
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-2023

Continual Domain Adaptation through Knowledge Distillation Continual Domain Adaptation through Knowledge Distillation

Georgi Thomas
gt4330@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Thomas, Georgi, "Continual Domain Adaptation through Knowledge Distillation" (2023). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11545?utm_source=repository.rit.edu%2Ftheses%2F11545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Continual Domain Adaptation through Knowledge
Distillation

Georgi Thomas

Continual Domain Adaptation through Knowledge
Distillation
Georgi Thomas

July 2023

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

Continual Domain Adaptation through Knowledge
Distillation
Georgi Thomas

Committee Approval:

Dr. Andreas Savakis Advisor Date
Department of Computer Engineering

Dr. Dongfang Liu Date
Department of Computer Engineering

Dr. Andres Kwasinski Date
Department of Computer Engineering

i

Acknowledgments

I want to begin by thanking my advisor Dr. Andreas Savakis for all his support

and guidance throughout my academic and research studies. I also want to thank

Dr. Dongfang Liu and Dr. Andres Kwasinski for serving as members of my thesis

committee. I would like to thank the Vision and Image Processing Lab, especially

Rahi, Mihir, and Rajat for their help in my research endeavors. Finally, I want to

thank my family and friends for their constant and continued support throughout

this entire experience.

ii

To my parents, who taught me that through hard work I could have my cake and eat

it too.

iii

Abstract

Domain Adaptation (DA) techniques aim to overcome the domain shift between a

source domain used for training and the target domain used for testing and deploy-

ment. Domain adaptation methods assume the entire target domain is accessible

during the adaptation process. We use efficient architectures in the continual data-

constrained DA paradigm where the unlabeled data in the target domain is received

continually in batches.

In recent years, Vision Transformers have emerged as an alternative to traditional

Convolutional Neural Networks (CNNs) as the feature extraction backbone for im-

age classification and other computer vision tasks. Within the field of DA, these

attention-based architectures have proven to be more powerful than their traditional

counterparts. However, they possess a larger computational overhead due to their

model size. We design a novel framework, called Continual Domain Adaptation

through KnowlEdge Distillation (CAKE), that uses knowledge distillation (KD) to

transfer to a CNN the more complex Vision Transformer’s knowledge. By doing so,

CNN-based adaptation obtains a similar performance to transformer-based adapta-

tion while reducing the computational overhead. With this framework, we selectively

choose samples from these batches to store in a buffer for selective replay. We mix

the samples from the buffer with the incoming samples to incrementally update and

adapt our model.

We show that distilling to a smaller network after adapting a larger model allows

the smaller network to achieve better accuracy than if the smaller network adapted

to the target domain. We also demonstrate that CAKE outperforms state-of-the-art

unsupervised domain adaptation methods without full access to the target domain or

any access to the source domain.

iv

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents v

1 Introduction 3

1.1 Introduction . 3

1.2 Thesis Contributions . 4

1.3 Motivation . 4

1.4 Document Structure . 5

2 Background 6

2.1 Convolutional Neural Networks . 6

2.2 Attention-Based Architectures . 8

2.3 Image Classification . 11

2.4 Knowledge Distillation . 12

2.5 Unsupervised Domain Adaptation . 12

2.6 Continual Learning . 13

2.7 Related Work . 15

3 CAKE Methodology 17

3.1 Continual Domain Adaptation through Knowledge Distillation 17

3.2 Continual Domain Adaptation . 18

3.3 Source Training . 20

3.4 Target Adaptation . 21

3.4.1 Teacher Model Adaptation . 22

3.4.2 Student Model Adaptation . 24

4 Implementation Details 26

4.1 CAKE Models . 26

v

CONTENTS

4.2 DataSets . 27

4.2.1 Office 31 . 27

4.2.2 OfficeHome . 27

4.2.3 DomainNet-126 . 28

4.3 Parameter Settings . 28

4.4 Continual Adaptation Setup . 29

4.5 Evaluation Metrics . 29

5 Benchmarking and Adapt to Distill Experiments 30

5.1 Benchmarking Experiments . 30

5.2 Adapt to Distill Experiments . 32

6 Results for the CAKE Framework 35

6.1 Comparison to State-of-the-Art . 35

6.1.1 Results for Office-31 Dataset 35

6.1.2 Results for OfficeHome Dataset 37

6.1.3 Results for DomainNet-126 Dataset 38

6.2 Ablation Studies . 40

6.2.1 Ablation Studies of Teacher Models 40

6.2.2 Ablation Studies of r-Values 41

7 Conclusion and Future Work 43

7.1 Conclusion . 43

7.2 Future Work . 44

Bibliography 45

1

List of Figures

2.1 CNN Architecture Example for Image Classification [1] Image Source:

[2]. 6

2.2 Model Overview of ResNet Architecture and Design of Skip Connec-

tion. Image Source: [3] . 7

2.3 Model Overview of Vision Transformer Architecture and the Trans-

former Encoder Block. Image Source: [4] 8

2.4 Swin Transformer Block with 2 Sub-Units. Image Source: [5] 10

2.5 Visual Depiction of Batch Streaming Learning Paradigm. 14

3.1 An overview of the CAKE method. We use a source-trained teacher

and student to initialize the adaptation to the target domain. The

teacher network extracts and smooths labels extracted from the sam-

ples to teach the smaller student network through knowledge distilla-

tion. The buffer manager stores the confident samples denoted by the

teacher to replay back to the network in future batches. 18

3.2 Source training of teacher and student models 20

4.1 Sample Images from Office-31 [6] Dataset 27

4.2 Sample Images from OfficeHome [7] Dataset 28

4.3 Sample Images from DomainNet-126 [8] Dataset 28

2

Chapter 1

Introduction

1.1 Introduction

Computer Vision models are trained on a specific dataset or source domain, and

once deployed they may be exposed to other domains. The source domain refers

to the dataset where the model is trained and the target domain is the domain

where the model is deployed and can make predictions. The domain shift between

the source and target domains causes a drop in classification accuracy. Domain

adaptation methods try to mitigate the domain gap between the source domain and

the target domain, namely adversarial and source-free. Adversarial methods leverage

the source domain to learn more general features across different domains. Source-free

approaches include Hypothesis Transfer Learning [9] and Source Hypothesis Transfer

[10] to transfer the source-trained model for target adaptation without access to the

source domain..

Convolutional Neural Networks (CNN) have been the state-of-the-art backbone

to extract features for image classification. In recent years, Vision Transformers have

shown to be more powerful in various computer vision tasks. They have been shown

to perform better than CNNs in domain adaptation due to their ability to generalize

better over multiple domains. However, they have a significant computational load

over traditional CNNs.

3

Chapter 1. Introduction

1.2 Thesis Contributions

• We propose to use knowledge transfer through knowledge distillation to leverage

the feature extraction power of a larger attention-based model as a teacher and

the efficiency of ResNet-50 as a student to adapt to new domains.

• We explore transformers and attention-based convolutional models to serve as

teachers and help the student model adapt to the target domain.

• We use knowledge distillation within a newer continual learning paradigm in do-

main adaptation where target data is obtained in small batches. To do this, we

propose using a buffer to selectively replay target samples during the adaptation

process.

1.3 Motivation

Image classification is a fundamental task in computer vision and has many applica-

tions across many fields such as detecting cancer or object recognition for self-driving.

However, with a changing domain, it is necessary to have a model that can continu-

ously adapt to these new changes without reducing performance. This is particularly

important in fields such as autonomous driving where new regions and new areas must

be analyzed in real-time. This creates a necessity for a smaller network that can be

run on edge devices and adapt efficiently. Harnessing the generalization capabilities

of the attention-based architectures, the teacher model can distill the new domain to

the student more efficiently while reducing the footprint of the deployed model. We

title this framework CAKE, for Continual Domain Adaptation through KnowlEdge

Distillation.

4

Chapter 1. Introduction

1.4 Document Structure

The remainder of this document is structured as follows: Chapter 2 discusses the back-

ground material and contains an overview of related works in domain adaptation and

knowledge distillation. Chapter 3 covers the proposed methodology and paradigms

being analyzed. Chapter 4 presents the implementation details and datasets used.

Chapter 5 discusses preliminary experiments that have been run to set up the frame-

work and justifications for the framework. Chapter 6 presents our results compared

to the state-of-the-art results, and also discusses different ablation studies that were

run. Chapter 7 contains our concluding remarks and provides possibilities for future

work.

5

Chapter 2

Background

2.1 Convolutional Neural Networks

Traditionally, Convolutional Neural Networks [11] (CNNs) have been the de facto

architecture used to extract features from an image. CNNs are used in various com-

puter vision tasks such as image classification and segmentation, object detection,

and optical flow. CNNs are composed of primarily 3 types of layers: convolution,

pooling, and fully connected layers. An example of this can be seen in Figure 2.1.

Figure 2.1: CNN Architecture Example for Image Classification [1] Image Source: [2].

The input layer contains a fixed size for an image which can be adjusted as neces-

sary to fit the specific task. The convolution layer convolves the image with various

filters using shared weights to extract features. Each kernel is responsible for extract-

6

Chapter 2. Background

ing features of the specific layer of input data. The pooling layers are non-trainable

layers applied in a shifted window manner to reduce the features and generate a down-

sampled version of the feature space. There are different techniques for implementing

the pooling layers such as max pooling and average pooling. Max pooling involves

extracting the maximum value from the values considered. Average pooling returns

the average of the data seen by the pooling regions. A fully connected network is

used to understand complex representations of features to extract outputs that closely

relate to the ground truth.

While many popular CNN-based architectures exist, such as AlexNet [12], VG-

GNet [13], and EfficientNet [14], we focus on ResNet-50 [3] as it is the most common

feature extractor used in domain adaptation image classification tasks.

Figure 2.2: Model Overview of ResNet Architecture and Design of Skip Connection. Image
Source: [3]

ResNet or Residual Network is a deep learning CNN-based model designed to

resolve or reduce the problem of vanishing gradient through skip connections. ResNet

accomplishes this by stacking multiple identity mappings to skip layers to use the

activation of the previous layer. By skipping these layers, the model can converge

must faster by pseudo-compressing the network. When the network is then retrained,

7

Chapter 2. Background

the layers are expanded and the network can extract a better feature space from the

image.

2.2 Attention-Based Architectures

In recent years, attention-based architectures such as transformers have been gaining

popularity across the field of machine learning due to their success in larger language

models. Contrary to other architectures, transformers operate on the entire input

sequence in parallel as opposed to sequentially. In the Natural Language Processing

(NLP) domain, this was beneficial as it could draw comparisons between different

words that may be distant from each other. Implementation of Vision Transformers

(ViT) was introduced by [4]. Figure 2.3 depicts an overview of the ViT architecture

as well as the design of the transformer encoder block.

Figure 2.3: Model Overview of Vision Transformer Architecture and the Transformer
Encoder Block. Image Source: [4]

Implementing self-attention directly to the image would attempt to draw relations

between individual pixels, however, this vastly increases the complexity of the model.

Instead, ViT [4] splits the image into image patches and treats these image patches as

8

Chapter 2. Background

words or tokens. ViT then applies a trainable linear projection layer across the image

patches to create patch embeddings. ViT uses the patch embeddings and applies a

positional embedding over them before passing them to the transformer encoder. The

position embeddings are then used to retain positional information. The transformer

encoder consists of alternating layers of Multi-Head Self-Attention (MSA) blocks and

Multi-Layer Perception (MLP) layers. In this format, the MSA layer extracts global

features by computing attention against all patches, while the MLP layer encodes the

local features within each patch.

While ViT was revolutionary in the computer vision domain, it suffered from

shortcomings such as its quadratic computational complexity of the self-attention

mechanism. Some of these issues were addressed by the Shifted window (Swin) Trans-

former [5] through the introduction of hierarchical feature maps and shifted window

attention. Hierarchical feature maps are the intermediate tensors generated by layers

that are merged from one layer to each successive layer. This effectively downsamples

the feature space and reduces the dimension of the feature map to compress the latent

representation. As mentioned previously, another key introduction made by the Swin

transformer is the change in the way the self-attention mechanism is used.

9

Chapter 2. Background

Figure 2.4: Swin Transformer Block with 2 Sub-Units. Image Source: [5]

The Swin transformer implements two types of MSA blocks: W-MSA and SW-

MSA, where W-MSA denotes the window-based MSA and SW-MSA denotes the

shifted-window MSA. With a window approach, the attention is applied to each win-

dow as opposed to the entire patch itself. The windows are arranged in an evenly

partitioned manner so that they don’t overlap. Due to the fixed window size, the

computational complexity drops from quadratic to linear. However, since attention

is not computed across multiple windows, it limits the modeling power of the archi-

tecture. To resolve this, the Swin transformer applies the SW-MSA and cyclic shift

to introduce cross-window connections by shifting the windows toward the top left

corner. The displaced patches are then fit to the windows with incomplete patches.

With the cyclic shift, there may be windows that consist of patches that are not

adjacent to each other, so a mask is applied to limit the self-attention computation

for those windows.

With the growth of Vision Transformers, a new CNN architecture was intro-

duced, known as ConvNeXt [15], which modernized ResNet through multiple strate-

10

Chapter 2. Background

gies. These strategies include moving up the depthwise convolution, adjusting the

kernel size of the convolution layer, and the addition of a convolutional layer for

spatial downsampling. Moving up the depthwise convolutional layer parallels the

transformer blocks used in vision transformers. The depthwise convolution operation

is similar to the self-attention operation of using a weighted sum to extract informa-

tion in the spatial dimension. In vision transformer blocks, the MSA is kept before

the MLP layer. To replicate this with ConvNeXt, they use an inverted bottleneck

that emulates the vision transformers’ enhanced capability to extract local features.

Traditionally, with CNNs, the norm was to stack smaller convolutional layers of size

3x3, but ConvNeXt changes the kernel size to 7x7 to better extract global features.

Inspired by the Swin transformer, a separate downsampling convolutional layer of size

2x2 is added to extract finer features and reduce the feature space. They [15] show

that by modernizing the training methods and adapting the convolutional models to

parallel transformer blocks, CNNs can compete with vision transformers in different

computer vision tasks.

2.3 Image Classification

Image classification is used to identify an image out of a set of target classes. A

standard image classification model is composed of a feature extraction backbone

and a classification head. The training dataset is often preprocessed through different

image augmentations to artificially expand the dataset and help the model extract

better features and prevent over-fitting. The class of the object in question is used to

label the image, and the feature extraction backbone attempts to extract features that

are unique to the different classes. During the final classification step, the features

of the image are fed to a classifier to extract the class label. While the final outputs

are determined at the final layers in the classification head, much of the performance

comes from a richer feature space.

11

Chapter 2. Background

2.4 Knowledge Distillation

An effective way to improve the accuracy or performance of classification tasks is

to train various models and then use a weighting algorithm to refine predictions.

However, this is very computationally intensive and inefficient. To tackle this issue,

a model compression algorithm known as knowledge distillation [16] was proposed to

transfer the knowledge from a larger model to a smaller model.

The smaller model (student) learns from the pre-trained larger model (teacher)

by mimicking the output and leverages this methodology of model compression to

achieve similar performance [16]. This also allows the student model to learn different

features than it would have on its own. There exist three types of knowledge distilla-

tion: offline distillation, online distillation, and self-distillation. In offline knowledge

distillation [17], the pre-trained teacher model is used as a black box model by ex-

tracting soft labels to teach the student model. With online knowledge distillation

[18], the teacher can be pre-trained or it can be an untrained model. Using online

knowledge distillation, an end-to-end framework is created where the soft labels go

directly to the student model as the teacher model updates to learn the new data.

Over time, the student model will become better at making the same predictions as

the teacher. With self-distillation [19], the same model is used for the teacher and

student. With this method, the old activations and the outputs from previous epochs

are transferred to later epochs to train the student model. This distillation method-

ology behaves similarly to a momentum encoder [20] by regularizing the model based

on past predictions to explore richer features.

2.5 Unsupervised Domain Adaptation

Deep learning is the state-of-the-art method used in computer vision to understand

and classify images. However, these models are very reliant on their training data,

12

Chapter 2. Background

and a shift in the domain of the image can result in a significant loss in performance.

A domain shift or domain variance occurs when there is a significant difference in the

data distributions of the source and target domains.

Unsupervised domain adaptation is an extension of transfer learning where the

target domain is unlabelled. There exist three types of domain adaptation: closed-set,

open-set, and partial-set domain adaptation. With open-set [21] domain adaptation,

there are many images in the target dataset, but only some of them belong to classes

of interest. In closed-set domain adaptation, there are no discrepancies in the number

of classes between the source and target domains. Partial-set domain adaptation is

a paradigm in which the target domain has fewer classes of interest than the source

domain.

Many UDA methods utilize adversarial methods [22, 23] to learn and align the

feature spaces between the source and target domains. However, recent methods have

used a source-free methodology for test time adaptation. This significantly reduces

the data storage footprint and prevents the extraction of information in the source

domain which could contain sensitive information.

2.6 Continual Learning

Continual learning is a paradigm where a model learns from data sequentially, as data

samples are acquired without access to earlier samples. In this paradigm, the model

can forget the knowledge that it had learned in preceding tasks. This forgetting of

data is known as catastrophic forgetting. Continual learning can be sectioned into

two main categories: incremental batch learning and streaming learning. Incremental

batch learning is a paradigm in which data is incrementally added in batches for

training. Once a particular batch has been trained on by the model, it is discarded

and the next batch is fetched to train on. The model is allowed to train on any given

batch for multiple epochs before the next batch is fetched. The paradigm of streaming

13

Chapter 2. Background

learning [24, 25] is an extension of incremental batch learning where training samples

are fed to the model one sample at a time, and the model is only trained for one

epoch over the entire training dataset.

We use batch streaming [26] with domain adaptation as a combination of incre-

mental batch learning and streaming learning. Similar to incremental batch learning,

the target domain is split into small batches that are input sequentially to the net-

work. Following the paradigm of streaming learning, the model is allowed to adapt

to one batch of data at a time. Once that batch is adapted, the next batch is fetched

and provided to the network. This batch streaming process can be shown in Figure

2.5.

Figure 2.5: Visual Depiction of Batch Streaming Learning Paradigm.

This paradigm is noted to be more challenging than the standard domain adap-

tation pipeline due to the streaming nature and limited availability of target data.

14

Chapter 2. Background

2.7 Related Work

Existing methods in UDA use adversarial methods [27], which require the target

models to access some of the source data. Source-free unsupervised domain adap-

tation methods include Source HypOthesis Transfer (SHOT) [28] and Contrastive

Test-Time Adaptation (ADAContrast) [29]. All these networks use ResNet-50 as the

target backbone for feature extraction.

SHOT uses a source-trained model which comprises a feature extractor and a

classifier head. When the model is deployed in the target domain, the classifier head is

frozen. SHOT implements a clustering algorithm using the cosine similarity function

to extract pseudo labels for adaptation to the target domain. During adaptation,

the feature extractor learns the features based on the pseudo-labels. By extension,

this improves the clustering algorithm as it can extract better pseudo-labels in the

target domain. SHOT implements information maximization to force the labels of

the target model to be unambiguous and uniform.

ADAContrast [29] implements a similar methodology where the source model is

transferred to the target domain without any data from the source domain to align its

features. ADAContrast creates a copy of the source encoder and implements it as a

momentum encoder, which regularizes the prediction model through contrastive loss.

ADAContrast uses this momentum encoder which is jointly applied with the self-

training to exclude same-class negative pairs. It uses the same clustering algorithm

as the SHOT framework to test its pseudo-labels, however, a large difference is the

image augmentations applied for the clustering and the classifier. It uses weaker aug-

mentations for the clustering algorithm and a stronger augmentation for the classifier

head to enforce a weak-strong consistency during self-training.

Knowledge distillation has also been applied to domain adaptation through a

Distill and Fine Tune (DINE) framework [30]. This framework uses a two-step process

15

Chapter 2. Background

by pretraining a teacher model on the source domain and using knowledge distillation

to distill target information to a custom target model. The target model then adapts

to the target domain using information maximization loss. DINE uses the traditional

ViT as the teacher, and ResNet-50 as the student. The framework they use for

adaptation involves using the source-trained teacher model as a black box predictor

from the source domain.

Continual Unsupervised Domain Adaptation [26] (ConDA) proposes a continual

UDA framework where they use a class-balanced buffer and selectively replay target

samples during the adaptation process. Similar to SHOT, ConDA uses a clustering

algorithm to extract pseudo-labels to adapt the model and use information maximiza-

tion to increase variation in the output labels. Since the pseudo-labeling algorithm

may assign incorrect labels, ConDA uses high-confidence samples to store to the

buffer and replay. Inspired by these frameworks, we design a novel framework named

CAKE.

16

Chapter 3

CAKE Methodology

In this chapter, we present a novel framework, called Continual Domain Adaptation

through KnowlEdge Distillation (CAKE).

3.1 Continual Domain Adaptation through Knowledge Dis-

tillation

The CAKE framework combines knowledge distillation with continual unsupervised

domain adaptation to create a more efficient, tuned target model. Attention-based

architectures excel in cross-domain image classification, compared to their CNN coun-

terparts, such as ResNet. Additionally, in the case of attention-based architectures,

running the network on low-power and low-resource devices may not be possible.

Therefore, this thesis aims to leverage the performance of attention-based architec-

tures with the lower resource usage of ResNet to deploy in the target domain. An

overview of the CAKE framework is illustrated in Figure 3.1.

We focus on the K-way cross-domain image classification task aiming to address

a more realistic closed-set UDA setting where the data is received continually in

batches and without access to the whole target domain. For an unsupervised domain

adaptation task, we are provided with ns labeled samples {(xs, ys) ∈ (Xs, Ys)} from

the source domain, Ds, and nt samples {xt ∈ Xt} from the target domain, Dt. The

goal is to learn a mapping (ft : Xt → Yt) to determine the corresponding labels

17

Chapter 3. CAKE Methodology

Figure 3.1: An overview of the CAKE method. We use a source-trained teacher and
student to initialize the adaptation to the target domain. The teacher network extracts and
smooths labels extracted from the samples to teach the smaller student network through
knowledge distillation. The buffer manager stores the confident samples denoted by the
teacher to replay back to the network in future batches.

{yt ∈ Yt} for the target domain. Under the closed-set setting, we assume that the

number of classes in the source domain is the same as in the target domain, namely

that Ct = Cs.

3.2 Continual Domain Adaptation

Under the continual paradigm, the target domain is not available all at once. We

consider the batch streaming approach to split the target domain into smaller batches

that are sequentially sent to the network. We further split these batches into multiple

mini-batches to train the target model.

To perform continual domain adaptation, we take inspiration from the buffer strat-

egy used by ConDA [26]. With continual learning, neural networks are susceptible to

catastrophic forgetting and we look to mitigate this through memory replay. Memory

18

Chapter 3. CAKE Methodology

replay is a process inspired by the biological phenomenon of hippocampal replay, in

where, there is a re-occurrence of cell activations that had occurred during awake

phases, but at a much faster rate [31].

In the CAKE framework, we design a class-balanced buffer to store samples and

their predicted class labels to selective replay. The buffer is populated with the first

batch of target samples. Our model only requires access to the samples stored in

the buffer and the incoming samples for each successive batch of target data in the

adaptation process. The selective replay prevents the model from overfitting to new

batches of data by replaying older samples.

The class-balanced buffer is defined as Bt with states {B1
t , B

2
t , B

3
t ,....., B

m
t } where

m is the current batch of data from the target domain for balanced training. We allot

an equal number of buffer slots for each class relative to the buffer length and the

number of classes. The buffer is populated with data after the network is trained

on a batch of target data and stores the samples as well as their respective labels as

predicted by the teacher model. Our model then only needs access to the data stored

in the buffer as well as the incoming batch data.

The network adapts on each batch Xm
t and outputs {Y m

t , Sm
t }, where Sm

t is the

softmax classification score. We compute the soft labels for the buffer samples for the

current state of the model. The buffer takes in the current samples and soft labels.

Initially, the incoming batch samples are grouped based on the output label Y m
t and

are sorted based on the confidence Sm
t . The buffer manager picks the high-confidence

samples denoted by the teacher model. This allows the teacher model to better adapt

to the target domain which in turn allows the student model to learn better labels

from the teacher.

19

Chapter 3. CAKE Methodology

3.3 Source Training

We train the teacher and student networks on the source dataXs in the source domain

Ds to learn the feature mapping (ft : Xs → Ys). We design our models for the teacher

and student networks with a feature extractor and a classification head. We denote

feature extractors for the teacher and student networks as Gs and gs respectively.

Likewise, we denote the classification head for the teacher and student as Hs and ht.

We define the source teacher to be Fs, where Fs = Hs(Gs) and the source student to

be fs, where fs = hs(gs). Within the feature extraction module, we include a batch

normalization layer, and in the hypothesis module, we include a weight normalization

layer. A depiction of these models can be seen in Figure 3.2.

Figure 3.2: Source training of teacher and student models

After feature extraction, the classifier head returns k logits, where k is the total

number of classes within the dataset. We train on the source data by minimizing

the cross-entropy loss in conjunction with label smoothing for the source training

procedure. We use label smoothing to increase the model’s ability to properly cluster

20

Chapter 3. CAKE Methodology

and separate the different classes. Smoothed labels help to decrease the gaps between

the predictions and prevent the model from being overconfident. We use q as the

one-hot encoding of the output, where q is defined to be ’1’ for the intended class and

’0’ for any other class. We define the true labels as qk and the smoothed label as qlsk .

The equation for the label smoothing is defined as

qlsk = (1− α)qk + α/k (3.1)

where α is the label smoothing parameter predetermined to be 0.1. We use the

softmax probability

δk(a) =
exp(ak)∑
i exp(ai)

(3.2)

where δk(a) defines the k-th element in the softmax output of a K-dimensional vector

a. We implement this into the cross-entropy loss function which becomes

Lsrc(fs;Xs, Ys) = −E(xs,ys)∈{Xs,Ys}

K∑
k=1

qlsk log δk(fs(xs)) (3.3)

3.4 Target Adaptation

We adopt the Information Maximization loss from [32] to increase the diversity among

predictions of the teacher and student model during adaptation. Information Max-

imization(IM) is a combination of entropy loss Lent [33] and diversity loss Ldiv. We

define Lent and Ldiv as follows:

Lent(ft;Xt) = −E(xt)∈{Xt}

K∑
k=1

δk(ft(xt)) log δk(ft(xt)) (3.4)

Ldiv(ft;Xt) =
K∑
k=1

qk log (qk) (3.5)

21

Chapter 3. CAKE Methodology

We denote ft to be some target model adapting to the target data and qk as the mean

softmax output of the target data seen by the model. The equal diversity loss Ldiv

aims to make network predictions diverse for all classes to prevent similar one-hot

encodings of the observed target data. We then define IM loss as LIM , where

LIM(ft;Xt) = Lent + Ldiv (3.6)

We use LIM during the adaptation process for the teacher and the student models.

We use it for the teacher to refine the extracted pseudo-labels to teach the student

and during student adaptation to increase the variation in the outputs. From this

point on, we define the target teacher to be Ft, where Ft = Ht(Gt) and the target

student to be ft, where ft = ht(gt).

3.4.1 Teacher Model Adaptation

Unsupervised domain adaptation frameworks typically utilize a clustering method to

self-supervise the pseudo-label extraction. However, these methods heavily rely on

rich latent representations from the feature extraction backbone. With the superiority

of attention-based architectures, we look to leverage the outputs generated by the

attention-based architectures and replace the pseudo-labeling clustering algorithm

with online knowledge distillation. We apply the clustering algorithm inspired by

SHOT [10] to the teacher models for adaptation to the target domain and for teaching

the student better labels.

For generating the pseudo-labels for teacher adaptation, we first determine the

initial centroids, c
(0)
k , using the softmax output of the target samples,

c
(0)
k =

∑
xt∈Xt

δk(pt(xt)) (Ft(xt))∑
xt∈Xt

δk(Ft(xt))
(3.7)

where pt describes the previously learned target hypothesis and Ft are the current

22

Chapter 3. CAKE Methodology

predictions. We use the cosine distance function and minimize the distance between

samples where D(a, b) is the cosine distance function and a and b are the two samples.

ŷ
(0)
t = argkmin(D(Ft(xt), c

(0)
k) (3.8)

After extracting the initial pseudo-labels, the cluster centers are recomputed as

follows.

c
(1)
k =

∑
xt∈Xt

1(ŷt = k) (Ft(xt))∑
xt∈Xt

1(ŷt = k)
(3.9)

The final pseudo-labels are then computed with the updated cluster centers using

ŷ
(1)
t = argkmin(D(Ft(xt), c

(1)
k) (3.10)

where the y
(1)
t are the pseudo-labels extracted from the input target data Xt.

As shown below, we use the pseudo-labels from the clustering algorithm to mini-

mize the cross-entropy loss, LTce, for the teacher model using the target samples.

LTce(Fs;Xs, Ys) = −E(xt,ŷt)∈{Xt,Ŷt}

K∑
k=1

1[k=ŷt] log δk(Ft(xt)) (3.11)

Using the teacher model’s cross-entropy loss, LTce, with the IM loss, LIM , our

final adaptation objective function becomes,

LFt = LTce + LIM (3.12)

It should be noted that during the teacher’s adaptation process, the classifier

head is frozen. This helps the model extract better features that can then be used

to extract better pseudo-labels with the clustering algorithm. This leads the teacher

network to learn good network predictions as a unified approach to better adapt to

the target domain.

23

Chapter 3. CAKE Methodology

3.4.2 Student Model Adaptation

In order to adapt the student model to the target domain, we use knowledge distil-

lation by training the student model to learn the labels from the teacher network.

Unlike the teacher model, we leave the classifier head unfrozen to allow the entire

network to fit the teachings of the teacher model.

We utilize the Kullback-Leibler loss or Lkl defined as follows.

Lkl(Ft(xt)||ft(xt)) =
∑
xt∈Xt

Ft(xt) log

(
Ft(xt)

ft(xt)

)
(3.13)

We treat the labels from the teacher model as strong labels and use the following

consistency loss,

LKD(ft;Xt, Ft) = Ext∈Xt Lkl (Ft(xt) || ft(xt)) (3.14)

The issue with using this consistency loss is that KD is often used in a supervised

setting. However, with UDA, the teacher outputs for some target instances may be

inaccurate. Inspired by [30], we use Adaptive Label Smoothing (AdaLS) to generate

a revised output of p̂. We have the teacher Ft revise the output p with the top-r

values. We consider T r
p as the set of the top-r labels of classes in the original output

p.

p̂(r) =

pi, i ∈ T r

p

(1−
∑
j∈T r

p

pj) / (K − r), otherwise
(3.15)

We empirically select r = 3 to choose the top 3 classes and smooth out the

remaining labels. We use these refined pseudo-labels to reduce the noisiness of the

labels extracted from the teacher and impose a uniform distribution on the labels

similar to label smoothing. Smoothing to highlight the most confident classes allows

the student to learn from the samples that the teacher is confident about rather than

24

Chapter 3. CAKE Methodology

learning from noisy labels that may occur with the domain shift.

We further regularize the knowledge learned by the student through MixUp [34]

and employ the following interpolation consistency training loss defined by [35].

Lmix(ft;Xt) = Exi
t,x

j
t∈Xt

Eλ=0.3

LKL(Mixλ (ft(x
i
t), ft(x

j
t)), ft/(Mixλ(x

i
t, x

j
t)))

(3.16)

where MixUp, Mixλ(a, b) is defined to be as follows

Mixλ(a, b) = λ · a+ (1− λ) · b (3.17)

Similar to the teacher model, we apply IM loss to the student to encourage the

label distribution to be uniform and unambiguous. Our final objective function for

the student network becomes

Lft = LKD + Lmix + LIM (3.18)

25

Chapter 4

Implementation Details

In this chapter, we discuss the various architectures used, datasets tested, different

parameters, and continual settings.

4.1 CAKE Models

For the student model shown in 3.1, we use the traditional ResNet-50 backbone for

a direct comparison to other domain adaptation methods that use the same back-

bone. For the teacher model, we primarily focus on ConvNeXt due to its lower data

requirements relative to transformer architectures while still keeping the attention

mechanism. However, we also test Swin and ViT as other potential teachers and

compare their results. The parameter size of each model that uses an image size of

224× 224 is shown in Table 4.1.

Model Image Size Num Parameters

ResNet 224× 224 23M

ConvNeXt 224× 224 89M

ViT 224× 224 86M

Swin 224× 224 88M

Table 4.1: Information about each backbone architecture used.

26

Chapter 4. Implementation Details

4.2 DataSets

To analyze and test our models, we use three standard domain adaptation datasets:

Office-31 [6], OfficeHome [7], and DomainNet-126 [8].

4.2.1 Office 31

The Office31 dataset [6] is a small domain adaptation dataset consisting of 4110

images from 31 different categories. This dataset consists of 3 domains: Amazon

(A), DSLR (D), and Webcam (W). Seen in Figure 4.1 are 4 samples of the classes

across 3 domains.

Figure 4.1: Sample Images from Office-31 [6] Dataset

4.2.2 OfficeHome

The OfficeHome dataset [7] is a smaller domain adaptation dataset consisting of

15,500 images from 65 different categories. There are 4 domains in this dataset: Art

(Ar), Clipart (Cl), Real World (Rw), and Product (Pr). The 4 domains and 16 of

the 65 classes are shown below in Figure 4.2.

27

Chapter 4. Implementation Details

Figure 4.2: Sample Images from OfficeHome [7] Dataset

4.2.3 DomainNet-126

DomainNet-126 is a subset of the DomainNet [8] dataset. The DomainNet dataset is

a large UDA dataset with over 600,000 images across 6 domains: Clipart, Infograph,

Painting, Quickdraw, Real, and Sketch. Following [36], we use 126 classes from 4

domains: Real (R), Clipart (C), Painting (P), and Sketch (S) for evaluation. Shown

in Figure 4.3 are 16 of 126 classes across those 4 domains.

Figure 4.3: Sample Images from DomainNet-126 [8] Dataset

4.3 Parameter Settings

CAKE is implemented in PyTorch and uses Timm (PyTorch Image Model Library)

[37] to load models for analysis, training, and testing. We use the stochastic gradient

descent (SGD) [38] optimizer for training on all datasets. We fix the student’s learning

rate to 0.001 and the teacher’s learning rate to 0.001. The layers following the student

backbone have a learning rate of 10 times the learning rate of the backbone. The

28

Chapter 4. Implementation Details

classifier of the teacher architecture is frozen and is not updated. However, the

bottleneck layer of the teacher network has a learning rate of 0.001. Since we run

CAKE in an online setting, there is no need for a parameter for a number of epochs

as the model only receives the data once.

4.4 Continual Adaptation Setup

For the Office dataset, we use a mini-batch size of 32 and an incoming batch size of

32. We set the buffer size to 124 for 4 samples per class in a fully-balanced buffer.

For experiments on the OfficeHome dataset, we use a mini-batch buffer size of 32 and

an incoming batch size of 128. We set the buffer size to 520 samples resulting in 8

samples per class when the buffer is fully balanced.

4.5 Evaluation Metrics

The primary metric used to compare different models and different architectures is

the mean accuracy. Mean accuracy measures the model’s performance on different

image sets relative to the ground truth. It is defined by the number of labels the model

correctly classified divided by the total number of predictions performed by the model.

We test accuracy on domain generalization and domain adaptation. Generalization

is defined as testing a source-trained model on the target data, where inferences of

the class labels are derived from the source knowledge. Adaptation is fine-tuning the

source-trained model to the target data without knowledge of true labels. We use

the source-trained models as a way to compare how much the model performance has

improved after adaptation.

29

Chapter 5

Benchmarking and Adapt to Distill Experiments

5.1 Benchmarking Experiments

In order to have a fair comparison between both scenarios, we use three different back-

bones acting as the teacher models for our training pipeline: ViT, Swin, ConvNeXt.

Given its simplicity and distinction across different domains, we use the OfficeHome

dataset for our preliminary experiments. We also use the DomainNet-126 dataset due

to its larger number of training samples. In order to establish a baseline for the per-

formance of the different backbones, we compare multiple models that were trained

only on the source domain. Tables 5.1 and 5.2 contain the generalization performance

of the source-trained models on the target without any adaptation.

Table 5.1: Generalization performanceMean percent accuracy for source-trained mod-
els tested on the target domain for OfficeHome.

Backbone Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr Avg.

ResNet-50 44.5 65.6 74.1 54.0 61.2 64.7 52.1 41.2 73.3 65.1 46.2 78.0 60.0

ConvNeXt 72.9 86.0 89.3 82.6 85.2 87.5 80.2 67.9 89.9 82.6 70.2 89.7 82.0

ViT 50.5 82.5 86.8 74.3 82.7 84.3 73.2 50.4 88.2 77.7 49.8 87.6 74.0

SWIN 70.1 85.2 89.0 82.3 86.8 88.1 80.0 66.4 89.4 83.3 68.4 90.4 81.6

30

Chapter 5. Benchmarking and Adapt to Distill Experiments

Table 5.2: Generalization performanceMean percent accuracy for source-trained mod-
els tested on the target domain for DomainNet-126.

Backbone C → P C → R C → S P → C P → R P → S R → C R → P R → S S → C S → P S → R Avg.

ResNet-50 47.7 61.3 48.7 55.0 74.8 50.0 57.6 63.4 48.6 57.1 52.5 60.2 56.4

ConvNeXt 74.0 83.3 72.6 75.8 88.2 70.8 74.8 79.2 68.5 76.8 76.4 83.5 77.0

ViT 70.7 80.7 67.4 70.7 85.9 60.3 67.7 74.5 58.2 74.7 74.2 82.0 72.2

SWIN 74.2 83.7 71.5 76.3 88.0 68.5 75.1 78.5 67.6 77.4 75.9 83.8 76.7

With these baselines established, we adapt the source-trained models to each

target domain using the adaptation strategy mentioned in Section 3.4.1 with IM and

Mixup losses, and the pseudo labeling algorithm. We show the updated performance

of each backbone on the target domains in Tables 5.3 and 5.4 for OfficeHome and

DomainNet-126 datasets respectively.

Table 5.3: Adaptation performanceMean percent accuracy using the SHOT framework
for target-adapted models tested on the target domain for OfficeHome.

Backbone Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr Avg.

ResNet-50 48.9 72.0 75.5 64.8 76.5 75.2 67.7 53.9 82.3 72.2 58.6 82.7 69.2

ConvNeXt 79.2 92.4 92.2 88.4 92.1 92.3 86.6 77.6 92.3 87.6 78.7 92.8 87.7

ViT 69.8 89.6 90.0 84.8 89.6 89.5 83.8 67.5 90.5 84.5 69.7 92.3 83.4

SWIN 76.2 91.5 91.7 87.4 92.0 92.0 86.6 77.0 91.7 87.9 76.6 94.2 87.1

Table 5.4: Adaptation performanceMean percent accuracy using the SHOT framework
for target-adapted models tested on the target domain for DomainNet-126.

Backbone C → P C → R C → S P → C P → R P → S R → C R → P R → S S → C S → P S → R Avg.

ResNet-50 61.2 77.3 59.7 68.4 80.1 61.1 68.1 66.3 58.2 68.8 63.2 76.4 67.4

ConvNeXt 79.2 90.1 76.5 79.4 90.4 77.1 79.5 81.4 76.1 79.5 80.5 89.5 81.6

ViT 76.2 86.9 71.8 77.5 87.9 70.9 74.7 77.1 66.5 80.2 78.2 87.7 77.9

SWIN 79.8 90.0 75.0 80.9 90.2 76.2 81.2 81.1 74.5 82.0 80.1 89.8 81.7

Comparing results in Tables 5.1, 5.2, 5.4, and 5.4, we see that ResNet performs sig-

nificantly worse than the other architectures across the dataset in generalization and

adaptation tasks. Attention-based architectures like ConvNeXt and Swin show sig-

nificantly better performance on the generalization compared to the adapted ResNet

31

Chapter 5. Benchmarking and Adapt to Distill Experiments

model. We then ask the question: is there a way to leverage these powerful architec-

tures to improve the performance of the ResNet model?

5.2 Adapt to Distill Experiments

Using insight from DINE [30], we discover that knowledge distillation is an effective

method of model compression. However, we encounter an interesting question: which

approach is superior - adapting the source-trained teacher before distilling to the

student model, or distilling the source-trained teacher and adapting with the student

model? In essence: is it better to adapt-to-distill or distill-to-adapt?

We begin by testing the first option: adapting to distill. We first adapt the

attention-based architecture using the teacher’s adaptation process mentioned in Sec-

tion 3.4.1. We then distill that knowledge down to the ResNet model. For the distill-

to-adapt experiments, we distill the source-trained teacher’s knowledge to the ResNet

model. We then adapt this ResNet model using the teacher’s adaptation process. We

provide a quantitative comparison of the OfficeHome and DomainNet-126 datasets in

Tables 5.5 and 5.6, respectively.

The “Source-Trained Teacher Distilled to ResNet” displays the student perfor-

mance in the distill-to-adapt process before adapting using the student model. The

“Adaptation with ResNet using SHOT” presents the results of the final performance of

the student network in the distill-to-adapt framework. The “Target-Adapted Teacher

Distilled to ResNet” displays the performance of the student model after learning from

the adapted teacher in the adapt-to-distill mode.

32

Chapter 5. Benchmarking and Adapt to Distill Experiments

Table 5.5: Accuracy of ResNet-50 for Adapt to Distill or Distill to Adapt on OfficeHome.

Teacher / Mode

Source-Trained

Teacher Distilled

to ResNet

Adaptation with

ResNet using SHOT

Target-Adapted

Teacher Distilled

to ResNet

ViT 74.1 74.8 80.0

Swin 75.9 76.2 82.4

ConvNeXt 73.0 76.2 82.3

The results in Table 5.5 illustrate that when using the source-trained teacher,

ResNet adapts to the target data better than if it had adapted by itself. When that

same ResNet model adapts to the target domain, there is an increase in performance

ranging from 0.3% to 3.2%. However, if we adapt the teacher network before distilling,

there is an average accuracy increase of 5.9% - 9.3%.

Table 5.6: Accuracy of ResNet-50 for Adapt to Distill or Distill to Adapt on DomainNet-
126.

Teacher / Mode

Source-Trained

Teacher Distilled

to ResNet

Adaptation with

ResNet using SHOT

Target-Adapted

Teacher Distilled

to ResNet

ViT 75.9 73.5 78.0

Swin 77.5 74.3 80.1

ConvNeXt 77.2 74.5 80.1

The DomainNet-126 results in Table 5.6 reveal similar results to the OfficeHome

experiments. When distilling from the source-trained teacher, ResNet learns the tar-

get data better than if it had adapted to the target data by itself. However, every in-

stance of ResNet adapting from the distilled model showed a negative transfer, which

means that the performance of the model decreased after the adaptation process.

This is because the generalization capability of the attention-based architecture is

33

Chapter 5. Benchmarking and Adapt to Distill Experiments

much better than the pseudo-labeling and clustering algorithm derived using ResNet.

Adapting to distill using the DomainNet dataset resulted in an average increase of

2.1% - 2.9%.

It can be concluded from these experiments that it is much better to adapt to

distill, instead of distilling to adapt. Since the attention-based models generalize

better on the target data, they will adapt to the target data more effectively. By

leveraging the knowledge gained from the attention-based architecture while adapting

ResNet, we help ResNet adapt to the target domain better than if it had adapted on

its own. With confidence in our methods from these results, we move to implement

knowledge distillation in the continual paradigm.

34

Chapter 6

Results for the CAKE Framework

In this section, we evaluate the CAKE framework against current state-of-the-art

(SOTA) adaptation methods and compare our results against established benchmarks

as well as the accuracy of the teacher models. In order to understand the importance

of different parameter settings and components, we conduct ablation studies.

6.1 Comparison to State-of-the-Art

To test our framework, we use three standard domain adaptation datasets: Office-31

[6], OfficeHome [7], and DomainNet-126 [8]. We present two modes of adaptation:

full and continual. In the results tables, “Full” denotes a mode where the model has

access to the full target data and continual (Cont.) is the paradigm where the model

only has access to the data one batch at a time.

6.1.1 Results for Office-31 Dataset

Table 6.1 presents the results of the CAKE architecture compared to other architec-

tures on the Office-31 dataset. The CAKE architecture uses an incoming batch size

of 32 and a buffer size of 124 (4 samples per class) for the continual mode and uses

the top 3 class predictions for knowledge distillation.

35

Chapter 6. Results for the CAKE Framework

Table 6.1: CAKE results and comparison to state-of-the-art on the Office-31
dataset. * is used to denote the SOTA adversarial unsupervised domain adaptation meth-
ods that require access to both source and target domains during adaptation. Bold indicates
the top performance, while the underlined values indicate the second-best performance.

Method Target A→D A→W D→A D→W W→A W→D Mean

FixBi* Full 95.0 96.1 78.7 99.3 79.4 100.0 91.4

CoVi* Full 95.0 97.6 77.5 99.3 78.4 100.0 91.8

SHOT Full 94.0 90.1 74.7 98.4 74.3 99.9 88.6

DINE Full 95.5 94.8 81.2 98.5 82.0 99.7 91.9

SHOT Cont. 84.7 85.3 69.8 97.9 65.5 99.2 83.7

ConDA Cont. 84.7 88.7 72.8 98.2 70.0 99.8 85.7

CAKE Cont. 96.6 96.9 80.0 99.3 82.9 100.0 92.6

Based on the results shown in Table 6.1, we see that CAKE outperforms all

other continual methods in all adaptation categories by a significant margin. It is

consistently on par or better compared to the SOTA frameworks. When we compare

CAKE with methods such as FixBi and CoVi which have access to the source domain

during adaptation, we see that we outperform them by 0.8% on average. We attribute

this to CAKE’s methodology of leveraging the attention-based architecture for the

adaptation process. Despite DINE leveraging ViT for the preliminary adaptation

step, we still outperform DINE by 0.7% on average. Since we distill during the

adaptation process, and the teacher model improves on the target data, we have

much better pseudolabels used for adapting the student model.

Table 6.2: Comparison on Office-31. Accuracy comparison between the teacher and
student models of the CAKE architecture.

CAKE Model A→D A→W D→A D→W W→A W→D Mean

Teacher (ConvNeXt) 93.2 95.1 82.1 98.7 83.8 99.8 92.1

Student (ResNet-50) 96.6 96.9 80.0 99.3 82.9 100.0 92.6

36

Chapter 6. Results for the CAKE Framework

In order to understand the performance drop of knowledge distillation, we contrast

the accuracies of the teacher and student model in Table 6.2. We see in Table 6.2 that

the student has surpassed the teacher, possibly due to the bigger model overfitting on

the source data. We observe that before adaptation, the teacher performs better than

the student in most domain transfers. The student leverages better generalization

of the teacher to get a step up by utilizing better labels from the teacher during

distillation. We conjecture that increased performance comes from the information

maximization loss, which reduces ambiguity in the output label distribution.

6.1.2 Results for OfficeHome Dataset

In this section, we compare the performance of the CAKE framework against the

SOTA methods on the OfficeHome dataset. The CAKE architecture uses a continual

batch size of 128, and a buffer size of 520 (8 samples per class), and uses the top 3

class predictions for distillation.

Table 6.3: CAKE results and comparison to state-of-the-art on the OfficeHome
dataset. An * denotes the SOTA adversarial unsupervised domain adaptation methods
that require access to both source and target domains during adaptation. Bold indicates
the top performance, while the underlined values indicate the second-best performance.

Method Target Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

FixBi* Full 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

CoVi* Full 58.5 78.1 80.0 68.1 80.0 77.0 66.4 60.2 82.1 76.6 63.6 86.5 73.1

SHOT Full 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

DINE Full 64.9 87.4 88.8 80.5 89.6 87.8 79.0 62.9 89.1 81.5 64.6 90 80.5

SHOT Cont. 49.3 71.0 75.0 59.9 70.1 70.2 58.7 47.2 76.7 69.4 54.0 79.6 65.1

ConDA Cont. 54.9 75.2 79.4 65.9 75.3 77.0 64.5 53.5 80.0 73.0 55.9 81.8 69.7

CAKE Cont. 72.9 85.6 86.6 79.1 86.2 86.7 76.6 70.0 86.9 80.2 71.6 90.3 81.1

In the OfficeHome dataset, as seen in Table 6.1, CAKE outperforms all other con-

tinual methods by a significant margin by leveraging knowledge distillation. It should

be noted that with the OfficeHome dataset, domain transfers to Clipart perform the

worst among all architectures. Even though our framework does not match SOTA in

all categories compared to frameworks utilizing the full target domain, we outperform

37

Chapter 6. Results for the CAKE Framework

all other frameworks when adapting to Clipart by more than 6%. Despite only having

access to one batch of target data at a time, CAKE outperforms DINE by 0.6% on

mean accuracy. Another observation that Table 6.1 also shows is that even without

using source data or an intermediate domain, we outperform the adversarial methods

by 8% on average.

We compare the accuracies of the teacher and the student to understand the

distillation process and how much performance could be affected during distillation.

These results are presented in Table 6.4. We see that, despite ConvNeXt being 3

times the size of ResNet, its performance decreases only by 3% when adapting to the

OfficeHome dataset.

Table 6.4: Comparison on OfficeHome. Accuracy comparison between the teacher
and student models of the CAKE architecture.

CAKE Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

Teacher (ConvNeXt) 75.3 88.6 89.6 83.6 87.3 88.8 82.0 74.1 89.7 84.4 75.0 91.3 84.1

Student (ResNet-50) 72.9 85.6 86.6 79.1 86.2 86.7 76.6 70.0 86.9 80.2 71.6 90.3 81.1

6.1.3 Results for DomainNet-126 Dataset

In this section, we compare the performance of the CAKE framework against the

SOTA methods on the DomainNet-126 dataset. In these experiments, we utilize an

incoming batch size of 256, and a buffer size of 1024 (8 samples per class), and use

the top 3 class predictions for distillation.

38

Chapter 6. Results for the CAKE Framework

Table 6.5: CAKE results and comparison to the state-of-the-art on the Domain-
Net dataset. Bold indicates the top performance, while the underlined values indicate the
second-best performance.

Method Target C→S P→C R→C R→P R→S S→P Mean

SHOT Full 60.0 68.5 68.2 66.4 58.3 63.2 64.1

AdaContrast Full 58.0 68.6 70.2 69.8 61.5 65.9 65.7

AdaContrast Cont. 53.4 60.8 61.1 66.9 54.5 62.7 59.9

T 3 AR Cont. 60.9 66.8 70.2 70.0 59.8 64.1 65.3

DePT-G Cont. 72.5 74.2 74.8 78.3 68.5 77.2 74.3

CAKE Cont. 74.4 79.3 79.4 79.6 74.4 77.3 77.4

In the DomainNet-126 dataset, as seen in Table 6.5, CAKE outperforms AdaCon-

trast’s continual and full modes by a significant margin by leveraging an attention-

based architecture as opposed to a secondary ResNet model. AdaContrast uses a

FIFO architecture to store incoming samples but only uses those samples for cluster-

ing and generating pseudolabels. As it does not adapt to those images, the continual

paradigm’s data constraint negatively impacts AdaContrast despite having access to

those samples. By using the memory replay, CAKE can increase the amount of data

it uses to adapt.

The DePT-G framework utilizes a Vision transformer backbone for adaptation

and testing, however, CAKE significantly outperforms them despite using a weaker

testing backbone. We attribute this to our mitigation of the data dependency through

memory replay. Additionally, we compare CAKE to T 3 AR, since it also uses memory

replay to mitigate the more difficult data paradigm. CAKE outperforms T 3 AR by

a significant margin because of leveraging the generalization capability of the more

powerful architecture to generate better labels for adaptation.

We compare the performance of the teacher and the student to understand the

distillation process and the effects of the model compression. These comparisons are

39

Chapter 6. Results for the CAKE Framework

presented in Table 6.6.

Table 6.6: Comparison on DomainNet-126. Accuracy comparison between the teacher
and student models of the CAKE architecture.

CAKE C→S P→C R→C R→P R→S S→P Mean

Teacher (ConvNeXt) 78.1 79.5 79.3 82.1 77.2 80.9 79.5

Student (ResNet-50) 74.4 79.3 79.4 79.6 74.4 77.3 77.4

The results show that despite ConvNeXt being 3 times the size of ResNet, its

performance decreases only by 2.1% when adapting to the OfficeHome dataset.

6.2 Ablation Studies

6.2.1 Ablation Studies of Teacher Models

We benchmark Swin and ViT against ConvNeXt in their capabilities as teachers on

the Office-31 dataset. These results can be seen in Table 6.7.

Table 6.7: Comparing CAKE Teacher Architectures on Office-31. We use the
teachers presented in the preliminary experiments and benchmark their capabilities as teach-
ers.

CAKE Teacher A→D A→W D→A D→W W→A W→D Mean

ConvNeXt 96.6 96.9 80.0 99.3 82.9 100.0 92.6

ViT 93.2 95.9 78.6 98.9 80.3 100.0 91.1

Swin 97.0 96.6 76.7 99.3 79.7 100.0 91.5

We find that ConvNeXt, similar to the preliminary experiments in Section 5,

serves as the best teacher as it can generalize quickly and effectively. Additionally,

since it is not a Vision Transformer architecture, it can efficiently adapt to the smaller

dataset and serve as a better teacher.

As done with Office-31, we benchmark the teacher models on OfficeHome. These

results can be seen in Table 6.8. The results are consistent with our preliminary

40

Chapter 6. Results for the CAKE Framework

experiments that use the full target domain. Additionally, we find that ConvNeXt

can more efficiently adapt to the target domain and effectively distill that knowledge

to the student.

Table 6.8: Comparing CAKE Teacher Architectures on OfficeHome.

CAKE Teacher Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

ConvNeXt 72.9 85.6 86.6 79.1 86.2 86.7 76.6 70.0 86.9 80.2 71.6 90.3 81.1

ViT 67.7 85.5 84.9 77.8 86.2 85.5 78.3 66.7 86.8 81.2 69.4 89.8 80.0

Swin 69.5 85.5 86.9 77.3 86.6 86.3 74.3 65.8 86.9 79.8 69.0 90.1 79.8

6.2.2 Ablation Studies of r-Values

In addition to benchmarking different teachers, we examine the effect of adjusting the

number of predictions extracted from the teacher for student training. We vary the

number of top predictions from the teacher to the student. A value of r = 1 selects the

top class in the prediction and smooths out the other labels, while a value of r = K

uses the full prediction vector. The results for the CAKE framework on the Office-31

and OfficeHome datasets are shown in Table 6.9 and Table 6.10, respectively.

Table 6.9: Study on the Adaptive Label Smoothing. Results for the continual closed-
set UDA on the Office-31 dataset using the CAKE framework by adjusting the r-value.

Method A→D A→W D→A D→W W→A W→D Mean

CAKE (r = 1) 96.0 97.0 79.8 99.1 81.5 100.0 92.2

CAKE (r = 3) 96.6 96.9 80.0 99.3 82.9 100.0 92.6

CAKE (r = K) 95.4 96.8 79.6 98.9 81.4 100.0 92.0

Table 6.10: Study on the Adaptive Label Smoothing. Results for the continual
closed-set UDA on the OfficeHome dataset using the CAKE framework by adjusting the
r-value.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

CAKE (r = 1) 72.6 86.1 87.3 79.3 86.4 86.7 76.3 70.2 86.4 79.9 73.2 87.7 81.0

CAKE (r = 3) 72.9 85.6 86.6 79.1 86.2 86.7 76.6 70.0 86.9 80.2 71.6 90.3 81.1

CAKE (r = K) 70.4 84.3 85.7 77.5 85.2 85.1 74.8 68.9 85.7 78.5 72.0 89.4 79.8

41

Chapter 6. Results for the CAKE Framework

Through adjustments of the r-value, we find that CAKE where r = 3 helps the

model to perform better. With r = K, we find a drop in performance. We attribute

this to the noisier labels of the raw output especially since we don’t have access to

the full target data, lowering the teacher’s adaptive capabilities.

We also conduct ablation studies on the OfficeHome dataset to determine the

contribution of the different components of CAKE. We note in Section 3.4 that the

Lmix and LIM are some key techniques to apply during target adaptation. The

teacher model is likely to generate inaccurate or noisy labels due to the domain shift

and the unlabelled target data without these structural regularizations. Therefore,

we compare three main methods: CAKE (w/o Lmix and LIM), CAKE (w/o Lmix),

and CAKE. We test the improvement of the student when applying these techniques.

Table 6.11: Ablation Study of CAKE on OfficeHome Dataset Results for the
continual closed-set UDA on the OfficeHome dataset using the CAKE framework by testing
the different components.

CAKE Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean

w/o Lmix & LIM 70.0 84.7 85.4 76.8 85.0 85.2 73.5 67.8 85.1 77.5 70.8 84.8 78.9

w/o Lmix 70.6 84.6 85.7 77.3 85.3 85.2 75.0 68.3 85.7 78.3 71.6 89.8 79.8

CAKE w/ Lft 72.9 85.6 86.6 79.1 86.2 86.7 76.6 70.0 86.9 80.2 71.6 90.3 81.1

In 11 out of 12 domain tasks, the performance of CAKE improves when using

Lmix. Without LIM , the accuracy drops even more. This verifies the importance of

those components which help to adapt the model with the noisy target labels.

42

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presents CAKE, a novel framework for continual domain adaptation

through knowledge distillation. CAKE improves upon existing source-free and con-

tinual domain adaptation methods by leveraging knowledge distillation to extract

better labels when adapting to the target domain. We demonstrate that using a

strong teacher as well as distillation with structural regularization can significantly

improve the performance of domain adaptation tasks. Despite not having access

to the full target domain at once or access to the source domain, we demonstrate

that CAKE can outperform other frameworks by leveraging an attention-based ar-

chitecture. We demonstrate how to leverage the feature extraction and generalization

capabilities of attention-based architectures and use that to better adapt a ResNet

model. Our results show that CAKE outperforms SOTA UDA methods on various

datasets at a fraction of the data storage requirements. By improving the accuracy

of these domain adaptation tasks, we are able to continue expanding the application

areas.

43

Chapter 7. Conclusion and Future Work

7.2 Future Work

While it achieved state-of-the-art results, CAKE can be expanded with newer models

as teachers and smaller models as students. With the current progression of computer

vision research, novel models and architectures are being released swiftly. A future

study looking into new architectures may reveal a significant increase in performance

and efficiency.

In this work, we do not consider partial-set UDA where all the classes seen in

the source domain may not be found in the target domain. Within the continual

adaptation process, we identify the buffer as a space for improvement as it can store

samples in the buffer over various incoming batches. ADAContrast [29] proposes using

a FIFO architecture to continually receive samples to extract pseudolabels. This can

be applied to the buffer to store samples, which will increase the amount of data

the models learn. Additionally, the condition for storing samples in the buffer is a

possibility for improvement. By applying techniques from noisy label learning [39],

the buffer can select samples that the student is not confident about and the teacher

is confident of. This can better leverage the teacher network as it results in better

samples and labels for the student to adapt.

44

Bibliography

[1] Phung and Rhee, “A high-accuracy model average ensemble of convolutional
neural networks for classification of cloud image patches on small datasets,”
Applied Sciences, vol. 9, p. 4500, 10 2019.

[2] M. Gurucharan, “Basic cnn architecture: Explaining 5 layers of convolutional
neural network,” URL: https://www. upgrad. com/blog/basic-cnn-architecture,
2020.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is
worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020.

[5] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in Proceed-
ings of the IEEE/CVF international conference on computer vision, 2021, pp.
10 012–10 022.

[6] S. Herath, M. Harandi, and F. Porikli, “Learning an invariant hilbert space for
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 3845–3854.

[7] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hash-
ing network for unsupervised domain adaptation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 5018–5027.

[8] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching
for multi-source domain adaptation,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 1406–1415.

[9] I. Kuzborskij and F. Orabona, “Stability and hypothesis transfer learning,” in
International Conference on Machine Learning. PMLR, 2013, pp. 942–950.

[10] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation,” in International
Conference on Machine Learning. PMLR, 2020, pp. 6028–6039.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

45

BIBLIOGRAPHY

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25.
Curran Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.
cc/paper files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” in International conference on machine learning. PMLR,
2019, pp. 6105–6114.

[15] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet
for the 2020s,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 11 976–11 986.

[16] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural net-
work,” arXiv preprint arXiv:1503.02531, 2015.

[17] X. Cheng, Z. Rao, Y. Chen, and Q. Zhang, “Explaining knowledge distillation
by quantifying the knowledge,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 12 925–12 935.

[18] Q. Guo, X. Wang, Y. Wu, Z. Yu, D. Liang, X. Hu, and P. Luo, “Online knowledge
distillation via collaborative learning,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 11 020–11 029.

[19] J. Yang, X. Peng, K. Wang, Z. Zhu, J. Feng, L. Xie, and Y. You, “Divide to adapt:
Mitigating confirmation bias for domain adaptation of black-box predictors,”
arXiv preprint arXiv:2205.14467, 2022.

[20] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsu-
pervised visual representation learning,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.

[21] P. Panareda Busto and J. Gall, “Open set domain adaptation,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 754–763.

[22] S. Cui, S. Wang, J. Zhuo, C. Su, Q. Huang, and Q. Tian, “Gradually vanishing
bridge for adversarial domain adaptation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2020, pp. 12 455–12 464.

[23] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative
domain adaptation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 7167–7176.

[24] J. Gama, Knowledge discovery from data streams. CRC Press, 2010.

46

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

BIBLIOGRAPHY

[25] J. Gama, R. Sebastiao, and P. P. Rodrigues, “On evaluating stream learning
algorithms,” Machine learning, vol. 90, pp. 317–346, 2013.

[26] A. M. N. Taufique, C. S. Jahan, and A. Savakis, “Conda: Continual unsupervised
domain adaptation,” arXiv preprint arXiv:2103.11056, 2021.

[27] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–2030,
2016.

[28] J. Liang, D. Hu, Y. Wang, R. He, and J. Feng, “Source data-absent unsupervised
domain adaptation through hypothesis transfer and labeling transfer,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp.
8602–8617, 2021.

[29] D. Chen, D. Wang, T. Darrell, and S. Ebrahimi, “Contrastive test-time adap-
tation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 295–305.

[30] J. Liang, D. Hu, J. Feng, and R. He, “Dine: Domain adaptation from single and
multiple black-box predictors,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 8003–8013.

[31] D. Ji and M. A. Wilson, “Coordinated memory replay in the visual cortex and
hippocampus during sleep,” Nature neuroscience, vol. 10, no. 1, pp. 100–107,
2007.

[32] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning dis-
crete representations via information maximizing self-augmented training,” in
International conference on machine learning. PMLR, 2017, pp. 1558–1567.

[33] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy
minimization,” in Advances in Neural Information Processing Systems,
L. Saul, Y. Weiss, and L. Bottou, Eds., vol. 17. MIT Press, 2004.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/2004/file/
96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf

[34] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empir-
ical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[35] V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, A. Solin, Y. Bengio, and
D. Lopez-Paz, “Interpolation consistency training for semi-supervised learning,”
Neural Networks, vol. 145, pp. 90–106, 2022.

[36] J. Liang, D. Hu, and J. Feng, “Domain adaptation with auxiliary target domain-
oriented classifier,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 16 632–16 642.

47

https://proceedings.neurips.cc/paper_files/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf

BIBLIOGRAPHY

[37] R. Wightman, “Pytorch image models,” https://github.com/rwightman/
pytorch-image-models, 2019.

[38] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of
mathematical statistics, pp. 400–407, 1951.

[39] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning with
noisy labels,” Advances in neural information processing systems, vol. 26, 2013.

48

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Continual Domain Adaptation through Knowledge Distillation
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Table of Contents
	Introduction
	Introduction
	Thesis Contributions
	Motivation
	Document Structure

	Background
	Convolutional Neural Networks
	Attention-Based Architectures
	Image Classification
	Knowledge Distillation
	Unsupervised Domain Adaptation
	Continual Learning
	Related Work

	CAKE Methodology
	Continual Domain Adaptation through Knowledge Distillation
	Continual Domain Adaptation
	Source Training
	Target Adaptation
	Teacher Model Adaptation
	Student Model Adaptation

	Implementation Details
	CAKE Models
	DataSets
	Office 31
	OfficeHome
	DomainNet-126

	Parameter Settings
	Continual Adaptation Setup
	Evaluation Metrics

	Benchmarking and Adapt to Distill Experiments
	Benchmarking Experiments
	Adapt to Distill Experiments

	Results for the CAKE Framework
	Comparison to State-of-the-Art
	Results for Office-31 Dataset
	Results for OfficeHome Dataset
	Results for DomainNet-126 Dataset

	Ablation Studies
	Ablation Studies of Teacher Models
	Ablation Studies of r-Values

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

