Rochester Institute of Technology

RIT Digital Institutional Repository

Theses

8-2023

Programmable Processing-in-Memory Core and Cluster Design
and Verification

Namita Bhosle
nb1453@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation
Bhosle, Namita, "Programmable Processing-in-Memory Core and Cluster Design and Verification" (2023).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11563?utm_source=repository.rit.edu%2Ftheses%2F11563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

PROGRAMMABLE PROCESSING-IN-MEMORY CORE AND
CLUSTER DESIGN AND VERIFICATION

INCLUDING AUTOMATED TOOLSETS FOR GENERATION OF

USER-DEFINED PPIM CORE AND CLUSTER DESIGN DATABASES

NAMITA BHOSLE

PROGRAMMABLE PROCESSING-IN-MEMORY CORE AND
CLUSTER DESIGN AND VERIFICATION

INCLUDING AUTOMATED TOOLSETS FOR GENERATION OF

USER-DEFINED PPIM CORE AND CLUSTER DESIGN DATABASES

by

NAMITA BHOSLE

GRADUATE THESIS

Submitted in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE
in Electrical Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING
KATE GLEASON COLLEGE OF ENGINEERING
ROCHESTER INSTITUTE OF TECHNOLOGY
ROCHESTER, NEW YORK
AUGUST, 2023

PROGRAMMABLE PROCESSING-IN-MEMORY CORE AND

CLUSTER DESIGN AND VERIFICATION

INCLUDING AUTOMATED TOOLSETS FOR GENERATION OF

USER-DEFINED PPIM CORE AND CLUSTER DESIGN DATABASES

NAMITA BHOSLE

Committee Approval:

We, the undersigned committee members, certify that Namita Bhosle has completed the

requirements for the Master of Science degree in Electrical Engineering.

Mr. Mark A. Indovina, Graduate Research Advisor Date:

Senior Lecturer, Department of Electrical and Microelectronic Engineering

14 August 2023

Dr. Amlan Ganguly, Department Head Date:

Professor, Department of Computer Engineering

14 August 2023

Dr. Dorin Patru Date: 14 August 2023
Associate Professor, Department of Electrical and Microelectronic Engineering
Dr. Daniel B. Phillips Date: 14 August 2023
Associate Professor, Department of Electrical and Microelectronic Engineering
Dr. Ferat Sahin, Department Head Date: 14 August 2023

Professor, Department of Electrical and Microelectronic Engineering

Dedication

To my loving family, dear friends and mentors.
Your encouragement, kindness, and guidance have been the driving forces throughout my
journey. This thesis is a testament to your unwavering belief in my potential. Thank you for

everything.

Namita Bhosle

Declaration

I hereby declare that except where specific reference is made to the work of others, that all content
of this Thesis are original and have not been submitted in whole or in part for consideration for
any other degree or qualification in this, or any other University. This Graduate Project is the
result of my own work and includes nothing which is the outcome of work done in collaboration,

except where specifically indicated in the text.

Namita Bhosle

August, 2023

Acknowledgements

I wish to thank several individuals who have contributed immensely throughout my term at RIT.

Firstly, I wish to convey my sincere and heartfelt gratitude to my advisor Mr. Mark Indovina.
Thank you for believing, supporting and guiding me through my graduate studies. I am glad to
have worked with you. Your emphasis on developing skills such as good-quality presentation
and communication, persistence and perfection have left an indelible mark. These skills would
definitely benefit me as I transition through various roles throughout my career.

I wish to thank Dr. Ganguly for his timely feedback and encouragement throughout the course
of my thesis. I am grateful for his support and guidance. I express my gratitude to Dr. Patru and
Dr. Philip for their suggestions. A special thanks goes to Purab Sutradhar for sharing valuable
insights.

I would take a moment to thank my friends that I met here at RIT- Prajakta, Rutvi, and Tushar
for the fond memories, and being there for me. I would also like to extend my thanks to my fellow
Teaching Assistants, ICE lab mates, and my DS1 students for fun times at RIT that I will cherish
forever. Finally, I deeply appreciate the unwavering support of my family, my brother Yuvraj and
my closest friend Nikhil, who have consistently stood by my side.

My sincerest gratitude to everyone for always looking out for me and wishing the best for me!

Namita Bhosle

Abstract

The surge in demand for semiconductors and Al-driven applications has led to an amplified
requirement for swift and efficient semiconductor design production cycles. These shortened
cycles, however, pose a challenge as they reduce the time available for complex chip design and
verification, consequently increasing the likelihood of producing error-prone chips.

Current research concentrates on utilizing a Lookup Table (LUT) based pPIM (Programmable
Processor in Memory) technology to deliver efficient, low-latency, and low-power computation
specifically tailored to 4-bit data requirements, ideal for repetitive and data-expensive Al algo-
rithms. This thesis presents the user-defined Generation 2 pPIM, a redesigned and enhanced
version of the existing static Generation 1 architecture, offering a scalable, configurable, and fully
automated framework to expedite the design, verification, and implementation process.

The user-defined Gen 2 pPIM Cluster, consisting of nine interconnected user-defined Gen 2
pPIM Cores and an included Accumulator, extends the capability to execute complex operations
like Multiply-and-Accumulate (MAC). Both the Gen 2 pPIM Core and Gen 2 pPIM Cluster
undergo extensive verification and testing. A Python-based suite has been developed to enable
user-specific Gen 2 pPIM Core and Gen 2 pPIM Cluster design and verification efficiently,
providing an end-to-end automated toolkit catering to the user’s specific needs.

All variants of core and cluster design are benchmarked with 28nm, 65nm and 180nm

technology libraries and are compared for area, power and timing.

Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Terminology
1.2 ResearchGoals e
1.3 Thesis Contributions o o o

1.4 Organization. i vt e e

2 Literature Review

2.1 Automatic Code Generation
2.2 Processing-in-mMemoOryttt

221 MemoryWall oL

2.2.2 Evolution and Advancements in PIM Architectures

2.3 Verification Methodologies

2.3.1 SystemVerilog for Verification

2.3.2 Universal Verification Methodology (UVM)

xiii

Contents vi
3 pPIM Architecture 20
3.1 Generation2pPIM Core 22

3.2 Generation2pPIM Cluster 26
321 Router. 30

3.2.1.1 Input Multiplexer 32

3.2.1.2 Output Multiplexer, 33

3222 Accumulator Lo 34

323 OutputRegister 35

4 pPIM Core Verification 37
4.1 Testplan L. 37
4.2 UVM Testbench Architecture L. 39
4.2.1 Core Testbench Components 42

42.1.1 PIMInterfaces 43

4.2.1.2 PIM Sequence-item 44

4213 PIMSequence 44

42.1.4 PIM Sequencer 45

4215 PIMDriver. 45

42.1.6 PIMMonitor 46

4217 PIMAgent 46

42.1.8 PIMScoreboard oL 46

4.2.19 PIM Functional Coverage 47

4.2.1.10 PIM Environment 48

42111 PIMTest 48

4.2.1.12 PIMTestbenchTop 49

Contents vii
5 pPIM Cluster Verification 50
5.1 Testplan e 50

5.2 UVM Testbench Architecture 51
5.2.1 Cluster Testbench Components 53

5.2.1.1 PIM Cluster Interfaces 53

5.2.1.2 PIMCluster Sequence 55

52.13 PIMCluster Driver 55

5.2.14 PIM Cluster Monitor 56

5.2.1.5 PIM Cluster Scoreboard 56

5.2.1.6 PIM Cluster Environment 57

5217 PIMClusterTop 57

5.3 Multiply-and-Accumulate MAC) 58

5.4 Efficient MAC Operation with pPIM Cluster 59
5.4.1 MAC using Partial Products and Accumulation 59

5.4.2 Mapping MAC Algorithm to pPIM Cluster 60

543 MAC Example with Calculations 63

6 Tools Development 71
6.1 Methodology 71
6.1.1 CoreGeneration 74

6.1.2 Cluster Generation 75

6.2 Python for Code Generation 76

6.3 UserGuide e 77
6.3.1 pPIMCore 77

6.32 pPIMCluster e 78

Contents viii
7 Results 80
7.1 Gen2pPIMCore e 80
7.1.1 VerificationResultso L 81

7.1.1.1 SimulationResults 0oL 82

7.1.1.2 Functional Coverage 84

7.1.1.3 Code Coverage 86

7.1.2 SynthesisResults L 88

7.1.2.1 28nm SynthesisResults 89

7.1.2.2 65nm Synthesis Results 90

7.2 Gen2pPIMCluster e 93
7.2.1 VerificationResults o oo 93

7.2.1.1 SimulationResults 0oL 93

7.2.1.2 Functional Coverage 94

7.22 SynthesisResults oo oo 96

7.2.2.1 28nm SynthesisResults 96

8 Conclusion 99
8.1 Future Work 101
References 103
I Schematics and Layouts 107
I.1 Gen?2pPIM Core (W=4) Schematic 107

.2 Gen2pPIM Core (W=4)Layout 108

.3 Gen 2 pPIM Cluster (W=8) Schematic 109

.4 Gen2pPIM Cluster (W=8) Layout 110

Contents ix

IT Source Code Request 112

List of Figures

1.1

2.1

2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

Semiconductor Chip Development Process 4

Temporal Evolution of Performance Gap: Processor-Memory Request Time (for

a single core processor) vs. DRAM Access Latency [1][2] 13
Structure of a Standard Cache-organized von-Neumann Machine 14
Structure of a non von-Neumann Machine 14
Top-level View of the pPIM Architecture [3] 21
Conceptual Representation of LUT Mapping 23
Generation 2 pPIM Core Architecture 25
Top-level view of Gen 2 pPIM Cluster 28
pPIM Gen 2 Cluster Exploded View Showing Gen 2 Router Architecture 31
Input Multiplexer L 33
Output Multiplexer e 34
Accumulatoro L 35
Output Register e 36
Hierarchical UVM Testbench Architecture 40

pPIM Core Testbench Architecture 42

List of Figures xi
4.3 Interfaces connecting DUT (Core) to Testbench Environment 43
4.4 TLM Analysis Ports and Imports Interconnecting PIM Testbench Components . . 49
5.1 pPIM Cluster Testbench Architecture 52
5.2 Interfaces connecting DUT (Cluster) to Testbench Environment 54
5.3 TLM Analysis Ports and Imports Interconnecting Cluster Testbench Components 58
5.4 Partial Products and Step-wise Accumulation 60
5.5 MAC Operation Data-flow between Nine Cores inside a Cluster 61
5.6 Simulation Results Verifying Calculations in Table (Part 1) 5.1 69
5.7 Simulation Results Verifying Calculations in Table (Part2) 5.1 70
6.1 Tools Development Methodology 73
6.2 Use Case Diagram for pPIM Core Tools 75
6.3 Use Case Diagram for pPIM Cluster Tools 76
7.1 Operand Word Width (W) =2 82
7.2 Operand Word Width (W)=3 82
7.3 Operand Word Width (W) =4 82
7.4 Full Simulation View: Operand Word Width (W)=4 83
7.5 Operand Word Width (W) =5 83
7.6 Operand Word Width (W) =6, 83
7.7 Operand Word Width (W) =7 83
7.8 Operand Word Width (W) =8, 84
7.9 Verification Metrics for PIM core with W=4 84
7.10 Covergroups Analysis for PIM core withW=4 85
7.11 Assertion Properties Analysis for PIM core with W=4 85
7.12 Plot of Input Data Word Width (W) vs Total Area for 28nm pPIM Core 90

List of Figures xii

7.13
7.14

7.15
7.16
7.17
7.18

I.1
1.2

I3
1.4

L5

Plot of Input Data Word Width (W) vs Total Cell Area for 65nm pPIM Core . . . 91

Comparison of Input Data Word Width (W) vs Power for 28nm and 65nm pPIM

Core . . . e 92
MAC Operation: 8-bit Cluster Operands with 4-bit Core Operands 94
Covergroups Analysis for PIM cluster with W=8 95
Plot of Cluster Operand Width (W) vs Total Area for 28nm pPIM Cluster 97
Plot of Cluster Operand Width (W) vs Power for 28nm pPIM Cluster 98
Schematic for pPIM Core with Operand Width 4-bits 107

Synopsys IC Compiler Physical Synthesis Layout for pPIM Core in 28nm with
Operand Width 4-bits L 108
Schematic for pPIM Cluster with Operand Width 8-bits 109
Synopsys IC Compiler Physical Synthesis Layout for pPIM Cluster in 28nm with
Operand Width 8-bits 110
Top Left Corner View of Synopsys IC Compiler Physical Synthesis Layout for
pPIM Cluster in 28nm with Operand Width 8-bits 111

List of Tables

3.1
3.2

5.1
5.1
5.1
5.1
5.1
5.1

7.1
7.2
7.3
7.4
1.5
7.6
7.7

pPIM Core Components Dimensions at Different Operand Widths 26

Generation 2 pPIM Cluster Components Dimensions at Different Core Operand

Widths o 30
pPIM Cluster MAC Example with step-by-step Calculations 63
pPIM Cluster MAC Example with step-by-step Calculations 64
pPIM Cluster MAC Example with step-by-step Calculations 65
pPIM Cluster MAC Example with step-by-step Calculations 66
pPIM Cluster MAC Example with step-by-step Calculations 67
pPIM Cluster MAC Example with step-by-step Calculations 68
Number of Passes in Simulation for Various pPIM Core Configurations 81
Functional Coverage for Various Gen 2 PIM Core Configurations 86
Code Coverage for Various Gen 2 PIM Core Configurations 87
28nm Synthesis Results for Various PIM Core Configurations 89
65nm Synthesis Results for Various PIM Core Configurations 91
Functional Coverage for Various PIM Core Configurations 95

28nm Synthesis Results for Various PIM Cluster Configurations 96

Glossary

Acronyms

Al Artificial Intelligence

ASIC Application Specific Integrated Circuit
CLI Command Line Interface

CNN Convolutional Neural Networks
CRAM Computational Random Access Memory
DNN Deep Neural Networks

DPI Direct Programming Interface

DRAM Dynamic Random Access Memory
DUT Design Under Test

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

HDL Hardware Description Language

Glossary

XV

IC

IRAM

LLM

LUT

MAC

ML

MUX

NLP

PIM

pPIM

RTL

SIMD

SVA

TLM

UVM

Integrated Circuits

Intelligent Random Access Memory

Large Language Model

Look-up Table

Multiply-and-Accumulate

Machine Learning

Multiplexer

Natural Language Processing

Processor in Memory

Programmable Processor in Memory

Register Transfer Level

Single Instruction Multiple Data

SystemVerilog Assertions

Transaction Level Modeling

Universal Verification Methodology

Chapter 1

Introduction

In the era of the "Silicon Age", semiconductor chips have become indispensable in our daily lives
with every increasing demands in computing performance and capacity. However, the outbreak
of the COVID-19 pandemic brought a paradigm shift, affecting nearly every aspect of the world.
The semiconductor industry was not spared, as the repercussions were evident by the global chip
shortage in the latter half of 2020. Although COVID-19 exacerbated the chip shortage, it stemmed
from factors including supply-demand imbalance as the demand for electronic devices escalated,
the growing intricacies of chip design, and disruption in semiconductor production and distribution.
Despite this, due to the surge in remote work and online education, the demand for electronic
devices remained strong, even increased. This amplified the scarcity of consumer electronics.
The ripple effect of the chip shortage reverberated globally, impacting various industries. This
prompted countries to bolster investments to boost chip manufacturing capacity. For instance,
the United States passed the CHIPS Act ! as a proactive measure. It is crucial to acknowledge

that increasing investments alone cannot fully resolve the issue. The entire chip production

I'The CHIPS and Science Act, signed into law on August 9, 2022, by President Joe Biden, is a U.S. federal statute
enacted by the 117th United States Congress. This legislation allocates approximately $280 billion in funding to
enhance domestic semiconductor research and manufacturing capabilities within the United States.

process, from design to manufacturing and testing, takes months or even years, depending on the
complexity of the integrated circuits (ICs).

Design and verification represent pivotal stages in the chip development cycle depicted in
Figure 1.1, presenting their own unique challenges. The design methodology serves as the founda-
tion for producing a reliable semiconductors, while effective verification is critical in identifying
and rectifying design flaws before production. The shrinking production life cycle leaves less
time for verification, increasing the risk of error-prone designs. Modern verification techniques,
such as the Universal Verification Methodology (UVM), are designed to handle the complexities
of verification effectively. These methods facilitate the use of layered testbench architectures,
promote re-usability and maintainability, and support parallel development processes.

The rapid advancements in artificial intelligence (Al) in robotics, autonomous vehicles, and
smart home electronics have sparked an escalating demand for state-of-the-art processors that
offer exceptional computational power. These processors, commonly referred to as Al chips, play
a critical role in accelerating the repetitive, predictable, and independent calculations required by
Al algorithms. A promising approach is a Lookup Table (LUT) based Programmable Processor
in Memory (pPIM). By employing LUTs as processing units, this architecture enables rapid
computations essential for Convolutional Neural Networks (CNN) or Deep Neural Networks
(DNN), all while minimizing latency and power consumption. The distinguishing feature of the
LUT-based pPIM is its inherent flexibility to adapt its functionality to any arbitrary operation.

This thesis introduces the design and implementation of enhanced pPIM architectures. A
primary aim of this thesis is to develop an advanced toolset that automates the generation
of user-defined, synthesizable, pPIM cores and pPIM clusters at the Register Transfer Level
(RTL), accompanied by a comprehensive UVM testbench with functional and assertion coverage.
Moreover, the tools are engineered to facilitate seamless scalability of the pPIM core and its

corresponding multilayered testbench, accommodating operand sizes ranging from 2 bits to 8 bits,

thereby allowing for flexible and customized configurations tailored to meet specific application
requirements. The integration of automation, optimization techniques, and advanced verification
methodologies can significantly reduce design iterations, accelerate time-to-market, and improve

overall productivity in chip design process.

System Specification

v

Architectural Design

. J
I
RTL Design < - -
. J]
1
v :
e A 1
]
Functional Verification | = = =
. J

b

p
DFT Insertion and Logic

Synthesis
\. J
.
Floorplanning and € - -
Place and Route 1
\. J 1
1
v :
e) 1
1
Layout Verification ===
\. J
A T
Fabrication
. J
.

Packaging and Testing

. J

Figure 1.1: Semiconductor Chip Development Process

1.1 Terminology 5

1.1 Terminology

The key terms used within this thesis work are outlined below:
1. Generation 1 pPIM (Gen 1): Previous pPIM Core and pPIM Cluster architecture.
2. Generation 2 pPIM (Gen 2): Redesigned pPIM Core and pPIM Cluster architecture.

3. Input Data Word for Core: Represented by variables A and B, these are the data inputs

specific to individual cores.

4. Input Data Word for Cluster: Referenced as A_CL and B_CL, these are the input data words

designated for the cluster.
5. Width of Data Words: The size of operands for the core, denoted as W.

6. LUT Function Words: 2W,, ;45 X Z%KP erword- PPIM 18 programmed using function words.
Size of one function word is 22V and 2W such function words are needed to program one

LUT core.

1.2 Research Goals

The primary objectives of this research project is the design of the Generation 2 pPIM Core and
pPIM Cluster architecture, and to investigate and develop automation tools utilizing Python for
the generation of user-defined, synthesizable Gen 2 pPIM Core and Gen 2 pPIM Cluster designs,
accompanied by the corresponding UVM testbench to verify their functionality. To accomplish

these objectives, the following goals are pursued in the course of this thesis:

1. To acquire a comprehensive understanding of the LUT-based pPIM architecture.

1.2 Research Goals 6

2. To analyze the existing codebase of Gen 1 pPIM Core and pPIM Cluster to identify areas

for redesign, enhancement, and optimization.

3. To architect the Gen 2 pPIM Core and develop synthesizable Verilog RTL code for the Gen

2 pPIM Core, adhering to industry standards and best design practices.

4. To architect the Gen 2 pPIM Cluster and develop synthesizable Verilog RTL code for the

Gen 2 pPIM Cluster, adhering to industry standards and best design practices.

5. To research and develop a user-friendly Command Line Interface (CLI) that enables users
to effortlessly generate Gen 2 pPIM Core and Gen 2 pPIM Cluster designs based on user
input. The CLI offers flexible customization options, such as the ability to select operand
widths ranging from 2 to 8 bits, choose a target technology library for synthesis, and specify

a preferred module name for the generated designs.

6. To research and develop a comprehensive UVM testbench incorporating constrained-random
stimulus generation to effectively validate the functionality of the Gen 2 pPIM Core,
specifically for arithmetic operations such as addition, subtraction, multiplication, and

division.

7. To research and develop a comprehensive UVM testbench to validate the functionality of
the Gen 2 pPIM Cluster, with a special focus on the Multiply-and-Accumulate (MAC)

operation.

8. To enhance the command line interface program by automating the generation of testbench
code for both Gen 2 pPIM Core and Gen 2 pPIM Cluster based on the user-defined design

specifications.

9. To run test scenarios across all design variants of Gen 2 pPIM Core and Gen 2 pPIM

1.3 Thesis Contributions 7

Cluster and collect code coverage, functional and assertion-based coverage data to assess

the effectiveness and correctness of the tool-generated designs.

10. To perform RTL and Netlist DFT synthesis for all Gen 2 pPIM variants, with the user-
selected technology libraries (such as 28nm, 65nm, and 180nm). Collect and compare DFT

full scan test coverage data, as well as area, timing, and power consumption metrics.

1.3 Thesis Contributions

The thesis contributes to the research and development of the LUT-based pPIM processor in the

following ways:

1. Architecture and detail design of Gen 2 pPIM Core: The Gen 1 pPIM core has been
redesigned to achieve a simpler, more scalable, and synthesizable RTL design. As part of
these improvements, the generate statements have been replaced with module instantiation,
ensuring enhanced portability across various synthesis tools. Additionally, as part of design
improvement, the two feedback multiplexers in the pPIM architecture [3—5] have been

removed from the design.

2. Architecture and detail design of Gen 2 pPIM Cluster: The Gen 1 pPIM Cluster has been
redesigned resulting in a simplified structure. The updated design enables individual pro-
gramming of each core within the cluster, and brings the accumulator, and an output register
inside the cluster thereby enhancing the cluster’s flexibility for performing a wide range
of operations. The router is redesigned to allow non-blocking, all-to-all communication

between the cores, accumulator and output register.

3. Architecture and detail design of enhanced Testbenches: The UVM testbench includes

random testing for addition, subtraction, division and multiplication and is supported with

1.4 Organization 8

functional coverage and SystemVerilog Assertions (SVA) to ensure thorough verification
of the Gen 2 pPIM core. The UVM testbench for the Gen 2 pPIM Cluster design includes

thorough testing, with specific enhancements for MAC operations.

4. User-defined operand widths: The new designs allows for flexible, scalable operand widths,

eliminating the previous limitation of only supporting 4-bit inputs.

5. Research and development of Python-Based Design Database Generator Tool Suite: A
Python-based command-line interface has been developed to automate the generation of
user-defined Gen 2 pPIM pPIM Core and pPIM Cluster designs, along with their verification
testbenches. This tool suite reduces manual effort, speeds up the design and verification
process, and helps explore different design options more effectively. This tool has proven to
enhance design verification accuracy and efficiency by reducing human involvement and

CITOIS.

These contributions advance the LUT-based pPIM processor research by enhancing code portabil-

ity, flexibility, verification capabilities and input scalability.

1.4 Organization

The thesis is organized as follows:

* Chapter 2 explores the previous works related to automatic code generation techniques,

Processing-in-Memory architectures, and verification methodologies.

* Chapter 3 presents the new micro-architectures of Gen 2 pPIM Core and Gen 2 pPIM

Cluster.

* Chapter 4 outlines the test-plan designed for the verification of Gen 2 pPIM Core.

1.4 Organization 9

* Chapter 5 outlines the test-plan designed for the verification of Gen 2 pPIM Cluster.

 Chapter 6 introduces the code generation toolkits along with its user guide for Gen 2 pPIM

Core and Gen 2 pPIM Cluster.

» Chapter 7 discusses the verification and synthesis results.

* Chapter 8 provides a concluding summary of the thesis and identifies potential areas for

future improvement.

* Chapter I presents schematics and trial layouts of Gen 2 pPIM Core and Gen 2 pPIM

Cluster.

Chapter 2

Literature Review

This chapter includes a literature review focusing on topics that are relevant to this thesis such as

code generation, processing-in-memory architectures and verification methodologies.

2.1 Automatic Code Generation

Automatic code generation has gained significant attention from researchers and engineers, as
it offers a higher level of abstraction by generating code from high-level specifications. Efforts
have been made to automate the code-writing process using Natural Language Processing (NLP)
and Large Language Models (LLM) for generating Hardware Description Language (HDL)
code [6]. However, this research presents challenges in terms of ensuring the generation of
syntactically correct and semantically accurate RTL code. Misinterpretations or ambiguous
language can lead to erroneous or nonsensical outputs. Prompt engineering on pre-trained LLMs
is commonly employed in natural language processing techniques for generating code. However,
accurately capturing complex design requirements and constraints in a prompt can be cumbersome.

Additionally, extensive fine-tuning of LLMs is necessary to ensure their comprehension of the

2.2 Processing-in-memory 11

hardware design domain and to produce sensible code.

A more reliable and conventional approach to automatic hardware code generation involves
the application of scripting languages like Perl, Python [7], or XML formats [8]. These code
generators allow users to define their design specifications as input and obtain corresponding RTL
code as output. Once the framework is developed, it becomes reusable for generating code for
various design specifications. This re-usability enables benchmarking of the same design with
different specifications by simply adjusting the input. The code generator tools efficiently leverage
repetitive design patterns commonly encountered in Verilog code. For instance, a register module
or a multiplexer can be instantiated and reused multiple times in a design, but they only need
to be coded once in the tools. Unlike code generated by natural language models, the manually
developed and tested code generators provide greater reliability and control over the output.

In essence, code generation is the process of writing code that writes code. The automatic
approach to code generation saves development time, albeit requiring an initial investment in
developing the code generation framework. Code generators not only reduce coding errors but
also provide a systematic and predefined approach, eliminating the need for redundant coding.
However, a challenge lies in striking a balance between the flexibility given to the user and the

constraints imposed on the generated code to ensure correctness while maintaining design intent.

2.2 Processing-in-memory

Artificial intelligence (AI) and machine learning (ML) (AI/ML) technologies are playing an
increasingly vital role in numerous everyday applications. Voice and image recognition, virtual
assistants, e-commerce platforms, autonomous vehicles, social media, and health monitoring
are just a few examples of these applications that heavily rely on AI/ML for sophisticated data

analysis. Growing dependence on mining and processing huge data-sets is placing a substantial

2.2 Processing-in-memory 12

burden on the data storage and resource movement capabilities of today’s computers [9]. The
transfer of large data chunks between memory subsystems and the processor creates bottlenecks
and leads to significant delays. The resulting long latencies negatively impact power consumption,
performance efficiency, and system reliability. Traditional computing paradigms were not initially
designed to effectively handle such extensive data volumes, prompting the need for a paradigm
shift. Processing-in-Memory has garnered significant attention from both academia and industries
as it aims to bring computation to the memory, mitigating data movement costs [10]. Processor-
in-memory conducts computations and processing directly within the memory array, eliminates

the need for extensive data transfers, and offers a promising solution to the existing challenges.

2.2.1 Memory Wall

The foundation of modern computers is largely based on von Neumann’s stored-program computer
concept, which incorporates separate memory and processing units. In this architecture as shown
in Figure 2.2, program and instruction data are stored in the main memory, and the CPU retrieves
instructions and data via a common bus and executes them sequentially. However, with the
increasing demand for memory-intensive computing due to large datasets with poor data locality,
the conventional von Neumann structure faces challenges. The movement of data to and from the
main memory introduces significant latency, and memory access times have not kept pace with the
rising clock frequencies of modern processors. As a result, there is a growing gap between CPU
and memory speeds, commonly referred to as the "memory wall" or "von-Neumann bottleneck,"
suggesting that execution time is heavily dependent on the speed at which data can be transferred

from DRAM to the CPU.

2.2 Processing-in-memory 13

1 ,OOO , ; ,..4‘|,,..‘ , , ,‘~ % , , , :

100 b

Processor-memory |
performance gap

. DRAM

1
1980 1985 1990 1995 2000

Relative performance compared to 1980

Figure 2.1: Temporal Evolution of Performance Gap: Processor-Memory Request Time (for a
single core processor) vs. DRAM Access Latency [1][2]

To address these challenges, efforts have been made to reduce latency by introducing hier-
archical cache systems. Caches prefetch frequently accessed instructions and data, aiming to
minimize cache misses. However, the effectiveness of caches relies on the existence of temporal or
spatial locality in the data. For applications that heavily rely on large datasets, this approach may
prove insufficient. Firstly, such datasets require large caches, which can pose practical limitations.
Secondly, even if a dataset is cached, and a cache miss occurs, retrieving another dataset from the
main memory can result in significant latency, leading to sub-optimal performance. Additionally,
the bandwidth constraints of the memory hierarchy limit the efficiency of data movement between
different memory levels [11].

Non von-Neumann machines were developed as an alternative to the traditional von Neumann
architecture with the goal of addressing performance bottlenecks, by introducing parallelism and

multi-threading. Multi-threading focuses on concurrent execution within a single processor core,

2.2 Processing-in-memory 14

Address Bus

< —p
CPU l
. Control Cach .
I/O Unit [€—p Er:ﬂ;o —D Mjrzo?y <4—»| Main Memory
ALU T
< >

Data Bus

Figure 2.2: Structure of a Standard Cache-organized von-Neumann Machine

[

Processing Buffer L R
S and
ubsystem —) Control { Subsystem

(PPS) Unit L) (sps)
]

Figure 2.3: Structure of a non von-Neumann Machine

while parallelism involves simultaneous execution across multiple cores or processors. A non von-
Neumann architecture consists of a Primary Processing Subsystem (PPS) for internal evaluation
of operations and a Secondary Processing Subsystem (SPS) with intelligent mass-storage devices
[12]. Refer the Figure 2.3 below. This architecture enables efficient and parallel processing. This

combination of subsystems facilitates efficient and parallel processing.

Non von-Neumann architecture pushed Processing-in-Memory further by challenging the

conventional separation of processing and memory units, leading to the exploration of new

2.2 Processing-in-memory 15

architectural paradigms. The concept of processor in memory (PIM) emerged as a highly discussed
and promising approach in memory-intensive computer architecture. PIM, also known as logic-in-
memory or smart-RAM, addresses the limitations by integrating one or more processors directly
into high-bandwidth DRAM banks [13]. This integration brings the memory and processing units
closer together, significantly reducing the need for frequent data transfers between them. By
executing computations within the memory itself, PIM effectively eliminates unnecessary data
movements and offers the potential for significant performance improvements in memory-intensive
applications.

Section 2.2.2 provides a comprehensive overview of different Processing-in-Memory architec-

tures that have surfaced to date.

2.2.2 Evolution and Advancements in PIM Architectures

The concept of processor in memory (PIM) has a rich history in computer architecture research,
with numerous approaches and advancements proposed over the years. One of the earliest ideas
can be traced back to the 1960s in paper [14] when researchers postulated the concept of a
cache-organized “logic-in-memory” computer in which each sector of cache is dedicated to
perform independent logic. This early work laid the foundation for further exploration into PIM
architectures.

The case study in 1997 [2, 15] explores the integration of a microprocessor and DRAM on
a single chip, called Intelligent RAM (IRAM). It highlights that IRAM offers reduced latency
(5-10x), increased bandwidth (50-100x), improved energy efficiency (2-4x), and potential cost
savings by eliminating excess memory and minimizing board area. The paper also proposes that
IRAM has the potential to improve the performance of vector processors. Vector instructions to
access memory in blocks thus relying on larger but slower main memory instead of smaller and

faster caches. In this scenario, IRAM can leverage its low latency and high bandwidth to deliver

2.2 Processing-in-memory 16

impressive performance gains.

The late 1990s saw the introduction of Computational RAM (CRAM) [16], a distinctive
approach that integrates computation and memory. CRAM can function as a conventional memory
chip or a Single-Instruction Multiple-Data (SIMD) stream computer. By aligning processing
elements with memory columns and utilizing a common memory row address for each row, the
CRAM architecture enables SIMD operations. This unique amalgamation of processing power
and memory holds promising potential for enhancing performance and efficiency across diverse
domains.

The Active Pages model [17] involves shifting data-intensive computations to the memory
system. By offloading data manipulations to the logic embedded within the memory, this approach
allows the processor to maintain high speeds while enabling parallel execution.

The Smart Memories chip [18], as proposed by Stanford researchers in the early 2000s, is
a modular computer consisting of multiple processing tiles arranged in a quad configuration.
Each tile contains its own local memory, a processor core, and an interconnect. The quads are
interconnected to facilitate communication among different sets of quads. With its dynamic
routing capability, the chip offers flexibility to adapt to a wide range of applications.

Throughout the 1990s and early 2000s, researchers sought to exploit the parallelism and prox-
imity benefits of PIM architectures to overcome memory access limitations. The Programmable
Processor in Memory (pPIM) is an innovative look-up table based [4] architecture that introduces
further advancements to the area of PIM. It stands out with its ability to flexibly perform a wide
range of computations through the reconfiguration of LUT using function words. By using pre-
calculated results stored in LUT, the pPIM architecture accelerates data-intensive computations,
resulting in notable performance improvements. The pPIM architecture is discussed in in-depth

details in Chapter 3

2.3 Verification Methodologies 17

2.3 Verification Methodologies

With the increasing demand for application-specific ICs (ASICs) and FPGAs (Field Programmable
Gate Array), chip complexity is experiencing exponential growth. As a result, functional ver-
ification has become an essential aspect of the chip development cycle as shown in 1.1. The
primary objective of hardware verification is to ensure that the device accurately reflects its design
specification. Given the exorbitant costs of re-spins and additional development time associated
with chip failures after tape-out, it is crucial to address logic or functional flaws effectively [19].

To tackle this, verification engineers are adopting advanced verification methodologies that
provide higher levels of abstraction, reusability, and scalability. Hierarchical and modular test-
bench architectures enable the creation of reusable verification components and the efficient
verification of larger designs. Advanced verification methodologies, coupled with the White-box
and Grey-box testing approaches that mirror the design process, have proven highly effective.
Verification engineers independently review the design specification, assess the design’s intent,
and formulate a verification plan [20]. This approach enhances visibility into the design imple-
mentation from the get-go, enabling early bug detection. Discrepancies may arise if certain edge
cases are overlooked or if the RTL designer misinterprets the design specification.

By closely aligning with the design process, where designers study the architectural specifica-
tion and translate it into RTL code, verification engineers can construct a testbench that ensures
the implementation matches with their interpretation of the design specification. The iterative
cycle of design-verification continues until the interpretations of both design and verification

engineers converge, ideally achieving alignment simultaneously.

2.3 Verification Methodologies 18

2.3.1 SystemVerilog for Verification

SystemVerilog is a hardware description and verification language widely used in the field of
electronic design automation (EDA). Including the features of well-known Verilog HDL, Sys-
temVerilog is a object-oriented programming language with additional features to support digital
design-verification. It offers powerful verification features such as constrained randomization,
assertions, and coverage constructs.

A couple of decades ago, when SystemVerilog was gaining popularity as a verification tool,
user’s choice of verification methodology was tied to specific tool vendor. To address this
limitation and promote vendor independence, a committee was formed. Their objective was to
develop an open standard methodology that could be used with major tool vendor’s offerings. This
collaborative effort resulted in the creation of the Universal Verification Methodology (UVM) by

Accellera in 2010 [21].

2.3.2 Universal Verification Methodology (UVM)

The Universal Verification Methodology (UVM) is a standardized and comprehensive framework
for advanced verification in the semiconductor industry. Built on top of SystemVerilog, UVM
provides a set of guidelines, libraries, and methodologies that enhances the verification process.
A crucial feature of UVM is its factory mechanism, which allows for dynamic object creation
and configuration. This mechanism let users to replace or override testbench components, like
sequences, with different types of sequences without modifying the testbench code [21].
Modern verification methodologies, such as SystemVerilog and UVM, advocate for a layered
testbench structure. Although the layered architecture may appear complex, it actually helps in
breaking down the code into smaller, manageable pieces ensuring clear separation of concerns

and enabling a systematic verification approach. Each layer within the testbench is responsible

2.3 Verification Methodologies 19

for specific functionalities, such as generating signals, driving them into the DUT, checking DUT
responses, and measuring coverage [20]. By keeping the testbench separate from the test cases,
the same stimuli can be reused across multiple projects.

In this thesis, the pPIM core and cluster testbenches are developed using UVM. The testbench
architecture is thoroughly discussed in Chapters 4 and 5 which provides in-depth insights into the

testbench design and implementation.

Chapter 3

pPIM Architecture

This chapter presents detailed explanation of Gen 2 pPIM Core and Gen 2 pPIM Cluster micro-
architectures.

In the pPIM architecture proposed in [3—5], a programmable processor in memory is imple-
mented based on Look-up tables. This architecture is specifically designed to efficiently handle
memory-intensive calculations within Convolutional Neural Networks, eliminating the need for
data movement. Figure 3.1 captures the hierarchy in pPIM components. The fundamental compo-
nent of this architecture is the pPIM core, which is capable of executing various operations on
two 4-bit inputs. A total of nine pPIM cores, are interconnected via a Router at the highest level
to form a pPIM cluster. This cluster, residing within the DRAM memory banks, operates on two
8-bit inputs and can execute multiple operations simultaneously. Several such pPIM clusters are

strategically positioned between the memory subarrays. The structure repeats along DRAM bank.

21

Core Cluster
Subarray
| [] I
Local Row Buffer
’ ’ ..\\\: k‘,.. [X X]
o] [+ 2_ o] [+ E 1] [2

o]| |[e] [[e]

Subarray Interlinks

(6] [7

8

Subarray

Local Row Buffer

Lo [}

2 | 0

(2] [4]
[s] [7]

1] [2]

[e] [7] [¢]

Subarray Interlinks

OfE

2 |

[e] [7]

Figure 3.1: Top-level View of the pPIM Architecture [3]

3.1 Generation 2 pPIM Core 22

3.1 Generation 2 pPIM Core

The Core serves as the central component of the pPIM architecture. It is designed as a re-
programmable lookup table that stores all the potential outcomes for a desired operation in advance.
To help understand its functioning, the lookup table can be visualized as a two-dimensional matrix,
as depicted in Figure 3.2. With 4-bit data words A and B as inputs, each having 16 possible
combinations, a 16x16 matrix is created by arranging A and B as rows and columns, respectively.
This matrix comprises 256 entries, representing the 8-bit outputs for the corresponding inputs,
denoted as Y. By utilizing the matrix preloaded with all possible outputs for two 4-bit inputs, the
data words A and B act as pointers to specific locations within the matrix.

For example, if the intention is to perform a multiplication operation, the matrix would be
populated with all possible results of multiplying A by B. If A has a value of 2 and B has a value of
15 (highlighted in Grey), the intersection of the third row and the sixteenth column (considering
0-based indexing) in the matrix would represent the outcome of multiplying 2;9(0010,) by

1510(11115), which is 3019(0001 1110,) (highlighted in Green).

3.1 Generation 2 pPIM Core 23

B
X 0000 0001 0010 0011 cee 1111
A

0000 | 00000000 | 00000000 | 00000000 | 00000000 e e e 00000000

0001 | 00000000 | 00000001 | 00000010 | 00000011 00001111
0010 [00000000 | 00000010 | 00000100 | 00000110 00011110
0011 | 00000000 | 00000011 | 00000110 | 00001001 00101101

[) [] []

[) [] []

[] [] []

1111 00000000 | 11110000 | 00011110 | 00101101 e e @ 11111111

Figure 3.2: Conceptual Representation of LUT Mapping

The Gen 2 pPIM Core is composed of various components as shown in Figure 3.3 that work
together to execute operations based on programmed function word. These components include
two input registers holding data words, A and B, an address decoder, a register file containing
function word registers, and output multiplexers. Function words are pre-programmed with
desired operations like addition, subtraction, multiplication, or logical operations. For functions
that require a single operand, the two input data words can be concatenated to create a unified

input. The operation of the pPIM core is explained as follows:
* The two input registers store the data words used for the operation.

» The address decoder generates unique addresses for accessing function word registers in

3.1 Generation 2 pPIM Core 24

the register file.

* The register file holds the function word registers, each containing a portion of the pro-

grammed function word.

* The programmed function word is broken down and loaded into the respective function

word registers in the register file at specific function addresses.

* The function word registers are then fed as inputs to a series of multiplexers. Hence,
switching between functionalities can be easily accomplished by reading a new function

word from the register file and feeding it into the MUX inputs.

* To determine the output of the operation, the two input data words are concatenated together
to form a select line for the multiplexers. The select line serves as an address to pick the
appropriate entry from the look-up table. These multiplexers create the illusion of a look-up
table by taking the function word as input and selecting specific bits based on the data

words stored in the input registers.

» Each multiplexer outputs one bit of the result based on the selected entry, and all the bits

together form the complete output data word.

For instance, consider a pPIM core with 4-bit operands, each operand can have 16 possible
combinations, resulting in 256 possible outcomes, each 8-bit long. The size of the each function
word would be 256 bits, eight of such function registers reside in register file. The address decoder
generates eight unique addresses to access each of these function registers. The function word
registers then serve as inputs to the eight multiplexers, each operating as a 256-to-1 multiplexer.
The concatenation of two 4-bit data words forms an 8-bit select line for the multiplexers, and the

resulting 8-bit output data word is generated by the output multiplexers.

3.1 Generation 2 pPIM Core 25

A[W-1:0 >
[) Register A ,’W
IN_MODE[1:0] Concat
Register B ,’W
B[W-1:0] > -
AN
FUNC_IN[22"-1:0] Y[2W-1:0]

vy

FUNCTION WORD

LOAD

FUNCTION WORD

RUN
FUNCTION WORD |L
2W
j—» FUNCTION WORD

Y

FUNC_ADDR Address

[(logp2W)-1:0] " | Decoder

Register file

2W Multiplexers

2W Function Words

Figure 3.3: Generation 2 pPIM Core Architecture

In this thesis, the Gen 2 pPIM Core architecture is presented and implemented, showcasing its
ability to handle operand widths spanning from 2 to 8 bits. The formulae depicted in Figure 3.3
have been derived to enable the scaling of the Gen 2 pPIM Core components. Table 3.1 provides

an overview of how the sizes of the pPIM components scale in relation to the width of operands.

3.2 Generation 2 pPIM Cluster 26

Table 3.1: pPIM Core Components Dimensions at Different Operand Widths

Data Number
Function Function Output
Words of Number
Word Address MUX (Y)
(A,B) Function of MUXes
(Bits) (Bits) (Bits)
(Bits) Words
2 16 4 2 16-to-1 4 4
3 64 6 3 64-to-1 6 6
4 256 8 3 256-to-1 8 8
5 1024 10 4 1024-to-1 10 10
6 4096 12 4 4096-to-1 12 12
7 16384 14 4 16384-to-1 14 14
8 65536 16 4 65536-to-1 16 16

Evidently, the size of the LUT exhibits exponential growth with increasing widths of inputs. To
ensure the validity and functionality of the designs, they have been implemented as synthesizable
units and subjected to functional testing using a corresponding UVM testbench. Chapter 7 delves

into a comparative analysis of the area, power, and timing results for each core design.

3.2 Generation 2 pPIM Cluster

A pPIM cluster consists of nine programmable cores that work together to perform complex
operations. While a single core can handle basic functions like addition and subtraction, it
lacks the capability to perform more advanced tasks such as multiply-and-accumulate, matrix

multiplication or polynomial calculations. By breaking down complex operations into simpler

3.2 Generation 2 pPIM Cluster 27

tasks and distributing them among multiple pPIM cores within a cluster, more sophisticated
operations can be performed. By combining the capabilities of multiple cores, the cluster can
execute complex operations across one or multiple cycles. The cores are connected using a
Router, which orchestrates the data flow between them. Accumulator inside the cluster stores the
intermediate results an operation.

To enhance the performance of data-intensive operations, a pPIM cluster is formed by inter-
connecting nine pPIM cores. Each core within the cluster is programmable, allowing it to execute
different functions independently. The connectivity pattern ensures that each core can communi-
cate with every other core in the cluster, including itself, enabling all-to-all communication. The
Accumulator inside the cluster is also interconnected in an all-to-all manner as illustrated in the
Figure 3.4. This interconnection is achieved using a crossbar architecture, referred to as a router.

Router architecture is discussed in section 3.2.1.

3.2 Generation 2 pPIM Cluster 28

ACL p——
> rossbar
Input l,: l,: Output Y_CL o

B_CL »| Registers Register o

Core 0 <> <=>| Core5

Core 1 |<—> <—> Core6

Core 2 |<i=> <= >| Core7

Core 3 |<—> <— > Core8

Core 4 |<—> <=>| AcC
ADDR A

Figure 3.4: Top-level view of Gen 2 pPIM Cluster

At the cluster’s top level, there are two input operands, A_CL and B_CL, which are specific to
the cluster. The cluster’s input resolution is double that of each core, resulting in the cluster output
Y_CL being twice the size of the core outputs. To ensure operand width compatibility, the cluster
data words are split into higher and lower nibbles, then routed to the cores for further processing.

The output from the each pPIM core (YO0, Y'1, Y2, .., Y8) is also divided into two halves and
routed to the inputs of all nine cores (A0, B0O), (A1, Bl), .., (A8, B8). The cluster contains an
accumulator. The accumulator contents are also rerouted to the core inputs for further utilization.
The accumulator is designed to align with the core design specifications. Further details can be

found in section 3.2.2.

3.2 Generation 2 pPIM Cluster 29

Finally, the cluster output is captured in an output register. The pPIM cluster’s final output can
be chosen from the core outputs (Y0, Y'1, Y2, .., Y8) or from the four halves of the accumulator
(ACCO, ACC1, ACC2, ACC3).

To illustrate the basic operation of the cluster, consider one of the cluster designs with 8-bit
cluster operands. In this case, a cluster performing operations on 8-bit cluster operands will have
nine cores, each with 4-bit core inputs. As each core can only accept two 4-bit inputs (A and
B), the 8-bit cluster inputs (A_CL and B_CL) are divided into higher and lower nibbles and then
routed to the cores for further processing. To ensure compatibility with the input port sizes, the
8-bit output data word (Y) from each core is divided into two 4-bit halves. These cores execute
their programmed functions on the selected operands. To store necessary intermediate results, a
16-bit accumulator is available, which is also split into four 4-bit halves and routed to the core
inputs. The cluster’s 16-bit final output, Y_CL, is a combination of its four 4-bit counterparts,
which can be chosen from either the core outputs or the accumulator outputs. This flexibility
allows for efficient data processing and selection of the most relevant results for the desired
computation.

This thesis presents a Gen 2 pPIM Cluster design accommodating Gen 2 pPIM Core operand
widths ranging from 2 to 8 bits. The cluster’s operand width is set to double that of the core’s
operand width. Additionally, the accumulator and output registers are adjusted accordingly to
suit the design. The Table 3.2 below outlines how the cluster components are scaled for various

design configurations.

3.2 Generation 2 pPIM Cluster

30

Table 3.2: Generation 2 pPIM Cluster Components Dimensions at Different Core Operand Widths

Output
Cluster Accumulator Register
Core Data Cluster
Data Words (ACCo, (Y0_CL, Core
Words (A, Output
(A_CL, ACC1, ACC2, Y1_CL, Output (Y)
B) (Y_CL)
B_CL) ACC3) Y2_CL, (Bits)
(Bits) (Bits)
(Bits) (Bits) Y3_CL)
(Bits)
4 2 2x4=28 2x4=28 4 8
6 3 3x4=12 3x4=12 6 12
8 4 4x4=16 4x4=16 8 16
10 5 5x4=20 5x4=20 10 20
12 6 6x4=24 6x4=24 12 24
14 7 7x4=28 7x4=28 14 28
16 8 8x4=32 8x4=32 16 32

3.2.1 Router

The routing mechanism is specifically designed to enable all-to-all communication between the

cores, accumulator, and the output register in a non-blocking, cross-bar architecture. As depicted

in Figure 3.5, input multiplexers in front of each core, accumulator, and output register allow for

the selection of individual inputs from a range of available options. This setup ensures efficient

and flexible data exchange among the components within the cluster.

3.2 Generation 2 pPIM Cluster 31
W \
26x1 N e von 26x1 W
A0
YO 2W
/IA/O*ADDR Core 0 II ACCO_ADDR
\ BO W/_' Yo_L \
26x1 / w
a 2ot | —/ » ACCO
W
LT [/ AcC1
AR /IA/CC1_ADDR > 4w
Accumulator —F— w
[~~~ ~—_ —> | , ACC2
W
26x1 i 26x1 / W
—/—> Y1_H 7
| A1 - W L/ » ACC3
/I{ADDR Core 1 Y1 i 2w /IﬁcZﬁADDR
” > YiL [~
26x1 /
W 26x1 o
/]ﬁ ADDR ACC3_ADDR
L] L] L]
[]] L[]
L] L] L]
e ve H
A8 - 23x1 W
A8_ADDR Core 8 Y8 / 2w
8 > |Y0_CL_ADDR
W/_> Y8_L
26x1
231
B8_ADDR

W: Width of pPIM core data words

|v1_cL_appr ——>

——>
231
|Y270L7ADDR
23x1
X W

|¥a_cL_appr

Output
Register

aw
——Y_CL

Figure 3.5: pPIM Gen 2 Cluster Exploded View Showing Gen 2 Router Architecture

3.2 Generation 2 pPIM Cluster 32

3.2.1.1 Input Multiplexer

The Input MUX plays a crucial role in the router design, enabling both the core and the accumulator

to perform the following functions:
1. Utilize outputs generated by all pPIM cores, including itself.
2. Access results stored in the accumulator.
3. Accept new sets of cluster inputs.

Each core employs a pair of these Input MUXes, one for each of its inputs, A and B. On the other
hand, the accumulator requires four Input MUXes, as it is divided into four segments.

This particular Input MUX is implemented as a 26-to-1 MUX, meaning it has 26 inputs and
one output. To select from the 26 inputs, a 5-bit wide select line is needed (as calculated by
ceil(log,(26)) = 5). Refer to Figure 3.6. The user can program the address of these select lines at

the top-level of the cluster, with the default address being set to 5’b11111.

3.2 Generation 2 pPIM Cluster 33
- w
YO L ———F—>
YO H —% &
W
Output "Y' from Yi_L 1 >
each of the 9 Y1 H W, R
cores split into - -
lower and higher . .
nibbles
W
Y8 L ——f—>
L Y8 H —%—
— ACCO _W/_> 26x1 W, MUX OUT } Fed to the
W MUX - Core Input
Accumulator J ACC1 ———
contents ACC2 W,
L Accs —H—
~ACLL —4—»
New Cluster - = W
inputs split A CL H ——t—>
into lower — W
and higher B CLL ——F—
i W
nibbles L B_CL_H t— SEL
5
ADDR[4:0]

Figure 3.6: Input Multiplexer

3.2.1.2 Output Multiplexer

The Output MUX allows each nibble of the cluster output to choose its content from:

1. Outputs of the nine cores.

2. Contents of the accumulator.

The pPIM cluster requires four of these Output Multiplexers, with each one dedicated to each

segment of the final output. The Output MUX is implemented as a 23-to-1 MUX, meaning it

has 23 inputs and one output. To select from the 23 inputs, a 5-bit wide select line is needed (as

3.2 Generation 2 pPIM Cluster

34

calculated by ceil(log,(23)) = 5). Refer to Figure 3.7. The user can pick the address of for select

lines at the top-level of the cluster, with the default address being set to 5’b11111. Additionally,

the final output Y _CL is looped back to one of the MUX inputs to preserve the output.

Output 'Y" from
each of the 9
cores split into
lower and higher
nibbles

Accumulator
contents

Feedback { CLUSTER_OUT_IN

-,

—

=

YO L ———>
YO H —
Y1 L ——>
Y1 H—2—

= J=

eee s

=

Y8 L ——F—
Y8_H —F—>
ACCO ————F—
ACC1 ———F—
ACC2 ——F—
ACC3 ———F—
_

=

=

=

=

=

=

23x1 W Fed to the
MUX —t— MUX_OUT :}- Output
Register
SEL
5
ADDRJ[4:0]

Figure 3.7: Output Multiplexer

3.2.2 Accumulator

The cluster incorporates an accumulator register, providing the capability to store intermediate

or final results. The accumulator is divided into four smaller registers, each dedicated to storing

one nibble. These four nibbles are concatenated together to form the complete accumulator,

as depicted in the Figure 3.8 below. The contents of accumulator are selected using an input

3.2 Generation 2 pPIM Cluster 35

multiplexer, one for each nibble.

ACCO IN —— D W
Q—+
-
ACC1 IN » D
—_ Q IIVV
> o)
> ,4W
.| CONCAT . » ACC OUT
ACC2_IN »D Lw >
-
ACC3 IN » D
Bl o AL
CLK =>

Figure 3.8: Accumulator

3.2.3 Output Register

The Gen 2 pPIM Cluster design, introduces an Output Register that holds the final result of the
pPIM cluster (Y_CL). This output register consists of four registers, resulting in the concatenation
of into four distinct nibbles, as illustrated in Figure 3.9. The contents of the output register are

selected using an output multiplexer, one for each nibble.

3.2 Generation 2 pPIM Cluster 36

YO_CL_IN »D
- o+
->
Y1_CL_IN »D
p— — Q /W
T < aw
| CONCAT Y_CL
Y2_CL_IN »D >
- a+%
>
Y3_CL_IN »D
- o+
CLK -

Figure 3.9: Output Register

The Generation 2 pPIM Core and pPIM Cluster designs were thoroughly discussed in this

chapter.

Chapter 4

pPIM Core Verification

The Design Under Test (DUT) here is a Gen 2 pPIM Core and this chapter concentrates on

creating a verification plan to test the Gen 2 pPIM Core design.

4.1 Testplan

The testplan for Gen 2 pPIM Core is as follows:
 Stimulus generation

— Input Data Words A and B are randomized.
— Enumerated type opcode { ADD, SUB, MULT, DIV} is randomized as well.
+ Constraint 1: To guarantee at least one occurrence of each opcode during random-
ization.

* Constraint 2: To maintain equal opcode distribution with a weight of 25% for

each opcode.

4.1 Testplan 38

* Checker
— The DUT-generated output Y, along with the random stimuli A, B, and opcode, are
sampled and broadcast over the analysis ports.

— Simple SystemVerilog models are created for each arithmetic operation (Addition,
Subtraction, Multiplication, and Division) to compute the expected result based on the

randomly generated stimuli.
— The DUT result are compared against the expected result for each arithmetic operation
to ensure correctness.

* Functional Coverage

— Covergroup for Data Words and Opcode

* Coverpoints for A, B, and opcode: To track each possible value for these variables,
ensuring that every combination of A, B, and opcode is hit at least once.
% Cross of A, B and Opcode: To ensure all opcode and data word combinations are
exercised.
— Covergroups for DUT vs. Expected Results
x Separate covergroups are defined for all potential results of A+ B, A— B, A X B,
A =+ B. Python scripts are utilized to generate these covergroups.

Cross between binsof expected values with the binsof DUT values is performed

for each result obtained during simulation.
* Concurrent Assertions

— DUT output should always match with the Expected output.

4.2 UVM Testbench Architecture 39

— The signals “read” (RUN) and “write” (LOAD) should never be asserted simultane-

ously.

— A and B should retain their past values for at least 8 clock cycles after “LOAD” is
initiated
* Input data word A should remain constant while function words are being loaded.

* Input data word B should remain constant while function words are being loaded.
— The input signals should have valid values at the clock edge.

Input A should not be in an unknown state (X or Z) at clock edge.

Input B should not be in an unknown state (X or Z) at the clock edge.

4.2 UVM Testbench Architecture

The Figure 4.1 illustrates the general UVM testbench architecture, which consists of a hierarchical
arrangement of various testbench components. The Testbench Top serves as the top-level entity,
instantiating the DUT along with interfaces. It also initiates the execution of tests. Tests define
specific scenarios comprising environments, configurations, and stimulus generation. The Environ-
ment further organizes the testbench components by segregating agents, scoreboards, functional
coverage, and checkers. The Agent, at the next level in the hierarchy, acts as a container for a
driver, a monitor, and a sequencer. Depending on its purpose, an agent can be active or passive.
An active agent injects stimuli into the DUT through its driver, while a passive agent focuses
solely on monitoring and instantiates a monitor component without requiring a driver or sequencer.
Passive agents are often employed for coverage or checker-related tasks. Sequences are reusable
test scenario blocks, define specific patterns of stimuli applied to the DUT. A Sequence item

represents a transaction, containing data information and optional randomization and constraints.

4.2 UVM Testbench Architecture

pin level O port
activities O implexport

=P transactions < analysis port

Testbench Top
Test
Sequences
Environment
A
Sequence item
IQ ®| Scoreboard
Driver Monitor
Sequencer
A
\ 4
Virtual Interface .| Functional
7y Coverage
Agent
\ 4
Interface

Design Under Test (DUT)

A

Assertions

Figure 4.1: Hierarchical UVM Testbench Architecture

4.2 UVM Testbench Architecture 41

The sequencer serves as a mediator between sequences and drivers, facilitating communication
through the Transaction Level Modeling (TLM) interface under the hood. The Driver, as the
name suggests, drives the transactions or sequence items to the DUT using an interface. Simulta-
neously, the Monitor observes the DUT signals through a virtual interface, converting them into
sequence-item packets that are broadcast to other testbench components, such as scoreboards and
coverage monitors. The Scoreboard verifies the functional correctness of the DUT by comparing
its output with the expected results. It subscribes to transactions broadcast by the monitor to
gather DUT outputs. Additionally, the scoreboard may incorporate reference models using Direct
Programming Interface (DPI), which interpret the DUT behavior algorithmically and produce
expected results. These reference models can be implemented in various languages, including
SystemVerilog, C/C++, or SystemC, and are considered as the "golden truth" against which the
DUT results are compared.

Modern testbenches integrate Assertions-based verification, ensuring design properties always
hold true. When an assertion fails during simulation, it signals potential issue in the design
behavior, prompting engineers to investigate and rectify them early on. Functional Coverage
is used as a metric to measure the completeness of testing with respect to functional aspects or
features of a design. Monitoring coverage goals during verification helps identify untested and
unreachable areas in the design. To achieve greater coverage, more penetrating testcases are
designed.

This comprehensive approach of developing a testbench ensures a more reliable and effective
verification process. The next section specifically discusses the testbench architecture for the

pPIM Core.

4.2 UVM Testbench Architecture 42

pin level O port
activities O implexport

=9 transactions <> analysis port

Core_Testbench_Top

Core_Test

_‘ Core_Sequences m

A

Core_Environment

$ L

Core_Seq_ltem Core_Scoreboard

Core_Driver Core_Monitor

l A T
Core_Sequencer

A\ 4

Core_Func_Coverage

Core_Virtual_Interfaces

Core_Agent A A

\ 4

L TB_Interface

Core_lInterface

pPIM Core
Design Under Test (DUT)

T

Core_Assertion_Coverage

Figure 4.2: pPIM Core Testbench Architecture

4.2.1 Core Testbench Components

The pPIM Core testbench assesses the functionality of the Core by executing four arithmetic
operations Add, Subtract, Multiply, and Divide at random, using randomly generated stimuli. It
captures the response of the DUT and concurrently verifies it against the expected response. The
testbench organization is shown in the Figure 4.2.

Each component in the testbench is registered in the UVM factory and plays a vital role, as

described below:

4.2 UVM Testbench Architecture 43

Testbench DUT
Interfaces

pim_4_interface pif();

PIM_4 top (interface tb_interface module PIM_4 (
ak(pif clk) logic [7:0] GOLDEN_Y; clk,
reset(pif.reset), Iogicd[7:0] DUT_Y; ;eset,
A(pif.A), REEDECIOR B,
-B(pif.B), FUNC_IN,
.FUNC_IN(pif.FUNC_IN), FUNC_ADDR,
.FUNC_ADDR(pif.FUNC_ADDR), [-) i tort IN_MODE,
.IN_MODE(pif.IN_MODE), Ineee piul & luie: LOAD,
.LOAD(pif.wr_en), logic clk, logic reset, RUN,
.RUN(pif.rd_en), logic [3:0] A, logic [3:0] B, Y,

Y(pif.Y), logic [255:0] FUNC_IN, logic [2:0] FUNC_ADDR, scan_en,
.scan_en(pif.scan_en), logic [1:0] IN_MODE, logic wr_en, scan_in0,
.scan_in0(pif.scan_in0), logic rd_en, logic [7:0] Y, eeis il
.test_mode(pif.test_mode), logic scan_en, logic scan_in0, scan_out0
.scan_out0(pif.scan_out0) logic test_mode, logic scan_out0)i

)i - ’

Figure 4.3: Interfaces connecting DUT (Core) to Testbench Environment

4.2.1.1 PIM Interfaces

The initial and essential step in the design verification process is establishing a connection between
the testbench and the design. The testbench envelops the design, injecting stimulus into it and
capturing its responses. Interface is created to communicate with the design ports. This interface
acts as a smart bundle of wires, that allows to specify timing and signal direction [20].

In the Figure 4.3, two interfaces, namely pim_interface and tb_interface, are used in this
testbench. The pim_interface is instantiated like a class within the testbench top module, with
signals connected to the ports of the DUT using a dot (.) operator. The role of the other interface
will be explained in a later section.

It’s important to note that both the interface and the DUT are static components. On the other
hand, the UVM testbench components are dynamic, represented as class objects that connect to
the design during runtime. To bridge the gap between the static modules and dynamic objects,

interface is declares as “virtual” and is used as a pointer or handle to the actual physical interface.

4.2 UVM Testbench Architecture 44

Both interfaces are registered with "uvm_resource_db" as virtual entities.

4.2.1.2 PIM Sequence-item

The uvm_sequence_item class is a derived class of the uvm_transaction class, enabling test-
bench developers to generate user-defined sequence items. Within the pPIM Core testbench, the
pim_seq_item class extends from uvm_sequence_item and introduces two input variables A and
B, declared with the “rand” keyword, indicating that they will be randomized during simulation.
Additionally, a method is defined to randomize the opcode using the built-in randomize() method.
The primary purpose of uvm_sequence_item is to transport data from uvm_sequences through the

uvm_sequencer to a uvm_driver [22].

4.2.1.3 PIM Sequence

UVM sequence is a collection of sequence items. The class pim_sequence inherits from the
uvm_sequence base class and is parameterized with uvm_sequence_item. This class contains a
body() method, which defines the the desired behavior of a sequence.

Function Word Generation: The function words for all the four opcodes are programmed in

the body() method of the class pim_sequence and are stored in separate variables of type reg. The
function words are determined by evaluating the output for intended operation for every possible
pairing of inputs. To calculate the outputs for each pairing, an iterative process is employed,
spanning across 2% x 2V iterations, where W represents the width of the data words. During each
iteration, the output bits are split and stored in separate temporary registers at the corresponding
iteration index.

The body() method also contains the code to generate and send the randomized packet of
pim_sequence_item. The start_item() and finish_item() methods provided by base class are used

to control this randomization process, ensuring that the intended data is randomized before being

4.2 UVM Testbench Architecture 45

sent to the driver.

4.2.1.4 PIM Sequencer

The UVM sequencer plays a role of a mediator by transferring packets of sequence items from a
sequence to a driver for further processing. In this context, the pim_sequencer class inherits from

the base class uvm_sequencer and is parameterized to handle pim_sequence_item objects.

4.2.1.5 PIM Driver

The pim_driver class is extended from a base class uvm_driver and parameterized to accept
pim_sequence_item. Its primary function is to take sequence item packets from the sequencer and
drive them into the DUT using a virtual pim_interface. This process occurs during the run_phase()
of the simulation.

In the run_phase() method, the driver repeatedly calls the ger_next_item() method on the
seq_item_port. This method is blocking, meaning it waits until an item is available in the
sequencer’s FIFO before proceeding. These sequence items contain randomly generated opcode,
representing different arithmetic operations and random input data words.

The driver has four distinct tasks that handle passing the contents of temporary registers pro-
grammed in the body() method of the sequence into the function registers of the DUT. Depending
on the opcode received, the driver calls the appropriate task, ensuring that the function words are
correctly loaded with the outcomes of randomly generated instructions.

To avoid frequent reprogramming of the LUT, a logic is employed to keep the same opcode
for a significant number of cycles before a new opcode is loaded into the DUT. This allows the
random sequence items A and B to be applied to the pPIM Core with the same instruction for an
extended period.

Before calling item_done() on the seq_item_port, the driver publishes the random opcode

4.2 UVM Testbench Architecture 46

packet to the scoreboard and functional coverage monitor via the analysis port. item_done()
signals the sequencer that it can send the next sequence item for processing.
The pim_driver includes a reset() method, which sets the PIM to known values before the

randomization process starts.

4.2.1.6 PIM Monitor

The pim_monitor is a derivative of the uvm_monitor base class. During its operation, the monitor
repeatedly samples the input values (A, B) observed on the DUT pins at the positive edge of the
clock via virtual pim_interface. It is responsible for observing the DUT output (Y) resulting from
the operation. Only during the function word loading process, the monitor ignores the output. All
three values of the pins are encapsulates into a packet of type pim_seq_item and writes it on an

uvm_analysis_port, to be utilized by other testbench components.

4.2.1.7 PIM Agent

The pim_agent is an active component extended from uvm_agent that creates instances of
pim_sequencer, pim_driver, and pim_monitor during the build phase(). In the connect_phase(),

the pim_driver and pim_sequencer are interconnected as follows:

pim_driver.seq_item_port.connect(pim_sequencer.seq_item_export) 4.1)

4.2.1.8 PIM Scoreboard

The pim_scoreboard extends from the base class uvm_scoreboard. The scoreboard subscribes
to the data published by driver and the monitor over uvm_analysis_imp ports. It imports the
randomized opcode from the driver and the values of A, B and Y as seen by DUT from the

monitor. To import the data from the analysis ports the write() methods are implemented.

4.2 UVM Testbench Architecture 47

In the run_phase(), the scoreboard performs calculations to determine the expected/golden
results using simple models based on the opcode. Addition and multiplication require no ad-
Jjustments in the expected result calculations. However, for subtraction, adjustments are made
as the DUT performs subtraction in 2’s complement. In the case of division, if the operand B
(denominator) is 0, the expected result is set to the maximum possible value of the register to
avoid division by zero.

The value of the final output (Y) published by the monitor is stored in a variable as the DUT
Result in the scoreboard, while the expected result is calculated using the models. The two results
are then compared to check for any discrepancies during the simulation. If there is a difference
between the two results, an UVM_ERROR is asserted.

Additionally, the expected and DUT outputs are published over two separate analysis ports for
functional coverage. These two values are also driven to the virtual th_interface pins DUT_Y and
GOLDENL_Y to support assertion coverage.

The pim_scoreboard also incorporates the report_phase() to provide a count of each opcode

at the end of the simulation.

4.2.1.9 PIM Functional Coverage

The pim_fcov is a class that extends the uvm_component. It declares four uvm_analysis_imp ports,
each with a separate write() method to receive packets from other testbench components. These
packets include: 1) Values of A, B, and Y as observed by the DUT from the monitor, 2) Opcodes
from the driver, 3) DUT output from the scoreboard. 4) Expected output also from the scoreboard.

The coverage plan is outlined in the 4.1. The first covergroup focuses on data words A
and B and the opcode, defining coverpoints for each of them. The cross coverage for the three
coverpoints is also measured in the same covergroup.

To implement covergroups for each DUT vs. Expected comparison, a python code proves

4.2 UVM Testbench Architecture 48

to be helpful. Given the limited number of input pairs combinations for a given width of the
operand, there are only a limited number of values of outputs generated by the DUT. With the
use of a python code, unique bins for output Y are calculated for each pair of A and B for all
four operations. These sets are provided as python lists to another python script, which iterates
over and prints the covergroups for all possible combinations of input pairs for all the operations.
The crossing of DUT and expected values reconfirms that our calculations are consistent with the

results obtained from the PIM.

4.2.1.10 PIM Environment

An environment acts as a container that houses various components including agents, scoreboards,
functional coverage monitors etc. The user defined pim_environment class is derived from
the base class uvm_env, instantiates pim_agent, pim_scoreboard and pim_fcov. At this level
of the UVM testbench hierarchy, all TLM (Transaction-Level Modeling) port connections are
established. During the connect_phase() of the pim_environment, six such TLM analysis port-
import connections are set up. These connections are crucial for facilitating communication
and data exchange between different testbench components. For a more detailed view of these

connections, refer to the Figure 4.4 below.

4.2.1.11 PIM Test

The pim_test is a top-level component that inherits from uvm_test and holds all the details specific
to the test. The pim_test instantiates pim_environment and pim_sequence handle. The sequence is
initiated in the test by invoking the star#() method on the sequencer, as shown in the following

line of code:

pim_sequence.start(pim_sequencer); 4.2)

4.2 UVM Testbench Architecture 49

Scoreboard

Driver uvm_analysis_imp_port_A item_collect_port

opcode uvm_analysis_imp_port_B opcode_in

uvm_analysis_port opcode_out ‘

T A, B, Y
‘ Coverage

uvm_analysis_imp_port_C pkt_collect_port

uvm_analysis_port #(int) exp_result_out

uvm_analysis_port #(int) dut_result_out

DUTY EXPY

Monitor
opcode

uvm_analysis_port item_send_port uvm_analysis_imp_port_D opcode_collect_port

uvm_analysis_imp_port_E dutY_collect_in

uvm_analysis_imp_port_F expY_collect_in

! 0

Figure 4.4: TLM Analysis Ports and Imports Interconnecting PIM Testbench Components

4.2.1.12 PIM Testbench Top

The pim_top serves as the testbench top and acts as a container for various components, including
the instantiation of the PIM (DUT), pim_interface, tb_interface, and pim_assertions module. The
test execution begins in the initial block of the testbench top by calling the run_test() task. This
task accepts the test name as a string parameter. It then triggers the phasing mechanism, which
orchestrates the sequential execution of UVM phases in their predefined order.

This chapter comprehensively covered the architecture and implementation details of each
component within the Core testbench. The simulation results are summarized in Chapter 7.
Moving forward, the Chapter 5 will focus on the Cluster testbench, discussing its structure and

functionality.

Chapter 5

pPIM Cluster Verification

The Design Under Test (DUT) here is Gen 2 pPIM Cluster and this chapter introduces a verification
plan and methodology to test the Gen 2 pPIM Cluster. The primary focus of this testbench is
on the implementation of the Multiply-and-Accumulate (MAC) operation. MAC operations is
demonstrated as one of the use-cases of a cluster as they are both computationally intensive and
frequently used in CNNs [3]. Through this verification process, we aim to ensure the correctness
and efficiency of the MAC operation along with validating the functionality of Gen 2 pPIM

Cluster.

5.1 Testplan

The testplan for Gen 2 pPIM Cluster is as follows:
 Stimulus generation

— Cluster input Data Words A_CL and B_CL are randomized.

— Router addresses are performed to perform MAC algorithm.

5.2 UVM Testbench Architecture 51

¢ Checker
— The DUT-generated output Y_CL, along with the random stimuli A_CL and B_CL
are sampled and broadcast over the analysis ports.

— SystemVerilog model is written for each the MAC operation to compute the expected

result on the randomly generated stimuli.
— The DUT result are compared against the expected result to ensure functional correct-
ness of MAC algorithm.

* Functional Coverage

— Covergroup for A_CL, B_CL and Y_CL

% Coverpoints for A_CL, B_CL and Y_CL: To track each possible value for these

variables, ensuring that every combination is hit at least once.
— Covergroup for DUT vs. Expected Results

Cross between binsof expected values with the binsof DUT values is performed

for each result obtained during simulation.

5.2 UVM Testbench Architecture

As observed in the preceding chapters, the pPIM cluster is comprised of nine pPIM cores, each
subjected to rigorous testing to verify its functionality. The Testbench architecture for the cluster
closely resembles that of the core testbench architecture. It adheres to the same general hierarchy
of testbench components, as illustrated in the Figure 5.1.

The uniqueness of this testbench lies in its driver. In the driver, each of the nine cores is

programmed separately, and a special algorithm is implemented to map the MAC operation by

5.2 UVM Testbench Architecture

52

pin level O port
activities QO imp/export

- transactions <> analysis port

Cluster_Testbench_Top

Cluster_Test

_‘ Cluster_Sequences ”]l

A

Cluster_Environment

Cluster_Seq_ltem
Cluster_Driver Cluster_Monitor

~N Cluster_Scoreboard

A T
Cluster_Sequencer
'

Cluster_Virtual_Interfaces

®| Cluster_Func_Coverage

Cluster_Agent A 4&
v g TB_Interface
Cluster_Interface
pPIM Cluster
Design Under Test (DUT)

Figure 5.1: pPIM Cluster Testbench Architecture

5.2 UVM Testbench Architecture 53

effectively harnessing the capabilities of these nine cores and the router.

5.2.1 Cluster Testbench Components

The utility of different testbench components is discussed in this section.

5.2.1.1 PIM Cluster Interfaces

The UVM testbench for the pPIM cluster is designed with two interfaces: pim_cluster_interface
and pim_cluster_tb_interface. The pim_cluster_interface encompasses all the wires connecting to

the ports of the DUT, as well as separate scan ports for each core.

5.2 UVM Testbench Architecture

54

Testbench

Interfaces

pim_cluster_8_interface pcif();

PIM_CLUSTER_8 top (
.clk(pcif.clk),
.reset(pcif.reset),
.A_CL(pcif.A_CL),
.B_CL(pcif.B_CL),
.FUNC_COREn(pcif.FUNC_COREn),
.FUNC_ADDRn(pcif.FUNC_ADDRn),
.IN_MODEn(pcif.IN_MODEn),
.LOAD_COREn(pcif.wr_enn),
.RUN_COREn(pcif.rd_enn),
.An_ADDR(pcif.An_ADDR),
.Bn_ADDR(pcif.Br_ADDR),
.ACCO_ADDR(pcif. ACCO_ADDR),
.ACC1_ADDR(pcif.ACC1_ADDR),
.ACC2_ADDR(pcif.ACC2_ADDR),
.ACC3_ADDR(pcif.ACC3_ADDR),
.YO_CL_ADDR(pcif.YO_CL_ADDR),
.Y1_CL_ADDR(pcif.Y1_CL_ADDR),
.Y2_CL_ADDR(pcif.Y2_CL_ADDR),
.Y3_CL_ADDR(pcif.Y3_CL_ADDR),
.Y_CL(pcif.Y_CL),
.scan_en(pcif.scan_en),
.scan_inn(pcif.scan_inn),
.test_mode(pcif.test_mode),
.scan_outn(pcif.scan_outn)

)i

interface tb_interface
logic set_NEW_INPUT;
logic set_ACC_OUT;

DUT

interface pim_cluster_8_interface
logic clk,
logic reset,
logic [7:0] A_CL,
logic [7:0] B_CL,
logic [255:0] FUNC_COREn,
logic [2:0] FUNC_ADDRn,
logic [1:0] IN_MODEn,
logic rd_enn,
logic wr_enn,
logic [4:0] An_ADDR,
logic [4:0] Brn_ADDR,
logic [4:0] ACCO_ADDR,
logic [4:0] ACC1_ADDR,
logic [4:0] ACC2_ADDR,
logic [4:0] ACC3_ADDR,
logic [4:0] YO_CL_ADDR,
logic [4:0] Y1_CL_ADDR,
logic [4:0] Y2_CL_ADDR,
logic [4:0] Y3_CL_ADDR,
logic [7:0] Y_CL,
logic scan_en,
logic scan_inn,
logic test_mode,
logic scan_outn

where, n=0,1,2,3,4,5,6,7,8

module PIM_CLUSTER_8 (
clk,
reset,
A_CL,
B_CL,
FUNC_COREn,
FUNC_ADDRn,
IN_MODEnR,
LOAD_COREn,
RUN_CORERn,
An_ADDR,
Bn_ADDR,
ACCO_ADDR,
ACC1_ADDR,
ACC2_ADDR,
ACC3_ADDR,
YO_CL_ADDR,
Y1_CL_ADDR,
Y2_CL_ADDR,
Y3_CL_ADDR,
Y_CL,
scan_en,
scan_inn,
test_mode,
scan_outn

)i

Figure 5.2: Interfaces connecting DUT (Cluster) to Testbench Environment

On the other hand, the pim_cluster_tb_interface declares a couple of logic-type variables:

"set_ ACC_OUT" and "set_NEW_INPUT." These variables serve as flags within the testbench,

enabling control during the simulation process.

5.2 UVM Testbench Architecture 55

5.2.1.2 PIM Cluster Sequence

The pim_cluster_seq_item class declares A_CL and B_CL as random inputs for the DUT. The
body() task within the pim_cluster_sequence is responsible for programming the function words
and storing them into registers. Also, it initiates the randomization of cluster sequence items.
Subsequently, the pim_cluster_driver receives the randomized packet of sequence items via the

pim_cluster_sequencer.

5.2.1.3 PIM Cluster Driver

The pim_cluster_driver is responsible for implementing the MAC (Multiply-Accumulate) oper-
ation algorithm, as discussed in detail in 5.4. However, the driver can also be programmed to
execute other complex operations on the cluster.

The driver consists of following tasks:

» Task pim_cluster_reset(): sets all the ports of all cores within the cluster as well as the

cluster ports to known values.

» Task load_PIM_cores_MAC(): The purpose of this task is to load the four pPIM (Parallel
Processing in Memory) cores with multiplication function words and the remaining five
cores with addition functions. Additionally, the addresses of all the input MUXes are set to

5’b11111, which represents the default address.

» Tasks stepl(), step2(), .., stepl0(): These tasks represent individual stages of the MAC
algorithm. In each step, specific cores are programmed to perform designated tasks,
facilitating the data flow between the cores within the cluster. Breaking down the data flow

into separate tasks improves the organization of the code.

 Task multiply_accumulate(): In this task, the aforementioned individual sub-tasks are called

5.2 UVM Testbench Architecture 56

in a sequence to execute the complete MAC algorithm. Additionally, this task takes care of

pipelining, ensuring efficient processing.

These tasks are invoked during the run phase() of the driver. The signal "set NEW_INPUT" is
asserted when a new input is detected and is deasserted in the following cycle. Similarly, the signal
"set_ ACC_OUT" is asserted when the final result is available in the accumulator and deasserted in
the next cycle. These two signals are handled over the virtual interface pim_cluster_tb_interface,

aiding in synchronizing the packets to be sent to the scoreboard for further processing.

5.2.1.4 PIM Cluster Monitor

The pim_cluster_monitor plays a crucial role in observing the signals of the DUT and converting
them into packets of pim_cluster_seq_item, which are then broadcasted over the analysis ports.

The monitor sets up two separate analysis ports. The first port is dedicated to transmitting the
cluster inputs, while the second for transmitting the cluster outputs to the scoreboard.

When the "set NEW_INPUT" flag is asserted, indicating the arrival of a new input, the monitor
captures the input data from the DUT at positive edge of the clock. This captured input data is
converted into sequence item packets and then written onto the corresponding analysis port.

On the other hand, when the "sez ACC_OUT" flag is asserted, signaling the presence of the
final result in the accumulator, the monitor captures this output data from the DUT’s signals. The
captured output data is then written onto the corresponding analysis port. This write operation

takes place at the negative clock edge.

5.2.1.5 PIM Cluster Scoreboard

The pim_cluster_scoreboard subscribes to data packets from the monitor to obtain the cluster
inputs A_CL and B_CL, as well as the DUT output, Y_CL. A simple model is implemented in

the scoreboard to compute the expected MAC result.

5.2 UVM Testbench Architecture 57

The model calculates the product of two input values and then adds this product to the value
of MAC from the previous cycle. This operation effectively performs the multiplication and
accumulation process. After the multiplication and accumulation step, the model checks whether
the resulting value in expected result exceeds or equals 65536. If it does, which means the
accumulated result has overflowed beyond the range of 16 bits (2!9), and subtracts 65536 is
subtracted from the expected result to keep it within the valid range.

For verification, the expected output is compared with the DUT output. If any discrepancies
are found, an UVM_ERROR is asserted, indicating a potential issue in the design or implementa-
tion. The multiply-accumulate operation is thoroughly tested with 5000 x 256 passes to ensure
comprehensive verification of the PIM cluster’s functionality.

Additionally, the scoreboard publishes the DUT output and the Expected output over the
analysis ports. These results are used by the functional coverage to measure the coverage metric

of the testbench.

5.2.1.6 PIM Cluster Environment

The pim_cluster_environment class inherits from the base class uvm_env, instantiates
pim_cluster_agent, pim_cluster_scoreboard and pim_cluster_fcov. All the TLM (Transaction-
Level Modeling) port connections are done in the environment during its connect_phase(). Six
such TLM analysis port-import connections are set up. These connections enable communication
and data exchange between various components within the testbench. For a detailed view of these

connections, please refer to the connection diagram 5.3.

5.2.1.7 PIM Cluster Top

In the cluster testbench, the top-level module instantiates the Cluster design and establishes

connections between its ports and the testbench using an interface. The testbench top then calls

5.3 Multiply-and-Accumulate (MAC) 58

Scoreboard

uvm_analysis_imp_PORT_A item_collect_port_input;
A_CL, B_CL, Y_CL

uvm_analysis_imp_PORT_B item_collect_port_output;
uvm_analysis_port #(int) exp_result_out;

uvm_analysis_port #(int) dut_result_out;

Monitor

uvm_analysis_port item_send_port_input; DUTY_CL EXP Y_CL
uvm_analysis_port item_send_port_output;

Coverage

uvm_analysis_imp_PORT_AB item_collect_port_input;
A _CL,B_CL Y_CL
uvm_analysis_imp_PORT_Y item_collect_port_output;

uvm_analysis_imp_PORT_DUTY dutY _collect_in;

uvm_analysis_imp_PORT_EXPY expY_collect_in;

Figure 5.3: TLM Analysis Ports and Imports Interconnecting Cluster Testbench Components

the run_test() method, which executes the pim_cluster_test. Inside pim_cluster_test, the sequence

1s initiated to drive the test scenarios.

5.3 Multiply-and-Accumulate (MAC)

The "Multiply and Accumulate" operation, often abbreviated as "MAC", is a fundamental arith-
metic operation frequently used in signal processing and numerical computing. It combines
multiplication and addition in a single step. The MAC operation calculates the product of two
operands and adds the result to an accumulated sum. This operation is commonly employed
in various applications, such as digital filters, image processing, and vector operations, where
efficient processing of large data-sets is required. The MAC operation significantly reduces the
number of arithmetic steps, leading to faster and more optimized computations.

The following section presents a detained explanation of the Multiply and Accumulate opera-
tion for 8-bit cluster inputs and 4-bit core inputs, showcasing the cluster’s capability in handling

memory-intensive operations efficiently. It is essential to note that, the cluster and core compo-

5.4 Efficient MAC Operation with pPIM Cluster 59

nents are designed to be scalable, accommodating a wide range of operand widths. This versatility
enables the cluster to execute not only the MAC operation but also other complex computationally

heavy instructions.

5.4 Efficient MAC Operation with pPIM Cluster

5.4.1 MAC using Partial Products and Accumulation

Multiplication using partial products meaning breaking down the multiplication of two multi-digit
numbers into simpler steps. Each partial product is obtained by multiplying a digit from one
number with each digit from the other number and then aligning them in their correct positions.
The final product is obtained by summing all the partial products. This technique reduces the
complexity of large-scale multiplication and is commonly used in hardware implementations.

In the case of the pPIM cluster, a similar approach is followed to implement MAC. The Cluster
operates on double the size of the input compared to the cores inside it. Since each core can
handle 4-bit operands, the 8-bit cluster inputs are split into two 4-bit operands: Ay, Ay, and By,
B;. The subscripts "H’ and 'L’ represent the upper and lower nibbles, respectively. The equations

for the partial products are as follows:

Vo = ArBr (5.1)

Vi =ArBy (5.2)

Vo =AuBL (5.3)

5.4 Efficient MAC Operation with pPIM Cluster 60

Multiplication v Accumulation
Vo—— : ’ Cout ‘<‘F| Cout ‘ ’ VoL ‘
‘AL‘X‘BL‘=‘V0H‘VOL‘:
! ‘ Vi ‘ ‘ Vo ‘
Vi——— |
RPN
—] =] o]
‘AH‘X‘BL‘=‘V2H vz._‘ ; T I <H7+
Vs + [Acc; | [Acc; | [Acci | [Acc |
‘ Ay ‘ X ‘ By ‘ = ‘ Van Vi ‘ ! ‘ [Accs | [Accz | [Acci | [Acco | K:FﬁrKCPrce;l?:s
:‘ [ACC3] [ACC;] [ACC4] [ACCq]
Figure 5.4: Partial Products and Step-wise Accumulation
Vi3 =ApBp 5.4

The partial products obtained in 5.1, 5.2, 5.3, and 5.4. These partial products are split into
higher and lower halves and arranged for the summation as shown in the Figure 5.4.

Each summation is accumulated into four individual 4-bit registers (ACCO, ACC1, ACC2,
ACC3), that further concatenate to form an Accumulator. The result of the MAC operation is

obtained as the sum of these partial products.

5.4.2 Mapping MAC Algorithm to pPIM Cluster

To map the above algorithm on the pPIM Cluster, nine cores within the cluster are assigned
specific tasks. Among these cores, four are programmed for multiplication, while the remaining
five are programmed for addition. In Figure 5.5, each pPIM core (labeled as PO, P1, ..., P8)
is represented by small squares, with cores performing multiplication shown in blue and those
performing addition shown in red. The time steps are denoted as "t".

During the first clock cycle, four partial products are computed using cores 0, 1, 2, and 3.

5.4 Efficient MAC Operation with pPIM Cluster

61

Higher Nibble
Lower Nibble
Previous Cycle Accumulator

Ay AL By B —— Updated Accumulator
!] I | | ——» Preserve Result by Adding 0
T
Po P4 P2 Po Pq P2 Po Pq P2
—3 i P 1 3 3
P3 P4 Ps P3 P4 P5 P3 P4 P5
] ACC1 =
ACCoT— e B N W
Pe P7 Ps Pe P7 Ps Pe P7 Ps
t=1 t=2 t=3
ACCq_OUT
Po P4 P2 Po Pq P2 Po Pq P2
ACC:2 L
3 T g A = —paces = 1]
B3 P4 P5 P3 P4 P5 P3 P4 P5
— — I T
v vy it] 1 { —
Pe P7 Pg Pe P7 Pg Pe P7 Pg
LI | - — L= | L
t=4 t=5 t=6
ACC1_OUT
Ay AL By B.
|] | |
4 11
T
Po Pq P2 Po P4 P2 Po Pq 2
— | 3 =T 1
P3 P4 Ps5 23 Pg Ps5 P3 P4 Ps5
|
¥ { ACCoT—
Pe P7 Pg Pe P7 Pg Pe P7 Pg
 I—
t=7 t=8 t=9
ACC2_OuT ACC3_OUuT

Figure 5.5: MAC Operation Data-flow between Nine Cores inside a Cluster

5.4 Efficient MAC Operation with pPIM Cluster 62

Starting from the second cycle onward, the addition of these partial products commences, taking
into account the previous values of the accumulator for the accumulation process. It is observed
that, the updated values of ACCO, ACC1, ACC2 and ACC3 are seen at time steps 3, 5, 7, and 9
respectively. The throughput is improved by overlapping consecutive MAC instructions. New sets
of inputs at time step 8 without any conflicts. Partial pipelining scales down the MAC operation
from 9 steps to 7 steps , except the first iteration. The observed speedup due to the pipelining is
9/7 ~ 1.2857

An extra clock cycle is required after the results are visible in the accumulator for the final

output to be reflected on the output port of the cluster labeled as "Y_CL".

5.4 Efficient MAC Operation with pPIM Cluster

63

5.4.3 MAC Example with Calculations

Table 5.1: pPIM Cluster MAC Example with step-by-step Calculations

Step Active Calculation Comment
Core
A_CL =1391p,00100111,, Cluster inputs
B_CL ="741p,0100 1010,
Atr=1 PIM O Py=A; xB; =0111 x 1010 = 00000100 Partial products 1
PIM 1 Py =Ap x By =0111 x 0100 = 00100000 Partial products 2
PIM 2 P, =Ayg x By =0010 x 1010 = 00000010 Partial products 3
PIM 3 P; =Apg x By = 0010 x 0100 = 0001 0000 Partial products 4
PIM4 | Py=Pyy+ P =0100+ 1100 = 0001 0000
Atr =2 PIM 5 Ps = Py + P = 0001 + 0001 =
0000 0010
PIM 6 Ps = Py, +ACCy = 0110+ 0000 =
00000110
PIM4 | Py = Py + Py =0000+0100 = 0000 0100
PIMS5 | Ps= P+ Ps; =1000+0010 = 0000 1010
A3 PIM 6 Ps = ACCy + Psg = 0000 - 0000 =
0000 0000
PIM 7 P; =0+ Py = 000040001 = 0000 0001 | Preserve upper nibble of

PIM 4

5.4 Efficient MAC Operation with pPIM Cluster 64

Table 5.1: pPIM Cluster MAC Example with step-by-step Calculations

Step Active Calculation Comment

Core

PIM 8 P = 0+ Ps; = 0000 4 0000 = 0000 0000 | Preserve upper nibble of

PIM 5
ACCO ACCy_OUT = Ps;, = 0110 First nibble of the
Accumulator
PIM 5 Ps = ACC; + Ps = 0000 4- 0000 =
0000 0000

Atr =4 PIM 6 | Ps = Py + Psr = 010040000 = 0000 0100

PIM7 | Py = P+ Psp = 0001+ 0000 = 00000001

PIM8 | P; =Py + Pyy = 0001+ 0000 = 0000 0001

PIM 4 Py =04 P;; = 0000+ 1010 = 0000 1010 | Preserve lower nibble of

PIM 5
PIM4 | Py = P;p+ Py =0001+1010 = 0000 1011
PIM 8 | Ps= P+ P3y = 0000+ 0000 = 0000 0000
Attr =5 PIM 5 Ps = ACC3 + Psy = 0000 + 0000 =
0000 0000
PIM 6 | Py = Psyg+ Psp = 0000+ 0000 = 0000 0000
ACCl1 ACC1_OUT = Pg;, = 0100 Second nibble of the
Accumulator

Attr=6 PIM4 | Py = Py + Py = 000040000 = 0000 0000

5.4 Efficient MAC Operation with pPIM Cluster 65

Table 5.1: pPIM Cluster MAC Example with step-by-step Calculations

Step Active Calculation Comment
Core
PIMS5 | Ps = Ps;+ Psy = 000040000 = 0000 0000
PIM6 | Ps= Py + Psr =1011+0000 = 0000 1011
PIM 6 | Py = Ps;+ Psy = 000040000 = 0000 0000
Att =7 PIM 5 P; =0+ P4, = 0000+ 0000 = 0000 0000 | Preserve lower nibble of
PIM 4
ACC2 ACC,_OUT = Py = 1011 Third nibble of the
Accumulator
P; = Ps; + Ps;, = 0000+ 0000 = 0000 0000
A_CL = 844, 0101 01005, 2nd set of Cluster inputs
B_CL =23619, 1110 1100,
Att =38
PIM 0O Vo =VouVor =Ar X B =0100 x 1100 = Step 1 pipelined with
00110000 = Py Step 8
PIM 1 Vi=VigViL =Ar x By =0100x 1110 =
00111000 = P,
PIM 2 Vo =VouVor = Ay x B = 0101 x 1100 =
00111100 = P,
PIM 3 V3 =V3yV3p, = Ag X By = 0010 x 0100 =
00010000 = P3
Atr=9 ACC3 ACC3_OUT = P;;, = 0000 Fourth nibble of the
ACC_OUT =0000101101000110 Accumulator

5.4 Efficient MAC Operation with pPIM Cluster

66

Table 5.1: pPIM Cluster MAC Example with step-by-step Calculations

Step Active Calculation Comment
Core
PIM4 | Py=Pyy+ P =001141000=00001011 | Step 2 pipelined with
Step 9
PIM 5 Ps =Py + Py =001140011 =
0000 0110
PIM 6 Ps = Py +ACCy = 000040110 =
00000110
PIM4 | P,=Py+P;=1011+1100=00010111 Step 3
PIMS5 | Ps=P;,+Psp =0110+0110= 0000 1100
PIM 6 Ps = ACCy + Pgg = 010040000 =
Atr =10
0000 0100
PIM 7 P; = 0+ Py = 0000+ 0000 = 0000 0000 | Preserve upper nibble of
PIM 4
PIM 8 Pg = 0+ Ps = 0000 + 0000 = 0000 0000 | Preserve upper nibble of
PIM 5
ACCO ACCy_OUT = Py, =0110 First nibble of the
Accumulator
PIM 5 Ps =ACCy + Psy = 1011 4+ 0000 = Step 4
Atr =11 0000 1011
PIM6 | Po=Py+Psr =0111+0100= 0000 1011
PIM7 | Ps= P+ Psyp =0000+0001 = 00000001

5.4 Efficient MAC Operation with pPIM Cluster

67

Table 5.1: pPIM Cluster MAC Example with step-by-step Calculations

Step Active Calculation Comment
Core
PIM 8 | P; = Py + P4y = 0000+ 0000 = 0000 0000
PIM 4 Py =0+ Ps; = 0000+ 1100 = 0000 1100 | Preserve lower nibble of
PIM 5
PIM4 | Py=P;p+ Py =0001-+1100=0000 1101 Step 5
PIM 8 | Ps= P+ P3z =0000+0100 = 0000 0100
Atr=12| PIMS5 Ps = ACC3 + Psp = 0000 4 0000 =
0000 0000
PIM6 | Ps=Psy+Psp =0000+1011=0000 1011
ACCl1 ACC|_OUT = Py, = 1011 Second nibble of the
Accumulator
PIM4 | Py = Pyg+ P, =0000+0100 = 00000100 Step 6
Att=13 | PIMS5 | Ps=Ps;+Psg = 0000+0000 = 0000 0000
PIM6 | Po=Py+ Py =1101+1011=0001 1000
PIM 6 | Py = Ps;+ Psy = 000040001 = 0000 0001 Step 7
Atr=14 PIM 5 P; =04 P4, = 0000+ 0100 = 00000100 | Preserve lower nibble of
PIM 4
ACC2 ACC,_OUT = Pg;, = 1000 Third nibble of the

Accumulator

5.4 Efficient MAC Operation with pPIM Cluster 68

Table 5.1: pPIM Cluster MAC Example with step-by-step Calculations

Step Active Calculation Comment

Core

Atr =15 Py = Psp + Ps;, = 010040001 = 0000 0101 Step 8

3rd set of Cluster inputs

Atr =9 ACC3 ACC3_OUT = P, = 0101 Fourth nibble of the

ACC_OUT =0101 1000 1011 0110 Accumulator

The above calculations shows the expected result of the first MAC is seen in the accumulator
ACC that is comprised of (ACC3,ACC,,ACC1,ACCy) at step 9, and it is equal to 28861¢ equal to
0000 1011 0100 0110,. The final result of the second MAC operation, which is the accumulation
of 2886 + (84 x 236) is equal to 22710 or 0101 1000 1011 0110, in binary.

5.4 Efficient MAC Operation with pPIM Cluster 69

The waveform in the Figure 5.6, 5.7 below further confirms above discussed algorithm. For
the first iteration, accumulator contents are set to zero with inputs A_CL, B_CL being 39o and

7410. The result is 28861 which gets stored in the accumulator.

(39,5 X 74,0) + 0, = 2886,
(84,5 X 236,0) + 28867, = 22710,
(175, x 48,) +22710,, = 31110, ...

Figure 5.6: Simulation Results Verifying Calculations in Table (Part 1) 5.1

In the second iteration, next pair of inputs, 8419 and 236, respectively, is introduced at the
time step of 400ns. This occurs even prior to observing the outcome of the first multiplication
and accumulation operation within the accumulator. This prompt execution is made feasible
by leveraging partial pipelining. By ¢ = 450ns, the Accumulator retains the outcome of the
first MAC instruction. This value is subsequently combined with the product of the new inputs
(8810 x 23610) at the time step of + = 590ns. Output of the next MAC instruction, 22710, is
then stored as the final result in the accumulator. This process continues for the specified number

of iterations which is set in the testbench.

5.4 Efficient MAC Operation with pPIM Cluster 70

(39,0 X 744,) + 0,0 = 2886,

(84, % 236,,) |+ 2886,, =(22710,,

(175, x 48,,) + 22710, /311105, ..

-
e
S
S
-
-
T
e

Figure 5.7: Simulation Results Verifying Calculations in Table (Part 2) 5.1

The first MAC instruction yields an output in 180ns after receiving the 1st set of inputs, while
each subsequent MAC instruction produces results in 140ns. This optimization is possible because

steps 8 and 9 overlap with steps 1 and 2, enabling more efficient processing.

Chapter 6

Tools Development

This chapter presents a toolkit developed using Python for code generation of Gen 2 pPIM Core

and Gen 2 pPIM Cluster.

6.1 Methodology

One of the major objectives of this thesis is to create a design-verification suite for user-defined
pPIM cores and clusters. The entire process of RTL design and verification for each variant of the
design can be time-consuming, error-prone, and inefficient. To address this, the thesis proposes
an automated approach using a command-line interface developed in Python.

The development of this tool involves several steps as illustrated in Figure 6.1. First, the
Verilog RTL code needs to be generalized by recognizing patterns within the code. This is
achieved by simplifying the code and avoiding complex structures to facilitate automation. The
pPIM RTL is simplified by replacing generate constructs with module instantiation. Once the
RTL is made synthesizable, a UVM testbench is built around the design for verification. Both

newly implemented core and cluster RTL designs are verified thoroughly using UVM testbenches,

6.1 Methodology 72

as detailed in Chapters 4, 5.

After verifying the RTL design with its companion UVM testbench, the next step is to replace
hard-coded values with user-specified parameters to allow for design scaling. Specific equations
were derived for the pPIM architecture, studying how the components inside the design and
port sizes scale with different operand widths. These equations provide a way to adjust every
component in the pPIM core and cluster based on the operand width, making the design more
flexible and customizable.

This scaling capability ensures that user can generate customized pPIM designs and corre-

sponding testbenches by simply specifying the desired operand width.
* Equations for pPIM Core Components Sizes

1. Width of Core Data Words/ Input Registers (A,B) =W

2. Number of Function Registers = 2 x W = Number of Multiplexers
3. Size of a Function Word = 22V = Size of a Multiplexer

4. Width of Function Address = ceil(logx(2 x W)

5. Core Output (Y) =2 x W
* Equations for pPIM Cluster Components Sizes

1. Width of Cluster Data Words (A_CL,B_CL) =2 x W
2. Size of Accumulator =4 x W

3. Size of Output Register =4 x W

4. Cluster Output (Y_CL) =4 xW

Verification is a crucial phase in the design cycle as it plays a pivotal role in identifying and

rectifying any errors, whether they stem from RTL or architectural issues. Its primary objective is

6.1 Methodology

73

4 v

START

r

Develop Synth

\

~N

esizable RTL [«

J

v

r

Develop UVM Testbench [€

J

Static Operand Width/

Design Verification
Successful

Tweak the DUT

A

Yes

s ! N

Ve

Scale RTL Design

v

N

Scale UVM

Vs

Testbench

J

Dynamic Operand Width/

Design Verification
Successful

Yes

Develop a complete set of tools to generate
user-defined design and testbench

A

y

STOP

Figure 6.1: Tools Development Methodology

6.1 Methodology 74

to ensure that the design is an accurate reflection of its specifications. During verification, the
testbench rigorously tests the design, and any discrepancies in results are investigated leading to
modifications in either the design or the testbench code to address the problems. The simulation
is re-run for multiple iterations with different testing scenarios until the required accuracy is
achieved.

The next step involves embedding Verilog into Python to enable the generation of user-defined
designs. Python aids modularization of the design code into reusable methods to which the
user-input data width can be passed as input to produce a custom design. Python’s simplicity
and platform independence make it a popular choice for scripting in the hardware design process.
A Python script is created to generate design and verification testbench files, leveraging string
manipulation methods and utility libraries. The generated design and testbench are thoroughly
tested to ensure no new errors are introduced during scripting.

To support user-friendly design creation, the Python script is exposed through a Command
Line Interface (CLI). The CLI tool accepts three parameters, out of which "width" (data word
width) and "techlib" are required. An optional "suffix" parameter is used for module, file, and
folder naming based on user input. By specifying these requirements with a single-line command,
users can easily create desired designs and testbenches. A help() function is included to list
the necessary parameters and provide a sample command for generating the required design,

enhancing user experience and reducing potential errors.

6.1.1 Core Generation

The pPIM _core_toolkit takes three command line arguments 1) to specify the core operand size,
2) desired technology library for the synthesis, and 3) an optional module name that will be
appended as a suffix in the generated code to uniquify all modules. Users can select between

a 180nm, 65nm, or 28nm technology library. The generated files are organized based on the

6.1 Methodology 75

Generated File Structure

PIM_28nm PIM_65nm PIM_180nm

pPIM Core Toolkit

- Operand Width
sic etc do src etc do st et de
-« @ .

- Tech Library
|::> Q :> PIN_4_abe PIM_6_abo PIN_4_abo
—
- Module Name ﬁ
sre ot do src ot do st et dc

PIM_6_xyz PIM_8_xyz PIM_6_xyz

\

Figure 6.2: Use Case Diagram for pPIM Core Tools

user-defined tech library, specified width, and suffix. Different sized cores with the same techlib
are stored under a common top-level folder named *PIM_<techlib>’ (e.g., "PIM_180’ for techlib
’180nm’). Refer to a Figure 6.2 illustrating the folder organization done by tools. Subsequent
designs with the same techlib will be created inside this top-level folder, creating different design
variants. Each variant will have separate folders for source files, control files for gates and RTL,

and configuration files.

6.1.2 Cluster Generation

The pPIM_cluster_toolkit requires three command line arguments: 1) the PIM core operand
size desired within the cluster, 2) the desired technology library for synthesis (options: 180nm,
65nm, and 28nm), and 3) an optional module name to be appended as a suffix in the generated
code to uniquify all modules. The folder organization is shown in the Figure 6.3. Similar to the
pPIM core toolkit, the generated files are organized based on the user-defined tech library and
specified core operand size. The cluster consists of nine cores, each with its operational data word
width (W). Therefore, the cluster’s operand width will be of resolution 2W. All files and folders

generated by the script will have *2W’ as their suffix to reflect the cluster’s operand width.

6.2 Python for Code Generation 76

Generated File Structure

PIM_CLUSTER_28nm PIM_CLUSTER_GSnm\ PIM_CLUSTER_180nm

pPIM Cluster Toolkit
- Operand Width
- Tech Library sc etc dc sto etc dc sre ot de
J
|’> Q |:> Cluster_4_ab Cluster_10_abc Clusteizlabs
- Module Name ﬁ ~ A n ~ A n —
src etc do sre et de src ote de

Cluster_6_xyz Cluster_8_xyz Cluster_14_xyz

Figure 6.3: Use Case Diagram for pPIM Cluster Tools
6.2 Python for Code Generation

Python is an excellent choice as a scripting language for generating custom designs and testbenches.
Its strong string manipulation and formatting capabilities make it well-suited for replacing place-
holders with desired values, making code generation efficient and less error-prone. Python has a
rich ecosystem of libraries and packages that can be utilized for various tasks, including parsing,
data manipulation, and file generation.

The following Python libraries are used in our tools:

* sys: The sys library is a fundamental Python library that provides access to system-specific
parameters and functions. sys.argv() is used to access any command-line options and

arguments and sys.exif() is used for existing the program.

 getopt: The getopt library is used for parsing command-line options and arguments which

are often specified with flags (e.g., -h, --verbose).
* math: The math library provides a set of mathematical functions and constants in Python.

* os: The os library allows interaction with the operating system. It provides functions for
performing operations related to file handling, directory manipulation, and other system-

related tasks. This library is used in file generation.

6.3 User Guide 77

6.3 User Guide

The script takes command line arguments to specify the width of data words, desired technology

library for the synthesis, and an optional suffix for module names in the generated RTL.

6.3.1 pPIM Core
» Usage
— python pPIM_core_toolkit.py [arguments]
* Arguments

1. --help (optional): Displays the help message.
2. --width or -w (required): Specifies the width of data words for PIM Core.

3. --techlib or -t (required): Specifies the technology library for the synthesis. The User

can select between 180nm, 65nm, and 28nm.

4. --suffix or -s (optional): Appends a suffix to module names in the generated RTL.
* Example commands showing long and short arguments

1. python pPIM_core_toolkit.py --width 4 --techlib 180 --suffix A

2. python pPIM_core_toolkit.py -w 4 -t 180 -s A
* Generated folder and files hierarchy example (using example commands above)

— RTL and Testbench source code: PIM_180/PIM_4_ A/src
* Design.v and Testbench.sv files

— Simulation control files: PIM_180/PIM_4_Aletc

6.3 User Guide 78

* PIM_4_A.uvm.gate.f

+ PIM_4 A.uvm.rtl.f
— Synthesis control files: PIM_180/PIM_4_A/dc

+* PIM_4_A_config.tcl

tech_config.tcl

6.3.2 pPIM Cluster
* Usage
— python pPIM_cluster_toolkit.py [arguments]
* Arguments

1. --help (optional): Displays the help message.

2. --width or -w (required): Specifies the width of data words for PIM Core. The PIM
Cluster’s input size is double the Core’s width. For example, with 4-bit PIM cores, the

cluster will have 8-bit inputs and a 16-bit output.

3. --techlib or -t (required): Specifies the technology library for the synthesis. User can

select between 180nm, 65nm and 28nm.

4. --suffix or -s (optional): Appends a suffix to module names in the generated RTL.
* Example commands showing long and short arguments

— python pPIM_cluster_toolkit.py --width 4 --techlib 180 --suffix xyz

— python pPIM_cluster_toolkit.py -w 4 -t 180 -s xyz

* Generated folder and files hierarchy example (using example commands above)

6.3 User Guide

79

— RTL and Testbench source code: PIM_180/PIM_CLUSTER_8_xyz/src
* Design.v and Testbench.sv files
— Simulation control files: PIM_180/PIM_CLUSTER_8_xyz/etc

* PIM_CLUSTER_8_xyz.uvm.gate.f

* PIM_CLUSTER_8_xyz.uvm.rtl.f
— Synthesis control files: PIM_techlib/PIM_width_suffix/d¢

+ PIM_CLUSTER_8_xyz_config.tcl

tech_config.tcl

Chapter 7

Results

This chapter presents the verification results achieved from the UVM verification testbench for
both Gen 2 pPIM Core and Gen 2 pPIM Cluster. Also, both the core and the cluster, have
undergone RTL as well as gate-level synthesis. Power, area, and scan-test coverage results are
discussed.

The results are collected using following tools:

1. Cadence Xcelium for RTL simulations.

2. Synopsys Design Compiler for logic synthesis, test insertion, power, and timing analysis.
3. Synopsys PrimeTime for timing analysis.

4. Synopsys PrimePower for power analysis.

7.1 Gen 2 pPIM Core

This section presents results for the Gen 2 pPIM Core.

7.1 Gen 2 pPIM Core 81

7.1.1 Verification Results

As per the verification methodology discussed in Chapter 4, the pPIM Core undergoes compre-
hensive testing using the UVM testbench with a random seed. Our developed pPIM_core_toolkit
enables the generation of multiple versions of the pPIM Core design, along with its corresponding
UVM testbench. Each design, based on its configuration, is then assigned a different number of

passes in the tools. The number of passes is determined as shown in Table 7.1:

Table 7.1: Number of Passes in Simulation for Various pPIM Core Configurations

W Cycle Multiplier Width of Function Number of
(Bits) Word (Bits) Passes

2 1000 16 16000

3 1000 64 64000

4 1000 256 256000

5 1000 1024 1024000

6 100 4096 409600

7 10 16384 163840

8 10 65536 655360

7.1 Gen 2 pPIM Core 82

7.1.1.1 Simulation Results

This section showcases simulation waveforms for the Gen 2 pPIM Core with different Operand
widths (W). During the simulation, four opcodes ADD, SUB, MULT, and DIV are randomly
generated and each one is tested for a period of Total Simulation Time/20 or Total Passes/20. The
blue markers on the waveform indicate the start and end of the function word loading process. It
is observed that as the operand width increases, the time required to program the function word

also increases.

| & Bassline =0
P | Cursor-Baseline = 30,975, 24503

MName v Cursor &w
o

il FUIN
il
il IH_!

_—__
Figure 7.1: Operand Word Width (W) =2

| & Baselinev=0
£f| Cursor-Baselinev = 577 &7, 55008

&~ Cursar G-
0

-7
e
T ap)
i B[2:0]

- V[5:0]
1= FUNI
Bl
Bl
ofT LOAD
-3 RUN

@~ [Cursar @

Figure 7.3: Operand Word Width (W) =4

7.1 Gen 2 pPIM Core

83

@ Baselinevi=0
EF| Cursor-Baseline v=5,123,560,000p

Name &~ [Cursor !]

a60000_0» | 000000

“n 0000000»
“h 0000000»
“h 0000000»
“h o000000»
“n o000000»
"h 00000008
“n 0000000»
-+ SFUNC_ADDR D] ‘n a0

|@ emneveo
Ef|Cusor-Sesinev=8,184,35 81703

Name o] [Cursor &~

¥l reset o

=1 RUN

Baseline =0
| Cursor-Baseline » = 6,968,397, 360.32608

- Cursor @~ [

Vo)
4 FUNC
il FUNC

=2,462,682 607ps

%~ [cursar

=7 FUN

Figure 7.7: Operand Word Width (W) =7

7.1 Gen 2 pPIM Core 84

458,377 56205

v [Cursor_ v

Figure 7.8: Operand Word Width (W) =8

7.1.1.2 Functional Coverage

Figure 7.9 displays the comprehensive coverage analysis, including both code and functional
coverage, for the user-defined Gen 2 pPIM Core utilizing 4-bit operands. This combined coverage
evaluation offers a holistic view of the core’s verification progress and ensures that both design

correctness and functionality are thoroughly examined.

Metrics Source Attributes 4 B
Ex \INE Name Overall Average Grade ¥
4 =% overall == 95.57%

4 EE Code = 92.91%
=% Block 100%
=: Statement
== Expression
=% Toggle ==l 91.2%

2% FSM

4 EE Functional 100%
=% Assertion 100%
=% CoverGroup 100%

=% FaultMode

Figure 7.9: Verification Metrics for PIM core with W=4

Figure 7.10 captures Covergroups analysis of the pPIM core using 4-bit operands. It showcases
the cross coverage of data words and opcodes, providing valuable insights into the randomness of

stimuli.

7.1 Gen 2 pPIM Core 85

Type (default scope) : & Types
Functional Covered Grade: 100% | CoverGroup Covered Grade: 100% | Assertion Covered Grade: 100%

Cover Gro.. Assertions

=5 Bins | AXB_X opcode E]
Ex i Name Overall Average Grade Overall Covered Abstract Expand qpE
¥l i [Name cvpt_A cvpt_B cwpt_opcode Overall Overall Covered Score
Lz pim_4_NAM_fcov::cg_dw_op 100% 1060 /1060 (100%) [fveregelCrads ¥
I pim_4_NAM_fcov::cg_ADD_Y_0 100% * 272 (100%)
CIRsL gt =5 A[0).B[0].add A[0] 8[0] add 100% 171 (100%) 28 [=
B pim_4_NAM fcov:icg ADD_Y_1 100% * 272 (100%) g}
sy e =5 A[0}B{0].5ub A[0] B[0] sub 100% 171 (100%) 200
I pim_4_NAM feov:icg_ADD_Y_2 100% * 272 1(100%) =
= A[0].B{O].div 0] B[O} div 100% 171 (100%) 242
L pim_4_NAM fcov:icg ADD_Y_3 100% * 272 (100%)
Sy B s =5 A[0),B[0],mul 210] 8[0] mul 100% 171 (100%) 260
I3 pim_4_NAM fcov:icg_ADD_Y_4 100%* 272 (100%)
e s == A[0].B{1].add A[0] BIL1 add 100% 171 (100%) 207
L3 pim_4_NAM fcov:icg ADD_Y_S 100% * 272 (100%)
== A[0LB[1].5ub A[0] B[1] sub 100% 171 (100%) 185
I pim_4_NAM fcov:icg ADD_Y_6 100% * 272 (100%)
Shiet P Eely =3 A[0)B[1]div a10] B[1] div 100% 171 (100%) 201
B pim_4_NAM_fcoviicg_ADD 100%* 2/2(100%)
== A[0LB{1].mul A[0] BIL1 mul 100% 171 (100%) 267
L5 pim_4_NAM_fcov::cg_ADD_Y. 100% * 272 (100%)
pip ety i =5 A[0).B[2].add A[0] B[2] add 100% 171 (100%) 279
B pim_4_NAM fcov:icg ADD_Y_8 100% * 272 (100%)
Ty iy =5 A[0}B(2].5ub A[0] Bl2] sub 100% 171 (100%) 216
L pim_4_NAM fcov::cg_ADD_Y_10 100%* 272 1(100%)
= A[0].B[2].div A[0] B[2] div 100% 171 (100%) 255
I pim_4_NAM_fcov::cg_ADD_Y_11 100% * 272 (100%)
iy i =5 A[0),B[2],mul A[0] B[2] mul 100% 171 (100%) 260
L pim_4_NAM fcov:icg_ADD_Y_12 100% * 272 (100%)
e i i =5 A[0).B(3].add A[0] B[3] add 100% 171 (100%) 207
L3 pim_4_NAM fcov::cg_ADD_Y_13 100% * 272 (100%)
=5 A[0].B[3].5ub A[0] B[3] sub 100% 171 (100%) 186
I pim_4_NAM fcov:icg ADD_Y_14 100% * 272 (100%)
ety wis el =5 A[0),B[3]div 2[0] 8[3] div 100% 171 (100%) 237
I pim_4_NAM fcov:icg_ADD_Y_15 100%* 272 (100%)
== A[0].B(3L.mul A[0] B3] mul 100% 171 (100%) 240
L pim_4_NAM_fcov::cg_ADD_Y_16 100% * 272 (100%)
Y e] =5 A[0).B[4].add A[0] B[4] add 100% 171 (100%) 320
I pim_4_NAM fcov:icg ADD_Y_17 100% * 272 (100%)
A (e T =5 A[0L.B[4]sub Al0] B4l sub 100% 1/1(100%) 203
L pim_4_NAM fcov::cg_ADD_Y_18 100% * 272 1(100%)
= A[0]BIALdiv A[0] B4] div 100% 171 (100%) 253
I pim_4_NAM_fcov::cg_ADD_Y_19 100% * 272 (100%)
s S =5 A[D).B[4].mul A[0] B[4] mul 100% 171 (100%) 240
I pim_4_NAM fcov:icg ADD_Y_20 100% * 272 (100%)
a) IIF‘ =5 A[0}B{5].add A[0) B[5] add 100% 171 (100%) 304
3 F2 100%
Hoe oy = A[DLBIS].5ub 0] BI5] sub 7 100% 171 (100%) 194
=5 A[0)B[s]div 2[0] 8[s] div 100% 171 (100%) 239
=5 A[0LB(S].mul A[0] B[5] mul 100% 171 (100%) 258
Ex [Ai Name Overall Average Grade Overall Covered = A[0].B[6].add 0] Bl6] add 100% 171 (100%) 281
3 =3 A[0),B[E],5ub a10] B[6] sub 100% 171 (100%) 221
= et A 100% 16 / 16 (100%) = == A[0.B{6].div A[0] Bl6] div 100% 171 (100%) 242
= cptB 100% 16 /16 (100%)] =5 A[D).B[E].mul A[0] B[6] mul 100% 171 (100%) 246
7wt 100% 44 (100%) - = A[0].B[7].add A[0] B[7] add 100% LOLOREY 26 [
A8 A_X_B_X_opcode 100% 1024 / 1024 (100%) Bty

Figure 7.10: Covergroups Analysis for PIM core with W=4

Figure 7.11 presents the Assertion Coverage analysis of the pPIM core using 4-bit operands.
The analysis includes both Cover Properties (CP) and Assertion Properties (AP). Each assertion

written for the core is tested to ensure it is covered at least once.

Type (default scope) : i Types
Functional Covered Grade: 100% | CoverGroup Covered Grade: 100% | Assertion Covered Grade: 100%

Cover Groups Asserti..

<» Source: =
@ LN [Name Overall Average Grade Assertion Status Grade | guerall Avarage Grade +
pim_4_NAM_assertions.sv = x 4 b B
P CP_known_input_B 100% =l =
P AP_known_input B 100% = 100% 43
Po CP_known_input A 100% e g) i
P AP_known_input A 100% B 100% 438 / Input data word B shoi el chon words are being loaded. &
P CP_stable_B_on_FW_load 100% 4 property stable_B_on_FW_load; -
» AP stable B on AW load 100% — 50 @(posedge pif.clk) disable iff (pif.reset)
s crlstabielalaniowlioad 100% 51 (grose(pifwr_en) && 4fell(pif.rd_en) && pif IN_MODE 'ho) |-> ##7 $past(pif.B, 9) == pif.B;
P 4p_stable_A_on_FW_load 100% = 100% 52 erwipi ooty — s)
P CP_rd_wr_enable 100% 53 & AP_stable_B_on_FW load: assert property (stable_B_on_FW load) /gdisplay("A and & are stable"); =
P AP_rd_wr_enable 100% == 100% o else begin
P CP_validate_output 100% 55 gerror("Time= %t, New random input B generated while loading function words", $time);
P 4P _validate_output 100% = 100% 56 end I
57 @ CP_stable_B_on_FW load: cover property (stable B_on_FW_load) &display("property stable B_on_F\ =
58]
58]
60 i #5 Input A should not be X or Z (unknown) at clk. 7]

i] EVE‘

Figure 7.11: Assertion Properties Analysis for PIM core with W=4

Table 7.2 below presents the results of function coverage for each pPIM core variant.

7.1 Gen 2 pPIM Core 86

Table 7.2: Functional Coverage for Various Gen 2 PIM Core Configurations

W Functional Coverage
(Bits) Assertions Covergroups

2 100% 100%
3 100% 100%
4 100% 100%
5 100% 100%
6 100% 100%
7 100% 100%
8 100% 100%

7.1.1.3 Code Coverage

Table 7.3 presents the code coverage analysis for the pPIM core Verilog code. It includes
measurements for both block coverage and toggle coverage. Block coverage indicates the
percentage of code blocks executed during verification, while toggle coverage assesses the number
of signal transitions exercised by the testbench. Toggle coverage is observed to be not 100%, this
is because all the bits in the function word registers do not toggle. The function word registers
contain pre-calculated results of all possible combinations of input pairs. These coverage metrics
enable engineers to identify untested areas in the code (dead code) and evaluate the thoroughness

of their verification efforts.

7.1 Gen 2 pPIM Core 87

Table 7.3: Code Coverage for Various Gen 2 PIM Core Configurations

W Code Coverage

(Bits) Block Toggle
2 100% 94.72%
3 100% 92.37%
4 100% 92.91%
5 100% 90.75%
6 100% 90.60%
7 100% 92.40%
8 100% 90.59%

Code coverage and functional coverage are both essential aspects of the verification process in
hardware design. They complement each other and provide different perspectives on the quality
and completeness of the verification effort. Code coverage focuses on analyzing how much of
the source code is exercised by the testbench during verification. Code coverage helps identify
untested portions of the code, such as unreachable code or dead code, enabling verification
engineers to spot potential coding errors or missing functionality. Functional coverage, on the
other hand, concentrates on the verification of specific functionality or requirements of the design.
It defines coverage goals based on functional specifications and monitors whether these goals are

achieved during testing.

7.1 Gen 2 pPIM Core 88

7.1.2 Synthesis Results

Synthesis plays a vital role in chip design as it bridges the gap between the high-level RTL de-
scription and the actual hardware implementation. During synthesis, the RTL code is transformed
into a gate-level netlist, representing the physical hardware components and connections. This
process involves mapping the RTL code to specific technology library cells available in the chosen
process technology, ensuring the design’s feasibility within the process design Kkit.

For the pPIM Core and Cluster, designers have three options for technology libraries: 28nm,
65nm, and 180nm. Each variant of the pPIM undergoes synthesis, providing valuable insights
into design-for-test (DFT) considerations and the total area required by the design. Moreover,
prime time and prime power reports are generated, facilitating a comparison of the different pPIM
designs in terms of timing and power characteristics.

The test coverage for all cores is observed to be 100%, indicating that all scan cells (flip-flops)
are exercised during the scan test. This metric ensures that all flip-flops are reachable and correctly
connected in the scan chain, providing comprehensive verification of the design.

The area and power consumption increase significantly as the size of the Lookup Table (LUT)
expands with higher data-word widths. The increase in LUT size leads to an increase in area and
power requirements.

Data arrival time refers to the timing information related to when valid data becomes available
at the input of a digital circuit relative to a reference clock edge. The data arrival time values in

the Table 7.4 are measured from register to register.

7.1 Gen 2 pPIM Core 89

7.1.2.1 28nm Synthesis Results

Table 7.4: 28nm Synthesis Results for Various PIM Core Configurations

w Test Total Area Power (W) Delay (ns)
(Bits) Coverage (umz) (Data Arrival Time)

2 100% 1446 1.084¢~04 0.4300

3 100% 8519 7.350e % 0.4380

4 100% 48128 3.043¢=9 0.5410

5 100% 271459 0.0187 0.5410

6 100% 1574933 0.0899 0.4380

The plot of core input data word width vs. total area is shown in Figure 7.12.The X-axis represents
core operand widths, and the Y-axis shows the Total Area measured using synthesis tools. The
Total Area is presented on a logarithmic scale, showing a consistent linear growth pattern. This
observation indicates an exponential rise in the total area as the operand width expands, reflecting

the LUT size’s exponential growth in powers of 2.

7.1 Gen 2 pPIM Core 90

Input Data Word Width vs Total Area

—0— 28 nm

106 -
NE 105 -
2
©
g
<<
I
o
= 104 4

103 -

2 3 4 5 6

Input Data Word Width

Figure 7.12: Plot of Input Data Word Width (W) vs Total Area for 28nm pPIM Core

7.1.2.2 65nm Synthesis Results

The synthesis results collected for 65nm technology library for the pPIM Core shows similar

behavior in area, power and timing.

7.1 Gen 2 pPIM Core

91

Table 7.5: 65nm Synthesis Results for Various PIM Core Configurations

w Test Total Cell Area Power (W) Delay (ns)
(Bits) Coverage (um?) (Data Arrival Time)

2 100% 1264 7.743¢=9 0.1890

3 100% 7128 4.375¢~04 0.3040

4 100% 36799 2.295¢793 0.3740

5 100% 182017 0.0113 0.3740

6 100% 869455 0.0539 0.3450

The plot of core input data word width vs. total cell area is shown in Figure 7.13.

Total Cell Area (um?)

Input Data Word Width vs Total Cell Area

106 4

105 4

104 -

103 -

65 nm

4

Input Data Word Width

Figure 7.13: Plot of Input Data Word Width (W) vs Total Cell Area for 65nm pPIM Core

7.1 Gen 2 pPIM Core 92

The Plot 7.14 below showcases a comparison between core operand width against power,
considering both 28nm and 65nm technologies. The power data also follows a consistent linear
growth pattern when presented on a logarithmic scale, signifying an exponential surge in total

power as the core’s operand width increases.

Input Data Word Width vs Power

65 nm
—0— 28 nm
10—1 .
10—2 u
S
]
E
S 10734
1074
10_5 T T T T T
2 3 4 5 6

Input Data Word Width

Figure 7.14: Comparison of Input Data Word Width (W) vs Power for 28nm and 65nm pPIM
Core

7.2 Gen 2 pPIM Cluster 93

7.2 Gen 2 pPIM Cluster

This section discusses results for the Gen 2 pPIM Cluster.

7.2.1 Verification Results
7.2.1.1 Simulation Results

The waveform diagrams illustrating the MAC (Multiply and Accumulate) operation are depicted
in the Figure 7.15 below. The initial MAC instruction yields an output after 180ns from the
introduction of the first set of inputs into the processing cluster. Subsequent MAC instructions,
following the initial one, generate outputs at intervals of 140ns each. The incorporation of a
partial pipeline has resulted in a notable enhancement of 22.22% in the performance of the MAC
operation implementation.

Two markers of the same color denote inputs and output of the cluster. The core inputs and
outputs produced by pPIM core within the cluster can also be seen in the waveform. The core
inputs are seen on internal wires sSA_n, sB_n and resulting core outputs on sY_n, where n goes
from O to 8. Each pPIM core is marked with a different color. In the waveform, core 0 is positioned
at the top and core 8 at the bottom. In the schematic of the pPIM Cluster depicted in 1.3, the colors

of the cores match the arrangement shown in the waveform below.

7.2 Gen 2 pPIM Cluster 94

i = 270

EERERTREREREN

ﬂIIiI!I!FH!II

Figure 7.15: MAC Operation: 8-bit Cluster Operands with 4-bit Core Operands

7.2.1.2 Functional Coverage

Table 7.6 displays the functional coverage results for different pPIM Cluster variations. The
data collected confirms that MAC instructions can be successfully carried out on any cluster
variant. This also implies that Gen 2 user-defined clusters have the potential to efficiently handle

data-intensive tasks.

7.2 Gen 2 pPIM Cluster 95

Table 7.6: Functional Coverage for Various PIM Core Configurations

Cluster Operands Core Operands Width | Functional Coverage

Width (Bits) (W) (Bits) (Covergroups)

4 2 100%

6 3 100%

8 4 100%

10 5 100%

12 6 100%

14 7 100%

16 8 100%

Figure 7.16 illustrates the extent of coverage for the inputs and outputs of the cluster, as well
as coverage for the results from the Design Under Test (DUT) and the expected results from the
computational model included in the testbench. Coverpoints and Covergroups provide statistical

analysis of the observed items and also give insight into the quality of the stimuli.

Ex |k Name Overall Average Grade Overall Covered Abstract Expand i
e i [Name (Overall Average Grade 4[overall Covered Score
B pim_cluster_8_feov:cq_aby 100% 66048 / 66048 (100%) =
& pim_cluster_8_fcov:icg_compare_Y_CL 100% 131074 / 131074 (100%) 3 DUT_Y_cL(7) 100% 171 (100%) 182
5 DUT_Y_cLi1s] 100% 171 (100%) 182
5 DUT_Y_cLi14] 100% 171 (100%) 12
o DUT_Y_cL13) 100% 171 (100%) 154
o DUT_Y_cLa2) 100% 171 (00%) 105
o DUT_Y_cupa1 100% 171 (100%) 133
o DUT_Y_cLiio] 100% 171 (100%) 147
o DUT_Y_cLig] 100% 171 (100%) 70
3 DUT_Y_cLig] 100% 171 (100%) 147
5 DUT_Y_CLi64] 100% 171 (100%) 154
=5 DUT_Y_cLi6] 100% 171 (100%) 147
o DUT_Y_cLis] 100% 171 (00%) 161
o8 DUT_Y_cui4) 100% 171 (100%) 140
o DUT_Y_cLi3) 100% 171 (100%) 147
o DUT_Y_cLi2] 100% 171 (100%) 105
8 DUT_Y_cLi1) 1002 171 (100%) 7
5 DUT_Y_cLi16] 100% 171 (100%) 133
o DUT_Y_GLI63] 100% 171 (100%) 147
i o DUT_Y_CLa7) 100% 171 (00%) 133
@ o] o5 DUT_Y_cLiis] 100% 171 (200%) 154
S o DUT_Y_cLiis) 100% 171 (100%) 140
o DUT_Y_cL{20] 100% 171 (100%) 154
8 DUT_Y_cL{21] 100% 171 (100%) 19
B i Name Overall Average Grade Overall Covered B = DUTY_CL(22] 100% 171 (100%) 140
| == DUT_Y_CL{23] 100% 171 (100%) 154
& dut 100% 65537 / 65537 (100%)] o DUT_Y_CL[24] 100% 171 (100%) 161
& ep 100% 65537 / 65537 (100%) o8 DUT_Y_cLi25] 100% 171 (100%) 112
o DUT_Y_cLiz6] 100% 171 (100%) 196
o DUT_Y_cL(27) 100% 171 (100%) 126
5 DUT_Y_CL{28] 100% 171 (100%) 168
Showing 65537 tems

Figure 7.16: Covergroups Analysis for PIM cluster with W=8

7.2 Gen 2 pPIM Cluster

7.2.2 Synthesis Results

Synthesis results collected for Gen 2 pPIM Cluster using 28nm technology library are presented

in this section.

7.2.2.1 28nm Synthesis Results

The synthesis results collected for 28nm technology library for the pPIM Cluster shows similar
behavior in area, power and timing. As the operand width of the individual cores within the cluster

increases, there is an exponential increase in the size of LUTs for each core, consequently leading

to an expansion in the overall cluster size and power.

Table 7.7: 28nm Synthesis Results for Various PIM Cluster Configurations

A_CL, w Test Total Area Power (W) Delay (ns)
B_CL (Bits) Coverage (,umz) (Data Arrival
(Bits) Time)

4 2 100% 17732 9.94¢04 0.4300

6 3 100% 90467 6.75¢~ % 0.4380

8 4 100% 520008 0.0341 0.5300

10 5 100% 2804968 0.1692 0.5410

7.2 Gen 2 pPIM Cluster

97

The plot of cluster operand width vs. total area is shown in Figure 7.17.

Cluster Operand Width vs Total Area

107
—— 28 nm

. 106 .
g
2
©
g
<
I
o

105 i

104 T T T T T T T

4 5 6 7 8 9 10

Cluster Operand Width

Figure 7.17: Plot of Cluster Operand Width (W) vs Total Area for 28nm pPIM Cluster

7.2 Gen 2 pPIM Cluster 98

The plot of cluster operand width vs. power is shown in Figure 7.18.

Cluster Operand Width vs Power

—— 28 nm
10—1 4
2 1021
o
2
o]
a
10—3 4
10_4 T T T T T T T
4 5 6 7 8 9 10

Cluster Operand Width

Figure 7.18: Plot of Cluster Operand Width (W) vs Power for 28nm pPIM Cluster

This chapter concludes verification and synthesis results for both Generation 2 pPIM Core

and Generation 2 pPIM Cluster.

Chapter 8

Conclusion

In conclusion, this thesis culminates in a comprehensive overview of the contributions and

advancements made in of Generation 2 Programmable Processing in Memory (pPIM) architecture:

1. Generation 2 pPIM Core: Thesis presents the Generation 2 pPIM core, a redesigned,
advanced version of the previous static architecture, Generation 1 pPIM core, as a key
contribution. The redesigned core architecture handles operand width in range 2-bits to
8-bits seamlessly eliminating limitation of only supporting 4-bit inputs. The operand width
is fixed at the time of RTL generation. Gen 2 pPIM Core demonstrates successful execution
of any programmed operations. The Verilog RTL code for the pPIM core is revised. By
simplifying the code, making it scalable, and ensuring synthesizability, the design becomes

more versatile and adaptable to synthesis tools.

2. Generation 2 pPIM Cluster: Thesis presents the Gen 2 pPIM Cluster, a redesigned, advanced
version of the previous architecture. Flexibility is improved with individually programmable
cores. The processing elements inside the cluster such as router, pPIM cores, are redesigned,
including non-blocking router, integrated accumulator, and integrated output register. Gen 2

pPIM Cluster operates on operand widths of 4, 6, 8, 10, 12, 14, and 16. Gen 2 pPIM Cluster

100

inputs are double the size of the core inputs residing in it, and the cluster operand width is

also fixed at the time of RTL generation.

. Gen 2 pPIM Router: As noted above, this work includes a redesigned the router inside
the Gen 2 pPIM Cluster, which significantly enhances the cluster’s capabilities. The new
router includes components such as input multiplexers and output multiplexers that allow
non-blocking, all-to-all communication between the cores, accumulator and output register.
The router exhibits crossbar architecture. The cores are able to feed themselves back their

own output.

. Accumulator and Output Register: As noted above, this work includes the design and
integration of the accumulator and output register into Gen 2 pPIM Cluster enabling it to

implement complex operations. The output register is implemented for timing purposes.

. UVM Testbenches for Gen 2 pPIM Core and pPIM Cluster: This work includes the
research and development of advanced UVM testbenches, complete with constrained-
random testing, functional coverage, and SystemVerilog Assertions for the Gen 2 pPIM
Core and pPIM Cluster. These testbenches provide efficient, and comprehensive validation
of both the Gen 2 pPIM Core and Gen 2 pPIM Cluster. Randomized testing of arithmetic
operations thoroughly verifies core functionality. Concurrently, the pPIM Cluster testbench
demonstrates data-intensive Multiply-and-Accumulate (MAC) operations, revealing 22.22%

performance increase through partial pipelining in the MAC algorithm.

. Python-Based Design Database Generator Tool Suite: A Python-based command-line
interface has been developed to automate the generation of user-defined Gen 2 pPIM pPIM
Core and pPIM Cluster designs, along with their verification testbenches. This tool suite

reduces manual effort, speeds up the design and verification process, and helps explore

8.1 Future Work 101

different design options more effectively. This tool has proven to enhance design verification

accuracy and efficiency by reducing human involvement and errors.

In summary, this research advances the field of high-performance, data-intensive processors by
making pPIM processors adaptable for various applications. The contributions presented in this
thesis provide a foundation for further development in the area of programmable processing in
memory architectures, with potential applications across a wide range of computational tasks and

technologies.

8.1 Future Work

The future work in the area of pPIM include several promising directions for research and

development.

* Firstly,the MAC operation is demonstrated as one of the use-cases of the Gen 2 pPIM
Cluster, although the cluster is not limited to performing only the MAC. To uncover its full
potential across diverse computational tasks, the Gen 2 pPIM Cluster UVM testbench can

be extended to map and validate other data-intensive instructions on the cluster effectively.

 Efforts can also be directed towards optimizing the synthesis process, particularly for
operands with 7-bit and 8-bit pPIM Core. Exploring strategies such as modular synthesis
or incremental synthesis could potentially reduce processing time and enhance the overall

design workflow.

* The Gen 2 pPIM Cluster generation tool can be enhanced by the addition of user-defined
parameters, such as specifying the number of cores in the cluster through command line

options, would provide greater customization and flexibility in cluster design.

8.1 Future Work 102

* Gen 2 pPIM designs can be guided through a physical layout flow (and example using
physical synthesis is shown in I. Additionally, the evolution of the Gen 2 Programmable
Processing in Memory is facilitated by the implementation of an instruction set architecture

(ISA) hardware, which is a step toward development of this innovative computing paradigm.

References

[1]

(2]

[3]

[4]

[5]

[6]

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 5th ed.

Amsterdam: Morgan Kaufmann, 2012.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,

and K. Yelick, “A case for intelligent RAM,” IEEE Micro, vol. 17, no. 2, pp. 34—44, 1997.

P. R. Sutradhar, S. Bavikadi, M. Connolly, S. Prajapati, M. A. Indovina, S. M. P. Dinakar-
rao, and A. Ganguly, “Look-up-Table Based Processing-in-Memory Architecture With
Programmable Precision-Scaling for Deep Learning Applications,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 2, pp. 263-275, 2022.

P. R. Sutradhar, M. Connolly, S. Bavikadi, S. M. Pudukotai Dinakarrao, M. A. Indovina, and
A. Ganguly, “pPIM: A Programmable Processor-in-Memory Architecture With Precision-
Scaling for Deep Learning,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp. 118-121,
2020.

M. Connolly, P. R. Sutradhar, M. Indovina, and A. Ganguly, “Flexible Instruction Set
Architecture for Programmable Look-up Table based Processing-in-Memory,” in 2021 IEEE

39th International Conference on Computer Design (ICCD), 2021, pp. 66-73.

S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-Gavitt, and S. Garg,

References 104

[7]

[8]

[9]

[10]

[11]

[12]

[13]

“Benchmarking Large Language Models for Automated Verilog RTL Code Generation,” in

Design, Automation and Test in Europe Conference and Exhibition, 2023, pp. 1-6.

C. Fun and N. Thulasiraman, “Synthesizable verilog code generator for variable-width tree

multipliers,” Journal of Physics: Conference Series, vol. 1962, p. 012046, 07 2021.

R. Kulkarni, “Automated RTL generator,” mathesis, San Jose State University, (2013).

[Online]. Available: https://scholarworks.sjsu.edu/etd_projects/305

S. Ghose, A. Boroumand, J. S. Kim, J. Gomez-Luna, and O. Mutlu, “Processing-in-memory:
A workload-driven perspective,” IBM Journal of Research and Development, vol. 63, no. 6,

pp- 3:1-3:19, 2019.

X. e. a. Yang, “A Processing-in-Memory Architecture Programming Paradigm for Wireless

Internet-of-Things Applications,” Sensors (Basel, Switzerland) vol. 19,1 140., 2019.

X. Zou, S. Xu, X. Chen, L. Yan, and Y. Han, “Breaking the von Neumann
bottleneck: architecture-level processing-in-memory technology,” Science China
Information Sciences, vol. 64, no. 6, p. 160404, 2021. [Online]. Available:

https://doi.org/10.1007/s11432-020-3227-1

D. E. Shaw, S. Stolfo, H. A. H. Ibrahim, B. Hillyer, G. Wiederhold, and J. N. Andrews, “The
NON-VON Database Machine: A Brief Overview,” IEEE Database Eng. Bull., vol. 4, pp.

41-52, 1981.

J. Silc, B. Robi¢, and T. Ungerer, Processor-in-Memory, Reconfigurable, and Asynchronous
Processors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 299-333. [Online].
Available: https://doi.org/10.1007/978-3-642-58589-0_7

https://scholarworks.sjsu.edu/etd_projects/305
https://doi.org/10.1007/s11432-020-3227-1
https://doi.org/10.1007/978-3-642-58589-0_7

References 105

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. S. Stone, “A Logic-in-Memory Computer,” IEEE Transactions on Computers, vol. C-19,

no. 1, pp. 73-78, 1970.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. E. Kozyrakis, R. Thomas,
and K. Yelick, “Intelligent RAM (IRAM): chips that remember and compute,” 03 1997, pp.
224 —225.

D. G. Elliott, M. Stumm, M. Snelgrove, C. Cojocaru, and R. Mckenzie, “Computational
RAM: implementing processors in memory. Des. Test Comput. 16(1), 32-41,” Design and
Test of Computers, IEEE, vol. 16, pp. 32 — 41, 02 1999.

M. Oskin, E. T. Chong, and T. Sherwood, “Active Pages: a computation model for intelligent

memory,” in Proceedings. 25th Annual International Symposium on Computer Architecture

(Cat. No.98CB36235), 1998, pp. 192-203.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, “Smart Memories: a
modular reconfigurable architecture,” in Proceedings of 27th International Symposium on

Computer Architecture (IEEE Cat. No.RS00201), 2000, pp. 161-171.

Design Verification Challenges. Boston, MA: Springer US, 2007, pp. 1-16. [Online].
Available: https://doi.org/10.1007/978-0-387-69167-1_1

C. Spear and G. Tumbush, SystemVerilog for Verification: A Guide to Learning
the Testbench Language Features. Springer US, 2012. [Online]. Available: https:
//books.google.com/books?1id=QaWOYTOXy0OEC

J. Bromley, “If SystemVerilog is so good, why do we need the UVM? Sharing responsibilities
between libraries and the core language,” in Proceedings of the 2013 Forum on specification

and Design Languages (FDL), 2013, pp. 1-7.

https://doi.org/10.1007/978-0-387-69167-1_1
https://books.google.com/books?id=QaWOYTOXy0EC
https://books.google.com/books?id=QaWOYTOXy0EC

References 106

[22] R. Salemi, The UVM Primer: A Step-By-Step Introduction to the Universal
Verification Methodology. Boston Light Press, 2013. [Online]. Available: https:
//books.google.com/books?id=h7MLngEACAAJ

https://books.google.com/books?id=h7MLngEACAAJ
https://books.google.com/books?id=h7MLngEACAAJ

Appendix I

Schematics and Layouts

This section presents the schematics and layouts for Generation 2 pPIM Core with 4-bit operands
and Generation 2 pPIM Cluster with 8-bit operands. For simulation Cadence Xcelium tools are

used and for producing layouts, Synopsys IC Compiler Physical Synthesis tools are utilized.

I.1 Gen 2 pPIM Core (W=4) Schematic

Figure I.1: Schematic for pPIM Core with Operand Width 4-bits

1.2 Gen 2 pPIM Core (W=4) Layout 108

.2 Gen 2 pPIM Core (W=4) Layout

pPIM Core area (Operand width 4 bits) collected using Synopsys IC Compiler Physical Synthesis
tools : 52517 pm? in 28nm.

Figure 1.2: Synopsys IC Compiler Physical Synthesis Layout for pPIM Core in 28nm with
Operand Width 4-bits

1.3 Gen 2 pPIM Cluster (W=8) Schematic 109

I.3 Gen 2 pPIM Cluster (W=8) Schematic

=]
q
[
il
]
[
r
i
i
A
L
]
|
i
i
B
il
0
il
i
il

Figure 1.3: Schematic for pPIM Cluster with Operand Width 8-bits

[.4 Gen 2 pPIM Cluster (W=8) Layout 110

I.4 Gen 2 pPIM Cluster (W=8) Layout

pPIM Cluster area (Operand width 8 bits) collected using Synopsys IC Compiler Physical

Synthesis tools : 671662 wm? in 28nm.

Figure 1.4: Synopsys IC Compiler Physical Synthesis Layout for pPIM Cluster in 28nm with
Operand Width 8-bits

[.4 Gen 2 pPIM Cluster (W=8) Layout 111

Figure 1.5: Top Left Corner View of Synopsys IC Compiler Physical Synthesis Layout for pPIM
Cluster in 28nm with Operand Width 8-bits

Appendix 11

Source Code Request

All requests for a source code release package should be made by email to Mark Indovina at

Rochester Institute of Technology: maieee @ rit . edu

	Programmable Processing-in-Memory Core and Cluster Design and Verification
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Terminology
	1.2 Research Goals
	1.3 Thesis Contributions
	1.4 Organization

	2 Literature Review
	2.1 Automatic Code Generation
	2.2 Processing-in-memory
	2.2.1 Memory Wall
	2.2.2 Evolution and Advancements in PIM Architectures

	2.3 Verification Methodologies
	2.3.1 SystemVerilog for Verification
	2.3.2 Universal Verification Methodology (UVM)

	3 pPIM Architecture
	3.1 Generation 2 pPIM Core
	3.2 Generation 2 pPIM Cluster
	3.2.1 Router
	3.2.1.1 Input Multiplexer
	3.2.1.2 Output Multiplexer

	3.2.2 Accumulator
	3.2.3 Output Register

	4 pPIM Core Verification
	4.1 Testplan
	4.2 UVM Testbench Architecture
	4.2.1 Core Testbench Components
	4.2.1.1 PIM Interfaces
	4.2.1.2 PIM Sequence-item
	4.2.1.3 PIM Sequence
	4.2.1.4 PIM Sequencer
	4.2.1.5 PIM Driver
	4.2.1.6 PIM Monitor
	4.2.1.7 PIM Agent
	4.2.1.8 PIM Scoreboard
	4.2.1.9 PIM Functional Coverage
	4.2.1.10 PIM Environment
	4.2.1.11 PIM Test
	4.2.1.12 PIM Testbench Top

	5 pPIM Cluster Verification
	5.1 Testplan
	5.2 UVM Testbench Architecture
	5.2.1 Cluster Testbench Components
	5.2.1.1 PIM Cluster Interfaces
	5.2.1.2 PIM Cluster Sequence
	5.2.1.3 PIM Cluster Driver
	5.2.1.4 PIM Cluster Monitor
	5.2.1.5 PIM Cluster Scoreboard
	5.2.1.6 PIM Cluster Environment
	5.2.1.7 PIM Cluster Top

	5.3 Multiply-and-Accumulate (MAC)
	5.4 Efficient MAC Operation with pPIM Cluster
	5.4.1 MAC using Partial Products and Accumulation
	5.4.2 Mapping MAC Algorithm to pPIM Cluster
	5.4.3 MAC Example with Calculations

	6 Tools Development
	6.1 Methodology
	6.1.1 Core Generation
	6.1.2 Cluster Generation

	6.2 Python for Code Generation
	6.3 User Guide
	6.3.1 pPIM Core
	6.3.2 pPIM Cluster

	7 Results
	7.1 Gen 2 pPIM Core
	7.1.1 Verification Results
	7.1.1.1 Simulation Results
	7.1.1.2 Functional Coverage
	7.1.1.3 Code Coverage

	7.1.2 Synthesis Results
	7.1.2.1 28nm Synthesis Results
	7.1.2.2 65nm Synthesis Results

	7.2 Gen 2 pPIM Cluster
	7.2.1 Verification Results
	7.2.1.1 Simulation Results
	7.2.1.2 Functional Coverage

	7.2.2 Synthesis Results
	7.2.2.1 28nm Synthesis Results

	8 Conclusion
	8.1 Future Work

	References
	I Schematics and Layouts
	I.1 Gen 2 pPIM Core (W=4) Schematic
	I.2 Gen 2 pPIM Core (W=4) Layout
	I.3 Gen 2 pPIM Cluster (W=8) Schematic
	I.4 Gen 2 pPIM Cluster (W=8) Layout

	II Source Code Request

