dataset

Evaluating the
Performance

Measures

55

• False Positives (FP) occur when benign packets are mistakenly tagged as malicious.

• False Negatives (FN) refer to the instances where malicious packets are wrongly

identified as benign.

In our study, we employed a range of metrics to evaluate the efficiency of the classifier,

namely Precision, Recall, F1-score, and Accuracy [111]. Ideally, we aimed to optimize every

metric, keeping in mind that each has a value scale ranging from 0 to 1. A metric closer to 1

indicates a better performance of the classifier, whereas a value closer to 0 suggests room for

improvement. By striving for the upper end of this scale, our goal was to ensure the classifier's

maximum accuracy and efficiency in its predictions. These include.

• Precision(P) represents the percent of correctly identified malicious samples (equation

1).

• Recall (R) refers to the fraction of all malicious samples that were correctly identified

(equation 2).

• The F1 score represents the balance between precision and recall by taking their

harmonic mean. It is particularly valuable when the distribution of classes is uneven or

imbalanced, ensuring that neither precision nor recall is disproportionately favored

(equation 3).

• The accuracy metric indicates the proportion of samples that were accurately classified

in equation (4).

These formulas can be used to calculate these metrics:

𝑷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… . . (1)

 𝑹 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 … (2)

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 = 2 ∗
𝑃. 𝑅

𝑃 + 𝑅
… … … … … … … … … … … … … … … … … . . (3)

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
… … … … … … … … … … … … … . (4)

• The Confusion matrix [112], a powerful tool, is also utilized for visualizing machine

learning models' performance. In binary classification (Figure 6.4) it consists of four

entries: True Positives (correctly detected attacks), True Negatives (correctly identified

legitimate flows), False Positives (legitimate flows mistaken as attacks), and False

Negatives (attacks mistaken as legitimate flows).

56

Figure 6. 4: Binary Classification Confusion Matrix

In a multiclass classification (Figure 6.5), the matrix has dimensions corresponding to

the number of classes. The matrix's columns represent projected class occurrences, whereas

each row represents actual class occurrences. The values show how many instances were

rightly classified for every specific class and also point out instances that got classified

incorrectly.

Figure 6. 5: Multiclass Classification Confusion Matrix

• The Characteristic curve of the receiver operating (ROC) Curve [113] is also used

as it offers a glimpse of the model's effectiveness regardless of the threshold.

• The model's performance utilizing the ROC curve was thoroughly evaluated using the

AUC metric [114]. It signifies the likelihood that the model will correctly prioritize a

random positive sample over a random negative one. A higher AUC value reflects a

more effective model, showcasing its enhanced capability to differentiate between

positive and negative samples.

7

9 1

6

3

5

4

2 8

Predicted Class

A
ct

u
al

TP FN

TN FP

Predicted Class

T
ru

e
C

la
ss

57

Chapter 7

Results and Analysis

In this section, we showcase the findings derived from our experimental evaluations, focusing

on both binary and multiclass classifications based on uniflow features. We highlight the

efficacy of the detection solution grounded in machine learning methodologies and also

explore the effectiveness of the ensemble techniques in classifying the attacks. Through

extensive testing and in-depth evaluation, our goal is to delve deeper into the capabilities,

constraints, and overall effectiveness of the approach we have proposed. These results and

analysis contribute to the advancement of cybersecurity in MQTT-IoT networks and provide

valuable insights for future research and system enhancements.

7.1 Bagging Binary Classification

For binary classification, our dataset has been used to detect the MQTT-IoT attacks

mentioned earlier. We utilized the Bagging Classifier, with a Decision tree with a maximum

depth of 20 as the base estimator. The Bagging technique works by creating several subsets of

the original data, training a base learner (150 Decision Trees) for each, and then combining the

outputs.

We chose Decision Trees (DT) as our base model due to their transparent and

interpretable decision-making process. Their robustness to outliers, scalability to large datasets,

and quick training times make them ideal. Furthermore, their compatibility with ensemble

techniques enhances model performance while mitigating overfitting concerns.

The Bagging Classifier has been trained on the dataset and then tested on unseen data.

In terms of how outputs are combined, the ensemble model typically utilizes majority voting

for our binary classification problem. The predicted class that receives the most votes is chosen

as the final output, with votes for the predicted class coming from each base model.

We employed a k-fold cross-validation approach, specifically with five folds. The

accuracies observed across the folds provide insight into the technique's consistency and

efficiency on various dataset subsets.

We handled class imbalance using SMOTE to generate synthetic samples and employed

a RandomizedSearchCV for hyperparameter tuning, which is an excellent choice when the

58

hyperparameter space is large. It selects random combinations of the parameters for a given

number of iterations.

Bagging Binary Results and Analysis:

Table 7.1, Figure 7.1, and Figure 7.2 show the results of the bagging ensemble from the

classification report, which gives an overall picture of the model’s efficiency. We are getting

precision, recall, and F1 scores of approximately 1.0 for both classes. The ideal balance

between false positives and false negatives is demonstrated by these reliable results. The

accuracy for the 'attack' class is 100%, and for the 'benign' class is 100%. The model’s accuracy is

approximately 100%, showing how well it differentiates between the two groups. Across the five

folds, it consistently achieved a training accuracy of approximately 99.99%.

Testing accuracy, which is more indicative of the model's generalization capability to unseen

data, remained consistently high across the folds, with an average of 99.96%. Only a slight

variation was noted in the fourth fold, where it marginally dropped to 99.95%, suggesting the

robustness of our model.

Out of 75218 instances of class Benign, the model correctly predicted 75216, misclassifying

only 2. Similarly, out of 75257 instances of the class Attack, the model correctly predicted

75248, with only nine misclassifications. These results corroborate the high precision and recall

values observed in the classification report.

The AUC score is 1.0, which is excellent and indicates a strong model's ability to discriminate

across classes.

Table 7. 1: Binary bagging Classification Results using 5-fold Cross Validation

Class Accuracy Precision Recall F1 score Support

Attack 99.96% 100% 100% 100% 75257

Benign 99.94% 100% 100% 100% 75218

59

Figure 7. 1: Bagging Binary Confusion Matrix

Figure 7. 2: Bagging Binary ROC Curve

7.2 Bagging Multiclassification

For Multiclassification Bagging, the central process involved using Decision Trees as

the base estimator within a Bagging ensemble.

Given the presence of a class imbalance in our dataset, we deployed SMOTE ensuring

our model was not biased towards the majority class and could learn useful patterns from all

classes equally.

60

The base classifier used was a Decision Tree Classifier with an optimal depth of 20 and

a minimum sample split of 4. The base classifier was then used in a Bagging Classifier, training

it with 196 estimators obtained from RandomSearch, and sampling 80% of instances and

features during the process. After training the classifier, accuracy was calculated on both the

training and testing datasets. Additionally, KFold cross-validation with five splits was

performed to validate the robustness of the model. A classification report was generated,

providing insights into the evaluation metrics.

Bagging Multiclassification Results and Analysis

For multi-classification, we classify instances into one of five classes: Benign,

MQTT_BF, Scan_A, Scan_sU, and Sparta. The outcomes from the classification report are

displayed in Table 7.2, Figures 7.3, and 7.4.Table 7. 2: Multi-Classification Bagging Results

using 5-fold Cross Validation.

Class Accuracy Precision Recall F1 score Support

Benign 93% 95% 94% 94% 36482

MQTT_BF

95% 96% 96% 96% 36444

Scan_A

97% 96% 97% 96% 36455

Scan_sU

94% 94% 94% 94% 36541

Sparta

95% 95% 96% 95% 36485

After running the model, the training accuracy achieved was a commendable 99.36%,

while the testing accuracy stood at 95.20%. The confusion matrix, as shown in Figure 7.3,

revealed that the classifier was able to tell the classes apart quite well, with the majority of the

instances correctly classified. The cross-validated classification report further affirmed the

model's performance, showcasing an overall accuracy of 95% across classes. Individual class

accuracies were: Benign at 93.66%, MQTT_BF at 95.47%, Scan_A at 97.01%, Scan_sU at

94.17%, and Sparta at 95.61%. The area under the ROC curve (AUC) shown in Figure 7.4 for

each class was impressive, with most classes scoring above 0.95, indicating the classifier's

strong ability to distinguish between positive and negative instances for each class.

61

Figure 7. 3: Multiclassification Bagging Confusion Matrix

Figure 7. 4: Bagging Multiclassification ROC curves

62

7.3 Boosting Binary Classification

For Binary classification, we implemented an ensemble learning model using the

Adaptive Boosting (AdaBoost) technique with a base estimator being a Decision Tree

Classifier. The utilization of AdaBoost with a Decision Tree (DT) offers a powerful

combination for classification tasks. AdaBoost transforms a collection of weak learners, often

represented by shallow decision trees, into a single strong learner, effectively enhancing overall

prediction performance. Despite DT's tendency to overfit, AdaBoost curtails this risk by

aggregating outcomes from several DTs, thus improving generalization to unseen data.

Additionally, this method is both flexible, as it can handle numerical and categorical data, and

efficient, due to the computational simplicity of decision trees.

We employed Random Search for hyperparameter tuning, which effectively explored a

broader range of parameter values and identified the best parameters for our AdaBoost model:

a decision tree depth of 10, 150 estimators, and a learning rate of 0.1. To ensure robust

estimation of the model's performance and to avoid overfitting, we incorporated 5-fold cross-

validation into the Random Search process. This approach divided the dataset into five subsets

and iteratively used four for training and one for validation.

We used SMOTE, a powerful technique for creating synthetic samples from the minority class,

to address difficulties with class imbalance in our data.

The performance of the implemented AdaBoost model was assessed, along with the model's

overall accuracy, for each class ('benign' and 'attack').

Boosting Binary Classification Results and Analysis

In this section, we present the binary classification outcomes derived from the boosting

ensemble, employing AdaBoost with Decision Tree (DT) as the foundational estimator.

As shown in Table 7.3, for the 'benign' class, our model yielded a precision of 1.0, a

recall of 1.0, and an F1-score of 1.0. These figures indicate a high success rate in accurately

identifying and capturing most of the 'benign' instances. Meanwhile, for the 'attack' class, our

model achieved a precision of 1.0, a recall of 1.0, and an F1-score of 1.0. The higher precision

for 'attack' instances demonstrates that our model is cautious and effective in minimizing false

positives when predicting an 'attack'. The accuracy for the 'benign' class was recorded at

99.96%, while the 'attack' class had an accuracy of 99.94%, signaling the overall competence

of our model in making correct classifications.

63

Table 7. 3: Binary Classification Boosting Results using 5-fold Cross Validation

Class Accuracy Precision Recall F1 score Support

Attack 99.94% 100% 100% 100% 75237

Benign 99.96% 100% 100% 100% 75237

As shown in Figure 7.5, the model correctly classified 75207 'benign' and 75193 'attack'

instances, showcasing its robust performance. However, it also incorrectly classified 30

'benign' and 44 'attack' instances.

Figure 7. 5: Binary boosting Classification Confusion Matrix

Figure 7.6 illustrates further study of our model's performance using the ROC curve

and associated Area Under the Curve (AUC) score. Our AdaBoost model achieved an AUC

score of 1.0, a significant achievement that demonstrates an excellent capacity to distinguish

between 'benign' and 'attack' instances.

Figure 7. 6: Binary Boosting ROC Curve

64

7.4 Boosting Multiclass Classification

This section describes the model's performance for multiclass classification and

provides examples of how our boosting ensemble strategy works.

As mentioned earlier, a key aspect of boosting is that it places more weight on instances

that were previously misclassified, focusing on the harder-to-classify instances in successive

iterations, ultimately enhancing the model's performance.

We focused on the MQTT-IoT-IDS2020 dataset, using the top 10 multi-class features.

The data underwent a standardization process using the StandardScaler to enhance the model's

convergence speed and performance. Using SMOTE to handle the imbalance, we employed

the XGBoost classifier, a gradient boosting algorithm, and tuned its hyperparameters using

RandomizedSearchCV with a Stratified K-Fold cross-validation scheme which helped ensure

the selected parameters generalize well to unseen data.

Boosting Multiclass Classification Results and Analysis

The multiclassification outcomes for the boosting ensemble using XGBoost with DT

as the base estimator are shown in this section.

As shown in Table 7.4, the training accuracy achieved was an impressive 99.65%, while

the testing accuracy stood at 96.93%. A comprehensive cross-validated classification report

provided further insights: the model showcased all metrics as 97% across all classes, signifying

high reliability. The individual accuracies for the classes 'Benign,' 'MQTT_BF,' 'Scan_A,'

'Scan_sU,' and 'Sparta' were 96.18%, 97.17%, 98.08%, 96.46%, and 96.93% respectively.

The confusion matrix in Figure 7.7 provided a visual demonstration underscoring the

model's proficient classification capability. For instance, the class 'Scan_A' witnessed the

highest true positives (35,756 instances correctly identified) with minimal misclassifications,

such as 149 mistaken as 'Benign' and 198 as 'MQTT_BF.'

The ROC curves in Figure 7.8 for each class further highlighted the model's capacity

to discriminate between the classes, with AUC values accentuating its efficiency. The Area

Under the Curve (AUC) values obtained effectively demonstrated the model's prowess in

distinguishing between different traffic types. Benign, MQTT_BF, Scan_sU, and Sparta

classes achieved an AUC of 0.98, and the Scan_A class stood out with a near-perfect score of

0.99. These results highlight the model's robust ability to accurately detect various attack

patterns and benign traffic, signifying its effectiveness in intrusion detection for IoT contexts.

65

Table 7. 4: Multi-Classification Boosting Results using 5-fold Cross Validation

Class Accuracy Precision Recall F1 score Support

Benign 96.18% 97% 96% 96% 36482

MQTT_BF

97.17% 97% 97% 97% 36444

Scan_A

98.08% 98% 98% 98% 36455

Scan_sU

96.46% 97% 96% 96% 36541

Sparta

96.93% 97% 97% 97% 36485

Figure 7. 7: Multiclassification Boosting Confusion Matrix

Figure 7. 8: Multiclassification Boosting ROC Curves

66

7.5 Stacking Binary Classification

In this section, we explore the utilization of a stacking ensemble approach for binary

classification, specifically focused on distinguishing between the benign and attack classes.

The ensemble comprises three base classifiers: K-Nearest Neighbors (KNN), XGBoost,

and Decision Tree (DT), which contribute their individual predictions to a final meta learner,

Logistic Regression (LR). By combining the strengths of these diverse classifiers, the stacking

ensemble aims to enhance the overall classification performance, effectively handling the

complexities and imbalances present in the dataset. We used the SMOTE to correct the class

disparity. After then, the data was divided into training and testing sets using

StratifiedShuffleSplit.

We incorporated 5-fold cross-validation (cv=5) to the Randomized Search procedure to

more thoroughly evaluate the model's generalizability and reduce the risk of overfitting. The

dataset is then partitioned into five subsets, or "folds”. The model is then trained and validated

five times, using various combinations of one validation fold and four training folds. The

model's capacity to generalize to new data is then estimated using an average of the

performance measures throughout the five iterations. The integration of Randomized Search

with 5-fold cross-validation thus ensured an efficient, robust, and rigorous approach to model

tuning and validation, enabling us to develop a high-performing stacked ensemble model for

the binary classification task at hand. Finally, we leveraged an array of evaluative metrics,

encompassing accuracy, classification report, confusion matrix, and the Receiver Operating

Characteristic (ROC) curve, to assess the efficacy of our results.

Stacking Binary Classification Results and Analysis

The binary classification results for the stacking ensemble model built with the three

base classifiers Decision Tree (DT), K-Nearest Neighbors (KNN), and XGBoost are presented

in this section. These classifiers were chosen for their complementary strengths in terms of

model bias and variance. Logistic Regression (LR) was used as the final estimator, with the

aim of making the most out of the diverse predictions of the base classifiers.

The model exhibited an impressive performance with a training accuracy of 0.9999 and

a testing accuracy of 0.9996. The classification report provided deeper insights, indicating an

almost perfect precision, recall, and F1-score for both the 'attack' and 'benign' classes, as shown

in Table 7.5. Both classes saw an accuracy rate of 1.00, indicating a high level of correct

predictions.

For the 'benign' class, out of 45,122 instances, 45,099 were correctly predicted, with

only 22 misclassifications. Similarly, for the 'attack' class, 45,106 out of 45,121 instances were

predicted accurately, with just 16 instances misclassified.

67

Table 7. 5: Binary Classification Stacking Results using 5-fold Cross Validation

Class Accuracy Precision Recall F1 score Support

Attack 100% 100% 100% 100% 45121

Benign 100% 100% 100% 100% 45122

Figure 7.9 shows the binary confusion matrix providing further detailed insights into

our model's performance. For the 'benign' class, out of 45,122 instances, 45,099 were correctly

predicted, with only 22 misclassifications. Similarly, for the 'attack' class, 45,106 out of 45,121

instances were predicted accurately, with just 16 instances misclassified.

Figure 7. 9: Binary Classification Stacking Confusion Matrix

A ROC AUC score of 1.0, demonstrating its outstanding capacity to differentiate between the

two classes, also served to support the ensemble's performance.

68

.

Figure 7. 10: Binary Stacking ROC Curve

It is clearly shown from these results that the stacking ensemble model, with its tuned

base classifiers and final estimator, displays excellent performance on the test data. It is

especially effective in identifying 'MQTT-attack' instances, which was our primary focus.

7.6 Stacking Ensemble Multiclass Classification

In this section, we utilize a stacking ensemble for multiclassification of the MQTT-IoT-

IDS2020 dataset, focusing on distinguishing benign data from four types of attacks:

'MQTT_BF,' 'Scan_A,' 'Scan_sU,' and 'Sparta.' The ensemble combines the predictions of three

base classifiers, Decision Tree, K-Nearest Neighbors, and XGBoost, using Logistic Regression

as a final meta-learner.

To rectify the pronounced class imbalance , we utilized SMOTE to achieve

equilibrium. The hyperparameters are refined by Randomized Search to lessen the risk of

overfitting and to offer an accurate estimation of the model's capacity for generalization.

 Stacking Multiclassification Classification Results and

Analysis

The multiclassification results for the stacking ensemble, which combines the

predictions of the three basic classifiers Decision Tree, K-Nearest Neighbors, and XGBoost,

are presented in this section. The last meta-learner used was Logistic Regression.

Our results, shown in Table 7.6, indicated that the stacking ensemble approach was effective

for this multiclassification problem. The cross-validated classification report highlights that the

model consistently maintains a high precision, recall, and F1-score of above 0.97 across all

69

categories: Benign, MQTT_BF, Scan_A, Scan_sU, and Sparta. These metrics suggest that the

model not only correctly predicts positive observations but also successfully captures most of

the relevant results. The overarching accuracy of approximately 97.44% underscores the

model's reliable performance. The presented confusion matrix in Figure 7.11 reinforces this,

showing that the majority of predictions fall on the diagonal, implying correct classifications.

Delving deeper into individual class accuracies reveals impressive scores, with Scan_A leading

at 98.29% and the other categories not far behind. The AUC values, as shown in Figure 7.12,

predominantly hovering around the 0.98 to 0.99 range, further solidify the model's efficiency.

These scores indicate the classifier's high true positive rate and its ability to minimize false

positives. Top of Form

Table 7. 6: Multi-Classification Stacking results using 5-fold Cross Validation

Class Accuracy Precision Recall F1 score Support

Benign 96.92% 97% 97% 97% 29200

MQTT_BF 97.93% 98% 98% 98% 29139

Scan_A 98.29% 98% 98% 98% 29250

Scan_sU 97.31% 97% 97% 97% 29264

Sparta 97.45% 97% 97% 97% 29072

Figure 7. 11: Multiclassification Stacking Confusion Matrix

70

Figure 7. 12: Multiclassification Stacking ROC Curves

The results clearly show and underscore the efficacy of the stacking ensemble approach

combined with SMOTE for multiclassification problems on imbalanced MQTT-IoT-IDS. They

demonstrate that such an approach can deliver robust performance across all classes and handle

the nuances and complexities of distinguishing between benign.

71

Chapter 8

In this final chapter, we consolidate the major findings of our research, emphasizing their

implications within the broader context of the security of the MQTT-IoT field. We posed at the

outset of this study, addressing each with the insights garnered through our research. In light

of these conclusions, we identify areas that warrant further exploration and suggest potential

directions for future work. Our objective is not only to draw a conclusive end to this particular

research journey but also to inspire further investigations and advancements in this significant

area.

8.1 Conclusion

In this thesis, we assessed how well ensemble machine-learning approaches performed

when used to detect cybersecurity attacks for MQTT-IOT networks. The primary focus was on

the three popular ensemble methods Bagging, Boosting, and Stacking. This study has

successfully demonstrated the effectiveness of these ensemble methods in addressing both

binary and multiclassification problems for the MQTT-IoT-IDS2020 dataset.

The chosen models addressed binary and multiclassification problems, demonstrating

significant distinguishing between 'benign' and 'attack' instances and among various types of

attacks such as MQTT_BF, Scan_A, Scan_sU, and Sparta.

Our binary classification models achieved impressive results, with AUC scores

reaching up to 1.0, indicating an excellent ability to distinguish between classes. Moreover, we

observed commendable accuracy, precision, recall, and F1 scores across both the 'benign' and

'attack' categories, suggesting a balanced and efficient performance.

The results of multiclassification were equally remarkable, with consistently high

metrics across all classes and AUC scores extending to a perfect 1.0, reflecting flawless

classification for some classes.

The techniques applied in the study were proficient in dealing with the class imbalance

inherent in the MQTT-IoT-IDS2020 dataset. The use of SMOTE for synthetic sample

generation and class weights adjustment was instrumental in achieving this balance and

ultimately enhancing the performance of our models. The study results have reinforced the

value of carefully tuning hyperparameters to optimize model performance. For this reason,

RandomizedSearchCV has shown to be a time-effective method in the context of a large

hyperparameter space. Moreover, the confusion matrices provided detailed insights into correct

and incorrect classifications, assisting us in understanding the areas where the models excelled

or needed improvement.

72

8.2 Future Work

While the results were largely positive, they also highlighted areas that could benefit

from further refinement. Future work could consider more sophisticated oversampling

techniques or alternative ways of handling class imbalance. Furthermore, given the model's

success in predicting certain attack types, deeper investigation into the feature importance of

these classifications might provide valuable insights.

The models could potentially benefit from further hyperparameter tuning. More

computationally intensive methods like GridSearchCV could be employed to find the optimal

parameters, provided sufficient computational resources are available. We could also consider

exploring other base models for the ensemble methods to see if they provide better results.

Further validation of the models on additional datasets would be beneficial to ensure

that the models generalize well across different scenarios and types of attacks. Lastly, the

exploration of real-time implementation of these models would be a significant advancement

in MQTT-IoT security.

This study underscores the promising capabilities of ensemble methods which can open

the door for more secure and dependable IoT settings with further development and research.

73

References
[1] K. Fizza et al., “QoE in IoT: a vision, survey and future directions,” Discover Internet of

Things, vol. 1, no. 1, Dec. 2021, doi: 10.1007/s43926-021-00006-7.

[2] N. K. Velayudhan, P. Pradeep, S. N. Rao, A. R. Devidas, and M. V. Ramesh, “IoT-Enabled

Water Distribution Systems—A Comparative Technological Review,” IEEE Access, vol. 10,

pp. 101042–101070, Sep. 2022, doi: 10.1109/access.2022.3208142.

[3] G. V. Arbex, K. G. Machado, M. Nogueira, D. M. Batista, and R. Hirata, “IoT DDoS Detection

Based on Stream Learning,” in Proceedings of the 2021 12th International Conference on

Network of the Future, NoF 2021, Institute of Electrical and Electronics Engineers Inc., 2021.

doi: 10.1109/NoF52522.2021.9609940.

[4] E. Al-Masri et al., “Investigating Messaging Protocols for the Internet of Things (IoT),” IEEE

Access, vol. 8, pp. 94880–94911, 2020, doi: 10.1109/ACCESS.2020.2993363.

[5] Sri Venkateshwara College of Engineering. Department of Electronics and Communication

Engineering, Institute of Electrical and Electronics Engineers. Bangalore Section, IEEE

Computer Society, and Institute of Electrical and Electronics Engineers, RTEICT-2017 : 2nd

IEEE International Conference on Recent Trends in Electronics, Information &

Communication Technology : proceedings : 19-20 May 2017.

[6] L. García, L. Parra, J. M. Jimenez, J. Lloret, and P. Lorenz, “IoT-based smart irrigation

systems: An overview on the recent trends on sensors and iot systems for irrigation in

precision agriculture,” Sensors (Switzerland), vol. 20, no. 4. MDPI AG, Feb. 02, 2020. doi:

10.3390/s20041042.

[7] R. A. Atmoko and D. Yang, “Online Monitoring & Controlling Industrial Arm Robot Using

MQTT Protocol,” in Proceedings of the 2018 International Conference on Robotics,

Biomimetics, and Intelligent Computational Systems, Robionetics 2018, Institute of Electrical

and Electronics Engineers Inc., Mar. 2019, pp. 12–16. doi:

10.1109/ROBIONETICS.2018.8674672.

[8] E. Di Paolo, E. Bassetti, and A. Spognardi, “Security assessment of common open source

MQTT brokers and clients Automatic Spreading Factor allocation in LoRaWAN multi-

gateway environment View project SeismoCloud View project Security assessment of common

open source MQTT brokers and clients,” 2021. [Online]. Available:

https://mosquitto.org/documentation/dynamic-security

[9] H. C. Hwang, J. S. Park, and J. G. Shon, “Design and Implementation of a Reliable Message

Transmission System Based on MQTT Protocol in IoT,” Wirel Pers Commun, vol. 91, no. 4,

pp. 1765–1777, Dec. 2016, doi: 10.1007/s11277-016-3398-2.

[10] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S-A Publish/Subscribe Protocol

For Wireless Sensor Networks.”

[11] D. Soni and A. Makwana, “A SURVEY ON MQTT: A PROTOCOL OF INTERNET OF

THINGS(IOT) MP-Index View project Analysis and Survey on String Matching Algorithms

for Ontology Matching View project A SURVEY ON MQTT: A PROTOCOL OF INTERNET

OF THINGS(IOT),” 2017. [Online]. Available:

https://www.researchgate.net/publication/316018571

[12] H. Karimipour, A. Dehghantanha, R. M. Parizi, K. K. R. Choo, and H. Leung, “A Deep and

Scalable Unsupervised Machine Learning System for Cyber-Attack Detection in Large-Scale

74

Smart Grids,” IEEE Access, vol. 7, pp. 80778–80788, 2019, doi:

10.1109/ACCESS.2019.2920326.

[13] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning”, doi:

10.1007/s12525-021-00475-2/Published.

[14] E. Horvitz and D. Mulligan, “Data, privacy, and the greater good,” Science (1979), vol. 349,

no. 6245, pp. 253–255, Jul. 2015, doi: 10.1126/science.aac4520.

[15] M. Mingjianntang, “Advanced Sciences and Technologies for Security Applications Deep

Learning Applications for Cyber Security.” [Online]. Available:

http://www.springer.com/series/5540

[16] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion detection

systems: A survey,” Applied Sciences (Switzerland), vol. 9, no. 20. MDPI AG, Oct. 01, 2019.

doi: 10.3390/app9204396.

[17] V. Kumar and O. Prakash Sangwan, “Signature Based Intrusion Detection System Using

SNORT,” 2012. [Online]. Available: https://www.researchgate.net/publication/274952404

[18] N. V Sharma, Kavita, G. Aggarwal, and S. Sharma, “Performance Study of Snort and Suricata

for Intrusion Detection System,” IOP Conf Ser Mater Sci Eng, vol. 1099, no. 1, p. 012009,

Mar. 2021, doi: 10.1088/1757-899x/1099/1/012009.

[19] H. Kwon, J. E. Fischer, M. Flintham, and J. Colley, “The Connected Shower,” Proc ACM

Interact Mob Wearable Ubiquitous Technol, vol. 2, no. 4, pp. 1–22, Dec. 2018, doi:

10.1145/3287054.

[20] SCAD Institute of Technology, IEEE Electron Devices Society, and Institute of Electrical and

Electronics Engineers, Proceedings of the International Conference on IoT in Social, Mobile,

Analytics and Cloud (I-SMAC 2017) : 10-11, February 2017.

[21] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Cybersecurity Threats, Countermeasures

and Mitigation Techniques on the IoT: Future Research Directions,” Electronics (Switzerland),

vol. 11, no. 20. MDPI, Oct. 01, 2022. doi: 10.3390/electronics11203330.

[22] S. V, V. A, and S. Pattar, “MQTT based Secure Transport Layer Communication for Mutual

Authentication in IoT Network,” Global Transitions Proceedings, vol. 3, no. 1, pp. 60–66, Jun.

2022, doi: 10.1016/j.gltp.2022.04.015.

[23] P. Pokharel, R. Pokhrel, and S. Sigdel, “Intrusion detection system based on hybrid classifier

and user profile enhancement techniques,” in 2020 International Workshop on Big Data and

Information Security, IWBIS 2020, Institute of Electrical and Electronics Engineers Inc., Oct.

2020, pp. 137–143. doi: 10.1109/IWBIS50925.2020.9255578.

[24] A. Khanna and S. Kaur, “Evolution of Internet of Things (IoT) and its significant impact in the

field of Precision Agriculture,” Computers and Electronics in Agriculture, vol. 157. Elsevier

B.V., pp. 218–231, Feb. 01, 2019. doi: 10.1016/j.compag.2018.12.039.

[25] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things is a revolutionary approach for

future technology enhancement: a review,” J Big Data, vol. 6, no. 1, Dec. 2019, doi:

10.1186/s40537-019-0268-2.

[26] Z. Yan, P. Zhang, and A. v. Vasilakos, “A survey on trust management for Internet of Things,”

Journal of Network and Computer Applications, vol. 42, pp. 120–134, 2014, doi:

10.1016/j.jnca.2014.01.014.

75

[27] S. Patel, C. Salazar, K. K. Patel, S. M. Patel, and P. G. Scholar, “Internet of Things-IOT:

Definition, Characteristics, Architecture, Enabling Technologies, Application & Future

Challenges,” International Journal of Engineering Science and Computing, 2016, doi:

10.4010/2016.1482.

[28] A. el Hakim, “Internet of Things (IoT) System Architecture and Technologies, White Paper.

Internet of Things (IoT) System Architecture and Technologies”, doi:

10.13140/RG.2.2.17046.19521.

[29] M. Cabric, “Confidentiality, Integrity, and Availability,” in Corporate Security Management,

Elsevier, 2015, pp. 185–200. doi: 10.1016/b978-0-12-802934-3.00011-1.

[30] K. Y. Chai and M. F. Zolkipli, “Review on Confidentiality, Integrity and Availability in

Information Security,” Journal of ICT In Education, vol. 8, no. 2, pp. 34–42, Jul. 2021, doi:

10.37134/jictie.vol8.2.4.2021.

[31] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of Things: Security

vulnerabilities and challenges,” in Proceedings - IEEE Symposium on Computers and

Communications, Institute of Electrical and Electronics Engineers Inc., Feb. 2016, pp. 180–

187. doi: 10.1109/ISCC.2015.7405513.

[32] Q. Jing, A. v. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the Internet of Things:

perspectives and challenges,” Wireless Networks, vol. 20, no. 8, pp. 2481–2501, Oct. 2014,

doi: 10.1007/s11276-014-0761-7.

[33] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of Things: Security

vulnerabilities and challenges,” in Proceedings - IEEE Symposium on Computers and

Communications, Institute of Electrical and Electronics Engineers Inc., Feb. 2016, pp. 180–

187. doi: 10.1109/ISCC.2015.7405513.

[34] P. Williams, I. K. Dutta, H. Daoud, and M. Bayoumi, “A survey on security in internet of

things with a focus on the impact of emerging technologies,” Internet of Things (Netherlands),

vol. 19. Elsevier B.V., Aug. 01, 2022. doi: 10.1016/j.iot.2022.100564.

[35] “11-networkattacks-notes”.

[36] M. Bettayeb, Q. Nasir, and M. A. Talib, “Firmware update attacks and security for IoT devices

survey,” in ACM International Conference Proceeding Series, Association for Computing

Machinery, Mar. 2019. doi: 10.1145/3333165.3333169.

[37] N. Gadkar and A. Deshmukh, “Classifications on IoT Attacks.” [Online]. Available:

https://iotanalytics.com/inter

[38] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Cybersecurity Threats, Countermeasures

and Mitigation Techniques on the IoT: Future Research Directions,” Electronics (Switzerland),

vol. 11, no. 20. MDPI, Oct. 01, 2022. doi: 10.3390/electronics11203330.

[39] Y. Cherdantseva et al., “A review of cyber security risk assessment methods for SCADA

systems,” Computers and Security, vol. 56. Elsevier Ltd, pp. 1–27, Feb. 01, 2016. doi:

10.1016/j.cose.2015.09.009.

[40] P. A. H. Williams and A. J. Woodward, “Cybersecurity vulnerabilities in medical devices: A

complex environment and multifaceted problem,” Medical Devices: Evidence and Research,

vol. 8. Dove Medical Press Ltd, pp. 305–316, Jul. 20, 2015. doi: 10.2147/MDER.S50048.

76

[41] K. V. Sheelavathy and V. Udaya Rani, “Detection IoT attacks using Lasso regression algorithm

with ensemble classifier,” International Journal of Pervasive Computing and

Communications, 2022, doi: 10.1108/IJPCC-09-2022-0316.

[42] B. R. Mudhivarthi, P. Thakur, and G. Singh, “Aspects of Cyber Security in Autonomous and

Connected Vehicles,” Applied Sciences, vol. 13, no. 5, p. 3014, Feb. 2023, doi:

10.3390/app13053014.

[43] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things:

A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications

Surveys and Tutorials, vol. 17, no. 4, pp. 2347–2376, Oct. 2015, doi:

10.1109/COMST.2015.2444095.

[44] M. Aqeel, F. Ali, M. W. Iqbal, T. A. Rana, M. Arif, and Md. R. Auwul, “A Review of Security

and Privacy Concerns in the Internet of Things (IoT),” J Sens, vol. 2022, pp. 1–20, Sep. 2022,

doi: 10.1155/2022/5724168.

[45] A. Attkan and V. Ranga, “Cyber-physical security for IoT networks: a comprehensive review

on traditional, blockchain and artificial intelligence based key-security,” Complex and

Intelligent Systems, vol. 8, no. 4, pp. 3559–3591, Aug. 2022, doi: 10.1007/s40747-022-00667-

z.

[46] N. Mhaskar, M. Alabbad, and R. Khedri, “A Formal Approach to Network Segmentation,”

Comput Secur, vol. 103, Apr. 2021, doi: 10.1016/j.cose.2020.102162.

[47] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey of intrusion

detection in Internet of Things,” Journal of Network and Computer Applications, vol. 84.

Academic Press, pp. 25–37, Apr. 15, 2017. doi: 10.1016/j.jnca.2017.02.009.

[48] S. Godala and R. P. V. Vaddella, “A study on intrusion detection system in wireless sensor

networks,” International Journal of Communication Networks and Information Security, vol.

12, no. 1, pp. 127–141, 2020, doi: 10.17762/ijcnis.v12i1.4429.

[49] H. Mliki, A. Kaceam, and L. Chaari, “A Comprehensive Survey on Intrusion Detection based

Machine Learning for IoT Networks,” ICST Transactions on Security and Safety, vol. 8, no.

29, p. 171246, Nov. 2021, doi: 10.4108/eai.6-10-2021.171246.

[50] A. Imanbayev et al., “Research of Machine Learning Algorithms for the Development of

Intrusion Detection Systems in 5G Mobile Networks and Beyond,” Sensors, vol. 22, no. 24,

Dec. 2022, doi: 10.3390/s22249957.

[51] “mqtt-v3.1.1-errata01-os-complete Specification URIs,” 2015. [Online]. Available:

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.doc

[52] V. Seoane, C. Garcia-Rubio, F. Almenares, and C. Campo, “Performance evaluation of CoAP

and MQTT with security support for IoT environments,” Computer Networks, vol. 197, Oct.

2021, doi: 10.1016/j.comnet.2021.108338.

[53] “mqtt-v3.1.1-os Specification URIs,” 2014. [Online]. Available: http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc

[54] E. Atilgan, I. Ozcelik, and E. N. Yolacan, “MQTT Security at a Glance,” in 14th International

Conference on Information Security and Cryptology, ISCTURKEY 2021 - Proceedings,

Institute of Electrical and Electronics Engineers Inc., 2021, pp. 138–142. doi:

10.1109/ISCTURKEY53027.2021.9654337.

77

[55] M. M. Raikar and S. M. Meena, “SSH brute force attack mitigation in Internet of Things (IoT)

network : An edge device security measure,” in ICSCCC 2021 - International Conference on

Secure Cyber Computing and Communications, Institute of Electrical and Electronics

Engineers Inc., May 2021, pp. 72–77. doi: 10.1109/ICSCCC51823.2021.9478131.

[56] S. Abaimov and M. Martellini, “Advanced Sciences and Technologies for Security

Applications Machine Learning for Cyber Agents Attack and Defence.” [Online]. Available:

https://link.springer.com/bookseries/5540

[57] S. V. N. Santhosh Kumar, M. Selvi, and A. Kannan, “A Comprehensive Survey on Machine

Learning-Based Intrusion Detection Systems for Secure Communication in Internet of

Things,” Comput Intell Neurosci, vol. 2023, pp. 1–24, Jan. 2023, doi: 10.1155/2023/8981988.

[58] M. W. B. Azlinah, M. Bee, and W. Yap, “Supervised and Unsupervised Learning for Data

Science Unsupervised and Semi-Supervised Learning Series Editor: M. Emre Celebi.”

[Online]. Available: http://www.springer.com/series/15892

[59] D. Mehta, “State-of-the-Art Reinforcement Learning Algorithms.” [Online]. Available:

www.ijert.org

[60] E. Horvitz and D. Mulligan, “Data, privacy, and the greater good,” Science (1979), vol. 349,

no. 6245, pp. 253–255, Jul. 2015, doi: 10.1126/science.aac4520.

[61] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553. Nature

Publishing Group, pp. 436–444, May 27, 2015. doi: 10.1038/nature14539.

[62] R. P. Ram Kumar, S. Polepaka, S. F. Lazarus, and D. V. Krishna, “An insight on machine

learning algorithms and its applications,” International Journal of Innovative Technology and

Exploring Engineering, vol. 8, no. 11 Special issue 2, pp. 432–436, Sep. 2019, doi:

10.35940/ijitee.K1069.09811S219.

[63] “Machine Learning Algorithms-A Review,” 2019, doi: 10.21275/ART20203995.

[64] H. A. Park, “An introduction to logistic regression: From basic concepts to interpretation with

particular attention to nursing domain,” J Korean Acad Nurs, vol. 43, no. 2, pp. 154–164,

2013, doi: 10.4040/jkan.2013.43.2.154.

[65] H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification

Algorithms,” International Journal of Computer Sciences and Engineering, vol. 6, no. 10, pp.

74–78, Oct. 2018, doi: 10.26438/ijcse/v6i10.7478.

[66] K. Taunk, S. De, S. Verma, and A. Swetapadma, “A brief review of nearest neighbor algorithm

for learning and classification,” in 2019 International Conference on Intelligent Computing

and Control Systems, ICCS 2019, Institute of Electrical and Electronics Engineers Inc., May

2019, pp. 1255–1260. doi: 10.1109/ICCS45141.2019.9065747.

[67] C. Tu, H. Liu, and B. Xu, “AdaBoost typical Algorithm and its application research,” in

MATEC Web of Conferences, EDP Sciences, Dec. 2017. doi:

10.1051/matecconf/201713900222.

[68] C. Bentéjac and A. Csörg˝ O B Gonzalo Martínez-Muñoz, “A Comparative Analysis of

XGBoost.” [Online]. Available: https://www.researchgate.net/publication/337048557

[69] Y. Zhang, J. Liu, and W. Shen, “A Review of Ensemble Learning Algorithms Used in Remote

Sensing Applications,” Applied Sciences (Switzerland), vol. 12, no. 17. MDPI, Sep. 01, 2022.

doi: 10.3390/app12178654.

78

[70] “Ensemble Methods Foundations and Algorithms.”

[71] D. R. C. and J. R. S. Adele Cutler, Ensemble Machine Learning. Springer US, 2012. doi:

10.1007/978-1-4419-9326-7.

[72] S. A. N. Alexandropoulos, C. K. Aridas, S. B. Kotsiantis, and M. N. Vrahatis, “Stacking Strong

Ensembles of Classifiers,” in IFIP Advances in Information and Communication Technology,

Springer New York LLC, 2019, pp. 545–556. doi: 10.1007/978-3-030-19823-7_46.

[73] R. Sibindi, R. W. Mwangi, and A. G. Waititu, “A boosting ensemble learning based hybrid

light gradient boosting machine and extreme gradient boosting model for predicting house

prices,” Engineering Reports, Apr. 2022, doi: 10.1002/eng2.12599.

[74] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks,

vol. 54, no. 15, pp. 2787–2805, Oct. 2010, doi: 10.1016/j.comnet.2010.05.010.

[75] D. Miorandi, S. Sicari, F. de Pellegrini, and I. Chlamtac, “Internet of things: Vision,

applications and research challenges,” Ad Hoc Networks, vol. 10, no. 7. Elsevier B.V., pp.

1497–1516, 2012. doi: 10.1016/j.adhoc.2012.02.016.

[76] M. Roopak, G. Y. Tian, and J. Chambers, “An Intrusion Detection System Against DDoS

Attacks in IoT Networks,” in 2020 10th Annual Computing and Communication Workshop and

Conference, CCWC 2020, Institute of Electrical and Electronics Engineers Inc., Jan. 2020, pp.

562–567. doi: 10.1109/CCWC47524.2020.9031206.

[77] D. Tsany Rahmantyo, B. Erfianto, and G. Bayu Satrya, “Deep Residual CNN for Preventing

Botnet Attacks on the Internet of Things,” in Proceedings - 2021 4th International Conference

on Computer and Informatics Engineering: IT-Based Digital Industrial Innovation for the

Welfare of Society, IC2IE 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp.

462–466. doi: 10.1109/IC2IE53219.2021.9649314.

[78] E. Ciklabakkal, A. Donmez, M. Erdemir, E. Suren, M. K. Yilmaz, and P. Angin, “ARTEMIS:

An intrusion detection system for mqtt attacks in internet of things,” in Proceedings of the

IEEE Symposium on Reliable Distributed Systems, IEEE Computer Society, Oct. 2019, pp.

369–371. doi: 10.1109/SRDS47363.2019.00053.

[79] A. Alhowaide, I. Alsmadi, and J. Tang, “Ensemble Detection Model for IoT IDS,” Internet of

Things (Netherlands), vol. 16, Dec. 2021, doi: 10.1016/j.iot.2021.100435.

[80] S. Bharati and P. Podder, “Machine and Deep Learning for IoT Security and Privacy:

Applications, Challenges, and Future Directions,” Security and Communication Networks, vol.

2022. Hindawi Limited, 2022. doi: 10.1155/2022/8951961.

[81] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, “Machine

Learning Based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-IDS2020

Dataset),” in Lecture Notes in Networks and Systems, Springer Science and Business Media

Deutschland GmbH, 2021, pp. 73–84. doi: 10.1007/978-3-030-64758-2_6.

[82] M. Ahmad, Q. Riaz, M. Zeeshan, H. Tahir, S. A. Haider, and M. S. Khan, “Intrusion detection

in internet of things using supervised machine learning based on application and transport

layer features using UNSW-NB15 data-set,” EURASIP J Wirel Commun Netw, vol. 2021, no.

1, Dec. 2021, doi: 10.1186/s13638-021-01893-8.

[83] F. Mosaiyebzadeh, L. G. Araujo Rodriguez, D. Macedo Batista, and R. Hirata, “A Network

Intrusion Detection System using Deep Learning against MQTT Attacks in IoT,” in

Proceedings - 2021 IEEE Latin-American Conference on Communications, LATINCOM 2021,

79

Institute of Electrical and Electronics Engineers Inc., 2021. doi:

10.1109/LATINCOM53176.2021.9647850.

[84] L. Dhanabal and S. P. Shantharajah, “A Study on NSL-KDD Dataset for Intrusion Detection

System Based on Classification Algorithms,” International Journal of Advanced Research in

Computer and Communication Engineering, vol. 4, 2015, doi: 10.17148/IJARCCE.2015.4696.

[85] A. B. M. Sultan, S. Mehmood, and H. Zahid, “Man in the Middle Attack Detection for MQTT

based IoT devices using different Machine Learning Algorithms,” in 2nd IEEE International

Conference on Artificial Intelligence, ICAI 2022, Institute of Electrical and Electronics

Engineers Inc., 2022, pp. 118–121. doi: 10.1109/ICAI55435.2022.9773590.

[86] A. Kumari and A. K. Mehta, “A Hybrid Intrusion Detection System Based on Decision Tree

and Support Vector Machine,” in 2020 IEEE 5th International Conference on Computing

Communication and Automation, ICCCA 2020, Institute of Electrical and Electronics

Engineers Inc., Oct. 2020, pp. 396–400. doi: 10.1109/ICCCA49541.2020.9250753.

[87] I. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning methods for cyber security intrusion

detection: Datasets and comparative study,” Computer Networks, vol. 188, Apr. 2021, doi:

10.1016/j.comnet.2021.107840.

[88] S. U. Jan, S. Ahmed, V. Shakhov, and I. Koo, “Toward a Lightweight Intrusion Detection

System for the Internet of Things,” IEEE Access, vol. 7, pp. 42450–42471, 2019, doi:

10.1109/ACCESS.2019.2907965.

[89] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, “Machine learning-based IoT-

botnet attack detection with sequential architecture,” Sensors (Switzerland), vol. 20, no. 16, pp.

1–15, Aug. 2020, doi: 10.3390/s20164372.

[90] IEEE Communications Society. Indonesia Chapter., Universitas Telkom., and Institute of

Electrical and Electronics Engineers, Proceedings, the 2020 IEEE International Conference on

Industry 4.0, Artificial Intelligence, and Communications Technology : July 7-8, 2020, Bali,

Indonesia.

[91] S. Krishnaveni, P. Vigneshwar, S. Kishore, B. Jothi, and S. Sivamohan, “Anomaly-Based

Intrusion Detection System Using Support Vector Machine,” in Advances in Intelligent

Systems and Computing, Springer, 2020, pp. 723–731. doi: 10.1007/978-981-15-0199-9_62.

[92] T. V, Vellore Institute of Technology, Institute of Electrical and Electronics Engineers. Madras

Section, IEEE Communications Society., and Institute of Electrical and Electronics Engineers,

Conference proceedings, International Conference on Vision Towards Emerging Trends In

Communication and Networking (ViTECoN 2019) : 30-31, March 2019, Vellore, Tamilnadu,

India.

[93] A. V. Kachavimath, S. V. Nazare, and S. S. Akki, “Distributed Denial of Service Attack

Detection using Naïve Bayes and K-Nearest Neighbor for Network Forensics,” in 2nd

International Conference on Innovative Mechanisms for Industry Applications, ICIMIA 2020 -

Conference Proceedings, Institute of Electrical and Electronics Engineers Inc., Mar. 2020, pp.

711–717. doi: 10.1109/ICIMIA48430.2020.9074929.

[94] A. Verma and V. Ranga, “Machine Learning Based Intrusion Detection Systems for IoT

Applications,” Wirel Pers Commun, vol. 111, no. 4, pp. 2287–2310, Apr. 2020, doi:

10.1007/s11277-019-06986-8.

80

[95] H. Siddharthan, T. Deepa, and P. Chandhar, “SENMQTT-SET: An Intelligent Intrusion

Detection in IoT-MQTT Networks Using Ensemble Multi Cascade Features,” IEEE Access,

vol. 10, pp. 33095–33110, 2022, doi: 10.1109/ACCESS.2022.3161566.

[96] M. Latah and L. Toker, “An Efficient Flow-based Multi-level Hybrid Intrusion Detection

System for Software-Defined Networks.”

[97] A. A. Abdulrahman and M. K. Ibrahem, “EVALUATION OF DDOS ATTACKS DETECTION

IN A CICIDS2017 DATASET BASED ON CLASSIFICATION ALGORITHMS,” 2018.

[Online]. Available: https://ijict.edu.iq

[98] Y. Wang, Y. Shen, and G. Zhang, “Research on Intrusion Detection Model using ensemble

learning methods,” in Proceedings of the IEEE International Conference on Software

Engineering and Service Sciences, ICSESS, IEEE Computer Society, Jul. 2016, pp. 422–425.

doi: 10.1109/ICSESS.2016.7883100.

[99] O. Ruhrpott Meetup, “Analysing Networks with NMAP,” 2019.

[100] M. M. Mariočagalj, “The Secure Shell (SSH) Protocol.” [Online]. Available:

www.openssh.com

[101] M. M. Raikar and S. M. Meena, “SSH brute force attack mitigation in Internet of Things (IoT)

network : An edge device security measure,” in ICSCCC 2021 - International Conference on

Secure Cyber Computing and Communications, Institute of Electrical and Electronics

Engineers Inc., May 2021, pp. 72–77. doi: 10.1109/ICSCCC51823.2021.9478131.

[102] M. M. Raikar and S. M. Meena, “SSH brute force attack mitigation in Internet of Things (IoT)

network : An edge device security measure,” in ICSCCC 2021 - International Conference on

Secure Cyber Computing and Communications, Institute of Electrical and Electronics

Engineers Inc., May 2021, pp. 72–77. doi: 10.1109/ICSCCC51823.2021.9478131.

[103] Y. Ahmad, “Preventing Vulnerabilities and Mitigating Attacks on the MQTT Protocol.”

[104] Y. Liang and N. Vankayalapati, “Machine Learning and Deep Learning Methods for Better

Anomaly Detection in IoT-23 Dataset Cybersecurity.”

[105] “Global Information Assurance Certification Paper A Beginners Guide to tcpdump,” 2004.

[Online]. Available: http://www.giac.org/registration/gsec

[106] D. Abeles and M. Zioni, “MQTT-PWN Documentation Release 1.0,” 2020.

[107] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, “Machine

Learning Based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-IDS2020

Dataset),” Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.15340

[108] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, “Machine

Learning Based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-IDS2020

Dataset),” Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.15340

[109] C. V. Gonzalez Zelaya, “Towards explaining the effects of data preprocessing on machine

learning,” in Proceedings - International Conference on Data Engineering, IEEE Computer

Society, Apr. 2019, pp. 2086–2090. doi: 10.1109/ICDE.2019.00245.

[110] N. V Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority

Over-sampling Technique,” 2002.

81

[111] H. M and S. M.N, “A Review on Evaluation Metrics for Data Classification Evaluations,”

International Journal of Data Mining & Knowledge Management Process, vol. 5, no. 2, pp.

01–11, Mar. 2015, doi: 10.5121/ijdkp.2015.5201.

[112] Z. Karimi, “Confusion Matrix Some of the authors of this publication are also working on

these related projects: Data Cleaning Process View project.” [Online]. Available:

https://www.researchgate.net/publication/355096788

[113] S. Yang and G. Berdine, “The receiver operating characteristic (ROC) curve,” The Southwest

Respiratory and Critical Care Chronicles, vol. 5, no. 19, p. 34, May 2017, doi:

10.12746/swrccc.v5i19.391.

[114] S. Wu, P. A. Flach, S. Wu SHAOMINWU, and P. Flach PETERFLACH, “A scored AUC

Metric for Classifier Evaluation and Selection Managing risk and uncertainty in warranty

servicing policy View project Reliability of Building Services Systems View project A scored

AUC Metric for Classifier Evaluation and Selection,” 2005. [Online]. Available:

https://www.researchgate.net/publication/245053518

	Cybersecurity Attacks Detection For MQTT-IoT Networks Using Machine Learning Ensemble Techniques
	Recommended Citation

	tmp.1693488737.pdf.WNUd5

