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Abstract

The smart grid is an outcome of integrating communication technologies with traditional electrical

systems. This enables the collection of granular metering data from the customer domain for

providing grid and billing functionalities. However, the data collection process exposes the grid

to various cyberattacks, posing a significant threat to customer privacy. This is a critical concern

for the smart grid community and has hindered the global adoption of the smart grid technology.

Although aggregation-based frameworks show promise for sharing metering data with the Electrical

Service Provider while maintaining customer privacy, existing aggregation-based frameworks have

several limitations. Some of these limitations include a high computational overhead on resource-

constrained smart meters, susceptibility to single points of compromise due to dependency on a

centralized entity, lack of support for dynamic billing functionality, and the absence of integrity

verification capabilities for spatial and temporal metering data.

To address the aforementioned limitations, we propose a distributed privacy-preserving framework

for the smart grid that utilizes secret sharing, commitments, and secure multiparty computation.

The framework consists of smart meters employing secret sharing and commitments to outsource

their data to multiple aggregating entities, known as Dedicated Aggregators. These Dedicated

Aggregators utilize secure multiparty computation to perform spatial aggregation in a privacy-

preserving manner and report the aggregated readings to the Electrical Service Provider. By

offloading most computations to the Dedicated Aggregators, our framework ensures that it remains

lightweight for the smart meters. The introduction of multiple Dedicated Aggregators also aids in

mitigating concerns associated with single points of compromise. Additionally, we have adapted

the framework to support temporal aggregation, enabling dynamic billing functionalities while

preserving customer privacy. The temporal aggregation process is integrated with the spatial

aggregation process, thus imposing no additional computational overhead on the smart meters. The
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framework is designed to cater to both semi-honest and malicious adversarial settings, and works

even in the presence of a majority of dishonest Dedicated Aggregators. In the event that some

Dedicated Aggregators deviate from the normal execution of computing spatial and/or temporal

aggregation by making modifications to metering data, the Electrical Service Provider can detect

and respond to such modifications in a privacy-preserving manner.

This dissertation presents our proposed framework and conducts a comprehensive analysis of it

under different configurations. We develop a proof of concept to illustrate the practicality of

implementing our framework in a real-world setting. We also compare its performance with other

related works in the literature, evaluating the end-to-end delay for spatial aggregation. Additionally,

we analyze the computational overhead on the smart meters in an embedded environment for

various framework designs. The resilience of our proposed framework is analyzed against security

and privacy threats. Finally, we identify future research directions to extend the capabilities of our

framework.
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Chapter 1

Introduction

1.1 Background

The traditional or legacy electrical grid is being transformed into the smart grid by integrating

state-of-the-art communication technologies [81, 99]. The varying demands of the 21st century

and the events such as the North East Blackout and Hurricane Sandy were the major motivating

factors for this transformation [81, 99]. These events exposed the limitations of the traditional

electric grid, such as a lack of resiliency and real-time monitoring capabilities. The evolution of the

smart grid allows the Electrical Service Provider (ESP) to provide added grid functionalities, such

as load balancing, demand forecasting, outage management, integration of renewable resources,

billing functionalities, and enabling customers to have better control over consumption [19,81].

The National Institute of Standards and Technology (NIST) has proposed a smart grid reference

model to standardize the smart grid and ensure its widespread adoption [32,81]. The smart grid ref-

erence model (Fig. 1.1) consists of the following domains: Generation, Transmission, Distribution,

Markets, Operations, Customers and Service Provider.

In the customer domain, the traditional (non-smart) meter is being replaced by the smart meter

(SM) [32, 81]. The SM is responsible for collecting metering data from the customer domain and

reporting it to the ESP, thereby eliminating the need to collect the metering data manually by the

ESP. Based on the reporting frequency, the metering data can be categorized into high-frequency

and low-frequency metering data. The high-frequency metering data is reported to the ESP every

15 minutes to provide grid functionalities. The low-frequency metering data is reported once a

1



CHAPTER 1. INTRODUCTION 2

month for billing the customer associated with the SM for its corresponding consumption.

Table 1.1 compares the traditional electrical grid against the smart grid [27]. The main goal of

the ESP is to maintain a balance between generation and consumption (demand). This is because

if generation exceeds consumption, the excess electricity generated must be stored, which can be

expensive. Conversely, if generation is less than consumption, it can lead to an outage.

Figure 1.1: NIST Reference Model

Table 1.1: Traditional Electrical Grid versus Smart Grid

Parameters Traditional Electric Grid Smart Grid

Machinery Electric Digital

Communication One-way Two-way

Power Generation Centralized Distributed

Monitoring Manual Remote

Recovery Manual Automatic

Outage Management Not supported Adaptive and Islanded

Customized Tariffs Not supported Supported

Integration of Renewable Resources Not supported Supported
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1.2 Threats to Smart Grid

According to the National Institute of Standards and Technology Interagency Report (NISTIR),

the smart grid should be resilient against cyberattacks and natural disasters and address customer

privacy concerns [32, 81]. Even though the transformation has several benefits, the integration

of communication technologies exposes the smart grid to security and privacy attacks on high-

frequency metering data [19, 21, 24, 33, 44, 45, 59, 67, 68, 82, 99]. Privacy concerns are a leading

obstacle to the large-scale adoption of the smart grid. Studies have shown that customers’ behavior

patterns can be derived from high-frequency metering data collection. Based on the load profile,

criminals can identify suitable times for carrying out nefarious activities. Marketers can identify

appliances (as each appliance has a unique load signature) and send targeted advertisements to

the customers (target marketing). Figure 1.2 represents the load profile of a specific customer

Figure 1.2: Electric Load Profile of a Customer

based on the consumption data collected over 24 hours from a Reference Energy Disaggregation

DataSet (REDD) using an open-source Non-Intrusive Load Monitoring (NILM)toolkit [9,50]. The

toolkit can disaggregate the energy consumption and helps derive which appliances are used in the

household and their corresponding consumption. Privacy attacks can be quite targeted and specific,

for example, determination of the Television channels being watched in a household [33]. Private

investigators, spies, and reporters can also derive information regarding their potential suspects.

The smart metering data reported to the ESP can be subjected to modification (attack on integrity)

by malicious adversaries. This can disrupt the grid and billing functionalities, resulting in outages
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and eroding customer trust. In order to protect customer privacy and the integrity of metering

data, it is important to forward the high-frequency metering data from the SM to the ESP in a

secure and privacy-preserving manner.

1.3 Motivation and Challenges of Smart Grid

Various types of privacy-preserving frameworks have been proposed in the literature to address

the privacy issues identified in the previous section (Section 1.2). The frameworks can be broadly

categorized as: Battery-based Frameworks, Distortion-based Frameworks, and Aggregation-based

Frameworks. In this dissertation, our focus will be on aggregation-based frameworks as they closely

align with our research work. In aggregation-based frameworks, the aggregated reading is reported

to the ESP. Since the reading is aggregated, the ESP cannot link the granular meter reading to

a specific SM, thereby preserving the customer’s privacy. However, the existing aggregation-based

frameworks have at least one of the following limitations:

• High computational overhead on resource-constrained SMs

• Prone to single points of compromise due to dependency on a centralized entity

• Lack of support for dynamic billing integration while preserving customer privacy

• Lack of integrity verification of spatial and/or temporal metering data by considering a semi-

honest threat model

In order to ensure the security and reliability of the smart grid, it is important to address the

requirements provided by NIST [10, 19, 28, 32, 81, 83, 89, 96]. The requirements can be categorized

into following types:

• Security Requirements: The security requirements can be described as follows:

1. Confidentiality: The metering data should only be accessible to authorized entities.

2. Integrity: The metering data should be accurate and consistent.

3. Availability: The metering data is available to the ESP in a timely manner.

• Privacy Requirement: The privacy of the customers associated with smart grid must remain

intact.
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• Infrastructure Requirements: The infrastructure requirements can be described as follows:

1. Backward compatibility: The new technology that is been incorporated in the smart

grid must be able to support the legacy system components.

2. Distributed Trust: The trust should be distributed across multiple entities so that the

system is resilient to single points of compromise.

3. Integrate Renewable Resources: The smart grid should be able to integrate and support

renewable resources such as solar, wind etc.

4. Accurate Billing: The smart grid must be able to accurately charge the customers based

on their corresponding tariff and consumption.

5. Lightweight: The framework should be lightweight. It should not have a high computa-

tional overhead on resource-constrained SMs.

6. Resilient: The framework should be resilient to security and privacy attacks.

7. Implementation Cost: The cost of implementing the framework and/or perform any

upgrades should be as minimal as possible.

8. Redundancy: The framework should have redundant communication and transmission

lines so that it is resilient to power outages and/or loss of data.

• Regulatory Requirements: Given the complex nature of the smart grid, where various devices

are interconnected, adherence to regulatory requirements is a must. These regulations serve

as guidelines to ensure privacy regulations, operational and data protection standards.

In order to address the research gaps in the literature works and taking the requirements provided

by NIST into consideration [32,81], we proposed a distributed aggregation-based privacy-preserving

framework (Fig. 1.3). The distributed framework aims to focus and address the following NIST

requirements: Security Requirements (1,2, and 3), Privacy Requirement and Infrastructure Re-

quirements (2,4,5,6, and 8). The framework consists of three types of entities: SMs, Dedicated

Aggregators (DAs), and the ESP. The SMs are responsible for reporting the high-frequency me-

tering data to the ESP via the DAs in a privacy-preserving fashion. The DAs are responsible for

performing spatio-temporal aggregation and reporting the result to the ESP. The ESP is responsi-

ble for initializing the SMs and the DAs and checking the integrity verification of spatio-temporal

metering data in a privacy-preserving manner.
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Figure 1.3: Our Proposed Framework

We have outlined the following research questions to achieve the above-mentioned objectives:

• RQ1: How can smart meters (SMs) send spatial metering data to the Electrical

Service Provider (ESP) in a way that protects privacy and ensures efficiency for

the SMs themselves?

Since spatially aggregated metering data is required for providing grid functionalities, report-

ing the spatially aggregated reading in a privacy-preserving manner to the ESP is critical.

This research question is addressed in Chapter 4, where a distributed framework consisting

of multiple DAs is proposed. The DAs are responsible for performing spatial aggregation and

reporting the spatially aggregated reading to the ESP. Since spatially aggregated reading is

reported to the ESP, it cannot be linked to a specific SM, thereby preserving customers’ pri-

vacy. This work [102], has been published in 2020 IEEE Power & Energy Society Innovative

Smart Grid Technologies Conference (ISGT 2020). This research led to the next research

question, which focused on temporal aggregation.

• RQ2: How can smart meters (SMs) send temporal metering data to the Electri-

cal Service Provider (ESP) in a way that protects privacy and ensures efficiency

for the SMs themselves?

Since temporally aggregated metering data is required by the ESP for providing billing func-

tionalities, the bill should be generated without violating customers’ privacy. This research

question is addressed in Chapter 4, where the same set of DAs that perform spatial ag-

gregation are used to perform temporal aggregation. Since the computed bill is sent to the

ESP (Flat Rate / Cumulative / Time of Use Billing) for the corresponding customer, de-

riving high-frequency reading from it is not feasible (desired privacy). This work [103], has

been published in 2020 IEEE International Conference on Communications, Control, and

Computing Technologies for Smart Grids (SmartGridComm 2020).
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• RQ3: How can the Electrical Service Provider (ESP) incorporate integrity verifi-

cation of spatially aggregated metering data without violating customer privacy?

RQ1 highlighted the importance of spatially aggregated data to the ESP for providing grid

functionalities. However, the metering data can be subjected to modification by malicious

adversaries. The resulting modification might disrupt the grid functionalities creating an

outage. Therefore, it is important to identify such spatially aggregated modifications and

take appropriate measures. We extended the previously proposed framework in a malicious

setting (dishonest majority of DAs). We integrated a commitment-based scheme to ensure

the integrity verification of metering data. The ESP carries out the integrity verification of

spatially aggregated metering data in a privacy-preserving fashion. This work [105], has been

published in 2022 IEEE International Symposium on Technologies for Homeland Security

(HST 2022). This research led to the next research question, which focused on temporal

aggregation in a malicious setting.

• RQ4: How can the Electrical Service Provider (ESP) incorporate integrity veri-

fication of temporally aggregated metering data without violating customer pri-

vacy?

RQ2 highlighted the importance of temporally aggregated data for providing billing function-

alities. However, the metering data can be subjected to modification by malicious adversaries.

The resulting modification might cause an error in the billing computation, generating an in-

correct bill for the customer, and also might erode the customer’s trust. Therefore, it is

important for the ESP to identify such modifications of temporally aggregated metering data

and take appropriate measures. The same set of shares and commitments generated in RQ3

were utilized to provide integrity verification of metering data, resulting in no added com-

putation for the resource-constrained SMs. This work [106], has been published in the 14th

ACM International Conference on Future Energy Systems (e-Energy 2023).

• RQ5: How to develop a practical proof of concept, that assesses computational

overhead and end-to-end delay of our proposed framework in comparison to other

state-of-the-art frameworks?

This research question is addressed in Chapter 6, where we implement a practical proof of

concept to evaluate the performance of our framework against the relevant literature works.

The proof of concept is developed in an embedded and cloud-based environment to evaluate

parameters such as SM overhead and end-to-end delay for spatial aggregation. Additionally,

we have incorporated smart meter traces from the UMass dataset [75] to mimic a more realistic

scenario.
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• RQ6: How do we evaluate the resilience of our proposed framework against po-

tential security attacks?

This research question is addressed in Chapter 6, in which we consider a malicious adversary

(with dishonest majority of DAs) that is capable of launching active attacks, modifying me-

tering data (spatial and/or temporal) with an aim to disrupt grid and billing functionalities.

Our proposed framework is capable of detecting such modifications in a privacy-preserving

manner.

• RQ7: How do we evaluate the resilience of our proposed framework against

potential privacy attacks?

This research question is addressed in Chapter 6, in which we consider an adversary that aims

to breach the privacy of the customers by linking granular metering data to the corresponding

identity of the SM. Our proposed framework is capable of preserving privacy of the customers

even if one DA is honest. This work [104], has been published in 2021 IEEE International

Conference on Communications (ICC 2021).

1.4 Organizational Structure

Chapter 2: Related Works: This chapter delves into a comprehensive literature survey of

related works in the smart grid domain, identifying their contributions and research gaps.

Chapter 3: Building Blocks: This chapter describes the cryptographic preliminaries associated

with our proposed framework, as well as those required for comparative frameworks.

Chapter 4: A Privacy Safeguarding Framework: Semi-Honest Setting: This chapter

focuses on our proposed framework in a semi-honest setting, where adversaries aim to breach

customers’ privacy by linking the granular metering data to their identities. We discuss the potential

strengths and highlight the limitations of our work in this chapter.

Chapter 5: A Privacy Safeguarding Framework: Malicious Setting: This chapter focuses

on our proposed framework within a malicious setting, specifically dealing with a dishonest majority

of DAs. In this context, the involved DAs can deviate from their normal execution and launch active

attacks, such as modifying metering data, to disrupt grid and billing functionalities. These attacks

have the potential to cause electric outages and undermine customers’ trust associated with the

smart grid.
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Chapter 6: Results and Analysis: In this chapter, our aim is to provide insights into the effec-

tiveness of our proposed framework compared to other relevant frameworks identified in Chapter

2 by conducting experiments. Additionally, we analyze our proposed framework against the NIST

requirements discussed earlier.

Chapter 7: Conclusion and Future Work: This chapter concludes the dissertation by summa-

rizing the findings, highlighting the impact of the research and discussing potential future directions

in the smart grid domain.

1.5 Summary

This chapter provided a high-level overview of the smart grid, followed by the identification of its

security and privacy issues. The motivation and challenges of the research were also emphasized,

and seven research questions that aligned with the central theme of this dissertation were identified.

A road map that outlines the organizational structure of the dissertation was also included.



Chapter 2

Related Works

In the previous chapter (Chapter 1), we introduced the smart grid and highlighted the associated

security and privacy issues. In this chapter, we categorize the different privacy-preserving frame-

works proposed by researchers to address the privacy issue, followed by identifying the associated

research gaps.

Figure 2.1: Overview of Privacy-Preserving Frameworks

The privacy-preserving works in the literature can be categorized (Fig. 2.1) as follows:

• Battery-based Frameworks

• Distortion-based Frameworks

• Aggregation-based Frameworks

10
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2.1 Battery-based Frameworks

The Battery-based Frameworks attempt to protect customers’ privacy by masking the real con-

sumption of the smart meter (SM) through the utilization of a rechargeable battery (Fig. 2.2)

[6,29,30,46,47,71,97,98]. Since the Electrical Service Provider (ESP) and the rechargeable battery

provide customers with electricity simultaneously, the SM reading does not directly represent the

actual consumption, thereby preserving customers’ privacy. The battery serves as a reliable source

of electricity when other external sources are not functioning as expected. The batteries are also

useful in areas with unstable power supply and/or during natural disasters. When the battery can

meet the demands of the corresponding household completely without relying on the ESP, there

is less metering data transmitted to the ESP. Additionally, the battery can integrate with other

renewable resources such as solar, wind, etc.

Figure 2.2: Battery-based Framework

In [46], the authors propose a Best Effort technique and a power mixing algorithm to mask the

real consumption using a rechargeable battery. They also measure privacy by employing privacy

metrics such as relative entropy, correlation/regression analysis, and cluster classification. The

framework [46] enables grid and billing functionalities, but the customers’ privacy could be breached

due to battery capacity limitations. The authors do not provide a cost evaluation analysis regarding

privacy and the corresponding battery capacity. As proposed in the paper [71], a Non-Intrusive Load

Leveling technique aims to remove the most identifiable features from the high-frequency reading,

making it difficult for Non-Intrusive Load Modelling algorithms to derive any useful information. In

their study [47], the authors introduce a water-filling algorithm to mask the real consumption of a

SM. They also provide a cost analysis for achieving the desired privacy level. In [6], the authors aim

to preserve privacy by utilizing a battery and implementing suitable addition or removal of noise.
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However, the generation of noise introduces additional load on the battery, significantly affecting

its lifespan. To address this, the authors recommend installing an additional battery dedicated to

generating noise, which leads to increased installation and maintenance costs. In [98], the authors

introduce an Energy Management Unit (EMU) capable of drawing power from three main sources:

a renewable resource, a Rechargeable Battery (RB), and the ESP. Whenever there is a request for a

load from an electrical appliance in the household, the EMU can fulfill the request from any of the

three connected sources. As a result, the SM reading does not directly represent the real household

consumption, thereby preserving customers’ privacy. In [30], a detailed mathematical analysis is

presented, taking into account the physical constraints of the rechargeable battery, with respect to

privacy. The battery capacity also plays a key role in protecting customers’ privacy.

To summarize, Battery-based Frameworks aim to protect the privacy of the customers but have

a high installation cost and maintenance overhead. While these frameworks enable customers to

perform power management, there may be conflicts between the battery charging time and the

dynamic billing functionality of the smart grid, especially concerning the ESP. The battery also

has a limited lifespan, making this technique unsuitable for both customers and the ESP.

2.2 Distortion-based Frameworks

Figure 2.3: Distortion-based Framework [39]
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In Distortion-based Frameworks, the SM reading is made obscure to adversaries by adding in-

tentional noise [3, 13, 18, 35, 39, 62, 89, 92, 94]. In [13], the authors propose a solution to preserve

customers’ privacy by adding noise (normally distributed) to the granular consumption. The noise

added by the SMs should have a mean of zero. Adding and removing SMs is easy and requires

partial group management. In [3], Laplace’s distribution is used to protect customers’ privacy.

The authors employ a hybrid approach by using noise and partial homomorphic encryption (Pail-

lier) [77]. However, this expects SMs to be interconnected, which increases the computational

overhead. In [94], the authors recommend utilizing the geometric distribution to mask the granular

reading. The frameworks [3, 94] are prone to single points of compromise due to their dependency

on a centralized entity. They assume all SMs operate honestly, as any deviation from their behav-

ior makes overall consumption recovery impossible. In [39], the authors utilize Gaussian noise to

obscure the reading from adversaries (Fig. 2.3). While it supports dynamic billing, additional mod-

ifications in the customers’ domain, such as installing a hardware known as Privacy Component,

are required. Similar to the previous frameworks, it is also prone to single points of compromise

due to its dependency on a centralized entity. In some cases, prior knowledge of the threshold for

the amount of noise to be added is required, as adding excessive noise could make reconstruction of

the reading impossible. Hence, there is a trade-off between privacy and accuracy. The resulting re-

constructed reading is not accurate, making the integration of billing functionality difficult [13,39].

Customers’ privacy could be breached through Long-term averaging attacks on the frameworks.

To summarize, Distortion-based Frameworks aim to protect customer privacy but may have one

or more associated limitations as follows: implementation complexity due to the requirement of

additional hardware being installed in the customers’ domain, a high computational overhead on the

SMs, lack of support for accurate billing functionality due to obscured readings, and vulnerability

to single points of compromise.

2.3 Aggregation-based Frameworks

In Aggregation-based Frameworks, the aggregated reading is reported to the ESP. Since the reading

is aggregated, the ESP cannot link the granular metering data to a specific SM, thereby preserving

customers’ privacy. There are different levels of aggregation:

1. Home Level Aggregation: Aggregating metering data from various electronic appliances and

generation sources [109].
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2. Neighborhood Level Aggregation: For Aggregating metering data from different smart meters

installed in the neighborhood) [102].

This dissertation will focus on Neighborhood Level Aggregation. Based on the nature of com-

putation (Fig. 2.4), the aggregation-based frameworks can be categorized as follows: a) Spatial

Aggregation and b) Temporal Aggregation. If aggregation is computed across a given set of SMs for

a given time instance, it is known as spatial aggregation. It is required by the ESP to provide grid

functionalities. When aggregation is performed for a specific SM for a given period, it is known as

temporal aggregation. ESP requires it to provide billing functionalities. In Figure 2.4, Rm,3 repre-

sents instantaneous reading of mth SM at third time instance (t = 3). The frameworks supporting

both types of aggregation are known as spatio-temporal frameworks. We further categorize the

aggregation-based frameworks on architecture, such as follows:

Figure 2.4: Spatial and Temporal Aggregation

• In-Network Aggregation-based Frameworks

• Centralized Aggregation-based Frameworks

• Distributed Aggregation-based Frameworks

2.3.1 In-Network Aggregation-based Frameworks

For In-Network Aggregation-based Frameworks, metering data is collected with the help of inter-

mediate SMs within the communication network (Fig. 2.5) [8,14,17,20,25,40,43,53,54,95,100,101].

The In-Network Aggregation-based Frameworks leverage homomorphic techniques to perform the



CHAPTER 2. RELATED WORKS 15

required spatially aggregated computation at different levels of the network hierarchy. While these

frameworks significantly reduce the metering data transmitted within the network, they increase

the computational overhead on resource-constrained SMs.

As spatially aggregated data is reported to the ESP, it cannot derive granular metering data with

respect to a specific SM, thereby preserving privacy. After receiving the spatially aggregated data,

the ESP can provide grid functionalities such as real-time monitoring, load balancing, optimiza-

tion, and demand-response. Although the In-Network Aggregation-based Framework offers various

advantages for the smart grid domain, it also has some potential drawbacks, such as the following:

Figure 2.5: In-Network Aggregation-based Framework [54]

• Increased computational overhead: It increases the computational overhead on resource-

constrained SMs as they are primarily responsible for processing the metering data.

• Loss of metering data granularity: As metering data is combined across intermediate SMs,

there is a loss of granularity in the metering data required for billing purposes, particularly

for Time of Use Billing Tariff.

• Increased latency: Aggregation occurring at different levels of the hierarchy introduces addi-

tional latency, which can impact the decision-making process.

• Privacy concerns: While in-network aggregation can provide privacy, there is still the pos-

sibility of privacy breaches as aggregated data from an initial SM may contain sensitive

information.
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• Scalability: The addition and/or removal of SMs poses a complex task, which can hinder the

scalability of the network.

2.3.2 Centralized Aggregation-based Frameworks

In Centralized Aggregation-based Frameworks [1, 11, 13, 15, 22, 23, 24, 26, 31, 34, 36, 37, 41, 42, 48,

49, 51, 52, 55, 56, 60, 63, 64, 65, 66, 72, 73, 76, 80, 84, 85, 87, 88, 90, 93, 108, 110, 111], metering data is

collected, processed, and aggregated in a centralized entity known as a dedicated aggregator (DA).

This centralized entity is typically managed by a Trusted Third Party (TTP) that performs the

computation and forwards the aggregated result to the ESP (Fig. 2.6). By reporting the aggregated

result to the ESP, it prevents the derivation of instantaneous readings related to specific SMs,

thereby preserving privacy.

Figure 2.6: Centralized Aggregation-based Framework [11]

Centralized Aggregation-based Frameworks offer a variety of advantages, as follows:

• Efficient Metering Data Management: With the metering data reported and processed cen-

trally, efficient meter data management is achieved.

• Improved Decision Making: Central processing of metering data, collected from multiple

resources, enables the ESP to perform the required grid and billing functionalities for the

corresponding set of SMs, leading to improved decision making.
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• Scalability: The addition and/or removal of SMs is easier compared to In-Network Aggregation-

based Frameworks, allowing for greater scalability.

Although there are various advantages associated with Centralized Aggregation-based Frameworks,

there are also some drawbacks, as follows:

• Data Privacy and Security: The aggregating entity must have appropriate security and privacy

measures in place to prevent unauthorized access and to ensure resilience against malicious

attacks.

• Single Points of Compromise: Centralized Aggregation-based Frameworks rely on a single

centralized aggregation point for the collection and processing of metering data. In the

event of a failure or compromise of this centralized location, the entire framework becomes

compromised, leading to disruptions in functionalities. This can potentially cause outages

and erode customers’ trust.

• Regulatory and Governance Control: Since metering data is collected at a centralized location

managed by the Trusted Third Party (TTP), it is crucial for the TTP to ensure compliance

with privacy and data-sharing regulations. Failure to meet these regulatory requirements can

hinder the implementation and operation of Centralized Aggregation-based Frameworks.

2.3.3 Distributed Aggregation-based Frameworks

In Distributed Aggregation-based Frameworks [2, 58, 86, 102, 103, 104], the collection, processing,

and computing of metering data are carried out by multiple entities in a distributed manner (Fig.

2.7). The primary objective of the Distributed Aggregation-based Framework is to provide spatio-

temporal metering data to the ESP in a privacy-preserving manner, enabling the ESP to provide

grid and billing functionalities. By reporting aggregated readings to the ESP, the framework

ensures that the instantaneous reading related to a specific SM cannot be derived, thus preserv-

ing customers’ privacy. The Distributed Aggregation-based Frameworks eliminate the need for

a centralized aggregating entity for meter data processing. The Distributed Aggregation-based

Framework has various advantages, as follows:

• Reduced computational overhead: Distributed Aggregation-based Frameworks are lightweight

for resource-constrained devices as they offload the computational overhead to aggregating

entities.
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Figure 2.7: Distributed Aggregation-based Framework [86]

• Scalability: These frameworks can handle large-scale deployments in the smart grid domain

by distributing computation to multiple aggregating entities participating in spatio-temporal

aggregation. The distributed approach allows for the addition and/or removal of SM from

the network without significant modifications.

• Fault Tolerance: Due to the distributed nature of aggregation computation, the frame-

work can tolerate a certain threshold of aggregating entity failures compared to Central-

ized Aggregation-based Frameworks. This fault-tolerance feature enables the ESP to collect

aggregating data promptly.

• Privacy: Customer privacy associated with the smart grid is preserved as SMs report shares

of metering data to aggregating entities instead of instantaneous readings. The ESP receives

aggregated readings for spatio-temporal metering data, thereby maintaining privacy from the

ESP’s perspective.

• Improved Decision Making: Processing metering data in a distributed fashion and reporting

it to the ESP assists in performing the necessary grid and billing functionalities for the

corresponding set of SM.

Although there are several advantages associated with existing Distributed Aggregation-based

Frameworks, there are some drawbacks associated with them. Some of them are listed below:
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• Data Integrity: Since metering data is outsourced from the SMs to the aggregating entities,

it is crucial to ensure that the metering data is not subject to any modification. Ensuring

consistency of metering data across all the aggregating entities poses a challenging task.

• Time Synchronization: Given that multiple dedicated aggregating entities collaborate to com-

pute spatio-temporal aggregation, synchronization between them is essential to achieve reli-

able aggregation. Proper synchronization ensures that the metering data is collected from

SMs and aggregated correctly.

• Cost of Deployments: Implementing a distributed aggregation-based framework can entail

high computational and operational costs, including software updates, monitoring, and main-

tenance.

• Ownership Concerns: Since multiple aggregating entities participate in computing spatio-

temporal aggregation in a distributed setting, it is essential to ensure that these entities com-

ply with the regulatory issues regarding security and privacy. The Energy Service Provider

(ESP) should implement proper access control methods to ensure a unique owner for each

aggregating entity.

2.4 Research Gaps

As we observed in the previous section (Section 2.3), there are several challenges involved in devel-

oping a privacy-preserving framework for the smart grid domain. It is crucial to carefully consider

the identified drawbacks and the requirements specified by the National Institute of Standards and

Technology Interagency Report (NISTIR) during the development of such a framework [32,81]. The

framework should be designed by taking into account the unique requirements and constraints of

the associated systems. Ultimately, the developed framework must be practical to implement and

resilient against cyberattacks, providing spatio-temporal metering data to the ESP while preserving

customer privacy.

The focus of this dissertation is to address the following limitations of existing distributed aggregation-

based privacy-preserving frameworks for the smart grid.

• High computational overhead on resource-constrained SMs

• Prone to single points of compromise due to dependency on a centralized entity
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• Lack of support for dynamic billing integration while preserving customer privacy

• Lack of integrity verification of spatial and/or temporal metering data, considering a semi-

honest threat model

To address the above-mentioned limitations, we propose a distributed aggregation-based privacy-

preserving framework that can work in a semi-honest setting as well as malicious setting (dishonest

majority of DAs) (Chapter 1, Fig. 1.3). The framework consists of SMs, DAs, and the ESP. The

SMs are responsible for reporting the metering data to the ESP in a privacy-preserving manner via

the DAs, using secret sharing and commitment-based scheme. The DAs perform spatio-temporal

aggregation through secure multiparty computation. Lastly, the ESP is responsible for conducting

integrity checks on spatio-temporal metering data while preserving privacy. A detailed explanation

of the cryptographic preliminaries is covered in the next chapter.

2.5 Summary

In this chapter we categorized and described various frameworks that aimed to address the cus-

tomer’s privacy issues in the smart grid domain. As our research focused on Aggregation-based

Frameworks, we highlighted the research gaps and derived useful insights for this dissertation.



Chapter 3

Building Blocks

This chapter delves into the essential cryptographic preliminaries required to understand our pro-

posed framework and comparative frameworks. The following cryptographic preliminaries are cov-

ered in this chapter:

• Secret Sharing Scheme

• Commitment-based Schemes

• Secure Multiparty Computation

• Homomorphic Encryption-based Schemes

3.1 Secret Sharing Scheme

Secret Sharing Scheme [91] is a cryptographic technique employed to distribute a secret (S) among

a group of n participants (P1, P2, . . . , Pn) in the form of shares (share1, share2, ...., sharen) [5].

This ensures that the secret can only be reconstructed when a group of sufficient participants

combine their corresponding shares. Secret sharing provides a robust way of distributing a secret

while maintaining high level security. It finds applications in various cryptographic domains, such as

password recovery, key management, and secure multiparty computation. Secret sharing guarantees

that no individual participant possesses the knowledge of the real secret, but has a portion of it.

Different types of secret sharing schemes exist with Shamir’s Secret Sharing Scheme [91] being a

21



CHAPTER 3. BUILDING BLOCKS 22

widely used scheme in real-world scenarios. It is based on Lagrange Interpolation and is commonly

known as the (t, n) threshold scheme where 1 < t ≤ n, indicating that at least t participants are

required to reconstruct the secret. Lagrange Interpolation is a technique used to reconstruct a

polynomial from a set of known points. Table 3.1 represents the notations used for Shamir’s Secret

Sharing Scheme.

Table 3.1: Table of notations for Shamir’s Secret Sharing Scheme

Notation Meaning

δj Basis Polynomial

αd dth Coefficient of Secret Sharing Polynomial

C Combiner

c Constant

D Dealer

t− 1 Degree of Secret Sharing Polynomial

Zp Galois Field

Pj jth Participant

S Secret

F (x) Secret Sharing Polynomial

sharej Share of jth Participant

p Prime Number

t Threshold

n Total Number of Participants

Shamir’s Secret Sharing Scheme consists of following phases:

Setup Phase: In this phase, the Dealer (an entity responsible for generating the shares of a given

secret) determines the following:

• A prime number (p) to define the finite field. This value is public to all the entities (Dealer

and Combiner) and participants.

• The secret that needs to be shared with the Combiner (an entity responsible for reconstructing

the given secret from the shares).

• A threshold (t) to determine the minimum number of shares required to reconstruct the

secret.
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Share Creation and Distribution Phase: In this phase, the Dealer performs the following

operations:

• It randomly selects a polynomial F (x) (eq. 3.1) over a finite field Zp with a degree (t−1), where

t represents the threshold decided in the previous phase. The coefficients of the polynomial

(αd) are selected randomly from the finite field, and the constant term of the polynomial

represents the secret.

F (x) =
t−1∑
d=1

αd xd + S (mod p) (3.1)

• The Dealer generates the shares (eq. 3.2) by using the identities (j ∈ {1, 2, . . . , n}) of the n

participants (P1, P2, . . . , Pn).

sharej = F (j) (3.2)

• The computed shares (sharej) where (j ∈ {1, 2, . . . , n}) are distributed to the corresponding

participants (P1, P2, . . . , Pn).

Reconstruction Phase: In this phase, the Combiner performs the following operations:

• It fetches the shares from the corresponding participants (P1, P2, . . . , Pn).

• It employs Lagrange Interpolation technique over finite fields.

• It computes the reconstructed polynomial and fetches the secret by accessing the constant

(eq. 3.3).

F (x) =
n∑

j=1

(sharej) (δj(x)) =

t−1∑
d=0

αd xd (mod p) (3.3)

Figure 3.1 represents a 3-5 threshold scheme, where the secret (S) is broken into five shares

(share1, share2, . . . , share5), such that any three shares can reconstruct the secret (S).
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Figure 3.1: Example of Shamir’s Secret Sharing Scheme

Properties of Shamir’s Secret Sharing Scheme:

• Individual shares do not provide any information about the secret.

• Any set of t shares can recover the secret.

• Any set of t− 1 shares cannot recover any information about the secret.

• The corresponding shares of the secrets S1 and S2 can be added across different participants

if the degree of secret sharing polynomial is the same. Thus, the resultant share obtained

represents the share of the total secrets (S1 + S2).

• The corresponding shares of the secret (S) can be multiplied by a constant (c) such that the

resultant secret obtained represents the constant times the secret (c × S).

• Even if some shares are unavailable or lost, the secret can still be reconstructed until the

threshold number of shares are available to the Combiner.

• The Dealer can select the threshold based on the requirement of the given use case.

• The secret sharing scheme provides confidentiality since only the authorized entity (Combiner

in our case) can reconstruct the secret.

• An adversary has to compromise up to t participants in order to reconstruct the secret, a

task which is more difficult than compromising a centralized location (entity).

• An adversary without having the required number of shares cannot reconstruct the given

secret even if it has infinite computing and time capacity, thereby implying information-

theoretic security.
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• The Dealer can dynamically create new shares for new participants without affecting the

existing set of shares for a given set of secret.

• Security can be enhanced by increasing the degree of the polynomial, thereby increasing the

number of threshold limit to reconstruct the secret (Note: The constant term remains the

same, that is, the secret).

Although Shamir’s Secret Sharing Scheme has various advantages, it has the following limitations:

• During the share reconstruction process, the Combiner needs a way to verify the correctness

of each share provided by the participants. Verifiable secret sharing [8] has been studied by

the smart grid community to determine the correctness of the shares. However, the scheme

focuses on sharing encryption keys used by smart meters (SMs) as the secret, rather than the

corresponding granular meter reading of the SMs.

• Single point of reconstruction: The secret exists with the Dealer, who is the owner of the

secret and the Combiner, who is the recipient of the secret. In this setup, the secret is held

by both entities. It is advisable to have a backup in scenarios where a single points of failure

can occur.

3.2 Commitment-based Schemes

Commitment-based scheme [79] is a cryptographic technique that enables the Prover (P ) to commit

to a specific value while preserving its secrecy and integrity, and later reveal it to the Verifier (V ).

The Verifier is the entity that receives commitment from the Prover. The Verifier’s role is to check

the integrity of the commitment. One notable application of the Commitment-based Schemes

is in electronic voting systems, where it ensures that voters cannot modify their decision after

committing, thus safeguarding the integrity of the electronic voting process (Fig. 3.2). Table 3.2

represents the notations used for Commitment-based Scheme.
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Figure 3.2: Example of Commitment-based Scheme

Table 3.2: Table of notations for Commitment-based Schemes

Notation Meaning

g, h Commitment Parameters

r Decommitment Value

C Generated Commitment

p Prime Number

P Prover

S Secret

V Verifier

The Commitment-based Scheme consists of following phases:

Commit Phase: During this phase, the Prover creates a commitment (C) (eq. 3.4), using a

decommitment value (r) for the corresponding secret (S), and shares it with the Verifier. The

commitment parameters g, h are public and are also known to the Verifier.

C = gs hr (mod p) (3.4)

Reveal Phase: During this phase, the Prover reveals the secret, and the decommitment value to

the Verifier. The Verifier computes the commitment using the values received from the Prover and

verifies it against the received commitment. If the commitments match, it implies that the secret

was not altered after the commitment was distributed to the Verifier.
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Properties of Commitment-based Schemes:

• Security and Privacy: It allows participants to commit to a value while keeping it hidden

until the Prover discloses it. This property is also known as the hiding property.

• Binding property: It ensures that the Prover cannot change the committed value after generat-

ing and distributing the commitment to the Verifier, thereby preventing dishonest behaviour.

• Integrity and Immutability: The Commitment-based Schemes binds a Prover to a specific

committed value, ensuring integrity and immutability. Once a commitment is generated, it

becomes difficult to alter or modify.

• Non-malleability property: This property guarantees that no participant can derive the orig-

inal committed value from the commitment by modifying or altering the commitment.

• Verifiability and Auditing: It provides the Verifier with the ability verify and audit a commit-

ment. This encourages trust, accountability, and transparency among participants (Prover

and Verifier).

• Non-Repudiation: By employing a commitment scheme, the participants cannot deny their

commitment to a specific value. A commitment made and later revealed with necessary proof

servers as digital evidence that the Prover cannot contradict. This property is particularly

useful in legal or contractual scenarios where participants must adhere to certain terms and/or

conditions.

Following are some limitations associated with the Commitment-based Schemes:

• Irreversibility: The commitment scheme is designed to be irreeversible in nature, meaning

that once a commitment is generated by the Prover it cannot be changed or modified.

• Trust assumption: The commitment scheme relies on the trust between the Prover and the

Verifier. If the trust is compromised, it can lead to attacks on the commitment scheme.

• Computational overhead: The scheme can introduce computational overhead depending on

the construction of function, verification, and associated cryptographic operations. It might

hamper the scalability and efficiency of the system in use.

• Communication overhead: Since the commitment scheme requires multiple communication

between the Prover and Verifier during the commit and reveal phases, it can introduce commu-

nication overhead, thereby introducing latency in the distributed systems involving multiple
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participants. Therefore, it is important to understand the requirements of the system and

use the cryptographic Commitment-based Schemes accordingly.

3.3 Secure Multiparty Computation

Secure multiparty computation (SMPC) [16,57] (Fig. 3.3) is a method that allows multiple partic-

ipants (P1, P2,. . . , Pn) to collaboratively compute a given function based on their inputs, without

revealing their inputs (x1, x2, ....xn) to each other. This technique is useful in scenarios where the

participants possess sensitive data and do not want to disclose it to other participants, yet still

need to compute a given function that involves data from all the participants.

The general SMPC process can be subdivided into three phases:

Input preparation: Each participant prepares their input for the computation, without revealing

their original inputs to the other participants.

Computation: The participants jointly compute the given function on the prepared inputs.

Output reconstruction: The participants reconstruct the output of the computation.

Figure 3.3: Example of Secure Multiparty Computation

Example: Three participants (P1, P2, P3) want to calculate the average of their (x1, x2, x3) salaries

without revealing the salaries to each other.
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• Input preparation: Each participant encrypts their salary using a given cryptographic tech-

nique (Note: The original input, that is individual salaries, is hidden from each participant).

• Computation: The participants compute the summation function by directly working on the

ciphertext without converting it into plaintext.

• Output reconstruction: The encrypted ciphertext is decrypted collaboratively by the par-

ticipants without learning the individual salaries. Finally, the decrypted sum of salaries is

divided by the total number of participants (in our case, three) to compute the average salary.

At the end of the process, the participants (P1, P2, and P3) get the average salary without revealing

their salaries to each other. SMPC ensures no participants gain additional information beyond the

expected output, which is the average of their salaries.

Properties of Secure Multiparty Computation (SMPC):

• Privacy: SMPC allows multiple participants to collaboratively compute a given function on

their private inputs without disclosing their inputs. This property ensures that the given

inputs of the participants remain private.

• Correctness: SMPC is designed to compute the given function correctly, regardless of the

value of inputs from the corresponding participants.

• Fairness: SMPC ensures no participant can gain any additional advantage by holding on to

their inputs and/or deviating from the normal execution.

• Robustness: SMPC can operate correctly even within a subset of malicious participants trying

to deviate from the normal execution, making it robust.

• Verifiability: It can check the correctness of the given function to ensure the accuracy.

Although secure multiparty computation has various advantages, it has the following drawbacks:

• Computational and Communication Overhead: The participants require significant compu-

tation and communication resources to perform SMPC.

• Scalability: The computational and communication overhead increases as the number of par-

ticipants grows. Therefore, designing, implementing, and deploying SMPC can be a complex

task.
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3.4 Homomorphic Encryption-based Schemes

Figure 3.4: Example of Homomorphic Encryption-based Scheme

A Homomorphic Encryption-based Scheme (Fig. 3.4) allows participants to perform operations on

encrypted data without decrypting it to plaintext, making the scheme applicable in scenarios where

privacy preservation is required. The Homomorphic Encryption-based Schemes can be categorized

as follows:

• Partial Homomorphic Encryption-based Scheme (PHE) enables limited computations on en-

crypted data. PHE supports either the addition or multiplication operation on encrypted data

without requiring decryption into plaintext. However, PHE does not support both operations

simultaneously.

• Somewhat Homomorphic Encryption-based Scheme (SHE) enables computations on encrypted

data, specifically supporting the addition and/or multiplication operation with a constant.
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However, SHE has limitations on the number of computations it can support, which makes

it less powerful compared to the Fully Homomorphic Encryption-based Scheme.

• Fully Homomorphic Encryption-based Scheme (FHE) supports a broader range of operations

compared to the previous two schemes. However, it has a high computational overhead

associated with it.

For our comparative analysis, we will be focusing on the Paillier Encryption Scheme [77] introduced

by Pascal Paillier, a type of Partial Homomorphic Encryption-based Scheme. This scheme has been

widely studied for smart grid applications. It is an additive homomorphic encryption scheme, which

means it supports addition operations on the encrypted ciphertext.

The Paillier Encryption Scheme can be generalized as follows:

Keys:

• Public Key (public): (n, g)

• Private Key (private): (λ, µ)

Encryption:

• Select a secret message (S) such that 0 ≤ S < n

• Select a random number (r) such that 0 ≤ r < n and gcd(r, n) = 1

• Compute ciphertext (C) = Encpublic(S, r) = gS · rnmod n2

Decryption:

• Compute the plaintext (S) = Decprivate(C) = L(Cλ mod n2) · µ mod n

Note: Here L is a function defined as L(x) = (x− 1)/n

Properties of Paillier Encryption Scheme:

• Homomorphic Addition: Given two ciphertexts C1 and C2 of corresponding plaintext S1 and

S2, the product of two ciphertexts when decrypted results in sum of the plaintexts.
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• Scalar Multiplication property: Given a ciphertext (S) and a scalar multiple (c) in plaintext,

the ciphertext raised to the power of the scalar constant gets decrypted to the product of the

plaintext and the scalar multiple (S×c). The homomorphic addition and scalar multiplication

property makes the Paillier scheme useful in aggregation scenarios dealing with sensitive data.

• Non-Malleability: The Paillier Encryption Scheme is non-malleable, meaning that even if an

adversary modifies the ciphertext, the decrypted plaintext remains unaffected. This property

provides integrity and prevents unauthorized manipulation of the encrypted data.

• Efficiency: The Paillier Encryption Scheme is computationally efficient compared to Fully

Homomorphic Encryption-based Schemes.

Table 3.3: Table of notations for Paillier Encryption Scheme

Notation Meaning

C Ciphertext

L Function

(λ, µ) Private Key

(n, g) Public Key

r Random Number

c Scalar Constant

S Secret

Limitations of Paillier Encryption Scheme are as follows:

• Homomorphic Operation Limitations: Paillier Encryption Scheme supports only homomor-

phic addition and scalar multiplication properties. However, it does not support other general

multiplication, division, and exponential operations on the encrypted data. This limits the

Paillier Encryption Scheme’s utilization on various computations.

• Computational Overhead: The Paillier Encryption Scheme is more efficient than the Fully

Homomorphic Encryption-based Scheme. However, it still has a substantial computational

overhead on resource-constrained devices due to modular and exponential operations asso-

ciated with it. Hence, the parameter selection and management associated with Paillier

Encryption Scheme requires careful attention as it ensures security.
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3.5 Summary

This chapter provided an overview of the cryptographic preliminaries that formed the basis of

our proposed framework, including the Secret Sharing Schemes, Commitment-based Schemes, and

Secure Multiparty Computation. It also discussed the Homomorphic Encryption-based Schemes,

which were associated with the comparative frameworks.



Chapter 4

A Privacy Safeguarding Framework:

Semi-Honest Setting

4.1 Introduction

In this chapter, we will be focusing on the following research questions (RQs):

• RQ1: How can smart meters (SMs) send spatial metering data to the Electrical

Service Provider (ESP) in a way that protects privacy and ensures efficiency for

the smart meters themselves?

• RQ2: How can smart meters (SMs) send temporal metering data to the Electrical

Service Provider (ESP) in a way that protects privacy and ensures efficiency for

the smart meters themselves?

In Chapter 1, we emphasized the importance of spatial and temporal metering data required by the

ESP for providing grid and billing functionalities. However, studies have indicated that accessing

high-frequency metering data can breach customer privacy [19, 21, 25, 33, 44, 45, 59, 67, 68, 82, 99].

In Chapter 2, we highlighted the significance of Aggregation-based Frameworks in addressing the

privacy issues in the smart grid. By reporting the aggregated metering data to the ESP, it be-

comes difficult for the ESP to establish the link between the high-frequency metering data and

the corresponding SM, thus preserving customer privacy. In this chapter, we conduct a critical

literature review of the existing Aggregation-based Frameworks for the smart grid and propose our

34
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distributed privacy-preserving framework to address their limitations.

The Aggregation-based Frameworks are categorized based on the architectural model as follows [8,

14,15,25,40,54,86,87,100,102]: In-Network Aggregation-based frameworks, Centralized Aggregation-

based Frameworks and, Distributed Aggregation-based Frameworks.

In-Network Aggregation-based Frameworks: These frameworks expect the metering data

to be collected with the help of intermediate SMs within the communication network. We critically

analyze the most closely related In-Network Aggregation-based Frameworks.

In [8], the authors propose an In-Network Aggregation-based Framework that enables SMs to se-

curely communicate high-frequency metering data to the ESP while preserving customer privacy.

This is achieved through the use of secure multiparty computation (SMPC) and verifiable secret

sharing techniques. Notably, the proposed solution eliminates the need for a dedicated aggrega-

tor (DA) and instead relies on in-network aggregation utilizing the SMs themselves. Verifiable

secret sharing is employed to safeguard the keys used for encrypting the high-frequency metering

data. Each SM generates shares of its private keys and distributes them among neighboring SMs.

Meanwhile, the SMs directly report the low-frequency metering data to the ESP. Upon receiving

the aggregated value of the keys, the ESP employs it to decrypt the total encrypted reading. This

decryption process, involving the aggregation of encrypted readings, becomes possible due to the ho-

momorphic properties of the cryptographic schemes utilized. By aggregating the metering data over

a given period, the framework effectively prevents the ESP from deriving granular metering data,

thereby preserving privacy. Additionally, the framework extends support for Flat Rate Billing.

In [14], the authors propose an In-Network Aggregation-based Framework that supports spatio-

temporal aggregation. It utilizes the Pedersen Commitment Scheme [79] for verifiability of the bill

generated and, the Paillier scheme [77] for computing spatio-temporal metering data. However,

the computational overhead is high due to the interconnection of SMs. This framework supports

both Flat Rate and Dynamic Billing. Authors in [100] explore a framework that combines a Fully

Homomorphic Encryption-based (FHE) scheme with SMPC to report spatially aggregated data

to the ESP within an acceptable timeframe. However, this framework does not support temporal

aggregation and exhibits a high computational overhead on the SMs. Complete group manage-

ment is necessary for SM addition and/or removal in this framework. In [54], the authors present

an In-Network Aggregation-based Framework that supports spatial aggregation using the Paillier

Encryption Scheme. However, this framework does not include billing functionality and imposes

a high computational overhead on resource-constrained SMs. On the other hand the framework

proposed in [40] is capable of tolerating a threshold of SM crashes during the aggregation process.
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It employs the Shamir’s Secret Sharing Scheme to preserve customer privacy and operates under

an honest-but-curious model. However, the requirement for interconnection among SMs increases

the architectural complexity.

Centralized Aggregation-based Frameworks: These frameworks expect the metering data to

be collected, processed, and aggregated by a centralized entity known as a dedicated aggregator

(DA). This centralized entity is typically managed by a Trusted Third Party (TTP) that performs

the computation and forwards the aggregated result to the ESP. We critically analyze the most

closely related Centralized Aggregation-based Frameworks.

In [15], the authors propose a framework that offers fault tolerance by utilizing the Paillier En-

cryption Scheme. The framework supports spatial and temporal aggregation and outperforms the

framework presented in [25]. However, it is susceptible to single points of compromise. Addi-

tionally, the framework only supports Flat Rate Billing and requires partial group management

for SM addition and/or removal. The framework presented in [87] supports spatial aggregation

while preserving customer privacy. It expects each SM to encrypt its reading using homomorphic

encryption-based scheme and report it to the aggregator. Through SMPC the aggregator computes

the spatial aggregation without violating customer privacy. However, the framework is prone to

single points of compromise and lacks the support for dynamic billing.

Distributed Aggregation-based Frameworks: These frameworks utilize multiple dedicated

entities to perform collection, processing and aggregation of metering data. We critically analyze

the most closely related Distributed Aggregation-based Frameworks.

In [86], the authors address the limitations of [87] by introducing privacy-preserving nodes (PPNs)

between the SMs and ESP. The framework employs Shamir’s Secret Sharing Scheme to collect

metering data from the SMs and leverages its homomorphic properties to support spatial and

temporal aggregation. However, the framework lacks support for dynamic billing and is prone

to single points of compromise, as the ESP is responsible for the centralized reconstruction after

fetching data from the PPNs. To address the limitations of [86], we propose a framework [102] that

incorporates Shamir’s Secret Sharing Scheme for SMs and utilizes SMPC in conjunction with the

DAs employing and the ESP. However, the framework does not support dynamic billing such as

Time of Use Billing Tariff.

With the integration of dynamic billing functionalities in the smart grid domain, the computation

of accurate bills necessitates granular high-frequency metering data. However, the accessibility of

this data poses potential privacy risks for the customers. Therefore, integration of dynamic billing
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functionality while preserving customer privacy is a difficult task. As the smart grid aims to provide

grid and billing functionalities, employing a thoughtfully designed spatio-temporal aggregation

framework can serve the dual purpose of safeguarding customer privacy and facilitating dynamic

billing. Such a framework enables spatial and temporal aggregation functionalities within the same

underlying system.

To summarize the aforementioned Aggregation-based Frameworks, the existing solutions have one

or more of the following limitations:

• Prone to single points of compromise due to dependency on a centralized entity for aggregation

[15,87]

• High computational overhead on resource-constrained SMs [8,14,15,40,87,100]

• Lack of support for dynamic billing integration while preserving customer privacy [8, 40, 54,

86,87,100,102]

We aim to address these limitations through our distributed framework in a semi-honest setting,

which can report spatio-temporal metering data while preserving customer privacy. Since the

majority of the computing load is shifted to the DAs, the framework is lightweight in terms for the

resource-constrained SMs.

4.2 System Model

This section describes the architectural, threat, and billing model associated with the privacy

safeguarding framework in a semi-honest setting.

4.2.1 Architectural Model

Smart Meters (SMs):

A smart meter is a resource-constrained device that is installed in the customer’s domain. It is

capable of reporting both high-frequency and low-frequency metering data to the ESP through the

DAs. The SMs can perform cryptographic operations, such as generating shares for corresponding
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instantaneous readings, utilizing the parameters provided by the ESP. We assume that each cus-

tomer has one SM installed, and the instantaneous readings (consumption) are independent of each

other. Each SM is assigned a unique identifier denoted by i, where i ∈ {1, 2, . . . ,m}; m = represents

the total number of SMs. Note: The SMs do not interact with each other, their interactions are

solely with the DAs.

Dedicated Aggregators (DAs):

A dedicated aggregator is an intermediate device positioned between the SMs and the ESP. Un-

like the SMs, it possesses high computational capabilities. The DAs receive their initialization

parameters from the ESP, similar to the SMs. The main responsibility of the DAs is to perform

spatio-temporal aggregation employing SMPC. Each DA is assigned a unique identifier, denoted

by j, where j ∈ {1, 2, . . . , n}; n represents the total number of DAs participating in the spatial and

temporal aggregation. Each DA maintains the following types of memory registers:

• Spatial Register (SRj,t): This register stores the aggregated shares received by DAj from m

SMs for a given time instance (t).

• Temporal Register (TRi,j): This register stores the aggregated shares received by DAj from

SMi over a time period (T ).

Each DA is responsible for reporting the output of the SMPC (the reconstructed polynomial) to the

ESP. Our research aligns with the NIST guidelines that emphasize the use of a redundancy strategy

to enhance the resilience of the smart grid (Section 1.3) [32,81]. DAs can be deployed on-premises,

cloud-based, and/or in a hybrid manner (both on-premises and cloud) [7, 12,34,61,69,78].

Electrical Service Provider (ESP):

The ESP is responsible for communicating the initialization parameters to the SMs and DAs.

The Initialization Phase is assumed to be secure against active-passive attacks. The ESP is also

responsible for setting the billing tariffs including Flat Rate, Cumulative, and Time of Use Billing

Tariffs. The ESP is accountable for providing grid and billing functionalities.
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4.2.2 Threat Model

In this chapter, we focus on passive threats to privacy (semi-honest setting). The SMs are assumed

to be tamper-resistant but are trusted for their readings. The entities (SM, DA, and ESP) are con-

sidered semi-honest. The DAs and ESP follow the protocol but may attempt to breach customers’

privacy by colluding with each other, utilizing their received inputs and associated registers. Their

objective is to link the high-frequency meter readings to the identities of the SMs. The SMs can

try to infer high-frequency metering data of other SMs. We assume that the exchanges between

the entities (SM-DA, DA-DA and, DA-ESP) are protected from active adversaries through secure

connections. Additionally, the internal clocks are in sync with each other, ensuring synchronization

within the framework.

4.2.3 Billing Model

Various types of billing tariffs are utilized in the smart grid community [10, 28] to promote energy

conservation to manage the supply-demand curve. Each billing tariff serves a specific purpose and

aims to achieve a particular goal. The ESP determines the selection of a billing tariff during the

Initialization Phase (Section 4.4.1). The choice of a specific tariff depends on the ESP’s goals and

the customer’s preferences. This subsection describes the different types of billing tariffs supported

by our proposed framework.

Flat Rate Tariff

A Flat Rate Tariff applies a uniform price per unit (priceunit) to the entire meter reading (kWh),

regardless of the time and duration of consumption. While a Flat Rate Tariff is easier for consumers

to understand, it may not provide a strong incentive for energy conservation. This type of billing

tariff is also supported in legacy electrical grids.

Example: A customer’s electricity consumption is 770 kWh in a given month, and the charge per

unit kWh is $0.10 (determined by the ESP). In this case, the total bill generated will be $77 (770

kWh × $0.10 per kWh). The total bill generated for the customer is directly proportional to the

electricity consumed during the given month.
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Cumulative Tariff

In this type of tariff, a different pricing structure is applied to the total electricity consumption

over a given period, usually a month. The overall consumption is divided into intervals, with

each interval mapped to a special rate per consumption unit. This tariff encourages electricity

conservation and reflects the increase in the marginal cost of providing the service as consumption

increases. The ESP might have a Cumulative Tariff that charges a lower rate for the initial 200

kWh of electrical consumption in a month and a higher rate for any consumption above 200 kWh.

This motivates customers to consume less electricity as the cost of the electric bill increases with

additional consumption beyond the limit. However, the Cumulative Billing Tariff may be more

challenging for customers to understand than a flat rate billing tariff.

Example: A customer with a total electricity consumption of 770 kWh over a month, and the ESP

has the following pricing structure: For the first 200 kWh consumed, the price is $0.10 per kWh,

and for any consumption above 200 kWh, the price is $0.20 per kWh. In this case, the total bill

generated would be $134. The first 200 kWh would be charged at $0.10 per kWh, totaling $20,

and the remaining 570 kWh would be charged at $0.20 per kWh, totaling $114.

Time of Use Tariff

The Time of Use (TOU) Tariff is a type of dynamic billing tariff. In TOU, the pricing structure

for electricity varies based on the time of consumption. The TOU Tariff is determined by the

actual cost of generating and distributing electricity at different intervals. This type of billing tariff

encourages the customers to shift their consumption to non-peak hours when electricity demand is

lower, and the price is cheaper. Typically, a TOU tariff divides electricity into peak, shoulder, and

non-peak periods, with the highest prices during peak periods, followed by shoulder periods and

non-peak periods. TOU Tariffs can be used with SM, which record instantaneous consumption,

enabling more accurate billing and increased granularity in pricing visibility. However, TOU tariffs

are more complex for customers to understand than Flat Rate and Cumulative Tariffs.

Example: The ESP implements the following TOU tariff structure:

• Peak periods from Monday to Wednesday, 08:00 AM to 09:00 PM, with a price of $0.30 per

kWh.

• Shoulder periods are all day on weekends and Friday with a price of $0.20 per kWh.
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• Non-peak periods from Monday to Wednesday, 09:00 PM to 8:00 AM with a price of $0.10

per kWh.

If a customer consumes 570 kWh during peak periods in a month, the total bill would be $171

(570 kWh × $0.30 per kWh). If the customer consumes 570 kWh during shoulder periods, the

total bill would be $114 (570 kWh × $0.20 per kWh). If the customer consumes 570 kWh during

non-peak periods, the total bill would be $57 (570 kWh × $0.10 per kWh). In this example,

the customer would benefit economically by shifting their energy consumption to non-peak periods

when electricity prices are lowest. Therefore, TOU Billing Tariffs can effectively manage the supply-

demand curve and motivate energy conservation among customers.

4.3 Cryptographic Prerequisites

4.3.1 Configuration of Shamir’s Secret Sharing Scheme

Shamir’s Secret Sharing Scheme [91] is a threshold secret sharing scheme used by resource-constrained

SMs. It enables the SM to divide its instantaneous reading (Ri,t) into n number of shares, which

are then distributed to the DAs for spatial and temporal aggregation by employing SMPC. Here

n represents the total number of DAs. The shares are divided in a manner that allows the DAs

to reconstruct the instantaneous reading with a subset of k shares. Therefore, the scheme is also

known as a (k, n) threshold scheme (k and n are positive integers) where k represents the minimum

number of shares required to reconstruct instantaneous reading (Ri,t). However, in order to provide

the ESP with spatial and temporal aggregated data for grid and billing functionalities, we leverage

the homomorphic properties of Shamir’s Secret Sharing Scheme as follows:

• Additive Property: The corresponding shares of the instantaneous readings (R1,t) and (R2,t)

can be added across different SMs (SM1 and SM2) if the degree of secret sharing polynomial

is the same. Thus, the resultant share obtained represents the share of the total readings

(R1,t +R2,t). This additive property of the Shamir’s Secret Sharing Scheme helps the DAs to

compute spatially aggregated reading in a privacy-preserving manner.

• The corresponding shares of the instantaneous reading (Ri,t) can be multiplied by a constant

(c) such that the resultant secret obtained represents the constant times the instantaneous

reading (c × (Ri,t)). This property is useful for incorporating dynamic billing (Time of Use

Tariff) in a distributed and privacy-preserving manner.
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• Shamir’s Secret Sharing Scheme is information-theoretically secure, meaning that an adver-

sary without the required number of threshold shares cannot reconstruct the secret, even with

infinite time and computing capacity.

A more detail explanation about how Shamir’s Secret Sharing Scheme is employed in the proposed

framework is covered in Section 4.4.

4.3.2 Configuration of Secure Multiparty Computation

SMPC [16, 57] enables a group of DAs in our proposed framework to compute a function (spatial

aggregation as well as temporal aggregation) without disclosing their individual inputs (shares

received from the SMs). In SMPC, all the participating DAs jointly compute a function over their

inputs such that they are only aware of the result (spatially aggregated reading and /or temporally

aggregated reading) and their inputs stored in spatial (SRj,t) and temporal registers (TRi,j) .

Since only aggregated data is shared across the DAs in the form of registers (spatial register and

temporal register), the DAs cannot reconstruct the instantaneous reading with a given smart meter

thereby preserving customer privacy. Additionally, the DAs share the aggregated result of the

SMPC with the ESP for providing grid and billing functionalities. Even in that case, ESP also

cannot breach the customer privacy as it receives computed spatially aggregated reading and/or

temporally aggregated reading from the DAs.

The SMPC phases can be defined as follows:

• Input preparation: Each DA prepares its input by aggregating the granular shares received

from the SMs in spatial and temporal registers. This ensures that their inputs are ready to

be utilized in the computation of spatio-temporal aggregation without revealing the input

(granular shares) to the other dedicated aggregators.

• Computation: The DAs jointly compute spatially aggregated reading over a given set of

SMs for a given instance of time (utilizing spatial registers) (Fig. 4.1). Additionally, the DAs

compute temporally aggregated reading for a given set of SMs over a given period of time

(utilizing temporal registers).

• Output reconstruction: The DAs reconstruct the output of the computation (spatially ag-

gregated reading and temporally aggregated reading) without revealing their inputs (granular

shares) to each other.
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Figure 4.1: Secure Multiparty Computation (Spatial Aggregation)

Our proposed framework is lightweight in terms of computational overhead on SMs, as the majority

of the work is performed by the DAs. By employing Shamir’s Secret Sharing Scheme, the shares

generated by each SM are distributed across the DAs. This allows for the computation of spatially

or temporally aggregated readings when at least k or more DAs exchange their respective registers.

Therefore, SMPC helps the framework address single points of compromise. A more detailed

explanation of how SMPC is employed in our proposed framework is covered in Section 4.4.

4.4 Proposed Framework

This section describes the phases associated with our privacy safeguarding framework in a semi-

honest setting. The framework employs Shamir’s Secret Sharing Scheme and SMPC to provide

spatio-temporal metering data to the ESP while preserving consumer privacy. Table 4.1 represents

the notations used for our privacy safeguarding framework in a semi-honest setting. The proposed

framework consists of the following phases:

4.4.1 Initialization Phase

The ESP communicates the initializing parameters to the SMs and DAs.

The SMs receive the following:

• Degree of secret sharing polynomial (k − 1)

• Prime number (p)
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Table 4.1: Table of notations: A Privacy Safeguarding Framework in a Semi-Honest Setting

Notation Meaning

δj(x) Basis Polynomial

Billi Bill generated for ith Smart Meter

βd,t dth Coefficient of Reconstructed Polynomial at time t (Spatial Aggregation)

γd,i,t dth Coefficient of Reconstructed Polynomial for ith Smart Meter at time t

(Temporal Aggregation)

αi,d,t dth Coefficient of Secret Sharing Polynomial of ith Smart Meter at time instance t

Conint Consumption for given interval (Cumulative Tariff)

k − 1 Degree of Secret Sharing Polynomial

ESP Electrical Service Provider

Tariff Flat Rate / Cumulative / Time of Use (TOU)

SMi ith Smart Meter

Ri,t Instantaneous reading of ith Smart Meter at time instance t

t Instantaneous time

DAj jth Dedicated Aggregator

DAList List of Dedicated Aggregators

SMList List of Smart Meters

n Number of Dedicated Aggregators

m Number of Smart Meters

priceint Price for given interval (Cumulative Tariff)

pricemax Price for last interval (Cumulative Tariff)

pricet Price for that given time instance (Time of Use Tariff)

priceunit Price per unit consumption (Flat Rate Tariff)

p Prime number

Gt(x) Reconstructed Polynomial at time instance t (Spatial Aggregation)

Hi,T (x) Reconstructed Polynomial of ith Smart Meter at time T (Temporal Aggregation)

Fi,t(x) Secret Sharing Polynomial of ith Smart Meter at time instance t

(sharej)i,t Share generated by ith Smart Meter for jth Dedicated Aggregator at time instance t

SRj,t Spatial Register of jth Dedicated Aggregator

TRi,j Temporal Register of ith Smart Meter at jth Dedicated Aggregator

T Total time
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• List of DAs participating in spatio-temporal aggregation (DAList)

The DAs receive the following:

• Degree of secret sharing polynomial (k − 1)

• Prime number (p)

• List of Dedicated Aggregators participating in spatio-temporal aggregation (DAList)

• List of Smart Meters (SMList)

• Billing Tariff Type (Flat rate/Cumulative/ Time Of Use)

In addition, each DA computes the basis polynomials (δj(x)) (eq. 4.1) by utilizing the DAList as

follows:

δj(x) =

k∏
l=1
l ̸=j

x− l

j − l
(4.1)

4.4.2 Share Creation Phase

In order to generate shares for its corresponding instantaneous reading (Ri,t), each SM (SMi) selects

a random polynomial Fi,t(x) (eq. 4.2) of degree (k−1) such that the constant (αi,0,t) represents the

instantaneous meter reading (Ri,t) at that instance. For d ≥ 1, the SMi selects the coefficients αi,d,t

of the polynomial randomly from Zp \ {0}. The instantaneous reading and the selected polynomial

by a specific SM are independent of other SMs. Each SMi creates a share for DAj by utilizing its

identity from the DAList (eq. 4.3).

Fi,t(x) =

k−1∑
d=1

αi,d,t x
d + Ri,t (mod p) (4.2)

(sharej)i,t = Fi,t(j) (4.3)

Each Smart Meter (SMi) distributes the shares ((sharej)i,t) to the corresponding DAs participating

in the spatio-temporal aggregation.



CHAPTER 4. A PRIVACY SAFEGUARDING FRAMEWORK: SEMI-HONEST SETTING 46

4.4.3 Spatial Aggregation Phase

In this phase, the DAs in the DAList collaboratively compute the spatially aggregated reading across

SMs in the SMList for a given instance of time (t). Each DA is responsible for aggregating the

received shares in spatial registers (SRj,t) (eq. 4.4). The spatially aggregated reading for a given

time instance across the given set of SMs (SMList) must belong to the field Zp due to requirement

of Shamir’s Secret Sharing Scheme.

SRj,t =

m∑
i=1

(sharej)i,t (4.4)

After all the shares are received from the given set of SMs in the SMList, the DAs employ SMPC

in order to computed spatially aggregated reading across SMs. Note: Only spatial registers are

exchanged between the DAs. The DAs reconstruct a polynomial of degree (k − 1) (eq. 4.5) by

utilizing same set of basis polynomials (eq. 4.1). The reconstructed polynomial is same across all

DAs as they work on same set on input parameters (spatial registers (eq. 4.4) and basis polynomials

(eq. 4.1)). The reconstructed polynomial is represented in the following equation:

Gt(x) =

n∑
j=1

SRj,t δj(x) =

k−1∑
d=0

βd,tx
d (mod p) (4.5)

The reconstructed polynomial (Gt(x)) is reported to the ESP. Post reporting, the spatial register

(SRj) is reinitialized to zero (since shares are added across SMs). The spatially aggregated reading

across a given set of SMs is derived by ESP (eq. 4.6) by solving the reconstructed polynomial for

x = 0.

Gt(0) = β0,t =
m∑
i=1

Ri,t (4.6)

4.4.4 Temporal Aggregation Phase

The phase can be sub-classified into the following three categorizes based on the type of billing

tariff applied:

1. Time of Use Billing Tariff
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2. Flat Rate Billing Tariff

3. Cumulative Billing Tariff

Note: The temporal aggregation is performed by utilizing the same shares that arrive for spatial

aggregation. Hence the spatial and temporal aggregation frameworks can be implemented in parallel

without adding overhead on the SMs.

Time of Use Billing Tariff

In this phase, the DAs in the DAList collaboratively compute the aggregated bill for the SMs in the

SMList for a given period of time (T ). Each DA is responsible for aggregating the received shares

in the temporal registers (eq. 4.7) respectively. Here pricet represents price at that given instance

(Time of Use Billing Tariff).

TRi,j =
T∑
t=1

(sharej)i,t × pricet (4.7)

The reconstruction of polynomial is similar to (eq. 4.5) but utilizes the temporal registers (eq.

4.8). As the shares have been already multiplied with the price for the given instance (pricet), the

computed result (eq. 4.9) represents the bill (Billi) for the given SMi.

Hi,T (x) =
n∑

j=1

TRi,j δj(x) =
k−1∑
d=0

γd,i,T xd (mod p) (4.8)

Billi = Hi,T (0) (4.9)

The computed bill is reported to the ESP. Post reporting, the temporal registers are reinitialized

to zero (since shares are added for a specific SM over a period of time).

Flat Rate Billing Tariff

In this phase, the DAs in the DAList collaboratively compute the total aggregated reading across

SMs in the SMList for a given period of time (T ). Each DA is responsible for storing the received

shares in the temporal registers (eq. 4.10).
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TRi,j =

T∑
t=1

(sharej)i,t (4.10)

The reconstruction of polynomial is similar to (eq. 4.5) but utilizes the temporal registers (eq.

4.11).

Hi,T (x) =
n∑

j=1

TRi,j δj(x) =
k−1∑
d=0

γd,i,T xd (mod p) (4.11)

Each DA computes total consumption for SMi for a given period of time (T ) by solving the

reconstructed polynomial for x = 0 (eq. 4.12).

Hi,T (0) = γ0,i,T =
T∑
t=1

Ri,t (4.12)

The DAs multiply priceunit received from the ESP and, the bill (Billi) is computed for the corre-

sponding smart meter.

Billi = Hi,T (0) × priceunit (4.13)

The computed bill is reported to the ESP. Post reporting, the temporal registers are reinitialized

to zero (since shares are added for a specific SM over a period of time).

Cumulative Billing Tariff

In this phase, the DAs in the DAList collaboratively compute the total aggregated reading across

SMs in the SMList for a given period of time (T ). Each DA is responsible for storing the received

shares in the temporal registers (eq. 4.14).

TRi,j =
T∑
t=1

(sharej)i,t (4.14)

The reconstruction of polynomial is similar to (eq. 4.5) but utilizes the temporal registers (eq.

4.15).



CHAPTER 4. A PRIVACY SAFEGUARDING FRAMEWORK: SEMI-HONEST SETTING 49

Hi,T (x) =
n∑

j=1

TRi,j δj(x) =
k−1∑
d=0

γd,i,T xd (4.15)

Each DA computes total consumption for SMi for a given period of time (T ) by solving the

reconstructed polynomial for x = 0 (eq. 4.16).

Hi,T (0) = γ0,i,T =
T∑
t=1

Ri,t (mod p) (4.16)

The computed bill for the SMi is represented in equation 4.17, where max represents the last

interval corresponding to the total consumption and the pricemax is the price associated with the

last interval. Whereas, Conint represents the consumption interval and priceint represents the

corresponding price associated to it.

Billi =

(
max−1∑
int=1

Conint × priceint

)

+

((
Hi,T (0) −

max−1∑
int=1

Conint

)
× pricemax

) (4.17)

The computed bill is reported to the ESP. Post reporting, the temporal registers are reinitialized

to zero (since shares are added for a specific SM over a period of time).

4.4.5 Billing Phase

As the SMs have reported the metering data to the DAs over a period of time (T ), the DAs process

the data to determine the bill for each SM and later forward it to the ESP. In the Billing Phase, the

ESP reports the bill to the corresponding customer associated with the SM (SMi) in the SMList

(typically done at the end of a month). Since the bill is computed over a period of time, the

granularity of the instantaneous reading is protected from both the DAs and the ESP.
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4.5 Overall Framework Design

The flowchart in Figure 4.2 illustrates our proposed privacy safeguarding framework, showcasing

the spatio-temporal aggregation flow over a specific time period (T ). Additionally, it highlights the

entities involved in each phase. At t = 1, the ESP communicates the initialization parameters to

the SMs and the DAs. In the Share Creation Phase, the SMs utilize the initialization parameters

to create shares and distribute them to the corresponding DAs. In the Spatial Aggregation Phase,

the DAs employ SMPC to compute the spatially aggregated reading across the given set of SMs.

This reading is reported to the ESP so that it can provide grid functionalities. The Temporal

Aggregation Phase also takes place on the same set of shares for a given time instance t. If the

instantaneous time is equal to the time period (T ), it reports the computed bill to the customer

for the corresponding pre-selected tariff. Otherwise, the subsequent set of shares are captured from

the SMs for the next time instance.
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Figure 4.2: Flowchart of our Privacy Safeguarding Framework in a Semi-Honest Setting
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Figure 4.3 provides a detailed overview of the step-by-step process involved in each phase of our

privacy safeguarding framework for a semi-honest setting over a given period of T = 2. It high-

lights the granular steps associated with the framework and outlines the various tasks involved.

Furthermore, it describes the sequential interactions among entities involved in each phase of our

proposed framework.

In the first phase, the ESP initiates the SMs and DAs by transmitting the initialization parame-

ters. During the Share Creation Phase, the SMs utilize these initialization parameters to generate

shares representing their instantaneous meter readings. These shares are then distributed to the

participating DAs for spatio-temporal aggregation.

During the Spatial Aggregation Phase, each DA receives shares for a specific time instance from

the SMs and aggregates them in the spatial register. Simultaneously, the shares are updated in the

temporal registers associated with each SM. The DAs utilize SMPC to reconstruct the polynomial

for spatial aggregation. The reconstructed polynomial for the corresponding time instance (t = 1)

is then reported to the ESP. Once reported, the spatial registers are reset to zero. The ESP uses

the reconstructed polynomial to obtain the spatially aggregated reading. This process continues

until the current time instance reaches the total time period (t = T ).

When t = T , temporal aggregation takes place among the same set of DAs using SMPC. The DAs

reconstruct the polynomial for temporal aggregation and calculate the bill based on the pre-selected

tariff. Subsequently, the bill is transmitted to the ESP. After reporting, the temporal registers are

reset to zero. In the Billing Phase, the ESP communicates the computed bill to the customer

associated with the respective SM.
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Figure 4.3: A Detailed Workflow of our Privacy Safeguarding Framework in a Semi-Honest Setting
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4.6 Summary

In this chapter, we proposed a distributed framework in a semi-honest setting to address two

identified research questions. The framework enabled the sharing of spatio-temporal metering data

with the ESP via DAs in a privacy-preserving manner while keeping the computational overhead

low for the smart meters. However, the framework does not consider integrity attacks on metering

data, given that it is being outsourced to aggregating entities owned by trusted third parties. In

our next chapter, we extend our proposed framework’s threat model to a malicious setting with a

dishonest majority of aggregating entities.



Chapter 5

A Privacy Safeguarding Framework:

Malicious Setting

5.1 Introduction

In this chapter, we will be focusing on the following research questions (RQs):

• RQ3: How can the Electrical Service Provider (ESP) incorporate integrity verifi-

cation of spatially aggregated metering data without violating customer privacy?

• RQ4: How can the Electrical Service Provider (ESP) incorporate integrity veri-

fication of temporally aggregated metering data without violating customer pri-

vacy?

In chapter 4, we proposed a distributed framework that enables the reporting of smart metering

data from the smart meters (SMs) to the ESP through dedicated aggregators (DAs) in a privacy-

preserving manner. The framework utilizes Shamir’s Secret Sharing Scheme and secure multiparty

computation (SMPC) to compute the spatio-temporal metering data. However, the threat model

considered was semi-honest, which is not a realistic assumption given that the metering data is

outsourced to aggregating entities operated by trusted third parties. In order to enhance the

applicability of our framework in real-world scenarios, we extend our previous framework to ac-

commodate both semi-honest and malicious threat models. We conduct a comprehensive analysis

of existing literature works focusing on Aggregation-based Frameworks, taking into account the

55
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integrity of metering data.

The Aggregation-based Frameworks are categorized based on the architectural model as follows

[11, 13, 14, 22, 23, 25, 26, 31, 37, 40, 48, 53, 55, 56, 86, 100, 102, 103, 104]: In-Network Aggregation-

based Frameworks, Centralized Aggregation-based Frameworks, and, Distributed Aggregation-

based Frameworks.

In-Network Aggregation-based Frameworks: These frameworks expect the metering data to

be collected with the help of intermediate SMs within the communication network. We critically

analyze the most closely related In-Network Aggregation-based Frameworks [14,25,40,53,100].

In [14], an In-Network Aggregation-based Framework is introduced, supporting spatio-temporal

aggregation. It utilizes the Pedersen Commitment Scheme [79] for bill verifiability and the Pail-

lier Encryption Scheme [77] for computing spatio-temporal metering data. Despite its advantages,

the interconnection of SMs in this framework leads to a significant computational overhead. Ad-

ditionally, it provides support for both Flat Rate and Dynamic Billing, assuming a semi-honest

threat model. In [25], an alternative In-Network Aggregation-based Framework employs secure

multiparty computation (SMPC) and Homomorphic Encryption-based Schemes for collecting spa-

tial and temporal meter data. However, this framework imposes a high computational overhead

on resource-constrained SMs, lacks support for dynamic billing, and assumes a semi-honest threat

model. To address the issue of SM crashes during the aggregation process, [40] proposes a framework

capable of tolerating a certain threshold of SM failures. It ensures customer privacy by utilizing

Shamir’s Secret Sharing Scheme and operates under an honest-but-curious model. Nevertheless, the

requirement for interconnecting SMs increases the architectural complexity of the system. In [53],

a framework is introduced to ensure the integrity of spatial metering data using a homomorphic

signature scheme with batch verification. However, this framework lacks integrity verification for

temporal metering data and incurs a high computational overhead on resource-constrained SMs.

Researchers in [100] explore a framework that combines a Fully Homomorphic Encryption-based

(FHE) Scheme with SMPC to report spatially aggregated data to the ESP within an acceptable

timeframe. This framework, while offering valuable capabilities, does not support temporal ag-

gregation and exhibits a high computational overhead on the SMs. Additionally, complete group

management is required for SM addition and/or removal. While the framework ensures integrity

verification for spatial metering data, it does not address integrity verification for temporal metering

data.

Centralized Aggregation-based Frameworks: These frameworks expect the metering data to

be collected, processed, and aggregated by a centralized entity known as a dedicated aggregator
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(DA). This centralized entity is typically managed by a Trusted Third Party (TTP) that performs

the computation and forwards the aggregated result to the ESP. We critically analyze the most

closely related Centralized Aggregation-based Frameworks [11,13,22,23,26,31,37,48,55,56].

In [13], the authors presented a Centralized Aggregation-based Frameworks that utilizes anonymiza-

tion techniques to eliminate identifiable information from the instantaneous reading. The anonymiza-

tion process is carried out by a TTP. This framework operates under a semi-honest setting and

does not incorporate billing functionality. The authors of [22] introduce a Centralized Aggregation-

based Scheme that prioritizes dynamic billing and addresses customer privacy concerns. They

propose a Chameleon hash function to ensure integrity verification of spatial and temporal meter-

ing data. Despite these advancements, the framework is susceptible to potential single points of

compromise. In their investigation presented in [23], the authors explore an anonymization-based

technique aimed at preserving customer privacy. The framework relies on a DA to anonymize the

data before transmitting it to the ESP. However, the framework lacks mechanisms for verifying the

integrity of metering data and does not offer support for billing functionality. In their work pre-

sented in [26], the authors introduce a privacy-enhanced aggregation-based framework designed to

withstand internal attacks. The SM utilize blinding factors to conceal their detailed metering data

and enable batch verification of spatial metering data. It is important to note that the framework

does not incorporate integrity verification for temporal metering data. In [31], the authors propose

a framework that supports spatio-temporal aggregation by employing hash and executive OR oper-

ations. They also provide a solution for secure billing, but the framework fails to support dynamic

billing functionalities. The paper [37] presents a Centralized Aggregation-based Framework that

utilizes blockchain technology to safeguard customer privacy and maintain the integrity of metering

data. Additionally, the authors incorporate the use of Bloom filters for authentication purposes.

In [48], the authors propose a fog-enabled privacy-preserving aggregation-based framework that

supports fault tolerance. The framework employs Boneh-Goh-Nissam (BGN) cryptosystem and

employs Elliptic Curve Digital Signature Algorithm (ECDSA) for authentication. In [55], the au-

thors propose a Centralized Aggregation-based Framework that employs Homomorphic Encryption

to support spatial aggregation and incorporates adaptive key evolution technique to ensure user

session keys are secure. The research conducted in [56] introduces a novel approach using dual

blockchain technology to safeguard customer privacy and facilitate the secure sharing of metering

data with the ESP. The framework utilizes a private blockchain to link the actual identity of the

SM with a pseudonym. Furthermore, secure signature mechanisms and an identity-based proxy

re-encryption scheme are implemented to ensure authentication and aggregation capabilities, re-

spectively In the study presented in [11], the author puts forward a Centralized Aggregation-based

Framework that facilitates the aggregation of spatio-temporal metering data while simultaneously



CHAPTER 5. A PRIVACY SAFEGUARDING FRAMEWORK: MALICIOUS SETTING 58

preserving customer privacy. The framework incorporates a Paillier Encryption-based Scheme in

conjunction with the Elliptic Curve Diffie Hellman Ephermeral (ECDHE) algorithm. The frame-

work, operates on the assumption of a semi-honest threat model and lacks support for dynamic

billing functionality.

Distributed Aggregation-based Frameworks: These frameworks utilize multiple dedicated

entities to perform collection, processing and aggregation of metering data. We critically analyze

the most closely related Distributed Aggregation-based Frameworks [86,102,103,104].

In their work presented in [86], the authors aim to overcome the limitations of [87] by introduc-

ing privacy-preserving nodes (PPNs) between the SMs and the ESP. They propose a framework

that utilizes Shamir’s Secret Sharing Scheme to collect metering data from the SMs and leverages

the homomorphic properties of the scheme to enable spatial and temporal aggregation. The re-

sponsibility of centralized data reconstruction from the PPNs lies with the ESP, which makes the

framework vulnerable to single points of compromise. To address the limitations of [86], we propose

a framework [102] that incorporates Shamir’s Secret Sharing Scheme for SMs and utilizes SMPC in

conjunction with the DAs employing and the ESP. The framework is capable of providing spatio-

temporal metering data in a privacy-preserving fashion but lacks to provide support for Dynamic

Billing such as Time of Use Billing Tariff. To integrate the dynamic billing functionality, we pro-

posed a framework in a semi-honest setting [103]. We utilized the same set of shares to support the

temporal aggregation of a metering data in a privacy preserving manner, thus imposing minimal

additional computational overhead on the SMs.

The existing Distributed Aggregation-based Frameworks in the literature assume a semi-honest

threat model and do not consider metering data integrity in the design. This is not a realistic

assumption, given that the DAs may belong to third parties that are not under the purview of

the ESP at all times. Although malicious adversarial models for the smart grid have been studied

in the literature [22, 26, 31, 48, 56], but they adopt a centralized design. Additionally, most of the

frameworks do not not support dynamic billing functionality.

To summarize the aforementioned aggregation-based frameworks, the existing solutions have one

or more of the following limitations:

• Prone to single points of compromise due to dependency on a centralized entity for aggregation

[11,13,22,23,26,31,37,48,55,56]

• High computational overhead on resource-constrained SMs [11,13,14,25,37,40,53,55,56,100]
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• Lack of support for dynamic billing integration while preserving customer privacy [11,13,23,

25,26,31,37,40,48,54,55,56,100]

• Lack of integrity verification of spatial and temporal metering data [11, 13, 23, 25, 26, 31, 37,

40,48,54,55,56,100]

We aim to address these limitations through our distributed framework in a malicious setting that

can check integrity verification of spatio-temporal metering data while preserving customer privacy.

Since the majority of the computing load is shifted to the DAs, the framework is lightweight in

terms for the resource-constrained SMs.

5.2 System Model

This section describes the architectural model (Fig. 5.1), threat, and billing model associated with

our proposed framework.

5.2.1 Architectural Model

Figure 5.1: A Privacy Safeguarding Framework: Malicious Setting
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Smart Meters (SMs):

A smart meter is a resource-constrained device that is installed in the customer’s domain. It is

capable of reporting both high-frequency and low-frequency metering data to the ESP through the

DAs. The SMs can perform cryptographic operations, such as generating shares for corresponding

instantaneous readings, utilizing the parameters provided by the ESP. We assume that each cus-

tomer has one SM installed, and the instantaneous readings (consumption) are independent of each

other. Each SM is assigned a unique identifier denoted by i, where i ∈ {1, 2, . . . ,m}; m = represents

the total number of SMs. Note: The SMs do not interact with each other, their interactions are

solely with the DAs.

Dedicated Aggregators (DAs):

A dedicated aggregator is an intermediate device positioned between the SMs and the ESP. Un-

like the SMs, it possesses high computational capabilities. The DAs receive their initialization

parameters from the ESP, similar to the SMs. The main responsibility of the DAs is to perform

spatio-temporal aggregation employing SMPC. Each DA is assigned a unique identifier, denoted

by j, where j ∈ {1, 2, . . . , n}; n represents the total number of DAs participating in the spatial and

temporal aggregation. Each DA maintains the following types of memory registers:

• Spatial Register (SRj,t): This register stores the aggregated shares received by DAj from m

SMs for a given time instance (t).

• Spatial Commitment Register (SCRt): Stores the aggregated commitments from m SMs

received by DAj for a given time instance (t)

• Temporal Register (TRi,j): This register stores the aggregated shares received by DAj from

SMi over a time period (T ).

• Temporal Commitment Register (TCRi) Stores the aggregated commitments received by

DAj from SMi over a time period (T ).

Each DA is responsible for reporting the output of the SMPC (the reconstructed polynomial) to the

ESP. Our research aligns with the NIST guidelines that emphasize the use of a redundancy strategy

to enhance the resilience of the smart grid (Section 1.3) [32,81]. DAs can be deployed on-premises,

cloud-based, and/or in a hybrid manner (both on-premises and cloud) [7, 12,34,61,69,78].
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Electrical Service Provider (ESP):

The responsibility of communicating the initialization parameters to the SMs and DAs lies with the

ESP. The Initialization Phase is assumed to be secure against active-passive attacks. Additionally,

the ESP is assumed to possess historic spatio-temporal metering data, which allows for approximate

estimations in the event of malicious modifications to the metering data. The ESP is also responsible

for configuring the billing tariffs, including Flat Rate, Cumulative, and Time of Use Billing Tariffs,

as well as verifying the integrity of the spatio-temporal metering data. The primary focus of the

framework is the integrity verification of spatio-temporal data in a malicious setting, specifically

addressing scenarios involving the compromise of entities, with a particular emphasis on cases where

the majority of DAs are dishonest.

5.2.2 Threat Model

As we have seen in the previous chapter (Chapter 4), a distributed aggregation-based privacy-

preserving framework was proposed in a semi-honest setting. However, this assumption is not

realistic given that the metering data is outsourced to aggregation entities owned by Trusted Third

Parties. In this chapter, we extend the framework to a malicious setting, which is more realistic (Fig.

5.1). The malicious adversary can compromise up to (n-1)-out-of-n DA(s) (theoretical assumption

enforced) and has access to granular shares, commitments, corresponding memory registers, as well

as initialization parameters from the ESP after compromising the DA(s). The goals of the malicious

adversary are as follows:

• Disrupt grid and billing functionalities

• Breach privacy of the customers

Disrupting grid and billing functionality can be achieved by modifying metering data and/or com-

mitments. The adversary can modify shares, commitments, or registers associated with compro-

mised DAs before SMPC occurs. The adversary can also modify reconstructed polynomials and

commitments related to a given set of DAs after SMPC. These modifications would affect the ESP’s

decision-making process and may result in an outage. The adversary can also violate the customers’

privacy by linking the instantaneous reading with the identity of the SM. The remaining entities,

SMs and ESP, are considered semi-honest. The SMs can try to infer high-frequency metering data

of other SMs. We assume that the exchanges between the entities (SM-DA, DA-DA and, DA-ESP)
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are protected from active adversaries through secure connections. Additionally, the internal clocks

are in sync with each other, ensuring synchronization within the framework. The main aim of our

proposed framework is to detect modifications to the metering data for each time instance while

preserving customer privacy.

5.2.3 Billing Model

The proposed framework is capable of supporting different types of billing tariffs, such as Flat Rate,

Cumulative, and Time Of Use Billing Tariff. The details of these different types of billing tariffs

are highlighted in Section 4.2.3.

5.3 Cryptographic Prerequisites

5.3.1 Configuration of Commitment-based Scheme

As we have seen in Section 3.2, a Commitment-based Scheme enables the Prover (P ) to commit

(eq. 5.1) to its corresponding secret (S) and later reveal the secret to the Verifier (V ). We extend

the 2-party commitment method explained in Section 3.2 to a distributed setting in our proposed

framework, where SMs generate the commitments (proving entities) and later send them to the

ESP (verifier) via DAs (intermediate entities).

Ci,t = gRi,t hri,t (mod p) (5.1)

• The DA(s) and/or the ESP cannot derive any information about the instantaneous reading

(Ri,t) related to a SM (SMi) from the commitment (Ci,t).

• The commitment (Ci,t) generated from a given secret (Ri,t) cannot reveal a different secret

(R′
i,t).

• When two different commitments (C1,t, C2,t) generated from two different readings (R1,t , R2,t)

are multiplied, the corresponding commitment (Cadd) is the commitment for the sum of two

readings (R1,t)+, (R2,t). This property of commitments makes it uniquely suitable for our

scheme, unlike other integrity verification schemes [76,100] based on hashes and signatures.
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• When a commitment (Ci,t) generated from a given secret (Ri,t) is raised to a constant power

(c), then the corresponding commitment (Cmul) is equal to the commitment value multiplied

by itself that many number of times (c×Ri,t). This property of commitments makes it

uniquely suitable for our scheme in terms of Time of Use (TOU) billing tariff.

The details of the commitment scheme is terms of spatial and temporal aggregation is presented in

Section 5.4.

5.3.2 Configuration of Shamir’s Secret Sharing Scheme (SSS) with a constraint

The Shamir’s Secret Sharing Scheme [91] is utilized by each resource-constrained SM to break its

instantaneous reading (Ri,t) into n number of shares. These shares are later distributed to the DAs

to compute spatial and temporal aggregation by employing SMPC. The shares are divided in such

a way that given a subset of k shares, the DAs are able to reconstruct the instantaneous reading.

Hence the scheme is also known as a (k, n) threshold scheme (k and n are positive integers) where

k represents the minimum number of shares required to reconstruct instantaneous reading (Ri,t).

However, by doing so, the DAs can learn about the granular instantaneous reading of each SM,

thereby breaching the privacy of the customers associated with the share. To protect the privacy

of the customers, we leverage the homomorphic properties of Shamir’s Secret Sharing Scheme such

as follows:

• Additive Property: The corresponding shares of the instantaneous readings (R1,t) and (R2,t)

can be added across different SMs (SM1 and SM2) if the degree of secret sharing polynomial

is the same. Thus, the resultant share obtained represents the share of the total readings

(R1,t +R2,t). This additive property of the Shamir’s Secret Sharing Scheme helps the DAs to

compute spatially aggregated reading in a privacy-preserving fashion.

• The corresponding shares of the instantaneous reading (Ri,t) can be multiplied by a constant

(c) such that the resultant secret obtained represents the constant times the instantaneous

reading (c × (Ri,t)). This property is useful for incorporating Dynamic Billing (Time of Use

Billing Tariff) in a distributed and privacy-preserving fashion.

• Shamir’s Secret Sharing Scheme is information theoretic secure: An adversary without given

number of threshold shares cannot reconstruct the secret even with infinite time and com-

puting capacity.
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In our proposed framework, we impose a constraint (ri,t) via ESP on the first coefficient (αi,1,t)

of the secret sharing polynomial (Fi,t(x)) to include integrity verification with the secret sharing

process (eq. 5.2). In the proposed framework, the SM is responsible for creating the shares for

their corresponding consumption and reporting to the DAs.

Fi,t(x) =

k−1∑
d=2

αi,d,t x
d + (ri,t) x + Ri,t (mod p) (5.2)

A more detailed explanation about how the constraint is imposed on Shamir’s Secret Scheme is

covered in Section 5.4.

5.3.3 Configuration of Secure Multiparty Computation

SMPC [16, 57] enables a group of DAs in our proposed framework to compute a function (spatial

aggregation as well as temporal aggregation) without disclosing their individual inputs (shares

received from the SMs). In SMPC, all the participating DAs jointly compute a function over their

inputs such that they are only aware of the result (spatially aggregated reading and /or temporally

aggregated reading) and their inputs stored in spatial (SRj,t) and temporal (TRi,j) registers. Since

only aggregated data is shared across the DAs in the form of registers (spatial register and temporal

register), the DAs cannot reconstruct the instantaneous reading with a given SM thereby preserving

customer privacy. Additionally, the DAs share the aggregated result of the SMPC with the ESP for

providing grid and billing functionalities. Even in that case, ESP also cannot breach the customer

privacy as it receives computed spatially aggregated reading and/or temporally aggregated reading

from the DAs.

The SMPC phases can be defined as follows:

• Input preparation: Each DA prepares its input by aggregating the granular shares received

from the SMs in spatial and temporal registers. This ensures that their inputs are ready to

be utilized in the computation of spatio-temporal aggregation without revealing the input

(granular shares) to the other DAs.

• Computation: The DAs jointly compute spatially aggregated reading over a given set of

SMs for a given instance of time (utilizing spatial registers). Additionally, the DAs compute

temporally aggregated reading for a given set of SMs over a given period of time (utilizing

temporal registers)(Fig. 5.2).
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• Output reconstruction: The DAs reconstruct the output of the computation (spatially ag-

gregated reading and temporally aggregated reading) without revealing their inputs (granular

shares) to each other.

Figure 5.2: Secure Multiparty Computation (Temporal Aggregation)

Our proposed framework is lightweight in terms of computational overhead on SMs, as the majority

of the work is performed by the DAs. By employing Shamir’s Secret Sharing Scheme, the shares

generated by each SM are distributed across the DAs. This allows for the computation of spatially

or temporally aggregated readings when at least k or more DAs exchange their respective registers.

Therefore, SMPC helps the framework address single points of compromise. A more detailed

explanation of how SMPC is employed in our proposed framework is covered in Section 5.4.

5.4 Proposed Framework

In this section, we describe the phases associated with our proposed framework in detail. The

framework employs Shamir’s Secret Sharing Scheme, Commitment-based Scheme and, SMPC to

provide integrity verification of spatio-temporal metering data while preserving consumer privacy.

Table 5.1 represents the notations used for our privacy safeguarding framework in a malicious

setting. The proposed framework consists of the following phases:
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Table 5.1: Table of notations: A Privacy Safeguarding Framework in a Malicious Setting

Notation Meaning

δj(x) Basis Polynomial

Billi Bill generated for ith Smart Meter

βd,t dth Coefficient of Reconstructed Polynomial at time t (Spatial Aggregation )

γd,i,t dth Coefficient of Reconstructed Polynomial for ith Smart Meter at time t

(Temporal Aggregation)

αi,d,t dth Coefficient of Secret Sharing Polynomial of ith Smart Meter at time instance t

g, h Commitment Creation parameters

Ci,t Commitment generated by ith Smart Meter at time instance t

Ccomputed,t Computed Commitment by the ESP (Spatial Aggregation)

Ccomputed,i,T Computed Commitment by the ESP (Temporal Aggregation) for ith Smart Meter

Conint Consumption for given interval (Cumulative Tariff)

k − 1 Degree of Secret Sharing Polynomial

ESP Electrical Service Provider

SMi ith Smart Meter

Ri,t Instantaneous reading of ith Smart Meter at time instance t

t Instantaneous time

DAj jth Dedicated Aggregator

DAList List of Dedicated Aggregators

SMList List of Smart Meters

n Number of Dedicated Aggregators

m Number of Smart Meters

priceint Price for given interval (Cumulative Tariff)

pricemax Price for last interval (Cumulative Tariff)

pricet Price for that given time instance (Time of Use Tariff)

priceunit Price per unit consumption (Flat Rate Tariff)

p Prime Number

Creceived,t Received Commitment by the ESP (Spatial Aggregation)

Creceived,i,T Received Commitment by the ESP (Temporal Aggregation) for ith Smart Meter

Gt(x) Reconstructed Polynomial at time instance t (Spatial Aggregation)

Hi,T (x) Reconstructed Polynomial of ith Smart Meter (Temporal Aggregation)

Fi,t(x) Secret Sharing Polynomial of ith Smart Meter at time instance t

rList,i Seed List of ith Smart Meter

ri,t Seed Value of ith Smart Meter at time instance t

(sharej)i,t Share generated by ith Smart Meter for jth Dedicated Aggregator at time instance t

SCRt Spatial Commitment Register of jth Dedicated Aggregator

SRj,t Spatial Register of jth Dedicated Aggregator

TCRi Temporal Commitment Register of jth Dedicated Aggregator for ith Smart Meter

TRi,j Temporal Register of jth Dedicated Aggregator for ith Smart Meter

T Total time
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5.4.1 Initialization Phase

The ESP communicates the initializing parameters to the SMs and DAs.

The SMs receive the following:

• Degree of secret sharing polynomial (k − 1)

• Prime number (p)

• Parameters for commitment creation (g, h)

• List of DAs participating in spatio-temporal aggregation (DAList)

• Seed list (rList,i = {ri,1, ri,2, . . . , ri,T })

Note: The seed list is different for each SM and T represents the total time interval.

The DAs receive the following:

• Degree of secret sharing polynomial (k − 1)

• Prime number (p)

• List of Dedicated Aggregators participating in spatio-temporal aggregation (DAList)

• List of Smart Meters (SMList)

• Billing Tariff Type (Flat Rate/Cumulative/ Time Of Use)

Note: The tariff is communicated to the DAs only for Time of Use (Dynamic) Billing scenario.

No tariff is communicated to the DAs for Flat Rate Billing and Cumulative billing. The ESP is

responsible for applying the Flat Rate or Cumulative Billing Tariff on the aggregated temporal

metering data from each SM in the SMList.

In addition, each DA computes the basis polynomials (δj(x)) (eq. 5.3) by utilizing the DAList as

follows:

δj(x) =
k∏

l=1
l ̸=j

x− l

j − l
(5.3)
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5.4.2 Commitment and Share Creation Phase

In this phase each SM (SMi) where i ∈ {1, 2, . . . ,m} creates a commitment and shares (one for

each DA) for its corresponding instantaneous reading (Ri,t) for a given instance of time (t). The

commitments and shares are created by employing Pedersen Commitment Scheme [79] and Shamir’s

Secret Sharing Scheme [91] respectively.

Commitment Creation

In order to generate a commitment for its corresponding instantaneous reading (Ri,t) each SM

(SMi) utilizes the initialization parameters received from the ESP. The seed value (ri,t) from the

seed list (rList,i) at that given instance (t) is used as a decommitment value for commitment creation.

Equation 5.4 represents creation of commitment by SMi for a given instance of time (t).

Ci,t = gRi,t hri,t (mod p) (5.4)

Share Creation

In order to generate shares for its corresponding instantaneous reading (Ri,t), each SM (SMi) selects

a random polynomial Fi,t(x) (eq. 5.5) of degree (k−1) such that the constant (αi,0,t) represents the

instantaneous meter reading (Ri,t) and the first coefficient (αi,1,t) represents the seed value (ri,t) at

that instance. For d ≥ 2, the SMi selects the coefficients αi,d,t of the polynomial randomly from

Zp \ {0}. Each SMi creates a share for DAj by utilizing its identity from the DAList (eq. 5.6).

Fi,t(x) =
k−1∑
d=2

αi,d,t x
d + (ri,t) x + Ri,t (mod p) (5.5)

(sharej)i,t = Fi,t(j) (5.6)

Each SM (SMi) distributes the commitment (Ci,t) and shares ((sharej)i,t) to the corresponding

DAs participating in the spatio-temporal aggregation.
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5.4.3 Spatial Aggregation Phase

In this phase, the DAs in the DAList collaboratively compute the spatially aggregated reading

across SMs in the SMList for a given instance of time (t). Each DA is responsible for aggregating

the received commitments and shares in the spatial commitment registers (SCRt) (eq. 5.7) and

spatial registers (SRj,t) (eq. 5.8) respectively. The spatially aggregated reading for a given time

instance across the given set of SMs (SMList) must belong to the field Zp due to requirement of

Shamir’s Secret Sharing Scheme.

SCRt =
m∏
i=1

Ci,t (5.7)

SRj,t =

m∑
i=1

(sharej)i,t (5.8)

After all the commitments and shares are received from the given set of SMs in the SMList, the DAs

employ SMPC in order to computed spatially aggregated reading across SMs. Note: Only spatial

registers are exchanged between the DAs. The DAs reconstruct a polynomial of degree (k − 1) by

utilizing same set of basis polynomials (eq. 5.3). The reconstructed polynomial (eq. 5.9) is same

across all DAs as they work on same set on input parameters (spatial registers (eq. 5.8) and basis

polynomials (eq. 5.3)). The reconstructed polynomial is represented in the following equation:

Gt(x) =

n∑
j=1

SRj,t δj(x) =

k−1∑
d=0

βd,tx
d (mod p) (5.9)

The reconstructed polynomial (Gt(x)) and spatial commitment register (SCRt) are reported to the

ESP. Post reporting, the spatial commitment registers (SCRt) are reinitialized to one (since the

commitments are multiplied across SMs) and, spatial register (SRj,t) are reinitialized to zero (since

shares are added across SMs).

5.4.4 Integrity Verification Phase: Spatial Aggregation

In this phase, the ESP checks the integrity verification of spatially aggregated reading by utilizing

the reconstructed polynomial (Gt(x)) and aggregated commitments (Creceived,t) received from the
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DAs for a given instance of time (t). The spatially aggregated reading and aggregated seed list is

derived by the ESP from the reconstructed polynomial by accessing the constant (β0,t) and the first

coefficient (β1,t) respectively. The ESP computes the following commitment (eq. 5.10) in order to

check the integrity verification of spatially aggregated reading as follows:

Ccomputed,t = gβ0,t hβ1,t (mod p) (5.10)

Following are the two possible cases described below:

• Case 1: Ccomputed,t = Creceived,t : When the computed commitment matches the received

commitment value from the DAs, it indicates that no modification of share(s) or spatial

register(s) has occurred for the given time instance (t). The constant of the reconstructed

polynomial represents the spatially aggregated value across SMs for that given instance (t).

With the derived information, the ESP can provide grid functionalities (real-time monitoring

and load balancing).

• Case 2: Ccomputed,t ̸= Creceived,t : When the computed commitment value does not match

the value received from the DAs, it indicates that share(s) or spatial register(s) have been

modified/tampered during the given time instance (t). As a result, the ESP disregards the

spatially aggregated reading for that time instance and alternatively estimates the total energy

consumption using average values from previously validated readings.

5.4.5 Temporal Aggregation Phase

The phase can be sub-classified into the following two categorizes based on the type of billing tariff

applied: 1) Time of Use Billing Tariff and 2) Flat Rate and Cumulative Billing Tariff.

Time of Use Billing Tariff

In this phase, the DAs in the DAList collaboratively compute the aggregated bill across SMs in

the SMList for a given period of time (T ). Each DA is responsible for aggregating the received

commitments and shares in the temporal commitment registers (eq. 5.11) and temporal registers

(eq. 5.12) respectively. Here pricet represents price at that given instance (Time of Use Billing

Tariff).
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TCRi =

T∏
t=1

C pricet
i,t (5.11)

TRi,j =

T∑
t=1

(sharej)i,t × pricet (5.12)

Flat Rate Billing Tariff and Cumulative Billing Tariff

In this phase, the DAs in the DAList collaboratively compute the total aggregated reading across

SMs in the SMList for a given period of time (T ). Each DA is responsible for storing the received

commitments and shares in the temporal commitment registers (eq. 5.13) and temporal registers

(eq. 5.14) respectively.

TCRi =
T∏
t=1

Ci,t (5.13)

TRi,j =

T∑
t=1

(sharej)i,t (5.14)

Note: The computed bill for each SM SMi in the SMList must belong to the field Zp due to

requirement of Shamir’s Secret Sharing Scheme.

After all the commitments and shares are received from the given set of SMs in the SMList, the DAs

employ SMPC in order to computed bill across SMs. Note: Only temporal registers are exchanged

between the DAs. The DAs reconstruct a polynomial of degree (k−1) by utilizing same set of basis

polynomials (eq. 5.3). The reconstructed polynomial is same across all DAs for a given SM as they

work on same set on input parameters (temporal registers and basis polynomials (eq. 5.3)). The

reconstructed polynomials is represented in the following equation:

Hi,T (x) =

n∑
j=1

TRi,j δj(x) =

k−1∑
d=0

γd,i,T xd (mod p) (5.15)
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5.4.6 Integrity Verification Phase: Temporal Aggregation

In case of temporal aggregation, the ESP will perform a similar procedure (as compared to integrity

verification for spatial aggregation) but with polynomial Hi,T (x) for a given SMi. The ESP derives

the total bill in case of Time of Use Billing Tariff (γ0,i,T ) or total metering data consumed (γ0,i,T )

in case of Flat Rate and Cumulative Billing Tariff, along with the aggregated seed list (γ1,i,T ) for

a given SM (SMi) in the SMList from the reconstructed polynomial (Hi,T (x)). The ESP computes

the overall commitment by utilizing the following equation:

Ccomputed,i,T = gγ0,i,T hγ1,i,T (mod p) (5.16)

The two possible cases are described as follows:

• Case 1: Ccomputed,i,T = Creceived,i,T : If the computed commitment matches the commitment

value received from the DAs, then no modification of share(s) / temporal register(s) has

occurred across the given time period (T ) for SMi. Depending on the tariff selection, following

computation will be performed:

Time of Use Billing Tariff

For the Time of Use Billing Tariff, since tariff was informed to the DAs by the ESP in the

Initialization Phase, and has been incorporated in the Temporal Aggregation Phase (Time of

Use Billing (Section 5.4.5)), the constant of the reconstructed polynomial represents the bill

computed for a given Time of Use Billing Tariff (eq. 5.17).

Billi = Hi,T (0) (5.17)

Flat Rate Billing and Cumulative Billing Tariff

For Flat Rate Billing Tariff and Cumulative Billing tariff the constant of the reconstructed

polynomial represents the total consumption for SMi for that given time period T (Section

5.2.3). Since the temporally aggregated metering data for a given SMi is verified, ESP will

compute the corresponding bill by employing Flat Rate Tariff (eq. 5.18) or Cumulative Billing

Tariff (eq. 5.19). Note: Here priceunit represents price per unit. Whereas, Conint represents

the consumption interval and priceint represents the corresponding price associated to it.
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Additionally, max represents the last interval corresponding to the total reading and the

pricemax is corresponding price associated to it.

Billi = Hi,T (0) × priceunit (5.18)

Billi =

(
max−1∑
int=1

Conint × priceint

)

+

((
Hi,T (0) −

max−1∑
int=1

Conint

)
× pricemax

) (5.19)

• Case 2: Ccomputed,i,T ̸= Creceived,i,T : If the computed commitment does not match with the

commitment value received from the DAs, then it implies modification of share(s) / Temporal

Register(s) has occurred during the given time period (T ). The ESP discards the temporally

aggregated reading or the computed bill (in case of Time of Use Billing Tariff) and uses

alternative methods to generate customer billing (e.g., estimated billing [10]).

5.4.7 Billing Phase

As the SMs have reported the metering data to the DAs over a period of time (T ), the DAs

process the data to determine the bill (in case of Time of Use Billing) or total consumption (in

case of Flat Rate or Cumulative Biling) for each SM and later forward it to the ESP. In the Billing

Phase, the ESP reports the bill to the corresponding customer associated with the SM (SMi) in

the SMList (typically done at the end of a month) for Time of Use Billing. Whereas, for Flat Rate

and Cumulative Tariff, ESP computes the billing after receiving the total consumption from the

DAs. Since the bill is computed over a period of time, the granularity of the instantaneous reading

is protected from both the DAs and the ESP.
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5.5 Overall Framework Design

The depicted flowchart in Figure 5.3 presents our proposed privacy-preserving framework in a

malicious setting. It showcases the process of spatio-temporal aggregation and the corresponding

integrity verification flow across a specific time period (T ). Furthermore, it provides an overview of

the entities involved in each phase. At t = 1, the ESP communicates the initialization parameters

to the SMs and the DAs. In the Commitment and Share Creation Phase, the SMs utilize the ini-

tialization parameters to create shares and commitments and distribute them to the corresponding

DAs. In the Spatial Aggregation Phase, the DAs employ SMPC to compute the reconstructed

polynomial related to spatial aggregation. The reconstructed polynomial from each DA is reported

to the ESP along with the spatial commitment registers so that it can check the integrity of the

spatially aggregated metering data and provide grid functionalities accordingly (Integrity Verifica-

tion Phase: Spatial Aggregation). The Temporal Aggregation Phase also takes place on the same

set of shares and commitments for a given time instance t. If the instantaneous time is equal to

the time period (T ), it reports the reconstructed polynomial related to temporal aggregation (by

employing SMPC) along with the temporal registers for each SM to the ESP so that it can check

the integrity verification of temporally aggregated data (Integrity Verification Phase: Temporal

Aggregation) and report the corresponding bill for the customer (Billing Phase). Otherwise, the

subsequent set of shares are captured from the SMs for the next time instance.

Figure 5.4 presents a detailed workflow that illustrates the step-by-step process of our privacy

safeguarding framework in a malicious setting for a given time period of T = 2. It highlights the

different tasks involved in our framework and outlines the sequential interactions among entities in

each phase. The first phase involves the ESP initializing the SMs and the DAs by communicating

the initialization parameters. In the Commitment and Share Creation Phase, the SMs utilize these

parameters to generate commitments and shares for their instantaneous meter readings. These

shares and commitments are then distributed to the DAs participating in the spatio-temporal

aggregation computation. During the Spatial Aggregation Phase, each DA aggregates the received

shares and commitments for a specific time instance in the spatial register and spatial commitment

register, respectively. Simultaneously, the shares and commitments are updated in the temporal

registers and temporal commitment registers associated with each SM. The DAs employ SMPC to

reconstruct the polynomial for spatial aggregation. The reconstructed polynomial, along with the

spatial commitment register, is reported to the ESP for the corresponding time instance (t = 1).

Subsequently, the spatial registers and spatial commitment registers are reset to zero and one,

respectively. In the Integrity Verification Phase (Spatial Aggregation), the ESP verifies the integrity
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Figure 5.3: Flowchart of our Privacy Safeguarding Framework in a Malicious Setting
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of the spatially aggregated metering data by computing commitments using the parameters derived

from the reconstructed polynomial and comparing them with the received commitments from the

DAs. A match indicates that no modifications have been made to the spatial metering data, while

a mismatch prompts the ESP to estimate values based on historical data. This process continues

until the current time instance is not equal to the total time period (t = T ). When t = T , the

temporal aggregation takes place among the same set of DAs using SMPC. The DAs reconstruct

the polynomial for temporal aggregation and transmit it to the ESP, along with the temporal

commitment registers, for the Integrity Verification Phase: Temporal Aggregation. Once reported

to the ESP, the temporal registers and temporal commitment registers are reset to zero and one,

respectively. The ESP computes commitments and compares them with the received commitments

from the DAs. A match indicates the absence of modifications to the temporal metering data, while

a mismatch triggers the ESP to estimate values based on historical data for billing purposes. In

the final phase, the Billing Phase, the ESP reports the computed bill to the customer.
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Figure 5.4: A Detailed Workflow of our Privacy Safeguarding Framework in Malicious Setting
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5.6 Summary

In this chapter, we introduced a distributed privacy-preserving framework in a malicious setting

and tackled two research questions. The framework we propose has the ability to securely report

spatio-temporal data to the ESP through the use of DAs, ensuring privacy. Furthermore, it can

maintain the integrity of spatio-temporal metering data while preserving customer privacy. In the

upcoming chapter, we will assess the feasibility of developing our proposed framework and evaluate

its performance by comparing it to other relevant literature works, based on identified parameters.



Chapter 6

Results and Analysis

6.1 Introduction

In this chapter, we will be addressing the following three research questions (RQs):

• RQ5: How to develop a practical proof of concept, that assesses computational

overhead and end-to-end delay of our proposed framework in comparison to other

state-of-the-art frameworks?

• RQ6: How do we evaluate the resilience of our proposed framework against

potential security attacks?

• RQ7: How do we evaluate the resilience of our proposed framework against

potential privacy attacks?

To address RQ5, we have developed a practical proof of concept that utilizes both an embedded

and a cloud-based environment. Additionally, we leverage this proof of concept to evaluate the

performance of the framework across various configurations and conduct a comparative analysis

with respect to relevant frameworks in the literature [11,14]. RQ6 considers the proposed framework

in a malicious setting, where the adversary aims to disrupt the grid and billing functionalities by

modifying the metering data, commitments, and/or billing tariffs. As the malicious adversary

possesses the capability to execute not only active attacks but also passive attacks, in RQ7 we

consider the proposed framework in a malicious setting, where the adversary aims to breach the

79
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privacy of the customer(s) by linking the granular reading with the associated identity of the

smart meter (SM). In this chapter, we describe the experimental setup for the proof of concept

that we have developed to evaluate the performance of our framework and compare it with other

relevant works in the literature that share similar security and privacy goals. Additionally, we

assess the framework’s resilience against potential security and privacy attacks. Finally, we provide

a qualitative comparison of Aggregation-based Frameworks based on the identified metrics.

In our proposed framework, the responsibility of creating shares and commitments for the corre-

sponding meter readings lies with the SMs. These shares and commitments are then shared with

the Dedicated Aggregators (DAs). The DAs perform spatio-temporal aggregation and forward the

aggregated data to the Electrical Service Provider (ESP) for integrity verification. Among the

comparative frameworks, the framework proposed by Borges et al. is an In-Network Aggregation-

based Framework that provides verifiable spatio-temporal aggregation [14]. It utilizes a Paillier

Encryption-based Scheme [77] along with a Commitment-based Scheme [79] to achieve the desired

functionality. Notably at the time of the publication of this dissertation, this framework is the

only one that supports verifiable dynamic billing functionality. For our experiments, we have de-

signed the In-Network Aggregation-based Framework up to level 1, where the leaf nodes (SMs)

report to the parent SM that is responsible for forwarding the aggregated result to the ESP. If

additional levels are constructed (increased depth) for the In-Network Aggregation-based Frame-

work, the end-to-end delay will be further affected. In contrast, the second comparative framework

is a Centralized Aggregation-based Framework that supports spatio-temporal aggregation [11]. It

employs Paillier Encryption-based Scheme [77] and the Elliptic Curve Diffie Hellman Ephemeral

(ECDHE) Scheme [4]. The ECDHE Scheme relies on a trust key to further secure the encrypted

meter readings. The associated entities (SM, DA, and ESP) generate the trust key for each given

time instance.

6.2 Experimental Setup

In this section, we will describe the experimental setup we used to develop the proof of concept

for our proposed framework [107], as well as the competing frameworks [11, 14]. SMs typically

have several crucial tasks and often have limited computing power available for deployment of

privacy-preserving technologies. Therefore, a scheme that imposes minimal overhead to the SMs

is desired. To assess the computational overhead of the aforementioned frameworks, we utilize the

Raspberry Pi 3 Model B as a representative SM. Raspberry Pis are commonly used in the literature

to simulate SMs [70,100]. However, it is important to note that the actual overhead may differ when
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implementing these schemes on real-world SMs due to other factors. Nonetheless, our objective

is to conduct a comparative analysis of our framework with other frameworks. Assuming other

factors are equal, we anticipate a similar performance trend in actual deployments. Additionally,

we have configured the Raspberry Pi with real-world traces of meter readings obtained from the

UMass dataset [75].

The DAs are deployed in a cloud environment. However, the DAs can be deployed in various

environments, including on-premise, cloud, or hybrid configurations (both on-premise and cloud)

[7, 12, 61, 69, 78]. For the deployment of our proof of concept, we have opted for Amazon Web

Services (AWS) as our cloud service provider to host our DAs, enabling them to perform spatio-

temporal aggregation. The ESP, responsible for initializing SMs and DAs, is also hosted on AWS

as part of our cloud deployment. The ESP plays a crucial role in initializing the SMs and DAs.

Setting the degree of the polynomial to (k − 1 = n − 1) in our proposed framework enhances its

resilience against cyberattacks. This configuration ensures that the adversary would need to acquire

all n shares to successfully reconstruct the high-frequency meter reading, significantly increasing

the difficulty for them to compromise the framework’s security. In addition to its initialization

role, the ESP is also responsible for providing grid and billing functionalities to the customers

associated with the SMs. To implement our proof of concept, we have utilized a 512-bit Paillier

key size for both the In-Network Aggregation-based Framework and the Centralized Aggregation-

based Framework. In our proposed framework, we specify the size of the prime number p as 512

bits. Furthermore, we employ the prime number (p) to generate commitments associated with the

In-Network Aggregation-based Framework and our proposed framework.

6.3 Evaluation Metrics

6.3.1 Computational Overhead

The computational overhead is a critical metric for resource-constrained SMs. SMs are responsible

for reporting high-frequency metering data at frequent intervals of time (e.g., every 15 minutes),

making computational efficiency a crucial requirement. A high computational overhead on an SM

can result in slower overall performance of the smart grid framework. Therefore, minimizing the

computational overhead is essential to ensure faster transmission of metering data to the ESP for

efficient grid functionalities.
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6.3.2 End-to-End Delay

The end-to-end delay is another critical metric that measures the time required for metering data to

travel from the source (SMs) to the destination (ESP). In the smart grid, it is essential to transmit

the metering data, especially high-frequency metering data, to the ESP in real-time to facilitate

prompt decision-making and to balance the supply-demand curve. Any delay in transmitting the

metering data may lead to inaccurate supply-demand forecasting, resulting in potential outages. By

minimizing the end-to-end delay, the smart grid can swiftly respond to fluctuating energy demands,

identify modifications, and take appropriate actions. This capability is a crucial feature sought after

by ESP.

6.3.3 Resilience to Security Attacks

This aspect covers the comprehensive resilience of the framework against modification attacks on

high-frequency data. A strong framework should have the capability to promptly and effectively

detect and respond to cyberattacks, reducing the impact of the attack on the system and safe-

guarding its core functionality and performance. This capability is a crucial feature desired by

ESP.

6.3.4 Resilience to Privacy Attacks

This aspect encompasses the privacy considerations pertaining to the customers associated with the

smart grid. Privacy in the smart grid involves safeguarding energy consumption data (especially

high-frequency metering data), billing information, and personal identification data. Unauthorized

access to high-frequency metering data can enable attackers to infer individuals’ presence or absence,

facilitate targeted marketing efforts, and potentially lead to malicious activities based on metering

data or load profiles. Therefore, preserving the privacy of metering data is of utmost importance

from both the customer’s and ESP’s perspectives.

6.4 Performance Analysis

Our goal in this section is to evaluate our proposed framework with different sets of configurations.

We also aim to examine and contrast our proposed framework with other relevant frameworks
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identified in Section 6.1. The analysis is conducted using the proof of concept we developed, as

described in Section 6.2, and takes into account the metrics identified in Section 6.3. By conducting

this thorough analysis, we aim to offer valuable insights into the effectiveness of our proposed

framework compared to existing frameworks in the literature [11,14].

6.4.1 Computational Overhead on Smart Meters due to Spatial Aggregation in

a Semi-Honest Setting

Figure 6.1 represents the computational overhead associated with a given SM due to spatial ag-

gregation in a semi-honest setting. The overhead on the SM is due to the Shamir’s Secret Sharing

Scheme, that utilizes the initialization parameters from the ESP (such as degree of secret sharing

polynomial, list of DAs, and the prime number) along with its instantaneous reading (from the

UMass dataset) to create the corresponding shares for the DAs. For our work, we set the degree

of the polynomial to (n− 1) as more number of shares imply higher privacy and resilience against

cyberattacks. This setting ensures that all the n shares are required to successfully recover the in-

stantaneous reading associated with a given SM. As seen in Figure 6.1, the computational overhead

increases with an increase in the number of DAs.
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Figure 6.1: Computational Overhead on Smart Meters due to Spatial Aggregation in a

Semi-Honest Setting

In Figure 6.2, we further conduct a comprehensive examination of the increasing computational

overhead associated with Shamir’s Secret Sharing Scheme as the number of DAs increases in a

semi-honest setting (Fig. 6.1). Our investigation focuses on analyzing two distinct phases within

the scheme: the Polynomial Selection Phase and the Share Creation Phase, as depicted in Figure

6.2. Through our analysis, we reveal that the Polynomial Selection Phase has a relatively minimal

impact on the overall computational overhead of the Shamir’s Secret Sharing Scheme, compared

to the Share Creation Phase. The process of Share Creation Phase requires the SM to tackle the

computational challenge of constructing a brand new share for the new DA by solving a poly-

nomial equation (with modulus operation) using the updated DAlist. This places a significant

computational overhead on the SM.
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Figure 6.2: Comprehensive Analysis of Shamir’s Secret Sharing Scheme for Smart Meters in a

Semi-Honest Setting
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6.4.2 Computational Overhead on Dedicated Aggregators due to Spatial Ag-

gregation in a Semi-Honest Setting

Figure 6.3: Computational Overhead of updating Spatial Registers (Spatial Aggregation)

associated with Dedicated Aggregators in a Semi-Honest Setting

In this subsection, we analyze the computational overhead associated with the DAs for reporting

spatially aggregated reading to the ESP in a semi-honest setting. The shares created by each SM

employing Shamir’s Secret Sharing Scheme are being reported to the corresponding DAs partic-

ipating in the spatial aggregation. Each DA has a single spatial register that is responsible for

aggregating all the shares received from the given set of SMs in the SMList. As depicted in Figure

6.3, the computational overhead linked to updating the spatial register grows proportionally with

the increasing number of SMs. This update process takes place at regular intervals of time. Once

the spatial registers for the designated DAs are updated, the DAs engage in secure multiparty

computation (SMPC) by exchanging their spatial registers and subsequently reconstructing the

polynomial associated with the spatial aggregation. As the degree of secret sharing polynomials

selected by the given set of SMs is same (k − 1 = n − 1), the aggregated shares in the spatial

registers represents the shares of the polynomial reconstructed in the Spatial Aggregation Phase.

This is possible due to the homomorphic properties of the Shamir’s Secret Sharing Scheme. As seen
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in Figure 6.4, the computational overhead increases with increase in number of DAs, since more

number of spatial registers entries are needed to be exchanged to reconstruct an (n − 1) degree

polynomial related to the spatial aggregation.

Figure 6.4: Computational Overhead of reconstructing polynomial related to Spatial Aggregation

in a Semi-Honest Setting

6.4.3 Overall Computational Overhead associated while reporting Spatially Ag-

gregated Reading to the Electrical Service Provider in a Semi-Honest

Setting

In this subsection, we analyze the overall computational overhead associated with all the entities

(SMs, DAs, ESP) for reporting spatially aggregated reading to the ESP in a privacy-preserving

fashion. We consider a given scenario with SMs (m = 500), DAs (n = {3, 4, . . . , 10}) and, the

ESP (Fig. 6.5). The SMs are responsible for creating given set of shares based on the number

of DAs participating in the spatial aggregation. As we can see in Figure 6.5, the computational

overhead on the SMs due to Shamir’s Secret Sharing Scheme increases with increase in the number
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of SMs. The shares that are distributed by the SMs are aggregated and stored in the spatial

register corresponding to each DA. The computational overhead associated with the updation of

the spatial register is constant (Fig. 6.5) since the given number of SMs are fixed (m = 500). Post

updation of the spatial register, the DAs employ SMPC to reconstruct the polynomial related to

spatial aggregation. The computational overhead on the DAs for reconstructing the polynomial

increases with increase in the number of DAs as more number of spatial registers are shared with

each other along with constructing a higher degree polynomial (k − 1) = (n − 1) with increase in

the number of DAs. The reconstructed polynomial is same across the DAs in the DAList since they

employ same basis polynomials and same set of spatial registers. The constant of the reconstructed

polynomial represents the spatially aggregated reading across given set of SMs, this is possible

due to homomorphic properties of Shamir’s Secret Sharing Scheme. Post reporting the spatially

aggregated reading to the ESP, the DAs reset their spatial registers to zero (so that it can be

ready for use in the next time instance). There is no computational overhead on ESP as it receives

spatially aggregated reading from the DAs for every given instance of time. As spatially aggregated

reading is reported to the ESP, it cannot derive the instantaneous reading and link it to a given

SM from the SMList, thereby preserving customer privacy.

Figure 6.5: Overall Computational Overhead associated while reporting Spatially Aggregated

Reading to the Electrical Service Provider in a Semi-Honest Setting
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6.4.4 Computational Overhead on Smart Meters due to Temporal Aggregation

in a Semi-Honest Setting

In the previous subsection, we were able to report spatially aggregated reading from SMs to the ESP

via the DAs in a semi-honest-setting. However, in subsection we adapt our proposed framework

order to support temporal aggregation that is required to provide billing functionalities. Impor-

tantly, we accomplish this without imposing any additional computational overhead on the SMs.

We utilize the same set of shares generated through the application of Shamir’s Secret Sharing

Scheme, as illustrated in Figure 6.1.

6.4.5 Computational Overhead on Dedicated Aggregators due to Temporal Ag-

gregation in a Semi-Honest Setting

Figure 6.6: Computational Overhead of updating Temporal Registers (Temporal Aggregation)

associated with Dedicated Aggregators in a Semi-Honest Setting

In this subsection, we analyze the computational overhead associated with the DAs for reporting

temporally aggregated reading to the ESP in a semi-honest setting. The shares created by each

SM employing Shamir’s Secret Sharing Scheme are being reported to the corresponding DAs par-
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ticipating in the temporal aggregation for Time of Use Billing. Each DA maintains a dedicated

temporal register per SM that is responsible for aggregating the shares received from the given set

of SMs in the SMList over a period of time. As depicted in Figure 6.6, the computational overhead

linked to update the temporal register grows proportionally with the increasing number of SMs.

This update process takes place at regular intervals of time (at every given instant). Once the

temporal registers for the designated DAs are updated over a given period of time (T ), the DAs

engage in SMPC at t = T by exchanging their temporal registers and subsequently reconstructing

the polynomials associated with the given set of SMs (one polynomial per SM) in the SMList. As

the degree of secret sharing polynomials selected by the given SM over a period of time is same

(k − 1 = n − 1), the aggregated shares in the corresponding temporal registers across the DAs

represents the shares of the polynomial reconstructed in the Temporal Aggregation Phase. This

is possible due to the homomorphic properties of the Shamir’s Secret Sharing Scheme. As seen in

Figure 6.7, the computational overhead increases with increase in number of SMs, since more num-

ber of temporal registers are needed to be exchanged to reconstruct an (n− 1) degree polynomial

related to each of the m SMs in the SMList.

Figure 6.7: Computational Overhead of reconstructing polynomial related to Temporal

Aggregation in a Semi-Honest Setting
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6.4.6 Overall Computational Overhead associated while reporting Temporally

Aggregated Reading to the Electrical Service Provider in a Semi-Honest

Setting

Figure 6.8: Overall Computational Overhead associated while reporting Temporally Aggregated

Reading to the Electrical Service Provider in a Semi-Honest Setting

In this subsection, we analyze the overall computational overhead associated with all the entities

(SMs, DAs, ESP) for reporting temporally aggregated reading to the ESP in a privacy-preserving

fashion. We consider a given scenario with SMs (m = {20, 40, . . . , 100}), DAs (n = 3) and, the ESP

(Fig. 6.8). The SMs are responsible for creating given set of shares based on the number of DAs

participating in the temporal aggregation. As we can see in Figure 6.8, the computational overhead

on the SMs due to Shamir’s Secret Sharing Scheme is constant since each SM has to create only

three shares corresponding to each DA for a given instance of time. The shares that are distributed

by the SMs are aggregated and stored in the corresponding temporal registers. Each DA has m

temporal registers, one per SM. The computational overhead associated with the updation of the

temporal registers is directly proportional to the number of SMs (Fig. 6.8). Post updation of

the temporal registers, the DAs employ SMPC to reconstruct the polynomials related to temporal
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aggregation. The computational overhead on the DAs for reconstructing the polynomials related

to temporal aggregation increases with increase in the number of SMs as more number of temporal

registers are shared with each other along with increased number of reconstructed polynomials

related to temporal aggregation. The reconstructed polynomials with respect to each SM is same

across the DAs in the DAList since they employ same basis polynomials and same set of temporal

registers corresponding to each SM. The constants of the reconstructed polynomials represents the

corresponding bill computed by applying Time of Use Billing Tariff across given set of SMs, this

is possible due to homomorphic properties of Shamir’s Secret Sharing Scheme. Post reporting the

computed bill to the ESP, the DAs reset their temporal registers to zero (so that it can be ready for

use in the next time period). There is no computational overhead on ESP as it receives computed

bill from the DAs for every given instance of time (usually end of each month). As computed bill

is reported to the ESP, it cannot derive the instantaneous reading and link it to a given SM from

the SMList, thereby preserving customer privacy.

6.4.7 Computational Overhead on Smart Meters due to Spatial Aggregation in

a Malicious Setting

Figure 6.9: Computational Overhead on a Smart Meter in a Malicious Setting



CHAPTER 6. RESULTS AND ANALYSIS 93

Figure 6.9 represents the computational overhead associated with a given SM due to spatial aggre-

gation in a malicious setting. The overhead on the SM is due to the Shamir’s Secret Sharing Scheme

and Commitment Scheme, that utilizes the initialization parameters from the ESP (such as degree

of secret sharing polynomial, list of DAs, commitment creation parameters, seed list, and the prime

number) along with its instantaneous reading from the UMass dataset to create the corresponding

shares and overall commitment for the DAs. For our work, we set the degree of the polynomial to

(n − 1) as more number of shares imply higher privacy and resilience against cyberattacks. This

setting ensures that all the n shares are required to successfully recover the instantaneous read-

ing associated with a given SM. Observing Figure 6.9, we notice that the computational overhead

linked to Shamir’s Secret Sharing Scheme escalates with the growing number of DAs. In contrast,

the Commitment-based Scheme incurs a constant overhead as the commitment is created based on

the overall instantaneous reading and not the corresponding shares.

6.4.8 Computational Overhead on Dedicated Aggregators due to Spatial Ag-

gregation in a Malicious Setting

Figure 6.10: Computational Overhead of updating Spatial Registers and Spatial Commitment

Registers (Spatial Aggregation) associated with Dedicated Aggregators in a Malicious Setting
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In this subsection, we analyze the computational overhead associated with the DAs for reporting

spatially aggregated reading to the ESP in a malicious setting. The shares and the commitments

created by each SM employing Shamir’s Secret Sharing Scheme and Commitment-based Scheme

are being reported to the corresponding DAs participating in the spatial aggregation. Each DA

has a single spatial register and spatial commitment register that is responsible for aggregating

all the shares and commitments received from the given set of SMs in the SMList. As shown in

Figure 6.10, the computational overhead associated with updating the spatial register and spatial

commitment register increases proportionally with the increasing number of SMs. However, the

spatial commitment register incurs a higher computational overhead than the spatial registers

because the commitments are multiplied with each other, whereas for spatial registers, the shares

are simply added together. This update process takes place at regular intervals of time (at every

given instant). Once the spatial registers and spatial commitment registers for the designated

DAs are updated, the DAs engage in SMPC by exchanging their spatial registers (Note: spatial

commitment registers are not exchanged with other DAs) and subsequently reconstructing the

polynomial associated with the spatial aggregation. As the degree of secret sharing polynomials

selected by the given set of SMs is same (k − 1 = n − 1), the aggregated shares in the spatial

registers represents the shares of the polynomial reconstructed in the Spatial Aggregation Phase.

This is possible due to the homomorphic properties of the Shamir’s Secret Sharing Scheme. As

previously seen in Figure 6.4, the computational overhead increases with increase in number of

DAs, since more number of spatial registers are needed to be exchanged to reconstruct a (n − 1)

degree polynomial related to the spatial aggregation.

6.4.9 Overall Computational Overhead associated while reporting Spatially Ag-

gregated Reading to the Electrical Service Provider in a Malicious Setting

In this subsection, we analyze the overall computational overhead associated with all the entities

(SMs, DAs, ESP) for reporting spatially aggregated reading to the ESP in a malicious setting.

We consider a given scenario with SMs (m = 500), DAs (n = {3, 4, . . . , 10}) and, the ESP (Fig.

6.11). The SMs are responsible for creating a given set of shares and commitments based on the

number of DAs participating in the spatial aggregation. As we can see in Figure 6.11, the overall

computational overhead on the SMs due to Shamir’s Secret Sharing Scheme and Commitment-based

Scheme increases with an increase in the number of SMs. The shares and commitments distributed

by the SMs are aggregated and stored in the spatial register and spatial commitment registers,

respectively. The computational overhead associated with updating the spatial register and spatial

commitment register remains constant since the given number of SMs is fixed (m = 500). After
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updating the spatial register, the DAs employ SMPC to reconstruct the polynomial related to

spatial aggregation (Note: spatial commitment registers are not exchanged with other DAs). The

overall computational overhead on the DAs for reconstructing the polynomial increases with an

increase in the number of DAs, as more spatial registers are shared with each other and a higher

degree polynomial (k − 1 = n− 1) is constructed with more DAs (Fig. 6.11).

Figure 6.11: Overall Computational Overhead associated while reporting Spatially Aggregated

Reading to the Electrical Service Provider in a Malicious Setting

The reconstructed polynomial is the same across the DAs in the DAList since they use the same basis

polynomials and the same set of spatial registers. The constant of the reconstructed polynomial

represents the spatially aggregated reading across the given set of SMs, which is possible due to

the homomorphic properties of Shamir’s Secret Sharing Scheme. After reporting the reconstructed

polynomial regarding spatial aggregation and the corresponding spatial commitment registers, the

DAs reset their spatial registers to zero and spatial commitment registers to one (to prepare for use

in the next time instance). The computational overhead on ESP remains constant (Fig. 6.11) as it

performs integrity verification on the reconstructed polynomials (which are the same across DAs)

and utilizes the spatial commitment registers received from the DAs. As the spatially aggregated

reading is derived by the ESP, it cannot derive the instantaneous reading and link it to a specific
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SM from the SMList, thereby preserving customer privacy.

6.4.10 Computational Overhead on Smart Meters due to Temporal Aggregation

in a Malicious Setting

In the previous subsection 6.4.9, we were able to report spatially aggregated reading from SMs to

the ESP via the DAs in a malicious setting. In this subsection, we adapt our proposed framework

to support temporal aggregation that is required to provide billing functionalities. Importantly, we

accomplish this without imposing any additional computational overhead on the SMs. We utilize

the same set of shares and commitment generated through the application of Shamir’s Secret

Sharing Scheme and Commitment-based Scheme, as illustrated in Figure 6.9.

6.4.11 Computational Overhead on Dedicated Aggregators due to Temporal

Aggregation in a Malicious Setting

Figure 6.12: Computational Overhead on Dedicated Aggregators due to Temporal Aggregation in

a Malicious Setting
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In this subsection, we analyze the overall computational overhead associated with the DAs (n = 3)

when reporting temporally aggregated readings to the ESP for varying numbers of SMs in a mali-

cious setting. Each SM employs Shamir’s Secret Sharing Scheme and Commitment-based Scheme

to create shares and commitments, which are then reported to the corresponding DAs participating

in temporal aggregation. Each DA has m temporal registers and m temporal commitment regis-

ters, both of which are responsible for aggregating the shares and commitments received from the

corresponding SMs in the SMList. As shown in Figure 6.12, the computational overhead associated

with updating the temporal register and temporal commitment register increases proportionally

with the increasing number of SMs. However, the temporal commitment register incurs a higher

computational overhead than the temporal registers because the commitments are multiplied with

each other, whereas for temporal registers, the shares are simply added together. This update pro-

cess takes place at regular intervals of time (at every given instant). Once the temporal registers

and temporal commitment registers for the designated DAs are updated, the DAs engage in SMPC

by exchanging their temporal registers at t = T (Note: temporal commitment registers are not

exchanged with other DAs) and subsequently reconstructing the polynomials associated with the

SMs for temporal aggregation. As the degree of secret sharing polynomials selected by the given

set of SMs over time is the same (k − 1 = n − 1), the aggregated shares in the temporal registers

represent the shares of the polynomial reconstructed in the Temporal Aggregation Phase. This

is possible due to the homomorphic properties of the Shamir’s Secret Sharing Scheme. As seen

in Figure 6.11, the computational overhead associated with the reconstruction of polynomials in-

creases with an increase in the number of SMs since more number of temporal registers are needed

to be exchanged to reconstruct (n − 1) degree polynomials associated with m SMs for temporal

aggregation.

6.4.12 Overall Computational Overhead associated while reporting Temporally

Aggregated Reading to the Electrical Service Provider in a Malicious

Setting

In this subsection, we analyze the overall computational overhead associated with all the entities

(SMs, DAs, ESP) for reporting temporally aggregated reading to the ESP in a malicious setting.

We consider a given scenario with SMs (m = {20, 40, . . . , 100}), DAs (n = 3) and, the ESP (Fig.

6.13). The SMs are responsible for creating a given set of shares and commitments based on the

number of DAs participating in the temporal aggregation. As depicted in Figure 6.13, the overall

computational overhead on the SMs due to Shamir’s Secret Sharing Scheme and Commitment-

based Scheme remains constant, as the SMs are expected to generate three shares (one per DA)
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and a commitment (same for all DAs). The shares and commitments distributed by the SMs are

aggregated and stored in the corresponding temporal register and temporal commitment regis-

ters, respectively. Note: Each DA possesses one temporal register and one temporal commitment

register for each SM. The computational overhead associated with updating the temporal regis-

ter and temporal commitment register grows proportionally with increase in the number of SMs.

After updating the temporal register and temporal commitment register, the DAs employ SMPC

to reconstruct the polynomials related to temporal aggregation (Note: temporal commitment reg-

isters are not exchanged with other DAs). The overall computational overhead on the DAs for

reconstructing the polynomial increases with an increase in the number of SMs, as more temporal

registers are shared with each other and a more number of polynomials with degree (k− 1 = n− 1)

are constructed as number of SMs increases (Fig. 6.13). The reconstructed polynomial related

to each SM is the same across the DAs in the DAList since they use the same basis polynomials

and the same set of temporal registers. The constant of the reconstructed polynomial represents

the computed billing by employing Time Of Use Billing for each SM, which is possible due to the

homomorphic properties of Shamir’s Secret Sharing Scheme.

Figure 6.13: Overall Computational Overhead associated while reporting Temporally Aggregated

Reading to the Electrical Service Provider in a Malicious Setting
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After reporting the reconstructed polynomials regarding temporal aggregation and the correspond-

ing temporal commitment registers, the DAs reset their temporal registers to zero and temporal

commitment registers to one (to prepare for use in the next time instance). The computational

overhead on ESP increases with increase in the number of SMs (Fig. 6.13) as it has to perform

integrity verification on each of the reconstructed polynomials. As the computed bill by employing

Time of Use Billing is obtained by the ESP, it cannot derive the instantaneous reading and link it

to a specific SM from the SMList, thereby preserving customer privacy.

6.4.13 Comparative Analysis of Computational Overhead on Smart Meter due

to Spatial Aggregation

Figure 6.14: Comparative Analysis of Computational Overhead on Smart Meter due to Spatial

Aggregation

Figure 6.14 presents an analysis of the computational overhead associated with spatial aggrega-

tion for our proposed framework in malicious setting and comparative frameworks in relation to

a single SM. As observed, our proposed work exhibits significantly lower computational overhead

compared to the In-Network Aggregation-based Framework and Centralized Aggregation-based
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Frameworks. The Centralized and In-Network approaches experience high computational over-

head due to the involvement of Paillier operations. Specifically, the Centralized Aggregation-based

Framework [11] utilizes a single Paillier Encryption and trust key locking phase, whereas the In-

Network Aggregation-based Framework [14] necessitates two Paillier Encryption operations: one

for encrypting the reading and another for encrypting the decommitment value, in addition to com-

puting the commitment. In contrast, our framework involves the computation of shares and the

commitment for the instantaneous reading (high-frequency reading). The computational overhead

for three DAs has been considered in our proposed framework (Fig. 6.14).

6.4.14 Comparative Analysis of Computational Overhead on Smart Meters due

to Spatio-Temporal Aggregation

Figure 6.15: Comparative Analysis of Computational Overhead on Smart Meters due to

Spatio-Temporal Aggregation

In Figure 6.15, our focus is on the computational overhead experienced by resource-constrained

SMs over a span of 30 time instances (T = 30). Each instance represents the reporting of one

high-frequency meter reading to the ESP while preserving privacy. As observed in Figure 6.15, the

computational overhead for the In-Network Aggregation-based Framework is significantly higher

since it requires two encryption operations, two homomorphic operations and, commitment gener-
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ation for each time instance. In contrast, the Centralized Aggregation-based Framework involves

simpler operations compared to the In-Network Aggregation-based Framework, namely one Homo-

morphic Encryption and locking with the trust key for each time instance. Our proposed scheme

exhibits the least overhead as it generates shares and one commitment for each time instance.

6.4.15 Comparative Analysis of End-to-End Delay due to Spatial Aggregation

Figure 6.16: Comparative Analysis of End-to-End Delay due to Spatial Aggregation

As emphasized in Section 6.3, the end-to-end delay is a critical metric for enabling faster decision-

making by the ESP. In Figure 6.16, we compare the end-to-end delay for spatial aggregation across

a given range of SMs. It is evident that as the number of SMs increases, the end-to-end delay

due to spatial aggregation also increases for all the frameworks. We consider both the In-Network

Aggregation-based Framework at level 1, where each SM interacts with a parent SM responsible

for computing aggregation and reporting to the ESP. The end-to-end delay exhibits a linear nature

in the proposed framework, as the DA-based aggregation process is a linear function of the number

of SMs. In contrast, the In-Network Aggregation-based Framework and Centralized Aggregation-

based Frameworks demonstrate an exponential nature. Furthermore, our framework exhibits better

scalability compared to other comparative frameworks. This indicates the potential of our frame-
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work in deployments involving a large number of SMs while maintaining the desired privacy level

controlled by n. For a smaller number of SMs, it becomes crucial to identify the optimal number

of DAs to strike a balance between privacy and the introduced delay due to aggregation.

6.5 Resilience Evaluation

In this section, we assess the security and privacy aspects of our framework against different col-

lusion attack scenarios. We also examine how our framework is able to detect modifications to

metering data while preserving privacy. It is important to note that the adversary has the capabil-

ity to compromise up to (n−1) DAs, as specified in our threat model (Section 5.2.2). Additionally,

it is assumed that the adversary possesses prior knowledge of the initialization parameters received

by the DAs from the ESP.

6.5.1 Resilience to Security Attacks

In this subsection, the adversary’s primary objective is to disrupt the grid functionalities by pro-

viding false metering data to the ESP. As described in the threat model, the adversary has the

capability to compromise up to (n− 1) DAs. The adversary possesses the ability to modify various

components, including the incoming shares, spatial and temporal registers, spatial commitment

registers, and temporal commitment registers. The timing of these modifications allows for further

classification into two cases: 1) Pre Secure Multiparty Computation and 2) Post Secure Multiparty

Computation.

If the adversary modifies the incoming shares and/or the registers associated with spatial and

temporal aggregation associated with the compromised DA(s) before the SMPC, then the recon-

structed polynomial will be constructed incorrectly across the entire set of DAs. Since the honest

DA will be unaware of the modifications made by the malicious adversary, it would result in all

DAs computing and reporting the wrong polynomial to the ESP, assuming there are no changes

in the commitment registers. The ESP checks the computed commitment for spatially aggregated

reading in the Integrity Verification Phase (Spatial Aggregation), and a similar process is followed

for integrity of temporal metering data in the Integrity Verification Phase (Temporal Aggregation).

However, the Integrity Verification processes will not succeed as the commitments will not match

due to the binding property. This enables ESP to detect the modification in a privacy preserving

manner and take appropriate measures. If the registers associated with commitments are modified
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by the malicious adversary, the honest DA will report the correct set of commitments to the ESP.

Hence, the ESP will be alerted to the modification when it receives different commitments across

the DAs. In this way, the ESP can detect the modification and take appropriate measures. If

the registers associated with commitments are modified by the corrupted DAs, the honest DA will

report the correct commitment to the ESP. However, the ESP will be alerted to the modification

when it receives different commitments across the DAs.

Regarding post-SMPC modification, if the corrupted DAs initially participated honestly until the

SMPC and later plan to deviate from the protocol, they can modify the reconstructed polynomial

(with respect to spatial aggregation and/or temporal aggregation) and/or commitment register(s).

However, since the honest DA will report the correct reconstructed polynomial and commitment to

the ESP, the ESP will be able to detect the discrepancy and take appropriate measures accordingly.

Therefore, our framework successfully detects any malicious modifications made by the adversary

to shares and/or registers for a given instance of time.
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Figure 6.17 represents a generalized flowchart of demonstrate resilience of our proposed framework

to security attacks on spatial and/or temporal metering data.

Figure 6.17: A Generalized Flowchart to demonstrate Resilience of our Proposed Framework to

Security Attacks
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6.5.2 Resilience to Privacy Attacks

In this subsection, we evaluate the resilience of our framework against privacy attacks. As previously

mentioned in Chapter 1, the adversary can breach customer privacy by derive useful patterns by

accessing high-frequency metering data and linking it to the SM (customer). However, in our

framework, the SMs are considered to be semi-honest and can only interact with the DAs, which

means they cannot learn the readings of other SMs.As for the DAs, they only learn about the

granular shares of each SMs. However, since the honest DA possesses the remaining share and

never discloses it to the DAs during interactions involving aggregated shares in the spatial and

temporal registers, the remaining share cannot be derived, thereby preserving customer privacy.

Post SMPC, the DAs learn about the reconstructed polynomial representing either the spatially

aggregated reading or the temporally aggregated reading over the given period of time, but they

cannot derive the instantaneous reading from it. The ESP, too, cannot breach privacy as it only

receives the aggregated readings in terms of spatial and temporal aggregation. Therefore, our

framework is able to report spatio-temporal metering data to the ESP for providing grid and

billing functionalities while preserving customer privacy.

6.6 Qualitative Analysis

We perform a qualitative comparative analysis of our framework with other aggregation-based

privacy-preserving designs in the literature [13,14,22,23,25,26,31,37,40,48,53,55,56,60,63,64,65,

74, 76, 84, 86, 87, 93, 95, 100, 102, 103, 104, 108, 111] (Table 6.1). The comparison metrics are defined

as follows:

• Framework Design: This refers to the type of infrastructure (In-network / Centralized /

Distributed) that is deployed to support the aggregation functionality.

• Threat Model: This defines the type of adversarial model (active/passive) that is considered

for the aggregation framework.

• Smart Meter Overhead: This metric represents the computational overhead in terms of

complex cryptographic operations and/or reliance on other SMs for aggregation.

• Integrity Verification (Spatial Aggregation): This aspect focuses on the framework’s

ability to detect modifications of spatially aggregated metering data.
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• Integrity Verification (Temporal Aggregation): This aspect focuses on the framework’s

ability to detect modifications to temporally aggregated metering data.
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Table 6.1: Comparison of Aggregation-based Privacy-Preserving Frameworks

Framework Framework Threat Smart Meter Integrity Integrity

Design Model Overhead Verification Verification

(Spatial (Temporal

Aggregation) Aggregation)

Borges et al. [14] In-network Passive High Yes Yes

Erkin et al. [25] In-network Passive High No No

Hoepman Jaap [40] In-network Passive High No No

Li et al. [53] In-network Passive High Yes No

Tonyali et al. [100] In-network Passive High Yes No

Song et al. [95] In-network Active High Yes No

Bohli et al. [13] Centralized Passive Low No No

Efthymiou et al. [23] Centralized Passive Low Yes Yes

Rottondi et al. [87] Centralized Passive Low No No

Guan et al. [37] Centralized Passive High Yes Yes

Li et al. [55] Centralized Passive High Yes No

Lu et al. [63] Centralized Passive High No No

Lu et al. [64] Centralized Passive High Yes No

Zuo et al. [111] Centralized Passive High Yes No

Wang et al. [108] Centralized Passive High No No

Gope et al. [31] Centralized Active Low Yes Yes

Shen et al. [93] Centralized Active Low Yes No

Lu et al. [65] Centralized Active High Yes No

Li et al. [56] Centralized Active High Yes Yes

Liu et al. [60] Centralized Active High Yes No

Khan et al. [48] Centralized Active High Yes Yes

Fan et al. [26] Centralized Active High Yes No

Dong et al. [22] Centralized Active High Yes Yes

Ni et al. [74] Centralized Active High Yes No

Ohara et al. [76] Centralized Active High Yes Yes

Rial et al. [84] Centralized Active High No Yes

Rottondi et al. [86] Distributed Passive Low No No

Wagh et al. [102] Distributed Passive Low No No

Wagh et al. [103] Distributed Passive Low No No

Wagh et al. [104] Distributed Passive Low No No

Proposed Framework Distributed Active Low Yes Yes
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6.7 Summary

In this chapter, we addressed three identified research questions by implementing a proof of concept

to evaluate the performance of our proposed framework. We then conducted a comparative analysis,

considering metrics such as computational overhead and, end-to-end delay. We also evaluated the

resilience of our framework to withstand security and privacy attacks, specifically within a malicious

threat model with a dishonest majority of DAs. Finally, we presented a qualitative comparative

analysis of our proposed framework with other related privacy-preserving frameworks from the

literature, considering the identified metrics.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we addressed the privacy issues associated with the collection of high-frequency

metering data in the smart grid. Through our critical literature analysis, we identified research gaps

in existing aggregation-based frameworks, including: a) high computational overhead on resource-

constrained smart meters (SMs), b) prone to single points of compromise due to reliance on a

centralized entity, c) lack of support for dynamic billing integration while preserving customer pri-

vacy and, d) lack of integrity verification of spatio-temporal metering data. To overcome these

limitations, we proposed a Distributed Aggregation-based Framework that considered the secu-

rity, privacy, and infrastructure requirements outlined by NIST. The framework comprised SMs,

Dedicated Aggregators (DAs), and Electrical Service Provider (ESP). To convert their instanta-

neous readings into shares, the SMs employed Shamir’s Secret Sharing Scheme. These shares

were then distributed to the corresponding DAs participating in spatial aggregation through secure

multiparty computation (SMPC). The spatially aggregated reading was reported to the ESP in a

privacy-preserving manner, as it played a crucial role in providing grid functionalities.

We further extended the framework to support temporal aggregation by utilizing the same set of

shares employed in spatial aggregation. This expansion facilitated the inclusion of different types

of billing tariffs, such as Flat Rate, Cumulative, and Time of Use Billing, within the framework.

By distributing and offloading the majority of the work to the DAs, we addressed the issues related

to high computational overhead and single points of compromise.

109
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Moreover, we extended the threat model to a malicious setting involving a dishonest majority of

the DAs. Since metering data was outsourced to the DAs for aggregation, it became susceptible

to potential modifications. To mitigate this risk, we integrated a Commitment-based Scheme and

imposed an additional constraint in the Shamir’s Secret Sharing Scheme to enable integrity veri-

fication of spatio-temporal metering data. The framework effectively leveraged the homomorphic

properties of the Shamir’s Secret Sharing Scheme and the Commitment-based Scheme.

To evaluate the performance of our proposed framework, we developed a proof of concept utilizing

both an embedded and cloud-based environment, using real-world SM traces. We conducted an

analysis of the framework’s performance compared to two relevant comparative frameworks from the

literature. Additionally, we evaluated the resilience of our framework against potential security and

privacy attacks involving a dishonest majority of the DAs. In the end, we presented a qualitative

comparison of our proposed framework with other Aggregation-based Frameworks, considering the

identified metrics.

To summarize the contributions of this dissertation, they are as follows:

• Development of a distributed privacy-preserving framework in a semi-honest setting

• Development of a distributed privacy-preserving framework in a malicious setting with a

dishonest majority of DAs

• Creation of an open source proof of concept to compare our proposed privacy-preserving

framework with other existing frameworks

7.2 Future Work

The conducted evaluations related to our proposed framework have motivated several areas worthy

of future explorations. We summarize some of these areas as follows:

• Authentication of SMs: The current proposed framework focused on security and pri-

vacy requirements provided by NIST [32, 81]. Another aspect that has not been addressed

is the authentication of SMs. Therefore, the current capabilities of our framework can be

enhanced by integrating an authentication mechanism. By incorporating this functionality

into the framework, impersonation attacks by dummy SMs introduced by adversaries can
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be prevented. The adversary may compromise the DAs and introduce dummy SMs to com-

promise the security and privacy of our framework, thereby disrupting the spatio-temporal

functionalities. Although the existing Shamir’s Secret Sharing Scheme [91] does not provide

authentication, recent studies by the authors [38] indicate that the scheme can be extended

to incorporate authentication.

• Optimization of the Implementation: By pre-computing the calculations related to the

Share Creation Phase and generating a new set of shares for upcoming time instances, it is

possible to reduce both the computational overhead and the end-to-end delay. This optimiza-

tion would enable the ESP to make faster decisions, effectively mitigating the damage and

disruption caused by adversaries.

• Recoverability of Metering Data: Our current framework estimates the metering data

based on past knowledge. However, it is important to address the issue of fault tolerance

and provide a mechanism for recovering metering data in the event of entity (DA(s)) failures.

This can be achieved by integrating a robust fault-tolerant mechanism into our proposed

framework, ensuring that metering data can be recovered and maintained even in the presence

of entity failures.

• Utilization of a Real Hardware: In our current work, we utilized a Raspberry Pi to

mimic a SM. However, exploring the use of a real SM with limited computing resources as

hardware for evaluations in terms of computational overhead and end-to-end delay can be

further explored.

• Extending the Threat Model: In our proposed research, we examine a malicious threat

model where the adversary can compromise up to (n− 1) DAs, where n represents the total

number of DAs in the framework. However, the framework can also be further explored to

address the threat of malicious SMs reporting false metering data to the ESP.

It should be noted that our proposed framework can be generalized to other domains such as disaster

response, environmental monitoring, and urban planning which require reporting of spatio-temporal

data in a privacy-preserving manner.
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[43] Marc Joye and Benôıt Libert. A scalable scheme for privacy-preserving aggregation of time-

series data. In Proceedings of the International Conference on Financial Cryptography and

Data Security, pages 111–125. Springer, 2013.

[44] Malik Ali Judge, Asif Khan, Awais Manzoor, and Hasan Ali Khattak. Overview of smart

grid implementation: Frameworks, impact, performance and challenges. Journal of Energy

Storage, 49:104056, 2022.
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Appendix A

First Appendix

A.1 Graphical User Interface

Figure A.1, represents the Graphical User Interface (GUI) for our developed proof of concept. It

takes the following inputs from the user and generates the initialization parameters for our proposed

framework. The backend of the GUI consumes the sanitized dataset mentioned in A.2.

• Number of Smart Meters (m)

• Number of Dedicated Aggregators (n)

• Total Time Period (T )

• Number of bits
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Figure A.1: Graphical User Interface of our Proposed Work

The following initialization parameters are generated at the backend and stored on the cloud de-

ployed using AWS.

• Prime number (p)

• Commitment creation parameter (g)

• Commitment creation parameter (h)

• List of Dedicated Aggregators (DAList)

• List of Smart Meters (SMList)

• Tariff (Tariff)

• Time period (T )

• Number of SM (m)

• Number of DA (n)

• Maximum coefficient

• Instantaneous readings

• Bits

• Seed List (SeedList)
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A.2 UMass Dataset

The UMass Dataset is sanitized in a Python environment, where operations are performed to

identify null (Fig. A.2) and missing values (Fig. A.3). If any missing values are found, they are

filled using the built-in forward-fill method in Python. Since our research focuses on reporting

metering data from the Smart Meter (SM) to the Electrical Service Provider (ESP), we aggregate

the individual appliance readings to calculate the instantaneous reading for the specific SM at each

moment in time.

Figure A.2: Visualization of missing data of UMass Dataset using Bar Plot
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Figure A.3: Visualization of null data of UMass Dataset using Heatmap

’
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