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Abstract

Extensive research has gone into optimizing convolutional neural network (CNN) architec-
tures for tasks such as image classification and object detection, but research to date on
the relationship between input image quality and CNN prediction performance has been
relatively limited. Additionally, while CNN generalization against out-of-distribution im-
age distortions persists as a significant challenge and a focus of substantial research, a
range of studies have suggested that CNNs can be be made robust to low visual quality
images when the distortions are predictable. In this research, we systematically study
the relationships between image quality and CNN performance on image classification
and detection tasks. We find that while generalization remains a significant challenge
for CNNs faced with out-of-distribution image distortions, CNN performance against low
visual quality images remains strong with appropriate training, indicating the potential
to expand the design trade space for sensors providing data to computer vision systems.
We find that the functional form of the GIQE can predict CNN performance as a function
of image degradation, but we observe that the legacy form of the GIQE does a better job
of modeling the impact of blur/relative edge response in some scenarios. Additionally, we
evaluate other image quality models that lack the pedigree of the GIQE and find that
they generally work as well or better than the functional form of the GIQE in modeling
computer vision performance on distorted images. We observe that object detector per-
formance is qualitatively very similar to image classifier performance in the presence of
image distortion. Finally, we observe that computer vision performance tends to exhibit
relatively smooth, monotonic variation with blur and noise, but we find that performance
is relatively insensitive to resolution under a range of conditions.
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Chapter 1

Introduction

Understanding of image quality for computer vision applications lags understanding of
image quality for human vision. Designers of cameras and remote sensing systems have
historically sought to optimize image quality for the human visual system, because his-
torically remote sensing imagery (panchromatic and / or true color) has been analysed
visually. Research on the problem of designing cameras and remote sensing systems for
the human visual system dates back to the earliest use of telescopes and accelerated in
the late 20th and early 21st centuries with the proliferation of electro-optical imaging
[1, 2, 3, 4, 5, 6, 7, 8]. More recently, at the back end of the image chain (i.e., processing of
the imagery after collection), significant research has explored the problem of optimizing
convolutional neural networks (CNNs) for classifying images and performing tasks such
as object detection and image segmentation, particularly since 2012 when Krizhevsky et
al. decisively demonstrated the capability of CNNs for image classification [9]. And while
these CNNs have found widespread use, and despite their strong performance against
relatively high quality images, generalization remains a significant challenge, and CNNs
struggle with images of objects in unusual contexts or viewed from sub-optimal geometry
[10, 11, 12].

Largely used in the remote sensing field for images to be analyzed manually, the Na-
tional Image Interpretability Rating Scale (NIIRS) uses the General Image Quality Equa-
tion (GIQE) shown in equation 1.1 to map three fundamental sensing parameters–ground
sample distance (GSD), relative edge response (RER), and signal to noise ratio (SNR)–to
a numerical score which predicts the types of objects an analyst can identify in an image,
as shown in Table 1.2 [13]. The GIQE is non-linear, with an independent term for each
variable and a cross-term intended to capture the impact of coupling between RER and
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SNR, taking the form

NIIRS = A0 +A1 log10 (GSD) +A2

(
1− exp

A3

SNR

)
log10RER

+A4 (log10RER)
4 +

A5

SNR
, (1.1)

with the coefficients {Ai} taking on the values in Table 1.1 [14]. To build a sensor that
will collect images for human interpretation, designers work within a well defined trade
space.

Table 1.1: GIQE version 5 coefficients relating imaging system parameters to image NIIRS
scores

A0 A1 A2 A3 A4 A5

9.57 -3.32 3.32 -1.9 -2 -1.8

Table 1.2: Example analysis tasks possible at each NIIRS level

NIIRS
Rating Example analysis tasks enabled

0 Interpretability of the imagery is precluded by obscuration, degradation, or
very poor resolution.

1 Detect a medium-sized port facility andyor distinguish be-tween taxiways and
runways at a large airfield.

2 Detect large hangars at airfields. Detect large buildings e.g., hospitals, fac-
tories

3 Detect the presence/absence of support vehicles at a mobile missile base.
4 Identify individual tracks, rail pairs, control towers, switch-ing points in rail

yards.
5 Identify individual rail cars by type (e.g., gondola, flat, box) and/or locomo-

tive by type (e.g., steam, diesel).
6 Identify automobiles as sedans or station wagons.
7 Identify ports, ladders, vents on electronics vans.
8 Identify windshield wipers on a vehicle.
9 Differentiate cross-slot from single slot heads on aircraft skin panel fasteners.
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Figure 1.1: Our approach to designing and developing imaging systems evolved with the
primary goal of collecting images for human viewing and analysis. Here, we begin to
systematically study image quality for computer vision with the goal of understanding
the extent to which traditional imaging system requirements will or will not transfer to
systems that primarily provide data for machine analysis.

At the intersection of imaging and computer vision lies the challenge of understanding
image quality as it relates to the performance of computer vision tools, particularly CNNs.
For many computer vision tasks, CNNs will continue to analyze images captured primarily
for human use; for these tasks, optimizing the CNN with respect to its input data is the
pertinent problem. For other tasks, however, such as those relating to autonomy and
remote sensing, CNNs will analyze images captured primarily for machine use. In the
latter case, understanding image quality as it relates to CNN performance represents a
significant question. As computer vision plays more and more central roles in analyzing
image data, it becomes increasingly important to understand the extent to which image
quality for computer vision mirrors or diverges from image quality for human vision (Fig.
1.1).

Images in remote sensing and autonomous operations have the propensity to stress
the CNN weaknesses identified in the literature [10, 11, 12]. Relative to ImageNet [15]
data, overhead imagery has lower resolution, often contains more noise, and (relative to
everyday ImageNet images) is collected from atypical viewing geometry. Similarly, images
collected by autonomous vehicle cameras will at times experience degradations such as blur
and poor illumination. Given the growing range of applications in which computer vision
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systems will be required to analyze lower visual quality images from sensors that may
provide few or no images to human viewers, it is important to understand the relationship
between image quality factors and CNN performance, particularly if those factors differ
between human and computer interpreters. This understanding could lead to sensors that
collect data better tailored to machine interpretation and could open up new trade space
for imaging system designs, even if the collected imagery are of “low” visual quality.

Additionally, we highlight that in many computer vision tasks, scene content and
clutter will vary from scene to scene and particularly from dataset to dataset. These
types of variations tend to stress the generalization capabilities of CNNs discussed in
2.4, representing an axis in the problem of computer vision that we believe to be largely
orthogonal to that of image quality. Both axes warrant attention, and generalization is
arguably the primary focus of computer vision research today; we intend to address the
question of image quality in this effort.



Chapter 2

Background

2.1 Image Quality

Historically, we can identify three main branches of image quality study. First, in the
imaging hardware regime, the primary task is to minimize the differences between image
and scene; the field of optics largely centers on how to create a tight point spread function
(PSF) and maximizes a system’s optical transfer function (OTF), and the field of sensor
design largely centers on maximizing signal and minimizing noise [8, 16, 13, 17]. Second,
in the image processing regime, the primary task is to minimize the difference between
an initial image and a final compressed image as quantified by any number of functions
[18, 6, 19], where often the functions are driven by empirical research on human visual
perception. Finally, in the regime of remote sensing systems, the primary task is to
maximize some utility metric (whether quantitative or qualitative) defined by the task at
hand. To consider how these image quality branches are interrelated, we will consider some
of the basic relationship affecting optical designs and how these relationships ultimately
drive system designs and trades.

2.1.1 Linear Shift-Invariant Systems

To understand image quality, it is helpful to begin by approximating optical systems as
linear and shift invariant (LSI), allowing us to use the tool set developed for the study of
LSI systems. As encapsulated by Easton [20], a linear system is one whose output consists
of a weighted sum of its inputs. Formally, in one dimension, we can treat such as system
as an operator Ω acting on functions f1 and f2 that satisfies

Ω {αf1 (x) + βf2 (x)} = αΩ {f1 (x)}+ βΩ {f2 (x)} , (2.1)
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where α and β are (possibly complex) constants. A shift invariant system is one whose
action on an input is independent of the input’s position. Formally, in one dimension, we
can treat such a system as an operator Ω operating on f1 such that if

Ω {f (x)} = g (x) , (2.2)

then
Ω {f (x− x0)} = g (x− x0) (2.3)

for all x0.
Two factors make the linear shift-invariant (LSI) system a particularly useful approx-

imation. First, the eigenfunctions of any linear shift invariant system are complex expo-
nentials of form f (x) = αeikx. In other words, an LSI-system with a complex exponential
input will always output a scaled version of this same complex exponential. Importantly,
these complex exponentials form an ortho-normal set of basis functions into which any
function defined over the real number line R can be decomposed. We can therefore re-
write the input to any LSI system as an infinite superposition of complex exponentials,
and the output will be a superposition of the same complex exponentials scaled by the
transfer function of the system. Using the common notation of Fourier analysis, we can
express any function f (x) as the sum of its complex exponential Fourier components, or

f (x) =

∫ ∞

−∞
F (ξ) ei2πξxdξ, (2.4)

where F (ξ) is the superposition weighting of the complex exponential of frequency ξ. The
function F (ξ) is generally known as the Fourier representation of f (x), and it is calculated
by taking the projection of f (x) onto the set of complex exponentials, which we compute
with the Fourier transform,

F (ξ) =

∫ ∞

−∞
f (x) e−i2πξxdx ≡ F {f (x)} , (2.5)

denoted here as the operator F.
Second, any LSI system can be fully described with a convolution operation. Specif-

ically, the output g (x) of any LSI system is the convolution of the input f (x) with the
system’s impulse response function h (x) (known as point spread function for optical ap-
plications), formally expressed by the integral

g (x) = f (x) ∗ h (x) =
∫ ∞

−∞
h (α) f (x− α) dα. (2.6)
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(a) PSF (b) MTF

Figure 2.1: PSF and MTF with and without Airy diffraction from a circular aperture with
no obscuration

Importantly, the transfer function H (ξ) is given by the Fourier transform of the PSF,
F {h (x)}. As noted above, the transfer function is a representation of the system’s eigen-
values; it describes the action of the system by quantifying how the system scales its
eigenfunctions. Accordingly, we can find the output by representing the input f (x) in the
system’s eigen-basis (i.e. by taking the Fourier transform F (ξ) = F {f (x)}) and scaling
by the system transfer function. Formally, we have

G (ξ) = F (ξ)H (ξ) , (2.7)

where G (ξ) is the Fourier representation of the LSI output. From the Fourier representa-
tion G we can compute the spatial representation g (x) using equation 2.4, also known as
the inverse Fourier transform, leaving us with

g (x) = F−1 {H (ξ)F (ξ)} =
∫ ∞

−∞
H (ξ)F (ξ) ei2πξxdξ. (2.8)

2.1.2 Image Quality and Imaging Systems Trades

Optics

An ideal optical system would map a point source at infinity to an infinitesimal point in
the focal plane. Such a system would have a PSF defined by the Dirac delta function
δ (x), and a transfer function of 1 at all spatial frequencies. The physics of wave optics
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do not allow this ideal system, however. Because of diffraction, the best possible optical
system with a circular aperture of diameter dap and focal length f maps a point source at
infinity of wavelength λ and unit radiance to the Airy pattern shown in 2.1 and given by

I (r) =

dap
4

J1

(
πdapr
λf

)
r

2

, (2.9)

where J1 is the first order Bessel function of the first kind and r is the spatial coordinate
in the focal plane [21]. The first zero of J1 occurs when the argument evaluates to 1.22π,
leading to the well known Airy radius

rAiry = 1.22
λf

dap
= 1.22λF, (2.10)

where F represents f/dap, typically known as f-number or numerical aperture. Using the
small angle approximation θ ≈ r

f , we reach our angular resolution θmin, where

θmin =
1.22λ

dap
. (2.11)

The transfer function of this ideal optical system is zero above the optical cutoff frequency
ρcut, where

ρcut =
dap
λf

. (2.12)

To first order then, we can see by inverting equation 2.11 that to resolve features of
angular extent as low as θmin, an optical system needs a diameter dap ≥ 1.22λ

θmin
. Optical

aberrations, however, are inevitable for any realistic system, increasing this limiting spot
size and decreasing angular resolution commensurately. Accordingly, the basic task of
an optical designer is to ensure sufficient system resolution, first through choice of an
appropriate aperture and second through the more difficult task of minimizing aberrations.

Noise

Having established the minimum aperture diameter necessary to achieve angular resolu-
tion of θmin or better, we must next consider the the necessity of capturing the image,
historically with film and today with a charge coupled device (CCD) or complementary
metal-oxide-semiconductor (CMOS) sensor. If the basic task of an optical designer is to
ensure sufficient system resolution, the basic task of a sensor designer is to deliver a high
signal to noise ratio (SNR) from pixels spaced closely enough to preserve the resolution
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of the optical system. In practice, this means maximizing quantum efficiency, minimizing
sensor noise contributors, and minimizing pixel size.

CCDs and CMOS sensors convert impinging photons to photoelectrons in a semi-
conductor (usually silicon for visible applications) which are usually stored in a capacitor
before being read out (counted) by sensor electronics. The ideal sensor would convert each
impinging photon to a photoelectron and count all photo-electrons noiselessly. Physics and
statistical mechanics, however, prevent such a sensor.

First, no sensor converts all impinging photons to photo-electrons; some photons are
reflected, some pass through the sensor unabsorbed, and some electron-hole pairs re-
combine before a photo-electron can be re-absorbed. Quantum efficiency, η, summarizes
these effects, with

η =
total photoelectrons captured

total photon arrivals
. (2.13)

Although no detector can achieve 100% quantum efficiency, it is possible in many appli-
cations to find QE values well above 90% in the relevant spectral band. For each pixel of
quantum efficiency η, we therefore have a photon signal np given by

np = ηΦptintp
2, (2.14)

where ϕp is our photon flux in in units of photons per unit area, tint is integration time,
p is pixel pitch, and np denotes total photoelectrons captured.

Next, we must consider the various noise sources that affect any sensor. First, the
statistics of random photon arrivals means that all signal photons and captured photo-
electrons carry intrinsic noise according to the Poisson distribution (see figure 2.2), given
by the probability density function

P (N = n;λ) =
λne−λ

n!
, (2.15)

where P (N = n;λ) gives the probability that n photoelectrons will be captured during
some arbitrary period of time in which λ photoelectrons should arrive on average. The
Poisson distribution has variance equal to its mean λ, and therefore standard deviation√
λ, meaning that photon noise σp (also known as shot noise) is given by the square root

of average photoelectrons captured
√
n̄p and photoelectron variance is simply

σ2
p = n̄p. (2.16)

After the noise inherent in the randomness in photon arrivals, we must consider the
primary noise sources intrinsic to the sensor itself, namely dark current noise and read
noise. Dark current is primarily due to thermally generated electron-hole pairs in the
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Figure 2.2: Poisson probability distributions and SNR for various λ values

sensor itself [22]. While it is possible to remove the DC component of dark current via
calibration, since dark current rates are predictable, the generation of dark electrons also
follows a Poisson distribution. Accordingly, for an expected dark electron count n̄d, we
have

n̄d = idtint, (2.17)

where id is average dark current for each pixel in electrons per second and tint is integration
time, leading to dark current variance

σ2
d = n̄d = idtint, (2.18)

with dark current noise
√
n̄d. Photon noise and dark constitute the intrinsic noise in the

electrons that are collected and later counted.
After photoelectron generation and its associated noise terms, read noise constitutes

the final noise term inherent in any sensor. Read noise is signal-independent and occurs
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primarily due to thermal processes in sensor readout electronics and can be affected by a
variety of factors, such as the size (capacitance) of the electron well that stores photoelec-
trons after generation, the readout rate, and the temperature of the sensor [23, 24]. Here,
we will model read noise as a zero-mean Gaussian distribution of standard deviation σr,
given by

P (N = n;σr) =
1

σr
√
2π

e
− 1

2

(
n
σr

)2

. (2.19)

Finally, most images are recorded with a bit depth insufficient to capture the exact
number of electrons read out by the sensor electrons, driving sampling noise, the last
term that we will consider here. For instance, many sensors have well depths between
10,000 and 100,000 electrons, while virtually all consumer images are stored in an 8-bit
format capable of recording only 256 signal levels per pixel. If we had sensor a well depth
of 25,600 electrons being read out in an 8-bit format, each output digital number (DN)
would correspond to a range of 100 signal electrons. Accordingly, sampling noise follows
a discrete uniform distribution given by

P (N = n;nl, nh) =
1

nh − nl + 1
=

1

k
, (2.20)

where nl and nh are the lowest and highest electron counts corresponding to a particular
output digital number and k is the total number of discrete values that N can take on.
The discrete uniform probability distribution has variance

σ2
u =

k2 − 1

12
≈ k2

12
=

(nh − nl)
2

12
, (2.21)

for large ranges nh−nl, which is equivalent to the variance of the more familiar continuous
uniform distribution. Using the approximation of a uniform distribution for a system with
a well depth of dw electrons and a bit depth b, we have sampling noise variance given by

σ2
s =

1

12

(
dw
2b

)2

, (2.22)

where the quantity dw/2
b is the number of electrons per digital number.

Since these noise sources are all independent, we can add them in quadrature to find
the total noise for an image. Specifically,

σ2
total =

∑
i

σ2
i , (2.23)
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where σtotal is total noise of an image with independent noise contributors of variance σ2
i .

Here, with the noise contributors discussed above, we have

σtotal =
√
σ2
p + σ2

d + σ2
r + σ2

s , (2.24)

where σp is photon (shot) noise, σd is dark current noise, σr is read noise, and σs is
sampling or quantization noise. For each pixel, then, we have an SNR given by

SNR =
np√

σ2
p + σ2

d + σ2
r + σ2

s

=
np√

np + σ2
d + σ2

r + σ2
s

. (2.25)

We can see from equation 2.25 that for high signal conditions, photon (shot) noise will be
our dominant noise source, with SNR approaching the

√
n curve shown in figure 2.2. For

low signal conditions, conversely, the remaining noise terms will dominate overall SNR.

Integration and Optimization

Having considered the main concerns of an optical design and a sensor designer, resolution
and SNR respectively, we turn to the basic task of an optical designer: trading resolution
and SNR. Thus far we have considered resolution and SNR in isolation, but the two are
highly coupled.

To capture all of the spatial information passed by our system optics, small, closely
space pixels maximize system resolution but do so at the expense of SNR. The optical
quality factor, typically called Q, encapsulates this trade by quantifying the ratio of Airy
radius to pixel spacing, with

Q =
λF

p
(2.26)

for pixel pitch p and f-number F [25, 8]. To faithfully capture an image without aliasing
or contrast inversion, a sensor needs at least two pixels per Airy radius rAiry, or Q ≥ 2.
While we can grasp intuitively that we need multiple pixels within the PSF to capture
the information contained, we can return to the concept of the system transfer function
to understand the important of pixel spacing more rigorously.

Here, we will begin by considering the transfer function of a single detector element in
a line scanning system, ignoring for now the effects of periodic sampling. In one dimension,
we can approximate the process of capturing an image at a focal plane as the convolution
of a rectangular detector element with the image. Extending the nomenclature of 2.6, we
will call our pre-sampling optical image go and our final sampled image gf , with

go (x) = f (x) ∗ ho (x) , (2.27)
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Figure 2.3: Example to illustrate the impact of pixel width on sensor transfer function.
Here, we start with a a pure sine function of unit frequency/period and convolve varied
width RECT (window) functions. Output signal is attenuated as window width approaches
the period of the sine function. The pixel’s transfer function becomes negative for pixel
widths ∈ (1, 2) sine period, causing an inversion of the output phase. (Note: pixel window
functions depicted are not been normalized as shown. The output shown, however, result
from convolution of the input signal with a unit area window function.)
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where f is our scene and ho is our optical PSF/impulse response. Our final image gf is
given by convolution of the optical image with our detector impulse response hd, meaning
that our final image gf is given by

gf (x) = go (x) ∗ hd (x) = f (x) ∗ ho (x) ∗ hd (x) . (2.28)

Furthermore, using the properties of transfer functions, we can take the Fourier transform
of equation 2.28 and find that

Gf (ξ) = F (ξ)Ho (ξ)Hd (ξ) , (2.29)

which yields a system transfer function that is the product of the optical and sensor
transfer functions, or Hs = HoHd.

Figure 2.3 illustrates the the impact of the detector’s transfer function on a unit am-
plitude, unit frequency sinusoid. Our signal is fully attenuated as the pixel pitch is equal
the input period (the inverse of the input spatial frequency), and we observe a contrast
inversion (or phase shift of π radians) when the pixel pitch exceeds the input period. If
we incorporate periodic sampling at intervals of ds, rather than simply modeling our the
effect of the sensor through convolution with a rectangular detector element, we will also
observe aliasing for spatial frequencies ξ > 1/ (2× ds), commonly known as the Nyquist
frequency.

To explore the impact of periodic sampling, we will consider a sensor with rectangular
pixels of size (pitch) p and spacing ds = p (i.e. a detector with a 100% fill factor). As
described by Easton [20], we can model the action of such a sensor by convolution with the
window function followed by multiplication by a normalized comb function, which consists
of Dirac delta functions evenly spaced at ds, resulting in a final sampled image gs, with

gs (x; ds) = gf (x)
1

ds
COMB

(
x

ds

)
, (2.30)

where gf is given by equation 2.28. Taking the Fourier transform and applying the mod-
ulation theorem (see Easton chapter 9 for a proof [20]), we find that the frequency space
representation of the image can be expressed

Gs (ξ; ds) = F {gf}F
{

1

ds
COMB

(
x

ds

)}
= Gf (ξ) ∗ COMB(dxξ) , (2.31)

where Gf is given by equation 2.29. Convolution with the comb function is equivalent to
convolution with an infinite series of Dirac delta functions spaced at frequency intervals
∆ξ = 1

ds
. Convolution with a delta function of non-zero phase (e.g. δ (ξ + ξ0) creates a

shifted copy the input signal, or

F (ξ) ∗ δ(ξ + ξ0) = F (ξ + ξ0) (2.32)
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for an arbitrary function F (ξ). Because of this phase shifting, convolution with COMB(dsξ)
creates frequency space “echos” of the input function spaced at intervals 1

ds
. Accordingly,

if the original input signal has spatial frequency content above 1
2ds

, frequency-shifted copies
of the original signal will overlap with one another, and higher frequencies will be aliased
to lower frequencies.

Figure 2.4 illustrates this frequency overlap when ds >
1

2|ξ|max
. Here, we use the band

limited sinc function, with F {sinc (x)} = RECT(ξ), where

sinc (x) ≡ sin (πx)

πx
(2.33)

and

RECT (ξ) ≡


1 when − 1

2 < ξ < 1
2

1
2 when ξ = ±1

2

0 otherwise

. (2.34)

When ds < 1
2|ξ|max

, the periodic repetitions (sampling artifacts) of our signal’s frequency

content do not overlap with its un-sampled, true frequency content. If we discard all of the
frequencies larger than |ξ| > 1

2ds
, we can reconstruct a representation of our original signal

without aliasing. Conversely, when ds > 1
2|ξ|max

, frequencies above 1
2ds

will be aliased to

lower frequencies in the band that will be used for reconstruction, as illustrated by the
bottom row in figure 2.4 where the sampling interval ds = 1.25 (arbitrary length units).
For a sensor with a 100% fill factor and rectangular pixels, this aliasing begins as the
same spatial frequency where phase inversion due to convolution with a rectangular pixel
element occurs (illustrated in figure 2.3). Consequently, if our only concern were faithful
sampling of our optical image, we would always design sensors with sampling rates of at
least twice the highest spatial frequency passed by the system’s optics, or

ds ≤
1

2ξmax
=

1

2ρcut
=

d

2λf
(2.35)

where ds is our pixel spacing and ρcut is the optical cutoff frequency of our system, given by
equation 2.12 for a system with aperture diameter d and focal length f imaging wavelength
λ. For a focal plane with a 100% fill factor, where pixel pitch p equals sampling period
ds, it is this result that explains why only systems with Q ≥ 2 avoid aliasing and retain
the spatial information passed by the system’s optics.

Maintaining Q ≥ 2, or pixel pitch p ≤ λF
2 , however, decreases SNR by spreading the

optical signal over more pixels. The well known “camera equation” quantifies this effect by
relating detector irradiance Edetector to aperture radiance Laperture through the quantity
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Figure 2.4: Example to illustrate the frequency-domain impact of spatial sampling periods.
For a sampling period of ds, frequency-domain copies of the original signal are created every
frequency step ∆ξ = 1

ds
. The sinc function offers a convenient example; sinc (x) contains

an equal weighting of all spatial frequencies ∈
[
−1

2 ,
1
2

]
(often denoted by the window or

RECT function), with maximum spatial frequency |ξ|max = 1
2 . When we sample at a

spatial frequency ξs > |ξ|max = 1
2 , where ξs = 1

ds
, we do not cause aliasing. When we

sample at a spatial frequency below ξs < |ξ|max, the frequency-domain copies of the orginal
signal overlap and we observe aliasing.
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G#, with

Edetector =
Laperture

G#
=

πτ

1 + 4F 2
Laperture (2.36)

for optical transmission τ and f-number F [26]. For reasonably large F , we can approxi-
mate G# with

G# ≈ 4F 2

τπ
(2.37)

and see that detector irradiance is roughly proportion to the inverse square of f-number.
At spatial frequencies approaching ρcut, our optical transfer function is often approach-

ing zero, particularly for apertures with a large fill factor. With the system transfer func-
tion already low at a high spatial frequencies, finer pixel spacing begins to offer diminishing
returns. And from a practical perspective, decreasing pixel size is not always practical due
to device fabrication constraints, and increasing focal length is not always practical due to
system size and weight constraints. Accordingly, the basic task of a sensor designer is to
maximize sensitivity while minimizing noise, while the basic task of the system designer
is to optimize the trade between resolution and SNR.

For remote sensing applications, the GIQE (Eqn. 1.1) illustrates the trade offs inherent
in balancing SNR and resolution. The GIQE was designed to predict the utility of overhead
images, assigning a rating based on the GSD, SNR, and RER that could predict what an
image analyst could do with an image [14]. The imaging conditions themselves are a major
driver, with Fiete et al. providing an excellent summary in [8]. For high-SNR conditions,
Cochrane et al. showed that increasing optical Q does not negatively impact image quality,
but the benefits even in high SNR conditions may be offset by the commensurate loss on
field-of-view that comes with finer sampling [27, 25].

2.2 Human Visual System

Since all imaging prior to the (relatively recent) advent of machine vision terminated with
the human visual system, it is helpful to frame our understanding of image quality and
computer vision algorithms with an understanding of the human visual system.

While the optical working of the eye has been understood since Kepler [28], under-
standing of how the brain translates photons reaching the retina into visual information
came much later. Perhaps most importantly for the our understanding of image qual-
ity, researchers began to model retinal responses using the difference of Gaussians. In
this model depicted in figure 2.5a, a narrow center Gaussian exhibits an either excitatory
or inhibitory response, a wider surround Gaussian exhibits the opposite response, and
the associated neuron’s response is proportional to the difference between the center and
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(a) Center-surround retinal response (based on
graphic in [29] (b) Contrast sensitivity function, taken from [30]

Figure 2.5: Center surround retinal response (left) and depiction of contrast sensitivity
function (right). For center-surround depicted on the left, a light spot overlapping the
positive region of the resultant curve surrounded by a dark spot overlapping the negative
region would maximize net response.

surround stimulus levels [29]. The size of these difference-of-Gaussian receptive fields de-
termines the spatial frequencies to which they are most sensitive, qualitatively explaining
the contrast sensitivity function depicted in figure 2.5b.

Figure 2.6 simulates the output of Gaussian center-surround receptive field to illustrate
the output of center-surround receptive fields. Convolving the original image with 5-pixel
and 9-pixel difference-of-Gaussian kernels, where the the sum of kernel elements

∑
i ki = 0,

results in figures 2.6b and 2.6c. In these figures, we observe the contrast selectivity of
difference filters. Bright but smooth areas of the original image dark dark in the filtered
images, whereas areas with contrast in the pass-band of the difference filters are bright in
the filtered images. Both kernels summed to zero, making them insensitive to the constant,
“DC” component of the image. Here, we observe that the light and dark regions of the
filtered images are driven by the spatial frequency content of the original, with the 5-pixel
kernel amplifying the high spatial frequency patterns in the scarf and chair and the 9-pixel
kernel amplifying the stack of books.

Hubel and Weisel significantly extended the insights gained from the center-surround
model of simple visual receptive fields. Building on work showing that optic neuron recep-
tive fields often contained clear excitatory and inhibitory regions [31], Hubel and Wiesel
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(a) Original (b) 5-pixel kernel (c) 9-pixel kernel

(d) Original (e) 5-pixel kernel (f) 9-pixel kernel

Figure 2.6: “Barbara.jpg” and “peppers.jpg” image through five- and nine-pixel difference
of Gaussian filters depicted in 2.5a. For the five-pixel filter, the excitatory center and
inhibitory surround Gaussians had standard deviation of 1 and 2 pixels respectively. For
the 9-pixel kernel, the center and surround standard deviations were 2 and 4 respectively.
All images have been contrast stretched to fill an 8-bit dynamic range.

mapped the activity in visual cortex neurons of anaesthetized cats in response to a range
of visual stimuli [32]. Significantly, they identified and explored the behavior of two types
of receptive fields they termed as simple and complex. Simple receptive fields typically in-
tegrated both excitatory and inhibitory retinal regions that exhibited mutual antagonism–
illumination of the inhibitory region negated illumination of the excitatory region. Some
of these fields took the form of light or dark spot detectors, and others behaved as edge
detectors. Importantly, simple receptive fields were localizable within the retina. Complex
receptive fields, conversely, were not fully localizable within the retina. Complex receptive
fields exhibited responses sensitive to characteristics such as the size and orientation of
visual stimuli. Broadly, Hubel and Wiesel observed receptive fields acting as feature de-
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tectors, with contrast rather than raw input radiance driving output. Generally speaking,
the human visual system is devoted to contrast detection.

2.3 Convolutional Neural Networks

Neural networks are descendants of the perceptron, which demonstrated rudimentary ma-
chine vision in the 1950s [33, 34]. The perceptron, a single-node neural network, worked
by taking input vector x of length n, multiplying by weight vector w of length n, and
setting the result to ±1 depending on whether the result was greater or less than zero,
formally expressed

ŷ = φactivation

(
n∑

i=1

wixi + b

)
, (2.38)

where φactivation is the activation function performing our thresholding operation, with

φactivation (x) =

{
1 when x > 0

−1 when x ≤ 0
. (2.39)

Given a misclassified classified training training example xt with label yt, weights would
be updated according to the rule

w← w + ytxt. (2.40)

Conceptually, we can imagine the vector w pointing from the mean of the examples be-
longing to class 1 to the mean of the examples belonging to class 2; a positive dot product
between this weight vector and the input results in a prediction of class 2, a negative dot
product a prediction of class 1. Fundamentally, this approach by the perceptron meant
that it could only perform class separation with a linear hyperplane, leaving it unable to
classify data that was not linearly separable (see Fig. 2.7. While this approach gener-
ated some interest, the inability to learn non-linear class boundaries largely relegated the
perceptron and its immediate offspring to being curiosities at the time.

A 1986 paper by Rumelhart et al. reinvigorated the study of neural networks with the
introduction of back-propagation [37]. We can conceptualize their work by picturing a
fully connected neural network (Fig. 2.8). At a high level, a neural network maps inputs
to outputs, with a loss function acting as a distance metric to quantify the difference
between the network’s prediction and the correct output. Rumelhart et al. demonstrated
that we could apply the chain rule from basic calculus to calculate the contribution from
each weight in the network to the final loss value for a given training example as long as
the network used differentiable activation functions. Formally, for loss L, we can calculate
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(a) Linearly separable (b) Nonlinearly separable

Figure 2.7: A 2D example of linearly and nonlinearly separable classes

∂L
∂wi

, effectively tracing the loss flow through the network. While there are numerous
optimization approaches to update the weights in a neural network [38, 39, 40, 41, 42,
43, 44], all amount to gradient descent algorithms designed to move in the − ∂L

∂w -direction
toward the global loss minimum in the (often very large) space spanned by the neural
network weights w. Back-propagation enabled larger networks with non-linear activation
functions, which in combination enabled models to learn non-linear class boundaries and
handle problems too complex for the original perceptron.

These fully connected networks, however, proved inefficient for most tasks, particularly
for computer vision, in large part because the features learned in an input layer were not
shared globally. A training image with useful features in the upper left corner might
change the input weights associated with this corner, but this “knowledge” would not be
shared with the input weights associated with the upper right corner, even if the feature
were equally relevant when present in either location. The convolutional neural network,
originally developed by Yan LeCun and collaborators starting in the late 1980s [45, 46, 47]
and brought to widespread prominence by Krizheski et al. in 2012 [9], overcomes this
limitation by learning convolutional filters, which are applied across the input data (see
Fig. 2.9).

Convolutional neural networks exhibit interesting parallels to the human visual system,
learning convolutional filters which extract features analogous to those extracted by the
various receptive fields in the human visual system discussed in Sec. 2.2. Figure 2.10
depicts the 64 first-layer filters learned by a relatively small, six-layer neural network
trained on CIFAR-10 [48]. Although none of these filters is circularly symmetric, we can
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(a) Fully connected neural network [35]

(b) Artificial neuron [36]

Figure 2.8: A fully connected neural network and an artificial neuron. All of outputs
from the neurons in a layer are fed to each neuron in the subsequent layer. Each of these
neurons multiplies the inputs by its own set of weights and applies its activation function
and the results are passed to the next layer.

readily perceive the similarities to the center-surround, difference of Gaussian receptive
field depicted in Fig. 2.5a. We observe that some of these filters are primarily color-focused
while others are almost chromatically uniform and tuned to varied spatial frequencies and
edges of varying orientations. These filters act as initial feature extractors, with their
outputs fed to subsequent layers which will build up increasingly abstract representations
of the input image.

Figure 2.11 depicts the filter outputs of a ResNet-18 model with “peppers.jpg” (also
used in Fig. 2.6) as its input. The selected layer 1 and layer 5 filter outputs exhibit
similarities with the 5- and 9-pixel difference of Guassian filter outputs in figures 2.6e and
2.6f, while the layer 8 filter output shown has become too abstract to be meaningful to a
human viewer.

Convolutional networks have been demonstrated to perform exceedingly well in a
wide range of computer vision tasks. Despite the wide ranging successes of CNNs since
2012, with CNNs often performing better than humans when trained and tested on i.i.d.
datasets, CNNs struggle with generalization against unseen perturbations and distortions
[50, 51, 52].
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Figure 2.9: A convolutional neural network [35]. Outputs of convolutional filters (most
not depicted here) are fed to subsequent layers containing additional convolutional fil-
ters, typically culminating in one or more fully connected layers similar to those in fully
connected networks.

Figure 2.10: 11 × 11 × 3 filters learned in the first layer of small neural network trained
on CIFAR-10. These filters have been normalized and contrast stretched to fill the range
[0, 1]. [49]
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(a) Layer 1, filter 25 (b) Layer 4, filter 27 (c) Layer 8, filter 512

Figure 2.11: Intermediate representations of “peppers.jpg” after convolutional filters in
an ImageNet-trained ResNet=18 model. Image representations become increasingly com-
pressed and abstract as they pass through the network. [49]
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2.3.1 Image Quality in Traditional Image Processing

Since digital imaging became ubiquitous, a substantial body of research has explored image
quality in the context of image processing and lossy image compression. A major focus
on this research has been to develop image quality metrics that correlate strongly with
subjective image quality assessment by human image viewers [18, 6, 19, 53].

Some of simplest methods of error measurement rely on simple pixel difference mea-
surements such as Lp norms or Minkowski metrics, where

εγ =

 1

N2

N−1∑
i,j=0

|I0 (i)− I1 (i)|γ
 1

γ

(2.41)

for a single channelN×N image, with γ = 2 corresponding to the mean square error metric
used widely across disciplines[19]. These pixel distance based metrics, however, generally
do not correlate well with perceptual image quality; we can imagine, for instance, a large
DC offset between two images that would lead to a significant Lp error without significantly
affecting image quality. In a successful effort to overcome some of the deficiencies with of
distance-based metrics while using a relatively simple model, Wang and Bovik proposed
a metric Q ∈ [−1, 1] designed to capture changes in correlation, luminance, and contrast,
with

Q =
4σxyx̄ȳ(

σ2
x + σ2

y

[
(x̄)2 + (ȳ)2

]) =
σxy
σxσy

2x̄ȳ

(x̄)2 + (ȳ)2
2σxσy
σ2
x + σ2

y

, (2.42)

where the first term captures the correlation between the images, the second term measures
the DC offset between the two images, and the third captures the contrast similarities [54].
Wang and Bovik note elsewhere that many error metrics fail to capture information loss as
determined by human observers and fail to capture structural distortion between images
[55]. (Note that this quantity is unrelated to the concept of Q described above in Sec.
2.1.2)

Other metrics used correlation values between initial and final images, image histogram
similarity, Laplacian mean square error, color-angle similarity, and edge stability metrics
with varying levels of success; significantly, the most effective metrics have tended to be
contrast-focused, centering on attributes such as the stability of Canny edge detections and
changes in spatial frequency content[18, 19]. One of the more interesting and successful
methods surveyed by Avcibas applied the transfer function from a rudimentary model
of the human visual system (HVS). In this method, the transfer function of the HVS is
applied to the discrete cosine transform (DCT) of the original and compressed image, with
the resulting spectrum converted back to the spatial domain via an inverse DCT and the
error calculated via the Lp norm of the HVS-weighted image [19].
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A central difficulty in image quality assessment is measuring the information content
of an image. The number of possible single channel, 8-bit, 28×28 images is 101888, almost
2000 orders of magnitude greater than the oft cited 1078 to 1083 atoms in the observable
universe. We know that the number of plausible natural images is much smaller, but
quantifying the size of this smaller figure has proven challenging. Phrased differently, the
actual information content of real images is vastly lower than their maximum theoretical
information capacity. Measuring the information content of images has proven challenging
[56, 57, 58, 59].

Claude Shannon effectively founded the field of information theory with a 1948 paper
exploring the information content of text strings [60]. Shannon borrowed the concept of
entropy from statistical mechanics and showed that the information content of a message
in units of bits per character is given in Equation 2.43,

H = −
∑

pi log2 pi, (2.43)

where H is the entropy of the message and pi is the probability of occurrence for the ith

character in the message. Shannon showed that the optimal compression scheme maxi-
mizes the entropy H of transmitted messages. The Shannon entropy metric has informed
a range of image quality studies [61, 62, 63, 64].

Though often correlated to image quality and information content, Shannon entropy
suffers from a key weakness as a metric for the information content of an image, particularly
if applied naively to raw pixel values. Specifically, Shannon entropy does not account
for the two-dimensional spatial relationship between pixels. Some images with no real
information content can score maximal Shannon entropy values; a smooth ramp from 0
to 255 in an eight-bit image would have a Shannon entropy of eight bits per pixel. To
address this problem, several studies consider methods to use image gradients to quantify
image information content, primarily as a means of understanding image compressibility
[59, 57]. Despite these efforts, however, no single metric has proven capable of definitely
quantifying the information content of a two dimensional image.

A significant and perhaps primary element in the challenge of quantifying the infor-
mation content of an image is the challenging of identifying an appropriate set of basis
functions. As described above, the identity basis (i.e. raw pixel values) is prone to patho-
logically overestimating information content. In a 2001 paper, Wainwright et al proposed
an approach based on multi-scale wavelet decomposition trees which they posited as suit-
able for describing the statistics of natural images [65]. Sheikh et al. applied these results
in a series of subsequent papers, using the image statistic models developed by Wainwright
to estimate the mutual information between initial and final images[63, 53]. In a broad
survey of image quality metrics, Sheikh et al. found that their information theoretic ap-
proach outperformed other information quality metrics in predicting the perceptual image
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quality rated by human observers [66].

2.4 Image Quality and Convolutional Neural Networks

While extensive effort has gone toward optimizing and advancing CNN capabilities [67,
68, 69], and significant research has considered how to make CNNs robust to subtle ad-
versarial image modifications [70, 71, 72, 73, 74], less work has considered the impact
of image quality on the performance of the CNNs in question. In an effort to address
one of the more common image quality degradations, Zanjani et al. studied the impact of
JPEG 2000 compression on the performance of CNNs trained to detect metastatic cancer
in histopathological images, observing that JPEG compression can degrade performance
but finding that CNN performance recovers and remains strong up to relatively high com-
pression ratios when trained on similarly distorted images [75]. Several other studies have
considered ways to optimize JPEG compression tables for computer vision applications
[76, 77, 78, 79]. JPEG compression works by performing a 2-dimensional discrete cosine
transform (DCT) on each 8 × 8 patch in an image, resulting in a total of 64 coefficients
to losslessly represent each patch. These coefficients are then divided by values in a set
of tables, with the specific table selected based on the degree of compression sought.
The quotients are then rounded to the nearest integer, typically leading to a substantial
fraction rounding to zero. The tables used to divide the DCT coefficients have been de-
veloped empirically to maximize image quality as perceived by the HVS. Duan and Chao
both optimized compression tables for images to be used in pre-deep learning computer
vision tasks [76, 77], while Li and Lui both optimized compression tables for images to be
used by CNN-based classifiers, realizing measurable but modest gains (1-2 % classification
accuracy improvements) through table adjustments [78, 79].

A range of other studies have considered CNN performance as a function of deliberate
image degradations aside from those introduced as artifacts of image compression. Dodge
and Karam studied performance of pre-trained model on images distorted with Gaussian
blur and additive Gaussian noise, as well distortion due to JPEG and JPEG 2000 com-
pression; they found that models trained on undistorted imagery are particularly sensitive
to noise and particularly blur, hypothesizing that the blur vulnerability stems from the
propensity of many CNNs to rely on high spatial frequencies and textures in making clas-
sification decisions [80]. In a follow up study, the same authors tuned their models on the
image distortions in question and compared their CNN test accuracy to the accuracy of
human test subject on the same images degraded images. They found that fine tuning
the models on distorted imagery improved CNN performance against images subjected
to blur and noise, but performance still lagged in comparison to human image classifiers
against degraded images. Perhaps of greatest interest, the classification errors made by
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CNNs and humans on the most degraded images were almost completely uncorrelated,
strongly suggesting differing classification strategies [81].

In a pair of similar studies [50, 51], Geirhos et al. compared human and CNN perfor-
mance across a range of image distortions, with a focus on understanding CNN general-
ization when trained on one particular distortion type and tested on another. In the first
[50], Geirhos et al. found that the performance of CNNs trained on undistorted images
dropped to chance level against images with moderate amounts of random noise added.
When trained against independently and identically distributed (i.i.d.) image distortions,
however, these CNNs often outperformed humans in classifying distorted images, while
cross-distortion testing (i.e., training on one type of distortion and testing against another)
produced mixed results. For some distortion pairs, training against the first modestly im-
proved test performance against the second, while in other cases training against the first
distortion reduced test performance against the second. In the second study [51], Geirhos
et al. examined the extent to which CNNs rely on texture vs. shape information, finding
that CNNs trained on normal quality, undistorted images tend to rely extensively on tex-
ture in making classification decisions. Training CNNs on a synthetic database dubbed
Stylized-ImageNet, which preserves object shape while largely removing texture, however,
forced models to use shape information, producing strong results against both the unmod-
ified and stylized versions of ImageNet as well as against the distorted images used in the
initial study [50]. Conversely, models trained against the standard ImageNet dataset per-
formed poorly against Stylized-ImageNet. The pair of studies showed that forcing a shape
bias on CNNs generally improved robustness but found that no single image augmentation
strategy proved universally optimal for classifying distorted images.

A trio of papers by Hendrycks and various collaborators focused particularly on model
robustness to out of distribution (non-i.i.d.) distortions [82, 83, 84]. They began by
developing two benchmarking datasets, ImageNet-C and ImageNet-P, with ImageNet-C
designed to assess error rates over varied distortions and severity levels and ImageNet-P
designed to assess instability of model predictions (i.e. probability of prediction flips)
over gradually increasing perturbation levels applied to an individual image. After as-
sessments of common models and demonstration of various robustness enhancements, the
paper found that robustness against corruptions and perturbations remains a significant
problem for virtually all CNN architectures [82]. Next, Hendrycks et al. demonstrated a
unique technique for robustness enhancement that combined a stochastic mixing of image
augmentations (termed AugMix) applied to individual images followed by a loss function
that penalized prediction divergence between an original undistorted image and two ver-
sions of the image independently distorted using the AugMix algorithm. They found that
the combination of AugMix and their new loss function achieved state of the art cor-
ruption and perturbation robustness [83]. Subsequently, however, Hendrycks et al. tested
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a wide range of models and robustness enhancement approaches and found that while
various techniques achieved reasonable robustness under certain conditions, no single ap-
proach succeeded in yielding model robustness across the full range of corruptions and
perturbations considered [84].

A range of other studies have explored mechanisms and strategies for image augmenta-
tion to build robustness, usually to non-i.i.d. training and testing data [85, 86, 11, 87, 12,
88, 89]. In a study focused on robustness to blur, Vasiljevic et al. [85] observed that im-
age blur degraded CNN performance as expected and found that training against blurred
images resulted in better performance recovery than sharpening the images to reverse
the effects of blur. In a review of CNNs for image classification, Rawat and Wang find
that invariance to scaling, translation, and rotation continued to prove a challenge across
architectures [86]. In comparing robustness to object occlusions, Zhu et al. found unsur-
prisingly that CNNs significantly trailed humans [11]. Wang et al. proposed a method
to improve object detection perfromance in the presence of occlusions but observed that
models tended to generate false positives based on context and correlations between ob-
jects and their typical backgrounds [12]. Schneider et al. found that a model can improve
performance by inferring distortion statistics from multiple unlabeled examples shown
during testing using batch normalization, which largely amounts to mean subtraction and
scaling by the standard deviation between CNN layers [88]. In an effort to overcome the
limitations inherent in manually crafted image augmentation strategies, Cubuk et al. used
a recurrent neural network (RNN) trained via reinforcement learning to search for the
best image augmentation policies over a predefined search space, where the reward signal
to the reinforcement learning algorithm was based on the validation loss after mini-batch
training with a particular image augmentation policy [89]. This effort was focused on
image augmentation for undistorted image classification, but their success in decreasing
error rates suggests that a similar approach could be useful in training models for distorted
images.

In a particularly elegant set of experiments, Yin et al. studied model robustness using
Fourier analysis tools [90]. Specifically, they began with three models – one “naturally”
trained on undistorted images, another trained on images distorted with Gaussian white
noise, and a third trained adversarially 1–and tested them first on images distorted with a
single 2D Fourier basis vector and next with filtered Gaussian white noise. The naturally
trained model performed best against narrow bandwidth, low-pass filtered Gaussian noise,
while the Gaussian white noise trained model performed best for all bandwidths of high-
pass filtered Gaussian noise, with the adversarially trained model performance generally
falling in the middle. Interestingly, in a subsequent experiment, this team found that train-

1Adversarial training generally refers to training using inputs that have been modified (often subtly) in
ways engineered to cause errant neural network outputs, e.g. incorrect labels in a classification task.
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ing against a low-frequency “fog” distortion actually decreased test performance against
the same distortion while increasing robustness to distortion at a single low-frequency.
Notably, this team trained an additional model using the AutoAugment algorithm intro-
duced in [89] and tested the three original models plus the AutoAugment trained model
on the CIFAR-10-C corruption robustness benchmark dataset. They found that the Au-
toAugment trained model performed best overall, with the Gaussian white noise trained
performing better on a significant fraction the corruption cases. Yin et al. noted that
the strong performance of AutoAugment was promising, particularly given that it was
developed for undistorted images, but noted in agreement with others that no single aug-
mentation approach proved universally successful.

While some of these studies identified mechanisms for improving performance against
bespoke problems, and many developed mechanisms to improve robustness in a range of
situations, we find no single image augmentation or training strategy optimal for all cases.
While the lack of a single strategy to achieve robustness against all possible distortions
represents a challenge to those interested in artificial general intelligence, the ability of
these studies to identify strategies for specific problems represents a flip side strength for
CNNs. If we know the types of distortions our images will experience, we can co-optimize
our image collection and image analysis architectures, taking advantage of strong CNN
performance when trained on appropriately distorted images.

A 2019 study offers an example of how to perform such a co-optimization [91]. In
this effort, Jaffe et al. used the Functional Map of the World dataset as a starting point
to simulate overhead imagery from payloads with varied design parameters. Of note,
Jaffe et al. found that for a retrieval task, where CNN embeddings against test images
are compared to embedding examples from known classes, pre-trained models performed
best against images from simulated payloads with parameters near optimal for collecting
imagery for human visual interpretation. Conversely, models fine tuned for the simulated
payloads performed best against against images from shorter focal length payloads non-
optimal for image quality for the human visual system. This same relationship between
payload design parameters and CNN performance held for the study’s classification task
as well, although the direct comparison between pre-trained and fine tuned CNNs was not
possible since the models needed to be trained for the classes in question. Another study on
image pre-processing architectures similarly observed that the optimal solution for CNN
performance did not match the optimal solution for visually pleasing images [92]. Broadly
speaking, the research to date on image quality and the effects of image distortions as
they relate to deep learning algorithm performance suggests that image quality as defined
by the human visual system may not be synonymous with image quality as defined by
computer vision systems.
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Relative Edge Response
Approximations

Relative edge response (RER) represents a convenient image quality metric summarizing
the sharpness of an image by quantifying the spatial derivative of an image in the direction
normal to an edge. Of particular importance here, RER is one of the three parameters
used in the General Image Quality Equation used by the remote sensing community to
quantify the utility of overhead images [14]. Because of the Gaussian distribution’s mathe-
matical simplicity, its ubiquity in image processing libraries [93, 94, 95], and its qualitative
similarity to optical point spread functions, it is often convenient to use Gaussian kernels
to blur images.

In this research, we use Gaussian kernels for all image blurring, and we model CNN
performance using the GIQE. In order to map our blur parameters to the appropriate
GIQE variables for this modeling, here we derive and evaluate closed form functions that
approximate the relationship between Gaussian blur and RER. Additionally, we evaluate
the extent to which we can approximate optical point spread functions with Gaussians for
the purpose of quickly mapping system point spread functions to RER using the Gaussian
RER relationships that we have derived. We observe that simple Gaussian approximations
do not directly predict the RER that results from convolving an ideal edge with a realistic
system point spread function.

Here, we make the following contributions:

• We derive simple, closed form relationships between RER and Gaussian blur.

• We verify our RER relationships using synthetic edge images blurred with Gaussian
kernels.

45
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Figure 3.1: Illustration of convolution and the effect of PSF width on relative edge response
(RER). To first order, RER is given by the slope of the image at the edge location.

• We show that Gaussian approximations of optical point spread functions yield images
with RER that differs from the RER produced by the optical point spread functions
themselves.

We have reported the findings of this chapter via arXiv [96].

3.1 Derivations

3.1.1 First order approximation

We begin by noting that we can approximate an imager as a linear shift invariant (LSI)
system, allowing us to model the action of the system as a convolution of an input scene
with the system’s point spread function, where the convolution operation in given by

g (x) = f (x) ∗ h (x) =
∫ ∞

−∞
h (α) f (x− α) dα =

∫ ∞

−∞
h (x− α) f (α) dα. (2.6)

To derive the relationship between Gaussian blur and RER, we consider a 1-dimensional
image g (x) formed by convolution of the edge object f (x) with the the system point spread
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function h (x). The edge object is described by the unit step function

f (x) = STEP (x) =


0 where x < 0
1
2 where x = 0

1 where x > 0

, (3.1)

and we approximate our point spread function h (x) as the normalized Gaussian

h (x) =
1

σ
√
2π

exp

(
−x2

2σ2

)
. (3.2)

Applying the definition of a convolution, we see that we can express our 1-dimensional
image g (x) with the integral

g (x) =

∫ ∞

−∞

1

σ
√
2π

exp

(
−α2

2σ2

)
STEP (x− α) dα. (3.3)

Exploiting the properties of a step function and reversing the limits of integration for
convenience, which is allowable since relative edge response is sign independent, we reach
the expression for our edge image

g (x) =

∫ x

−∞

1

σ
√
2π

exp

(
−α2

2σ2

)
dα (3.4)

RER describes the sharpness of an image based on the slope of its edge response
function; RER is a first order approximation of the spatial derivative of an image at the
edge location [97]. In our 1D example, therefore, we have

RER ≈ d

dx

∫ x

−∞

1

σ
√
2π

exp

(
−α2

2σ2

)
dα

∣∣∣∣
x=0

=
1

σ
√
2π

exp

(
−x2

2σ2

) ∣∣∣∣
x=0

=
1

σ
√
2π

, (3.5)

which is illustrated by Fig. 3.1.

3.1.2 Refined approximation

While RER is an approximation of the derivative of an image at the location of an edge, it
is by definition a discrete approximation of this slope, measured by interpolating the edge
spread function at ±1

2 pixel [97]. Without accounting for the discrete sampling inherent in
measurement, RER could approach infinity for sufficiently narrow point spread functions.
To account for this sampling, we start wth edge image

g (x) =

∫ x

−∞

1

σ
√
2π

exp

(
−α2

2σ2

)
dα (3.6)
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formed by a system with a Gaussian PSF of standard deviation σ. Applying the definition
of RER that accounts for discrete measurement, we have

RER = g (0.5)− g (−0.5) , (3.7)

which is much less than 1
σ
√
2π

as σ → 0. To account for the effects of discrete sampling at

x = ±0.5, we note that there is a convenient closed form relationship for g (0.5)−g (−0.5).
If we re-write g (x) as the sum of two integrals, with

g (x) =

∫ 0

−∞

1

σ
√
2π

exp

(
−α2

2σ2

)
dα+

∫ x

0

1

σ
√
2π

exp

(
−α2

2σ2

)
dα, (3.8)

we can discard first term since it is constant and falls out in subtraction, finding that

RER =

∫ 1
2

0

1

σ
√
2π

exp

(
−α2

2σ2

)
dα−

∫ − 1
2

0

1

σ
√
2π

exp

(
−α2

2σ2

)
dα. (3.9)

In this form, we can see that RER is given by the difference of two scaled error functions,
where the error function erf (x) is given by

erf (x) =
2√
π

∫ x

0
e−t2dt. (3.10)

Using the change of variables

t = f (α) =
1√
2σ

α, (3.11)

we arrive at the expression

RER =
1

σ
√
2π

(∫ 1
2
√
2σ

0
e−α2√

2σdα−
∫ −1

2
√
2σ

0
e−α2√

2σdα

)
, (3.12)

which simplifies to

RER =
1

2

(
erf

(
1

2
√
2σ

)
− erf

(
−1

2
√
2σ

))
= erf

(
1

2
√
2σ

)
(3.13)

3.1.3 Extension to multiple blur stages

In studying image quality, we are likely to be concerned with estimating the RER of
images that have two distinct blur contributions, first by their system PSF and second in
post-processing. For a real image g (x), therefore, we have

g (x) = f (x) ∗ h0 (x) ∗ h1 (x) (3.14)
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where f is the object imaged, h0 is the system PSF, and h1 is the Gaussian blur kernel
applied in post-processing. If we approximate the optical psf h0 as a Gaussian of standard
deviation σ0, then

h0 (x) =
1

σ0
√
2π

exp

(
−x2

2σ2
0

)
, (3.15)

h1 (x) =
1

σ1
√
2π

exp

(
−x2

2σ2
1

)
, (3.16)

and
g (x) = f (x) ∗ heffective (x) , (3.17)

where
heffective (x) = h0 (x) ∗ h1 (x) . (3.18)

Here, we can apply the filter theorem (discussed in detail in [20]) and note that the Fourier
transform of our image F {g (x)} = G (ξ) is given by

G (ξ) = F {f (x)} · F {heffective (x)} = F (ξ) ·Heffective (ξ) , (3.19)

where Heffective represents the effective optical transfer function and is given by

Heffective (ξ) = H0 (ξ) ·H1 (ξ) . (3.20)

Using the Fourier properties of a Gaussian, we have

H0 (ξ) = exp
(
2π2σ2

0ξ
2
)
, (3.21)

H1 (ξ) = exp
(
2π2σ2

1ξ
2
)
, (3.22)

and
Heffective (ξ) = exp

(
2π2

(
σ2
0 + σ2

1

)
ξ2
)
. (3.23)

Having found the effective transfer function, we can find the effective point spread function
by taking the inverse Fourier transform of the effective transfer function according to

heffective (x) = F−1 {H0 (ξ) ·H1 (ξ)} . (3.24)

Here,
heffective (x) = F−1

{
exp

(
2π2

(
σ2
0 + σ2

1

)
ξ2
)}

=
1√

2π
(
σ2
0 + σ2

1

) exp
(

x2

2
(
σ2
0 + σ2

1

)) (3.25)
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(a) σ = 1 (b) σ = 2 (c) σ = 4 (d) σ = 8

Figure 3.2: Synthetic edge images with varied Gaussian blur.

=
1√

2πσeffective
exp

(
x2

2σ2
effective

)
,

where σeffective =
√

σ2
0 + σ2

1.
Accordingly, for two stages of Gaussian blur, we can model the effective point spread

function as a Gaussian of standard deviation σeffective, where

σeffective =
√
σ2
0 + σ2

1. (3.26)

3.2 Method

To evaluate the RER models derived above, we generated synthetic edge image chips (Fig.
3.2) and measured RER using the slanted edge method outlined in [97], with our code
available at [98]. Specifically, we generated ideal slanted edges by defining the location of
a near-vertical in an xy-plane onto which to superposed our pixel grid. We set pixels to
the left of the edge equal to our dark value and pixels on the right side of the edge to our
light value, and we assigned values to the border pixels according to the fraction of each
on the light and dark side of the edge. Next, applied varying levels of Gaussian blur to
our ideal edge image to generate edge images of varying RER. Last, we down-sampled a
subset of our edge images using integer pixel binning. Table 3.1 shows the blur parameters
used for image chips without downsampling, and Tab. 3.2 displays the parameters used
for image chips that were down-sampled after blurring.

We performed this down sampling in order to approximate the process of applying
optical blur in the analog domain and then down-sampling with a focal plane array. We
used integer pixel binning in order to avoid the effects of pixel interpolation. For images
with down-sampling applied, blur is linearly scaled by the down-sampling ratio.
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Table 3.1: Parameters used in generating edge images with one and two-stage Gaussian
blur and no down sampling

First stage blur 0.1 - 3 pixels
Second stage blur 0 - 3 pixels
Combined blur (two stage images) 0.1 - 4.25 pixels

Table 3.2: Parameters used in generating edge images with two-stage Gaussian blur and
integer down-sampling

First stage blur 0.75 - 6 pixels
Second stage blur 0 - 6 pixels
Combined blur (before down sampling) 0.75 - 8.5 (pixels)
down sampling ratios 2, 3, 4, 5 (dimensionless)
Combined effective blur (after down sampling) 0.15 - 4.2 pixels

Finally, we assessed the extent to which Gaussian approximations of optical PSFs
yielded equivalent RER values when used to blur synthetic edge chips. Do do so, we
simulated system point spread functions using the code developed and described by Conran
in [99]. Conran’s model incorporates the optical system parameters shown in Tab. 3.3,
with our simulations encompassing the ranges shown.

Table 3.3: System parameters used in optical PSF simulation

f-number 20 (dimensionless)
aperture fill factor 0.8 (dimensionless)
pixel pitch 8 µm
wavelength 0.8 µm
wavefront error 0.025 - 0.135 µm
smear 0.05 - 0.15 pixel
rms jitter 2.6e-5 - 5e-4 pixel
down sampling ratios 1, 2 (dimensionless)

For each optical PSF generated, we found the nearest two dimensional Gaussian using
a non-linear least squares fitting routine. For each simulated optical PSF and its Gaussian
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best fit sibling, we blurred an ideal synthetic edge and measured resulting RER.

3.3 Results and Analysis

3.3.1 Gaussian Point Spread Functions

For synthetic edge images blurred with Gaussian kernels, we observed good agreement
between our ideal edge slope model in Eqn. 3.5 for σ ≳ 1 pixel, with predicted RER
exploding as σ → 0. Our model incorporating discrete sampling in Eqn. 3.13 avoids the
small σ catastrophy of the first model but still does not fit the data particularly well for
σ < 1. Figure 3.3 depicts these fits for modeled and measured RER using both of these
models for edges blurred once and for edges blurred in two stages, where the combined
standard deviation σeffective is calculated according to Eqn. 3.26 for the edges blurred
twice.

Two factors explain the relatively poor performance performance at small σ of our Eqn.
3.13 model. First, the model over-predicts RER for very small σ because it neglects the the
transfer function of the pixels themselves. Second, at very small σ, our blur kernels cease
to be Gaussian in character due to the discrete sampling inherent in kernel generation.
Figure 3.4 shows the 1-dimensional profiles of the blur kernels from the Torchvision library
that we used in generating our edge images. As standard deviation σ approaches 0, our
blur kernels lose their Gaussian character and approach discrete delta functions. This
non-Gaussian character of our blur kernels tends to drive RER up for small σ, leading
our 3.13 model to under-predict RER for moderately small σ. Because of this effect, our
simplest model in Eqn. 3.5 yields the best prediction for RER when σ > 0.5 pixels and
the images have not been down-sampled.

To work around the effects of discrete blur kernels, we next consider synthetic edge
images blurred at high resolution and then down-sampled. With down-sampling after
blurring, our final Gaussian effective standard deviation is scaled by the same ratio as the
image, enabling larger kernel standard deviations and therefore kernels of a more Gaussian
character before down-sampling occurs. For our synthetic edge images blurred this way to
better approximate optical imaging, we observed that our simplest model (Eqn. 3.5) still
performs reasonably well for σ > 1 pixel, above which we avoid the problems inherent in
the 1/σ relationship. We also see that our Eqn. 3.13 discrete sampling now systematically
over predicts RER at all small σ, as shown in Fig. 3.5.

We can understand this divergence between RER as measured and RER as predicted
by the discrete sampling model at low σ by recognizing that the transfer function of the
pixels themselves significantly impacts RER at low blur values. Importantly, this transfer
function is distinct from the discrete sampling effects considered in 3.1.2 where we derived
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(a) 0.1 ≤ σ ≤ 3, single blur stage (b) 0.1 ≤ σeffective ≤ 3, two blur stages

(c) 0.1 ≤ σ ≤ 2, single blur stage (d) 0.1 ≤ σeffective ≤ 2, two blur stages

Figure 3.3: Relative edge response modeled and measured.

the discrete sampling model. While the discrete sampling model accounts for the impact
of approximating the derivative of the edge spread function by measuring discretely at
±1/2 pixel, the pixel transfer function significantly changes the edge spread function by
averaging the image signal across the width of the pixel.

To estimate the impact of the pixel transfer function, we calculated the combined
transfer function

Hcombined (ξ;σ) = HGauss (ξ;σ) ·Hpixel (ξ) , (3.27)

for a range of σ values. Because we have specified σ in units of pixels, we can conveniently
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Figure 3.4: Gaussian kernel profiles from the Torchvision library. Here, we see that because
of discrete sampling, blur kernels lose their Gaussian character for small σ

treat our pixels as being unit width, yielding the pixel transfer function

Hpixel (ξ) = F {RECT (x)} = SINC (ξ) , (3.28)

where RECT (x) and SINC (ξ) are a Fourier transform pair, expressed by

RECT (ξ) ≡


1 when − 1

2 < ξ < 1
2

1
2 when ξ = ±1

2

0 otherwise

(2.34)

and

sinc (x) ≡ sin (πx)

πx
(2.33)

respectively. The transfer function of a Gaussian is a second Gaussian with standard
deviation inversely proportional to the first Gaussian’s standard deviation [20], leading to
transfer function

HGauss = F

{
1

σ
√
2π

exp

(
−x2

2σ2

)}
= exp

(
2π2σ2ξ2

)
(3.29)



CHAPTER 3. RELATIVE EDGE RESPONSE APPROXIMATIONS 55

Figure 3.5: RER as a function of Gaussian blur, measured and predicted by ideal edge
slope model (Eqn. 3.5) and discrete sampling model (Eqn. 3.13). These

for a Gaussian PSF of standard deviation σ. For a Gaussian PSF of standard deviation
σ, therefore, we have a combined transfer function

Hcombined (ξ;σ) = exp
(
2π2σ2ξ2

)
∗ SINC (ξ) . (3.30)

Figure 3.6 illustrates the interactions between the two terms in this transfer function.
For wide Gaussian PSFs with large σ, we have narrow Gaussian transfer functions, in which
case the pixel transfer function has minimal impact. Conversely, for narrow Gaussian PSFs
with small σ, we have wide Gaussian transfer functions, in which case the pixel transfer

function has a significant impact. We fit a Gaussian of the form Hf (ξ) = exp
(
2π2σ2

fξ
2
)

to each combined transfer function Hcombined and observed that for small σ, the difference
between the original PSF blur parameter and the best fit Gaussian blur parameter σf
varied significantly due to the impact of the pixel transfer function. Figure 3.7 shows
the difference between original σ and σf for varied σ, with the residuals following an
approximately Lorentzian pattern, where the Lorentzian [100] is given by

P (x) =
1

π

b

(x−m)2 + b2
. (3.31)

Applying the fit parameters shown in Fig. 3.7 to Eqn. 3.31, we are able to estimate a
combined Gaussian that accounts for the the Gaussian PSF as well as the pixel transfer
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(a) σ = 0.1, σf = 0.354 (b) σ = 0.25, σf = 0.404

(c) σ = 0.5, σf = 0.583 (d) σ = 1, σf = 1.042

Figure 3.6: Combined transfer functions for varying Gaussian PSF widths and unit width
pixels. Note that in all cases σ refers to the standard deviation of a normalized Gaussian
PSF, whereas it is inversely proportional to the width of the Gaussian transfer function
(see Eqn. 3.29). Here, we see that the pixel transfer function begins to significantly change
the combined transfer function for σ < 0.5 pixels.

function. Adding this correction to the original blur parameter σ, where

σcorrected = σ +
1

π

b

(σ −m)2 + b2
, (3.32)

and using the corrected blur value in the RER model given by Eqn. 3.13, we observe
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Figure 3.7: Residuals between original Gaussian σ and the best fit σf for the combined
transfer functions given by 3.30

excellent agreement between modeled and measured RER across a wide range of blur
parameter σ, as shown in Fig. 3.8.

(a) With and without blur correction (b) With blur correction, small σ

Figure 3.8: RER as a function of Gaussian blur, measured and predicted by discrete
sampling model (Eqn. 3.13) with and without pixel transfer function correction (Eqn.
3.32) (left) The fully corrected model performs well down to roughly σ ≥ 0.25.

Given the good agreement between modeled and measured RER, we can conclude that
the model given by Eqn. 3.13 can accurately predict RER as a function of Gaussian blur
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down to very low σ if we apply a correction to account for the pixel transfer function.
We highlight that the correction itself is found without reference to RER but is the result
of finding the best fit Gaussian for the combined transfer function that results when a
Gaussian PSF is convolved with a unit width pixel RECT function; our RER model is
never fit to RER results, suggesting that the derivation from first principles is sound.

3.3.2 Gaussian Approximations of Optical Point Spread Functions

Having established that we can predict the RER of a system with a purely Gaussian PSF,
we next examined whether Gaussian approximations of simulated optical PSFs could be
used to accurately predict RER. Table 3.3 shows the parameters used for our optical
simulation. We note that our simulated PSFs correspond to a Q = 2 system before
down-sampling, where Q is the optical quality factor given by

Q =
λF

p
, (3.33)

for wavelength λ, f-number F , and pixel pitch p. After down sampling, our pixel pitch
effectively doubles, which causes the drop in Q. Figure 3.9 shows the RER that results
from simulated optical PSFs and their best fit Gaussian approximations.

Figure 3.9: RER for images blurred with simulated optical PSFs and their best fit Gaussian
approximations. Simulated PSFs are from a combination of Q = 1 and Q = 2 systems
with WFE, jitter, and smear values varying within the ranges shown in 3.3.
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From these results, we observe that the specific shape of optical kernels matters; the
RER of an image blurred by one of our simulated optical kernels differs from the RER
of an image blurred by its best-fit Gaussian kernel. We note that we used other optical
simulation parameters and observed similar differences (not shown here) between the RER
of images blurred with our optical kernels and their least squares Gaussian siblings.

3.4 Conclusions on Gaussian Blur and Relative Edge Re-
sponse

Here, we have derived closed form approximations for the relationship between Gaussian
blur and relative edge response, and we have shown the limitations of these approxima-
tions. For images blurred at their final resolution, we find that our models do a reasonably
good job of predicting RER down to blur standard deviations of approximately 0.5 pixels,
with our simplest relationship given by

RER ≈ 1

σ
√
2π

(3.34)

performing better than our refined approximation when σ > 0.5 but diverging rapidly as
σ → 0.

For images blurred at high resolution and then down-sampled, which better approxi-
mates the process of optical blur and sampling by a focal plane, we find that our refined
approximation,

RER ≈ erf

(
1

2
√
2σ

)
, (3.35)

yields good RER predictions for blur values greater than roughly 0.75 pixels, above which
the Gaussian transfer function dominates the pixel transfer function. At smaller blur
values, we can account for the pixel transfer function with the correction given by Eqn.
3.32. Additionally, when Gaussian blur is applied in two stages, we demonstrated that
we can find the combined Gaussian standard deviation by combining the two standard
deviations in quadrature,

σcombined =
√
σ2
0 + σ2

1. (3.36)

Finally, we found that blurring with the least squares Gaussian approximation of an
optical PSF does not yield the same RER as blurring with the optical PSF itself.



Chapter 4

Classifier Performance

To begin our study of the relationship between image quality and CNN performance, we
systematically map the relationship between CNN-based image classifier performance and
the first order image quality parameters of resolution, blur, and noise. While a large range
of distortion types are possible and have been used in the deep learning literature, we
chose these particular distortions because of their relationship to physical imaging, where
to first order focal length and pixel pitch drive resolution, optical quality drives blur, and
sensor characteristics drive noise. We conceptualize these variables as defining a three-
dimensional image quality space, and we study the variation in performance of canonical
CNNs across this space as depicted in Fig. 4.1. This research makes the the following
contributions:

• We quantify the relationship between three primary image quality drivers–resolution,
blur, and noise–and CNN performance.

• We illustrate the ability of appropriately trained CNNs to classify images of very
low visual quality sequentially degraded by down-sampling, blur, and additive noise
when trained on identically distorted images.

• We demonstrate the capacity of the GIQE functional form to model computer vision
performance as a function of image quality and show that the historical form of the
GIQE outperforms the current form in modeling CNN accuracy in at least some
circumstances.

In this chapter, we describe the details of our approach to studying this problem
in Section 4.1. In Section 4.3, we evaluate the first order relationships between image
quality drivers and classification accuracy as a function of model training and architecture.
Using these results, in Section 4.4 we evaluate the suitability of the GIQE functional form

60
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Figure 4.1: Study overview. To assess the relationship between image quality and CNN
performance, we generated a series of parametric image chains which adjusted the sampling
resolution, blur, and noise of the Places365 dataset. We then trained CNNs on images
from a subset of our parametric image chains and measured performance as a function of
image chain parameters and metrics on the resulting images themselves.

for predicting computer vision performance as a function of image distortions, and we
present final observations and conclusions in Section 4.5. We presented the majority of
this chapter’s content at Pattern Recognition and Tracking XXXIII in 2022 and in a 2023
Journal of Electronic Imaging paper .

4.1 Method

We use two very dissimilar image datasets for our analysis, SAT-6 and Places365. The
SAT-6 dataset consists of 405,000, 28 × 28, 1-meter ground sample distance (GSD) air-
borne image chips, with classes consisting of barren land, trees, grassland, roads, buildings
and water bodies [101]. The Places365-Challenge dataset consists of approximately 8 mil-
lion, 256× 256 images across 365 scene categories [102]. We used the Places365 validation
image set for all of our Places365 testing (the Places365 test labels have not been publicly
released), and we used segregated subsets of the training images for validation during
model training and tuning. We converted all images in both datasets to grayscale in order
to simplify the analysis of image quality metrics and focus this analysis on the spatial
information content of images rather than on the spectral. Table 4.1 summarizes the
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Table 4.1: Training parameters. Places365 models were download pre-trained. Training
and testing were performed on the Rochester Institute of Technology Research Computing
Cluster [103].

SAT-6 Places365

Train dataset size 292K 7.9M

Validation split size 32K 81K†

Pre-training epochs 30 –
Distortion tuning epochs 30 - 60 10 - 20
Pre-training learning rate 10−4 –
Distortion tuning learning rate 5 · 10−5 5 · 10−5

Train batch size 64 32
Optimizer Adam Adam

†Places365 validation split extracted from train images

training parameters used. We note that while we trained our SAT-6 models over more
epochs than our Places365 models, total training examples for Places365 exceeded training
examples for SAT-6 by roughly an order of magnitude due to the difference in dataset size.
We set the number of training epochs by determining the time required for training and
validation loss to level off. In each training run, we saved a model checkpoint after each
epoch and ultimately selected the model from the epoch with the best validation loss.

For each dataset, we used the performance of models trained on undistorted images
(referred to hereafter as pre-trained models) to choose the boundaries of the distortion
space that we used for training our classifiers. Specifically, we tested our pre-trained
models on images degraded with a single distortion type and increased the degree of the
distortion until accuracy approached chance performance. We then bounded the train-
ing distortion space (Table 4.2) using the distortion values for each distortion dimension
shown to independently drive a pre-trained model to near-chance performance. Later, we
moderately narrowed the bounds of the test distortion space to eliminate regions in which
models failed to surpass chance performance and to remove low blur values (σblur ≲ 0.5
pixels) for which the blur kernel largely lost its Gaussian character, as discussed in Ch. 3.

We created two primary sets of test images for each dataset, both spanning the full
distortion space (see Fig. 4.2). We used the first to fit models predicting performance as
a function of distortion and used the second to evaluate the distortion performance fits.
We built these sets of test images by stochastically distorting each dataset’s original high-
quality test images, with each test dataset containing multiple copies of the undistorted
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Table 4.2: Distortion space.

resolution (fraction) σblur (pixels)
√
λPoisson (DN)

SAT-6 (train) 0.25 - 1 0.1 - 1.5 0 - 50
SAT-6 (test) 0.25 - 1 0.5 - 1.5 0 - 50
Places365 (train) 0.1 - 1 0 - 5 0 - 50
Places365 (test) 0.2 - 1 0.5 - 4.5 0 - 44

(a) Representative image for Places365

(b) 9× 9 mosaic of SAT-6 images

Figure 4.2: Places365 representative images (top) and a 9 × 9 mosaic of SAT-6 example
images (bottom) starting with original RGB (far left), converted to grayscale but oth-
erwise undistorted (second from left), at the test distortion space midpoint (second
from right), and at the test distortion space endpoint (far right). Visually, images
are very low quality by the midpoint and effectively indecipherable at the endpoint.
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Figure 4.3: Image chain steps

parent images. For SAT-6, our test datasets contained eight stochastically degraded copies
of each original test image, and for Places365 our test datasets contained 20 copies, for
a total of 648,000 and 700,000 test images respectively. While typical CNN performance
evaluations use individual test images only once, we note that this research focuses on
performance as a function of distortion. Here, having the same underlying test images
appear at varied distortion points helps to isolate and understand the impacts of the
distortions applied. Where we tested on point distortion datasets (e.g. Fig. 4.9), we used
each of the original undistorted images only once.

To apply our distortions, we loosely emulate the process of imaging with a physical im-
age chain (Fig. 4.3). The preprocessing routine sequentially applied down-sampling, blur,
and noise, mimicking the physical imaging process which maps an angular field of view
onto discrete detector elements, imparts optical blur, and adds sensor noise in the process
of collecting an image. We began with high quality images from our original datasets and
converted them to grayscale in order to focus our study on the spatial information content
of our images. We then downsampled our images using bi-linear interpolation without
anti-aliasing. For ease of analysis and smoother integration with the PyTorch library, we
used Gaussian blur kernels. Finally, we added zero-centered Poisson noise, where we sub-
tracted the mean/variance λ of the Poisson distribution, resulting in a modified Poisson
distribution of the form

P
(
N

′
= n

′
;λ
)
= P (N = n;λ) =

λne−λ

n!
, (4.1)

where n
′
= n−λ and N

′
is the random variable representing our modified Poisson process.

We used zero centering to avoid saturating our images, since a Poisson distribution with
a standard deviation of only 16-counts would have a mean of 256-counts and saturate an
8-bit image. We chose a Poisson distribution since it governs key physical noise processes
(e.g., shot noise and dark current noise), but we readily acknowledge the tenuous link
between the Poisson distributions in pre-readout electrons and a Poisson distribution that
is specified in terms of digital number (DN), zero-centered, and added after secondary
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(a) Places365 image chain stages at distortion space midpoint

(b) SAT-6 image chain stages at distortion space midpoint

Figure 4.4: Examples transformations of original-quality Places365 and SAT-6 color im-
ages through their respective image chains: (1) conversion to grayscale, (2) down-sampling,
(3) blurring, and (4) addition of zero-centered Poisson noise. Image chains here correspond
to the midpoints of the Places365 and SAT-6 test distortion spaces respectively. Note that
magnification of the Places365 and SAT-6 image strips differs by roughy a factor of nine,
with Places365 images beginning at 256 × 256 pixel resolution compared to 28 × 28 for
SAT-6.

processing of a real image. Fig. 4.4 illustrates the evolution of two images in our synthetic
image chain, one from each dataset.

We next trained three model architectures–ResNet18, ResNe50, and DenseNe161–
across the full distortion space to verify that the performance trends are similar across
model architectures. After verifying the similarity of distortion performance across archi-
tectures, we used ResNet18-based models to study distortion-performance relationships in
greater detail, choosing ResNet18 because of its lower computational requirements.

To approximate the performance of an ideally trained CNN, we created what we have
termed “composite performance results” from eight constituent models. To do so, we
divided each distortion dimension into halves, the combinations of which subdivided the
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overall distortion space into 23 = 8 octants, and then tuned a model on each octant’s dis-
tortion subspace. For instance, the Places365 model trained on the octant with the highest
quality images saw resolution fractions chosen randomly between 0.55 and 1, Gaussian blur
values ranging from 0 to 2.5 pixels, and Poisson noise standard deviations ranging from 0
to 25 DN, where all distortion values within these ranges are randomly selected for each
training image. We then tested each model on both i.i.d. test datasets. Using the octant
models’ test results against the first test dataset, we identified the best performing model
for images belonging to each distortion octant. For images in the second test dataset, we
filtered the predictions of our models according to their performance against images from
each octant in the first test dataset. In other words, we used the model that performed
best against a given octant in the first dataset for images from the same octant in the
second dataset. While further subdividing the distortion space would likely allow a closer
approximation of the performance of ideally trained models at each distortion point, we
believe that continuing to subdivide the distortion space into 33 = 27 or 43 = 64 sub-spaces
would offer diminishing returns based on the results to be discussed in Section 4.3.3.

4.2 Establishing and Refining Distortion Space Bounds

To set the bounds of our distortion spaces for both Places365 and SAT-6, we searched
for the level of each distortion type that drove a pre-trained model to approach chance
performance. Specifically, we created a single-distortion version of our test datasets for
each distortion type and tested a pre-trained ResNet-18 model against each dataset. In
several instances we performed this process iteratively in order to find the distortion
level required to drive pre-trained model perfomance to chance. Figure 4.5 depicts the
results of this process. Table 4.2 shows the distortion levels selected, with the overall train
distortion space chosen to encompass completely undistorted images (except for conversion
to grayscale) through images with resolution, blur, and noise levels shown to independently
drive pre-trained model performance to chance or near-chance level.

After training as well as testing across the full train distortion range, we identified two
aspects of the full train train distortion space that degraded the ability of our performance
prediction models to fit our distortion performance results. First, we found that Places365
models trained over the full distortion space and further tuned on the most extreme
corner were unable to surpass chance performance on test images in this extreme corner
of the distortion space. Our performance prediction model fits suffered due to the lack
of performance variation as a function of distortion level at the extreme of the distortion
space. After examining the distortion levels that drove full-range trained models to chance
performance, we reduced our Places365 test distortion bounds, with minimum resolution
increasing from 0.1 to 0.2, maximum blur Gaussian standard deviation decreasing from 5 to
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(a) SAT-6

(b) Places365

Figure 4.5: Measurements of pre-trained ResNet-18 model accuracy used to establish our
distortion space. Specifically, we measured accuracy as a function of a single distortion
type to find the distortion levels that independently drove performance to approach chance.
MPC accuracy refers to mean per-class accuracy.

4.5 pixels (with kernel size remaining at 31 pixels across), and maximum noise decreasing
from a stand deviation of 50 DN to 44 DN.

Second, we found that our performance prediction models returned poor fits for low
blur levels. Notably, classification performance of our CNNs was largely flat at low blur
levels. In examining RER as a function of blur (Chapter 3), we observed that RER
remained virtually constant as a function of blur kernel standard deviation for σblur <
0.5 pixels, as shown in Fig. 4.6. This lack of change in RER with blur kernel standard
deviation occurs because the Gaussian blur kernel drops to near-zero outside of the center
pixel for low at low σblur (discussed in Sec. 3.3.1). Accordingly, we used a minimum blur
kernel standard deviation of 0.5 pixels for both the SAT-6 and Places365 test datasets,
ensuring that variation in σblur resulted in variation in the resultant RER and image
quality.
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Figure 4.6: Measured RER as a function of secondary blur for varied native blur values

4.3 Results

4.3.1 Performance loss and recovery

As expected, the performance of models trained only on high quality images (“pre-trained”
models in the vernacular of this analysis) declined rapidly with decreasing image quality.
Models tuned across the full distortion space, however, proved far more robust to distor-
tions and recovered much of the performance loss exhibited by pre-trained models tested
on low-quality images.

Figure 4.7 illustrates the performance loss with blur and noise of a pre-trained model
and the performance recovery achieved by tuning the model across the full range of distor-
tions. The model tuned over the full distortion range still loses accuracy with increasing
blur and noise, but the decrease is far better behaved, and the model still manages to
achieve qualitatively reasonable top-1 accuracy in the presence of significant blur and
noise. Additionally, it is important to note that for all of the test results shown in this
analysis, resolution, blur, and noise distortions are all varying simultaneously. Accord-
ingly, the accuracy as a function of blur and noise shown in Fig. 4.7 represents the mean
accuracy across the full range of resolution values, with the average resolution in the test
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Figure 4.7: Mean accuracy as a function of blur and noise for a ResNet-18 model pre-
trained on high quality images and a ResNet-18 tuned across the full distortion range of
the Places365 test dataset.

dataset being roughly 60% that of the original undistorted images.
Figure 4.8 illustrates mean accuracy as a function of a single variable for four models

on Places365 and SAT-6: a full range model tuned across the full distortion range, a pre-
trained model trained only on high quality images, a midpoint model tuned on images
with the mean distortion value in each distortion axis, and an endpoint model tuned on
images with the extreme distortion value in each distortion axis. As noted above, the test
images used were each subjected to all three distortions simultaneously, with accuracy
values therefore reflecting the average across the remaining two distortion dimensions.

These plots exhibit several characteristics worth noting. First, the full range trained
models consistently outperform the point models, although this performance offset arises
because we are taking the mean over two of the three distortion dimensions in each plot.
Figure 4.9 shows the slight advantage at a particular distortion point of models tuned
on identically distorted images. Second, the midpoint models and endpoint models both
prefer distortion levels nearer those of their tuning images, particularly for Places365,
with performance improving for increased distortion in many regions of the distortion
space. Third, both full range trained models and the SAT-6 pre-trained model all show at
least a slight performance improvement with modest added noise. We believe this noise
preference results from the added noise compensating for model over-fitting. Finally,
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(a) SAT-6

(b) Places365

Figure 4.8: SAT-6 and Places365 classification accuracy as a function of resolution, blur,
and noise for ResNet-18 models pre-trained on undistorted images as well tuned at the
midpoint, endpoint, or full range of the distortion space for each dataset.

while point model behaviors differ at points between Places365 and SAT-6 (e.g., the SAT-
6 pre-trained model performance varies erratically as a function of resolution whereas the
Places365 pre-trained model does not exhibit this behavior), the behavior of the full range
trained models is very similar between the two datasets.

We observe these trends from a different perspective in Figure 4.9, which depicts the
mean accuracy of SAT-6 and Places365 models trained and tested on undistorted images,
images at the distortion space midpoint, images at the distortion space endpoint, and
images across the full distortion range. Specifically, we see that the full-range models
perform better on average than any other model on the full-range dataset. With the
exception of the SAT-6 midpoint dataset where the full range and midpoint models achieve
the same accuracy, these full range models approach but do not match the performance
of the point models on their matching point-distortion datasets. For SAT-6, and endpoint



CHAPTER 4. CLASSIFIER PERFORMANCE 71

(a) SAT-6 (b) Places365

Figure 4.9: Performance of pre-trained, full-range, midpoint and endpoint SAT-6 models
on full distortion range, undistorted, distortion space midpoint, and distortion space end-
point datasets.

trained model achieves stable performance across the all of the test datasets, while the
midpoint model performs well on all except the endpoint dataset. The peak performance of
the Places365 midpoint and endpoint models occurs on the midpoint and endpoint datasets
respectively, where these models achieve at least twice their respective performance on
undistorted images. Finally, while 5- and 6-percent accuracy of the Places365 full-range
and endpoint models on the endpoint dataset may be unimpressive in isolation, it is
worth noting that images with these distortion levels are all but uninterruptible visually
(see Figure 4.2), with the models performing at roughly a factor of twenty above chance
against our class-balanced test dataset containing 100 images per label label.

4.3.2 Model architecture comparison

To understand the generality of our results across different model architectures, we trained
and tested ResNet-18, ResNet-50, and DenseNet-161 models on identical datasets and
compared the results. While the larger, more computationally intensive DenseNet-161
model performed better, particularly on the Places365 dataset, variation in performance
as a function of resolution, blur, and noise were effectively identical across models, as
shown in Figures 4.10 and 4.11. The cross-correlation between the mean performance as
a function of resolution, blur, and noise for each pair of these models was at least 0.92.
For all of our subsequent analyses, we use ResNet-18 models to take advantage of their
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Figure 4.10: Places365 performance variation with resolution, blur, and noise for ResNet-
18, ResNet-50, and DenseNet-161 models trained and tested across the full range of the
Places365 distortion space.

lower computational overhead. While using a deeper architecture such as a DenseNet-
161 would improve absolute performance, we emphasize that our goal is to understand
the broad contours of distortion-performance relationships rather than to push computer
vision performance benchmarks.
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Figure 4.11: SAT-6 performance variation with resolution, blur, and noise for ResNet-
18, ResNet-50, and DenseNet-161 models trained and tested across the full range of the
Places365 distortion space.

4.3.3 Composite performance results

To better approximate the performance of ideally trained CNNs–namely models specifi-
cally tuned to maximize performance at each distortion point individually–we constructed
composite performance results using the octant models discussed in Section 4.1. Specifi-
cally, we used two i.i.d. versions of our test dataset to construct our composite performance
results. We used the first dataset to identify the best performing model in each distortion
octant (with the assumption that each model would be the best performing in its respec-
tive octant). We then filtered our models’ predictions on the second dataset; for each
octant in the second dataset, we used the predictions from the model which performed
best against that same octant in the first test dataset. As expected, taking the best per-
forming model from each octant in the first test dataset and using it for the same octant in
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Figure 4.12: Comparison of ResNet-18 octant model composite performance to perfor-
mance of full-range ResNet-18 and DenseNet-161 models.

the second test dataset resulted in a modest performance improvement compared to using
a single model trained across the full range of the distortion space. All of the remaining
test results shown here are from our the second version of our Places365 and SAT-6 test
datasets. We used the first version of these test datasets to compare performance as a
function of training image distortion in Sec. 4.3.1 and to compare model architectures in
Sec. 4.3.2. In the remainder of the study, we use the first version of our test datasets
to select the octant models and to fit performance predictions, and we use the second
version of our test datasets to evaluate composite performance and validate performance
predictions.

Table 4.3: Mean accuracy of full range trained models and octant composite result on i.i.d
version 2 of our full range test datasets

Places365 SAT-6

ResNet-18 full range trained 0.285 0.842
ResNet-150 full range trained 0.281 0.838
DenseNet-161 full range trained 0.292 0.840
octant composite result 0.303 0.855

Figure 4.12 compares an octant model composite result with the performance of full
range trained ResNet-18 and DenseNet-161 models on the Places365 full range test dataset,
and Table 4.3 summarizes the mean accuracy of all full range trained models and the
composite performance results for both Places365 and SAT6. Here, we see that the ResNet-
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18 octant models’ composite performance result achieved a top-1 accuracy improvement of
approximately 1.8% over a single ResNet-18 model tuned across the full distortion range
(30.3% vs. 28.5% top-1 accuracy). The performance difference between the composite
result and a full range trained DN-161 model was even smaller (30.3% vs. 29.2%), with
the most pronounced performance improvement occurring for high quality/low distortion
images, a result in keeping with the point model performance results shown in Fig. 4.9.
We note, however, that the composite performance result does not suffer the performance
drop seen in full range trained models moving from modest added noise to zero added
noise, as shown in the plot of accuracy as a function of noise in Fig. 4.12.

4.4 Application of the GIQE to Computer Vision Perfor-
mance

Having observed the overarching performance patterns associated with training and testing
CNN-based classifiers on distorted images, we explored whether the functional form of the
GIQE could form the basis of a model predicting CNN performance as a function of image
quality.

Fundamentally, the GIQE maps empirical image quality parameters to a man-made
utility metric (NIIRS) capturing the types of tasks that a human analyst can perform
with an image of a given rating. The GIQE and NIIRS metric were designed to provide
intuitively satisfying relationships (such as requiring ∆NIIRS = 1 for a doubling of resolu-
tion [14]), and the two co-evolved in a feedback loop in which analysts learned to predict
NIIRS ratings from the GIQE and the GIQE was tweaked to maximize the agreement
between analyst scores and GIQE-predicted NIIRS ratings. NIIRS is both a useful mono-
tonic “goodness” metric and a valuable communication tool, but it is designed around
the performance of the human visual system. While the GIQE’s applicability to computer
vision problems is plausible, its utility for predicting the classification accuracy of CNN
on imagery from a given imaging system is not obvious a priori.

The GIQE predicts image quality based on GSD, RER, and SNR, none of which we
measured on our images. We can, however, map the distortion variables we used to these
quantities. We know by inspection that for resolution fraction r, ground sample distance
GSD is given by

GSD ∝ 1

r
(4.2)

and that

SNR ∝ 1√
n2
0 + n2

1

, (4.3)
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n0 represents the native noise of our images before distortion, and n1 represents the noise
added in our distortion process. RER captures the sharpness of an image by quantifying
the slope of its edge response function, which is the spatial derivative of an image in the
direction normal to an edge. For an image formed with a Gaussian PSF of standard
deviation σ,

RER ≈ 1

σ
√
2π

. (4.4)

Here, we are studying images with native blur from the original system PSF that we have
blurred with a secondary Gaussian kernel of standard deviation σ1. If we approximate the
original system PSF as a Gaussian of standard deviation σ0, we find that

RER ≈ 1√
2π
(
σ2
0 + σ2

1

) , (4.5)

when σ2
0 + σ2

1 ≫ 1
2π . Chapter 3 presents a full derivation and validation of equations 4.4

and 4.5.

4.4.1 Native noise estimation

In order to account for the native noise in our images, we created a simple model to estimate
the raw noise in our images in units of counts/digital number (DN) after conversion to
8-bit images. Estimating the true SNR of an image that does not contain calibration
targets is a non-trivial problem [16]; we made no such attempt. Given the large amounts
of additive noise applied in our distortion process (up to 50 counts in an 8-bit image with
only 256 gray levels), we need only a very rough estimate of the mean noise content of our
images before application of our distortions.

Here, we define mean noise as the standard deviation of the difference between light
and dark image patches, where the light patch is illuminated to 50% of well depth before
accounting for dark electrons and the dark patch has no illumination, with all electrons in
the dark patch coming from dark current and read noise. Algorithm 1 shows the process
for modeling the noise of an image with a given saturation fraction, well depth, mean dark
electron count, read noise, and bit depth using synthetic m×m-pixel light and dark image
patches. As with the images used throughout this study, we begin with RGB images which
we then convert to grayscale by taking a simple average across the RGB channels.
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Algorithm 1 Estimation of the the raw noise and SNR of a grayscale
image

Input: Saturation fraction s, well depth in electrons d, mean dark elec-
tron count λdark, read noise σread, bit depth b, patch size m, where
the light and dark patches are each m×m pixels

Output: Grayscale SNR and estimate raw noise n

1: e−light (i, j, k)← s× d+ λdark, i, j ∈ {1, ...,m} and k ∈ {1, 2, 3}
2: e−light ← Poisson

(
e−light

)
3: e−light ← e−light +N

(
0, σ2

read

)
4: Slight ← e−light ×

2b

d

5: Slight (i, j) =
1
3

∑3
k=1 Slight (i, j, k)

6: e−dark (i, j)← λdark, i, j ∈ {1, ...,m}
7: e−dark ← Poisson

(
e−dark

)
8: e−dark ← e−dark +N

(
0, σ2

read

)
9: Sdark ← e−dark ×

2b

d

10: Sdark (i, j) =
1
3

∑3
k=1 Sdark (i, j, k)

11: Stotal ← Slight − Sdark

12: n← Std (Stotal)

13: SNR← E[Stotal]
n

14: return SNR, n

Using the method shown in Algorithm 1, we estimated the raw noise and SNR of 8-bit
grayscale images over a range of read noise and dark current values, where well depth was
fixed at 15-thousand electrons and light and dark patches were 64× 64 pixels, with light
patch illumination set to 50% of well depth. Figure 4.13 shows that total estimated noise
for these conditions. Based on these results, we chose to set our native noise estimate n0

to one count in our performance prediction models using equation 4.6 and 4.8.
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(a) Estimate grayscale SNR (b) Estimate gray scale raw noise

Figure 4.13: Estimated SNR (left) and raw noise (right) as a function of dark electron
count for varied read noise values. Across the set of dark electron and read noise values,
total noise falls between roughly 0.9 and 1.2 counts in an 8-bit RGB image that has been
converted to grayscale.

4.4.2 GIQE-based performance prediction

Having mapped our distortion variables to GIQE terms in equations 4.2, 4.3, and 4.5,
we substitute these mappings into the GIQE given in 1.1 in order to fit our performance
results to a GIQE-based performance prediction model. Specifically, we fit equation 4.6
to our accuracy data:

ā (r, σ, n) = c0 + c1 log10

(
1

r

)

+ c2

(
1− exp

(
c3

√
n2
0 + n2

1

))
· log10

 1√
2π
(
(c4r)

2 + σ2
)
 (4.6)

+ c5

log10

 1√
2π
(
(c4r)

2 + σ2
)



4

+ c6

√
n2
0 + n2

1,

where we set n0 = 1, which we estimate to be the native noise in counts of a typical
8-bit image that has been converted to grayscale (see Sec. 4.4.1), and c4r represents the
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native blur σ0 of the images scaled by the resolution to account for the sharpening effect
of down-sampling. We used a least squares routine for all fitting.

To understand whether the cross term was important or represented an over-parameterization
of the performance prediction model, we fit an equation based instead on the simpler, his-
torical functional form of the GIQE which did not include the RER-SNR cross term and
did not raise the independent RER term to fourth power: [14]

NIIRS = C0 + C1 log10 (GSD) + C2 log10 (RER) + C3
G

SNR
+ C4HGM , (4.7)

where G represents noise gain due to edge sharpening and HGM represents height of
overshoot due to edge sharpening, with coefficients values shown in Tab. 4.4.

Table 4.4: GIQE version versions 3 and 4 coefficients

GIQE Version C0 C1 C2 C3 C4

v3 11.81 -3.32 -3.32 -1 -1.48

v4 with RER > 0.9 10.25 -3.32 1.559 -0.344 -0.656
v4 with RER < 0.9 10.25 -3.16 2.817 -0.334 -0.656

Our GIQE-v3 model (-v3 rather than -v4 since we do not handle RER piece-wise) took
the form

ā (r, σ, n) = c0 + c1 log10

(
1

r

)
+ c5 log10

 1√
2π
(
(c4r)

2 + σ2
)
+ c6

√
n2
0 + n2

1, (4.8)

with the final term of the historical GIQE (C4HGM ) dropping out since we do not apply
edge sharping to our images. The coefficients for both fits are shown in Table 4.5.

The surface plots in Fig. 4.14 show the predicted and actual accuracy that result
when we fit our performance prediction model (Eq. 4.8) to accuracy as a function of
distortion on version 1 of our Places365 test datasets and compared the fit to our test
results on version 2 of our test datasets. In all cases, we have used the octant models
and composite performance process described in Sec. 4.3.3. As with our other surface
plots, we generated these plots by averaging out one of our three distortion dimensions to
display average accuracy as a function of the remaining two. Visually, these plots suggest
that our performance prediction model captures underlying accuracy reasonably well.

As a check on the visual test results shown in Fig. 4.14, we used predicted accuracy
values from our Eq. 4.8 fits as inputs to a simple binomial distribution accuracy simulation.
The success or failure of an image classifier on each test image represents a simple Bernouli
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Table 4.5: Performance prediction fit coefficients from GIQE-5 based model (Eqn. 4.6)
and GIQE-3 based model (Eqn. 4.8) for Places365(†) and SAT-6 (♦)

c0 c1 c2 c3 c4 c5 c6

GIQE-5♦ 1.02 −0.299 0.0453 −0.113 −0.0221 −0.278 −2.81× 10−3

GIQE-3♦ 1.08 −0.336 - - 0.935 0.152 −3.05× 10−3

GIQE-5† 0.512 −0.385 0.139 −0.0319 1.88 −0.0841 −2.25× 10−4

GIQE-3† 0.688 −0.417 - - 2.25 0.272 −2.10× 10−3

trial, so in aggregate we can treat a series of test images at a given distortion point (r, σ, n)
as a binomial experiment, where Psuccess is the mean accuracy of our model â (r, σ, n) and
the number of trials is the total number of images subjected to those particular distortions.
For our simulation, we set the number of trials at each distortion point to the total number
of test images in our test dataset divided by the number of distortion points, and we
simulated the resulting performance with Psuccess set to our performance prediction.

Figure 4.15 compares measured vs. predicted accuracy (left) and simulated vs. pre-
dicted accuracy (right) for our SAT-6 and Places365 fits. For both datasets, we observe
very similar results from both test and simulation. We note that accuracy quantization
levels in simulated plots appear because all simulated binomial experiments use the same
number of trials, leading to discrete accuracy levels spaced by 1/ntrials. This quantization
does not appear in the measured data, except where accuracy = 1.0, because distortions
are applied stochastically, so the number of images at each distortion point varies. Where
accuracy = 1.0, changes in the denominator have no effect, leading to quantization step
observed in the SAT-6 measured data. Here, we see that r2 values and visual appearance
of our actual and simulated results are very similar. Significantly, when we perform a
simple linear fit of predicted vs. actual accuracy and predicted vs. simulated accuracy, we
observe r2 values 0.815 and 0.843 respectively on Places365, suggesting that much of the
variability in the test results represents the inherent variability of the underlying binomial
distribution. These results indicate that the functional form of the GIQE works reasonably
well for modeling CNN accuracy as a function of image quality, within the constraints of
this study.
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(a) Resolution and blur (Places365) (b) Resolution and blur (SAT-6)

(c) Resolution and noise (Places365) (d) Resolution and noise (SAT-6)

(e) Blur and noise (Places365) (f) Blur and noise (SAT-6)

Figure 4.14: Predicted and measured accuracy for Places365 and SAT-6 using our GIQE-3
model (Eq. 4.8). The performance prediction model was fit using test results on version
1 of our two i.i.d. test datasets, and with the fit applied and evaluated on version 2 of our
i.i.d. test datasets.
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(a) SAT-6

(b) Places365

Figure 4.15: Scatter plots of predicted vs. actual accuracy (left) and an equivalent scatter
plot (right) showing the resulting accuracy when the predicted accuracies from fitting Eq.
4.8 are used inputs to a binomial probability distribution.
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4.4.3 Performance prediction model comparison

Based on the results depicted in Figs. 4.14 and 4.15, we believe that that our GIQE-based
models, as fitting functions, give reasonably good approximations of CNN accuracy over
the distortion space. We recognize, however, that in many cases there are multiple non-
linear functions that can approximate the same data. For comparison, therefore, we fit
naive performance prediction models without any pedigree. Specifically, we fit a power
law function of the form

ā (r, σ, n) = c0 + c1r
c2 + c3σ

c4 + c5n
c6 (4.9)

and an exponential function of the form

ā (r, σ, n) = c0 + c1e
c2r + c3e

c4σ + c5e
c6n. (4.10)

We found that these equations succeeded in fitting and predicting our performance data
as well as, and in some respects better, than our GIQE-based fits. Table 4.6 summarizes
the quality of the fits generated using each functional form. When we generate plots like
those in Figs. 4.14 and 4.15, the visual differences are minimal across all of the models we
used (not shown).

To better visualize the various fits, we next compared them across a single distortion
dimension. For example, when comparing mean predicted and measured accuracy as a
function of resolution, the mean accuracy at each resolution value represents the average
over all blur and noise values. Figure 4.16 shows these results. For the most part our
models are consistent in predicting average performance as a function of each distortion
variable; the only notable exception is the Eqn. 4.6 model based on the latest version of
the GIQE. Here, we see that our model’s predicted accuracy as a function of resolution is
concave down when it should be concave up. Figure 4.18, with the same data plotted on a
slightly different scale, shows this concavity mismatch more clearly. The concavity arises
from the exponent in the RER term, which changed from log10 (RER) in the historical
versions of the GIQE to log10 (RER)4 in the current version. The exponent is intended
to account for non-optimal edge sharpening, penalizing images with low RER that would
typically require greater degrees of sharpening by an image analyst [14].

Based on these fit comparison plots (Figs. 4.16, 4.17 and 4.18), we observe that simple
linear correlation metrics do a poor job of discriminating between models. By comparing
r2 values between measured and simulated data, we can conclude that much but not all
of the variance between modeled and measured data arises due to the inherent character-
istics of the underlying binomial distribution that describes a classification experiment.
The systematically larger r2 values in the simulation column suggest that our models im-
perfectly describe the underlying probability distribution; the relatively small size of this
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Table 4.6: Measured vs. predicted and simulated vs. predicted fit metrics for performance
predictions from our GIQE-5 model (Eqn. 4.6), GIQE-3 model (Eqn. 4.8), power law
model (Eqn. 4.9), and exponential model (Eqn. 4.10) for SAT-6 (♦) and Places365 (†).
Measured metrics (left) reflect result from a linear fit (y = mx + b with coefficient of
determination r2) of measured accuracy y vs. predicted accuracy x. Simulated metrics
(right) result reflect a linear fit of simulated accuracy y vs. predicted accuracy x, where our
simulated accuracy values were generated by simulating the results of binomial experiment
in which Psuccess is given by predicted accuracy and the number of trials is the average
number of images at each distortion point (∼ 80).

Measured data Simulated data
m b r2 m b r2

GIQE-5♦ 1.002 −0.002 0.739 1.002 −0.007 0.765

GIQE-3♦ 1.002 −0.002 0.739 0.993 0.0 0.762

Power law♦ 1.003 −0.002 0.740 0.998 −0.004 0.761

Exponential♦ 1.003 −0.002 0.739 0.991 0.002 0.761

GIQE-5† 0.988 0.003 0.815 0.998 0.0 0.845

GIQE-3† 0.988 0.003 0.815 0.988 0.002 0.841

Power law† 0.989 0.003 0.798 1.006 −0.004 0.837

Exponential† 0.989 0.002 0.801 1.002 −0.001 0.837
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difference, however, suggests that the gap between the modeled and the actual probability
distributions is minimal.

We therefore apply two additional tools to compare our performance prediction models,
with the goal of understanding whether we can quantitatively discriminate between these
models’ applicability. First, we consider the Durbin-Watson statistic, which measures the
autocorrelation between between adjacent residuals, and is given by

d =

∑T
t=2 (et − et−1)

2∑T
t=1 e

2
t

, (4.11)

where et is the residual at each of T total samples [104]. Values of the Dubin-Watson
statistic fall between 0 and 4, with d ≈ 2 (1− r) for autocorrelation r given a reasonably
large number of samples [105]. In the presence of underfitting or overfitting, we would
expect to observe positive correlation between adjacent residuals in the first case and
negative correlation between residuals in the second. Conversely, with a good model we
should observe very little correlation between adjacent residuals, leading to Durbin-Watson
values near two.

The Durbin-Watson statistic is usually applied to time series models where there is no
question about the adjacency of residuals. Here, we are predicting classifier performance
as a three dimensional function of three independent distortions, giving each residual ei,j,k
three immediate predecessors at ei−1,j,k, ei,j−1,k, and ei,j,k−1. Accordingly, we calculated
the Durbin-Watson statistics several different ways. First, we considered the residuals as a
function of all three distortion variables and determined adjacency by unraveling the data
cube along one of the three dimensions at a time. Formally, for a residual tensor e (i, j, k)
of shape (l,m, n), unraveling along the i-axis leads to sequential residuals et, with

et = e (i, 0, 0) ⌢ e (i, 1, 0) ...e (i,m− 1, 0) ...e (i,m− 1, n− 1) , (4.12)

where the ⌢ operator represents vector concatenation such that (x0, x1) ⌢ (y0, y1) =
(x0, x1, y0, y1). For each of our performance prediction models, we began by calculating
the Durbin-Watson statistic for unraveling along each of the three distortion axes.

Next , we calculated the Durbin-Watson statistics after averaging out two of the three
distortion dimensions, analyzing predicted and measured accuracy as a function of the
remaining distortion variable (the same process we used to generate all of our one dimen-
sional performance plots, e.g., Fig. 4.16). Having reduced the data to a single dimension
here, we calculated the Durbin-Watson statistic directly.

Figures 4.19 and 4.20 show the Durbin-Watson statics for each of the four models
considered on SAT-6 and Places365 respectively. From these figures, we can see that
all of the models show at least some correlation between adjacent residuals, with the
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autocorrelation growing (and Durbin-Watson scores therefore dropping further below two)
when we drop to one dimension. Collectively, these results suggest that all of the models
are at least slightly underfit and do not fully account for the variability in the data,
although none of the 3d statistics fall outside of the range generally considered reasonable.
The 1d statistics largely align with what we see in Figs. 4.17 and 4.16, where we can see
clearly that the GIQE-5 based model does a poor job of predicting accuracy as a function
of blur.

In addition to comparing Durbin-Watson statistics, we also used the Akaike informa-
tion criterion (AIC) to compare our models to one another. AIC quantifies the “goodness”
of a fit by quantifying the likelihood that a particular model describes the behavior of a
system, with AIC given by

AIC = −2 ln
(
L
(
θ̂MLE |y

))
+ 2κθ, (4.13)

where L
(
θ̂MLE |y

)
is the likelihood of the estimator θ̂MLE given the set of observations

y, and κθ is the number of parameters in the estimator [106]. AIC scores decrease as fit
fidelity increases (the opposite of the Durban-Watson statistic), and the κθ term penalizes
models with greater numbers of parameters to account for overfitting.

In practice, we can calculate L
(
θ̂MLE |y

)
by taking the product

∏
i p (yi| θ̂MLE), where

p (yi| θ̂MLE) is the probability of each observation yi given the value predicted by θ̂MLE .
Since the measured top-1 accuracy at a given distortion point follows a binomial distribu-
tion (discussed in Sec. 4.4.2), we used this distribution to model the probability of each
observation p (yi| θ̂MLE). Specifically, we calculated the probability of observing accuracy
yi at each distortion point, with Psuccess for the binomial distribution at the distortion
point given by the predicted accuracy āi, where each āi came from fitting one of our
four performance prediction models. Each model’s fit parameters were then that model’s
maximum likelihood estimator, θ̂MLE .

Table 4.7 shows each performance prediction model’s AIC scores on our two datasets.
AIC scores by themselves are not particularly meaningful since they are directly dependent
on the number of observations and the distribution of the data, i.e. there are no general
“rules of thumb” for good or bad AIC scores. Instead, AIC scores are useful for comparing
multiple models on a single set of observations, and accordingly we report ∆AIC for the
models in consideration on each dataset, where the ∆AIC value for each model is simply
that model’s AIC score minus the best (lowest) AIC score among the models compared.
When we compare the AIC scores of our models, we find that the GIQE-3 based model
performs best for both SAT-6 and Places365, with the exponential model yielding the next
best AIC scores in both instances.
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Table 4.7: Performance prediction model Akaike information criterion (AIC) scores for
SAT-6 and Places365.

SAT-6 Places365
AIC ∆AIC AIC ∆AIC

GIQE-5 45286.8 816.3 35227.9 627.2
GIQE-3 44470.5 0 34600.7 0
Power law 45316.2 845.7 35171.1 570.5
Exponential 45034.8 564.3 35042.7 442.0

Finally, we highlight two key factors in evaluating and comparing our performance
prediction models. First, the GIQE-3 model has the fewest fit parameters of those that
we considered (a factor that is accounted for in our AIC scores.) Second, this model is
linear with respect to all fit parameters except for c4, which accounts for the native blur
of our images in our RER approximation, while our other three models are non-linear
with respect to at least two fit parameters. Based on these factors and the strengths of
this model’s fits discussed above, we consider the performance prediction model based on
version 3 of the GIQE to be the best of those we considered.
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(a) Power law

(b) Exponential

(c) GIQE-3

(d) GIQE-5

Figure 4.16: Comparison of fit quality for each of our performance prediction model func-
tional forms for Places365, where each distortion has been isolated by averaging out the
remaining two.
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(a) Power law

(b) Exponential

(c) GIQE-3

(d) GIQE-5

Figure 4.17: Comparison of fit quality for each of our performance prediction model func-
tional forms for SAT-6, where each distortion has been isolated by averaging out the
remaining two.
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(a) GIQE-3, SAT-6 (b) GIQE-3, Places365

(c) GIQE-5, SAT-6 (d) GIQE-5, Places365

Figure 4.18: Comparison of fit quality for blur between the GIQE-3 and GIQE-5 models.
Here, we see that our GIQE-3 based model outperforms our GIQE-5 based model in
predicting accuracy as function of blur at least for our data.
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(a) 3-dimensional statistics (b) 1-dimensional statistics

Figure 4.19: SAT-6 Durbin-Watson statistics. The 3d statistics were generated using the
process described by Eqn. 4.12, with the distortion labels corresponding the axis axis along
which the tensor was unravelled. 1d statics also followed this process after averaging out
one of the three distortion dimensions.

(a) 3-dimensional statistics (b) 1-dimensional statistics

Figure 4.20: Places365 Durbin-Watson statistics. The 3d statistics were generated using
the process described by Eqn. 4.12, with the distortion labels corresponding the axis axis
along which the tensor was unravelled. 1d statics also followed this process after averaging
out one of the three distortion dimensions.
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4.5 Image Classifier Findings

By systematically varying image quality in train and test datasets, we have explored both
the vulnerability of naively trained CNNs to image quality degradations as well as the rela-
tive robustness of CNNs trained on appropriately degraded images. As observed elsewhere
[80, 81, 50, 51, 107, 82, 84], appropriately trained CNNs can perform well against images
of very low visual image quality, indicating the potential utility of low-cost sensors paired
with tailored computer vision systems and highlighting the centrality of CNN training in
optimizing sensing systems that incorporate significant computer vision elements. Most of
the relevant research has focused on making CNNs robust to new and un-trained distor-
tions, and generally test distortions have been applied singly. For those designing sensors,
it should generally be feasible to train and test on images of similar quality, leaving CNN
generalization an important problem but one that is largely orthogonal to the problem
of image quality itself. Here, we have focused on showing the extent to which CNNs can
learn to see through the types of distortions likely to result from the use of inexpensive
imagers, where each of our three distortions has been applied to each image in a sequence
that roughly maps to the physical processes of an image chain.

Additionally, we have demonstrated that the functional form of the GIQE version 3 is
viable for use in models predicting CNN performance as a function of image quality, at least
for the cases described here. Given that the GIQE is used to predict NIIRS, a man-made
utility metric, the applicability of its functional form for predicting CNN performance
as a function of image quality was not obvious a priori. That said, our GIQE-derived
performance predictor is a five-parameter non-linear model; we recognize that our result
may be another demonstration of von Neumann’s adage on fitting elephants with non-
linear models [108, 109]. The fact that two other non-linear models with no particular
pedigree were similarly successful in predicting our classification accuracy suggests the
validity of von Neumann’s insight.

Significantly, we observe that the historical form of the GIQE does a better of predicting
performance in our setting than the current form, GIQE-5. The quartic RER term in
GIQE-5 fits our result poorly (Fig. 4.18). We find this result noteworthy but highlight
that our study pertains to the accuracy of CNN-based image classifiers. As noted before,
this term came about to account for the sub-optimal nature of sharpening kernels often
used when analysts apply edge enhancements to images with low RER. CNN training with
blurred images optimizes the network’s convolutional filters to extract information from
images with low RER, and we believe this optimization makes the GIQE-5 adjustment for
suboptimal sharpening unnecessary in modeling the performance of appropriately trained
CNNs. Additionally, using CNN-based classifiers afforded us the luxury of testing against
∼ 700, 000 images over which we could calculate aggregate accuracy at varied distortion
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levels; manually rating the NIIRS values of similar numbers of images is impractical.
Finally, while our GIQE-based models do a reasonable job of predicting the image clas-

sification performance of CNNs, we should note that the coefficients of our performance
prediction models are dataset dependent. To be useful for a task such as optimizing a re-
mote sensing system before actual image capture, the coefficients of any such model should
be tuned with representative data passed through computer vision systems performing the
task in question.



Chapter 5

Object Detector Performance

5.1 Introduction

In Chapter 4, we investigated the relationships between image quality and single label
image classification accuracy by CNNs. While image classification can be useful on its own,
object detection is a task of significant interest in a number of application, particularly
in the remote sensing community. Here, we focus our efforts on understanding image
quality with respect to the task of object detection by a machine learning algorithm.
Image quality and object detection have both been subjects of significant research, with
image quality research stretching back decades [4, 5, 6, 8, 7] and object detection research
gaining significant traction after the computer vision boom that began with AlexNet
in 2012 [9, 110, 111, 112, 113]. A comparatively small body of research, however, has
considered the intersection of these topics and examined in detail how image quality affects
the performance of deep learning-based object detection algorithms [114, 115]. In general,
work related to image quality has focused on capturing and recording images for human
viewing, whereas work in computer vision has taken relatively high quality images as its
starting point without giving significant thought to the image chains producing them.
Given the increasing prevalence of automated image processing for self-driving vehicles
and analysis of remote sensing data [116, 117, 118, 119], the relationship between image
quality and algorithm performance represents an increasingly important element of end-
to-end sensing systems.

Research on the interaction between image quality and computer vision performance
has been limited. While a small number of studies have considered the relationship between
image quality and the performance of computer vision algorithms, this research has largely
focused on image classification rather than object detection [80, 81, 50, 51, 83, 87, 12, 11,
86, 10, 91, 120, 121]. Additionally, several of these studies have observed differences in

94
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image quality as a driver of human visual interpretation and image quality as a determinant
of convolutional neural network (CNN) performance [91, 121, 81, 50, 51].

Here, we extend research focused on the relationship between image quality and deep
learning algorithm performance [120, 121] to specifically consider the task of object detec-
tion. Although image classification has some utility on its own, many of today’s interesting
computer vision applications such as vehicle autonomy and automated analysis of overhead
images tend to be object detection-centric. We believe that the widespread applicability
of object detection makes understanding its relationship to image quality an important
problem for those interested in systems reliant on computer vision. This research makes
the following contributions:

• We quantify the impacts of image quality variables on object detection performance

• We examine the extent to which training object detection models on distorted images
leads to performance recovery in testing against images with similar distortions

• We assess the viability of the functional form of the General Image Quality Equation
(GIQE) for modeling object detection performance as a function of image quality

• We compare the relationships between image quality and object detection perfor-
mance to the equivalent relationships for image classifiers

5.2 Related Work

As mentioned above and in previous chapters, work on the topics of image quality and
computer vision is extensive when the two are considered independently, but only a com-
paratively small body of research has explored the questions of how image quality affects
computer vision algorithm performance. Almost none of this research has specifically
examined the effects of image quality on deep learning based object detection algorithms.

For image classification, a number of studies have found CNNs to be prone to classifi-
cation errors when tested on degraded images, and these studies have generally observed
that training against images subjected to similar distortions leads to varying levels of per-
formance recovery [80, 81, 50, 51, 120, 96]. Many of the studies that have considered the
relationships between image quality and classifier performance have focused on training
schema to make CNNs robust when testing against unseen distortions (i.e. distortions
not applied to training images [84, 83, 11, 86, 10]). These studies found varying levels
of success in producing distortion-robust CNNs, but no approach succeeded in making
CNNs impervious to the full range of image distortions considered. Additionally, several
studies observed that image degradations affected CNN and human image interpretation
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Figure 5.1: Image chain steps

differently, with the image chains optimal for human observers proving sub-optimal for
CNN-based analysis and visa versa [91, 81, 92].

Studies exploring object detection performance are far more limited. Kong et al.
demonstrated an ability to predict object detection performance based on scene statis-
tics after degrading images with down-sampling, blur, and noise, but these studies ex-
plored performance relationships for detection algorithms that do not use deep learning
[122, 123]. Hsiang et al. compared the performance of a number of detection models on
videos with varied frame rates, the goal of the research being to understand the tradeoffs in
performance associated with varied sensor bandwidths and GPU platforms for automotive
applications [114]. Finally, Nath and Behzadan demonstrated that a generative adversarial
network (GAN) could be used to up-sample low resolution images and improve the perfor-
mance of pre-trained YOLO-based models [115]. We have found no systematic evaluations
examining the impacts of image quality on CNN-based object detector performance.

5.3 Method

In this study, we have used the 2017 Common Objects in Context (COCO) detection
dataset and extended the methods presented previously in our work on image classifiers
[120, 121] to the problem of object detection [124]. The 2017 COCO detection dataset
contains 118K training and 5K validation images with object annotations released, along
with 40K testing images for which annotations have not been released [125]. We used
two model architectures, Faster-RCNN [112] and YOLOv8 [126]. The YOLOv8 family of
models includes multiple model depths/sizes, with suffixes “n”, “s”, “m”, “l”, and “x”
denoting the different variants from smallest to largest. Here, we first tested pre-trained
Faster-RCNN and YOLOv8 models on distorted images and compare performance as a
function of image distortion, observing similar behavior for both architectures. We then
trained YOLOv8l models on distorted images and compared the performance of the pre-
trained models with the performance of the models tuned on distorted images.
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To generate our distorted images, we created parametric image chains that loosely
emulate the physical imaging process (Fig. 5.1). Fist, we downsampled our images,
which corresponds to a physical imager mapping an angular field of view onto its detector
elements, with the angular resolution determined by the ratio of the pixel pitch to the focal
length. Next, we blurred our images with Gaussian kernels, which corresponds to the blur
inherently imparted by the system point spread function (PSF). Finally, we added zero-
centered Poisson noise to roughly emulate the Poisson processes inherent in most image
noise sources. Figure 5.2 depicts a COCO image at each stage of the image chain at the
distortion space midpoint.

Figure 5.2: COCO image [127] at each stage of the distortion space midpoint image chain;
original (left), down-sampled (second from left), blurred (second from right), and noised
(right).

5.3.1 Primary performance metrics

To evaluate performance, we used mean average precision (mAP) with an intersection over
union (IOU) threshold of 0.50, where mAP is defined as the simple mean of the average
precision values for all object classes in the dataset. Specifically, in the context of an
object detection problem, precision P captures the probability that a predicted detection
is a true positive, with

P =
TP

TP + FP
=

total correct object detections

total predicted object detections
, (5.1)
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where TP represents total number of true positives and FP represents the total number of
false positives. Conversely, recall R captures the probability that a ground truth positive
will be detected, with

R =
TP

TP + FN
=

total correct object detections

total ground truth objects to detect
, (5.2)

where FN represents total false negatives. A true positive occurs when a detector correctly
labels an object and assigns a bounding box that satisfies an intersection over union (IOU)
requirement, where IOU captures the degree of overlap of a predicted bounding box Bp

and ground truth bounding box Bgt, given by

IOU =
area (Bp ∩Bgt)

area (Bp ∪Bgt)
. (5.3)

A false positive occurs when a detector incorrectly labels an object or assigns a bounding
box that does not satisfy an IOU requirement.

For each object detected, the model assigns a confidence between 0 and 1. To generate
a precision recall curve, we vary a confidence threshold and discard all detections with
confidence below the threshold. A low threshold tends to result in both more true positives
and more false positives, leading to high recall and low precision. Conversely, a high
confidence threshold tends to result in fewer true positives and more false negatives, leading
to low recall and high precision. By varying the confidence threshold, we can interpolate a
curve that treats precision as a function of recall. Specifically, we recognize that precision
P and recall R are both functions fP and fR of a confidence threshold tc, or

P (tc) = fP (tc) (5.4)

and
R (tc) = fR (tc) , (5.5)

where in practice tc is a set of discretely sampled values on (0, 1). We can then define an
interpolation operator Θ that is used to define the curve

Pinterp (R) ≡ Θ {P (tc) , R (tc)} . (5.6)

Here, we used the interpolation operator used in the PASCAL Visual Object Class (VOC)
challenge [128], which is given by

Pinterp (R (tc)) = max
t≤tc

(P (t)) = max
R̃≥R

(
P
(
R̃
))

. (5.7)
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Formally, average precision AP over all recall values is then given by

AP =
1

R1 −R0

∫ R1

R0

P (R) dR =

∫ 1

0
P (R) dR, (5.8)

where R0 = 0 and R1 = 1. In practice, we compute AP by taking the sum over a discretely
sampled curve, or

AP =
∑
i

Pi∆Ri. (5.9)

For an N -class object detection problem, we can generate precision-recall curves for
each object class Ci from which we compute an average precision value APi. Mean average
precision mAP , then, is the mean of our average precision values APi over all classes, or

mAP =
1

N

N∑
i=1

APi. (5.10)

5.3.2 Distortion space and training parameters

To establish the bounds of our distortion space, we identified the levels of downsampling,
blur, and additive noise that independently drove pre-trained models to approach chance
performance. Next, we stochastically applied all three distortion types to training and
testing images; for each image, we randomly selected a downsampling fraction, blur kernel
standard deviation, and Poisson noise standard deviation and applied these three distor-
tions sequentially. Figure 5.3 shows a COCO image with its bounding boxes superposed
in its undistorted form (i.e., at the origin of the distortion space), at the test distortion
space midpoint, and at the test distortion space endpoint.

Table 5.1: Distortion levels

resolution (fraction) σblur (pixels)
√
λPoisson (DN)

Resolution scan 0.05 - 1 - -
Blur scan - 0.5 - 10 -
Noise scan - - 0 - 100
Full range (train) 0.2 - 1 0.1 - 5 0 - 80
Full range (test) 0.25 - 1 0.5 - 4.5 0 - 70
Midpoint (train/test) 0.625 2.5 35
Endpoint (train/test) 0.25 4.5 70
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Figure 5.3: COCO image [129] before distortion (left) and at the midpoint (middle) and
endpoint (right) of the test distortion space. We note that the image is of very low quality
at the midpoint and almost impossible to decipher visually at the endpoint.

Table 5.2: Training parameters.

Train dataset size 118K
Validation fraction 0.05
Distortion tuning epochs 50
Train batch size 8
Optimizer SGD*
Learning rate 0.01

*Stochastic gradient descent

After finding the distortion levels that drove object detectors to approach chance per-
formance, we generated a training dataset and an initial testing dataset bounded by these
distortion levels. After training and testing across this distortion space, we created two
slightly narrower test datasets. Table 5.2 summarizes our training parameters. These
narrower test datasets remove regions at which performance remained near chance even
after training. We also set the minimum blur kernel standard deviation to 0.5 pixels in our
test dataset due to the departure from a meaningful Gaussian shape in sampled kernels of
extremely low standard deviation, which we have explored in more detail elsewhere [96].
Table 5.1 summarizes the distortion boundaries used.

The two full range test datasets are independently and identically distributed (i.i.d.),
meaning the distortions applied to the images across these two datasets are randomly



CHAPTER 5. OBJECT DETECTOR PERFORMANCE 101

and independently drawn from identical distributions, giving them equivalent distortion
statistics. We generated these test datasets from the same original COCO validation
images, and each test dataset contains 100 stochastically distorted copies of the original
parent images for a total of 500,000 distorted images in each test dataset. We emphasize
that the goal of the study is to understand performance variation with image quality.
Because image quality is our primary variable of interest, we take advantage of the ability
to measure its effects on performance when the same test images appear at different points
in the distortion space.

In addition to training and testing models on distortions spanning our train and test
distortion space, we also trained and tested models on images at the distortion space
midpoint and endpoint (see Table 5.1). To generate our midpoint and endpoint train
and test datasets, we applied these midpoint and endpoint distortion combinations to the
COCO train and validation datasets respectively. When we trained our midpoint and
endpoint models, we started with copies of the model that we had trained across the
full training distortion space and then tuned them for an additional five epochs on the
midpoint and endpoint training datasets.

5.4 Results

5.4.1 Single distortion type test results

To establish our distortion bounds and understand the behavior of pre-trained models,
we tested a subset of the YOLOv8 family of models and a Faster-RCNN model on our
single distortion type datasets listed in Tab. 5.1. Figure 5.4 depicts these results. We
observe that the larger YOLO models performed best in absolute terms, with all except the
smallest YOLO model (YOLOv8n) having very similar absolute performance. All models
displayed similar distortion performance trends. For comparison, we also tested a pre-
trained Faster-RCNN model on these single distortion datasets and observed performance
trends similar to those seen for YOLOv8, with its absolute performance falling in between
the performances of YOLOv8n and YOLOv8m.

When we tested the full range trained model on the single distortion datasets, we
observed a significant loss in performance at low distortion levels and a significant im-
provement at higher blur and noise levels (Fig. 5.5b and Fig. 5.5c). Surprisingly, tuning
across the full distortion range did little to improve performance at low resolution levels
(Fig. 5.5a).
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(a) Resolution scan (b) Blur scan (c) Noise scan

Figure 5.4: Performance of pre-trained YOLOv8 models and Faster-RCNN against single-
distortion test datasets.

(a) Resolution scan (b) Blur scan (c) Noise scan

Figure 5.5: Performance of a pre-trained YOLOv8l model and a YOLOv8l model tuned
across the full range of the distortion space. Here, we observe that tuning across the full
distortion range results in a significant performance loss on on high quality images while
improving performance on images with large blur and noise distortions. We also note that
this full range distortion tuning does little to improve performance against low resolution
images.
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5.4.2 Full distortion space test results

Figures 5.6 and 5.7 summarize the performance of four YOLOv8l models when we trained
and tested them on undistorted images, images at the distortion space midpoint, images
at the distortion space endpoint, and images spread throughout the full distortion range.
In Figure 5.6, which shows the average performance of each model over each test dataset,
we see that the models tuned at specific distortion points outperform the models tuned
on images of different quality, as we would expect. In Fig. 5.7, which shows average
performance as a function of resolution, blur, and noise over the full range test dataset,
we also see that the midpoint model demonstrates a preference for images with moderate
blur and noise. Additionally, the endpoint model displays performance that is relatively
stable with respect to resolution, with performance improving slightly as blur is increased
and performance increasing substantially as noise is increased. These figures also show
that tuning the midpoint model did little to diminish its performance elsewhere relative
to the full range model. We note here that when we tuned our midpoint and endpoint
models, we started with copies of the full range model; tuning on very low quality images
drove the endpoint model to “forget” more than the midpoint model.

When we compare the performance of our pre-trained and full range models tested on
images with distortions spanning the full test distortion space, we observed that our full
range tuned models performed better overall, while the pre-trained models continued to
perform well against images near the low distortion corner of the distortion space. Figure
5.8 depicts these results.

To generate Figs. 5.8a - 5.8c, we calculated mAP for both models at each distortion

point
(
r, σ,
√
λ
)
, and we then took the average over one of the three distortion dimensions

to find the mean performance as a function of the remaining two distortions. For instance,
mAP as a function of resolution and blur represents the average across all noise values. In
these plots, we can see that our full range trained model performs best on average, while
the pre-trained model (which saw only high quality images in training) outperforms the
full range model for low distortion values. To generate the 1D plots in Fig. 5.7, we took
the average of the mAP across two of the three distortion dimensions to get performance
as a function of the remaining distortion variable. Overall, we see that tuning across the
full range of distortions decreases peak performance while improving average performance
on distorted images.
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Figure 5.6: Average performance of four YOLOv8l models trained and tested on undis-
torted images, images at the distortion space midpoint, images at the distortion space
endpoint, and images across the full distortion range.

Figure 5.7: Mean performance as a function of resolution, blur, and noise of four YOLOv8l
models trained on differing distortions, tested on a full range test dataset.
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(a) Resolution and blur (b) Blur and noise

(c) Resolution and noise

Figure 5.8: Performance variation with resolution, blur, and noise for a pre-trained model
and a full range model, tested against our full range test dataset. Here, we observe that
the full range model outperforms the pre-trained model on average, while the pre-trained
model outperforms the full range model on high quality images.
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5.4.3 Object detector architecture comparison

(a) YOLOv8l and Faster-RCNN pre-trained

(b) YOLOv8l and Faster-RCNN full range

Figure 5.9: Performance of pre-trained and full range trained YOLOv8l and Faster-RCNN
models

Similar to the image classification architecture comparison presented in 4.3.2, we com-
pared the performance across image distortions of the YOLOv8 architecture with that of
the older Faster-RCNN architecture. We observed qualitatively similar trends in perfor-
mance as a function of distortion for both architectures, but we found that our YOLOv8l
models regained significantly more performance when trained on distorted images. Figure
5.4 in Sec. 5.4.1 shows how the performance of a pre-trained Faster-RCNN model com-
pares with that of various YOLOv8 models over single-distortion test datasets. There, we
observe that the Faster-RCNN model’s performance falls between the performances of the
two smallest YOLOv8 models that we tested.

When we compare the performance of a pre-trained YOLOv8l model with that of a
Faster-RCNNmodel across the full range test distortion space, we observe similar behavior.
In Figs. 5.9a and 5.10, we see that the pre-trained YOLOv8l model outperforms the pre-
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pretrained Faster-RCNN model across the distortion space, with both models exhibiting
similar variations in performance as a function of distortion level. When we compare
the performances of models trained across the full distortion space, however, we see that
the YOLOv8l model trained across the full distortion space performs drastically better
than the Faster-RCNN model also trained across the full distortion space. Our full range
trained Faster-RCNN model does not appear to learn to “see through” the distortions to
nearly the same extent as our YOLOv8l model.

We find the difference in performance of these models after tuning across the full
distortion space surprising; we observed very little difference in the performance of our
classifier architectures when we trained and tested ResNet and DenseNet models across
the full classifier distortion space in Sec. 4.3.2. While factors ranging from fundamentals in
the architecture differences to choices in training parameters may be driving the difference
in the performances of these models after training across the full distortion range, we have
not identified a unique cause. Based on the performance improvements at higher distortion
levels, we know that training across the full distortion range does enhance performance in
some regimes. We also observed nothing unexpected in our loss curves during training,
with training loss smoothly declining and validation loss leveling out and then climbing
slightly after roughly 25 epochs (not shown here). Additionally, we observed that Faster-
RCNN models trained across the full distortion range for only a few epochs performance
far worse than those trained longer. But while the overall performance of the Faster-
RCNN model is significantly lower across the full distortion space, the performance trends
are similar for both architectures; the performance curves have roughly the same shapes.
In short, we do not have an explanation for the difference in performance across these
architectures. Given the fact that performance variation as a function of image distortion
is similar between the the architectures, we do not believe that unraveling this anomaly is
critical in understanding the underlying relationships between image quality and computer
vision performance.
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(a) YOLOv8l and Faster-RCNN pre-trained

(b) YOLOv8l full range and pre-trained

(c) Faster-RCNN full range and pre-trained

(d) YOLOv8l and Faster-RCNN full range

Figure 5.10: Performance of pre-trained and full range trained YOLOv8l models (left) and
Faster-RCNN models (right) on a full distortion range COCO test dataset.
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5.4.4 Composite performance results

As we did in studying image classifiers (see Sec. 4.3.3), we constructed composite per-
formance results by dividing the training distortion space into “octants” and training a
model across the distortion range of each octant. We then tested these model Mi on each
of our two i.i.d. test datasets and calculated the resulting mAPi (r, σ, n) at each point in
the distortion space and calculated each model’s average mAP over each octant of the test
distortion space. We then constructed a composite performance tensor mAPcomposite by
assigning the mAP from each octant’s best performing model to points in that octant.

We used the results on the first test dataset to determine the best performing model in
each octant and to generate the distortion performance mAPpredict (r, σ, n) used for fitting
our performance prediction models. We then used the test results on the second of the
two i.i.d. test datasets to construct our mAPeval which we used for evaluating our these
performance prediction models.

In the classification work presented in Ch. 4, we divided each dimension of the distor-
tion space at its midpoint, creating eight octants of equal volume. Here, we deviate slightly
from this original approach. First, we left overlap in our train octants as a means of data
augmentation to build model robustness and decrease the likelihood of a performance dip
at the octant boundaries. Second, we did not divide the resolution axis of our test distor-
tion space at the midpoint; when we did so, we found that the models trained on higher
resolution training octants had higher average performance on the lower resolution test
octants than the models trained on the lower resolution training octants. Models trained
on lower resolution images outperformed models trained on higher resolution images only
near the extreme end of the resolution range. It was only when we adjusted the resolution
boundary to be below the midpoint of the test distortion space that all of the models
contributed to the composite performance result. We ultimately set the octant boundary
at the point that maximized the global average of mAPpredict.

Table 5.3 shows the octant boundaries we used for training and testing. The octant
with the highest quality images would be use the high range range for each distortion
dimension, the octant with the lowest quality images would use the low column’s range,
etc.

As we observed in our classifier results (Sec. 4.3.3), using a composite performance
result build from octant model results in a modest overall performance improvement with
performance trends almost identical to those of a single model trained across the full
distortion space. Figure 5.11 illustrates the slight improvement found by moving to the
octant model composite performance.
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Table 5.3: Train and test distortion octants

Train Test
high low high low

resolution (fraction) 0.55 - 1 0.2 - 0.65 0.4 - 1 0.25 - 0.4
σblur (pixels) 0.2 - 2.7 2.3 - 5 0.5 - 2.5 2.5 - 4.5√
λPoisson (DN) 0 - 45 35 - 80 0 - 35 35 - 70

(a) Resolution and blur (b) Blur and noise

(c) Average performance as a function of resolution, blur, and noise

Figure 5.11: Comparison of octant model composite performance and the performance of
a single full range trained YOLOv8l model across the full test distortion space.
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5.5 Analysis and discussion

5.5.1 Comparison to image classification results

To compare our object detection results to the results we previously obtained studying
image classifiers, we first used a DenseNet-161 model tuned across the full training distor-
tion space from our previous study [121] and tested it on single-distortion versions of the
Places365 validation dataset. Next, we re-created key elements of our image classification
study, this time in RGB using the same distortion space that we used for COCO to enable
a direct comparison between the results. Specifically, we trained a Places365 ResNet-18
model across the full COCO distortion space, with the COCO distortions applied to the
Places365 dataset in RGB. We then created Places365 test datasets with the same distor-
tions that we applied to our COCO test datasets, and we tested both pre-trained and full
range trained ResNet-18 models on these “COCO-parallel” datasets.

Figure 5.12 compares our classification results on Places365 with our object detection
results on the COCO dataset when distortions are applied singly. We highlight that the
performance metrics differ, with COCO object detection measured by mAP and Places365
measured by simple top-1 accuracy. We also point out that the x-axis scales differ, with
the blur and noise ranges for COCO and Places365 RGB extending roughly twice as far
as the blur and noise ranges shown here for the original Places365 results. Having noted
these caveats, we see that the performance trends are qualitatively similar for pre-trained
and full range models across all datasets; we also observe subtle differences differences and
a significant parallel.

First, we observe that the effect of tuning the models across the full distortion space
before testing on a single-distortion test dataset differs between our COCO object detection
results and our Places365 image classification results. The performance loss of the full
range models against low distortion, higher quality images is less pronounced for the
Places365 classification models than it is for the COCO object detection model. This
difference is clearest for blur, where the Places365 full range model began outperforming
the pre-trained model once the Gaussian blur kernel standard deviation reached σ ≈ 1.5
pixels; conversely, the full range COCO object detection model does not outperform the
pre-trained model on the blurred test dataset until standard deviation has reached σ ≈ 4
pixels. Additionally, we find it noteworthy that tuning across the full distortion range
does little to improve performance as a function of resolution for the object detection
model, whereas this full range tuning does delay the performance drop of the Places365
classification model. Finally, we also find it interesting that performance as a function of
resolution is relatively stable for both object detection and classification until resolution
drops to roughly 40%.

Second, and perhaps most significantly, we observe that performance as a function of
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resolutions remarkably stable in our COCO and Places365 results when resolution remains
above roughly 40%, particularly for the full range trained models. Below this threshold
we find that resolution drops off quickly in these single distortion results. We also observe
that training against distorted images leads to only limited performance improvement at
low resolution, particularly in our object detection results. Additionally, we find that
full range Places365 RGB model loses almost no performance at all until the resolution
fraction drops below 20%, which is the minimum resolution used in training our COCO
and Places365 RGB models.



CHAPTER 5. OBJECT DETECTOR PERFORMANCE 113

(a) COCO resolution scan (b) COCO blur scan (c) COCO noise scan

(d) Places365 resolution scan
(RGB)

(e) Places365 blur scan (RGB) (f) Places365 noise scan (RGB)

(g) Places365 resolution scan
(original grayscale)

(h) Places365 blur scan (origi-
nal grayscale)

(i) Places365 noise scan (origi-
nal grayscale)

Figure 5.12: Performance of pre-trained and full range models on single-distortion
COCO and single-distortion Places365 test datasets. We note the y-axis metrics differ,
with COCO object detection performance quantified by mean average precision (mAP)
and Places365 classification performance quantified by top-1 accuracy. Additionally, we
highlight that the distortion axis scales differ between the datasets, with COCO and
Places365 RGB having the same distortion axes and the Places365 original grayscale hav-
ing narrower distortion ranges. (The COCO results shown here are duplicates from Fig.
5.5, repeated for clearer comparison with the Places365 results.)
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5.5.2 Application of the GIQE to object detection performance

Previously, we used the the GIQE to model image classification performance as a function
of image distortion; there, we found that the functional form of the GIQE could model
object detection performance with reasonable fidelity, but we observed that the historical
functional form used in versions 3 and 4 of the GIQE outperformed the current form [121].
Here, we apply the GIQE to the object detection performance of our full range YOLOv8l
model when tested across the full distortion space. As in our previous work, we map our
distortion variables—resolution fraction r, Gaussian blur standard deviation σ, and zero
centered Poisson noise standard deviation n—to the GIQE variables of GSD, RER, and
SNR. We use the relationships GSD ∝ 1

r and SNR ∝ 1
n2
0+n2

1
, where n0 represents the noise

present in the image before distortion and n1 represents the deliberately added noise. For
RER, we again use

RER ≈ 1√
2π
(
σ2
0 + σ2

1

) , (4.5 revisited)

which holds when σ2
0+σ2

1 ≫ 1
2π . A full derivation for Eqn. 4.5 is presented elsewhere [96].

Using this variable mapping, we fit equation 5.11 to our performance results:

mAPpredicted (r, σ, n) = c0 + c1 log10

(
1

r

)

+ c2

(
1− exp

(
c3

√
n2
0 + n2

1

))
· log10

 1√
2π
(
(c4r)

2 + σ2
)


+ c5

log10

 1√
2π
(
(c4r)

2 + σ2
)



4

+ c6

√
n2
0 + n2

1, (5.11)

where the term c4r captures the native blur of the images and the sharpening effect of
downsampling. We set n0 = 2, which we estimate to be the approximate noise in DN of
a typical 8-bit RGB image based on basic sensor modeling.

Figure 5.13 shows the predicted and measured performance when we fit our GIQE-
based model to object detection performance on the first of two i.i.d. test datasets and
evaluated the fit using object detection performance on the second of these two i.i.d. test
datasets. Here, we observe that our model based on GIQE-5 does a qualitatively good job
of predicting object detection performance. In our previous work with image classifiers,
we observed that this particular model did a qualitatively poor job of predicting accuracy
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as a function of blur [121]. Conversely, in the center plot of Fig. 5.13d where we display
mAP as a function of blur, we do not see a qualitative mismatch between predicted and
measured performance.

In our previous study, we also fit three additional performance prediction models for
comparison [121]. The first of these additional models was based on the historical GIQE-v3
and here takes the form

mAPpredicted (r, σ, n) = c0 + c1 log10

(
1

r

)
+ c5 log10

 1√
2π
(
(c4r)

2 + σ2
)
+ c6

√
n2
0 + n2

1.

(5.12)
We used this performance prediction model to assess whether the historical form of the
GIQE could model performance with fidelity similar to that of the updated GIQE, which
includes modifications to account for the sharpening algorithms typically used by (human)
analysts in the course of their work [14].

The two other models we used were power law and exponential functions, which we
included to assess whether the various forms of the GIQE were unique in their ability to
model image quality relationships or whether two somewhat arbitrary non-linear functions
could achieve similar results. These exponential and power law comparison functions take
the respective forms

mAPpredicted (r, σ, n) = c0 + c1e
c2r + c3e

c4σ + c5e
c6n (5.13)

and
mAPpredicted (r, σ, n) = c0 + c1r

c2 + c3σ
c4 + c5n

c6 . (5.14)

When we fit these additional models to our object detection performance data, we see
results qualitatively similar to our Eqn. 5.11 results (see Appendix 8.1). Tables 5.4 and
5.5 contain the fit parameters that we obtained. (We separated these parameters into
two tables to emphasize that there is no connection between the GIQE fit parameters
and the exponential / power law fit parameters). Examining the GIQE-3 and GIQE-5 fit
coefficients, we see that the bias, resolution, and noise terms are similar, while the RER
coefficients differ due to the SNR-RER cross term and exponent over the independent
RER term in GIQE-5. We observe that all four of these models do a reasonable job of
fitting performance as a function of resolution, blur, and noise, with all models having
nearly identical correlation coefficients ρ. Table 5.6 shows the relatively small variation in
AIC scores for these models. We calculated these AIC scores using the approach discussed
in 4.4.3, with the exception that here we assumed Gaussian errors since the binomial dis-
tribution appropriate to modeling a top-1 accuracy experiment does not apply to object
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detection scores. We note a strong qualitative similarity to the image classification results
we have previously reported, with the notable exception that the GIQE-5 model fits ob-
ject detection performance as a function of blur well in these results while it did not fit
classification accuracy as a function of blur well in our previous results [121].

Table 5.4: Performance prediction fit coefficients for our GIQE-5 (Eqn. 5.11) and GIQE-3
(Eqn. 5.12) based models. ρ is coefficient of correlation between predicted and measured
mAP across the 3D distortion space.

c0 c1 c2 c3 c4 c5 c6 ρ

GIQE-5 0.699 -0.464 0.264 -2.13 2.20 -0.0205 -1.84e-3 0.946
GIQE-3 0.723 -0.465 - - 2.18 0.307 -1.82e-3 0.945

Table 5.5: Performance prediction fit coefficients for our power law (Eqn. 5.14) and
exponential (Eqn. 5.12) models. ρ is coefficient of correlation between predicted and
measured mAP across the 3D distortion space.

c0 c1 c2 c3 c4 c5 c6 ρ

Exponential -0.210 -0.498 -2.54 0.450 -0.126 0.357 -6.30e-3 0.940
Power law -10.0 -10.6 0.0157 -0.0665 0.759 -3.03e-3 -1.82e-3 0.939

Having seen that the GIQE-5 model fit our object detection results better than it fit our
image classification results discussed in Chapter 4, we fit a GIQE-5 performance prediction
model to the performance of a Places365 ResNet-18 model trained across the COCO
distortion space applied to the Places365 dataset in its native RGB format (discussed
in Sec. 5.5.1); there, we found that the GIQE-5 performance prediction model fit the
Places365 classification accuracy results reasonably well, as shown in Fig. 5.14. We
hypothesize that the better GIQE-5 fits observed in the COCO and Places365 RGB fits
result from a comparatively decreased impact of noise in our RGB images. Specifically,
in RGB images each color channel’s noise is de-coupled from the other two channels,
lessening the impact of a given noise level relative to that same noise level applied to
grayscale images. We believe that this change in coupling affects the coupled SNR-RER
term in the GIQE-5.
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Table 5.6: COCO performance prediction model Akaike information criterion (AIC) scores

AIC ∆AIC

GIQE-5 18450.6 12.9
GIQE-3 18443.3 5.6
Power law 18437.7 0
Exponential 18446.2 8.5

5.6 Object Detection Findings

Here, we have shown that CNN-based object detection performance as a function or reso-
lution, blur, and noise follows similar patterns to those seen when studying image classifier
performance in the presence of similar distortions, with some differences [121]. First, we
have observed that training our object detector on distorted images resulted in a substan-
tial performance loss when tested on high quality images. While we have observed similar
performance drops on high quality images when classifiers are tuned on distorted images,
this performance decrease is proportionally larger for our object detector.

We have also observed that object detection performance as a function of resolution
is relatively stable for resolution fractions above roughly 0.4 when other distortions are
not present. Because we have applied blur after down-sampling, the impacts of blur and
resolution are coupled; a blur kernel of a given size is proportionally larger after down-
sampling. We also find it significant that training on distorted images does little to improve
performance as a function of down-sampling when other distortions are not present (Fig.
5.5a); in the presence of deliberate blur and noise, however, tuning on distorted images
still improves performance as a function of resolution (Fig. 5.7). We point out that this
insensitivity to resolution is consistent with the findings of Jaffe et al. [91]

Finally, we observe that both the current and the historical forms of the GIQE are
able to model object detection performance well in our study. We find it noteworthy
that the current form of the GIQE fits our object detection results better than it fit our
classification results in previous work [121], with the exception the updated classification
results in RGB discussed in Sec. 5.5.2. We also point out that other non-linear functions
with no particular pedigree model performance as well as our GIQE-based models. Finally,
we highlight that the historical form of the GIQE models our performance result roughly as
well as the current form of the GIQE, which we consider significant given the comparative
simplicity of the historical form.
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(a) Resolution and blur (b) Blur and noise

(c) Resolution and noise

(d) Mean measured and predicted performance as a function of resolution, blur, and noise

Figure 5.13: Measured and predicted performance as a function of resolution, blur, and
noise for our octant model composite performance. We fitted Eqn. 5.11 to performance
on the first of two i.i.d. test datasets evaluated the fit on the second.



CHAPTER 5. OBJECT DETECTOR PERFORMANCE 119

(a) Resolution and blur (b) Blur and noise

(c) Resolution and noise

(d) Mean measured and predicted performance as a function of resolution, blur, and noise

Figure 5.14: Measured and predicted performance as a function of resolution, blur, and
noise for a ResNet-18 model trained and tested on on the Places365 dataset in RGB
with the COCO train and test distortions applied respectively . We fitted Eqn. 4.6 to
performance on the first of two i.i.d. test datasets evaluated the fit on the second.



Chapter 6

Parametric Sensor Modeling

In the preceding chapters, we relied on distortion-based image chains with two key traits.
First, the distortions were all applied independently of one another, with down-sampling
applied first, followed by a blur function and then a noise function that did not “know”
anything about the upstream distortions. Second, the order in which we applied these
distortions maximized their cumulative effect on image quality. By downsampling first
in our image distortion chain, we magnified the effect of the subsequent blurring. By
applying noise last, we avoided the de-noising effects of both down-sampling and blurring.

This approach offered the advantage of simplicity, and it enabled us to demonstrate
the distortion-robustness of CNNs under stressing conditions. By applying the distortions
independently of one another, however, we ignored coupling inherent in a real image
system. To first order in a physical system, ground sample distance (GSD), relative edge
response (RER), and signal-to-noise ratio (SNR) are driven simultaneously by the system’s
aperture diameter, focal length, and pixel pitch. Specifically, GSD is proportional to the
ratio of pixel pitch to focal length. Relative edge response is approximately proportional
to the ratio of pixel pitch to PSF width (see Ch. 3), and PSF width is driven primarily
by aperture diameter assuming the system is near diffraction limited. Finally, in high
signal, shot noise limited conditions, SNR is approximately proportional to the ratio of
aperture diameter to focal length; in low signal conditions, pixel size, readout noise, and
well depth also play a significant role in determining SNR. A more detailed discussion of
these relationships appears in Sec. 2.1.2.

For a real system, we would ultimately measure these parameters directly or indirectly
during calibration processes that encompass all inter-connected effects. Here, however,
we do not enjoy the luxury of an array of calibrated imaging systems with which we
can test computer vision performance. Instead, we updated our parametric image chains
to incorporate these first order relationships, with the goal of better understanding the

120
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relationships between imaging system design choices and computer vision algorithm per-
formance

6.1 Updated image chain

To capture the first order coupling described above in more physically representative para-
metric image chains, we made several modification to the image chains used in Chapters
4 and 5.

First, we reversed the order of our resolution and blur steps, applying blur first and
then downsampling our blurred image in our updated image chains. Physically, this change
would be equivalent to adjusting optical resolution by changing aperture diameter and
then adjusting sampling resolution by either (a) changing the focal length and leaving
pixel pitch fixed or (b) changing pixel pitch and leaving focal length the same. We chose
to treat down-sampling as a result of decreasing focal length for two reasons. First, pixel
pitch does not affect SNR to first order under normal imaging conditions without debatable
secondary assumptions about the relationship between pixel pitch, well depth, and read
noise. Second, pixel pitch is not generally an adjustable parameter during system design;
we typically pick a sensor early on and make later optimizations with optical design.

Next, to account for the radiometric impacts of varying aperture size and focal length,
we used a simple system model to simulate imaging under varied SNR-conditions. To do
so, we referenced all of our images to a baseline system with an f-number, F0, and well
depth, w0. We then mapped our blur and down-sampling to relative changes in aperture
and focal length, and we simulated the results of these changes on image SNR under varied
signal / illumination conditions using the camera equation,

Edetector =
Laperture

G#
=

πτ

1 + 4F 2
Laperture, (2.36 revisited)

to determine the relative change in detector irradiance as a function of changing f-number
F and aperture radiance Laperture.

To calculate this relative change in detector irradiance, we began by mapping blur to
relative aperture diameter using the Gaussian approximation of an Airy diffraction pattern
presented by Zhang et al. [130]. Zhang et al. showed that for a diffraction limited PSF,

σ∗ = 0.21
λ

NA
, (6.1)

where NA is the numerical aperture and σ∗ is the standard deviation that minimizes the
L2 error between a Gaussian approximation and a diffraction limited Airy pattern. We
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can rewrite Eqn. 6.1 in terms of aperture and focal length, recognizing that

NA =
d

2f
=

1

2F
, (6.2)

which yields

σ∗ = 0.42
λf

d
= 0.42λF (6.3)

after substitution for aperture diameter d and focal length f . We can therefore write
relative aperture size in terms of relative blur kernel standard deviation, with

d (σ)

d0 (σ0)
=

σ0
σ
. (6.4)

From this relationship, then we know that F ∝ σ.
Next, we can map changes in resolution fraction r to changes in focal length f by

recognizing that the instantaneous field of view (IFOV) α of a pixel of pitch p0 is given by

α =
p0
f
. (6.5)

Starting with IFOV α0 before downsampling, we have α = α0
r , and so

α =
p0
rf0

=
p0
f
, (6.6)

meaning f = rf0. Combining the findings of Eqns. 6.4 and 6.6, we have

F =
rσF0

σ0
. (6.7)

We simulated images under the three SNR regimes shown in Table 6.1. We assumed
that all of our input images corresponded to a sensor with a 2,000 electron full well, w0.
For each SNR regime, we scaled our assumed input signal Lap by fraction η and our well
depth by a factor of

√
η, with well depth in each SNR regime given by

w =
√
ηw0. (6.8)

Table 6.1 summarizes the signal fractions and well depths that we used.
Next, to keep the dynamic range of our input and output images the same, we stipu-

lated that all signal-adjusted versions of the same image would use the same fraction of
the adjusted well depth, with

s

w
=

s0
w0

, (6.9)
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Table 6.1: Simulated signal fractions and well depths

Signal fraction, η Well depth, w

Low SNR 0.0025 100 e−

Medium-low SNR 0.01 200 e−

Medium SNR 0.25 1000 e−

High SNR 1.0 2000 e−

Figure 6.1: Updated image chain steps

which is achieved by adjusting integration time. With our input signal scaled by η and
our well depth scaled by

√
η, we find that

tint
t0

=
1 + 4F 2

√
η
(
1 + 4F 2

0

) =
1 + 4

(
r σ
σ0
F0

)2
√
η
(
1 + 4F 2

0

) ≡ φt (6.10)

In all cases, we assumed a 10 electron standard deviation Gaussian read noise and a dark
current id0 that yielded an average dark count nd0 = id0t0 = 5 e− per pixel at baseline
integration time t0. Given these relationships, we can determine the expected dark count
as a function of signal fraction η, blur standard deviation σ, and resolution fraction r,
with

nd = id0tint =
nd0

t0
tint =

tint
t0

nd0 = φtnd0. (6.11)

For an 8-bit input image with a signal of SDN at each pixel, then, we begin by applying
a Gaussian blur of standard deviation σ followed by down-sampling to resolution fraction
r (Fig. 6.1). We then converted our 8-bit input signal into electrons, using the relationship

s =
SDN

28 − 1
w. (6.12)
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Table 6.2: Baseline system parameters

dark count,* nd0 5 e−

read noise, σread 10 e−

well depth, w0 2000 e−

f-number, F0 6.5
blur, σ0 1 pixel
pixel pitch, p0 1.5 µm
wavelength, λ 0.55 µm

*electrons per unit integration time t0

We then recognize this signal s to be the expected number of electrons from the scene
represented by the input image. We therefore apply a Poisson distribution with λPoisson =
s to account for the photon noise (shot noise) of the image. (We note here that in noising
our simulated images, we are not accounting for the native noise of our input images. We
highlight that the the COCO dataset generally contains good quality, high SNR images,
and we emphasize that our goal is to understand broad trends and first order relationships.)
Next, we add Gaussian read noise with a standard deviation of 10 electrons, followed by
Poisson distributed dark current, where λPoisson is given by Eqn. 6.11. For the sake
of simplicity, we subtract the mean of this dark count to avoid the normalization issues
associated with a variable DC offset. Finally, we clip our electron count to fall between 0
and w before converting back to an 8-bit integer by inverting 6.12. Algorithm 2 summarizes
the process for scaling the SNR properties of an image based on relative aperture and focal
length.
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Algorithm 2 Image distortion chain capturing the first order relation-
ships between aperture, focal length, and SNR.

Input: 8-bit image SDN with Gaussian blur σ & resolution fraction r
Input: Baseline image chain parameters well depth w0, signal frac-

tion η, average dark electron count nd0, read noise σread, baseline
f-number F0 at baseline blur σ0

Output: Degraded image S′
DN

1: w ← √η × w0

2: nd ← φtnd0, with φ given by Eqn. 6.10
3: s← SDN

28−1
× w, Eqn. 6.12

4: s← Poisson (s), Eqn. 2.15
5: s← s+ Poisson (nd)− nd

6: s← s+N
(
0, σ2

read

)
7: s← clip (s; 0, w)
8: S′

DN ←
(
28 − 1

)
s
w

9: return S′
DN

To implement the parametric image chain described above, we needed to establish a
baseline f-number F0 from which we could calculate relative changes in required integration
time using Eqn. 6.10. Since the COCO dataset is an aggregate of Flickr images captured by
varied consumer cameras, we do not have the luxury of single set of fixed sensor parameters
such as f-number, pixel pitch, etc. Accordingly, we established a baseline minimum blur
σ0 and made several simplifying assumptions in order to establish our baseline f-number.

Specifically, we applied a minimum σ0 = 1 blur to all of our images, and we used
Eqn. 6.3 to map this baseline blur to our baseline f-number F0. The astute observer
will notice that this relationship is wavelength dependent and that σ0 is in units of pixels.
Accordingly, we estimated that the typical sensor in the COCO dataset would have a pixel
pitch on the order of a few microns with a peak spectral response near the middle of the
visible spectrum. We therefore assigned 1.5µm and 0.55µm to our baseline pixel pitch p0
and central wavelength λ respectively, yielding a baseline f-number F0 = 6.5.

Figures 6.2, 6.3, 6.4, and 6.5 show the results of this image chain approach. Most
importantly, these figures illustrate the coupling present between aperture diameter, focal
length, and noise under various signal conditions. Particularly for the low and medium-low
SNR cases, we can clearly see SNR decrease with decreasing aperture diameter / increasing
blur. We can also see SNR increasing with decreasing focal length / resolution.
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Figure 6.2: Low SNR image, with aperture blur increasing from σ = 1 (top) to σ = 5
(bottom) and resolution decreasing from r = 1 (left) to r = 0.2 (right). Here, we can see
the SNR impact of increased diffraction blur due to a shrinking aperture as well as the
improvements in SNR that come with decreased resolution due to shortened focal lengths.
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Figure 6.3: Medium-low SNR image, with aperture blur increasing from σ = 1 (top) to
σ = 5 (bottom) and resolution decreasing from r = 1 (left) to r = 0.2 (right). Here, at
medium SNR we see the differences in blur are apparent, while the SNR effects of aperture
and focal length changes are less apparent than at lower SNR.
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Figure 6.4: Medium SNR image, with aperture blur increasing from σ = 1 (top) to σ = 5
(bottom) and resolution decreasing from r = 1 (left) to r = 0.2 (right). Here, at medium
SNR we see the differences in blur are apparent, while the SNR effects of aperture and
focal length changes are less apparent than at lower SNR.
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Figure 6.5: High SNR image, with aperture blur increasing from σ = 1 (top) to σ = 5
(bottom) and resolution decreasing from r = 1 (left) to r = 0.2 (right). Here, at high
SNR we see the differences in blur are apparent but the SNR effects of aperture and focal
length changes are more difficult to discern.
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6.2 Method

In studying computer vision performance with our updated image chain, we again used
the 2017 Common Objects in Context (COCO) dataset and extended most of the methods
presented in Chapters 4 and 5. We generated a training and testing dataset for each of
the signal fraction and depth combinations in Tab. 6.1.

We modified our resolution and blur distortion bounds slightly from the bounds used
in Ch. 5, and here we used the same bounds for both our training and testing (Tab. 6.3).
In Chapters 4 and 5, we narrowed our test distortion space slightly when test results
for full range trained models were still at or near chance performance at the extremes of
the distortion space. Here, because our updated image chain applies blur before down-
sampling rather than the opposite, the cumulative effect of down-sampling and blur is
decreased because all blurring is applied at the highest original resolution when the pixels
remain at their smallest. We used the same training parameters used we used previously
in training our YOLOv8l object detection models (Tab. 4.1).

Table 6.3: Full range distortion levels (train and test)

blur (pixels) 1 - 5
resolution (fraction) 0.2 - 1
noise Algorithm 2

6.3 Results

As observed in Chapters 4 and 5, we found that the performance of pre-trained models
dropped relatively quickly as a function of blur, with much of the performance recovered
by models trained across the full distortion space (Fig. 6.6). In this figure we see that
performance as a function of resolution remains comparatively stable over much of the
distortion space for both pre-trained and full range trained models for each SNR regime.
Conversely, blur strongly impacts the performance of pre-trained models for each SNR
case, but training against distorted images mitigates much of this impact.

Figures 6.7 and 6.8 illustrate the differing performance relationships for blur and res-
olution. In Fig. 6.7, we see a strong relationship between blur and pre-trained model
performance for each SNR case, whereas we observe stability in pre-trained model perfor-
mance as a function of resolution when r ≳ 0.4. In Fig. 6.8, see that overall performance
improves significantly when models are trained on distorted images. We note, however,



CHAPTER 6. PARAMETRIC SENSOR MODELING 131

(a) High SNR dataset (b) Low SNR dataset

Figure 6.6: Performance as a function of resolution and blur for pre-trained and full range
trained models on the high and low SNR pseudo-system datasets. Full range models are
each trained and tested in the same SNR regime.

that the general shapes of the performance curves for blur and resolution remain qual-
itatively similar for pre-trained and full range trained models. The primary qualitative
difference we observe is that performance as a function of blur does not drop to chance
and level off for our full range trained models in the low and medium-low SNR cases.
Additionally, in Fig. 6.8 we observe a steeper performance loss with blur in the low SNR
cases than in the high SNR cases; since our model associates blur with diffraction due to
a decreased aperture size, we would expect the coupling between aperture and SNR to
show up more strongly in a low SNR environment.
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Figure 6.7: Pre-trained model performance for each pseudo-system SNR case.
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Figure 6.8: Performance of full range trained models for each pseudo-system SNR case.
Each full range models is trained trained and tested in the same SNR regime.
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6.4 Comparison and Discussion

We observe both a significant difference and a significant similarity between the per-
formance relationships that emerged using our original distortion image chain used in
Chapters 4 and 5 and our updated pseudo-system image chain. Specifically, we find that
performance as a function of blur is qualitatively similar in both instances, while perfor-
mance as a function of resolution differs significantly. Figures 6.9 and 6.10 illustrate these
relationships. Figure 6.9 shows the one-dimensional variations in average performance
with blur and resolution, while Fig. 6.10 compares performance as a function of resolution
and blur on the original full range test dataset and on the pseudo-system medium-low
SNR full range dataset.

(a) Performance as a function of blur (b) Performance as a function of resolution

Figure 6.9: Performance as a function of blur and resolution for full range trained models
on the four pseudo-system datasets and on the original COCO full range test dataset.

In Fig. 6.9a, we see that performance as a function of blur exhibits similar variation
across all datasets, which we believe results from separate effects in the original and in
the pseudo-system datasets. In the pseudo-system datasets, where blur is modeled as
a consequence of decreased aperture size, the blur itself and the associated SNR drop
from a smaller aperture both impact performance. In the original full range dataset
from Ch. 5, blur and down-sampling amplify each other due to the application of blur
after down-sampling. For a blur kernel that is agnostic, its effective size is larger on a
down-sampled image. Figure 6.10 illustrates the mutual amplification of blur and down-
sampling, with performance on the original full range test dataset dropping rapidly toward
the low resolution / high blur corner of the distortion space.
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Figure 6.10: Performance of an original full range trained model on the original full range
test dataset and performance of a model trained and tested on the on the medium-low
SNR pseudo-system train and test test datasets, viewed from two perspectives. Overall
average performance on the medium-low SNR pseudo-system dataset was closest to the
overall average performance on original full range test dataset.

Conversely, the pseudo-system image chain outlined in Algorithm 2 does not exhibit
this mutual reinforcement between resolution and blur due to the application of blur before
down-sampling. With blur already applied, down-sampling amounts to a sharpening of
the final image; the size of the blur kernel as measured in output pixels decreases by
the resolution fraction r. Additionally, in the original distortion image chain, changes in
resolution did not appreciably impact final image SNR; noise was specified in DN and
applied after down-sampling and blurring, without regard to the blur and resolution levels
applied. In the pseudo-system image chain, where changes in resolution are modeled
as a consequence of changes in focal length, decreasing resolution increases SNR. These
differences in the parametric image chains drive the significant differences in performance
as a function of resolution observed in Figs. 6.9 and 6.10.

6.5 Parametric Sensor Modeling Findings

In Chapters 4 and 5, we observed the impacts of down-sampling, blur, and noise when each
of these distortions was applied agnostically to the remaining two distortions. Here, by
modeling resolution and blur as functions of varied focal length and aperture respectively,
we have coupled each to image SNR. While these results are admittedly coarse, they help
to map out the performance relationships likely to emerge when tweaking physical image



CHAPTER 6. PARAMETRIC SENSOR MODELING 136

chain designs.
Specifically, two findings emerge. First, we observe that performance as a function

of Gaussian blur is relatively linear with respect to kernel standard deviation σ, a result
largely in line with our findings in previous chapters. Second, we observe that performance
as a function of resolution is relatively stable before dropping below resolution fraction
r ≈ 0.4; this result differs from our findings on the full range test datasets used in Chapters
4 and 5 where decreased resolution amplified blur and did not improve SNR, although it
is in line with the performance trends we observed when blur was not present in the
resolution scan results (see Fig. 5.12). Here, where down-sampling is associated with
improved relative edge responses (RER) as measured on down-sampled output pixels and
with low noise, we find that performance can be stable across a large resolution range.
These results also align with the findings of [91], who found that the optimal resolution for
CNN performance on simulated remote sensing images was lower than the GIQE would
predict to be optimal for human interpretation.



Chapter 7

Summary, Conclusions, and
Future Work

7.1 Conclusions

In this research, we sought to coarsely map the relationship between image quality and
the performance of CNN-based computer vision algorithms. While much of the literature
relating to image quality and CNN performance has focused on making CNNs robust to
new and unseen distortions, we were particularly interested in understanding how CNNs
perform when they have been trained on images of the same quality as those against which
they will be evaluated. CNN generalization remains an interesting and important question,
but in many cases it is both practical and appropriate to train CNNs on images of similar
quality to those that the CNN will see in operations. In these situations, it will be useful
to measure the ability of CNNs to “see through” image distortions and to understand
the driving relationships between image quality factors and computer vision performance.
Additionally, most image quality work to date has focused on making images interpretable
to human viewers. As computer vision algorithms become the “users” for images in many
applications, it becomes necessary to understand the extent to which historical image
quality metrics are appropriate for these new applications. Here, we have attempted to at
least start answering some of these questions, with the ultimate goals of both informing
follow-on image quality research and informing the design and optimization of imaging
systems to be used with computer vision algorithms.

Several broad takeaways emerge from the totality of this research. First, although
image quality certainly impacts computer vision performance, CNN-based classifiers and
object detectors are capable of performing reasonably well against images of low visual
quality with appropriate training. This particular result is not unique in the deep learning
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and computer vision literature, but most if not all of the research involving image quality
and computer vision performance has focused on image distortions applied singly rather
than in combination. Our results reinforce the thesis that CNNs can learn to “see through”
substantial image distortions and still perform reasonably well. And while much of the
research on image quality and CNN performance has focused on strategies to increase
CNN robustness to new, untrained distortions, we emphasize that in many computer
vision applications the system designer has the luxury of understanding the image quality
to be encountered by the CNN with great precision; in these instances, the generalization
becomes a largely tangential question and the designer can exploit the capacity of CNNs
to perform well when trained on images of similar quality to those against which they
will be tested. For systems whose primary end users are CNNs, therefore, the process of
design optimization likely should include iterative image simulation, model training, and
model evaluation to understand the performance of appropriately trained CNNs against
the resulting images at each design iteration.

Second, we find that the functional form of the GIQE is capable of modeling CNN per-
formance with reasonable fidelity, but we observe that other simple, non-physical models
invented solely for the sake of comparison do as well or better than the GIQE in modeling
performance as a function of image distortion level. We note, however, that the GIQE
is an unbounded equation that predicts NIIRS scores, whereas here were are using the
functional form of the GIQE to predict accuracy and mean average prediction (mAP),
which are both bounded between zero and one. Additionally, it is noteworthy that the
historical form of the GIQE does a better job of modeling performance as a function of
blur / relative edge response in our work with classifiers and grayscale images. We do
not have a satisfying explanation for the cause of the poor fit between accuracy and blur
for the GIQE-5 functional form, except to note that it results from the inclusion of the
quartic RER term (i.e. RER4), which is not present in the historical form of the equation.
When we remove the exponent above the independent RER term in GIQE-5, measured
and predicted performance as a function of blur match well. We also find that measured
and predicted performance as a function of blur agree when we apply the COCO distor-
tions to the Places365 dataset in RGB. The GIQE-5 fitting improvement in RGB may
result from the comparatively decreased impact of noise when it is applied to each channel
independently rather than being applied to a single-channel grayscale image; this relative
decrease in the impact of noise in RGB may affect the behavior of the coupled RER-SNR
term in GIQE-5, which would in turn change the relative weight placed on the independent
RER term. It is also possible that this poor fit is simply a fitting anomaly, but we observe
it on both the SAT-6 and Places365 datasets. Regardless, both the current and historical
forms of the GIQE fit object detection performance well.

Third, we find that object detector performance is qualitatively very similar to image
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classifier performance in the presence of image distortions. Table 7.1 shows the fit coeffi-
cients for our GIQE-based performance predictions on all three datasets used. While the
coefficients differ, as we would expect for different datasets and CNN tasks, the coeffi-
cients’ signs and orders of magnitude are all similar. Although the performance similarity
between classification and object detection is not especially surprising, we note that to
date we have not found any systematic studies on the relationship between object detec-
tion performance and image quality; effectively all of the literature on image quality and
deep learning has dealt with image classification. We believe that our object detection
results will help to fill this gap in the literature on image quality and computer vision
performance.

Table 7.1: Performance prediction fit coefficients from GIQE-5 based model (Eqn. 4.6)
and GIQE-3 based model (Eqn. 4.8) for SAT-6 (♦), Places365 (†), and COCO (□). We
note that the Places365 and SAT-6 models both predict classification accuracy, while the
COCO model predicts mean average precition (mAP).

c0 c1 c2 c3 c4 c5 c6

GIQE-5♦ 1.02 −0.299 0.0453 −0.113 −0.0221 −0.278 −2.81× 10−3

GIQE-3♦ 1.08 −0.336 - - 0.935 0.152 −3.05× 10−3

GIQE-5† 0.512 −0.385 0.139 −0.0319 1.88 −0.0841 −2.25× 10−4

GIQE-3† 0.688 −0.417 - - 2.25 0.272 −2.10× 10−3

GIQE-5□ 0.699 −0.464 0.264 −2.13 2.20 −0.0205 −1.84× 10−3

GIQE-3□ 0.723 −0.465 - - 2.18 0.307 −1.82× 10−3

Fourth, we observe that the computer vision performance appears to vary relatively
smoothly with both blur and noise both for pre-trained models and for models trained
on distorted images. Training against distorted images results in substantial performance
gains against high blur and high noise images, with generally modest performance losses
at low blur and high resolution when models are trained across a wide image quality
range. Conversely, performance as a function of resolution is more interesting and less
predictable. In our full range test results in Chapters 4 and 5, we applied blur after down-
sampling, causing down-sampling to have the effect of amplifying blur. When blur did
not follow down-sampling, however, we observed that performance as a function of resolu-
tion remained relatively stable above a certain threshold but dropped rapidly around this
threshold. This effect was particularly pronounced for datasets in which we modeled reso-
lution as being a consequence of changing focal length, with decreasing resolution and focal
length associated with increased SNR. Additionally, we found the performance recovery
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associated with training against distorted images to be minimal with respect to resolu-
tion. Collectively, our results suggest that decreasing resolution above a certain threshold
may do little to harm performance; computer vision systems may be able to function
with shorter focal length sensors providing greater fields of view without significant losses
in performance. We believe this result could have significant implications across a large
number disciplines and merits further investigation.

Figure 7.1: Repeat of Fig. 1.1, shown again here to highlight our goal of understanding
the transferability of heritage imaging system requirements for current applications reliant
on computer vision algorithm performance.

Finally, we note we that all of our results have been task and dataset dependent; they
have been fully reliant on having training data representative of the eventual testing im-
ages. In Chapters 4 and 5, we created two i.i.d. versions of testing datasets, using the first
to fit performance prediction models and the second to evaluate these models. While this
approach enabled us to evaluate our performance prediction models with largely different
images at each specific point in the distortion space, the underlying images scattered ran-
domly across the distortion space were the same. Accordingly, while we were able to fit
and to some extent predict computer vision performance as a function of image quality,
we must be circumspect about the general applicability of these results. We have come
nowhere near proposing a general, predictive model for computer vision performance as a
function of image quality. While such a model may be possible, as hinted by the similari-
ties between the coefficients in Tab. 7.1, a number of assumptions or ground rules for the
types of scenes and illumination conditions would likely be necessary.
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In short, to predict computer vision performance for a given application as a function
of system design, it is still necessary to begin with representative scenes for training
and testing computer vision algorithms. We have not presented a method for a priori
performance performance prediction. Instead, we have shown the types of performance
relationships that may emerge and demonstrated an approach for exploring the system
trade space. With a high quality initial dataset—one for which subsequent distortions
from modeled image chains will significantly out weigh initial image distortions—it may
be possible to faithfully simulate representative training and testing images to predicatively
evaluate computer vision performance, helping to answer the question posed graphically
in Fig. 7.1. We believe that these results can inform such future efforts.

7.2 Future Efforts

To acknowledge what is likely apparent to those who have read this far, the research
presented here barely scratches the surface of the work required to understand the fun-
damental relationships between image quality and computer vision performance. A large
number of future activities could help to better define image quality as it relates to com-
puter vision performance.

7.2.1 Immediate follow on efforts

A number of efforts could be helpful for increasing the fidelity and broadening the appli-
cability of these results.

First, object detection is a data-rich problem. In this effort, we considered only mean
average precision (mAP) as a function of image distortion across the full set of COCO
object classes. Extending this analysis to consider

• performance at various object sizes

• mAP with different intersection-over-union (IOU) thresholds

• precision and recall as separate metrics across the distortion space

Next, all of the results presented here are dataset dependent. Extending this study
to other datasets could significantly enhance the generality of these results. Addition-
ally, extending this work to overhead datasets would be particularly interesting given the
importance of image quality in many overhead imaging applications. It would also be
helpful to extend this work to datasets with consistent resolution and sensor parameters
with metadata to help estimate native SNR. It is plausible that the results obtained from
a high quality overhead dataset captured with consistent sensor parameters would differ



CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE WORK 142

significantly from an equivalent autonomous driving dataset; in the first, object range and
image quality drivers such as jitter and smear would likely remain relatively consistent
across the dataset, while in the second object range, jitter, and smear would all vary
significantly across the dataset.

Finally, most of this work relied on distortion-only “image chains” that were not an-
chored to physical sensor models or the interrelationships between fundamental sensor
parameters. Chapter 6 began to address the questions of how distortion performance re-
lationships evolve, but true image chain modeling could significantly increase the fidelity
of these results.

7.2.2 JPEG Compression-Decompression Layers and Loss Functions

As discussed briefly in Sec. 2.4, the tables used to truncate JPEG DCT coefficients were
derived to maximize image quality as perceived visually. It is plausible that different sets
of tables could lead to image quality improvements as determined by CNN performance.
Additionally, if different tables do indeed produce better compressed image quality for
computer vision, the differences between these modified tables and the current HVS-based
tables could help to understand differences in the ways that humans perceive images
relative to the ways that computer vision algorithms analyze them.

It should be possible to study this problem by using CNN back-propagation rather than
through a high dimensional parameter search. Specifically, by building JPEG compression
and decompression into the initial layers of a CNN, it should be possible to create a loss
function that drives the JPEG compression layer to discard spatial frequencies with less
value to the CNN task at hand (e.g., classification) while retaining spatial frequency
content of important to the classification task.

JPEG compression works by dividing an image into 8 × 8 blocks and performing a
DCT on each block, resulting in a total of 64 DCT coefficients for each block. To achieve
compression, these DCT are divided by values in a table selected based on the desired
compression ratio. After division, the resulting DCT coefficient quotients are rounded to
the nearest integer, with many of the quotients rounding to zero. The (most often) high
fraction of zeros enables an efficient Huffman coding of the post-division DCT coefficient
quotients. To recreate the image, we simply multiply these post-division DCT coefficient
quotients by their respective divisors and perform an inverse DCT on the recovered co-
efficients. To first order (ignoring the rounding errors imparted to the non-zero DCT
coefficient quotients), we lose the information at the frequencies whose DCT coefficient
quotients rounded to zero and retain the information at the frequencies of quotients not
rounded to zero.

To implement a similar process in the initial layers of a CNN, we would begin by
hard-coding the 64 8× 8 DCT filters into the initial layer as convolutional filter weights.
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(This layer would not be updated via back-propagation.) With a stride of eight, meaning
each convolutional filter (kernel) moves eight pixels at a time rather than the standard one
pixel, the output of the first layer of would be a DCT of the image. If we started with a
256×256 input image, the output of this first layer would be a 32×32×64 tensor T , with
each 8×8 block in the original image fully represented by its 64 coefficients. We could then
perform an operation equivalent to division by JPEG table value using what is typically
called a 1×1 convolution layer (where in this case our 1×1 filter is in reality a 1×1×64),
subtracting a bias value b, and applying a rectified linear unit (ReLU) activation function,
where

ReLU (x) = max (0, x) . (7.1)

Any outputs less than the subtractive bias b would be set to zero by the ReLU activation
function, where the activation is applied element-wise to the 32×32×64 tensor T − b. We
could then re-construct the image by performing a 1×1 convolution with reciprocal weights
to those used in the previous 1 × 1 convolution and then performing an up-convolution
using the same DCT filter weights applied in the first layer.

To drive our JPEG compression layers to actually compress our image representation,
we would include a term in a loss function proportional to the sum of the weights in
our 1 × 1 convolutional filter applied immediately after the DCT. This term would drive
the initial filter toward lower valued coefficients. It would be offset by a standard cross-
entropy loss term applied to output of the classification portion of the CNN. To vary the
compression ratio, we would increase the weight applied to the convolutional filter sum in
the combined loss function. In this way, our CNN would learn JPEG tables optimal for
computer vision.

To validate our results, we would then compare the performance of a CNN on images
compressed with the standard JPEG tables to images compressed with our learned table
values.

7.2.3 Proposed research program

A substantial follow on research effort would ideally include several key elements:

• Medium fidelity image chain modeling coupled to datasets with well defined meta-
data such as resolution / GSD, system MTF, and SNR.

• Anchoring of models with real data collected in a controlled fashion

• Comparisons between human image quality scores and computer vision performance
against the same images
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• Systematic exploration of the relationship between image chain transfer function and
CNN performance

An approach encompassing these elements could begin by simulating realistic imagery
starting from a high image quality dataset. Assuming this dataset had good resolution
and high SNR, it would be possible to degrade these images in a way that realistically
simulated the outputs of a plausible sensor.

Next, it would be useful to build several sensors to anchor the data. To do so, we
could design these sensors to operate from a single platform and capture the same imagery
simultaneously. In doing so, it would be possible to create labeled data for each sensor with
a single collection and labeling effort by labeling one of the datasets and then transferring
the labels to the the images from the other sensors. Doing so would allow the properties of
the sensors to drive the image quality differences between the datasets. Finally, we could
test humans’ abilities to classify or label a subset of these images.

Finally, to better understand the results of the more detailed image chain simulations’
performance results, it could be informative to systematically investigate the relationship
between CNN performance and image train transfer function. Rather than considering
blur to be a function of point spread function or Gaussian kernel, a Fourier-first approach
that isolates the spatial frequency content of the output images would help to inform
a fundamental understanding on what image information content can best drive perfor-
mance. To start, such an approach could apply simple band-pass filters to the images’
Fourier transforms and evaluate performance as a function of bandpass center frequency
and bandwidth.
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Chapter 8

Appendices

8.1 Additional Fit Plots

8.1.1 COCO fit plots

The fitting plots shown here depict the qualitatively similar fits obtained by our four
performance prediction models on the COCO dataset.
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(a) GIQE-5 fits

(b) GIQE-3 fits

(c) Exponential fits

(d) Power law fits

Figure 8.1: 2d views of measured and predicted performance for each of the four perfor-
mance prediction models on the COCO dataset
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(a) GIQE-5

(b) GIQE-3

(c) Exponential

(d) Power law

Figure 8.2: 1d views of measured and predicted performance for each of the four perfor-
mance prediction models on the COCO dataset
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8.1.2 Places365 RGB fit plots

The fitting plots shown here depict fits obtained by our four performance prediction models
on the Places365 datasets with the COCO test distortions applied.
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(a) GIQE-5 fits

(b) GIQE-3 fits

(c) Exponential fits

(d) Power law fits

Figure 8.3: 2d views of measured and predicted performance for each of the four perfor-
mance prediction models on the Places365 RGB dataset
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(a) GIQE-5

(b) GIQE-3

(c) Exponential

(d) Power law

Figure 8.4: 1d views of measured and predicted performance for each of the four perfor-
mance prediction models on the Places365 RGB dataset
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8.2 Code

With the exception of the code used to create a small number of figures, found primarily
in Chapter 2, all of the code used in this research resides in two repositories on GitHub:

• Relative edge response code, mostly used in Chapter 3, can be found at https:

//github.com/acb08/relative-edge-response [98].

• Code used to train and test models, generate datasets, and analyze results can be
found at https://github.com/acb08/image-quality-for-deep-learning [131].

https://github.com/acb08/relative-edge-response
https://github.com/acb08/relative-edge-response
https://github.com/acb08/image-quality-for-deep-learning
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