
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-18-2023

LIDAR Voxel Segmentation Using 3D Convolutional Neural LIDAR Voxel Segmentation Using 3D Convolutional Neural

Networks Networks

Yuval H. Levental
yhl3051@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Levental, Yuval H., "LIDAR Voxel Segmentation Using 3D Convolutional Neural Networks" (2023). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11534?utm_source=repository.rit.edu%2Ftheses%2F11534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

1

LIDAR Voxel Segmentation Using 3D

Convolutional Neural Networks

by

Yuval H. Levental

B.S. Michigan State University, 2013

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in the Chester F. Carlson Center for Imaging Science

College of Science

Rochester Institute of Technology

July 18, 2023

Signature of the Author

Accepted by

Coordinator, M.S. Degree Program Date

2

CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE

COLLEGE OF SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

M.S. DEGREE THESIS

The M.S. Degree Thesis of Yuval H. Levental

has been examined and approved by the

thesis committee as satisfactory for the

thesis required for the

M.S. degree in Imaging Science

Dr. Jan van Aardt

Thesis Advisor

 Dr. John Kerekes

Committee Member

Dr. Carl Salvaggio

Committee Member

Date

3

Lidar Voxel Segmentation Using 3D Convolutional Neural Networks

by

Yuval H. Levental

Submitted to the

Chester F. Carlson Center for Imaging Science

in partial fulfillment of the requirements

for the Master of Science Degree

at the Rochester Institute of Technology

Abstract

 Light detection and ranging (lidar) forest models are important for studying forest composition

in great detail, and for tracking objects in the understory. In this study we used DIRSIG, a first-

principles and physics-based simulation tool, to turn the lidar data into voxels, towards classifying

forest voxel types. A voxel is a 3D cube where the dimension represents a certain distance. These

voxels are split into categories consisting of background, leaf, bark, ground, and object elements.

Voxel content is then predicted from the provided simulated and real National Ecological Observation

Network (NEON) data. The inputs are 3D neighborhood cubes which surround each voxel, which

contain surrounding lidar signal and content type information. Provided simulated data are from two

sources: a VLP-16 drone, which collects discrete lidar data close to the canopy, and the NEON

Airborne Observation Platform (AOP), which is attached to an airplane flying 1000 m above ground

level and collects both discrete and waveform lidar data. Different machine learning algorithms were

implemented, with 3D CNN algorithms shown to be the most effective. The Keras library was used,

since creating the layers with the sequential model was regarded as an elegant approach. The simulated

VLP-16 waveform data were significantly more accurate than the simulated NEON waveform data,

which was attributed to its proximity to the canopy. Leaves and branches exhibited acceptable

accuracies, due to their relatively random shapes. However, ground and objects in both cases had very

4

high accuracy due to the high intensities and their rigid shapes, respectively. A sample of real NEON

waveform lidar data was used, though the sample primarily focused on the canopy region; however,

most of the voxels were correctly predicted as leaves. Additional channels were added to the input

voxels in order to improve accuracy. One input parameter which proved to be very useful were the

local z-values of each input array. Additionally, the Keras Tuner framework was used to obtain

improved hyperparameters. The learning rate was reduced by a factor of 10, which provided slower,

but steadier convergence towards accurate predictions. The resulting accuracies from the predictions

are promising, but there is room for improvement. Different ML algorithms that use the point cloud

should also be considered. Further segmentation of forest classes is another possibility. For example,

there are different types of trees and bushes, so each tree or bush could have its own unique classes,

which would make predicting the shapes much easier. Overall, discovering a method for accurate

object prediction has been the most significant finding. For the ground truth models, the best object

precision is approximately 99% and the best recall is 78%.

5

Acknowledgments

 I would like to thank my family for encouraging me throughout this degree program, especially

because much of my research was done throughout the COVID-19 pandemic. I would have not been

able to enter this program or obtain a MS in Imaging Science without their support. I am also grateful

to Lt. Col. Rob Wible and Mr. M. Grady Saunders for providing me with support as I was learning

about lidar data, voxels, and running DIRSIG simulations. Additional thanks go to visiting professor

Dr. Ruchi Gajjar for teaching me better ways to separate training and testing data, and for introducing

me to the Keras Tuner. Thank you to all the professors in the Center that taught the courses enabling

me to perform quality scientific research. Of these professors, I would like to specifically thank Dr.

Chris Kanan for teaching me important machine learning principles in Deep Learning for Vision. I

would also like to thank Dr. Rich Hailstone for teaching Noise and Probability with a very positive

attitude and great sense of humor. Additionally, I would like to thank Dr. John Kerekes for working

with me on a machine learning independent study project, which prepared me for this thesis. RIT

Research Computing (RC) was very helpful in instructing me how to run machine learning algorithms

on their servers. I am glad that I got to meet them in-person sometimes. Last but definitely not least,

thank you, Dr. Jan van Aardt, for providing me with guidance and wisdom in regards to conducting

scientific research, running machine learning simulations, and properly classifying voxels.

6

Contents

Introduction ... 15

CONTEXT .. 15

OBJECTIVES ... 17

THESIS LAYOUT .. 17

Background .. 17

Methods ... 17

Results.. 18

Summary .. 18

SCIENTIFIC CONTRIBUTIONS .. 18

Background ... 19

LIDAR BASICS .. 19

LIDAR AND VOXEL VISUALIZATIONS .. 22

DIRSIG AND PHYSICS-BASED MODELING .. 25

CNN ALGORITHMS ... 28

Methods ... 31

SITE STUDY AND DATA COLLECTION .. 31

POINT CLOUD PREPROCESSING .. 32

VOXEL ALGORITHMS .. 44

Support Vector Machines (SVM) .. 44

3D CNN ... 46

Z-VALUE INPUT CHANNELS – adding height above ground .. 52

ON THE USE OF THE KERAS TUNER... 54

Results and Discussion.. 56

0.25 m GROUND TRUTH MODELS (maximum category areas) .. 56

Full-plot 7x7x7 global z-values ... 56

Half-plot 9x9x9 global z-values .. 58

Quarter-plot 11x11x11 global z-values ... 59

VLP-16 MODELS (simulated waveform lidar data) .. 61

Classifier (SVC, only one unit per output) .. 61

7

Single-stage (intensity-only input, no additional segmentation) ... 63

Two-stage (pre-segmentation of background, then all other categories) .. 65

Three-channel (intensity, background threshold, and local z-values) ... 67

On use of the Keras Tuner ... 69

NEON MODELS (simulated waveform lidar data) .. 71

50 m x 50 m (single-stage model, 0.5 m voxels) ... 71

150 m x 150 m 7x7x7 (single-stage, 0.5 m voxel size) ... 73

150 m x 150 m 1 m (single-stage, other models have 0.5 m voxel size) ... 75

150 m x 150 m 7x7x7 three-channel (intensity, background threshold, local z-values) 77

150 m x 150 m 7x7x7 three-channel Keras Tuner (0.5 m voxels) .. 79

REAL DATA MODEL (NEON waveform lidar data) ... 81

50 m x 50 m (most data at canopy level) ... 81

Summary ... 83

CONCLUSIONS ... 83

FUTURE WORK AND IMPROVEMENTS .. 86

8

List of Figures

Figure 1: Diagram of different geometric properties involved in point cloud generation originating from

airborne laser scanners [16]. ... 21

Figure 2: The main technique used by Hagstrom et al. to process waveforms [29]. The cumulative

distribution is the sum of the area underneath the signal, and the transmission is equal to the current

energy divided by the previous energy. .. 23

Figure 3: Diagram of DIRSIG integration for the forest scene. The scene geometry is integrated with

the optical properties and system specifics. This is to render the scene for different sensing modalities

in a first-principles environment. .. 27

Figure 4: Example diagram demonstrating the process of 2D convolution. Each pixel in the filter is

multiplied elementwise, then added together to form the new sum [37]. ... 28

Figure 5: Example diagram demonstrating the process of 3D convolution. In this instance, both input

and filter must be 3D for elementwise multiplication [15]. .. 29

Figure 6: High-definition view of the Mega Plot (left), shown as being part of the entire Prospect Hill

site (right). The wetlands in the center area lighter shade of green and stand above the rest of the forest.

 ... 31

Figure 7: The first set of simulated data is based on truth data from the Velodyne VLP-16 lidar sensor,

which is integrated on a Matrice 600 unmanned aerial system (UAS). The drone is a MX-1 sUAS

remote sensing platform, developed by CIS faculty at RIT. Additionally, the drone contains a Mako G-

419 RGB camera and ballast weight in place of the hyper-spectral camera [40]. 33

Figure 8: Rendering of the NEON Optech Gemini system. Because of the high level of laser power,

the apparatus needs to be flown in a light aircraft at a high altitude [42]. .. 34

Figure 9: Slice of the enlarged 150 m x 150 m NEON plot. In this region, several cars (shown in black)

are rotated at different angles for greater variety in truth data. ... 36

Figure 10: 2D vertical slice of simulated VLP-16 waveform lidar data, showing the fraction of reflected

photons for each voxel. There is significant background noise. .. 39

Figure 11: 2D vertical slice of simulated NEON waveform data, showing the fraction of reflected

photons for each voxel. The data is highly sparse because of the relatively high altitude (1000 m AGL)

of the Gemini system. ... 40

file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384155
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384155
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384157
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384157
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384157
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384160
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384160
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384160
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384164
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384164
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384165
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384165
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384165

9

Figure 12: 3D point cloud plot of the Mega Plot, located on Prospect Hill. There are over 100k

geolocated plants and trees on this plot. ... 41

Figure 13: Vertical slice of the ground truth data. The leaves are green, and bark and ground are

brown. Objects, not pictured, are black. .. 42

Figure 14: Vertical slice of the real NEON data, showing the fraction of reflected photons for each

voxel. Most real waveforms are not able to reach the ground due to the foliage. 43

Figure 15: Sample of raw waveforms which were used to reconstruct the real NEON data. Most

waveforms were truncated at relatively near distances, showing that ground could not be reached. 44

Figure 16: Visual diagram of the CNN model. There are two max pooling layers and the number of

filters increases per layer for more detail. At the end, the layers are flattened and there is a softmax

layer. .. 49

Figure 17: Slice indicating points which were incorrectly predicted. Incorrect predictions are colored

red, and are close to the forest boundaries. Correct predictions are not colored red. 50

Figure 18: Workflow of the two-stage model. First, the output is thresholded, then the input's

background is removed. .. 51

Figure 19: A plot of the relative z-heights, shifted to follow the ground’s contour. Brown is 1, green is

3, and the white regions are 0 and 2. ... 53

Figure 20: Outline of the hyperband algorithm from the paper on Hyperband. There are two for-loops,

which determine the effectiveness of the models in each bracket. The top half of the models move to

the next bracket until tuning is complete. ... 55

Figure 21: Predicted values of whole 0.25 m truth model with global z-value 7x7x7 inputs. Because of

the relatively small input size, there is difficulty in classifying object edges, resulting in misshapen

objects. .. 57

Figure 22: Predicted values of half 0.25 m truth model with global z-value 9x9x9 inputs. The input

size is larger, so the object has significantly more pronounced edges. ... 59

Figure 23: Predicted values of quarter 0.25 m truth model with global z-value 11x11x11 inputs.

Because of the significantly low number of voxels, all the voxel edges are choppier compared to the

previous two models. .. 60

Figure 24: Predicted output of the classifier algorithm. Leaf and ground voxels performed much better

than other types of voxel fills. ... 62

file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384166
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384166
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384167
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384167
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384170
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384170
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384170
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384171
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384171

10

Figure 25: Predicted output of the VLP-16 single-stage model. Leaf predictions were much better

when compared to the classifier algorithm, and objects (not pictured here) also performed much better.

 ... 64

Figure 26: Predicted output of the two-stage model. Leaves and bark were classified much more

accurately when compared to the single-stage model. Objects (not pictured here) were classified

extremely well. .. 67

Figure 27: Predicted output of the VLP-16 three-channel model (local z-value and thresholded

background channels). Leaf predictions were good because most of the forest elements are leaves.

Both ground and object predictions were excellent because the input channels included the simulated

VLP-16 intensities, local z-values, and thresholded background. .. 69

Figure 28: Predicted output of the VLP-16 three-channel model (local z-value and thresholded

background channels). Leaf predictions were good because most of the forest elements are leaves.

Both ground and object predictions were excellent because the input channels included the simulated

VLP-16 waveform intensities, local z-values, and thresholded background. ... 71

Figure 29: Predicted output of the NEON model (50 m x 50 m). Leaf predictions were decent because

most of the forest elements are leaves. Object predictions were also decent because of the planned

shapes. The ground performed the best because the density is the highest. .. 73

Figure 30: Predicted output of the NEON model (150 m x 150 m, 7x7x7). Leaf predictions were

decent because most of the forest elements are leaves. Object predictions were also decent because of

the defined shapes. The ground performed the best because the intensities were the highest. 75

Figure 31: Predicted output of the NEON model (150 m x 150 m, 1 m voxels). Leaf predictions were

good because most of the forest elements are leaves. Object predictions were also good because of the

defined shapes. Because of the larger voxels however, the objects were not as detailed. 77

Figure 32: Predicted output of the NEON model (150 m x 150 m, local z-values). Leaf predictions

were decent because most of the forest elements are leaves. Both ground and object predictions were

excellent because the input channels included both the simulated NEON intensities and local z-values.

 ... 79

Figure 33: Predicted output of the NEON model (150 m x 150 m, local z-values). Leaf predictions

were decent because most of the forest elements are leaves. Both ground and object predictions were

excellent because the input channels included both the simulated NEON intensities and local z-values.

 ... 81

file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384179
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384179
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384179
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384180
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384180
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384180
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384181
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384181
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384181
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384181
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384182
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384182
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384182
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384182
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384183
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384183
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384183
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384184
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384184
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384184
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384185
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384185
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384185
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384186
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384186
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384186
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384186
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384187
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384187
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384187
file:///C:/Users/bired/Desktop/Levental_MSthesis-JvA-Feedback.docx%23_Toc142384187

11

Figure 34: Predicted output of the real data model (50 m x 50 m). Leaf predictions visually appeared to

be accurate, given that the top canopy is mostly composed of leaves, and the leaf distribution shapes

are mostly random. Bark predictions also seem on par, since bark is usually surrounded by leaves in a

very specific manner (branches). .. 82

List of Tables

Table 1: Specifications of the VLP-16 lidar drone. The resolution is limited, but there are 16 laser

channels. .. 32

Table 2: Specifications of the NEON lidar system. The Gemini waveform lidar system is operated at a

much higher altitude than the UAS-based VLP-16 system. ... 34

Table 3: Confusion matrix of the 0.25 m classifier model on ground truth full plot, input sizes 7x7x7.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. 57

Table 4: Confusion matrix of the global z-value 0.25 m classifier model on ground truth half plot, input

sizes 9x9x9. Each row represents the instances in an actual class, and each column represents the

instances in a predicted class. Values are normalized so that the sum of every row is equal to 1. 58

Table 5: Confusion matrix of the global z-value 0.25 m classifier model on ground truth quarter plot,

input sizes 11x11x11. Each row represents the instances in an actual class, and each column represents

the instances in a predicted class. Values are normalized so that the sum of every row is equal to 1. .. 60

Table 6: Confusion matrix of the simulated VLP-16 classifier model with background voxel counts,

9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1. ... 61

Table 7: Confusion matrix of the simulated VLP-16 classifier model without background voxel counts,

9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1. ... 61

Table 8: Confusion matrix of the simulated VLP-16 single-stage model with background voxel counts,

9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1. ... 63

12

Table 9: Confusion matrix of the simulated VLP-16 single-stage model without background voxel

counts, 9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class,

and each column represents the instances in a predicted class. Values are normalized so that the sum of

every row is equal to 1. ... 63

Table 10: Confusion matrix of the first stage of the two-stage model. Values are normalized so that the

sum of every row is equal to 1. ... 65

Table 11: Confusion matrix of the second stage of two-stage model with background voxel counts.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. Simulated VLP-16

data is used, 9x9x9 input size, with 0.5 m voxel size. .. 66

Table 12: Confusion matrix of the second stage of two-stage model without background voxel counts.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. Simulated VLP-16

data is used, 9x9x9 input size, with 0.5 m voxel size. .. 66

Table 13: Confusion matrix of the simulated VLP-16 three-channel model (local z-value and

thresholded background channels) with background voxel counts. Each row represents the instances in

an actual class, and each column represents the instances in a predicted class. Values are normalized so

that the sum of every row is equal to 1. A 9x9x9 input size was used, with 0.5 m voxel size. 68

Table 14: Confusion matrix of the simulated VLP-16 three-channel model (local z-value and

thresholded background channels) without background voxel counts. Each row represents the

instances in an actual class, and each column represents the instances in a predicted class. Values are

normalized so that the sum of every row is equal to 1. A 9x9x9 input size was used, with 0.5 m voxel

size. ... 68

Table 15: Confusion matrix of the simulated VLP-16 Keras Tuner model with background voxel

counts. Each row represents the instances in an actual class, and each column represents the instances

in a predicted class. Values are normalized so that the sum of every row is equal to 1. A 9x9x9 input

size was used, with 0.5 m voxel size. .. 70

Table 16: Confusion matrix of the simulated VLP-16 Keras Tuner model without background voxel

counts. Each row represents the instances in an actual class, and each column represents the instances

in a predicted class. Values are normalized so that the sum of every row is equal to 1. A 9x9x9 input

size was used, with 0.5 m voxel size. .. 70

13

Table 17: Confusion matrix of the simulated NEON model (50 m x 50 m) with background voxel

counts. Each row represents the instances in an actual class, and each column represents the instances

in a predicted class. Values are normalized so that the sum of every row is equal to 1. An 11x11x11

input size was used, with 0.5 m voxel size. .. 72

Table 18: Confusion matrix of the simulated NEON model (50 m x 50 m) without background voxel

counts. Each row represents the instances in an actual class, and each column represents the instances

in a predicted class. Values are normalized so that the sum of every row is equal to 1. An 11x11x11

input size was used, with 0.5 m voxel size. .. 72

Table 19: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7, 0.5 m voxel size)

with background voxel counts. Each row represents the instances in an actual class, and each column

represents the instances in a predicted class. Values are normalized so that the sum of every row is

equal to 1. .. 74

Table 20: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7, 0.5 m voxel size)

without background voxel counts. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1. ... 74

Table 21: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 1 m voxels)

with background voxel counts. Each row represents the instances in an actual class, and each column

represents the instances in a predicted class. Values are normalized so that the sum of every row is

equal to 1. .. 76

Table 22: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 1 m voxels)

without background voxel counts. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1. ... 76

Table 23: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m

voxels, local z-values) with background voxel counts. Each row represents the instances in an actual

class, and each column represents the instances in a predicted class. Values are normalized so that the

sum of every row is equal to 1. ... 78

Table 24: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m

voxels, local z-values) without background voxel counts. Each row represents the instances in an

actual class, and each column represents the instances in a predicted class. Values are normalized so

that the sum of every row is equal to 1. .. 78

14

Table 25: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m

voxels, Keras Tuner) with background voxel counts. Each row represents the instances in an actual

class, and each column represents the instances in a predicted class. Values are normalized so that the

sum of every row is equal to 1. ... 80

Table 26: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m

voxels, Keras Tuner) without background voxel counts. Each row represents the instances in an actual

class, and each column represents the instances in a predicted class. Values are normalized so that the

sum of every row is equal to 1. ... 80

15

Introduction
CONTEXT

 Forests support many ecosystem services for modern civilizations, and contribute to the health

of our society and the global ecosystem. They form the habitats of countless plant and animal species,

and are a critical part of climate regulation via processes such as carbon capture [1, 2]. However,

tracking forest dynamics and traits in an efficient, orderly manner requires specialized monitoring and

measurement methods. One technique for assessing forest structural traits is light detection and

ranging (lidar). In fact, modern lidar systems have sufficiently advanced to the extent where they can

form the basis of remotely sensed forest structural measurements [3, 4, 5].

 Structural remote sensing of forests was initially performed via electro-optical sensing or

synthetic aperture radar (SAR). SAR systems emit low-frequency pulses capable of measuring tree

height or penetrating forest canopies to detect the ground and static targets [6]. However, the precision

and recall of results from older or heterogeneous forests was deemed to be inadequate. For example,

optical sensors could not properly measure the above ground biomass (AGB) values of re-grown

forests that are older than 10-15 years [7]. Additionally, models generated from SAR backscatter

returns typically are insensitive to AGB values that were equal to or greater than 60 Mg/ha [8].

 Lidar, by contrast, can directly measure structural information of forests, due to high laser pulse

and scanning rates, both of which enable dense 3D point cloud measurements [9]. Lidar has been

utilized in this domain for at least the past 30 years. Typical structural measurements that can be

analyzed via lidar systems include tree height, biomass, leaf area index (LAI), forest element shapes,

and voxel fills, to name a few [3, 4, 5].

 Lidar operates by emitting a pulse of light energy at a specific wavelength, and then through

measuring the number of photons which return after scattering as a function of time [10]. So-called

“discrete” lidar systems identify only the locations of the return peaks (x, y, z, or 3D position), which

16

generally correspond to solid physical objects. Full-waveform lidar (FW lidar) systems, on the other

hand, digitize the entire backscattered waveform as a function of time [11], which can be used to

characterize different kinds of forests, including older or heterogeneous forests. However, a

comprehensive understanding of the lidar waveforms’ propagation through and interaction with forest

elements remain a daunting task, given the structural complexity of most forests and the challenges

related to radiative transfer modeling in such environments. It is in this context that simulation could

play a critical role in our furthering the knowledge of radiative transfer in forest settings.

 The Rochester Institute of Technology (RIT) has created a scene simulation tool, called Digital

Imaging and Remote Sensing Image Generation (DIRSIG), to perform such radiative transfer modeling

for virtual 3D scenes. DIRSIG is first-principles and physics-based, meaning that the method is based

directly on established scientific knowledge, from the ground-level to canopy levels. Monte-Carlo ray

tracing is used to determine what fraction of photons are absorbed or scattered by forest elements. The

scattering phase function determines scatter direction, followed by photon propagation [12, 13, 14].

We will use DIRSIG in this study to reconstruct input array properties from FW lidar data and simulate

waveform lidar propagation through the vertical forest structures.

 The main objective of this research is to predict forest voxel fills and types from scattered

waveform fraction arrays. Reconstructing forest element shapes, which consist of scattered waveform

fraction voxels, is important for predicting voxel fills. Ideally, there would be little background noise

in the input array to enable accurate predictions, while the virtual scene needs to be a close

approximation of reality (complex forest structures). The best method of voxel prediction, as current

state-of-the-art, is via 3D convolutional neural networks (3D CNN). This is because there are many

classifiers and layers, which are helpful in predicting voxel fills based on surrounding 3D inputs [15,

16, 17]. However, we will first provide a background to lidar sensing, simulation, and CNN

approaches.

17

 One specific objective is assessing different machine learning models. Support vector

classification (SVC), single-stage CNN, and dual-stage CNN all will be compared to identify which

models produce the best results. Additionally, the quality of different types of input data will be

evaluated, including simulated VLP-16 drone waveform lidar data, simulated NEON waveform lidar

data, and real-world waveform lidar data. Simulated VLP-16 data are far more likely to be accurate

overall, given the data density (altitude and flight parameters). Finally, the best model hyperparameters

will be determined by testing the model on computer servers with different capabilities, and by using a

model tuner library. More powerful servers should provide the opportunity to achieve far more

accurate results.

OBJECTIVES

• Objective 1: Design 3D CNN algorithms to predict voxel ground truth forest categories

from simulated lidar data.

• Objective 2: Evaluate the accuracy of simulated VLP-16 waveform lidar data versus

simulated NEON waveform lidar data. VLP-16 data are collected close to the canopy,

and NEON data from an altitude of 1000 m, whereas the specific lidar types are also

different.

• Objective 3: Evaluate whether prediction accuracies significantly can be improved by

creating better input data channels, and through tuning the hyperparameters.

THESIS LAYOUT

Background

 This chapter provides a more in-depth background of the history of remote sensing in the

forestry domain. An overview of how CNNs work and how they are structured also is given. Basic

terms and methods are identified in more detail than what would be found in subsequent chapters.

Methods

 This chapter discusses the provided data and voxel algorithms in significant detail. All the

data were collected from the Harvard Forest, and the category areas were measured for each voxel.

The SVC and 3D CNN algorithms which were used to predict categories are examined. Sequential

18

modeling is used to design the CNN algorithms. Finally, there is an overview of the Keras Tuner

library, which was used to pick the best hyperparameters.

Results

 This chapter provides and discusses the results from all the simulations. The VLP-16 models

were relatively accurate, which was attributed to the drone data being collected from right above the

canopy. NEON models, however, were far less accurate due to the 1000 m height for data collection.

Additionally, the NEON system is based on waveform lidar data which contains far more noise than

discrete return data. Different methods for data collection were compared with each other. Overall,

ground and object voxels performed extremely, likely due to their predefined, rigid shapes.

Additionally, there is an example of real data, which mostly consists of the top canopy, correctly

predicted to mostly consist of leaf voxels.

Summary

 This chapter summarizes the work done at the time of writing, presents the current

conclusions, and describes future work and improvements to be considered for continuation of the

research topics.

SCIENTIFIC CONTRIBUTIONS

• We created a 3D CNN algorithm where every input contains the surrounding

neighborhood of each voxel, and developed a method to reconstruct ground truth

training and predicted test data.

• We demonstrated that simulated VLP-16 data are more accurate than simulated NEON

data, likely due to the close range of collection, as well as other flight parameter that

influence data density. For both datasets, ground and objects had high accuracies due to

high intensities and predictable shapes.

• We discovered that larger input windows yielded more accurate results, which was

attributed to the greater amount of available data.

• Finally, we used hyperparameter tuning to significantly lower the learning rate, resulting

in greater overall accuracy through a longer time period.

19

Background
LIDAR BASICS

 Lidar technology is based on active sensing, where a system emits the energy that is used for

measurement. This is opposed to passive sensing, such as electro-optical telescopes, which measure

energy from an independent source that is emitted by or backscattered from a designated target. Lidar

emits laser beam pulses, and thus detects a series of backscattered returns separated by a time delta.

Because the photons in each laser pulse travel at the speed of light (3x108 m/s), the distance between

the sensor and the target can be calculated based on the time elapsed between emission and detection.

This distance method can be utilized to generate a 3D point cloud when the location and line-of-sight

from the sensor are also known [9].

 The general and approximate equation for lidar range measurements from an airborne laser [10]

is outlined in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1:

𝑅 = 𝑐
∆𝑡

2
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1)

where R is the direct measured distance from the sensor to the designated target, c is the speed

of light in the Earth’s atmosphere, and Δt is the time-period from initial emission to the return pulse

arrival. The laser twice traverses the total distance in the time period, so the time period is initially

halved, before being multiplied by the speed of light to determine the distance.

If the sensor’s rectangular coordinates and angular direction (roll, pitch, and yaw) are known in

3D space, coordinate information can be determined for each measurement. The coordinate

information can be used to generate a 3D point cloud in each coordinate reference system, where a GPS

sensor typically determines the latitude, longitude, and altitude of the lidar sensor. Additionally, an

inertial measurement unit (IMU) sensor is used to measure the lidar sensor’s roll, pitch, and yaw [18].

 The varying coordinates and look angles (see Figure 1) are indicated in the FUSION lidar

processing software suite manual [19], as an example. Generating lidar point clouds using this method

20

requires precise and accurate timing to correctly return the data points; otherwise, the structural

measurements will be inaccurate, due to several system detection inconsistencies or errors. The GPS

sensor is the most reliable component, because satellite data are constantly being received from an

onboard atomic clock. Therefore, this sensor is used to synchronize the time-stamps of the lidar

sensors and the IMU sensor [20].

21

 Lidar systems have been utilized heavily by governmental, scientific, and industrial research for

over 30-40 years. These systems can capture high-resolution structural information over a wide variety

of distance scales. Organizations such as the National Aeronautics and Space Administration (NASA),

the U.S. Military, and the National Ecological Observatory Network (NEON) all use lidar to capture

Figure 1: Diagram of different geometric properties involved in point cloud generation originating

from airborne laser scanners [16].

22

data for landscapes and forests. NEON, for example, uses lidar data to assess land use change,

vegetation structure and properties, and climate change, among other phenomena [21].

 In recent years, research has shown that flight parameters, such as flight pattern and overlap,

have a significant impact on the quality of captured data. For instance, “flying low and slow” has been

shown to be the optimal setup to obtain high-resolution point clouds [22]. Additionally, good sensor

overlaps and multiple views have been shown to improve point density within a point cloud. However,

there is not much knowledge currently as to how these parameters affect canopy penetration rates, point

density, and occlusion zones [23, 24]. Here we intend to simulate an operational waveform lidar

system to develop a CNN-based approach to voxel classification. Flight parameter optimization thus

falls outside the purview of our study, but should be explored in future efforts. However, a brief

discussion of how we visualize and analyze waveform lidar data is worthwhile, especially in the

context of voxels.

LIDAR AND VOXEL VISUALIZATIONS

 The methodology of using 3D binning to separate lidar data into high spatial resolution voxels

is well-established [25, 26, 27]. There are many potential applications, some of which include studying

forest volume, element classification, and forest/type area distribution. More specifically, voxel-based

analysis of forests has also been utilized for tree heights, densities, and crown projection area [28]. For

this study, the main objective is to use full waveform (FW) lidar to analyze forest materials. Three

recent studies, using both discrete return and full-waveform lidar data, published from 2014-2017, are

especially relevant.

 Hagstrom et al. created voxel-based modeling methods that used discrete return lidar data for

several purposes. These methods, one shown in Figure 2, include voxel transmission, data quality

assessment, line-of-sight mapping, and lidar-image fusion. Discrete return values in voxel transmission

calculations produced far more accurate results compared to basic hit counting from a ground truth

23

simulation scene. The authors showed that a 3-return discrete system accounts for 15% more

backscattered waveform energy compared to the basic hit count. The voxels were classified into four

categories: leaf, bark, ground, and object. Additionally, they demonstrated that a full-waveform system

somewhat outperformed a three-return discrete system, which they attributed to the full-waveform data

providing more information [29].

Figure 2: The main technique used by Hagstrom et al. to process waveforms [29]. The cumulative

distribution is the sum of the area underneath the signal, and the transmission is equal to the current

energy divided by the previous energy.

In turn, Huang and You introduced a 3D CNN model to label 3D point clouds using minimal

prior knowledge, without requiring a segmentation step and hand-crafted features. The authors claimed

that the model could handle large amounts of data. Annotated training data and the input 3D point

cloud were both voxelized and fed into the 3D CNN. Voxel labels were generated and converted back

into a point cloud. One experiment on a 3D urban model resulted in 75% or higher prediction rates of

all objects, except for uncategorized objects, many of which were predicted as trees. The input size for

24

the 3D CNN in the pipeline was 203 voxels. Additionally, there were two consecutive sequences of

convolutional layers, followed by a max-pooling layer. Finally, there is a fully-connected layer, a

softmax layer, and eight object categories at the end. One of these categories is background, and the

other seven are building, tree, pole, car plane, wire, and others [30].

 Kukenbrink et al., on the other hand, created another voxel transversal algorithm, also from

discrete return lidar data. For this algorithm, basic ray-tracing and hit counting were used, along with

the four-category system. The main purpose of this paper was to assess the occlusion of canopy

vegetation that was measured from airborne lidar data. High resolution terrestrial laser scanning (TLS)

for a field plot was used to evaluate the lidar collection parameters. Results showed that 28% of the

vegetation elements detected by the TLS system were not detected by a corresponding ALS system,

mainly due to occlusion. A voxel size of 0.5 m resulted in the observed canopy being only 20% of the

total canopy volume, and the occluded and unobserved canopies 40% each of the total volume.

Additionally, a larger flight strip overlap was found to significantly increase observed canopy volume

due to angles and pulse density [24].

 Finally, Hancock et al. used FW lidar data to develop predicted fractional covers for each 3D

voxel. This method is a significant advancement in terms of prediction accuracy, which was based on

target reflectance assumptions, such as that the denoised waveform is a sum of n Gaussians, and that

the visible target area is representative of the obscured target. The algorithm parameters were

calibrated using terrestrial laser scanning (TLS) data from eight locations for various 3D vegetation

structures. For the TLS data, all voxels were assumed to have a unit size of 0.5 m.

This study is considered to represent a significant step in terms of waveform voxelization

approaches, since ALS data were correctly measured at 1.5 m horizontal and 50 cm vertical resolution.

Additionally, understory vegetation and canopy structure were also successfully measured. Another

result was that full-waveform data were shown to contain far more relevant information than discrete

25

return lidar or Gaussian decomposition. Finally, various structures within the closed canopy were

identified, which was not possible with earlier methods. The sparse understory and pathways, obscured

by trees, were mapped at a 1 m height above ground. Buildings were mapped at a 3 m height, and tree

tops were at a 10 m height [31].

These studies all resulted in good predictions using different types of training data. These

include single discrete returns, multiple discrete returns, and full-waveform data. However, all these

methods use point-cloud data, as opposed to voxel data. The main advantage of using training voxel

data is that each object is segmented into several voxels, which are cubical units. This arrangement

allows the classification algorithm to better detect and categorize overlapping elements, arguably

resulting in greater overall accuracy. Next, we will discuss the background and utility to a simulation-

based approach to address these shortcomings.

DIRSIG AND PHYSICS-BASED MODELING

 There are many software tools available to simulate plausible digital imagery and other data

products of virtual 3D scenes. These tools typically use physics-based algorithms to calculate the

spectral radiance that reaches an imaging system or other photon-detecting device, after interaction

with a virtual representation of a real-world scene. The fidelity of the overall simulation is heavily

dependent on the fidelity of the virtual scene, regardless of the software tool. Therefore, to represent

forest elements for lidar simulations, both the geometry as well as the reflectance, transmission, and

absorption parameters of the forest canopy should all be accurately modeled. These parameters should

be modeled in the visible and near-infrared regions of the electromagnetic spectrum, since these regions

match the wavelength range of operational lidar sensors [32].

 We used the Digital Imaging and Remote Sensing Generation (DIRSIG; V5) tool for this

research. DIRSIG has been continuously developed over the last 30 years at the Rochester Institute of

Technology (RIT) Chester F. Carlson Center for Imaging Science (CIS). This tool is first-principles

26

and physics-based for the domain of unpolarized electro-optical radiometric transport [25]. I.e., the

simulation methods do not originate from derived high-level approximations, but rather from

fundamental physical principles in the realm of geometric optics and visible-to-infrared

electromagnetism. DIRSIG can produce a variety of synthetic data products, including multispectral

imagery, hyperspectral imagery, and both discrete and waveform lidar returns. Additionally, DIRSIG

has been referenced in over 1100 research papers that cover a wide variety of applications, some of

which are listed below.

 DIRSIG uses a Monte-Carlo path tracing method to determine the photon absorption and scatter

percentages. In other words, the algorithm integrates over all the incident radiance at each surface

point by constructing random transport paths. These paths are distributed in accordance with the

bidirectional scattering distribution functions (BSDFs) of the attributed material properties.

The main categories needed for the DIRSIG simulations (Figure 3) include scene geometric

properties (describing the shapes of the objects), scene optical properties (describing the reflectance,

transmission, and absorption of the object surfaces), and instrument properties (sensor type, location,

and detailed parameters). Atmospheric properties are defined by the MODerate resolution atmospheric

TRANsmission (MODTRAN), a software package, or manual inputs [33]. Instrument forward

propagation and scanning are simulated using sensor location, orientation, and temporal sampling

information.

27

 DIRSIG has been used for a range of research applications, including assessing waveform

deconvolution and preprocessing [34], evaluating the level of detail that can be extracted using a 1064

nm wavelength waveform lidar system [11], optimizing in-field leaf area index measurements (LAI)

[13], and detecting lidar backscatter phenomenology [14]. This approach has been shown to provide

accurate representation of observed lidar phenomena. For example, “below ground” system returns

were initially thought to occur as a result of background noise and are often omitted in analyses.

However, further research demonstrated that this phenomenon might result from near-ground dense

grass and coarse woody biomass, while similar delayed returns were observed in operational waveform

lidar data [35]. We will next detail our proposed to voxel classification, namely the convolutional

neural network (CNN).

Figure 3: Diagram of DIRSIG integration for the forest scene. The scene geometry is integrated with

the optical properties and system specifics. This is to render the scene for different sensing modalities

in a first-principles environment.

28

CNN ALGORITHMS

 In the field of computer vision, a CNN is an analytical model which classifies images based on

2D convolutions and other methods of feature learning [36]. A 2D convolution takes a square moving

filter (Figure 4), and moves the center kernel pixel across every image pixel; note that padding usually

is needed for the edges to account for shape mismatch. Then, the points are replaced by values which

are calculated using a convolution operation from the filter. For the process of convolution, element-

wise multiplication is first performed by multiplying the image pixel and its surrounding values with

the corresponding filter values. The initial pixel value is then replaced by the sum of the multiplied

values.

Figure 4: Example diagram demonstrating the process of 2D convolution. Each pixel in the filter is

multiplied elementwise, then added together to form the new sum [37].

 The resulting array is known as a feature map, and there is one map for every filter which is

used. These feature maps are passed through a chosen activation function that determines whether

29

certain image features appear, based on certain conditions. After this step is completed, one option

would be to add more layered filters, which would increase the depth of a typical CNN. Additionally,

maximum pooling layers could also be implemented, where the largest values from each array region

are selected and returned in a smaller array [37].

 Three-dimensional CNNs operate similarly (Figure 5), with the difference being that the input is

a 3D cube and the filters and other layers are also cubes. Note that the 3D version of a pixel is a voxel,

or a “volumetric pixel”. 3D CNNs are mostly used on 3D image data, such as magnetic resonance

imaging (MRI), computed tomography (CT) scans, and videos. A video is a sequence of image frames

in a row, implying that they contain useful spatial features when stacked in the third dimension.

Generally, 3D CNNs produce more accurate results than 2D CNNs, because of the extra information

per voxel and different layering that can be analyzed [15].

Figure 5: Example diagram demonstrating the process of 3D convolution. In this instance, both input

and filter must be 3D for elementwise multiplication [15].

30

 3D CNNs also have been used for deep learning to classify lidar sensor data. One method

developed for this purpose, namely the point-voxel CNN, represents the input data in points and

performs the convolutions in voxels. This was done to make predictions efficient in terms of memory

usage and computation [16]. Another example of a 3D CNN model that was developed is VoxNet,

which uses an occupancy grid representation to continuously detect objects from a moving camera

[17]. The 3D CNN for that model is supervised.

Next, we will detail the methods and approaches in this study. The site study and data, along with

DIRSIG lidar point cloud preprocessing are examined. Voxel algorithms which were studied include

Support Vector Machines and 3D CNN methods. Additional aspects of these algorithms are also

discussed.

31

Methods
SITE STUDY AND DATA COLLECTION

 The research site for this study is a sizable portion of the 16.187 km2 Harvard Forest. The

Harvard Forest is owned and managed by Harvard University and is in Petersham, Massachusetts,

USA. Harvard Forest research is funded by the National Science Foundation and the Department of

Energy. The research site, seen in Figure 6, is called the “Mega Plot” and is located on a part of the

Harvard Forest named Prospect Hill. The dimensions of the Mega Plot are roughly 700 m x 500 m.

One of the research projects on this plot was conducted by the Smithsonian Institute’s Forest Global

Earth Observatory (ForestGEO), and took place from 2010 to 2014. During this project, scientists and

students from ForestGEO measured, tagged, and geo-located all woody stems greater than 1 cm

diameter-at-breast height (DBH) [38].

Figure 6: High-definition view of the Mega Plot (left), shown as being part of the entire Prospect Hill

site (right). The wetlands in the center area lighter shade of green and stand above the rest of the

forest.

32

POINT CLOUD PREPROCESSING

 Simulated waveform lidar data were generated using Digital Imaging and Remote Sensing

Image Generation (DIRSIG) sensor data parameters. The simulated data were based on RIT’s

simulated VLP-16 drone, in waveform lidar and not discrete (typical) lidar type, and NEON’s Optech

Gemini airborne platforms, which were validated based on point density, footprint, and system specs.

The simulated VLP-16 data generally have more background noise, but contain more three-

dimensional detailed information about the forest. In contrast, the simulated NEON data have very

little background noise due to the high altitude, though most of the data only consist of the main forest

structural components and the ground.

The VLP-16 drone (Figure 7) typically is flown at an altitude of 88 m above ground-level

(AGL) and at a speed of 4-5 m/s. On the drone, 16 infrared (IR) lasers, paired with IR detectors, are

used to measure distances between the drone and the object. The laser-detector pairs constitute an

array which scans the environment for the entire 360o through rapid spinning. Each laser fires at a

frequency of 18.08 kHz and can register two returns per pulse. The scanner has a forward-moving

push broom design, because the lasers collect all the data at the front (Table 1). This drone model can

detect street signs, license plates, and lane markings. In single-return mode, approximately 300,000

points/second are detected and returned [39].

Table 1: Specifications of the VLP-16 lidar drone. The resolution is limited, but there are 16 laser

channels.

VLP-16 lidar Specifications

Channels 16 lasers

Range Up to 100 m

Range accuracy Up to ±3 cm

FOV (Vertical) -15o to +15o

Angular Resolution (Vertical) 2o

FOV (Horizontal) 360o

Angular Resolution (Horizontal) 0.1o-0.4o

33

Figure 7: The first set of simulated data is based on truth data from the Velodyne VLP-16 lidar sensor,

which is integrated on a Matrice 600 unmanned aerial system (UAS). The drone is a MX-1 sUAS

remote sensing platform, developed by CIS faculty at RIT. Additionally, the drone contains a Mako G-

419 RGB camera and ballast weight in place of the hyper-spectral camera [40].

The reconstructed data, based on an earlier version of the drone, use a 21.7 kHz laser frequency.

Therefore, there are many excessive simulated points. One issue is that, due to errors with the sensor

and post-processing techniques, some points do not land in the correct voxel, so they are incorrectly

categorized. The best way to reduce the margin of error, which is +/- 0.05 m, is to use a smaller voxel

size [41].

 By contrast, the NEON Optech Gemini system (Figure 8) is flown at an AGL height of around

1000 m at a speed of 50 knots, or approximately 92 km/hr. The Gemini instruments are mounted in a

rigid frame, which is installed in a Twin Otter aircraft, a type of light airplane. Due to the high altitude,

there is only one pixel, with a FOV of +/- 25o. However, the laser fires at a rate of 100 kHz and can

receive up to four returns/pulse (Table 2). The scanner has a side-to-side whiskbroom design which

uses more power, but adequately compensates for the high operational altitude [21].

34

Table 2: Specifications of the NEON lidar system. The Gemini waveform lidar system is operated at a

much higher altitude than the UAS-based VLP-16 system.

NEON lidar Specifications

Operating altitude 1000 m

Wavelength 1064 nm

Pulse repetition 100 kHz

Scan frequency 50 Hz

Beam divergence 0.8 mrad

Scan angle range ±18.5o

Footprint size 0.8 m

Figure 8: Rendering of the NEON Optech Gemini system. Because of the high level of laser power, the

apparatus needs to be flown in a light aircraft at a high altitude [42].

Voxelized representations of the truth data were generated using the VoxelizeHDF command

line tool, which was created by Saunders et al. in order to generate reference voxel data from DIRSIG

scenes for this project [43]. The coordinate boundaries of the VLP-16 dataset plots were taken from

35

the filtered version of Plot B, Dataset 3, which contains all the material types. The probability of object

detection is the highest for this plot, and there is a mixture of conifers and deciduous trees.

Additionally, there are low LAI values due to canopy structure, which translates into the prevalence of

dead wood, and multiple sub-canopy objects. Each truth voxel contains the estimated background, leaf,

bark, ground, and object area in m2 units. The minimum (x, y, z) coordinates were (594.44, 50.51, -

12.78) m and the maximum coordinates were (647.6, 117.05, 14.41) m.

The coordinate boundaries of the NEON plots were selected so that a truck and tent were

included. The minimum coordinates were (600, 75, -12.4) m and the maximum coordinates were (650,

125, 20.08) m. A second NEON plot of size 150 m x 150 m was created to test whether more data

(voxels, structural variability) would yield better results. This time, as shown in Figure 9, cars which

were rotated at different angles, along with a tower, were included. The minimum coordinates were

(550, 0, -13.43) m and the maximum coordinates were (700, 150, 35.7) m.

36

Figure 9: Slice of the enlarged 150 m x 150 m NEON plot. In this region, several cars (shown in

black) are rotated at different angles for greater variety in truth data.

The complexity of the reconstruction algorithm was based on the number of applicable

waveform paths. Initially, the reconstructed data were stored in multiple bin files and were extracted

using a voxelizer Python script. The script used the d5lidar library [44], also created by Saunders et

al., along with an included for loop for extraction. Each instance of reconstructed data contains the

total scattered fraction of photons, the total remaining fraction of photons, and the number of voxel

waveforms. All these data instances are added to their corresponding voxels by coordinate location.

The categories from the voxelizer are total absolute facet area (m2) per category. They are

disjoint, such that the total area for all facets in the voxel is the sum of the areas of the individual

categories. The area of an individual triangular facet, as seen in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2, is half the magnitude of

the cross product of the edge vectors.

37

𝐴𝑓𝑎𝑐𝑒𝑡 = ||
1

2
𝐸1 ⨯ 𝐸2|| (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2)

For large facets that touch multiple voxels, as seen in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3, the area is distributed by randomly

sampling N points on the surface of the triangle and then adding
1

𝑛
𝑡ℎ of the facet area to the voxel

containing each point [44].

 𝑣𝑜𝑥𝑒𝑙𝐴𝑡(𝑃𝑘) ← 𝑣𝑜𝑥𝑒𝑙𝐴𝑡(𝑃𝑘) +
1

𝑛
𝐴𝑓𝑎𝑐𝑒𝑡 for k = 1, …, n (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3)

There is a specific geometric ray, also known as a line-of-sight, for each waveform. The ray

starts at the platform and points downward into the scene at an angle. Therefore, segments of the

waveform should be measured against the structure of the voxel grid. Not only does each ray intersect

many voxels, each voxel will also be intersected by many rays. The voxelized density field is created

by calculating the average scattering density for each voxel. Only the relevant portions of intersecting

waveforms are used in calculating the values. The method for estimating the average scattering density

is the most important portion of the overall calculations. The estimated scattering density is

reconstructed on a voxel grid from the waveform data. The voxel grid is parameterized by the

coordinates of its minimum and maximum corners and the number of subdivisions on the grid. The

corners are chosen to cover the area of the interest, and the number of subdivisions typically is chosen

to obtain approximately cubic voxels with an edge length between 0.5-1.0 meters.

For each waveform, which may originate from either a real or simulated dataset, we distribute

an estimate of the scattered energy, as a function of distance, to the voxels intersected by a cone-shaped

distribution of rays concentrated around the associated central line-of-sight ray. This method contrasts

with discrete data, where the average intensity of all the returns is taken for each voxel. Note that if a

ray intersects a voxel, it does so at exactly two points. The first intersection marks the entrance, nearer

to the sensor, and the second intersection marks the exit, nearer to the ground. Each of these points

corresponds to a distance from the sensor and thus an ordinate in the waveform curve. We evaluate the

proportion of returned energy at the voxel in question as a ratio of waveform integrals: the ratio of the

38

integral of the waveform between the ray intersections to the integral of the waveform from the first

intersection to the end. In other words, we evaluate the fraction of the remaining energy in the

waveform which is accounted for by the voxel at hand. This calculation is consistent with a Beer-

Lambert law assumption, and thus helps account for the tendency of the waveform returns to decay

with distance [45]. Lastly, we average the scattering estimates at each voxel after processing all

waveforms by dividing the value at each voxel by the number of rays that contributed to it, but only if

this number is non-zero of course.

 Reconstructed data serve as the input for the machine learning algorithm. The voxels of these

data represent the relative scattering intensity as a function of spatial location, which is a unitless

quantity between 0 (never scattering) and 1 (always scattering). This is so each voxel contains the

fraction of scattered photons which passed through that voxel. Additionally, converting numbers in that

range to a different range is facilitated. If more than one waveform passed through the voxel, the

intensity fractions are divided by the number of waveforms to find the average. Finally, in order to

maintain reasonable processing/computational requirements, voxels were set to 0.5 m in size.

For the reconstructed simulated VLP-16 waveform lidar data, such as the slice in Figure 10,

relatively few waveform paths were used due to memory limitations. As a result, the reconstructed data

exhibited significant background noise, which was slightly above zero. However, the ground line is

clearly indicated by the gradient at the top of the bottom section’s high intensity region. The basic

canopy shapes and respective locations are also well-defined.

39

For the simulated NEON waveform lidar data, such as the slice in Figure 11, there is little

background noise, due to the high altitude (1000 m) data capture. Therefore, separating the forest from

the background is relatively simple. Since the data are returned as limited increments due to system

power limitations, the plots resemble a series of interconnected rectangles. Bark prediction is

challenging, given the relatively limited data. However, like the simulated VLP-16 data, the ground

line is clearly indicated by the gradient at the top of the bottom section’s high intensity region. Objects

are easily distinguished based on their closeness to ground level and relatively high scattering

intensities.

Figure 10: 2D vertical slice of simulated VLP-16 waveform lidar data, showing the fraction of

reflected photons for each voxel. There is significant background noise.

40

The ground truth data also were generated by DIRSIG. This geometric scene is based on actual

sensor data that were collected at the Harvard Forest. The scene in Figure 12 contains over 100k

geolocated plants and trees, with real world spectral and geometric features. The DIRSIG scene file

format utilizes the well-known Hierarchical Data Format Version 5 (HDF5) to represent real-world

objects as geometric primitives, typically collections of triangles, associated with spectral material

descriptions and other metadata. A command-line program was written to process the DIRSIG HDF in

order to establish the ground-truth voxelization.

Figure 11: 2D vertical slice of simulated NEON waveform data, showing the fraction of

reflected photons for each voxel. The data is highly sparse because of the relatively high

altitude (1000 m AGL) of the Gemini system.

41

 The user must input a region to voxelize, such that the boundaries are determined by the

maximum and minimum X and Y coordinate values. Additionally, the number of subdivisions for the

array also must be specified. The program then iterates all triangles in the scene which overlap the

specified region and accumulates the total one-sided surface area present in each voxel. The extraction

results are stored in four binary files based on the type of forest item (class), which are distinguished by

matching the material identifiers associated with the scene geometry against regular expressions.

These class categories are background, foliage, bark, man-made objects, and ground voxels. A

background voxel is a voxel without any surface area.

 The ground truth voxels are the output data for the machine learning algorithm. Truth voxels

contain five surface area values for each type of item contained within the voxel. These voxels were

also set to 0.5 m in size in order to maintain consistency with the input data. The five categories are

numbered in Figure 13 as background (0), leaf (1), bark (2), ground (3), and object (4). The highest

Figure 12: 3D point cloud plot of the Mega Plot, located on Prospect Hill. There are over 100k

geolocated plants and trees on this plot.

42

category surface area for each voxel is selected as the main fill, and the value of the voxel is set to the

corresponding numbers as output labels.

 Using maximum surface area to create the categories implies that each voxel mostly contains a

single kind of forest object type. This would be ideal if the voxel size were extremely small, so that a

voxel could only contain a few small branches or a few leaves. However, some voxels may contain

two or even three class areas that are close to each other. These voxels often are the most difficult to

accurately predict. Typically, they are located inside the center of the tree crowns. One possible

solution would be to figure out how to use smaller voxels when predicting data. Another solution

would be to create more categories, where the new voxel categories would contain roughly equal areas

from two different classes. After that, the categories would be classified again in another CNN model.

Figure 13: Vertical slice of the ground truth data. The leaves are green, and bark and ground

are brown. Objects, not pictured, are black.

43

 Finally, simulated VLP-16 or NEON waveform data were far more accurate at a lower than a

higher altitude. This is because the ground and objects are sampled in a denser configuration, and are

located at a lower level as a result. The point density is much higher, making simulation easier to

perform due to a larger input dataset. The real data, seen in Figure 14, are also reconstructed from

waveforms. However, most of the returns are from the canopy level. This is because most real NEON

data cannot reach the ground level due to the extensive foliage in closed-canopy forests. This can be

visualized through the attenuated raw waveforms, shown in Figure 15.

Figure 14: Vertical slice of the real NEON data, showing the fraction of reflected photons for each

voxel. Most real waveforms are not able to reach the ground due to the foliage.

44

Figure 15: Sample of raw waveforms which were used to reconstruct the real NEON data. Most

waveforms were truncated at relatively near distances, showing that ground could not be reached.

VOXEL ALGORITHMS

Support Vector Machines (SVM)

 A simple support vector classification (SVC) algorithm initially was used for voxel prediction.

A classifier has only one unit that produces the activation output, so the SVC classifier was used on the

dataset to test the effectiveness of a basic machine learning algorithm [46]. SVC is a type of support

vector machine (SVM), which uses a supervised learning method [47]. The software library used to

implement the algorithm was scikit-learn, which is available as free software [48]. SVC performs

multi-class classification on the dataset. The margins separating the hyperplane are maximized, and

penalties are incurred when a sample is misclassified or too close to the boundary [49].

45

 The inputs were 5x5x5 arrays surrounding each waveform voxel (zero padding was applied

around the waveform voxel array for edge points). This array size was chosen because a 3x3x3

approach yielded poor accuracy, with recall and precision both less than 25%. Anything larger had

distinctly slow runtime; after two hours, I stopped running the program. Classifiers only work with 1D

inputs, so the inputs were all flattened to size 1x125. Additionally, the z-coordinate (height above

ground) of each voxel was appended to every input, since height arguably is a significant factor in

predicting the ground voxels. The five previously-mentioned voxel category labels were used as the

respective outputs.

 The data were split into training and testing sets, where each set contained 50% of the entire

data. There were almost 300,000 total voxels used in both training and testing, so a very specific

percentage is not critically important in this case [50]. Additionally, to minimize the effect of the voxel

location, the data were randomly shuffled at the beginning. Voxel indices were temporarily appended

to the data, so that the absolute location of each point was preserved. The SVC algorithm creates

several hyperplanes, which split the inputs into several classes. Additionally, the kernel that is utilized

in 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4is the radial basis function (RBF) kernel. The gamma parameter determines

how much an input can influence nearby inputs. Gamma was set to 0.001 because there are many

samples, so a minimal influence per input is ideal for forming well-defined predictions over many

scenarios [48]. Shrinking was not needed, since most arrays surrounding each voxel have a relatively

similar shape.

exp(−𝛾‖𝑥 − 𝑥′‖2) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4)

Although a convolutional neural network (CNN) utilizes far more resources than a conventional

classifier, the corresponding predictions arguably are far more accurate [51]. A conventional classifier

has only one unit that produces the activation output. In a CNN, there are multiple units in a single

46

layer, which are all classifiers. Additionally, there are multiple layers and activation functions which all

interact with each other to generate a far more robust model.

3D CNN

 For the 50 m x 50 m plots, 11x11x11 arrays surrounding each waveform voxel were used as

inputs. Zero padding was used around the waveform voxel array for edge points. This array size was

chosen because a slightly larger array size would require more memory than was available, and very

small sizes do not have enough data to be filtered for the two max pooling layers. Every max pooling

layer reduces the array dimension by half. Therefore, the minimum dimension size would have to be

greater than 22 = 4. Ideally, the array size would be 15x15x15, since much more data could be utilized.

The five voxel category labels were used as the respective outputs. The prediction method used in this

paper is unique, since 3D convolutional neural network (CNN) layers were used. Adding a third

dimension typically improves the resulting accuracy [52]. A 3D array is equivalent to several 2D slices

stacked together in a certain direction, and changes that occur throughout that direction provide

additional significant patterns.

For the 150 m x 150 m simulated NEON arrays, the input parameters originally needed to be

modified due to memory limits. Two methods were implemented: The input array size was reduced to

7x7x7 for the first method, and the input voxel dimension was increased to 1 m for the second method.

Reducing the input array dimensions resulted in the inputs being approximately 25% of the original

size. Increasing the voxel dimension from 0.5 m to 1 m resulted in the maximum number of inputs

being 12.5% of the original maximum number.

However, when the program was run on the RIT Research Computing (RIT RC) Cluster [53],

the 150 m x 150 m simulated NEON array could be run with 11x11x11 input arrays and the 0.5 m

voxel dimension size. The computation time was significantly faster, and a greater number of objects

could be added for further testing. Additionally, local z-values could be added as another filter. This

information provided more detail, which made categorizing objects easier.

47

Initially, all the input voxels with zero intensity were discarded. This was done due to memory

limitations on the local servers, and was based on the false assumption that all these voxels would be

predicted as background. When these voxels were re-added, background and leaf precision noticeably

declined. This is because the input voxels are not well-positioned with the output voxels. However,

this led to a more accurate understanding of the CNN algorithms. The outputs seemed to be more

averaged versions of the inputs in multiple directions.

The data again were split into training and testing sets in all cases, where each set contained

50% of the entire data. Additionally, to minimize the effect of the voxel location, the data were

randomly shuffled at the beginning. Voxel indices were temporarily appended to the data, so the

absolute location of each point was preserved. The training truth data were converted to a binary class

matrix to make processing easier. A binary class matrix is a matrix of size nxn, where the left-to-right

diagonal consists of ones, and all other values are zero. Both training and testing waveform voxel array

inputs were then converted to 5D arrays, since the fifth dimension contains the values and filters.

Code for creating the fifth dimension was based on a program titled “3D CNN”, which was

created by Aggarwal [54]. In this code, the fifth dimension was created by converting the array

intensities to different (R, G, B) values of orange, by using the ScalarMappable mixin from Matplotlib

[55]. The intensities were scaled in ascending order from light orange to dark orange. The scaling was

sequential, meaning that the lightness value increases monotonically through the colormap.

 The CNN workflow was programmed in Python, using components from the Keras framework

for simplicity [56]. The optimizer used was RMSProp, which uses the root mean square. It is an

extension of gradient descent, which is an algorithm used to find values of parameters that minimize

the cost [57]. The scheduler used was ReduceLROnPlateau, which reduces the learning rate when

relatively little improvement is detected. The CNN algorithm then was trained using the given training

48

data. After the algorithm was fully trained, predicted test fills were generated using the test inputs, and

they were compared to the actual test fills using a confusion matrix.

 The CNN architecture is based on the VGG16 architecture, which was developed in 2015 by

Simonyan and Zisserman et al. at Oxford University. VGG16 has 16 layers, can contain up to 95

million parameters, and was trained on over 1000 classes. The maximum 2D input size is 224x224

pixels with 4096 convolutional features [58]. However, VGG16 usually works better with images that

are smaller than 100x100, because large images can be computationally expensive. Because of the

large number of supported parameters and trained classes, VGG16 would be suitable for 3D datasets

with relatively small inputs. Overall, the VGG16 model is computationally efficient and performs well

at classifying a wide variety of tasks [59]. Since the input array size is only 11x11x11, and the

maximum overall array size could be 150x150x150, an architecture based on VGG16 would be ideal

for this dataset.

 The actual CNN, as seen in Figure 16, was built using a sequential model, meaning that each

layer was simply added in sequence. First, there were two 3D convolutional layers. The first 3D

convolutional layer used eight filters, and the second layer used 16 filters. For the convolution kernel,

the size was set to 3x3x3. After that, a MaxPool3D layer was added which reduces the size of the

array, returning only maximum values. This was followed by two more convolutional layers, with 32

and 64 filters, respectively. Batch normalization was added, which normalized each batch for

consistent analysis. A second MaxPool3D layer was used to return the maximum values after all these

operations.

 A dropout layer with parameter 0.25 was implemented, following the convolutional and pooling

layers. The inputs were then flattened to enable dense connections. A dense layer with dimensionality

of 113 (length 1331) was added, along with ReLU activation, followed by a dropout layer with

parameter 0.5. Another dense layer was added with dimensionality of 1024 and ReLU activation,

49

followed by another dropout layer with parameter 0.5. The last layer, a dense layer of dimensionality

five, was added, since there are five classes. For this layer, the softmax activation function was used

because the output is a probability distribution.

 Right before training began, the categorical cross-entropy loss was assigned to this model. The

accuracy metric was returned for tracking. Before tuning, the batch size was set to 86, which is small

enough for this purpose, with the number of epochs also set to 30. There are over 1 million voxels, so

the batch size should be around 100. For an average large dataset, the change in learning rate slows

around 30-35 epochs. A validation set, which consisted of 15% of the training data, were also created

Figure 16: Visual diagram of the CNN model. There are two max pooling layers and the

number of filters increases per layer for more detail. At the end, the layers are flattened and

there is a softmax layer.

50

to tune the data parameters. The validation set size should be much smaller compared to the main

training data, but should still have significant weight. Finally, the results of each epoch were displayed

using the TensorBoard toolkit.

Analysis of the predicted results, as shown in Figure 17, indicates that many pixels that were

not properly detected were located at the background edges. As a result, a two-stage model was

developed (Figure 18). First, a copy of all the truth data was made, where the background value was

still 0, and all the voxel values of the actual forest were set equal to 1. For the first stage, the same

waveform arrays were used as the input, and the new thresholded voxels were set as the output. Since

most waveform array intensities in background areas are close to zero, most of the background was

properly detected and set exactly to zero.

Figure 17: Slice indicating points which were incorrectly predicted. Incorrect predictions

are colored red, and are close to the forest boundaries. Correct predictions are not

colored red.

51

 The initial input was multiplied by the first output to create a new output for the second stage.

This removed the predicted background and retained the predicted forest voxel regions. The output

was still the ground truth data. None of the voxels that were predicted as background were used in this

stage, in order to simplify the algorithm. The new inputs and outputs were sent to the same CNN

algorithm. Overall, the branches and tree trunks were far more likely to be correctly predicted.

Figure 18: Workflow of the two-stage model. First, the output is thresholded, then the input's

background is removed.

Originally, every flattened array was returned in order using a provided for loop, then fed into

the ScalarMappable mixin to convert to (R, G, B) values. This structure is suitable for older servers,

but is highly computationally inefficient for modern hardware. The dimension of the ScalarMappable

output thus was expanded by one to store all the arrays at once, in order to remove this loop. After that,

an even more computationally-efficient solution was discovered; instead of converting the array

intensities to (R, G, B) values, a fifth axis was simply appended to the input array. This small change

satisfied the 5D array requirement, required one-third of the original memory, and provided the same

level of overall accuracy.

 Finally, an additional channel was created where every positive value was thresholded to one.

Segmenting the background from everything else was far easier, since the contrast for this layer is very

high. As a result, the new single-stage model provided the same accuracy for the simulated VLP-16

52

waveform data as the previous two-stage model. Creating a more pronounced threshold helped the

algorithm filter out intensities that were slightly above zero, thus removing background noise.

Z-VALUE INPUT CHANNELS – adding height above ground

A second channel was initially created, to provide greater accuracy, by appending local z-values

to every input array. These local z-values range from zero to the maximum height of the input array.

Z-values provide the algorithm with a measure of relative height, also called normalized height (above

the ground). Object accuracy significantly increased due to the contrast of the straight bounds with the

newly-added height information. Global z-values, which ranged from zero to the maximum height of

the scene array, were not as effective due to the different heights and the unique properties of the tower

object in the virtual scene.

 However, global z-value segmentation bands, where the ground level is set to 0, proved to be a

more effective solution, resulting in greater accuracy. It is worth noting that the use of the absolute z-

values would create too many inputs, leading to low accuracy. The four levels were: below ground,

shrubs and objects, vertical midsection of tree trunks, and tree canopies. After the classification was

complete, voxels below ground were set to 0, ground level to 15 m above were set to 1, 15 - 35 m

above were set to 2, and >35 m were set to 3.

 A copy of the 3D array was created to create this layer, where ground was temporarily defined

as the very bottom of the array. The segmentation bands of 1, 2, and 3 were defined. Additionally, a z-

coordinate copy of this array was created. All the ground heights from the original array were returned

in a duplicated cross-section as numbers. Missing ground values were set to nan, masked, and then

interpolated using scipy. The cross-section was vertically duplicated to match the height of the original

array, giving each voxel a vertical rotation value. The z-coordinates were vertically shifted by simply

adding the z-coordinate array to the vertical rotation array. Finally, the new z-coordinates were set as

53

coordinate inputs into the segmentation band array, which were then set equal to the current

segmentation values.

 Since the 1-band is shifted upward, the values below are all 3, which should be set to 0. A

duplicate matrix thus is created, where all values that are not 3 are set to zero. The scipy.ndimage.label

function is used to segment the sections of value 3 into two sections. The bottom segment is equal to 1,

so all locations in the original segmentation array where this is true are set to 0. This results in four

unique sections, as shown in Figure 19.

Figure 19: A plot of the relative z-heights, shifted to follow the ground’s contour. Brown is 1, green is

3, and the white regions are 0 and 2.

54

ON THE USE OF THE KERAS TUNER

 The Keras Tuner is a library that is part of the Keras API, which picks the best set of

hyperparameters for a TensorFlow program [60]. Hyperparameters are numbers in the algorithm which

determine the structure and flow of the components. There are two main types of hyperparameters:

Model hyperparameters, which influence model selection such as dimensionality, and Algorithm

hyperparameters, which influence speed and quality such as the learning rate [61].

 The CNN model must be included in a hypermodel, the model set up for hypertuning. For this

case, a model builder function is used, meaning that the CNN model is transferred to a separate

function. Additionally, model.fit is not used, since this command is for training the model. There are

several hyperparameter methods, which determine how the hyperparameters are selected. The methods

which are used are Int for the second dense layer and Choice for the algorithm’s learning rate. Int is an

efficient method for creating an integer range, which requires as inputs a lower bound, an upper bound,

and a step size, which separates the inputs. Choice simply picks the best value from a preset list [62].

 More specifically, the Hyperband tuner is used for this algorithm, which uses a tournament

bracket-style method to quickly converge on a high-performing model [63]. More detail about the

algorithm is given in Figure 20. The objective is validation accuracy, and the number of maximum

epochs is set to 10. There are fifteen choices for the second dense layer, and three choices for the

learning rate. A small number of epochs would lead to good parameter results, which would be

difficult to improve on.

55

Figure 20: Outline of the hyperband algorithm from the paper on Hyperband. There are two for-loops,

which determine the effectiveness of the models in each bracket. The top half of the models move to the

next bracket until tuning is complete.

The algorithm initially creates many models based on the dense layer and learning rate

methods. These models are trained for a few epochs, and the top-performing half is then carried to the

next round. Hyperband determines the number of models to train in each bracket using 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5:

1 + 𝑙𝑜𝑔𝑓𝑎𝑐𝑡𝑜𝑟(𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠) (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5)

 The possible parameters for the second dense layer were a minimum unit number of 64, a

maximum unit number of 1024, and a step size of 64. For the learning rate, the possible parameters

were 0.01, 0.001, and 0.0001. The program ended up selecting a unit number of 960 for the second

dense layer, and a learning rate of 0.0001 for the optimizer. A very small learning rate made sense,

given the large number of inputs and outputs, as a larger learning rate could easily overcompensate,

making accurate results harder to obtain. Overall, accuracy significantly improved for all datasets,

especially for the bark voxels.

56

Results and Discussion
 The overall results were strongly comparable to the three seminal papers. Huang and You

reported 78% accuracy for trees, but all object categories had 84% or higher accuracy. This is

comparable to the ground truth models in this study, where leaf and bark precision was around 75%,

but ground and object precision was around 99% [30]. Kukenbrink et al. demonstrated that smaller

voxel sizes resulted in higher accuracy for the occluded and unobserved canopy. This matches with the

models in this study, where smaller voxels generally resulted in higher accuracies. However, the input

array size also needs to be larger [24]. Finally, Hancock et al. demonstrated methods to voxelize

forests using ALS and TLS data. The false positives were less than 15%, and the negatives were less

than 1% [31]. This is comparable to what was reconstructed with the d5lidar voxelizer [44].

0.25 m GROUND TRUTH MODELS (maximum category areas)

All models used ground truth maximum surface area values as the inputs. The training length

was 50 epochs, with a batch size of 64. The training/testing ratio of voxels was 80/20. All models

were trained using Plot B, Dataset 3 voxels. Global z-values were used as an input parameter to better

classify different parts of the forest, improving accuracy. Different input voxel sizes and plot sections

were used to compare different accuracies.

Full-plot 7x7x7 global z-values

 According to Table 3, precision was very strong overall, with weaknesses in the leaf and bark

elements. This is because leaf and bark elements tend to overlap, particularly in the canopy. Bark

recall was quite low, because the number of leaf elements greatly outnumber the bark elements. This is

despite that class weighting was used to improve accuracy. Because of the relatively small voxel size,

object recall was only 60%. As shown in Figure 21, objects were slightly misshapen around the edges.

57

Table 3: Confusion matrix of the 0.25 m classifier model on ground truth full plot, input sizes 7x7x7.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1.

Overall Recall 79% Total Voxels 1218071

Overall Precision 89%

 Background Leaf Bark Ground Objects Precision

Background 1.00 0.00 0.00 0.00 0.00 99%

Leaf 0.00 0.74 0.25 0.00 0.00 74%

Bark 0.00 0.26 0.74 0.00 0.00 74%

Ground 0.00 0.00 0.00 1.00 0.00 99%

Objects 0.00 0.01 0.00 0.01 0.99 99%

Recall 99% 85% 56% 94% 60%

Figure 21: Predicted values of whole 0.25 m truth model with global z-value 7x7x7 inputs. Because of

the relatively small input size, there is difficulty in classifying object edges, resulting in misshapen

objects.

58

Half-plot 9x9x9 global z-values

 As seen in Table 4, overall recall and precision were the best from all three 0.25 m voxel

models. Leaf precision did decrease somewhat due to fewer voxels, but bark precision significantly

increased. For good leaf accuracy values, large inputs are not needed, because of the smaller size of

leaves. However, bark sections take up more room (volume), and would need larger inputs. The

greatest improvement was in object recall, because larger voxels can capture the more rigid edges. In

Figure 22, the objects were more detailed.

Table 4: Confusion matrix of the global z-value 0.25 m classifier model on ground truth half plot, input

sizes 9x9x9. Each row represents the instances in an actual class, and each column represents the

instances in a predicted class. Values are normalized so that the sum of every row is equal to 1.

Overall Recall 83% Total Voxels 604455

Overall Precision 89%

 Background Leaf Bark Ground Objects Precision

Background 1.00 0.00 0.00 0.00 0.00 99%

Leaf 0.00 0.70 0.29 0.00 0.00 70%

Bark 0.00 0.22 0.78 0.00 0.00 78%

Ground 0.00 0.00 0.00 1.00 0.00 99%

Objects 0.00 0.00 0.00 0.01 0.99 99%

Recall 99% 86% 55% 94% 78%

59

Figure 22: Predicted values of half 0.25 m truth model with global z-value 9x9x9 inputs. The input size

is larger, so the object has significantly more pronounced edges.

Quarter-plot 11x11x11 global z-values

 Overall recall is significantly less than the half-plot 9x9x9 values. One major reason is that in

Table 5, the background precision is only 97%. This figure is due to the relatively small number of

voxels, creating choppier edges, as seen in Figure 23. Leaf precision is slightly higher, and bark

precision is almost 80%. In particular, the recall values of leaf and bark voxels are significantly less

accurate, which was attributed to the slight decline in background precision.

60

Table 5: Confusion matrix of the global z-value 0.25 m classifier model on ground truth quarter plot,

input sizes 11x11x11. Each row represents the instances in an actual class, and each column

represents the instances in a predicted class. Values are normalized so that the sum of every row is

equal to 1.

Overall Recall 78% Total Voxels 302228

Overall Precision 89%

 Background Leaf Bark Ground Objects Precision

Background 0.97 0.01 0.01 0.00 0.00 97%

Leaf 0.01 0.72 0.27 0.00 0.00 72%

Bark 0.00 0.20 0.79 0.00 0.00 79%

Ground 0.00 0.00 0.00 0.99 0.00 99%

Objects 0.00 0.00 0.00 0.01 0.99 99%

Recall 99% 75% 49% 91% 75%

Figure 23: Predicted values of quarter 0.25 m truth model with global z-value 11x11x11 inputs.

Because of the significantly low number of voxels, all the voxel edges are choppier compared to the

previous two models.

61

VLP-16 MODELS (simulated waveform lidar data)

Classifier (SVC, only one unit per output)

 The background voxels performed the best because according to Table 6, the predictions had

67% precision and 75% recall. Most of the voxels are background voxels, which are located at very

large, specific sections. Leaf voxels were somewhat accurate, with 25% precision and 53% recall, as

shown in Table 6. Because background voxels greatly outnumbered the leaf voxels, many leaf voxels

were falsely predicted as background voxels, and not the other way around. Finally, ground voxels

were more accurately predicted than leaf voxels, since the ground voxels are in a very specific region.

Table 6: Confusion matrix of the simulated VLP-16 classifier model with background voxel counts,

9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1.

Overall Recall 75% Total Voxels 293454

Overall Precision 67%

 Background Leaf Bark Ground Objects Precision

Background 0.97 0.03 0.00 0.00 0.00 97%

Leaf 0.73 0.25 0.00 0.01 0.00 25%

Bark 0.68 0.32 0.00 0.00 0.00 0%

Ground 0.38 0.02 0.00 0.60 0.00 60%

Objects 0.91 0.04 0.00 0.05 0.00 0%

Recall 77% 53% 0% 71% 0%

Table 7: Confusion matrix of the simulated VLP-16 classifier model without background voxel counts,

9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1.

 Leaf Bark Ground Objects

Leaf 0.95 0.00 0.05 0.00

Bark 0.99 0.00 0.01 0.00

Ground 0.04 0.00 0.96 0.00

Objects 0.43 0.00 0.57 0.00

However, only a small handful of bark and object voxels were correctly predicted. As seen in

Figure 8, most bark voxels significantly overlap with the leaf voxels, making them hard to predict.

This is because in a classifier, only one unit produces the activation output. There were also only 232

62

object voxels. The classifier is too simple in nature to be able to work with the rigid shapes of objects.

The CNN methods were far more complex, and therefore performed much better.

The optimal objective value of the dual SVM problem was found to be -414.79, which is

relatively close to zero, when compared to earlier iterations. This value measures the overall accuracy

of the classifier [49]. The bias term is equal to -0.72, which means that the best classification

predictions differ somewhat from most predictions. There were 429 support vectors, and 418 of them

were bounded, meaning that the data were quite difficult to separate. Overall, there were 143,511

support vectors needed for classifying the voxels in the best possible way, which is a significant

number, given the wide variety of data points.

Figure 24: Predicted output of the classifier algorithm. Leaf and ground voxels performed much better

than other types of voxel fills.

63

Single-stage (intensity-only input, no additional segmentation)

 For the VLP-16 single-stage model, the 74% recall result was slightly better than the 66%

precision result in Table 8. This is because the background takes up most space, according to Figure

25. Most of the background voxels were correctly predicted with 94% precision and 85% recall, but

other voxel classes also were predicted as background. Leaf voxels exhibited average 53% precision

and 60% recall rates, because they overlap with the other elements. Bark voxels showed a low 10%

precision rate. Much of the bark overlaps with the leaves, and there are far more leaf voxels than bark

voxels.

Table 8: Confusion matrix of the simulated VLP-16 single-stage model with background voxel counts,

9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1.

Overall Recall 74% Total Voxels 296493

Overall Precision 66%

Class Background Leaf Bark Ground Objects Precision

Background 0.94 0.05 0.00 0.00 0.00 94%

Leaf 0.44 0.53 0.01 0.02 0.00 53%

Bark 0.40 0.50 0.10 0.00 0.00 10%

Ground 0.03 0.01 0.00 0.96 0.00 96%

Objects 0.10 0.08 0.00 0.06 0.76 76%

Recall 85% 60% 61% 83% 82%

Table 9: Confusion matrix of the simulated VLP-16 single-stage model without background voxel

counts, 9x9x9 input size, with 0.5 m voxel size. Each row represents the instances in an actual class,

and each column represents the instances in a predicted class. Values are normalized so that the sum

of every row is equal to 1.

Class Leaf Bark Ground Objects

Leaf 0.95 0.03 0.03 0.00

Bark 0.83 0.17 0.00 0.00

Ground 0.01 0.00 0.99 0.00

Objects 0.09 0.00 0.06 0.84

64

 The ground voxels were predicted very accurately, because all these voxels are located at a very

specific height. Additionally, the surrounding shape of these voxels is very specific, which looks

almost like a flat plane. Although there were less than 500 object voxels, the rates of both precision

and recall were relatively high. One possible explanation might be that, because these are manmade

objects, they have a defined rigid shape, as opposed to the far greater randomness of the forest leaves

and bark.

Figure 25: Predicted output of the VLP-16 single-stage model. Leaf predictions were much

better when compared to the classifier algorithm, and objects (not pictured here) also

performed much better.

65

Two-stage (pre-segmentation of background, then all other categories)

 The 92% background precision was strong for the first stage of the two-stage model (Table 10).

This was because the background comprises most of the voxels, especially at the edge regions of the

array. The 70% forest precision value was decent, because forest leaf structure is mostly random, and

the boundary between forest and background is significantly blurry in the input array. Regardless of

these issues, however, bark detection in the second stage of the model was much better than the single-

stage model.

Table 10: Confusion matrix of the first stage of the two-stage model. Values are normalized so that the

sum of every row is equal to 1.

Class Background Forest

Background 0.92 0.08

Forest 0.3 0.7

For the second stage of the two-stage model (Table 11), the voxel types were very similar,

resulting in approximately 66% precision and recall. Most voxels in this stage were leaf and bark,

which are more random in nature. Since most of the background was eliminated, there were relatively

few background voxels which were randomly scattered. As a result, the rates were less than 50% for

precision and recall. The 86% precision and 72% recall for the leaf voxels were significantly better this

time. This is likely because most leaf voxels are grouped (clumped) in near-ground surface bushes or

as part of the tree canopies. The locations were more specific for this CNN model, which made

detection easier.

66

Table 11: Confusion matrix of the second stage of two-stage model with background voxel counts.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. Simulated VLP-16

data is used, 9x9x9 input size, with 0.5 m voxel size.

Overall Recall 67% Total Voxels 82633

Overall Precision 66%

Class Background Leaf Bark Ground Objects Precision

Background 0.11 0.74 0.15 0.01 0.00 11%

Leaf 0.02 0.86 0.10 0.01 0.00 86%

Bark 0.02 0.56 0.42 0.00 0.00 42%

Ground 0.00 0.01 0.00 0.98 0.00 98%

Objects 0.01 0.02 0.00 0.02 0.95 95%

Recall 41% 72% 54% 87% 80%

Table 12: Confusion matrix of the second stage of two-stage model without background voxel counts.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. Simulated VLP-16

data is used, 9x9x9 input size, with 0.5 m voxel size.

Class Leaf Bark Ground Objects

Leaf 0.88 0.10 0.02 0.00

Bark 0.57 0.43 0.00 0.00

Ground 0.01 0.00 0.99 0.00

Objects 0.02 0.00 0.02 0.95

 Bark detection performance had 42% precision and 54% recall rates, because there were far

fewer bark voxels, which were also mostly surrounded by leaves. Bark predictions are far more visible

in Figure 26. Again, the ground exhibited very high 98% precision and 87% recall rates, because the

ground is located at a specific location and has a relatively specific shape. Finally, the objects had 95%

precision, because the overall object location is very specific and they have a defined rigid shape.

67

Three-channel (intensity, background threshold, and local z-values)

 The 76% recall result was very close to the 77% precision result for the VLP-16 three-channel

model in Table 13. This is because the background occupies most of the space, as seen in Figure 27.

Most of the background voxels were correctly predicted, with 93% precision and 91% recall rates.

Leaf voxels exhibited good (71%) precision and recall (64%) rates, because the edges are easily

detectable, though they overlap with the other elements. The thresholded channel likely helps filter out

background noise. Again, the bark voxels had a low 28% precision rate. Bark is the element that is

most “buried” in the scene, so VLP-16 sensors had the greatest difficulty distinguishing bark voxels.

The bark recall rate is surprisingly high at 62%, but that is most likely due to very few voxels being

predicted as bark.

Figure 26: Predicted output of the two-stage model. Leaves and bark were classified much

more accurately when compared to the single-stage model. Objects (not pictured here) were

classified extremely well.

68

Table 13: Confusion matrix of the simulated VLP-16 three-channel model (local z-value and

thresholded background channels) with background voxel counts. Each row represents the instances in

an actual class, and each column represents the instances in a predicted class. Values are normalized

so that the sum of every row is equal to 1. A 9x9x9 input size was used, with 0.5 m voxel size.

Overall Recall 76% Total Voxels 124836

Overall Precision 77%

Class Background Leaf Bark Ground Objects Precision

Background 0.93 0.06 0.01 0.00 0.00 93%

Leaf 0.25 0.71 0.03 0.01 0.00 71%

Bark 0.20 0.51 0.28 0.00 0.00 28%

Ground 0.02 0.02 0.00 0.97 0.00 97%

Objects 0.01 0.00 0.00 0.02 0.96 96%

Recall 91% 64% 62% 85% 78%

Table 14: Confusion matrix of the simulated VLP-16 three-channel model (local z-value and

thresholded background channels) without background voxel counts. Each row represents the

instances in an actual class, and each column represents the instances in a predicted class. Values are

normalized so that the sum of every row is equal to 1. A 9x9x9 input size was used, with 0.5 m voxel

size.

Class Leaf Bark Ground Objects

Leaf 0.94 0.04 0.02 0.00

Bark 0.64 0.35 0.00 0.00

Ground 0.02 0.00 0.98 0.00

Objects 0.00 0.00 0.02 0.98

 The ground voxels were predicted very accurately, since, as stated before, these voxels are

located at a specific height and have high intensities. The shape is almost perfectly contoured to the z-

value channels. Also, the surrounding shape of these voxels is very specific, which looks almost like a

flat plane. Although there were fewer than 200 object voxels, the rates of both precision and recall

were around 96% and 78%, respectively.

69

On use of the Keras Tuner

 The 74% recall result was very close to the 73% precision result for the VLP-16 three-channel

model in Table 15. This is because the background occupies most of the space according to Figure 28.

Most of the background voxels were correctly predicted with 93% precision and 89% recall. Leaf

voxels exhibited good (61%) precision and recall (66%) rates, because the edges are easily detectable,

though they overlap with the other elements. Bark voxels had a much better 36% precision rate, since

the tuner resulted in a far lower learning rate. This result makes sense, because there are many voxels

overall, so a lower learning rate is best for tracking hidden voxels. The bark recall rate is surprisingly

high at 66%, but that is most likely due to very few voxels being predicted as bark.

Figure 27: Predicted output of the VLP-16 three-channel model (local z-value and thresholded

background channels). Leaf predictions were good because most of the forest elements are

leaves. Both ground and object predictions were excellent because the input channels included

the simulated VLP-16 intensities, local z-values, and thresholded background.

70

Table 15: Confusion matrix of the simulated VLP-16 Keras Tuner model with background voxel counts.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. A 9x9x9 input size

was used, with 0.5 m voxel size.

Overall Recall 74% Total Voxels 312090

Overall Precision 73%

Class Background Leaf Bark Ground Objects Precision

Background 0.93 0.05 0.01 0.00 0.00 93%

Leaf 0.32 0.61 0.06 0.01 0.00 61%

Bark 0.26 0.38 0.36 0.00 0.00 36%

Ground 0.01 0.02 0.00 0.97 0.00 97%

Objects 0.14 0.02 0.02 0.02 0.80 80%

Recall 89% 66% 54% 84% 76%

Table 16: Confusion matrix of the simulated VLP-16 Keras Tuner model without background voxel

counts. Each row represents the instances in an actual class, and each column represents the instances

in a predicted class. Values are normalized so that the sum of every row is equal to 1. A 9x9x9 input

size was used, with 0.5 m voxel size.

Class Leaf Bark Ground Objects

Leaf 0.89 0.09 0.02 0.00

Bark 0.51 0.49 0.00 0.00

Ground 0.02 0.00 0.98 0.00

Objects 0.02 0.02 0.02 0.93

 The predictions for the ground voxels again were good, for the same reasons mentioned before.

The shape generally fits the layout and direction of the z-value channels. The ground voxels again

almost look like a flat plane. Even though there were fewer than 200 object voxels, their rates of both

precision and recall were around 80% and 76%, respectively.

71

NEON MODELS (simulated waveform lidar data)

50 m x 50 m (single-stage model, 0.5 m voxels)

 For the NEON (50 m x 50 m) single-stage model, the 67% recall result was around the same as

the 63% precision result in Table 17. This again is because the background occupies most of the space,

as seen in Figure 29. Most of the background voxels were correctly predicted with 92% precision and

87% recall, but other voxel classes also were predicted as background. Leaf voxels exhibited average

64% precision and 62% recall rates, because they overlap with everything else. Again, the bark voxels

had a low 11% precision rate. Bark is the element that is most buried (or occluded) in the scene, so

NEON sensors have the greatest difficulty distinguishing bark voxels.

Figure 28: Predicted output of the VLP-16 three-channel model (local z-value and thresholded

background channels). Leaf predictions were good because most of the forest elements are

leaves. Both ground and object predictions were excellent because the input channels included

the simulated VLP-16 waveform intensities, local z-values, and thresholded background.

72

Table 17: Confusion matrix of the simulated NEON model (50 m x 50 m) with background voxel counts.

Each row represents the instances in an actual class, and each column represents the instances in a

predicted class. Values are normalized so that the sum of every row is equal to 1. An 11x11x11 input

size was used, with 0.5 m voxel size.

Overall Recall 67% Total Voxels 110623

Overall Precision 63%

Class Background Leaf Bark Ground Objects Precision

Background 0.92 0.07 0.01 0.00 0.00 92%

Leaf 0.31 0.65 0.03 0.01 0.00 64%

Bark 0.38 0.50 0.11 0.00 0.00 11%

Ground 0.05 0.03 0.00 0.91 0.00 91%

Objects 0.09 0.22 0.00 0.14 0.55 54%

Recall 87% 62% 38% 80% 67%

Table 18: Confusion matrix of the simulated NEON model (50 m x 50 m) without background voxel

counts. Each row represents the instances in an actual class, and each column represents the instances

in a predicted class. Values are normalized so that the sum of every row is equal to 1. An 11x11x11

input size was used, with 0.5 m voxel size.

Class Leaf Bark Ground Objects

Leaf 0.94 0.05 0.02 0.00

Bark 0.81 0.18 0.00 0.00

Ground 0.04 0.00 0.96 0.00

Objects 0.24 0.00 0.16 0.60

 The ground voxels were predicted very accurately, because all these voxels are located at a

specific height and have high intensities. Additionally, the surrounding shape of these voxels is

specific, which looks almost like a flat plane. The rates of both precision and recall for object voxels

again were decent even from a very high altitude, even given that there were fewer than 200 such

voxels; this was attributed to the defined shape of these objects.

73

150 m x 150 m 7x7x7 (single-stage, 0.5 m voxel size)

 For the NEON (150 m x 150 m, 7x7x7) single-stage model, the 68% recall result was relatively

close to the 61% precision result, shown in Table 19. The reasons are similar to those mentioned

before: i) the background occupies up the majority of space (Figure 30); most of the background voxels

were correctly predicted with 94% precision and 88% recall, but other voxel classes also were

predicted as background; ii) leaf voxels exhibited fairly average 69% precision and 64% recall rates,

due to overlap with the other elements; iii) the bark voxels again had a low (1%) precision rate; bark is

the element that is most hidden, so to speak, so NEON sensors have the greatest difficulty

distinguishing bark voxels; however, the bark recall rate is surprisingly high, but that is most likely due

to very few voxels being predicted as bark; iv) ground voxels were predicted accurately, because all of

Figure 29: Predicted output of the NEON model (50 m x 50 m). Leaf predictions were decent

because most of the forest elements are leaves. Object predictions were also decent because of

the planned shapes. The ground performed the best because the density is the highest.

74

these voxels are located at a specific height and have high intensities; also, the surrounding shape of

these voxels is specific (a flat plane); and v) although there were fewer than 2500 object voxels, the

rates of both precision and recall were, respectively, 50% and 60%, even from a high altitude; this was

attributed to the defined shape of these objects.

Table 19: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7, 0.5 m voxel size)

with background voxel counts. Each row represents the instances in an actual class, and each column

represents the instances in a predicted class. Values are normalized so that the sum of every row is

equal to 1.

Overall Recall 68% Total Voxels 1241372

Overall Precision 61%

Class Background Leaf Bark Ground Objects Precision

Background 0.94 0.05 0.00 0.00 0.00 94%

Leaf 0.30 0.69 0.00 0.01 0.00 69%

Bark 0.43 0.56 0.01 0.00 0.00 1%

Ground 0.04 0.04 0.00 0.92 0.00 92%

Objects 0.29 0.18 0.00 0.03 0.50 50%

Recall 88% 64% 49% 77% 60%

Table 20: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7, 0.5 m voxel size)

without background voxel counts. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1.

Class Leaf Bark Ground Objects

Leaf 0.98 0.00 0.02 0.00

Bark 0.98 0.01 0.00 0.00

Ground 0.04 0.00 0.96 0.00

Objects 0.26 0.00 0.04 0.71

 Overall, the results were like the 50 m x 50 m plot. When this plot was fed into the 3D CNN,

three times the amount of graphics card memory was used due to the larger size. However, the input

array dimension size was reduced from 11 to seven voxels, resulting in the volume being

approximately 25% of the original volume. These two factors combined have led to only a relatively

small difference in results.

75

150 m x 150 m 1 m (single-stage, other models have 0.5 m voxel size)

 For the NEON (150 m x 150 m, 1 m voxels) single-stage model, the 72% recall result was very

close to the 71% precision result in Table 21. The reasons again are like those mentioned before; see

Figure 31 as an example of how much space is occupied by the background voxels. These voxels were

correctly predicted with 90% precision and 87% recall. Leaf voxels exhibited good 79% precision and

69% recall rates, because the edges are easily detectable, though they overlap with the other elements.

Again, the bark voxels had a low 19% precision rate, for the same reasons as before. The bark recall

rate is surprisingly high at 52%, which was attributed the relatively low number of voxels being

predicted as bark. Finally, ground voxel accuracy was attributed to their consistent location and profile,

Figure 30: Predicted output of the NEON model (150 m x 150 m, 7x7x7). Leaf predictions

were decent because most of the forest elements are leaves. Object predictions were also

decent because of the defined shapes. The ground performed the best because the intensities

were the highest.

76

while the fewer than 1000 object voxels exhibited rates of both precision and recall around 75% even,

from a very high altitude.

Table 21: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 1 m voxels)

with background voxel counts. Each row represents the instances in an actual class, and each column

represents the instances in a predicted class. Values are normalized so that the sum of every row is

equal to 1.

Overall Recall 72% Total Voxels 309369

Overall Precision 71%

Class Background Leaf Bark Ground Objects Precision

Background 0.90 0.09 0.01 0.00 0.00 90%

Leaf 0.15 0.79 0.04 0.02 0.00 79%

Bark 0.23 0.58 0.19 0.00 0.00 19%

Ground 0.02 0.06 0.00 0.92 0.00 92%

Objects 0.09 0.12 0.00 0.02 0.77 77%

Recall 87% 69% 52% 80% 72%

Table 22: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 1 m voxels)

without background voxel counts. Each row represents the instances in an actual class, and each

column represents the instances in a predicted class. Values are normalized so that the sum of every

row is equal to 1.

Class Leaf Bark Ground Objects

Leaf 0.94 0.04 0.02 0.00

Bark 0.75 0.25 0.00 0.00

Ground 0.06 0.00 0.94 0.00

Objects 0.13 0.00 0.03 0.85

 Overall, the predicted results were much better than those for the 50 m x 50 m plot. When the

input arrays were fed into the 3D CNN, nine times the amount of graphics card memory was used due

to the larger size. Additionally, the increase in input voxel size made all the individual categories far

77

more relevant than they normally would have been. However, larger voxel size is indicative of

significantly less detail.

150 m x 150 m 7x7x7 three-channel (intensity, background threshold, local z-values)

 The 70% recall result for the NEON (150 m x 150 m, local z-values) single-stage model was

very close to the 67% precision result in Table 23. At risk of repeating several conclusions, the results

were attributed to similar reasons as those mentioned earlier; also see Figure 31. Most of the

background voxels were correctly predicted with 94% precision and 88% recall. Leaf voxels exhibited

good (69%) precision and recall (64%) rates, while the bark voxels had a low 3% precision rate. The

bark recall rate is surprisingly high at 53%, but that again is most likely due to very few voxels being

Figure 31: Predicted output of the NEON model (150 m x 150 m, 1 m voxels). Leaf predictions

were good because most of the forest elements are leaves. Object predictions were also good

because of the defined shapes. Because of the larger voxels however, the objects were not as

detailed.

78

predicted as bark. Finally, the ground voxels were predicted accurately and the fewer than 2000 object

voxels exhibited precision and recall rates of 71% and 63%, respectively, even from a high altitude

with 0.5 m voxel dimension.

Table 23: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels,

local z-values) with background voxel counts. Each row represents the instances in an actual class,

and each column represents the instances in a predicted class. Values are normalized so that the sum

of every row is equal to 1.

Overall Recall 70% Total Voxels 1241372

Overall Precision 67%

Class Background Leaf Bark Ground Objects Precision

Background 0.94 0.05 0.00 0.00 0.00 94%

Leaf 0.29 0.69 0.00 0.01 0.00 69%

Bark 0.40 0.57 0.03 0.00 0.00 3%

Ground 0.03 0.02 0.00 0.95 0.00 95%

Objects 0.20 0.08 0.00 0.02 0.71 71%

Recall 88% 64% 53% 82% 63%

Table 24: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels,

local z-values) without background voxel counts. Each row represents the instances in an actual class,

and each column represents the instances in a predicted class. Values are normalized so that the sum

of every row is equal to 1.

Class Leaf Bark Ground Objects

Leaf 0.98 0.01 0.02 0.00

Bark 0.94 0.05 0.00 0.00

Ground 0.02 0.00 0.98 0.00

Objects 0.10 0.00 0.02 0.88

 The model was trained on the RIT RC Cluster [53], given that the input size and amounts are

both much larger. Because of the z-value channel, the predicted results were much better than those

from the previous 150 m x 150 m plots, where only intensities were used. Objects and ground

performed very well, since their borders are straight, easily forming a contrasting linear pattern with the

z-value channels.

79

150 m x 150 m 7x7x7 three-channel Keras Tuner (0.5 m voxels)

 The final simulation model, namely that for the NEON (150 m x 150 m, local z-values) single-

stage model, exhibited a 68% recall result, which was close to the 69% precision result in Table 25.

Most of the background voxels were correctly predicted with 93% precision and 90% recall. Leaf

voxels exhibited good 70% precision and 64% recall rates, and bark voxels had a much better 12%

precision rate, since the tuner resulted in a far lower learning rate. This result makes sense because

there are many voxels overall, so a lower learning rate is best for tracking hidden voxels and small

voxel classes. The bark recall rate is surprisingly high at 53%, which, unsurprisingly, is most likely due

Figure 32: Predicted output of the NEON model (150 m x 150 m, local z-values). Leaf

predictions were decent because most of the forest elements are leaves. Both ground and

object predictions were excellent because the input channels included both the simulated

NEON intensities and local z-values.

80

to very few voxels being predicted as bark. Ground voxel predictions also experienced a significant

improvement with 78% precision and 59% recall.

Table 25: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels,

Keras Tuner) with background voxel counts. Each row represents the instances in an actual class, and

each column represents the instances in a predicted class. Values are normalized so that the sum of

every row is equal to 1.

Overall Recall 68% Total Voxels 1250756

Overall Precision 69%

Class Background Leaf Bark Ground Objects Precision

Background 0.93 0.06 0.01 0.00 0.00 93%

Leaf 0.25 0.70 0.03 0.01 0.00 70%

Bark 0.33 0.54 0.12 0.00 0.00 12%

Ground 0.07 0.01 0.00 0.92 0.00 92%

Objects 0.15 0.05 0.00 0.02 0.78 78%

Recall 90% 64% 45% 81% 59%

Table 26: Confusion matrix of the simulated NEON model (150 m x 150 m, 7x7x7 inputs, 0.5 m voxels,

Keras Tuner) without background voxel counts. Each row represents the instances in an actual class,

and each column represents the instances in a predicted class. Values are normalized so that the sum

of every row is equal to 1.

Class Leaf Bark Ground Objects

Leaf 0.94 0.04 0.02 0.00

Bark 0.81 0.18 0.00 0.00

Ground 0.01 0.00 0.99 0.00

Objects 0.05 0.00 0.02 0.92

81

REAL DATA MODEL (NEON waveform lidar data)

50 m x 50 m (most data at canopy level)

 In this case a confusion matrix cannot be provided, since the real data do not have

corresponding ground truth data. Additionally, due to waveform range limitations, almost no ground

was returned. Overall, there is far less information, when compared to the simulated waveform data.

However, the top canopy classification seems to be accurate from a visual perspective. Most voxels are

classified as leaves, and most voxels classified as bark are inside the leaves.

Figure 33: Predicted output of the NEON model (150 m x 150 m, local z-values). Leaf predictions

were decent because most of the forest elements are leaves. Both ground and object predictions

were excellent because the input channels included both the simulated NEON intensities and local

z-values.

82

Figure 34: Predicted output of the real data model (50 m x 50 m). Leaf predictions visually appeared

to be accurate, given that the top canopy is mostly composed of leaves, and the leaf distribution shapes

are mostly random. Bark predictions also seem on par, since bark is usually surrounded by leaves in a

very specific manner (branches).

83

Summary
CONCLUSIONS

 The main purpose of this study was to predict forest voxel fills (classes), mainly based on

simulated full waveform VLP-16 UAS and NEON lidar data. The SVC algorithm was the first method

used; the inputs had to be flattened, because with SVC, only one unit produces the activation output.

Predictions for the background and ground voxels were very accurate, since these are the easiest to

group, given their attributes. Most voxels are background, and the ground is at a very specific height

and exhibit a standard form. However, using SVC, a significant portion of leaf voxels were incorrectly

predicted, and few bark and object voxels were correctly predicted. This is because only one unit

produces the activation output in a classifier, resulting in limited input information. Additionally, there

were only 232 object voxels. The classifier is too simple to be able to work with unique shapes of

objects. Therefore, we hypothesized that a CNN may be better suited for these predictions, as there are

far more classifiers and layers which can detect many different, diverse kinds of patterns [51].

 Keras was used as the main library for the layers for the CNNs. More specifically, 3D

convolutional and maximum pooling layers were used. The main online tutorial used to develop the

CNN asserted that the intensity values had to be converted to RGB values [54], but simply adding a

fifth axis to the inputs produced the same results, without any loss in accuracy. Additionally, two-thirds

of the memory was freed, since a (R, G, B) conversion requires an additional dimension of length three,

but adding an axis adds a dimension of only length one.

The first approach was to convert the VLP-16 dataset to RGB values, where 11x11x11 arrays

surrounding each voxel were inputs, and voxel fill labels were outputs. According to the results,

background, ground, and object voxel predictions were all significantly more accurate (66% vs. 36%

precision, 74% vs. 40% recall). Object predictions were accurate in this case (76% precision, 82%

recall), since their shape is far less random when compared to other elements. Some leaf voxels were

84

accurately predicted, but the overall precision of 53% was still low. This is likely because leaf voxels

can be mostly random, while exhibiting significant overlap with bark voxels.

 Further analysis of the results demonstrated that many edge points were not accurately detected.

A two-stage plan was developed as result. For the first stage, voxels were reclassified as part of either

background or forest categories. Using this method, background noise from the inputs can be filtered

out more accurately. The predicted background voxels then were all set to zero in the input array. The

new inputs were subsequently trained with the initial outputs to create a second model. Since the

number of possibilities was reduced, leaf and bark voxels were now far more accurately predicted (86%

vs. 53% leaf, 42% vs. 10% bark precision). Ground and object voxels still yielded high rates of

accuracy (98% vs. 96% ground, 95% vs. 76% object precision).

 After similar results were obtained by simply appending a 5D axis, two additional channels

were added: local z-values (height above ground) and a background threshold. The local z-values

provided additional vertical structure for each input, making object detection far more accurate (96%

vs. 76% single-stage precision, 78% vs. 82% single-stage recall). The background threshold made

filtering out very small values effective, thus making leaf detection far more accurate (71% vs. 53%

single-stage precision, 64% vs. 60% single-stage recall). The three-channel model performed as well

as the two-stage model when trained on the ground truth data categories, so the two stages were no

longer needed.

 When simulated NEON waveform lidar data were used as the input for the same CNN

architecture, bark prediction accuracy was close to zero due to the sparsity of the data. Additionally,

object prediction accuracy was around 50%, because although the input data were sparse, the objects

still had a well-defined shape. Object prediction accuracy was improved to 70% by using much larger

150 m x 150 m simulated data and ground truth arrays, and by adding the local z-values for each

returned input array after the RGB values were removed.

85

 Additionally, using the Keras Tuner produced significant improvements in bark detection for

both simulated VLP-16 and NEON waveform datasets (36% vs. 28% VLP-16, 12% vs. 3% NEON

precision), and a measurable improvement in object detection for the NEON dataset (78% vs. 71%

precision). From the Keras Tuner, the Hyperband tuner was used to quickly train and compare

different combinations of hyperparameters to determine the best values. The units of the second dense

layer and the learning rate were both selected for tuning. The initial dense layer was mostly accurate,

but the learning rate was reduced by a factor of 10, from 0.001 to 0.0001, due to the wide number and

variety of voxels.

 One limitation of these results is that all the input data were simulated by DIRSIG. The

DIRSIG parameters also included a 3D mapping of the forest, making reconstruction of the input

voxels relatively straightforward. Real data could be taken from RIT’s VLP-16 drone or NEON’s

Optech Gemini airborne platform. However, the caveat remains that it is quite challenging to generate

accurate and comprehensive truth data, whereas we have 100% confidence in the simulated truth data.

Most likely, the results would be less accurate in the case of real data, since the overall structure would

need to be determined.

 We concluded that 3D CNNs are far more suited than classifiers for this kind of problem, given

the semi-random nature of bark and leaf elements. More specifically, the two-stage CNN model had an

overall higher accuracy, because most of the background noise was filtered out. The strong

performance of object detection is significant, as the ability to track objects is important for safety and

security. More datasets with greater detail should be utilized for training in the future in order to

include more natural variability and evaluate accuracies across different forest types and structures.

Finally, other algorithms, such as KPConv and FWNet, should be studied for this purpose, since these

approaches segment and classify data in ways which consider their intrinsic properties.

86

FUTURE WORK AND IMPROVEMENTS

 One major area that should be improved is the overall accuracy of the voxel classification.

There are several possible algorithms which involve advanced deep learning methods:

• Kernel Point Convolution (KPConv) is a form of convolution that is flexible and deformable for

point clouds. For this algorithm, there is no intermediate representation. The convolution

weights are in Euclidean space, and are applied to input points in close proximity. In this case,

the focus is on scene objects, and deformable kernels improve the ability to adapt to scene

object geometry. The network was tested on multiple datasets, such as S3DIS [64], which

contains indoor large spaces. KP-FCNN is the name of the fully convolutional network which

typically is used for segmentation. The architecture segments small sub-clouds contained in

spheres. The spheres are picked randomly during training to maximize variety. KPConv was

found to be useful for large and diverse datasets. The kernel combines a strong descriptive

power and great learnability [64].

• The Full-Waveform Network (FWNet) is an architecture which uses semantic segmentation for

full-waveform lidar data. This network directly handles the waveform data without any

conversion process, such as projection onto a 2D grid or calculation of handcrafted features.

This is a PointNet-based architecture, so local and global features of every input waveform and

their geographical coordinates can be extracted. The next classifier consists of convolutional

operational layers, which predict the class vector corresponding to the input waveform from the

extracted local and global features. The trained FWNet achieved higher scores in its recall,

precision, and F1 score for unseen test data, when compared to other recognized methods.

Overall, this network for local and global feature extraction allows for semantic segmentation

training without needing high levels of knowledge on waveform data, or translation into 2D

elements [65].

87

• Additionally, predicted voxel data could be expanded to fill the entire 600 m x 500 m scene,

which is centered on the overall 700 m x 500 m plot. There should also be scenes which

contain voxels from conifer, deciduous, and mixed forest canopies. The program’s algorithmic

complexity could be redesigned to handle more layers, so that the inputs will be more accurate.

Utilizing this method will require more computational resources, but likely will provide more

robust results.

• The current plot that is being used is Plot B, Section 3. The dimensions of this plot are

approximately 53 m x 67 m x 27 m, and the minimum X and Y coordinates are (594 m, 50 m),

i.e., when using 0.5m voxels, this comprises ~800k total voxels. Three sensor passes were used

to detect the forest. If the full scene is used, the total dataset is estimated to reach over five

million voxels, though additional sensor passes will be needed. Training data for each category

needs to be proportional to the category’s total amount. Additionally, for the initial data, the

order of the Nth Catalan number should be greater for more layer depth. However, when N is

equal to 20, the number of possible paths exceeds one billion, which is extremely complex.

Overall, we created a 3D CNN algorithm used to predict forest voxel classifications based on the

surrounding neighborhood of each voxel. In the future, this could be used to study forest structure

remotely and to track sub-canopy man-made objects and trails.

88

References

[1] G. B. Bonan, "Forests and climate change: forcings, feedbacks, and the climate benefits of

forests," Science, vol. 320, no. 5882, pp. 1444-1449, 2008.

[2] K. Zhao and R. B. Jackson, "Biophysical forcings of land-use changes from potential forestry

activities in North America," Ecol. Monogr., vol. 84, no. 2, pp. 329-353, 2014.

[3] L. Wallace, R. Musk and A. Lucieer, "An Assessment of the Repeatability of Automatic Forest

Inventory Metrics Derived From UAV-Borne Laser Scanning Data," IEEE Transactions on

Geoscience and Remote Sensing, vol. 52, no. 11, p. 7160–7169, 2014.

[4] M. A. Wulder, C. W. Bater, N. C. Coops, T. Hilker and J. C. White, "The role of LiDAR in

sustainable forest management," The Forestry Chronicle, vol. 84, no. 6, p. 807–826, 2008.

[5] J. Hyyppä, M. Holopainen and H. Olsson, "Laser Scanning in Forests," Remote Sensing, vol. 4,

no. 10, p. 2919–2922, 2012.

[6] A. W. Doerry and F. M. Dickey, "Synthetic aperture radar," Optics and photonics news, vol. 15,

no. 11, pp. 28-33, 2004.

[7] E. F. Moran, E. Brondizio, P. Mausel and Y. Wu, "Integrating Amazonian Vegetation, Land-Use,

and Satellite Data," BioScience, vol. 44, no. 5, p. 329–338, 1994.

[8] M. Imhoff, "Radar backscatter and biomass saturation: ramifications for global biomass

inventory," IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 2, p. 511–518,

1995.

[9] T. Raj, "A survey on LiDAR scanning mechanisms," Electronics, vol. 9, no. 5, p. 741, 2020.

[10] E. Baltsavias, "Airborne laser scanning: basic relations and formulas," ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 54, no. 2-3, p. 199–214, 1999.

89

[11] P. Romanczyk, J. van Aardt, K. Cawse-Nicholson, D. Kelbe, J. McGlinchy and K. Krause,

"Assessing the impact of broadleaf tree structure on airborne full waveform small-footprint

LiDAR signals through simulation," Canadian Journal of Remote Sensing, vol. 39, no. s1, pp.

S60-S72, 2013.

[12] J. Wu, J. van Aardt and G. P. Asner., "A Comparison of Signal Deconvolution Algorithms Based

on Small-Footprint LiDAR Waveform Simulation," IEEE Transactions on Geoscience and

Remote Sensing, vol. 49, no. 6, pp. 2402-2414, 2011.

[13] W. Yao, J. van Aardt, M. van Leeuwen, D. Kelbe and P. Romanczyk, "A simulation-based

approach to assess sub-pixel vegetation structural variation impacts on global imaging

spectroscopy," IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 7, pp. 4149-

4164, 2018.

[14] W. Yao, M. van Leeuwen, P. Romanczyk, D. Kelbe and J. van Aardt, "Towards an improved LAI

collection protocol via simulated and field-based PAR sensing," Sensors, vol. 16, no. 7, p. 1092,

2016.

[15] S. Verma, "Understanding 1D and 3D Convolution Neural Network | Keras," Medium, 20

September 2019. [Online]. Available: https://towardsdatascience.com/understanding-1d-and-3d-

convolution-neural-network-keras-9d8f76e29610. [Accessed 5 June 2022].

[16] Z. Liu, H. Tang, Y. Lin and S. Han, "Point-Voxel CNN for Efficient 3D Deep Learning," in

NeurIPS 2019, Vancouver, 2019.

[17] D. Maturana and S. Scherer, "VoxNet: A 3D Convolutional Neural Network for real-time object

recognition," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems,

Hamburg, 2015.

90

[18] A. Salcedo-Bosch, F. Rocadenbosch, M. A. Gutiérrez-Antuñano and J. Tiana-Alsina, "Estimation

of wave period from pitch and roll of a lidar buoy," Sensors, vol. 21, no. 4, p. 1310, 2021.

[19] R. J. McGaughey, Fusion/Ldv: Software for Lidar Data Analysis and Visualization, Forest

Service, Pacific Northwest Research Station: United States Department of Agriculture, 2016.

[20] J. Li and M. Chapman, " Terrestrial mobile mapping towards real-time geospatial data

collection," in Geospatial Information Technology for Emergency Response, CRC Press, 2008,

pp. 103-123.

[21] K. Krause and T. Goulden, "NEON L0-TO-L1 DISCRETE RETURN LiDAR (ATBD)," 25

March 2022. [Online]. Available:

https://data.neonscience.org/api/v0/documents/NEON.DOC.001292vB. [Accessed 5 June 2022].

[22] M. J. Campbell, P. E. Dennison, A. T. Hudak, L. M. Parham and B. W. Butler, "Quantifying

understory vegetation density using small-footprint airborne lidar," Remote sensing of

environment, vol. 215, pp. 330-342, 2018.

[23] K. N. Salvaggio, C. Salvaggio and S. Hagstrom, "A voxel-based approach for imaging voids in

three-dimensional point clouds.," Geospatial InfoFusion and Video Analytics IV; and Motion

Imagery for ISR and Situational Awareness II, vol. 9089, p. 90890E, 2014.

[24] D. Kukenbrink, F. Schneider, R. Leiterer, M. Shaepman and F. Morsdorf, "Quantification of

hidden canopy volume of airborne laser scanning data using a voxel transversal algorithm.,"

Remote Sensing of Environment, vol. 194, pp. 424-436, 2017.

[25] M. Béland, D. D. Baldocchi, J. L. Widlowski, R. A. Fournier and M. M. Verstraete, "On seeing

the wood from the leaves and the role of voxel size indetermining leaf area distribution of forests

with terrestrial LiDAR.," Agricultural and Forest Meteorology, vol. 184, pp. 82-97, 2014.

91

[26] M. Béland, J. L. Widlowski, R. A. Fournier, J. F. Côté and M. M. Verstraete, "Estimating leaf area

distribution in savanna trees from terrestrial LiDAR Measurements," Agricultural and Forest

Meteorology, vol. 151, pp. 1252-1266, 2011.

[27] M. A. Lefsky and M. R. McHale, "Volume estimates of trees with complex architecture from

terrestrial laser scanning," Journal of Applied Remote Sensing, vol. 2, no. 1, p. 023521, 2008.

[28] H. Weiser, L. Winiwarter, K. Anders, F. E. Fassnacht and B. Höfle, "Opaque voxel-based tree

models for virtual laser scanning in forestry applications," Remote Sensing of Environment, vol.

265, p. 112641, 2021.

[29] S. T. Hagstrom, Voxel-Based LIDAR Analysis and Applications, Rochester: Rochester Institute of

Technology, 2014.

[30] J. Huang and S. You, "Point cloud labeling using 3D Convolutional Neural Network," in 2016

23rd International Conference on Pattern Recognition (ICPR), Cancun, 2016.

[31] S. Hancock, K. Anderson, M. Disney and K. J. Gaston, "Measurement of fine-spatial resolution

3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised

terrestrial lidar," Remote Sensing of Environment, vol. 188, pp. 37-50, 2017.

[32] H. Sun, Z. Wang, Y. Chen, W. Tian, W. He, H. Wu, H. Zhang, L. Tang, C. Jiang, J. Jia, Z. Duan,

H. Zhou, E. Puttonen and J. Hyyppä, "Preliminary verification of hyperspectral LiDAR covering

VIS-NIR-SWIR used for objects classification," European Journal of Remote Sensing, vol. 55,

pp. 291-303, 2022.

[33] J. van Aardt and K. Krause, "Enhanced 3D Sub-Canopy with Airborne and Spaceborne Full-

Waveform LiDAR," 2019. [Online]. Available: https://www.rit.edu/dirs/research/enhanced-3d-

sub-canopy-airborne-and-spaceborne-full-waveform-lidar. [Accessed 5 June 2022].

92

[34] J. Wu, K. Cawse-Nicholson and J. van Aardt, "3D tree reconstruction from simulated small

footprint waveform lidar.," Photogrammetric Engineering and Remote Sensing, vol. 79, no. 12,

pp. 1147-1157, 2013.

[35] J. van Aardt, M. Arthur, G. Sovkoplas and T. Swetnam, "LiDAR-based estimation of forest floor

fuel loads using a novel distributional approach," in International Conference on Lidar

Applications for Assessing Forest Ecosystems, Hobart, 2011.

[36] R. Yamashita, M. Nishio, R. K. G. Do and K. Togashi, "Convolutional neural networks: an

overview and application in radiology," Insights into Imaging, vol. 9, p. 611–629, 2018.

[37] M. Stewart, "Simple Introduction to Convolutional Neural Networks," Medium, 26 February

2019. [Online]. Available: https://towardsdatascience.com/simple-introduction-to-convolutional-

neural-networks-cdf8d3077bac. [Accessed 5 June 2022].

[38] D. Orwig, D. Foster and A. Ellison, "Harvard Forest CTFS-ForestGEO Mapped Forest Plot since

2014," Harvard Forest Data Archive: HF253, Harvard Forest, 2015.

[39] V. LiDAR, "VLP-16 User Manual," 2019. [Online]. Available: https://velodynelidar.com/wp-

content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf. [Accessed 8 June 2022].

[40] DIRS Unmanned Aerial Systems Team, "DJI Matrice-600," [Online]. Available:

https://www.rit.edu/facilities/unmanned-aerial-systems-drone-lab. [Accessed 10 June 2022].

[41] V. LiDAR, "User's Manual and Programming Guide," August 2015. [Online]. Available:

https://drive.google.com/file/d/1E2UINeX1kjnsha3XUHV0DmHbiEvLXsHG/view. [Accessed 8

June 2022].

[42] O. Incorporated, "Gemini Summary Specificaion Sheet," 22 August 2011. [Online]. Available:

https://www.mertind.com/argentina/lidar_aereo/Folleto%20ALTM%20Gemini.pdf. [Accessed 15

June 2022].

93

[43] M. G. Saunders, "VoxelizeHDF Intro," YouTube, 24 January 2022. [Online]. Available:

https://www.youtube.com/watch?v=O4NxS1K4HmY.

[44] M. G. Saunders, "d5lidar Module," GitHub, 2022. [Online]. Available:

https://github.com/mgradysaunders/d5lidar.

[45] E. Lindberg, K. Olofsson, J. Holmgren and H. Olsson, "Estimation of 3D vegetation structure

from waveform and discrete return airborne laser scanning data," Remote Sensing of

Environment, vol. 118, pp. 151-161, 2012.

[46] D. A. Pisner and D. M. Schnyer, "Support vector machine," in Machine learning, Academic

Press, 2020, pp. 101-121.

[47] V. Kecman, "Support Vector Machines - An Introduction," in Support Vector Machines: Theory

and Applications, Berlin, Springer Science & Business Media, 2005, pp. 1-49.

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel and others, "Scikit-

learn: Machine learning in Python," Journal of Machine Learning Research, vol. 12, no. Oct, p.

2825–2830, 2011.

[49] T. Fletcher, "Support Vector Machines Explained," 23 December 2008. [Online]. Available:

https://www.csd.uwo.ca/~xling/cs860/papers/SVM_Explained.pdf. [Accessed 3 June 2022].

[50] G. S. Handelman, H. K. Kok, R. V. Chandra, A. H. Razavi, M. J. Lee and H. Asadi, "eDoctor:

machine learning and the future of medicine," Journal of internal medicine, vol. 284, no. 6, pp.

603-619, 2018.

[51] S. Y. Chaganti, I. Nanda, K. R. Pandi, T. G. Prudhvith and N. Kumar, "Image Classification using

SVM and CNN," in 2020 International Conference on Computer Science, Engineering and

Applications (ICCSEA), Gunupur, 2020.

94

[52] I. O. Taybi, T. Gadi and R. Alaoui, "2DSlicesNet: A 2D Slice-Based Convolutional Neural

Network for 3D Object Retrieval and Classification," IEEE Access, vol. 9, p. 24041–24049, 2021.

[53] Research computing services, Rochester Institute of Technology, 2022.

[54] S. Aggarwal, "3D-MNIST Image Classification," 12 January 2018. [Online]. Available:

https://medium.com/shashwats-blog/3d-mnist-b922a3d07334. [Accessed 11 June 2022].

[55] J. D. Hunter, "Matplotlib: A 2D Graphics Environment," Computing in Science & Engineering,

vol. 9, no. 3, pp. 90-95, 2007.

[56] F. e. a. Chollet, "Keras," 2015. [Online]. Available: https://keras.io.

[57] S. Ruder, "An overview of gradient descent optimization algorithms," 19 January 2016. [Online].

Available: https://ruder.io/optimizing-gradient-descent/. [Accessed 3 June 2022].

[58] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image

Recognition," in International Conference on Learning Representations, San Diego, 2015.

[59] A. Kumar, "Different Types of CNN Architectures Explained: Examples," Vitalflux.com, 12 April

2022. [Online]. Available: https://vitalflux.com/different-types-of-cnn-architectures-explained-

examples/. [Accessed 17 August 2022].

[60] T. O'Malley, E. Bursztein, J. Long, F. Chollet, H. Jin and L. Invernizzi, "Keras Tuner," 2019.

[Online]. Available: https://github.com/keras-team/keras-tuner. [Accessed 22 August 2022].

[61] " Introduction to the Keras Tuner," TensorFlor, 7 May 2023. [Online]. Available:

https://www.tensorflow.org/tutorials/keras/keras_tuner. [Accessed 7 July 2023].

[62] "HyperParameters," Keras, [Online]. Available: https://keras.io/api/keras_tuner/hyperparameters/.

[Accessed 7 July 2023].

95

[63] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, "Hyperband: A Novel

Bandit-Based Approach to Hyperparameter Optimization," Journal of Machine Learning

Research, vol. 18, pp. 1-52, 2018.

[64] H. Thomas, C. R. Qi, J. E. Deschaud, B. Marcotegui, F. Goulette and L. J. Guibas, "Kpconv:

Flexible and deformable convolution for point clouds," in Proceedings of the IEEE/CVF

international conference on computer vision, Seoul, 2019.

[65] T. Shinohara, H. Xiu and M. Matsuoka, "FWNet: Semantic segmentation for full-waveform

LiDAR data using deep learning," Sensors, vol. 20, no. 12, p. 3568, 2020.

	LIDAR Voxel Segmentation Using 3D Convolutional Neural Networks
	Recommended Citation

	Introduction
	CONTEXT
	OBJECTIVES
	THESIS LAYOUT
	Background
	Methods
	Results
	Summary

	SCIENTIFIC CONTRIBUTIONS

	Background
	LIDAR BASICS
	LIDAR AND VOXEL VISUALIZATIONS
	DIRSIG AND PHYSICS-BASED MODELING
	CNN ALGORITHMS

	Methods
	SITE STUDY AND DATA COLLECTION
	POINT CLOUD PREPROCESSING
	VOXEL ALGORITHMS
	Support Vector Machines (SVM)
	3D CNN

	Z-VALUE INPUT CHANNELS – adding height above ground
	ON THE USE OF THE KERAS TUNER

	Results and Discussion
	0.25 m GROUND TRUTH MODELS (maximum category areas)
	Full-plot 7x7x7 global z-values
	Half-plot 9x9x9 global z-values
	Quarter-plot 11x11x11 global z-values

	VLP-16 MODELS (simulated waveform lidar data)
	Classifier (SVC, only one unit per output)
	Single-stage (intensity-only input, no additional segmentation)
	Two-stage (pre-segmentation of background, then all other categories)
	Three-channel (intensity, background threshold, and local z-values)
	On use of the Keras Tuner

	NEON MODELS (simulated waveform lidar data)
	50 m x 50 m (single-stage model, 0.5 m voxels)
	150 m x 150 m 7x7x7 (single-stage, 0.5 m voxel size)
	150 m x 150 m 1 m (single-stage, other models have 0.5 m voxel size)
	150 m x 150 m 7x7x7 three-channel (intensity, background threshold, local z-values)
	150 m x 150 m 7x7x7 three-channel Keras Tuner (0.5 m voxels)

	REAL DATA MODEL (NEON waveform lidar data)
	50 m x 50 m (most data at canopy level)

	Summary
	CONCLUSIONS
	FUTURE WORK AND IMPROVEMENTS

