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Abstract 

 Light detection and ranging (lidar) forest models are important for studying forest composition 

in great detail, and for tracking objects in the understory.  In this study we used DIRSIG, a first-

principles and physics-based simulation tool, to turn the lidar data into voxels, towards classifying 

forest voxel types.  A voxel is a 3D cube where the dimension represents a certain distance.  These 

voxels are split into categories consisting of background, leaf, bark, ground, and object elements.  

Voxel content is then predicted from the provided simulated and real National Ecological Observation 

Network (NEON) data.  The inputs are 3D neighborhood cubes which surround each voxel, which 

contain surrounding lidar signal and content type information.  Provided simulated data are from two 

sources: a VLP-16 drone, which collects discrete lidar data close to the canopy, and the NEON 

Airborne Observation Platform (AOP), which is attached to an airplane flying 1000 m above ground 

level and collects both discrete and waveform lidar data.  Different machine learning algorithms were 

implemented, with 3D CNN algorithms shown to be the most effective.  The Keras library was used, 

since creating the layers with the sequential model was regarded as an elegant approach.  The simulated 

VLP-16 waveform data were significantly more accurate than the simulated NEON waveform data, 

which was attributed to its proximity to the canopy.  Leaves and branches exhibited acceptable 

accuracies, due to their relatively random shapes.  However, ground and objects in both cases had very 
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high accuracy due to the high intensities and their rigid shapes, respectively.  A sample of real NEON 

waveform lidar data was used, though the sample primarily focused on the canopy region; however, 

most of the voxels were correctly predicted as leaves.  Additional channels were added to the input 

voxels in order to improve accuracy.  One input parameter which proved to be very useful were the 

local z-values of each input array.  Additionally, the Keras Tuner framework was used to obtain 

improved hyperparameters.  The learning rate was reduced by a factor of 10, which provided slower, 

but steadier convergence towards accurate predictions.  The resulting accuracies from the predictions 

are promising, but there is room for improvement.  Different ML algorithms that use the point cloud 

should also be considered.  Further segmentation of forest classes is another possibility.  For example, 

there are different types of trees and bushes, so each tree or bush could have its own unique classes, 

which would make predicting the shapes much easier.  Overall, discovering a method for accurate 

object prediction has been the most significant finding.  For the ground truth models, the best object 

precision is approximately 99% and the best recall is 78%. 
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Figure 34: Predicted output of the real data model (50 m x 50 m).  Leaf predictions visually appeared to 

be accurate, given that the top canopy is mostly composed of leaves, and the leaf distribution shapes 

are mostly random.  Bark predictions also seem on par, since bark is usually surrounded by leaves in a 
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Introduction 
CONTEXT 

 Forests support many ecosystem services for modern civilizations, and contribute to the health 

of our society and the global ecosystem.  They form the habitats of countless plant and animal species, 

and are a critical part of climate regulation via processes such as carbon capture [1, 2].  However, 

tracking forest dynamics and traits in an efficient, orderly manner requires specialized monitoring and 

measurement methods.  One technique for assessing forest structural traits is light detection and 

ranging (lidar).  In fact, modern lidar systems have sufficiently advanced to the extent where they can 

form the basis of remotely sensed forest structural measurements [3, 4, 5]. 

 Structural remote sensing of forests was initially performed via electro-optical sensing or 

synthetic aperture radar (SAR).  SAR systems emit low-frequency pulses capable of measuring tree 

height or penetrating forest canopies to detect the ground and static targets [6].  However, the precision 

and recall of results from older or heterogeneous forests was deemed to be inadequate.  For example, 

optical sensors could not properly measure the above ground biomass (AGB) values of re-grown 

forests that are older than 10-15 years [7].  Additionally, models generated from SAR backscatter 

returns typically are insensitive to AGB values that were equal to or greater than 60 Mg/ha [8].   

 Lidar, by contrast, can directly measure structural information of forests, due to high laser pulse 

and scanning rates, both of which enable dense 3D point cloud measurements [9].  Lidar has been 

utilized in this domain for at least the past 30 years.  Typical structural measurements that can be 

analyzed via lidar systems include tree height, biomass, leaf area index (LAI), forest element shapes, 

and voxel fills, to name a few [3, 4, 5]. 

 Lidar operates by emitting a pulse of light energy at a specific wavelength, and then through 

measuring the number of photons which return after scattering as a function of time [10]. So-called 

“discrete” lidar systems identify only the locations of the return peaks (x, y, z, or 3D position), which 
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generally correspond to solid physical objects.  Full-waveform lidar (FW lidar) systems, on the other 

hand, digitize the entire backscattered waveform as a function of time [11], which can be used to 

characterize different kinds of forests, including older or heterogeneous forests.  However, a 

comprehensive understanding of the lidar waveforms’ propagation through and interaction with forest 

elements remain a daunting task, given the structural complexity of most forests and the challenges 

related to radiative transfer modeling in such environments.  It is in this context that simulation could 

play a critical role in our furthering the knowledge of radiative transfer in forest settings. 

 The Rochester Institute of Technology (RIT) has created a scene simulation tool, called Digital 

Imaging and Remote Sensing Image Generation (DIRSIG), to perform such radiative transfer modeling 

for virtual 3D scenes.  DIRSIG is first-principles and physics-based, meaning that the method is based 

directly on established scientific knowledge, from the ground-level to canopy levels.  Monte-Carlo ray 

tracing is used to determine what fraction of photons are absorbed or scattered by forest elements.  The 

scattering phase function determines scatter direction, followed by photon propagation [12, 13, 14].  

We will use DIRSIG in this study to reconstruct input array properties from FW lidar data and simulate 

waveform lidar propagation through the vertical forest structures. 

 The main objective of this research is to predict forest voxel fills and types from scattered 

waveform fraction arrays.  Reconstructing forest element shapes, which consist of scattered waveform 

fraction voxels, is important for predicting voxel fills.  Ideally, there would be little background noise 

in the input array to enable accurate predictions, while the virtual scene needs to be a close 

approximation of reality (complex forest structures).  The best method of voxel prediction, as current 

state-of-the-art, is via 3D convolutional neural networks (3D CNN).  This is because there are many 

classifiers and layers, which are helpful in predicting voxel fills based on surrounding 3D inputs [15, 

16, 17].  However, we will first provide a background to lidar sensing, simulation, and CNN 

approaches. 
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 One specific objective is assessing different machine learning models.  Support vector 

classification (SVC), single-stage CNN, and dual-stage CNN all will be compared to identify which 

models produce the best results.  Additionally, the quality of different types of input data will be 

evaluated, including simulated VLP-16 drone waveform lidar data, simulated NEON waveform lidar 

data, and real-world waveform lidar data.  Simulated VLP-16 data are far more likely to be accurate 

overall, given the data density (altitude and flight parameters).  Finally, the best model hyperparameters 

will be determined by testing the model on computer servers with different capabilities, and by using a 

model tuner library.  More powerful servers should provide the opportunity to achieve far more 

accurate results. 

OBJECTIVES 

• Objective 1: Design 3D CNN algorithms to predict voxel ground truth forest categories 

from simulated lidar data. 

• Objective 2: Evaluate the accuracy of simulated VLP-16 waveform lidar data versus 

simulated NEON waveform lidar data.  VLP-16 data are collected close to the canopy, 

and NEON data from an altitude of 1000 m, whereas the specific lidar types are also 

different. 

• Objective 3: Evaluate whether prediction accuracies significantly can be improved by 

creating better input data channels, and through tuning the hyperparameters. 

THESIS LAYOUT 

Background 

 This chapter provides a more in-depth background of the history of remote sensing in the 

forestry domain. An overview of how CNNs work and how they are structured also is given.  Basic 

terms and methods are identified in more detail than what would be found in subsequent chapters. 

 

Methods 

 This chapter discusses the provided data and voxel algorithms in significant detail.  All the 

data were collected from the Harvard Forest, and the category areas were measured for each voxel.  

The SVC and 3D CNN algorithms which were used to predict categories are examined.  Sequential 
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modeling is used to design the CNN algorithms.  Finally, there is an overview of the Keras Tuner 

library, which was used to pick the best hyperparameters. 

 

Results 

 This chapter provides and discusses the results from all the simulations.  The VLP-16 models 

were relatively accurate, which was attributed to the drone data being collected from right above the 

canopy.  NEON models, however, were far less accurate due to the 1000 m height for data collection.  

Additionally, the NEON system is based on waveform lidar data which contains far more noise than 

discrete return data.  Different methods for data collection were compared with each other.  Overall, 

ground and object voxels performed extremely, likely due to their predefined, rigid shapes.  

Additionally, there is an example of real data, which mostly consists of the top canopy, correctly 

predicted to mostly consist of leaf voxels. 

 

Summary 

 This chapter summarizes the work done at the time of writing, presents the current 

conclusions, and describes future work and improvements to be considered for continuation of the 

research topics. 

 

SCIENTIFIC CONTRIBUTIONS 

• We created a 3D CNN algorithm where every input contains the surrounding 

neighborhood of each voxel, and developed a method to reconstruct ground truth 

training and predicted test data. 

• We demonstrated that simulated VLP-16 data are more accurate than simulated NEON 

data, likely due to the close range of collection, as well as other flight parameter that 

influence data density.  For both datasets, ground and objects had high accuracies due to 

high intensities and predictable shapes. 

• We discovered that larger input windows yielded more accurate results, which was 

attributed to the greater amount of available data. 

• Finally, we used hyperparameter tuning to significantly lower the learning rate, resulting 

in greater overall accuracy through a longer time period. 
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Background 
LIDAR BASICS 

 Lidar technology is based on active sensing, where a system emits the energy that is used for 

measurement.  This is opposed to passive sensing, such as electro-optical telescopes, which measure 

energy from an independent source that is emitted by or backscattered from a designated target.  Lidar 

emits laser beam pulses, and thus detects a series of backscattered returns separated by a time delta.  

Because the photons in each laser pulse travel at the speed of light (3x108 m/s), the distance between 

the sensor and the target can be calculated based on the time elapsed between emission and detection.  

This distance method can be utilized to generate a 3D point cloud when the location and line-of-sight 

from the sensor are also known [9]. 

 The general and approximate equation for lidar range measurements from an airborne laser [10] 

is outlined in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1: 

𝑅 = 𝑐
∆𝑡

2
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

where R is the direct measured distance from the sensor to the designated target, c is the speed 

of light in the Earth’s atmosphere, and Δt is the time-period from initial emission to the return pulse 

arrival.  The laser twice traverses the total distance in the time period, so the time period is initially 

halved, before being multiplied by the speed of light to determine the distance. 

If the sensor’s rectangular coordinates and angular direction (roll, pitch, and yaw) are known in 

3D space, coordinate information can be determined for each measurement.  The coordinate 

information can be used to generate a 3D point cloud in each coordinate reference system, where a GPS 

sensor typically determines the latitude, longitude, and altitude of the lidar sensor.  Additionally, an 

inertial measurement unit (IMU) sensor is used to measure the lidar sensor’s roll, pitch, and yaw [18]. 

 The varying coordinates and look angles (see Figure 1) are indicated in the FUSION lidar 

processing software suite manual [19], as an example.  Generating lidar point clouds using this method 
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requires precise and accurate timing to correctly return the data points; otherwise, the structural 

measurements will be inaccurate, due to several system detection inconsistencies or errors.  The GPS 

sensor is the most reliable component, because satellite data are constantly being received from an 

onboard atomic clock.  Therefore, this sensor is used to synchronize the time-stamps of the lidar 

sensors and the IMU sensor [20]. 
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 Lidar systems have been utilized heavily by governmental, scientific, and industrial research for 

over 30-40 years.  These systems can capture high-resolution structural information over a wide variety 

of distance scales.  Organizations such as the National Aeronautics and Space Administration (NASA), 

the U.S. Military, and the National Ecological Observatory Network (NEON) all use lidar to capture 

 

Figure 1: Diagram of different geometric properties involved in point cloud generation originating 

from airborne laser scanners [16]. 
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data for landscapes and forests.  NEON, for example, uses lidar data to assess land use change, 

vegetation structure and properties, and climate change, among other phenomena [21]. 

 In recent years, research has shown that flight parameters, such as flight pattern and overlap, 

have a significant impact on the quality of captured data.  For instance, “flying low and slow” has been 

shown to be the optimal setup to obtain high-resolution point clouds [22].  Additionally, good sensor 

overlaps and multiple views have been shown to improve point density within a point cloud.  However, 

there is not much knowledge currently as to how these parameters affect canopy penetration rates, point 

density, and occlusion zones [23, 24].  Here we intend to simulate an operational waveform lidar 

system to develop a CNN-based approach to voxel classification. Flight parameter optimization thus 

falls outside the purview of our study, but should be explored in future efforts. However, a brief 

discussion of how we visualize and analyze waveform lidar data is worthwhile, especially in the 

context of voxels. 

LIDAR AND VOXEL VISUALIZATIONS 

 The methodology of using 3D binning to separate lidar data into high spatial resolution voxels 

is well-established [25, 26, 27].  There are many potential applications, some of which include studying 

forest volume, element classification, and forest/type area distribution.  More specifically, voxel-based 

analysis of forests has also been utilized for tree heights, densities, and crown projection area [28].  For 

this study, the main objective is to use full waveform (FW) lidar to analyze forest materials.  Three 

recent studies, using both discrete return and full-waveform lidar data, published from 2014-2017, are 

especially relevant. 

 Hagstrom et al. created voxel-based modeling methods that used discrete return lidar data for 

several purposes.  These methods, one shown in Figure 2, include voxel transmission, data quality 

assessment, line-of-sight mapping, and lidar-image fusion.  Discrete return values in voxel transmission 

calculations produced far more accurate results compared to basic hit counting from a ground truth 
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simulation scene.  The authors showed that a 3-return discrete system accounts for 15% more 

backscattered waveform energy compared to the basic hit count.  The voxels were classified into four 

categories: leaf, bark, ground, and object.  Additionally, they demonstrated that a full-waveform system 

somewhat outperformed a three-return discrete system, which they attributed to the full-waveform data 

providing more information [29]. 

 

Figure 2: The main technique used by Hagstrom et al. to process waveforms [29].  The cumulative 

distribution is the sum of the area underneath the signal, and the transmission is equal to the current 

energy divided by the previous energy. 

In turn, Huang and You introduced a 3D CNN model to label 3D point clouds using minimal 

prior knowledge, without requiring a segmentation step and hand-crafted features.  The authors claimed 

that the model could handle large amounts of data.  Annotated training data and the input 3D point 

cloud were both voxelized and fed into the 3D CNN.  Voxel labels were generated and converted back 

into a point cloud.  One experiment on a 3D urban model resulted in 75% or higher prediction rates of 

all objects, except for uncategorized objects, many of which were predicted as trees.  The input size for 
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the 3D CNN in the pipeline was 203 voxels.  Additionally, there were two consecutive sequences of 

convolutional layers, followed by a max-pooling layer.  Finally, there is a fully-connected layer, a 

softmax layer, and eight object categories at the end.  One of these categories is background, and the 

other seven are building, tree, pole, car plane, wire, and others [30]. 

 Kukenbrink et al., on the other hand, created another voxel transversal algorithm, also from 

discrete return lidar data.  For this algorithm, basic ray-tracing and hit counting were used, along with 

the four-category system.  The main purpose of this paper was to assess the occlusion of canopy 

vegetation that was measured from airborne lidar data.  High resolution terrestrial laser scanning (TLS) 

for a field plot was used to evaluate the lidar collection parameters.  Results showed that 28% of the 

vegetation elements detected by the TLS system were not detected by a corresponding ALS system, 

mainly due to occlusion.  A voxel size of 0.5 m resulted in the observed canopy being only 20% of the 

total canopy volume, and the occluded and unobserved canopies 40% each of the total volume.  

Additionally, a larger flight strip overlap was found to significantly increase observed canopy volume 

due to angles and pulse density [24]. 

 Finally, Hancock et al. used FW lidar data to develop predicted fractional covers for each 3D 

voxel.  This method is a significant advancement in terms of prediction accuracy, which was based on 

target reflectance assumptions, such as that the denoised waveform is a sum of n Gaussians, and that 

the visible target area is representative of the obscured target.  The algorithm parameters were 

calibrated using terrestrial laser scanning (TLS) data from eight locations for various 3D vegetation 

structures.  For the TLS data, all voxels were assumed to have a unit size of 0.5 m. 

This study is considered to represent a significant step in terms of waveform voxelization 

approaches, since ALS data were correctly measured at 1.5 m horizontal and 50 cm vertical resolution.  

Additionally, understory vegetation and canopy structure were also successfully measured.  Another 

result was that full-waveform data were shown to contain far more relevant information than discrete 
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return lidar or Gaussian decomposition.  Finally, various structures within the closed canopy were 

identified, which was not possible with earlier methods.  The sparse understory and pathways, obscured 

by trees, were mapped at a 1 m height above ground.  Buildings were mapped at a 3 m height, and tree 

tops were at a 10 m height [31]. 

These studies all resulted in good predictions using different types of training data.  These 

include single discrete returns, multiple discrete returns, and full-waveform data.  However, all these 

methods use point-cloud data, as opposed to voxel data.  The main advantage of using training voxel 

data is that each object is segmented into several voxels, which are cubical units.  This arrangement 

allows the classification algorithm to better detect and categorize overlapping elements, arguably 

resulting in greater overall accuracy.  Next, we will discuss the background and utility to a simulation-

based approach to address these shortcomings. 

DIRSIG AND PHYSICS-BASED MODELING 

 There are many software tools available to simulate plausible digital imagery and other data 

products of virtual 3D scenes.  These tools typically use physics-based algorithms to calculate the 

spectral radiance that reaches an imaging system or other photon-detecting device, after interaction 

with a virtual representation of a real-world scene.  The fidelity of the overall simulation is heavily 

dependent on the fidelity of the virtual scene, regardless of the software tool.  Therefore, to represent 

forest elements for lidar simulations, both the geometry as well as the reflectance, transmission, and 

absorption parameters of the forest canopy should all be accurately modeled.  These parameters should 

be modeled in the visible and near-infrared regions of the electromagnetic spectrum, since these regions 

match the wavelength range of operational lidar sensors [32]. 

 We used the Digital Imaging and Remote Sensing Generation (DIRSIG; V5) tool for this 

research.  DIRSIG has been continuously developed over the last 30 years at the Rochester Institute of 

Technology (RIT) Chester F. Carlson Center for Imaging Science (CIS).  This tool is first-principles 
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and physics-based for the domain of unpolarized electro-optical radiometric transport [25].  I.e., the 

simulation methods do not originate from derived high-level approximations, but rather from 

fundamental physical principles in the realm of geometric optics and visible-to-infrared 

electromagnetism.  DIRSIG can produce a variety of synthetic data products, including multispectral 

imagery, hyperspectral imagery, and both discrete and waveform lidar returns.  Additionally, DIRSIG 

has been referenced in over 1100 research papers that cover a wide variety of applications, some of 

which are listed below. 

 DIRSIG uses a Monte-Carlo path tracing method to determine the photon absorption and scatter 

percentages.  In other words, the algorithm integrates over all the incident radiance at each surface 

point by constructing random transport paths.  These paths are distributed in accordance with the 

bidirectional scattering distribution functions (BSDFs) of the attributed material properties.   

The main categories needed for the DIRSIG simulations (Figure 3) include scene geometric 

properties (describing the shapes of the objects), scene optical properties (describing the reflectance, 

transmission, and absorption of the object surfaces), and instrument properties (sensor type, location, 

and detailed parameters).  Atmospheric properties are defined by the MODerate resolution atmospheric 

TRANsmission (MODTRAN), a software package, or manual inputs [33].  Instrument forward 

propagation and scanning are simulated using sensor location, orientation, and temporal sampling 

information. 
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 DIRSIG has been used for a range of research applications, including assessing waveform 

deconvolution and preprocessing [34], evaluating the level of detail that can be extracted using a 1064 

nm wavelength waveform lidar system [11], optimizing in-field leaf area index measurements (LAI) 

[13], and detecting lidar backscatter phenomenology [14].  This approach has been shown to provide 

accurate representation of observed lidar phenomena.  For example, “below ground” system returns 

were initially thought to occur as a result of background noise and are often omitted in analyses.  

However, further research demonstrated that this phenomenon might result from near-ground dense 

grass and coarse woody biomass, while similar delayed returns were observed in operational waveform 

lidar data [35].  We will next detail our proposed to voxel classification, namely the convolutional 

neural network (CNN). 

 

Figure 3: Diagram of DIRSIG integration for the forest scene.  The scene geometry is integrated with 

the optical properties and system specifics.  This is to render the scene for different sensing modalities 

in a first-principles environment. 
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CNN ALGORITHMS 

 In the field of computer vision, a CNN is an analytical model which classifies images based on 

2D convolutions and other methods of feature learning [36].  A 2D convolution takes a square moving 

filter (Figure 4), and moves the center kernel pixel across every image pixel; note that padding usually 

is needed for the edges to account for shape mismatch.  Then, the points are replaced by values which 

are calculated using a convolution operation from the filter.  For the process of convolution, element-

wise multiplication is first performed by multiplying the image pixel and its surrounding values with 

the corresponding filter values.  The initial pixel value is then replaced by the sum of the multiplied 

values. 

 

Figure 4: Example diagram demonstrating the process of 2D convolution.  Each pixel in the filter is 

multiplied elementwise, then added together to form the new sum [37]. 

 The resulting array is known as a feature map, and there is one map for every filter which is 

used.  These feature maps are passed through a chosen activation function that determines whether 
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certain image features appear, based on certain conditions.  After this step is completed, one option 

would be to add more layered filters, which would increase the depth of a typical CNN.  Additionally, 

maximum pooling layers could also be implemented, where the largest values from each array region 

are selected and returned in a smaller array [37]. 

 Three-dimensional CNNs operate similarly (Figure 5), with the difference being that the input is 

a 3D cube and the filters and other layers are also cubes.  Note that the 3D version of a pixel is a voxel, 

or a “volumetric pixel”.  3D CNNs are mostly used on 3D image data, such as magnetic resonance 

imaging (MRI), computed tomography (CT) scans, and videos.  A video is a sequence of image frames 

in a row, implying that they contain useful spatial features when stacked in the third dimension.  

Generally, 3D CNNs produce more accurate results than 2D CNNs, because of the extra information 

per voxel and different layering that can be analyzed [15]. 

 

Figure 5: Example diagram demonstrating the process of 3D convolution.  In this instance, both input 

and filter must be 3D for elementwise multiplication [15]. 
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 3D CNNs also have been used for deep learning to classify lidar sensor data.  One method 

developed for this purpose, namely the point-voxel CNN, represents the input data in points and 

performs the convolutions in voxels.  This was done to make predictions efficient in terms of memory 

usage and computation [16].  Another example of a 3D CNN model that was developed is VoxNet, 

which uses an occupancy grid representation to continuously detect objects from a moving camera 

[17].  The 3D CNN for that model is supervised. 

 

Next, we will detail the methods and approaches in this study.  The site study and data, along with 

DIRSIG lidar point cloud preprocessing are examined.  Voxel algorithms which were studied include 

Support Vector Machines and 3D CNN methods.  Additional aspects of these algorithms are also 

discussed. 
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Methods 
SITE STUDY AND DATA COLLECTION 

 The research site for this study is a sizable portion of the 16.187 km2 Harvard Forest.  The 

Harvard Forest is owned and managed by Harvard University and is in Petersham, Massachusetts, 

USA.  Harvard Forest research is funded by the National Science Foundation and the Department of 

Energy.  The research site, seen in Figure 6, is called the “Mega Plot” and is located on a part of the 

Harvard Forest named Prospect Hill.  The dimensions of the Mega Plot are roughly 700 m x 500 m.  

One of the research projects on this plot was conducted by the Smithsonian Institute’s Forest Global 

Earth Observatory (ForestGEO), and took place from 2010 to 2014.  During this project, scientists and 

students from ForestGEO measured, tagged, and geo-located all woody stems greater than 1 cm 

diameter-at-breast height (DBH) [38]. 

 

 

Figure 6: High-definition view of the Mega Plot (left), shown as being part of the entire Prospect Hill 

site (right).  The wetlands in the center area lighter shade of green and stand above the rest of the 

forest. 
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POINT CLOUD PREPROCESSING 

 Simulated waveform lidar data were generated using Digital Imaging and Remote Sensing 

Image Generation (DIRSIG) sensor data parameters.  The simulated data were based on RIT’s 

simulated VLP-16 drone, in waveform lidar and not discrete (typical) lidar type, and NEON’s Optech 

Gemini airborne platforms, which were validated based on point density, footprint, and system specs.  

The simulated VLP-16 data generally have more background noise, but contain more three-

dimensional detailed information about the forest.  In contrast, the simulated NEON data have very 

little background noise due to the high altitude, though most of the data only consist of the main forest 

structural components and the ground. 

The VLP-16 drone (Figure 7) typically is flown at an altitude of 88 m above ground-level 

(AGL) and at a speed of 4-5 m/s.  On the drone, 16 infrared (IR) lasers, paired with IR detectors, are 

used to measure distances between the drone and the object.  The laser-detector pairs constitute an 

array which scans the environment for the entire 360o through rapid spinning.  Each laser fires at a 

frequency of 18.08 kHz and can register two returns per pulse.  The scanner has a forward-moving 

push broom design, because the lasers collect all the data at the front (Table 1).  This drone model can 

detect street signs, license plates, and lane markings.  In single-return mode, approximately 300,000 

points/second are detected and returned [39]. 

Table 1: Specifications of the VLP-16 lidar drone.  The resolution is limited, but there are 16 laser 

channels. 

VLP-16 lidar Specifications 

Channels 16 lasers 

Range Up to 100 m 

Range accuracy Up to ±3 cm 

FOV (Vertical) -15o to +15o 

Angular Resolution (Vertical) 2o 

FOV (Horizontal) 360o 

Angular Resolution (Horizontal) 0.1o-0.4o 
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Figure 7: The first set of simulated data is based on truth data from the Velodyne VLP-16 lidar sensor, 

which is integrated on a Matrice 600 unmanned aerial system (UAS).  The drone is a MX-1 sUAS 

remote sensing platform, developed by CIS faculty at RIT.  Additionally, the drone contains a Mako G-

419 RGB camera and ballast weight in place of the hyper-spectral camera [40].  

The reconstructed data, based on an earlier version of the drone, use a 21.7 kHz laser frequency.  

Therefore, there are many excessive simulated points.  One issue is that, due to errors with the sensor 

and post-processing techniques, some points do not land in the correct voxel, so they are incorrectly 

categorized.  The best way to reduce the margin of error, which is +/- 0.05 m, is to use a smaller voxel 

size [41]. 

 By contrast, the NEON Optech Gemini system (Figure 8) is flown at an AGL height of around 

1000 m at a speed of 50 knots, or approximately 92 km/hr.  The Gemini instruments are mounted in a 

rigid frame, which is installed in a Twin Otter aircraft, a type of light airplane.  Due to the high altitude, 

there is only one pixel, with a FOV of +/- 25o.  However, the laser fires at a rate of 100 kHz and can 

receive up to four returns/pulse (Table 2).  The scanner has a side-to-side whiskbroom design which 

uses more power, but adequately compensates for the high operational altitude [21]. 
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Table 2: Specifications of the NEON lidar system.  The Gemini waveform lidar system is operated at a 

much higher altitude than the UAS-based VLP-16 system. 

NEON lidar Specifications 

Operating altitude 1000 m 

Wavelength 1064 nm 

Pulse repetition 100 kHz 

Scan frequency 50 Hz 

Beam divergence 0.8 mrad 

Scan angle range ±18.5o 

Footprint size 0.8 m 

 

 

Figure 8: Rendering of the NEON Optech Gemini system.  Because of the high level of laser power, the 

apparatus needs to be flown in a light aircraft at a high altitude [42]. 

Voxelized representations of the truth data were generated using the VoxelizeHDF command 

line tool, which was created by Saunders et al. in order to generate reference voxel data from DIRSIG 

scenes for this project [43].  The coordinate boundaries of the VLP-16 dataset plots were taken from 
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the filtered version of Plot B, Dataset 3, which contains all the material types.  The probability of object 

detection is the highest for this plot, and there is a mixture of conifers and deciduous trees.  

Additionally, there are low LAI values due to canopy structure, which translates into the prevalence of 

dead wood, and multiple sub-canopy objects.  Each truth voxel contains the estimated background, leaf, 

bark, ground, and object area in m2 units.  The minimum (x, y, z) coordinates were (594.44, 50.51, -

12.78) m and the maximum coordinates were (647.6, 117.05, 14.41) m.   

The coordinate boundaries of the NEON plots were selected so that a truck and tent were 

included.  The minimum coordinates were (600, 75, -12.4) m and the maximum coordinates were (650, 

125, 20.08) m.  A second NEON plot of size 150 m x 150 m was created to test whether more data 

(voxels, structural variability) would yield better results.  This time, as shown in Figure 9, cars which 

were rotated at different angles, along with a tower, were included.  The minimum coordinates were 

(550, 0, -13.43) m and the maximum coordinates were (700, 150, 35.7) m. 
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Figure 9: Slice of the enlarged 150 m x 150 m NEON plot.  In this region, several cars (shown in 

black) are rotated at different angles for greater variety in truth data. 

The complexity of the reconstruction algorithm was based on the number of applicable 

waveform paths.  Initially, the reconstructed data were stored in multiple bin files and were extracted 

using a voxelizer Python script.  The script used the d5lidar library [44], also created by Saunders et 

al., along with an included for loop for extraction.  Each instance of reconstructed data contains the 

total scattered fraction of photons, the total remaining fraction of photons, and the number of voxel 

waveforms.  All these data instances are added to their corresponding voxels by coordinate location. 

The categories from the voxelizer are total absolute facet area (m2) per category.  They are 

disjoint, such that the total area for all facets in the voxel is the sum of the areas of the individual 

categories.  The area of an individual triangular facet, as seen in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2, is half the magnitude of 

the cross product of the edge vectors. 
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𝐴𝑓𝑎𝑐𝑒𝑡 = ||
1

2
𝐸1 ⨯ 𝐸2|| (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

For large facets that touch multiple voxels, as seen in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3, the area is distributed by randomly 

sampling N points on the surface of the triangle and then adding 
1

𝑛
𝑡ℎ of the facet area to the voxel 

containing each point [44]. 

 𝑣𝑜𝑥𝑒𝑙𝐴𝑡(𝑃𝑘) ← 𝑣𝑜𝑥𝑒𝑙𝐴𝑡(𝑃𝑘) +
1

𝑛
𝐴𝑓𝑎𝑐𝑒𝑡 for k = 1, …, n (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

There is a specific geometric ray, also known as a line-of-sight, for each waveform.  The ray 

starts at the platform and points downward into the scene at an angle.  Therefore, segments of the 

waveform should be measured against the structure of the voxel grid.  Not only does each ray intersect 

many voxels, each voxel will also be intersected by many rays.  The voxelized density field is created 

by calculating the average scattering density for each voxel.  Only the relevant portions of intersecting 

waveforms are used in calculating the values.  The method for estimating the average scattering density 

is the most important portion of the overall calculations.  The estimated scattering density is 

reconstructed on a voxel grid from the waveform data. The voxel grid is parameterized by the 

coordinates of its minimum and maximum corners and the number of subdivisions on the grid. The 

corners are chosen to cover the area of the interest, and the number of subdivisions typically is chosen 

to obtain approximately cubic voxels with an edge length between 0.5-1.0 meters. 

For each waveform, which may originate from either a real or simulated dataset, we distribute 

an estimate of the scattered energy, as a function of distance, to the voxels intersected by a cone-shaped 

distribution of rays concentrated around the associated central line-of-sight ray. This method contrasts 

with discrete data, where the average intensity of all the returns is taken for each voxel.  Note that if a 

ray intersects a voxel, it does so at exactly two points. The first intersection marks the entrance, nearer 

to the sensor, and the second intersection marks the exit, nearer to the ground. Each of these points 

corresponds to a distance from the sensor and thus an ordinate in the waveform curve. We evaluate the 

proportion of returned energy at the voxel in question as a ratio of waveform integrals: the ratio of the 
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integral of the waveform between the ray intersections to the integral of the waveform from the first 

intersection to the end. In other words, we evaluate the fraction of the remaining energy in the 

waveform which is accounted for by the voxel at hand. This calculation is consistent with a Beer-

Lambert law assumption, and thus helps account for the tendency of the waveform returns to decay 

with distance [45].  Lastly, we average the scattering estimates at each voxel after processing all 

waveforms by dividing the value at each voxel by the number of rays that contributed to it, but only if 

this number is non-zero of course. 

 Reconstructed data serve as the input for the machine learning algorithm.  The voxels of these 

data represent the relative scattering intensity as a function of spatial location, which is a unitless 

quantity between 0 (never scattering) and 1 (always scattering).  This is so each voxel contains the 

fraction of scattered photons which passed through that voxel.  Additionally, converting numbers in that 

range to a different range is facilitated.  If more than one waveform passed through the voxel, the 

intensity fractions are divided by the number of waveforms to find the average.  Finally, in order to 

maintain reasonable processing/computational requirements, voxels were set to 0.5 m in size. 

For the reconstructed simulated VLP-16 waveform lidar data, such as the slice in Figure 10, 

relatively few waveform paths were used due to memory limitations.  As a result, the reconstructed data 

exhibited significant background noise, which was slightly above zero.  However, the ground line is 

clearly indicated by the gradient at the top of the bottom section’s high intensity region.  The basic 

canopy shapes and respective locations are also well-defined.   
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For the simulated NEON waveform lidar data, such as the slice in Figure 11, there is little 

background noise, due to the high altitude (1000 m) data capture.  Therefore, separating the forest from 

the background is relatively simple.  Since the data are returned as limited increments due to system 

power limitations, the plots resemble a series of interconnected rectangles.  Bark prediction is 

challenging, given the relatively limited data.  However, like the simulated VLP-16 data, the ground 

line is clearly indicated by the gradient at the top of the bottom section’s high intensity region.  Objects 

are easily distinguished based on their closeness to ground level and relatively high scattering 

intensities. 

 

 

 

Figure 10: 2D vertical slice of simulated VLP-16 waveform lidar data, showing the fraction of 

reflected photons for each voxel.  There is significant background noise. 
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The ground truth data also were generated by DIRSIG. This geometric scene is based on actual 

sensor data that were collected at the Harvard Forest.  The scene in Figure 12 contains over 100k 

geolocated plants and trees, with real world spectral and geometric features.  The DIRSIG scene file 

format utilizes the well-known Hierarchical Data Format Version 5 (HDF5) to represent real-world 

objects as geometric primitives, typically collections of triangles, associated with spectral material 

descriptions and other metadata.  A command-line program was written to process the DIRSIG HDF in 

order to establish the ground-truth voxelization.  

Figure 11: 2D vertical slice of simulated NEON waveform data, showing the fraction of 

reflected photons for each voxel.  The data is highly sparse because of the relatively high 

altitude (1000 m AGL) of the Gemini system. 
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 The user must input a region to voxelize, such that the boundaries are determined by the 

maximum and minimum X and Y coordinate values.  Additionally, the number of subdivisions for the 

array also must be specified.  The program then iterates all triangles in the scene which overlap the 

specified region and accumulates the total one-sided surface area present in each voxel.  The extraction 

results are stored in four binary files based on the type of forest item (class), which are distinguished by 

matching the material identifiers associated with the scene geometry against regular expressions.  

These class categories are background, foliage, bark, man-made objects, and ground voxels.  A 

background voxel is a voxel without any surface area. 

   The ground truth voxels are the output data for the machine learning algorithm.  Truth voxels 

contain five surface area values for each type of item contained within the voxel.  These voxels were 

also set to 0.5 m in size in order to maintain consistency with the input data.  The five categories are 

numbered in Figure 13 as background (0), leaf (1), bark (2), ground (3), and object (4).  The highest 

 

Figure 12: 3D point cloud plot of the Mega Plot, located on Prospect Hill.  There are over 100k 

geolocated plants and trees on this plot. 
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category surface area for each voxel is selected as the main fill, and the value of the voxel is set to the 

corresponding numbers as output labels. 

 

 Using maximum surface area to create the categories implies that each voxel mostly contains a 

single kind of forest object type.  This would be ideal if the voxel size were extremely small, so that a 

voxel could only contain a few small branches or a few leaves.  However, some voxels may contain 

two or even three class areas that are close to each other.  These voxels often are the most difficult to 

accurately predict.  Typically, they are located inside the center of the tree crowns.  One possible 

solution would be to figure out how to use smaller voxels when predicting data.  Another solution 

would be to create more categories, where the new voxel categories would contain roughly equal areas 

from two different classes.  After that, the categories would be classified again in another CNN model. 

 

Figure 13: Vertical slice of the ground truth data.  The leaves are green, and bark and ground 

are brown.  Objects, not pictured, are black. 
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 Finally, simulated VLP-16 or NEON waveform data were far more accurate at a lower than a 

higher altitude.  This is because the ground and objects are sampled in a denser configuration, and are 

located at a lower level as a result.  The point density is much higher, making simulation easier to 

perform due to a larger input dataset.  The real data, seen in Figure 14, are also reconstructed from 

waveforms.  However, most of the returns are from the canopy level.  This is because most real NEON 

data cannot reach the ground level due to the extensive foliage in closed-canopy forests.  This can be 

visualized through the attenuated raw waveforms, shown in Figure 15. 

 
Figure 14: Vertical slice of the real NEON data, showing the fraction of reflected photons for each 

voxel.  Most real waveforms are not able to reach the ground due to the foliage. 
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Figure 15: Sample of raw waveforms which were used to reconstruct the real NEON data.  Most 

waveforms were truncated at relatively near distances, showing that ground could not be reached. 

VOXEL ALGORITHMS 

Support Vector Machines (SVM) 

 A simple support vector classification (SVC) algorithm initially was used for voxel prediction.  

A classifier has only one unit that produces the activation output, so the SVC classifier was used on the 

dataset to test the effectiveness of a basic machine learning algorithm [46].  SVC is a type of support 

vector machine (SVM), which uses a supervised learning method [47].  The software library used to 

implement the algorithm was scikit-learn, which is available as free software [48].  SVC performs 

multi-class classification on the dataset.  The margins separating the hyperplane are maximized, and 

penalties are incurred when a sample is misclassified or too close to the boundary [49]. 
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 The inputs were 5x5x5 arrays surrounding each waveform voxel (zero padding was applied 

around the waveform voxel array for edge points).  This array size was chosen because a 3x3x3 

approach yielded poor accuracy, with recall and precision both less than 25%.  Anything larger had 

distinctly slow runtime; after two hours, I stopped running the program.  Classifiers only work with 1D 

inputs, so the inputs were all flattened to size 1x125.  Additionally, the z-coordinate (height above 

ground) of each voxel was appended to every input, since height arguably is a significant factor in 

predicting the ground voxels.  The five previously-mentioned voxel category labels were used as the 

respective outputs. 

 The data were split into training and testing sets, where each set contained 50% of the entire 

data.  There were almost 300,000 total voxels used in both training and testing, so a very specific 

percentage is not critically important in this case [50].  Additionally, to minimize the effect of the voxel 

location, the data were randomly shuffled at the beginning.  Voxel indices were temporarily appended 

to the data, so that the absolute location of each point was preserved.  The SVC algorithm creates 

several hyperplanes, which split the inputs into several classes.  Additionally, the kernel that is utilized 

in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4is the radial basis function (RBF) kernel.  The gamma parameter determines 

how much an input can influence nearby inputs.  Gamma was set to 0.001 because there are many 

samples, so a minimal influence per input is ideal for forming well-defined predictions over many 

scenarios [48].  Shrinking was not needed, since most arrays surrounding each voxel have a relatively 

similar shape. 

exp(−𝛾‖𝑥 − 𝑥′‖2) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

Although a convolutional neural network (CNN) utilizes far more resources than a conventional 

classifier, the corresponding predictions arguably are far more accurate [51].  A conventional classifier 

has only one unit that produces the activation output.  In a CNN, there are multiple units in a single 
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layer, which are all classifiers.  Additionally, there are multiple layers and activation functions which all 

interact with each other to generate a far more robust model. 

3D CNN 

 For the 50 m x 50 m plots, 11x11x11 arrays surrounding each waveform voxel were used as 

inputs.  Zero padding was used around the waveform voxel array for edge points.  This array size was 

chosen because a slightly larger array size would require more memory than was available, and very 

small sizes do not have enough data to be filtered for the two max pooling layers.  Every max pooling 

layer reduces the array dimension by half.  Therefore, the minimum dimension size would have to be 

greater than 22 = 4.  Ideally, the array size would be 15x15x15, since much more data could be utilized.  

The five voxel category labels were used as the respective outputs.  The prediction method used in this 

paper is unique, since 3D convolutional neural network (CNN) layers were used.  Adding a third 

dimension typically improves the resulting accuracy [52].  A 3D array is equivalent to several 2D slices 

stacked together in a certain direction, and changes that occur throughout that direction provide 

additional significant patterns. 

For the 150 m x 150 m simulated NEON arrays, the input parameters originally needed to be 

modified due to memory limits.  Two methods were implemented: The input array size was reduced to 

7x7x7 for the first method, and the input voxel dimension was increased to 1 m for the second method.  

Reducing the input array dimensions resulted in the inputs being approximately 25% of the original 

size.  Increasing the voxel dimension from 0.5 m to 1 m resulted in the maximum number of inputs 

being 12.5% of the original maximum number. 

However, when the program was run on the RIT Research Computing (RIT RC) Cluster [53], 

the 150 m x 150 m simulated NEON array could be run with 11x11x11 input arrays and the 0.5 m 

voxel dimension size.  The computation time was significantly faster, and a greater number of objects 

could be added for further testing.  Additionally, local z-values could be added as another filter.  This 

information provided more detail, which made categorizing objects easier. 
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Initially, all the input voxels with zero intensity were discarded.  This was done due to memory 

limitations on the local servers, and was based on the false assumption that all these voxels would be 

predicted as background.  When these voxels were re-added, background and leaf precision noticeably 

declined.  This is because the input voxels are not well-positioned with the output voxels.  However, 

this led to a more accurate understanding of the CNN algorithms.  The outputs seemed to be more 

averaged versions of the inputs in multiple directions. 

The data again were split into training and testing sets in all cases, where each set contained 

50% of the entire data.  Additionally, to minimize the effect of the voxel location, the data were 

randomly shuffled at the beginning.  Voxel indices were temporarily appended to the data, so the 

absolute location of each point was preserved.  The training truth data were converted to a binary class 

matrix to make processing easier.  A binary class matrix is a matrix of size nxn, where the left-to-right 

diagonal consists of ones, and all other values are zero.  Both training and testing waveform voxel array 

inputs were then converted to 5D arrays, since the fifth dimension contains the values and filters. 

Code for creating the fifth dimension was based on a program titled “3D CNN”, which was 

created by Aggarwal [54].  In this code, the fifth dimension was created by converting the array 

intensities to different (R, G, B) values of orange, by using the ScalarMappable mixin from Matplotlib 

[55].  The intensities were scaled in ascending order from light orange to dark orange.  The scaling was 

sequential, meaning that the lightness value increases monotonically through the colormap.   

 The CNN workflow was programmed in Python, using components from the Keras framework 

for simplicity [56].  The optimizer used was RMSProp, which uses the root mean square.  It is an 

extension of gradient descent, which is an algorithm used to find values of parameters that minimize 

the cost [57].  The scheduler used was ReduceLROnPlateau, which reduces the learning rate when 

relatively little improvement is detected.  The CNN algorithm then was trained using the given training 
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data.  After the algorithm was fully trained, predicted test fills were generated using the test inputs, and 

they were compared to the actual test fills using a confusion matrix. 

 The CNN architecture is based on the VGG16 architecture, which was developed in 2015 by 

Simonyan and Zisserman et al. at Oxford University.  VGG16 has 16 layers, can contain up to 95 

million parameters, and was trained on over 1000 classes.  The maximum 2D input size is 224x224 

pixels with 4096 convolutional features [58].  However, VGG16 usually works better with images that 

are smaller than 100x100, because large images can be computationally expensive.  Because of the 

large number of supported parameters and trained classes, VGG16 would be suitable for 3D datasets 

with relatively small inputs.  Overall, the VGG16 model is computationally efficient and performs well 

at classifying a wide variety of tasks [59].  Since the input array size is only 11x11x11, and the 

maximum overall array size could be 150x150x150, an architecture based on VGG16 would be ideal 

for this dataset. 

 The actual CNN, as seen in Figure 16, was built using a sequential model, meaning that each 

layer was simply added in sequence.  First, there were two 3D convolutional layers.  The first 3D 

convolutional layer used eight filters, and the second layer used 16 filters.  For the convolution kernel, 

the size was set to 3x3x3.  After that, a MaxPool3D layer was added which reduces the size of the 

array, returning only maximum values.  This was followed by two more convolutional layers, with 32 

and 64 filters, respectively.  Batch normalization was added, which normalized each batch for 

consistent analysis.  A second MaxPool3D layer was used to return the maximum values after all these 

operations. 

 A dropout layer with parameter 0.25 was implemented, following the convolutional and pooling 

layers.  The inputs were then flattened to enable dense connections.  A dense layer with dimensionality 

of 113 (length 1331) was added, along with ReLU activation, followed by a dropout layer with 

parameter 0.5.  Another dense layer was added with dimensionality of 1024 and ReLU activation, 
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followed by another dropout layer with parameter 0.5.  The last layer, a dense layer of dimensionality 

five, was added, since there are five classes.  For this layer, the softmax activation function was used 

because the output is a probability distribution. 

 

 Right before training began, the categorical cross-entropy loss was assigned to this model.  The 

accuracy metric was returned for tracking.  Before tuning, the batch size was set to 86, which is small 

enough for this purpose, with the number of epochs also set to 30.  There are over 1 million voxels, so 

the batch size should be around 100.  For an average large dataset, the change in learning rate slows 

around 30-35 epochs.  A validation set, which consisted of 15% of the training data, were also created 

 

Figure 16: Visual diagram of the CNN model.  There are two max pooling layers and the 

number of filters increases per layer for more detail.  At the end, the layers are flattened and 

there is a softmax layer. 
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to tune the data parameters.  The validation set size should be much smaller compared to the main 

training data, but should still have significant weight.  Finally, the results of each epoch were displayed 

using the TensorBoard toolkit. 

Analysis of the predicted results, as shown in Figure 17, indicates that many pixels that were 

not properly detected were located at the background edges.  As a result, a two-stage model was 

developed (Figure 18).  First, a copy of all the truth data was made, where the background value was 

still 0, and all the voxel values of the actual forest were set equal to 1.  For the first stage, the same 

waveform arrays were used as the input, and the new thresholded voxels were set as the output.  Since 

most waveform array intensities in background areas are close to zero, most of the background was 

properly detected and set exactly to zero. 

Figure 17: Slice indicating points which were incorrectly predicted.  Incorrect predictions 

are colored red, and are close to the forest boundaries.  Correct predictions are not 

colored red. 
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 The initial input was multiplied by the first output to create a new output for the second stage.  

This removed the predicted background and retained the predicted forest voxel regions.  The output 

was still the ground truth data.  None of the voxels that were predicted as background were used in this 

stage, in order to simplify the algorithm.  The new inputs and outputs were sent to the same CNN 

algorithm.  Overall, the branches and tree trunks were far more likely to be correctly predicted. 

 

Figure 18: Workflow of the two-stage model.  First, the output is thresholded, then the input's 

background is removed. 

Originally, every flattened array was returned in order using a provided for loop, then fed into 

the ScalarMappable mixin to convert to (R, G, B) values.  This structure is suitable for older servers, 

but is highly computationally inefficient for modern hardware.  The dimension of the ScalarMappable 

output thus was expanded by one to store all the arrays at once, in order to remove this loop.  After that, 

an even more computationally-efficient solution was discovered; instead of converting the array 

intensities to (R, G, B) values, a fifth axis was simply appended to the input array.  This small change 

satisfied the 5D array requirement, required one-third of the original memory, and provided the same 

level of overall accuracy. 

 Finally, an additional channel was created where every positive value was thresholded to one.  

Segmenting the background from everything else was far easier, since the contrast for this layer is very 

high.  As a result, the new single-stage model provided the same accuracy for the simulated VLP-16 
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waveform data as the previous two-stage model.  Creating a more pronounced threshold helped the 

algorithm filter out intensities that were slightly above zero, thus removing background noise. 

Z-VALUE INPUT CHANNELS – adding height above ground 

A second channel was initially created, to provide greater accuracy, by appending local z-values 

to every input array.  These local z-values range from zero to the maximum height of the input array.  

Z-values provide the algorithm with a measure of relative height, also called normalized height (above 

the ground).  Object accuracy significantly increased due to the contrast of the straight bounds with the 

newly-added height information.  Global z-values, which ranged from zero to the maximum height of 

the scene array, were not as effective due to the different heights and the unique properties of the tower 

object in the virtual scene. 

 However, global z-value segmentation bands, where the ground level is set to 0, proved to be a 

more effective solution, resulting in greater accuracy.  It is worth noting that the use of the absolute z-

values would create too many inputs, leading to low accuracy.  The four levels were: below ground, 

shrubs and objects, vertical midsection of tree trunks, and tree canopies.  After the classification was 

complete, voxels below ground were set to 0, ground level to 15 m above were set to 1, 15 - 35 m 

above were set to 2, and >35 m were set to 3. 

 A copy of the 3D array was created to create this layer, where ground was temporarily defined 

as the very bottom of the array.  The segmentation bands of 1, 2, and 3 were defined.  Additionally, a z-

coordinate copy of this array was created.  All the ground heights from the original array were returned 

in a duplicated cross-section as numbers.  Missing ground values were set to nan, masked, and then 

interpolated using scipy.  The cross-section was vertically duplicated to match the height of the original 

array, giving each voxel a vertical rotation value.  The z-coordinates were vertically shifted by simply 

adding the z-coordinate array to the vertical rotation array.  Finally, the new z-coordinates were set as 



53 
 

coordinate inputs into the segmentation band array, which were then set equal to the current 

segmentation values. 

 Since the 1-band is shifted upward, the values below are all 3, which should be set to 0.  A 

duplicate matrix thus is created, where all values that are not 3 are set to zero.  The scipy.ndimage.label 

function is used to segment the sections of value 3 into two sections.  The bottom segment is equal to 1, 

so all locations in the original segmentation array where this is true are set to 0.  This results in four 

unique sections, as shown in Figure 19. 

 
 

Figure 19: A plot of the relative z-heights, shifted to follow the ground’s contour.  Brown is 1, green is 

3, and the white regions are 0 and 2. 
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ON THE USE OF THE KERAS TUNER 

           The Keras Tuner is a library that is part of the Keras API, which picks the best set of 

hyperparameters for a TensorFlow program [60].  Hyperparameters are numbers in the algorithm which 

determine the structure and flow of the components.  There are two main types of hyperparameters: 

Model hyperparameters, which influence model selection such as dimensionality, and Algorithm 

hyperparameters, which influence speed and quality such as the learning rate [61]. 

 The CNN model must be included in a hypermodel, the model set up for hypertuning.  For this 

case, a model builder function is used, meaning that the CNN model is transferred to a separate 

function.  Additionally, model.fit is not used, since this command is for training the model.  There are 

several hyperparameter methods, which determine how the hyperparameters are selected.  The methods 

which are used are Int for the second dense layer and Choice for the algorithm’s learning rate.  Int is an 

efficient method for creating an integer range, which requires as inputs a lower bound, an upper bound, 

and a step size, which separates the inputs.  Choice simply picks the best value from a preset list [62]. 

 More specifically, the Hyperband tuner is used for this algorithm, which uses a tournament 

bracket-style method to quickly converge on a high-performing model [63].  More detail about the 

algorithm is given in Figure 20.  The objective is validation accuracy, and the number of maximum 

epochs is set to 10.  There are fifteen choices for the second dense layer, and three choices for the 

learning rate.  A small number of epochs would lead to good parameter results, which would be 

difficult to improve on. 
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Figure 20: Outline of the hyperband algorithm from the paper on Hyperband.  There are two for-loops, 

which determine the effectiveness of the models in each bracket.  The top half of the models move to the 

next bracket until tuning is complete. 

The algorithm initially creates many models based on the dense layer and learning rate 

methods.  These models are trained for a few epochs, and the top-performing half is then carried to the 

next round.  Hyperband determines the number of models to train in each bracket using 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5: 

1 + 𝑙𝑜𝑔𝑓𝑎𝑐𝑡𝑜𝑟(𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

 The possible parameters for the second dense layer were a minimum unit number of 64, a 

maximum unit number of 1024, and a step size of 64.  For the learning rate, the possible parameters 

were 0.01, 0.001, and 0.0001.  The program ended up selecting a unit number of 960 for the second 

dense layer, and a learning rate of 0.0001 for the optimizer.  A very small learning rate made sense, 

given the large number of inputs and outputs, as a larger learning rate could easily overcompensate, 

making accurate results harder to obtain.  Overall, accuracy significantly improved for all datasets, 

especially for the bark voxels. 

 



56 
 

Results and Discussion 
 The overall results were strongly comparable to the three seminal papers.  Huang and You 

reported 78% accuracy for trees, but all object categories had 84% or higher accuracy.  This is 

comparable to the ground truth models in this study, where leaf and bark precision was around 75%, 

but ground and object precision was around 99% [30].  Kukenbrink et al. demonstrated that smaller 

voxel sizes resulted in higher accuracy for the occluded and unobserved canopy.  This matches with the 

models in this study, where smaller voxels generally resulted in higher accuracies.  However, the input 

array size also needs to be larger [24].  Finally, Hancock et al. demonstrated methods to voxelize 

forests using ALS and TLS data.  The false positives were less than 15%, and the negatives were less 

than 1% [31].  This is comparable to what was reconstructed with the d5lidar voxelizer [44]. 

0.25 m GROUND TRUTH MODELS (maximum category areas) 

All models used ground truth maximum surface area values as the inputs.  The training length 

was 50 epochs, with a batch size of 64.  The training/testing ratio of voxels was 80/20.  All models 

were trained using Plot B, Dataset 3 voxels.  Global z-values were used as an input parameter to better 

classify different parts of the forest, improving accuracy.  Different input voxel sizes and plot sections 

were used to compare different accuracies. 

Full-plot 7x7x7 global z-values 

 According to Table 3, precision was very strong overall, with weaknesses in the leaf and bark 

elements.  This is because leaf and bark elements tend to overlap, particularly in the canopy.  Bark 

recall was quite low, because the number of leaf elements greatly outnumber the bark elements.  This is 

despite that class weighting was used to improve accuracy.  Because of the relatively small voxel size, 

object recall was only 60%.  As shown in Figure 21, objects were slightly misshapen around the edges. 

 



57 
 

Table 3: Confusion matrix of the 0.25 m classifier model on ground truth full plot, input sizes 7x7x7.  

Each row represents the instances in an actual class, and each column represents the instances in a 

predicted class.  Values are normalized so that the sum of every row is equal to 1. 

Overall Recall 79%  Total Voxels 1218071   

Overall Precision 89%      

 Background Leaf Bark Ground Objects Precision 

Background 1.00 0.00 0.00 0.00 0.00 99% 

Leaf 0.00 0.74 0.25 0.00 0.00 74% 

Bark 0.00 0.26 0.74 0.00 0.00 74% 

Ground 0.00 0.00 0.00 1.00 0.00 99% 

Objects 0.00 0.01 0.00 0.01 0.99 99% 

Recall 99% 85% 56% 94% 60%  

 

 

 
Figure 21: Predicted values of whole 0.25 m truth model with global z-value 7x7x7 inputs.  Because of 

the relatively small input size, there is difficulty in classifying object edges, resulting in misshapen 

objects. 
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Half-plot 9x9x9 global z-values 

 As seen in Table 4, overall recall and precision were the best from all three 0.25 m voxel 

models.  Leaf precision did decrease somewhat due to fewer voxels, but bark precision significantly 

increased.  For good leaf accuracy values, large inputs are not needed, because of the smaller size of 

leaves.  However, bark sections take up more room (volume), and would need larger inputs.  The 

greatest improvement was in object recall, because larger voxels can capture the more rigid edges.  In 

Figure 22, the objects were more detailed. 

Table 4: Confusion matrix of the global z-value 0.25 m classifier model on ground truth half plot, input 

sizes 9x9x9.  Each row represents the instances in an actual class, and each column represents the 

instances in a predicted class.  Values are normalized so that the sum of every row is equal to 1. 

Overall Recall 83%  Total Voxels 604455   

Overall Precision 89%      

 Background Leaf Bark Ground Objects Precision 

Background 1.00 0.00 0.00 0.00 0.00 99% 

Leaf 0.00 0.70 0.29 0.00 0.00 70% 

Bark 0.00 0.22 0.78 0.00 0.00 78% 

Ground 0.00 0.00 0.00 1.00 0.00 99% 

Objects 0.00 0.00 0.00 0.01 0.99 99% 

Recall 99% 86% 55% 94% 78%  
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Figure 22: Predicted values of half 0.25 m truth model with global z-value 9x9x9 inputs.  The input size 

is larger, so the object has significantly more pronounced edges. 

Quarter-plot 11x11x11 global z-values  

 Overall recall is significantly less than the half-plot 9x9x9 values.  One major reason is that in 

Table 5, the background precision is only 97%.  This figure is due to the relatively small number of 

voxels, creating choppier edges, as seen in Figure 23.  Leaf precision is slightly higher, and bark 

precision is almost 80%.  In particular, the recall values of leaf and bark voxels are significantly less 

accurate, which was attributed to the slight decline in background precision. 
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Table 5: Confusion matrix of the global z-value 0.25 m classifier model on ground truth quarter plot, 

input sizes 11x11x11.  Each row represents the instances in an actual class, and each column 

represents the instances in a predicted class.  Values are normalized so that the sum of every row is 

equal to 1. 

Overall Recall 78%  Total Voxels 302228   

Overall Precision 89%      

 Background Leaf Bark Ground Objects Precision 

Background 0.97 0.01 0.01 0.00 0.00 97% 

Leaf 0.01 0.72 0.27 0.00 0.00 72% 

Bark 0.00 0.20 0.79 0.00 0.00 79% 

Ground 0.00 0.00 0.00 0.99 0.00 99% 

Objects 0.00 0.00 0.00 0.01 0.99 99% 

Recall 99% 75% 49% 91% 75%  

 

 
Figure 23: Predicted values of quarter 0.25 m truth model with global z-value 11x11x11 inputs.  

Because of the significantly low number of voxels, all the voxel edges are choppier compared to the 

previous two models. 
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VLP-16 MODELS (simulated waveform lidar data) 

Classifier (SVC, only one unit per output) 

 The background voxels performed the best because according to Table 6, the predictions had 

67% precision and 75% recall.  Most of the voxels are background voxels, which are located at very 

large, specific sections.  Leaf voxels were somewhat accurate, with 25% precision and 53% recall, as 

shown in Table 6.  Because background voxels greatly outnumbered the leaf voxels, many leaf voxels 

were falsely predicted as background voxels, and not the other way around.  Finally, ground voxels 

were more accurately predicted than leaf voxels, since the ground voxels are in a very specific region. 

Table 6: Confusion matrix of the simulated VLP-16 classifier model with background voxel counts, 

9x9x9 input size, with 0.5 m voxel size.  Each row represents the instances in an actual class, and each 

column represents the instances in a predicted class.  Values are normalized so that the sum of every 

row is equal to 1. 

Overall Recall 75%  Total Voxels 293454   

Overall Precision 67%      

 Background Leaf Bark Ground Objects Precision 

Background 0.97 0.03 0.00 0.00 0.00 97% 

Leaf 0.73 0.25 0.00 0.01 0.00 25% 

Bark 0.68 0.32 0.00 0.00 0.00 0% 

Ground 0.38 0.02 0.00 0.60 0.00 60% 

Objects 0.91 0.04 0.00 0.05 0.00 0% 

Recall 77% 53% 0% 71% 0%  

 

Table 7: Confusion matrix of the simulated VLP-16 classifier model without background voxel counts, 

9x9x9 input size, with 0.5 m voxel size.  Each row represents the instances in an actual class, and each 

column represents the instances in a predicted class.  Values are normalized so that the sum of every 

row is equal to 1. 

 Leaf Bark Ground Objects 

Leaf 0.95 0.00 0.05 0.00 

Bark 0.99 0.00 0.01 0.00 

Ground 0.04 0.00 0.96 0.00 

Objects 0.43 0.00 0.57 0.00 

 

However, only a small handful of bark and object voxels were correctly predicted.  As seen in 

Figure 8, most bark voxels significantly overlap with the leaf voxels, making them hard to predict.  

This is because in a classifier, only one unit produces the activation output.  There were also only 232 
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object voxels.  The classifier is too simple in nature to be able to work with the rigid shapes of objects.  

The CNN methods were far more complex, and therefore performed much better.  

The optimal objective value of the dual SVM problem was found to be -414.79, which is 

relatively close to zero, when compared to earlier iterations.  This value measures the overall accuracy 

of the classifier [49].  The bias term is equal to -0.72, which means that the best classification 

predictions differ somewhat from most predictions.  There were 429 support vectors, and 418 of them 

were bounded, meaning that the data were quite difficult to separate.  Overall, there were 143,511 

support vectors needed for classifying the voxels in the best possible way, which is a significant 

number, given the wide variety of data points.   

 

Figure 24: Predicted output of the classifier algorithm.  Leaf and ground voxels performed much better 

than other types of voxel fills. 
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Single-stage (intensity-only input, no additional segmentation)  

 For the VLP-16 single-stage model, the 74% recall result was slightly better than the 66% 

precision result in Table 8.  This is because the background takes up most space, according to Figure 

25.  Most of the background voxels were correctly predicted with 94% precision and 85% recall, but 

other voxel classes also were predicted as background.  Leaf voxels exhibited average 53% precision 

and 60% recall rates, because they overlap with the other elements.  Bark voxels showed a low 10% 

precision rate.  Much of the bark overlaps with the leaves, and there are far more leaf voxels than bark 

voxels.   

Table 8: Confusion matrix of the simulated VLP-16 single-stage model with background voxel counts, 

9x9x9 input size, with 0.5 m voxel size.  Each row represents the instances in an actual class, and each 

column represents the instances in a predicted class.  Values are normalized so that the sum of every 

row is equal to 1. 

Overall Recall 74%  Total Voxels 296493   

Overall Precision 66%      

Class Background Leaf Bark Ground  Objects  Precision 

Background 0.94 0.05 0.00 0.00 0.00 94% 

Leaf 0.44 0.53 0.01 0.02 0.00 53% 

Bark 0.40 0.50 0.10 0.00 0.00 10% 

Ground 0.03 0.01 0.00 0.96 0.00 96% 

Objects 0.10 0.08 0.00 0.06 0.76 76% 

Recall 85% 60% 61% 83% 82%  

Table 9: Confusion matrix of the simulated VLP-16 single-stage model without background voxel 

counts, 9x9x9 input size, with 0.5 m voxel size.  Each row represents the instances in an actual class, 

and each column represents the instances in a predicted class.  Values are normalized so that the sum 

of every row is equal to 1. 

Class Leaf Bark Ground  Objects  

Leaf 0.95 0.03 0.03 0.00 

Bark 0.83 0.17 0.00 0.00 

Ground 0.01 0.00 0.99 0.00 

Objects 0.09 0.00 0.06 0.84 
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 The ground voxels were predicted very accurately, because all these voxels are located at a very 

specific height.  Additionally, the surrounding shape of these voxels is very specific, which looks 

almost like a flat plane.  Although there were less than 500 object voxels, the rates of both precision 

and recall were relatively high.  One possible explanation might be that, because these are manmade 

objects, they have a defined rigid shape, as opposed to the far greater randomness of the forest leaves 

and bark. 

 
 

 

 

 

 

 

Figure 25: Predicted output of the VLP-16 single-stage model.  Leaf predictions were much 

better when compared to the classifier algorithm, and objects (not pictured here) also 

performed much better. 
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Two-stage (pre-segmentation of background, then all other categories) 

 The 92% background precision was strong for the first stage of the two-stage model (Table 10).  

This was because the background comprises most of the voxels, especially at the edge regions of the 

array.  The 70% forest precision value was decent, because forest leaf structure is mostly random, and 

the boundary between forest and background is significantly blurry in the input array.  Regardless of 

these issues, however, bark detection in the second stage of the model was much better than the single-

stage model. 

Table 10: Confusion matrix of the first stage of the two-stage model.  Values are normalized so that the 

sum of every row is equal to 1. 

Class Background Forest 

Background 0.92 0.08 

Forest 0.3 0.7 

  

For the second stage of the two-stage model (Table 11), the voxel types were very similar, 

resulting in approximately 66% precision and recall.  Most voxels in this stage were leaf and bark, 

which are more random in nature.  Since most of the background was eliminated, there were relatively 

few background voxels which were randomly scattered.  As a result, the rates were less than 50% for 

precision and recall.  The 86% precision and 72% recall for the leaf voxels were significantly better this 

time.  This is likely because most leaf voxels are grouped (clumped) in near-ground surface bushes or 

as part of the tree canopies.  The locations were more specific for this CNN model, which made 

detection easier. 
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Table 11: Confusion matrix of the second stage of two-stage model with background voxel counts.  

Each row represents the instances in an actual class, and each column represents the instances in a 

predicted class.  Values are normalized so that the sum of every row is equal to 1.  Simulated VLP-16 

data is used, 9x9x9 input size, with 0.5 m voxel size. 

Overall Recall 67%  Total Voxels 82633   

Overall Precision 66%      

Class Background Leaf Bark Ground  Objects  Precision 

Background 0.11 0.74 0.15 0.01 0.00 11% 

Leaf 0.02 0.86 0.10 0.01 0.00 86% 

Bark 0.02 0.56 0.42 0.00 0.00 42% 

Ground 0.00 0.01 0.00 0.98 0.00 98% 

Objects 0.01 0.02 0.00 0.02 0.95 95% 

Recall   41% 72% 54% 87% 80%  

 

Table 12: Confusion matrix of the second stage of two-stage model without background voxel counts.  

Each row represents the instances in an actual class, and each column represents the instances in a 

predicted class.  Values are normalized so that the sum of every row is equal to 1. Simulated VLP-16 

data is used, 9x9x9 input size, with 0.5 m voxel size. 

Class Leaf Bark Ground  Objects  

Leaf 0.88 0.10 0.02 0.00 

Bark 0.57 0.43 0.00 0.00 

Ground 0.01 0.00 0.99 0.00 

Objects 0.02 0.00 0.02 0.95 

 

 Bark detection performance had 42% precision and 54% recall rates, because there were far 

fewer bark voxels, which were also mostly surrounded by leaves.  Bark predictions are far more visible 

in Figure 26.  Again, the ground exhibited very high 98% precision and 87% recall rates, because the 

ground is located at a specific location and has a relatively specific shape.  Finally, the objects had 95% 

precision, because the overall object location is very specific and they have a defined rigid shape. 
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Three-channel (intensity, background threshold, and local z-values) 

 The 76% recall result was very close to the 77% precision result for the VLP-16 three-channel 

model in Table 13.  This is because the background occupies most of the space, as seen in Figure 27.  

Most of the background voxels were correctly predicted, with 93% precision and 91% recall rates.  

Leaf voxels exhibited good (71%) precision and recall (64%) rates, because the edges are easily 

detectable, though they overlap with the other elements.  The thresholded channel likely helps filter out 

background noise.  Again, the bark voxels had a low 28% precision rate.  Bark is the element that is 

most “buried” in the scene, so VLP-16 sensors had the greatest difficulty distinguishing bark voxels.  

The bark recall rate is surprisingly high at 62%, but that is most likely due to very few voxels being 

predicted as bark. 

 

Figure 26: Predicted output of the two-stage model.  Leaves and bark were classified much 

more accurately when compared to the single-stage model.  Objects (not pictured here) were 

classified extremely well. 
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Table 13: Confusion matrix of the simulated VLP-16 three-channel model (local z-value and 

thresholded background channels) with background voxel counts.  Each row represents the instances in 

an actual class, and each column represents the instances in a predicted class.  Values are normalized 

so that the sum of every row is equal to 1.  A 9x9x9 input size was used, with 0.5 m voxel size. 

Overall Recall 76%  Total Voxels 124836   

Overall Precision 77%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.93 0.06 0.01 0.00 0.00 93% 

Leaf 0.25 0.71 0.03 0.01 0.00 71% 

Bark 0.20 0.51 0.28 0.00 0.00 28% 

Ground 0.02 0.02 0.00 0.97 0.00 97% 

Objects 0.01 0.00 0.00 0.02 0.96 96% 

Recall 91% 64% 62% 85% 78%  

 

Table 14: Confusion matrix of the simulated VLP-16 three-channel model (local z-value and 

thresholded background channels) without background voxel counts.  Each row represents the 

instances in an actual class, and each column represents the instances in a predicted class.  Values are 

normalized so that the sum of every row is equal to 1.  A 9x9x9 input size was used, with 0.5 m voxel 

size. 

Class Leaf Bark Ground  Objects  

Leaf 0.94 0.04 0.02 0.00 

Bark 0.64 0.35 0.00 0.00 

Ground 0.02 0.00 0.98 0.00 

Objects 0.00 0.00 0.02 0.98 

 

 The ground voxels were predicted very accurately, since, as stated before, these voxels are 

located at a specific height and have high intensities.  The shape is almost perfectly contoured to the z-

value channels.  Also, the surrounding shape of these voxels is very specific, which looks almost like a 

flat plane.  Although there were fewer than 200 object voxels, the rates of both precision and recall 

were around 96% and 78%, respectively.   
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On use of the Keras Tuner 

 The 74% recall result was very close to the 73% precision result for the VLP-16 three-channel 

model in Table 15.  This is because the background occupies most of the space according to Figure 28.  

Most of the background voxels were correctly predicted with 93% precision and 89% recall.  Leaf 

voxels exhibited good (61%) precision and recall (66%) rates, because the edges are easily detectable, 

though they overlap with the other elements.  Bark voxels had a much better 36% precision rate, since 

the tuner resulted in a far lower learning rate.  This result makes sense, because there are many voxels 

overall, so a lower learning rate is best for tracking hidden voxels.  The bark recall rate is surprisingly 

high at 66%, but that is most likely due to very few voxels being predicted as bark.   

Figure 27: Predicted output of the VLP-16 three-channel model (local z-value and thresholded 

background channels).  Leaf predictions were good because most of the forest elements are 

leaves.  Both ground and object predictions were excellent because the input channels included 

the simulated VLP-16 intensities, local z-values, and thresholded background. 
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Table 15: Confusion matrix of the simulated VLP-16 Keras Tuner model with background voxel counts.  

Each row represents the instances in an actual class, and each column represents the instances in a 

predicted class.  Values are normalized so that the sum of every row is equal to 1.  A 9x9x9 input size 

was used, with 0.5 m voxel size. 

Overall Recall 74%  Total Voxels 312090   

Overall Precision 73%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.93 0.05 0.01 0.00 0.00 93% 

Leaf 0.32 0.61 0.06 0.01 0.00 61% 

Bark 0.26 0.38 0.36 0.00 0.00 36% 

Ground 0.01 0.02 0.00 0.97 0.00 97% 

Objects 0.14 0.02 0.02 0.02 0.80 80% 

Recall 89% 66% 54% 84% 76%  

 

Table 16: Confusion matrix of the simulated VLP-16 Keras Tuner model without background voxel 

counts.  Each row represents the instances in an actual class, and each column represents the instances 

in a predicted class.  Values are normalized so that the sum of every row is equal to 1.  A 9x9x9 input 

size was used, with 0.5 m voxel size. 

Class Leaf Bark Ground  Objects  

Leaf 0.89 0.09 0.02 0.00 

Bark 0.51 0.49 0.00 0.00 

Ground 0.02 0.00 0.98 0.00 

Objects 0.02 0.02 0.02 0.93 

  

 The predictions for the ground voxels again were good, for the same reasons mentioned before.  

The shape generally fits the layout and direction of the z-value channels.  The ground voxels again 

almost look like a flat plane.  Even though there were fewer than 200 object voxels, their rates of both 

precision and recall were around 80% and 76%, respectively.   
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NEON MODELS (simulated waveform lidar data) 

50 m x 50 m (single-stage model, 0.5 m voxels) 

 For the NEON (50 m x 50 m) single-stage model, the 67% recall result was around the same as 

the 63% precision result in Table 17.  This again is because the background occupies most of the space, 

as seen in Figure 29.  Most of the background voxels were correctly predicted with 92% precision and 

87% recall, but other voxel classes also were predicted as background.  Leaf voxels exhibited average 

64% precision and 62% recall rates, because they overlap with everything else.  Again, the bark voxels 

had a low 11% precision rate.  Bark is the element that is most buried (or occluded) in the scene, so 

NEON sensors have the greatest difficulty distinguishing bark voxels. 

Figure 28: Predicted output of the VLP-16 three-channel model (local z-value and thresholded 

background channels).  Leaf predictions were good because most of the forest elements are 

leaves.  Both ground and object predictions were excellent because the input channels included 

the simulated VLP-16 waveform intensities, local z-values, and thresholded background. 
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Table 17: Confusion matrix of the simulated NEON model (50 m x 50 m) with background voxel counts.  

Each row represents the instances in an actual class, and each column represents the instances in a 

predicted class.  Values are normalized so that the sum of every row is equal to 1.  An 11x11x11 input 

size was used, with 0.5 m voxel size. 

Overall Recall 67%  Total Voxels 110623   

Overall Precision 63%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.92 0.07 0.01 0.00 0.00 92% 

Leaf 0.31 0.65 0.03 0.01 0.00 64% 

Bark 0.38 0.50 0.11 0.00 0.00 11% 

Ground 0.05 0.03 0.00 0.91 0.00 91% 

Objects 0.09 0.22 0.00 0.14 0.55 54% 

Recall 87% 62% 38% 80% 67%  

 

Table 18: Confusion matrix of the simulated NEON model (50 m x 50 m) without background voxel 

counts.  Each row represents the instances in an actual class, and each column represents the instances 

in a predicted class.  Values are normalized so that the sum of every row is equal to 1.  An 11x11x11 

input size was used, with 0.5 m voxel size. 

Class Leaf Bark Ground  Objects  

Leaf 0.94 0.05 0.02 0.00 

Bark 0.81 0.18 0.00 0.00 

Ground 0.04 0.00 0.96 0.00 

Objects 0.24 0.00 0.16 0.60 

 

 The ground voxels were predicted very accurately, because all these voxels are located at a 

specific height and have high intensities.  Additionally, the surrounding shape of these voxels is 

specific, which looks almost like a flat plane.  The rates of both precision and recall for object voxels 

again were decent even from a very high altitude, even given that there were fewer than 200 such 

voxels; this was attributed to the defined shape of these objects. 
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150 m x 150 m 7x7x7 (single-stage, 0.5 m voxel size) 

 For the NEON (150 m x 150 m, 7x7x7) single-stage model, the 68% recall result was relatively 

close to the 61% precision result, shown in Table 19.  The reasons are similar to those mentioned 

before: i) the background occupies up the majority of space (Figure 30); most of the background voxels 

were correctly predicted with 94% precision and 88% recall, but other voxel classes also were 

predicted as background; ii) leaf voxels exhibited fairly average 69% precision and 64% recall rates, 

due to overlap with the other elements; iii) the bark voxels again had a low (1%) precision rate; bark is 

the element that is most hidden, so to speak, so NEON sensors have the greatest difficulty 

distinguishing bark voxels; however, the bark recall rate is surprisingly high, but that is most likely due 

to very few voxels being predicted as bark; iv) ground voxels were predicted accurately, because all of 

Figure 29: Predicted output of the NEON model (50 m x 50 m).  Leaf predictions were decent 

because most of the forest elements are leaves.  Object predictions were also decent because of 

the planned shapes.  The ground performed the best because the density is the highest.  
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these voxels are located at a specific height and have high intensities; also, the surrounding shape of 

these voxels is specific (a flat plane); and v) although there were fewer than 2500 object voxels, the 

rates of both precision and recall were, respectively, 50% and 60%, even from a high altitude; this was 

attributed to the defined shape of these objects. 

Table 19: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7, 0.5 m voxel size) 

with background voxel counts.  Each row represents the instances in an actual class, and each column 

represents the instances in a predicted class.  Values are normalized so that the sum of every row is 

equal to 1. 

Overall Recall 68%  Total Voxels 1241372   

Overall Precision 61%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.94 0.05 0.00 0.00 0.00 94% 

Leaf 0.30 0.69 0.00 0.01 0.00 69% 

Bark 0.43 0.56 0.01 0.00 0.00 1% 

Ground 0.04 0.04 0.00 0.92 0.00 92% 

Objects 0.29 0.18 0.00 0.03 0.50 50% 

Recall 88% 64% 49% 77% 60%  

 

Table 20: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7, 0.5 m voxel size) 

without background voxel counts.  Each row represents the instances in an actual class, and each 

column represents the instances in a predicted class.  Values are normalized so that the sum of every 

row is equal to 1. 

Class Leaf Bark Ground  Objects  

Leaf 0.98 0.00 0.02 0.00 

Bark 0.98 0.01 0.00 0.00 

Ground 0.04 0.00 0.96 0.00 

Objects 0.26 0.00 0.04 0.71 

  

 Overall, the results were like the 50 m x 50 m plot.  When this plot was fed into the 3D CNN, 

three times the amount of graphics card memory was used due to the larger size.  However, the input 

array dimension size was reduced from 11 to seven voxels, resulting in the volume being 

approximately 25% of the original volume.  These two factors combined have led to only a relatively 

small difference in results. 
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150 m x 150 m 1 m (single-stage, other models have 0.5 m voxel size) 

 

 For the NEON (150 m x 150 m, 1 m voxels) single-stage model, the 72% recall result was very 

close to the 71% precision result in Table 21.  The reasons again are like those mentioned before; see 

Figure 31 as an example of how much space is occupied by the background voxels.  These voxels were 

correctly predicted with 90% precision and 87% recall.  Leaf voxels exhibited good 79% precision and 

69% recall rates, because the edges are easily detectable, though they overlap with the other elements.  

Again, the bark voxels had a low 19% precision rate, for the same reasons as before.    The bark recall 

rate is surprisingly high at 52%, which was attributed the relatively low number of voxels being 

predicted as bark. Finally, ground voxel accuracy was attributed to their consistent location and profile, 

Figure 30: Predicted output of the NEON model (150 m x 150 m, 7x7x7).  Leaf predictions 

were decent because most of the forest elements are leaves.  Object predictions were also 

decent because of the defined shapes.  The ground performed the best because the intensities 

were the highest.  
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while the fewer than 1000 object voxels exhibited rates of both precision and recall around 75% even, 

from a very high altitude.  

Table 21: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 1 m voxels) 

with background voxel counts.  Each row represents the instances in an actual class, and each column 

represents the instances in a predicted class.  Values are normalized so that the sum of every row is 

equal to 1.  

Overall Recall 72%  Total Voxels 309369   

Overall Precision 71%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.90 0.09 0.01 0.00 0.00 90% 

Leaf 0.15 0.79 0.04 0.02 0.00 79% 

Bark 0.23 0.58 0.19 0.00 0.00 19% 

Ground 0.02 0.06 0.00 0.92 0.00 92% 

Objects 0.09 0.12 0.00 0.02 0.77 77% 

Recall 87% 69% 52% 80% 72%  

 

Table 22: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 1 m voxels) 

without background voxel counts.  Each row represents the instances in an actual class, and each 

column represents the instances in a predicted class.  Values are normalized so that the sum of every 

row is equal to 1. 

Class Leaf Bark Ground  Objects  

Leaf 0.94 0.04 0.02 0.00 

Bark 0.75 0.25 0.00 0.00 

Ground 0.06 0.00 0.94 0.00 

Objects 0.13 0.00 0.03 0.85 

  

 Overall, the predicted results were much better than those for the 50 m x 50 m plot.  When the 

input arrays were fed into the 3D CNN, nine times the amount of graphics card memory was used due 

to the larger size.  Additionally, the increase in input voxel size made all the individual categories far 
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more relevant than they normally would have been.  However, larger voxel size is indicative of 

significantly less detail. 

 

150 m x 150 m 7x7x7 three-channel (intensity, background threshold, local z-values)  

 The 70% recall result for the NEON (150 m x 150 m, local z-values) single-stage model was 

very close to the 67% precision result in Table 23.  At risk of repeating several conclusions, the results 

were attributed to similar reasons as those mentioned earlier; also see Figure 31. Most of the 

background voxels were correctly predicted with 94% precision and 88% recall.  Leaf voxels exhibited 

good (69%) precision and recall (64%) rates, while the bark voxels had a low 3% precision rate.  The 

bark recall rate is surprisingly high at 53%, but that again is most likely due to very few voxels being 

Figure 31: Predicted output of the NEON model (150 m x 150 m, 1 m voxels).  Leaf predictions 

were good because most of the forest elements are leaves.  Object predictions were also good 

because of the defined shapes.  Because of the larger voxels however, the objects were not as 

detailed.   
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predicted as bark. Finally, the ground voxels were predicted accurately and the fewer than 2000 object 

voxels exhibited precision and recall rates of 71% and 63%, respectively, even from a high altitude 

with 0.5 m voxel dimension.   

Table 23: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels, 

local z-values) with background voxel counts.  Each row represents the instances in an actual class, 

and each column represents the instances in a predicted class.  Values are normalized so that the sum 

of every row is equal to 1.  

Overall Recall 70%  Total Voxels 1241372   

Overall Precision 67%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.94 0.05 0.00 0.00 0.00 94% 

Leaf 0.29 0.69 0.00 0.01 0.00 69% 

Bark 0.40 0.57 0.03 0.00 0.00 3% 

Ground 0.03 0.02 0.00 0.95 0.00 95% 

Objects 0.20 0.08 0.00 0.02 0.71 71% 

Recall 88% 64% 53% 82% 63%  

 

Table 24: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels, 

local z-values) without background voxel counts.  Each row represents the instances in an actual class, 

and each column represents the instances in a predicted class.  Values are normalized so that the sum 

of every row is equal to 1. 

Class Leaf Bark Ground  Objects  

Leaf 0.98 0.01 0.02 0.00 

Bark 0.94 0.05 0.00 0.00 

Ground 0.02 0.00 0.98 0.00 

Objects 0.10 0.00 0.02 0.88 

  

 The model was trained on the RIT RC Cluster [53], given that the input size and amounts are 

both much larger.  Because of the z-value channel, the predicted results were much better than those 

from the previous 150 m x 150 m plots, where only intensities were used.  Objects and ground 

performed very well, since their borders are straight, easily forming a contrasting linear pattern with the 

z-value channels.   
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150 m x 150 m 7x7x7 three-channel Keras Tuner (0.5 m voxels) 

 The final simulation model, namely that for the NEON (150 m x 150 m, local z-values) single-

stage model, exhibited a 68% recall result, which was close to the 69% precision result in Table 25.  

Most of the background voxels were correctly predicted with 93% precision and 90% recall.  Leaf 

voxels exhibited good 70% precision and 64% recall rates, and bark voxels had a much better 12% 

precision rate, since the tuner resulted in a far lower learning rate.  This result makes sense because 

there are many voxels overall, so a lower learning rate is best for tracking hidden voxels and small 

voxel classes.  The bark recall rate is surprisingly high at 53%, which, unsurprisingly, is most likely due 

Figure 32: Predicted output of the NEON model (150 m x 150 m, local z-values).  Leaf 

predictions were decent because most of the forest elements are leaves.  Both ground and 

object predictions were excellent because the input channels included both the simulated 

NEON intensities and local z-values. 
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to very few voxels being predicted as bark.  Ground voxel predictions also experienced a significant 

improvement with 78% precision and 59% recall. 

Table 25: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels, 

Keras Tuner) with background voxel counts.  Each row represents the instances in an actual class, and 

each column represents the instances in a predicted class.  Values are normalized so that the sum of 

every row is equal to 1.  

Overall Recall 68%  Total Voxels 1250756   

Overall Precision 69%      

Class Background Leaf Bark Ground Objects Precision 

Background 0.93 0.06 0.01 0.00 0.00 93% 

Leaf 0.25 0.70 0.03 0.01 0.00 70% 

Bark 0.33 0.54 0.12 0.00 0.00 12% 

Ground 0.07 0.01 0.00 0.92 0.00 92% 

Objects 0.15 0.05 0.00 0.02 0.78 78% 

Recall 90% 64% 45% 81% 59%  

 

Table 26: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels, 

Keras Tuner) without background voxel counts.  Each row represents the instances in an actual class, 

and each column represents the instances in a predicted class.  Values are normalized so that the sum 

of every row is equal to 1. 

Class Leaf Bark Ground  Objects  

Leaf 0.94 0.04 0.02 0.00 

Bark 0.81 0.18 0.00 0.00 

Ground 0.01 0.00 0.99 0.00 

Objects 0.05 0.00 0.02 0.92 
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REAL DATA MODEL (NEON waveform lidar data)  

50 m x 50 m (most data at canopy level) 

 In this case a confusion matrix cannot be provided, since the real data do not have 

corresponding ground truth data.  Additionally, due to waveform range limitations, almost no ground 

was returned.  Overall, there is far less information, when compared to the simulated waveform data.  

However, the top canopy classification seems to be accurate from a visual perspective.  Most voxels are 

classified as leaves, and most voxels classified as bark are inside the leaves. 

Figure 33: Predicted output of the NEON model (150 m x 150 m, local z-values).  Leaf predictions 

were decent because most of the forest elements are leaves.  Both ground and object predictions 

were excellent because the input channels included both the simulated NEON intensities and local 

z-values. 
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Figure 34: Predicted output of the real data model (50 m x 50 m).  Leaf predictions visually appeared 

to be accurate, given that the top canopy is mostly composed of leaves, and the leaf distribution shapes 

are mostly random.  Bark predictions also seem on par, since bark is usually surrounded by leaves in a 

very specific manner (branches). 
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Summary 
CONCLUSIONS 

 The main purpose of this study was to predict forest voxel fills (classes), mainly based on 

simulated full waveform VLP-16 UAS and NEON lidar data.  The SVC algorithm was the first method 

used; the inputs had to be flattened, because with SVC, only one unit produces the activation output.  

Predictions for the background and ground voxels were very accurate, since these are the easiest to 

group, given their attributes.  Most voxels are background, and the ground is at a very specific height 

and exhibit a standard form.  However, using SVC, a significant portion of leaf voxels were incorrectly 

predicted, and few bark and object voxels were correctly predicted.  This is because only one unit 

produces the activation output in a classifier, resulting in limited input information.  Additionally, there 

were only 232 object voxels.  The classifier is too simple to be able to work with unique shapes of 

objects.  Therefore, we hypothesized that a CNN may be better suited for these predictions, as there are 

far more classifiers and layers which can detect many different, diverse kinds of patterns [51]. 

 Keras was used as the main library for the layers for the CNNs.  More specifically, 3D 

convolutional and maximum pooling layers were used.  The main online tutorial used to develop the 

CNN asserted that the intensity values had to be converted to RGB values [54], but simply adding a 

fifth axis to the inputs produced the same results, without any loss in accuracy.  Additionally, two-thirds 

of the memory was freed, since a (R, G, B) conversion requires an additional dimension of length three, 

but adding an axis adds a dimension of only length one.  

The first approach was to convert the VLP-16 dataset to RGB values, where 11x11x11 arrays 

surrounding each voxel were inputs, and voxel fill labels were outputs.  According to the results, 

background, ground, and object voxel predictions were all significantly more accurate (66% vs. 36% 

precision, 74% vs. 40% recall).  Object predictions were accurate in this case (76% precision, 82% 

recall), since their shape is far less random when compared to other elements.  Some leaf voxels were 
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accurately predicted, but the overall precision of 53% was still low.  This is likely because leaf voxels 

can be mostly random, while exhibiting significant overlap with bark voxels.  

 Further analysis of the results demonstrated that many edge points were not accurately detected.  

A two-stage plan was developed as result.  For the first stage, voxels were reclassified as part of either 

background or forest categories.  Using this method, background noise from the inputs can be filtered 

out more accurately.  The predicted background voxels then were all set to zero in the input array.  The 

new inputs were subsequently trained with the initial outputs to create a second model.  Since the 

number of possibilities was reduced, leaf and bark voxels were now far more accurately predicted (86% 

vs. 53% leaf, 42% vs. 10% bark precision).  Ground and object voxels still yielded high rates of 

accuracy (98% vs. 96% ground, 95% vs. 76% object precision). 

 After similar results were obtained by simply appending a 5D axis, two additional channels 

were added: local z-values (height above ground) and a background threshold.  The local z-values 

provided additional vertical structure for each input, making object detection far more accurate (96% 

vs. 76% single-stage precision, 78% vs. 82% single-stage recall).  The background threshold made 

filtering out very small values effective, thus making leaf detection far more accurate (71% vs. 53% 

single-stage precision, 64% vs. 60% single-stage recall).  The three-channel model performed as well 

as the two-stage model when trained on the ground truth data categories, so the two stages were no 

longer needed. 

 When simulated NEON waveform lidar data were used as the input for the same CNN 

architecture, bark prediction accuracy was close to zero due to the sparsity of the data.  Additionally, 

object prediction accuracy was around 50%, because although the input data were sparse, the objects 

still had a well-defined shape.  Object prediction accuracy was improved to 70% by using much larger 

150 m x 150 m simulated data and ground truth arrays, and by adding the local z-values for each 

returned input array after the RGB values were removed. 
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 Additionally, using the Keras Tuner produced significant improvements in bark detection for 

both simulated VLP-16 and NEON waveform datasets (36% vs. 28% VLP-16, 12% vs. 3% NEON 

precision), and a measurable improvement in object detection for the NEON dataset (78% vs. 71% 

precision).  From the Keras Tuner, the Hyperband tuner was used to quickly train and compare 

different combinations of hyperparameters to determine the best values.  The units of the second dense 

layer and the learning rate were both selected for tuning.  The initial dense layer was mostly accurate, 

but the learning rate was reduced by a factor of 10, from 0.001 to 0.0001, due to the wide number and 

variety of voxels.   

 One limitation of these results is that all the input data were simulated by DIRSIG.  The 

DIRSIG parameters also included a 3D mapping of the forest, making reconstruction of the input 

voxels relatively straightforward.  Real data could be taken from RIT’s VLP-16 drone or NEON’s 

Optech Gemini airborne platform.  However, the caveat remains that it is quite challenging to generate 

accurate and comprehensive truth data, whereas we have 100% confidence in the simulated truth data. 

Most likely, the results would be less accurate in the case of real data, since the overall structure would 

need to be determined. 

 We concluded that 3D CNNs are far more suited than classifiers for this kind of problem, given 

the semi-random nature of bark and leaf elements.  More specifically, the two-stage CNN model had an 

overall higher accuracy, because most of the background noise was filtered out.  The strong 

performance of object detection is significant, as the ability to track objects is important for safety and 

security.  More datasets with greater detail should be utilized for training in the future in order to 

include more natural variability and evaluate accuracies across different forest types and structures.  

Finally, other algorithms, such as KPConv and FWNet, should be studied for this purpose, since these 

approaches segment and classify data in ways which consider their intrinsic properties. 
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FUTURE WORK AND IMPROVEMENTS 

 One major area that should be improved is the overall accuracy of the voxel classification.  

There are several possible algorithms which involve advanced deep learning methods: 

• Kernel Point Convolution (KPConv) is a form of convolution that is flexible and deformable for 

point clouds.  For this algorithm, there is no intermediate representation.  The convolution 

weights are in Euclidean space, and are applied to input points in close proximity.  In this case, 

the focus is on scene objects, and deformable kernels improve the ability to adapt to scene 

object geometry.  The network was tested on multiple datasets, such as S3DIS [64], which 

contains indoor large spaces.  KP-FCNN is the name of the fully convolutional network which 

typically is used for segmentation.  The architecture segments small sub-clouds contained in 

spheres.  The spheres are picked randomly during training to maximize variety.  KPConv was 

found to be useful for large and diverse datasets.  The kernel combines a strong descriptive 

power and great learnability [64]. 

• The Full-Waveform Network (FWNet) is an architecture which uses semantic segmentation for 

full-waveform lidar data.  This network directly handles the waveform data without any 

conversion process, such as projection onto a 2D grid or calculation of handcrafted features.  

This is a PointNet-based architecture, so local and global features of every input waveform and 

their geographical coordinates can be extracted.  The next classifier consists of convolutional 

operational layers, which predict the class vector corresponding to the input waveform from the 

extracted local and global features.  The trained FWNet achieved higher scores in its recall, 

precision, and F1 score for unseen test data, when compared to other recognized methods.  

Overall, this network for local and global feature extraction allows for semantic segmentation 

training without needing high levels of knowledge on waveform data, or translation into 2D 

elements [65]. 
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• Additionally, predicted voxel data could be expanded to fill the entire 600 m x 500 m scene, 

which is centered on the overall 700 m x 500 m plot.  There should also be scenes which 

contain voxels from conifer, deciduous, and mixed forest canopies.  The program’s algorithmic 

complexity could be redesigned to handle more layers, so that the inputs will be more accurate.  

Utilizing this method will require more computational resources, but likely will provide more 

robust results. 

• The current plot that is being used is Plot B, Section 3.  The dimensions of this plot are 

approximately 53 m x 67 m x 27 m, and the minimum X and Y coordinates are (594 m, 50 m), 

i.e., when using 0.5m voxels, this comprises ~800k total voxels.  Three sensor passes were used 

to detect the forest.  If the full scene is used, the total dataset is estimated to reach over five 

million voxels, though additional sensor passes will be needed.  Training data for each category 

needs to be proportional to the category’s total amount.  Additionally, for the initial data, the 

order of the Nth Catalan number should be greater for more layer depth.  However, when N is 

equal to 20, the number of possible paths exceeds one billion, which is extremely complex. 

 

Overall, we created a 3D CNN algorithm used to predict forest voxel classifications based on the 

surrounding neighborhood of each voxel.  In the future, this could be used to study forest structure 

remotely and to track sub-canopy man-made objects and trails. 
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