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Abstract 

Traditional control methods require extensive tuning or a derivation of a system model making 
them increasingly antiquated for use on new, more complex systems. Sliding Mode Control has 
emerged as a more effective alternative as a control method that can directly handle nonlinear 
systems with increased robustness while guaranteeing stability. However, it is still limited by the 
need for a system model for the derivation of the controller form. This work proposes a new 
model-free control method based on Sliding Mode Control referred to as Model-Free Sliding 
Mode Control where the form of the controller is only dependent on system order, state 
measurements, and previous control inputs. Lyapunov’s stability theorem is used to ensure 
global asymptotic stability and a boundary layer is incorporated to reduce chattering. The model-
free properties of the controller are enabled by a least-squares online parameter estimation 
method used to estimate the control input influence gain matrix of the system directly. The 
estimation process is essential as previous work was limited by assuming the bounds of the 
control input influence gain matrix are known or the assumption it was unitary. The estimation 
method also incorporated exponential forgetting to only include updated data for parameter 
estimation, increasing the speed of convergence. Another addition was a bounded gain forgetting 
factor to ensure that the magnitude of the control input influence gain was upper bounded. The 
performance of this controller was simulated on various example systems to test its performance. 
These included single-input, single-output and multi-input, multi-output first and second order 
systems. Principally, the controller was implemented to control a lateral-directional state space 
model of an aircraft with a shaped input characterizing aircraft roll and yaw dynamics. The 
controller proved to exhibit outstanding tracking performance, convergence of estimated 
parameters, smooth and acceptable control input, and increased robustness to parameter 
uncertainty. Therefore, the controller was proven to be a feasible method to control the lateral 
and directional dynamics of an aircraft.  
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1.0 PROBLEM INTRODUCTION 

Interest in the advancement of control system design has proliferated as systems have become 
more complex. Technological development has allowed for the use of much smaller and faster 
computers which have made the use of advanced control systems feasible for a wide variety of 
applications. Control system design is focused on tracking a desired response while maintaining 
the stability of a system. Two popular traditional controllers are the Proportional-Integral-
Derivative (PID) and Linear Quadratic Regulator (LQR) controllers. PID controller design 
consists of time and frequency domain analysis to derive the controller gains achieving the 
desired response from the system. LQR controller design consists of defining a cost function 
based on error in desired outputs. The cost function is minimized to derive the controller gains. 
These controllers can often be highly effective for many classes of linear systems. However, they 
often require extensive tuning. Additionally, for nonlinear systems, they require an accurate 
linear approximation of the system’s dynamics. This can be difficult to derive for higher-order 
nonlinear systems, especially with modeling uncertainties. Thus, these controllers are not 
applicable to many modern systems that are becoming more complex and nonlinear. 

Nonlinear control systems such as Sliding Mode Control (SMC) have been developed as more 
effective alternatives for when an accurate linear approximation of the system’s dynamics cannot 
be derived in higher-order nonlinear systems. SMC provides a greater robustness in the face of 
modeling uncertainty and external disturbances and theoretically has perfect tracking 
performance. This is achieved by defining a “sliding surface” as the difference between current 
state values and their corresponding desired values. A SMC controller is then designed to switch 
between two phases: a reaching phase and a sliding phase. In the reaching phase, the controller 
drives the system states onto the sliding surface. In the sliding phase, the controller pushes the 
system states to slide towards the stable equilibrium point at the origin. Global asymptotic 
stability throughout the process is guaranteed through Lyapunov’s Direct Method. SMC still has 
inherent drawbacks. Chattering causes high controller effort and is caused by high frequency 
switching in the controller when the state trajectories are not being perfectly aligned on the 
sliding surface. The “switching” is caused by a discontinuous term in the control law dependent 
on whether the state trajectories are above or below the sliding surface. Traditional SMC also 
requires a mathematical reference or plant model for the derivation of the control law. In modern 
times, it is increasingly difficult to derive a mathematical model of systems as they become more 
complex leading to higher parametric uncertainty. 

Thus, a huge benefit is realized in the development a controller that is not dependent on a system 
model and can be generalized to all systems. Reis and Crassidis [1] developed a Model-Free 
Sliding Mode Controller (MFSMC) for Single-Input-Single-Output (SISO) systems. El Tin and 
Crassidis [2] expanded the previous work to apply the controller to squared and non-squared 
Multi-Input-Multi-Output (MIMO) systems. However, for the derivation of both of these 
controllers, the bounds of the input influence gain matrix were assumed to be known so they 
were not truly model-free. Sariful and Crassidis [3] proposed a method extending the MFSMC 
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approach by including a least-squares online parameter estimation law to estimate the increment 
to the switching gain in a time-varying boundary layer. The updated method only required 
knowledge of the system order, state measurements, and the previous control inputs making it 
truly model-free. However, this method assumed a unitary input influence gain which is not true 
for most systems. The flaw became evident during flight testing with the Air Force Test Pilot 
School (TPS). Stephens et al. [4] implemented this controller method in the longitudinal axis for 
pitch rate control of the Calspan Variable Stability System (VSS) Learjet. The controller was 
able to push the aircraft dynamics towards the desired dynamics but degraded handling qualities 
were observed. 

The method described here is intended to solve the gaps outlined in Stephens et al. [4] while the 
MFSMC was being flight tested. The new approach uses the least-squares online parameter 
estimation method proposed by authors Sariful and Crassidis [3] to estimate the control input 
influence gain in real-time in place of the increment to the switching gain. The convergence of 
the input influence gain is guaranteed for any defined initial value. Thus, this method is 
completely model-free. This method was implemented on SISO and MIMO example systems, 
before being implemented in the lateral and directional control of a state space model of an 
aircraft.  
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2.0 LITERATURE REVIEW 

2.1 Control Systems based on Sliding Mode Control 

Yu et al. [5] developed an Adaptive Seeking Sliding Mode controller for a class of nonlinear 
systems with modeling uncertainty and external disturbances. The controller retained the 
advantageous properties of traditional SMC like robustness against parameter uncertainty and 
external disturbances while applying a floating gain to lessen chattering from continuous and 
slow-varying unknown external disturbances. The controller can also adaptively estimate and 
compensate for parameter uncertainty and unknown external disturbances. The performance of 
the controller was tested experimentally as an adaptive cruise control system for off-road 
vehicles in terms of velocity tracking. The results of these experiments showed minor tracking 
errors and chattering. The work was limited by the fact that a mathematical model was assumed 
to derive the control law and the controller was only derived and applied in continuous time.  

Lee [6] proposed a discrete-time SMC law that implements fast output sampling. Fast output 
sampling has the advantages of an equivalently fast output sampling feedback control and allowing 
for arbitrary SMC design. In other words, the eigenvalues of the system can be arbitrarily defined. 
This control law also implemented a boundary layer for reduced chatter. The performance of this 
controller was simulated in MATLAB/Simulink on an example system with lightly damped 
resonance and a discrete-time controller. The results showed that the controller effectively tracked 
a step response with the presence of modeling uncertainty. The work was limited by the need for 
a plant model to derive the SMC law.  

Pai [7] developed a discrete-time integral sliding mode controller for linear systems with 
uncertain parameters to track the dynamic inputs of a reference model without delays. This 
controller was derived using discrete-time SMC theory and one-step delayed disturbance 
approximation. The control law introduced an integral switching surface which eliminated the 
reaching phase and therefore, chattering. The proposed controller guaranteed stability of a 
closed-loop system and achieved zero-tracking error in the presence of parameter uncertainties 
and external disturbances. This was shown by simulating the controller performance in 
MATLAB and comparing it to a traditional SMC. The traditional SMC had a higher control 
input and the robustness of the proposed controller was also guaranteed for all time unlike the 
traditional controller. The work was limited by the fact the SMC algorithm was derived from a 
reference system model, it was limited to linear systems, and the lower bound of uncertain 
parameters was assumed to be known. 

Cunha et al. [8] developed a SMC for the purpose of accurately and robustly tracking the outputs 
of linear multivariable systems with a relative degree of one. The controller ensured the closed 
loop system was globally exponentially stable and is robust against bounded input disturbances 
and parameter uncertainties. The controller was defined by the authors as a unit vector model-
reference sliding mode controller (UV-MRAC). The advantage of the controller is only 
information about the plant model needed to derive the UV-MRAC is the knowledge of the 
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matrix that the high frequency gain matrix will be influencing such that the negative of the two 
matrices multiplied together is Hurwitz stable. This allows the positive definiteness criteria 
needed by other SMC methods to be relaxed. The performance of the controller was simulated 
on a third-order system. The controller forced the system outputs to converge quickly to the 
reference states while ensuring closed-loop system global exponential stability. However, the 
work was limited by the fact that a reference model was required, and it was only applied to 
linear systems with a relative degree of one. 

Lagrouche et al. [9] developed a higher order integral SMC for nonlinear systems with modeling 
uncertainty. The controller was split into two parts: a sliding surface and a discontinuous control. 
The sliding surface controlled system trajectories and stabilized the system in finite time while 
there were no uncertainties. The discontinuous control was designed to force the system into the 
reaching phase and onto the sliding surface such that uncertainties were compensated for. The 
performance of the controller was simulated by applying it to the control of a kinematic model of 
an automobile to steer the automobile from an initial position over a specified trajectory. The 
results of this simulation showed that the system states converged to the desired trajectories within 
the desired time and this was done without chattering. The work was limited by the fact that a 
reference model is needed to derive the controller, the parameter uncertainty bounds must be 
known, and the controller is only designed for single-input, single-output (SISO) systems. 

Jing et al. [10] developed a Quasi-Continuous High-Order Sliding Mode Controller for the 
variable speed control of a wind turbine. Sliding mode was chosen due to its high robustness to 
external disturbances, unmodeled dynamics, and parameter uncertainty. A higher-order (second 
order) sliding mode controller was derived to suppress chattering based on a linearized model of 
a wind turbine. This controller was applied to both variable speed and pitch control. The 
performance of the second order sliding mode controller was simulated for different wind 
conditions and compared to a PID and traditional sliding mode controller. The second order 
sliding mode controller had better tracking performance and allowed the simulated wind turbine 
to generate more power compared to the PID and traditional sliding mode controllers. It was also 
able to suppress the chattering associated with traditional SMC. This work is limited by the need 
for a plant model. The difficulty in deriving complex, nonlinear plant models is shown by the 
fact that the authors used a linearized model of the wind turbine.  

Nizar et al. [11] developed a predictive sliding mode controller for systems with a state time-
delay. The authors’ goal was to overcome the difficulty in predicting time delays which are 
prevalent in many systems. They achieved this by developing a technique of using sliding mode 
control combined with model-based predictive control. A discrete-time delay system and sliding 
function were first defined. Then, a sliding mode control law was derived from the sliding 
function and a cost function was defined to apply predictive control principles to the control law. 
These were used to derive a discrete predictive sliding mode control law. The new control law 
was compared to a traditional sliding mode control law on a discrete-time system. The new 
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control method resulted in a faster convergence and less tracking error. However, the method 
was limited by the fact that this approach was only applied to a linear system. 

The system model for a quadrotor is highly nonlinear and dynamically unstable. Sudhir et al. 
[12] developed a robust second-order sliding mode controller for altitude control of a quadrotor. 
This controller was derived using the Lyapunov stability approach and an assumed model for a 
quadrotor. The tracking of altitude by this controller was simulated in MATLAB. The controller 
successfully stabilized the quadrotor and when compared to a conventional sliding mode 
controller, it showed better transient performance. The work was limited since the controller was 
derived from an assumed model for a quadrotor. 

2.2 Model-Free Control Methods 

Crassidis and Mizov [13] developed a model-free sliding mode controller that can be applied to 
both linear and nonlinear systems to achieve accurate tracking and stability. The controller form 
was derived assuming the order of the system is known and is based on observable state 
measurements and past controller inputs. Therefore, a system model is not needed for the controller 
to work. The authors implemented a boundary layer into the controller to smooth the control effort. 
This reduced the tracking precision but reduced the controller effort to a desirable level. The 
method produced minimal tracking error for both the linear and nonlinear examples. The work was 
limited to single-input cases and a unitary input influence gain was assumed which is not true for 
many real systems. 

In this work, Crassidis and Reis [1] derived a similar sliding mode controller to Crassidis and 
Mizov [13]. The authors extended this previous work by Crassidis and Mizov [13] to systems with 
a non-unitary input influence gain and noise in state measurements while maintaining that the 
sliding mode controller is based on a known order of the system, observable state measurements, 
and past controller inputs. This controller was applied to two nonlinear mass-spring-dampers 
systems: one without equipment and measurement noise and one with noise. The noise was 
generated using a Gaussian distribution using a variance, mean, and probability distribution from 
the system’s sensor datasheet. For both examples, the controller provided great tracking and 
eliminated chattering with the implementation of a boundary layer. The work was limited by the 
fact that the bounds of the input influence gain matrix were assumed to be known so the controller 
was not completely a model-free control approach. 

Crassidis and El Tin [2] further extended the work of Crassidis and Mizov [13] and Crassidis and 
Reis [1] to MIMO systems with actuator dynamics. The form of the sliding mode controller is 
still dependent on knowing the order of the system, observable state measurements, past 
controller inputs, and additionally, the shape of the control input influence gain matrix. For 
MIMO systems with a square input influence gain matrix, the control law was similar to that 
developed by Crassidis and Reis [1]. For underactuated MIMO systems, a transformation matrix 
was needed to square the input influence gain matrix. This forced the authors to choose to track 
certain outputs over others and resulted in better tracking  performance for MIMO systems with 
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a square input influence gain matrix while only some outputs achieved good tracking for 
underactuated systems. The controller was first applied to a single-input nonlinear two mass-
spring-damper system and achieved good tracking but with a high control effort. Next, the 
controller was applied to a quadcopter which is an underactuated system. Therefore, the 
controller achieved good tracking for some outputs, while other outputs and the control input 
exhibited high frequency activity. When applied to systems with an actuator-induced time delay 
(actuator dynamics), the results from the sliding mode controller were severely degraded, 
especially with higher time delays. This was a result of the control law requiring modification to 
account for the time delay which produced inconsistent tracking results. Again, the work was 
limited by the fact that the bounds of the input influence gain matrix were assumed to be known 
so the controller was not completely model-free. 

Schulken [14] examined four model-free sliding mode controllers applied in the control of a 
quadrotor. This was done because mode-free sliding mode controllers have the advantage of 
having no tuning process like that of linear PID controllers. The model-free sliding mode 
controllers were simulated on different aerial system models with various disturbances including 
the effects of discretization and state estimation. The two best performing controllers were then 
applied to a quadrotor system model and their performance was compared to that of a linear PID 
controller in terms of tracking error, complexity, and how long it took to tune each controller. 
Both the model-free sliding mode controllers and the PID controller were able to display similar 
tracking errors in simulation. However, the PID results came after an intensive tuning process. 
When applied to real hardware, all control laws exhibited unsatisfactorily high tracking error 
during testing to be considered for a real system application. The hardware used in testing did 
not directly measure all states required for control so a state estimation algorithm needed to be 
developed. The large tracking errors in testing could be attributed to uncertainty in the state 
estimation algorithm. The work was limited by needing the input influence gain bounds to be 
determined from system models and an unsatisfactory state estimation algorithm. 

Sreeraj and Raj [15] further expanded on the work of Crassidis and Mizov [13], Crassidis and 
Reis [1], Crassidis and El Tin [2], and Schulken [14]. The authors generalized the model-free 
sliding mode control law developed in past works so that it could be applied to a larger class of 
unmanned systems. As in past work, the control law was derived with knowledge of the order of 
the system, observable state measurements, past controller inputs, and additionally, the shape and 
bounds of the control input influence gain matrix. The controller was tested on a simulation of a 
quadrotor and its performance was compared to a traditional linear controller in terms of tracking 
error and power consumption. This simulation included realistic inputs from joysticks and 
inertial measurement units (IMUs) that are used for state measurement. The controller was then 
tested on real hardware and compared to a linear controller. The model-free sliding mode 
controller had smaller tracking errors and less power consumption than the linear controller. The 
work is still limited by the fact that the bounds of the input influence gain matrix were assumed 
to be known so the controller was not completely model-free. 
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In this work, Munoz-Vazquez et al. [16] developed a model-free integral sliding mode controller 
for position control of a quadrotor. The authors developed their controller with the goal of 
adapting velocity field control to the underactuated flight dynamics of a quadrotor. This was 
achieved by modifying the nominal reference to include the velocity field as the desired velocity 
to be tracked. The controller was designed to include three subsystems. These subsystems 
included a model-free control subsystem that ensured the sliding mode for all time, a velocity 
field subsystem for defining the magnitude and direction of the velocity field to define a desired 
path, and a sliding surface subsystem to assemble invariant manifolds of position and orientation 
sliding surfaces. Since the velocity field was used to create the sliding surface, this design 
ensures stability by ensuring the quadcopter stays on the passive velocity field. The work was 
limited by the fact that the controller is developed from velocity field control instead of directly 
controlling states. 

Monti [17] expanded on the work of Sreeraj and Raj [15] by implementing their MFSMC law to 
an Unmanned Aircraft System (UAS) that is not mounted to a gimbal controlling altitude and is 
allowed to freely fly. The specific UAS used in this work was a quadcopter. The robustness of 
the developed controller to parameter uncertainties was tested through simulation. Parameters of 
the quadcopter were varied through 4 different configurations: original parameters, doubled 
mass, doubled moments of inertia, and doubled mass and moments of inertia. The performance 
of the MFSMC law controlling these different configurations was compared to a PID controller. 
MFSMC law provided better tracking performance and less control effort. This work was limited 
by the need to know the control input influence gain matrix. The matrix was derived using 
knowledge of the quadcopter system. 

Crassidis and Sariful [3] expanded on the work of Crassidis and Mizov [13], Crassidis and Reis 
[1], Crassidis and El Tin [2], Schulken [14], Sreeraj and Raj [15], and Monti [17]. The authors 
also developed a truly model-free sliding mode controller where the form of the controller is 
based on system order, state measurements, and previous control inputs. The authors also 
implemented a boundary layer to eliminate high-frequency chattering. However, in an effort to 
eliminate the need to bound the input influence gain matrix, the authors estimated the increment 
to the switching gain in real time to ensure the sliding condition is being met using a least-
squares estimator. This was done while assuming the input influence gain was unitary. An 
exponential forgetting factor was combined with the least-squares estimator to ensure  that only 
new data was used in the parameter estimation. The authors also developed an automatic 
bounded forgetting tuning technique that ensures that the estimated input influence gain matrix is 
upper bounded. The controller was applied to linear and nonlinear SISO and MIMO systems and 
was implemented in the simulation of a quadcopter. The controller achieved great tracking 
results for all cases. The work was limited by the assumption that the input influence gain matrix 
was close to being unitary which is not true for most real-world systems. Thus, the control law 
may fail if the input influence gain is far from being unitary. 
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Stephens et al. [4] applied the work of Crassidis and Sariful [3] to control in the longitudinal 
dynamics of a Calspan VSS Learjet. This work included a limited evaluation to test the ability of 
the control law to track desired inputs and carry out single-ship and formation handling quality 
tasks to evaluate the control law. The control law was successful in producing desired short-period 
dynamics but added a large time delay which inhibited fine tracking. The aircraft pitch acceleration 
was measured from six sources: discrete derivative of pitch rate, sliding mode differentiator from 
pitch rate, discrete derivative of pitch rate with a lag filter, estimation of pitch rate from 
accelerometer and rate signals, finite differentiation with a Muller filter, and Inertial Navigation 
System (INS) pitch acceleration. For flight testing, pitch frequency sweeps were input through the 
control stick to generate the desired pitch rate. Four aircraft configurations were used to test the 
controller: level 1-3 based on Civil Air Patrol criteria and a statically unstable configuration. A 
low pass filter was required to be added before flight testing to deal with excessive noise seen in 
initial simulations that would disengage the VSS. Testing showed that the MFSMC was able to 
drive the aircraft dynamics to the desired dynamics with mixed results. Cooper-Harper handling 
qualities rating scale was used for the handling qualities evaluation, and it was determined that the 
model used to generate desired dynamics had design features that degraded the resulting handling 
qualities generated by the controller. The root of the problem was the assumption of a unitary input 
influence gain matrix. The Calspan VSS Learjet and the system model possess an input influence 
gain matrix much smaller than one leading to high tracking errors. 

2.3 Online Parameter Estimation 

Vahidi et al. [18] developed a recursive least squares estimation method with multiple forgetting 
factors for the simultaneous real-time estimation of time-varying grade and piecewise constant 
mass. This estimation method was based on a physical model of a road-going vehicle in the 
longitudinal direction. The authors ran multiple simulations that showed the estimation method 
could achieve good estimation precision while under persistent excitation. However, the authors 
failed to prove convergence  and region of convergence, there was difficulty getting results 
without persistent excitation, and a physical model was required. 

Sumantri et al. [19] developed a least square based sliding mode controller to solve the 
overdetermined problem of translational motion control of a quadrotor and a traditional sliding 
mode controller for rotational control. These controllers were derived while ensuring global 
stability using Lyapunov’s stability theory. The authors augmented the performance of the 
translational controller by implementing a constant plus proportional reaching law to increase 
reaching rate. A saturation function with boundary layer was also used to reduce chattering. The 
experimental performance of the controller was compared to a traditional proportional-derivative 
(PD) controller with and without external disturbances. Without a disturbance, the PD controller 
achieved smaller tracking errors. However, the PD controller lost its robustness when a 
disturbance was applied while the SMC kept a similar tracking error to the non-disturbance test. 
The work was limited by the need for a system model for the quadrotor. 
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Valladolid et al. [20] proposed a discrete-time adaptive quasi-sliding mode controller (QSMC) 
based on a recursive weighted least square (RWLS) estimator for a DC motor. The authors 
redefine SMCs that use a saturation function and boundary layer to reduce chattering as a 
QSMC. This controller deals with the traditional problem of QSMC which is steady state error 
due to the use of a saturation function instead of a switching function used in traditional SMC. 
This is accomplished with the RWLS estimator that estimates the parameters in the A matrix of 
the autoregressive model, not the input influence gain matrix which is set to be constant. The 
adaptation law guarantees the convergence of the output of the system to the desired values to be 
tracked. The performance of this controller was tested experimentally by applying it to the speed 
control of a DC motor and comparing it to a traditional SMC and QSMC. The results of these 
tests showed that the RWLS-QSMC reduced chatter compared to the SMC and had smaller 
steady-state error compared to the traditional QSMC. The controller was also shown to be able to 
effectively control the speed of the DC motor in the nonlinear areas of its dynamics. The work 
was limited by the requirement for an initial plant model for a DC motor for the derivation of the 
controller. 

Many real-world systems have multiple inputs and outputs. These outputs always contain 
interference making the perfect, noise-free outputs unmeasurable. Ding [21] developed an 
auxiliary model-based recursive generalized least squares algorithm and a least squares-based 
iterative algorithm to estimate unmeasurable parameters in the information vector in a MIMO 
output-error system with autoregressive noise from measurable outputs. Autoregressive models 
specify that the output variable depends linearly on its own previous values and on a stochastic 
term. Ding’s algorithms were tested on two examples of MIMO output-error systems with 
autoregressive noise and compared against each other. The iterative algorithm had the advantage 
of using all measured input and output data to produce more accurate estimates. The work was 
limited by the fact that it is only a parameter estimation technique, not a control method. 

Ma et al. [22] developed an online multi-parameter estimation method based on recursive least 
squares and incorporating a dynamic forgetting factor. This was done to overcome the problems 
with traditional recursive least squares with forgetting factor online parameter estimation. These 
problems include degenerate-rank, slow convergence, and low estimation accuracy. A full-rank 
parameter identification model was derived to establish the online estimation of multiple 
parameters of a permanent magnet synchronous motor. A dynamic forgetting factor was then 
added to improve convergence. The performance of this method was simulated in MATLAB by 
varying parameters of a permanent magnet synchronous motor in multiple ways including slow-
varying and instantaneous variation. The estimation method showed convergence of all 
parameters within 0.5ms displaying fast convergence and robustness against parameters varying 
in multiple ways. The work was limited by the fact that it is only a parameter estimation 
technique, not a control method.  
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3.0 SLIDING MODE CONTROL 

3.1 Fundamentals 

3.1.1 Lyapunov Basics 

The most important characteristic of a control system is if it’s stable or not. A stable system 
starts near a desired operating state and stays close to this state for eternity. An unstable system 
is highly unpredictable which oftentimes is undesirable. The stability analysis used in this work 
is Lyapunov’s direct method. With this method, stability is determined by constructing an 
“energy-like” function (Slotine and Li [23]) and examining the function’s time variation 
properties. 

3.1.2 Nonlinear Systems 

A nonlinear dynamic system can be represented by a set of differential equations in the form of: 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) (3.1) 
Where f is a 𝑛 × 1 nonlinear vector function, x is the 𝑛 × 1 state vector, u is the control input and 
t is time. The number of states is 𝑛 which is the order of the system. A solution 𝑥(𝑡) exists for 
the differential equation 3.1 that corresponds to a curve referred to as the state trajectory. A 
control law can be defined by: 

𝑢 = 𝑔(𝑥, 𝑡) (3.2) 
Equation 3.1 can be generalized by plugging equation 3.2 into equation 3.1 to be: 

𝑥̇ = 𝑓(𝑥, 𝑔(𝑥, 𝑡), 𝑡) (3.3) 
Linear systems are considered to be a special class of nonlinear systems and take the form of: 

𝑥̇ = 𝐴(𝑡)𝑥 (3.4) 
Where 𝐴(𝑡) is an  𝑛 × 𝑛 matrix. 

3.1.3 Autonomous vs Non-Autonomous Systems 

Depending on if the system matrix A varies with time or not, linear systems are classified as 
being time-varying or time-invariant. These terms are replaced by autonomous and non-
autonomous in nonlinear systems. A nonlinear system is defined as autonomous if a function, 𝑓, 
does not depend on time such that the system state equation can be defined as: 

𝑥̇ = 𝑓(𝑥) (3.5) 
Otherwise, the system is defined as non-autonomous. All physical systems are non-autonomous 
since the concept of an autonomous system is an idealized notion akin to a truly linear system. A 
physical system’s dynamics are never truly time-invariant, but the system’s properties can 
change so slowly that their time variation can be neglected, and the system can be treated as 
autonomous. The fundamental difference between autonomous and non-autonomous systems is 
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that the state trajectory of a non-autonomous system is independent of the initial time. The 
results make the analysis of the system more difficult than an autonomous system. 

3.1.4 Equilibrium Points  

When a system trajectory only corresponds to a single point, the point is considered an 
equilibrium point. Therefore, when a state 𝑥௘ is an equilibrium point if after 𝑥(𝑡) is equal to 𝑥௘, 
it remains equal to 𝑥௘. This means that the constant vector 𝑥௘ satisfies: 

𝑓(𝑥௘) = 0 (3.6) 
This shows that once all the states reach the equilibrium point, the derivative of the states is zero 
and the states will not move away from the equilibrium point. 

For a linear time-invariant system: 

𝑥̇ = 𝐴𝑥 (3.7) 

There is a single equilibrium point at the origin if 𝐴 is nonsingular. Otherwise, there is an infinite 

number of equilibrium points in the subspace defined by: 

𝐴𝑥 = 0 (3.8) 

3.1.5 What Constitutes Stability 

Consider a spherical region, 𝐵ோ , defined by ‖𝑥‖ < 𝑅 in state-space and a sphere, 𝑆ோ , defined by 
‖𝑥‖ = 𝑅. The equilibrium state 𝑥 = 0 is stable if, for any 𝑅 > 0, there exists 𝑟 > 0 , such that if 
‖𝑥(0)‖ < 𝑟, then ‖𝑥(𝑡)‖ < 𝑅 for all 𝑡 ≥ 0. Otherwise, the equilibrium point is considered 
unstable (Slotine and Li [23]). In other words, the origin in state-space is stable if a value of 𝑟(𝑅) 
can be found such that if starting within region 𝐵ோ ,  the state will remain in region 𝐵ோ as time 
goes to infinity. This definition of stability where a system trajectory can be kept arbitrarily close 
to the origin by starting close enough to it is also known as Lyapunov stability.  

3.1.6 Positive Definite Functions 

Lyapunov’s Direct Method is based on the creation of scalar energy-based functions for the 
dynamic system called Lyapunov Functions and examining the time variation of the functions to 
determine stability. One property of a Lyapunov Function to analyze for stability is if a function 
is positive definite. A scalar, continuous Lyapunov function 𝑉(𝑥) is considered locally positive 
definite if 𝑉(0) = 0 and within region 𝐵ோ (Slotine and Li [23]): 

𝑥 ≠ 0 => 𝑉(𝑥) > 0 

If 𝑉(0) = 0 and the above property is true over the whole state space, then 𝑉(𝑥) is considered 
globally positive definite. 𝑉(𝑥) is considered negative definite if −𝑉(𝑥) is positive definite, 
positive semi-definite if 𝑉(0) = 0 and 𝑉(𝑥)  ≥  0 for 𝑥 ≠ 0, and negative semi-definite if −𝑉(𝑥) 
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Figure 1: Geometric Representation of  a 
Lyapunov Function 

Figure 2: Contour Plot Representation of a 
Lyapunov Function 

is positive semi-definite. The phrase “semi-definite” is used when there is a possibility that 𝑉(𝑥) 
can equal zero when 𝑥 ≠ 0. 

Since x is a time-varying state of the system, 𝑉(𝑥) is a function of time. Therefore, 𝑉(𝑥) is 
differentiable with respect to time to analyze the positive-definiteness of the function: 

𝑉̇ =
𝑑𝑉(𝑥)

𝑑𝑡
=

𝑑𝑉

𝑑𝑥
𝑥̇ =

𝑑𝑉

𝑑𝑥
𝑓(𝑥) 

(3.9) 

If, in the region 𝐵ோ, the function 𝑉(𝑥) is positive definite, has continuous partial derivatives, and 

the time derivative of 𝑉(𝑥) is negative semi-definite such that 𝑉̇(𝑥) ≤ 0, then 𝑉(𝑥) can be 
labeled as a Lyapunov function for the system. The geometric representation is shown in Figures 
1 and 2.  

 

 

3.1.7 Lyapunov’s Direct Method  

The fundamental philosophy of Lyapunov’s Direct Method is that if the total energy stored in a 
system is being continuously dissipated, the system state trajectory must converge to an 
equilibrium point. Slotine and Li [23] split Lyapunov’s Direct Method into two theorems: local 
stability and global stability. Local stability is concerned with the stability of the system 
arbitrarily close to equilibrium points. For local stability, if, in a region 𝐵ோ, there exists a 

continuously differentiable scalar function 𝑉(𝑥) such that 𝑉(𝑥) is positive definite and 𝑉̇(x) is 

negative semi-definite locally in 𝐵ோ, then the equilibrium point 𝑥 = 0 is stable. If 𝑉̇(x) is locally 
negative definite in 𝐵ோ, then the equilibrium point is asymptotically stable. To prove the global 
asymptotic stability of a system, the spherical region, 𝐵ோ, must be expanded to encompass the 
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Figure 3: Geometric Representation of 
Radial Unboundedness 

whole state space. However, this is necessary, but not sufficient. The function 𝑉 must also be 
radially unbounded. This is defined as:  

𝑉(𝑥) → ∞ as ห|𝑥|ห → ∞ 

 

 

Therefore, a system is globally asymptotically stable if there exists a scalar function 𝑉(𝑥) that is 

continuously differentiable such that 𝑉(𝑥) is positive definite, 𝑉̇(𝑥) is negative definite, and 
𝑉(𝑥) is radially unbounded.  

3.1.8 Sliding Mode Control 

Sliding mode control is based on the principle that it is easier to control first-order systems than 
to control general higher order systems. Therefore, the core of sliding mode control is the 
replacement of an nth-order problem with an equivalent first-order problem. This is done in two 
phases by the control law. First, there is the reaching phase where the control system forces the 
system states onto a stable and convergent state trajectory or sliding surface. Second, there is the 
sliding phase where the states are kept on the sliding surface by the control law until they reach 
equilibrium. These phases are shown geometrically in Figure 4 below. 

3.1.9 Derivation of SMC Control Law 

Consider the SISO system (Slotine and Li [23]): 

𝑥(௡) = 𝑓(𝑥) + 𝑏(𝑥)𝑢 (3.10) 

Where 𝑥 is a scalar output of interest, 𝑢 is a scalar control input, 𝑓(𝑥) is a general function that is 
not exactly known, 𝑏(𝑥) is the control input influence gain, and n is the order of the system. The 

state vector is ൣ𝑥  𝑥̇  …  𝑥(௡ିଵ)൧
்

. For the tracking to be achieved with a finite control u, the 

following condition must be met: 
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Figure 4: Geometric Representation of 
Sliding Mode Control 

𝑥ௗ(0) = 𝑥(0) (3.11) 
The tracking error in 𝑥 is defined as: 

𝑥෤ = 𝑥 − 𝑥ௗ  (3.12) 
We shall also define a time-varying, sliding surface s(t) in the state space such that: 

𝑠 = (
𝑑

𝑑𝑡
+ 𝜆)௡ିଵ𝑥෤ 

(3.13) 

Where 𝜆 is a positive constant and the slope of the sliding surface. With initial condition 3.11, 
the tracking problem becomes a problem of keeping the state trajectories on the sliding surface 
or keeping the scalar value of s equal to zero for all time. Thus, the tracking has been simplified 
to be a first-order problem of keeping s equal to zero. The inequality to achieve this is defined as: 

1

2

𝑑

𝑑𝑡
𝑠ଶ ≤ −𝜂|𝑠| 

(3.14) 

Where 𝜂 is a positive constant. This inequality is known as the sliding condition and constrains 

the squared “distance” to the surface 𝑠(𝑡), 𝑠2, to decrease along all system trajectories. Satisfying 
the sliding condition ensures asymptotic stability as it ensures the criteria for Lyapunov stability 
are also met at the same time. 

 

 

In order to satisfy the sliding condition even with uncertainty in 𝑢ො , a term discontinuous across 
𝑠(𝑡) is added to the control law such that: 

𝑢 = 𝑢ො − 𝐾𝑠𝑔𝑛(𝑠) (3.15) 
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Figure 5: Chattering Phenomenon 

Where K is the switching gain and sgn is the sign function defined as: 

𝑠𝑔𝑛(𝑠) = +1       𝑖𝑓 𝑠 > 0  (3.16) 
𝑠𝑔𝑛(𝑠) = −1      𝑖𝑓 𝑠 < 0  (3.17) 

In practice, the implementation of this control law is not perfect. This is because the switching by 
the sign function is not instant, and the exact value of s is not known. This leads to what is 
known as chattering which is when the states jump back and forth across the sliding surface as 
shown in Figure 5. 

 

  

Chattering leads to undesirably high controller output and can excite high frequency dynamics in 
the system. To prevent this, the controller output can be smoothed with a so-called boundary 
layer. 

3.1.10 Boundary Layer 

For a controller to work effectively, chattering oftentimes has to be eliminated. Using a  
boundary layer of thickness 𝜙, a neighboring switching surface to the sliding surface can be 
defined as (Slotine and Li [23]): 

𝐵(𝑡) = {𝑥, |𝑠(𝑥; 𝑡)| ≤ 𝜙} (3.18) 
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Figure 6: The Boundary Layer 

 

 

The boundary layer thickness can also be made time-varying. To account for this, the sliding 
condition must be updated to maintain the attractiveness of the boundary layer: 

|𝑠| ≥ 𝜙 →
𝑑

𝑑𝑡
(𝑠 − 𝜙) ≤ −𝜂 

(3.19) 

|𝑠| ≤ 𝜙 →
𝑑

𝑑𝑡
(𝑠 − (−𝜙)) ≥ −𝜂 

(3.20) 

Or, combining these equations: 

|𝑠| ≥ 𝜙 →
1

2

𝑑

𝑑𝑡
𝑠ଶ ≤ (𝜙̇ − 𝜂)|𝑠| 

(3.21) 

The addition of the 𝜙̇|𝑠| term defines the fact that the boundary layer attraction condition is 

stricter while the boundary layer is shrinking (𝜙̇ < 0) and less strict while it is expanding (𝜙̇ >

0). 

Consider the system defined by: 

𝑥̈ = 𝑓 + 𝑏𝑢 (3.22) 
In addition to updating the sliding condition, if the input influence gain, 𝑏, is assumed to be a 
unity gain, a new switching gain is defined as: 

𝐾ഥ = 𝐾 − 𝜙̇ (3.23) 

And the control law is updated to be: 

𝑢 = 𝑢ො − 𝐾ഥ𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ (3.24) 

Where sat is the saturation function defined as: 
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𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ =

𝑠

𝜙
           𝑖𝑓 ฬ

𝑠

𝜙
ฬ ≤ 1  

(3.25) 

𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ = 𝑠𝑔𝑛 ൬

𝑠

𝜙
൰  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(3.26) 

Furthermore, the boundary layer thickness 𝜙 can be tuned so that the state trajectories represent a 
first-order filter by defining: 

𝜙̇ + 𝜆𝜙 = 𝐾(𝑥𝑑) (3.27)
Where 𝜆 is the bandwidth of the filter such that: 

If 𝑏 ≠ 1 in Equation 3.22, the sliding condition can be met by ensuring (𝜙̇ − 𝜂) ≤ 0. This is 

ensured when the states are outside the boundary layer, or 𝜙̇ > 0, by defining the switching gain 
as:  

Where: 

𝑏෠ = ට𝑏௟௢௪𝑏௨௣௣ 
(3.30)

𝛽 = ට𝑏௨௣௣/𝑏௟௢௪ = 𝑏෠𝑏ି1 
(3.31)

With 𝑏෠ being the best estimate of the input influence gain and 𝑏௟௢௪ and 𝑏௨௣௣ being the lower and 

upper estimated bounds of the input influence gain respectively. The sliding surface for a 
second-order system is defined as: 

𝑠 = 𝑥̇ − 𝑥̇ௗ + 𝜆(𝑥 − 𝑥ௗ) (3.32) 

With the derivative of the sliding surface being defined as: 

𝑠̇ = 𝑥̈ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) = 0 (3.33) 

Or: 

𝑠̇ = 𝑥̈ − 𝑥̈ௗ + 𝜆𝑥෤̇ = 0 (3.34) 

Substituting Equation 3.22 into Equation 3.34 gives us: 

𝑠̇ = 𝑓 + 𝑏𝑢 − 𝑥̈ௗ + 𝜆𝑥෤̇ = 0 (3.35) 

This allows us to define the best estimate of the controller as: 

𝐾ഥ(𝑥ௗ)

𝜙
= 𝜆 

(3.28)

𝐾ഥ(𝑥) = 𝐾(𝑥) −
𝜙̇

𝛽
 

(3.29) 
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𝑢ො = 𝑏෠ିଵ(−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇) (3.36) 

Substituting this into Equation 3.24 gives us the actual control law of: 

𝑢 = 𝑏෠ିଵൣ−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾(𝑥)𝑠𝑔𝑛(𝑠)൧ (3.37) 

To check if the controller form is correct so we can implement a boundary layer, Lyapunov’s 
stability theorem is used. A positive definite candidate Lyapunov Function is defined as: 

𝑉 =
1

2
𝑠ଶ ≥ 0 

(3.38) 

Taking the derivative gives us: 

𝑉̇ = 𝑠𝑠̇ ≤ 0 (3.39) 

Substituting Equation 3.34: 

𝑉̇ = 𝑠ൣ𝑥̈ − 𝑥̈ௗ + 𝜆𝑥෤̇൧ (3.40) 

Substituting the assumed measurement model based on Equation 3.22: 

𝑉̇ = 𝑠ൣ𝑓 + 𝑏෠𝑢 − 𝑥̈ௗ + 𝜆𝑥෤̇൧ (3.41) 

Substituting Equation 3.37: 

𝑉̇ = 𝑠ൣ𝑓መ + 𝑏෠𝑏෠ିଵൣ−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾(𝑥)𝑠𝑔𝑛(𝑠)൧ − 𝑥̈ௗ + 𝜆𝑥෤̇൧ (3.42) 

Or: 

𝑉̇ = −𝑠𝐾(𝑥)𝑠𝑔𝑛(𝑠)) (3.43) 

Or: 

𝑉̇ = −𝐾(𝑥)|𝑠| (3.44) 

Therefore, 

𝑉̇ ≤ (𝜙̇ − 𝜂)|𝑠| (3.45) 

This verifies the sliding condition. Therefore, the controller form is correct and, to implement a 

boundary layer, 𝐾𝑠𝑔𝑛(𝑠) is replaced with 𝐾ഥ𝑠𝑎𝑡(
௦

థ
): 

𝑢 = 𝑏෠ିଵ ൤−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨ 

(3.46) 

Plugging into Equation 3.35 gives us: 
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𝑠̇ = 𝑓 + 𝑏𝑏෠ିଵ ൤−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨ − 𝑥̈ௗ + 𝜆𝑥෤̇ 

(3.47) 

Re-arranging this results in: 

𝑠̇ = −𝑏𝑏෠ିଵ𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
) + (𝑓 − 𝑏𝑏෠ିଵ𝑓መ) + (1 − 𝑏𝑏෠ିଵ)(−𝑥̈ௗ + 𝜆𝑥෤̇) (3.48) 

Using Equation 3.31, we can re-write this as: 

𝑠̇ = −𝛽ିଵ𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
) + (𝑓 − 𝛽ିଵ𝑓መ) + (1 − 𝛽ିଵ)(−𝑥̈ௗ + 𝜆𝑥෤̇) (3.49) 

Inside the boundary layer, we can set 𝑠𝑎𝑡 ቀ
௦

థ
ቁ =

௦

థ
, giving us: 

𝑠̇ = −𝛽ିଵ𝐾ഥ(
𝑠

𝜙
) + (𝑓 − 𝛽ିଵ𝑓መ) + (1 − 𝛽ିଵ)(−𝑥̈ௗ + 𝜆𝑥෤̇) (3.50) 

Assuming the states are inside the boundary layer, we can set 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small 
error term, such that: 

𝑠̇ = −𝛽ିଵ𝐾ഥ(𝑥ௗ) ൬
𝑠

𝜙
൰ + ൫𝑓(𝑥ௗ) − 𝛽ିଵ𝑓መ(𝑥ௗ)൯ − ൫1 − 𝛽ିଵ൯𝑥̈ௗ + 𝑂(𝜀) (3.51) 

Equation 3.51 is a first-order filter that can be tuned such that: 

𝑠̇ +
𝜆

𝛽ଶ 𝑠 = 𝑢 
(3.52) 

Comparing the two equations gives us:  

𝜆

𝛽ଶ =
𝐾ഥ(𝑥ௗ)

𝛽𝜙
 

(3.53) 

Plugging in Equation 3.29 gives us: 

𝜆

𝛽ଶ =
𝐾(𝑥ௗ) −

𝜙̇
𝛽

𝛽𝜙
 

(3.54) 

Re-writing gives us: 

𝜙̇ + 𝜆𝜙 = 𝛽𝐾(𝑥ௗ) (3.55) 

To ensure that the sliding condition is met when the states are inside the boundary layer, or 𝜙̇ <

0, the switching gain, 𝐾ഥ, is defined as: 

𝐾ഥ(𝑥ௗ) = 𝐾(𝑥ௗ) − 𝛽𝜙̇ (3.56) 

Plugging into Equation 3.53, we get: 
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𝜆

𝛽ଶ =
𝐾(𝑥ௗ) − 𝛽𝜙̇

𝛽𝜙
 

(3.57) 

Re-writing gives us: 

𝜙̇ +
𝜆

𝛽ଶ 𝜙 =
𝐾(𝑥ௗ)

𝛽
 

(3.58) 

With 𝜙̇ ≥ 0 from Equation 3.55 we get: 

𝜙̇ = 𝛽𝐾(𝑥ௗ) − 𝜆𝜙 ≥ 0 (3.59) 

Or: 

𝐾(𝑥ௗ) ≥
𝜆𝜙

𝛽
 

(3.60) 

With 𝜙̇ ≤ 0 from Equation 3.58, we get: 

𝜙̇ =
𝐾(𝑥ௗ)

𝛽
−

𝜆

𝛽ଶ 𝜙 ≤ 0 
(3.61) 

Or: 

𝐾(𝑥ௗ) ≤
𝜆𝜙

𝛽
 

(3.62) 

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we can write: 

𝜙(0) =
𝛽

𝜆
𝐾(𝑥ௗ(0)) 

(3.63) 

In summary: 

𝐾(𝑥ௗ) ≥
ఒథ

𝛽೏

 𝜙̇ + 𝜆𝜙 = 𝛽
ௗ

𝐾(𝑥ௗ) 𝐾ഥ(𝑥) = 𝐾(𝑥) −
థ̇

𝛽೏

 

𝐾(𝑥ௗ) ≤
ఒథ

𝛽೏

 𝜙̇ +
ఒ

𝛽೏
మ 𝜙 =

௄(௫೏)

𝛽೏

 𝐾ഥ(𝑥) = 𝐾(𝑥) − 𝛽𝜙̇ 

𝑢 = 𝑏෠ିଵ ൤−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨ 

This is the derivation for a SISO system. For a MIMO system, the sliding condition becomes: 

𝑠௜𝑠̇௜ ≤ (𝜙̇௜ − 𝜂௜)|𝑠௜| 
𝑖 = 1, … , 𝑚 

(3.64) 

Where m is the order of the system. To ensure that the sliding condition is met when the states 

are outside the boundary layer, or 𝝓̇ > 0, the switching gain is defined as: 
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𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ (3.65) 

Where 𝜷 is defined as: 

𝜷 = ට𝑩𝒍𝒐𝒘
ିଵ𝑩𝒖𝒑𝒑 = 𝑩෡𝑩ି1 

(3.66) 

And 𝑩𝒍𝒐𝒘 and 𝑩𝒖𝒑𝒑 are the lower and upper estimated bounds of the input influence gain matrix 

respectively. With the controller form being: 

𝒖 = 𝒖ෝ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰ 

𝑖 = 1, … , 𝑚 

(3.67) 

Consider the actual system: 

𝒙̈ = 𝒇 + 𝑩𝒖 (3.68) 

Or: 

𝑥̈௜ = 𝑓௜(𝑥௜) + ෍ 𝑏௜௝(𝑥௜)𝑢௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.69) 

The input influence gain matrix, 𝑩, is a square matrix defined as: 

𝑩 = ൥
𝑏ଵଵ … 𝑏ଵ௠

   
𝑏௠ଵ … 𝑏௠௠

൩ 
(3.70) 

With the derivative of the sliding surface being defined as: 

𝑠̇௜ = 𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆𝑥෤̇௜ = 0 

𝑖 = 1, … , 𝑚 

(3.71) 

Substituting Equation 3.69 into Equation 3.71 gives us: 

𝑠̇௜ = 𝑓
𝑖

− 𝑥̈ௗ௜
+ 𝜆𝑥෤̇𝑖 + ෍ 𝑏௜௝𝑢௜

௠

௝ୀଵ

= 0 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.72) 

This allows us to define the best estimate of the controller as: 

𝒖ෝ = 𝑩෡ ିଵ(−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇) (3.73) 

Where 𝑩෡ , the best estimate of the input influence gain matrix, is defined as: 

𝑩෡ = ට𝑩𝒍𝒐𝒘𝑩𝒖𝒑𝒑 
(3.74) 

…
 

…
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Substituting into Equation 3.67 gives us the actual control law of: 

𝒖 = 𝑩෡ିଵ ൤−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ 

𝑖 = 1, … , 𝑚 

(3.75) 

Plugging into Equation 3.72 gives us: 

𝒔̇ = 𝒇 + 𝑩𝑩෡ିଵ ൤−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ − 𝒙̈𝒅 + 𝜆𝒙෥̇ 

𝑖 = 1, … , 𝑚 

(3.76) 

Re-arranging results in: 

𝒔̇ = −𝑩𝑩෡ ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰ + (𝒇 − 𝑩𝑩෡ିଵ𝒇෠) + (1 − 𝑩𝑩෡ିଵ)(−𝒙̈𝒅 + 𝜆𝒙෥̇) 

𝑖 = 1, … , 𝑚 

(3.77) 

Using Equation 3.66, we can re-write this as: 

𝒔̇ = −𝜷ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰ + (𝒇 − 𝜷ିଵ𝒇෠) + (𝟏 − 𝜷ିଵ)(−𝒙̈𝒅 + 𝜆𝒙෥̇) 

𝑖 = 1, … , 𝑚 

(3.78) 

Inside the boundary layer, 𝑠𝑎𝑡 ቀ
௦೔

థ೔
ቁ =

௦೔

థ೔
, so we can re-write this as: 

𝑠̇௜ = ෍ − ቆ
𝐾ഥ𝑖(𝑥௜)

𝛽
௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + (𝑓

𝑖
− 𝛽

௜௝
ିଵ𝑓

𝑖
෡) + (1 − 𝛽

௜௝
ିଵ)(−𝑥̈ௗ௜

+ 𝜆𝑥෤̇𝑖)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.79) 

Assume that inside the boundary layer, 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small error term, such that: 

𝑠̇௜ = 𝑂௜(𝜀௜) + ෍ − ቆ
𝐾ഥ𝑖൫𝑥ௗ௜

൯

𝛽
௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + ൬𝑓൫𝑥ௗ௜

൯ − 𝛽
௜௝

ିଵ𝑓መ൫𝑥ௗ௜
൯൰ − ቀ1 − 𝛽

௜௝
ିଵቁ 𝑥̈ௗ௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.80) 

Equation 3.80 is a first-order filter that can be tuned such that: 

𝒔̇ + 𝜆𝜷ିଶ𝒔 = 𝒖 (3.81) 

Comparing the two equations gives us:  

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾ഥ𝑖(𝑥ௗ௜

)

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.82) 

Plugging in Equation 3.65 gives us: 
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෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

ିଵ𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.83) 

Re-writing gives us: 

𝜙̇௜ + 𝜆𝜙௜ = ෍ 𝛽
௜௝

𝐾௜(𝑥ௗ௜
)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.84) 

Or, in vector form: 

𝝓̇ + 𝜆𝝓 = 𝜷𝑲(𝑥ௗ) (3.85) 

To ensure that (𝝓̇ − 𝜼) ≤ 0 when the states are inside the boundary layer, or 𝜙̇ < 0, the 
switching gain, 𝐾ഥ, is defined as: 

𝑲ഥ(𝑥ௗ) = 𝑲(𝑥ௗ) − 𝜷𝝓̇ (3.86) 

Plugging into Equation 3.83, we get: 

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.87) 

Re-writing gives us: 

𝜙̇௜ + ෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

𝜙௜ = ෍
𝐾௜(𝑥ௗ௜

)

𝛽
௜௝

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.88) 

Or, in vector form: 

𝝓̇ + 𝜆𝜷ିଶ𝝓 = 𝜷ିଵ𝑲(𝑥ௗ) (3.89) 

With 𝝓̇ ≥ 0 from Equation 3.85, we get: 

𝝓̇ = 𝜷𝑲(𝑥ௗ) − 𝜆𝝓 ≥ 0 (3.90) 

Or: 

𝑲(𝑥ௗ) ≥ 𝜆𝜷ିଵ𝝓 (3.91) 

With 𝜙̇ ≤ 0 from Equation 3.89, we get: 
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𝝓̇ = 𝜷ିଵ𝐾(𝑥ௗ) − 𝜆𝜷ିଶ𝜙 ≤ 0 (3.92) 

Or: 

𝑲(𝑥ௗ) ≤ 𝜆𝜷ିଵ𝝓 (3.93) 

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we find: 

𝝓(0) =
1

𝜆
𝜷𝑲(𝑥ௗ(0)) 

(3.94) 

In summary: 

𝑲(𝑥ௗ) ≥ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝝓 = 𝜷
𝒅

𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ 

𝑲(𝑥ௗ) ≤ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝜷
𝒅

ିଶ𝝓 = 𝜷
𝒅

ିଵ𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷𝝓̇ 

𝒖 = 𝑩෡ିଵ ൤−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ 

𝑖 = 1, … , 𝑚 

3.1.11 Derivation of SISO Model-Free Control Law 

The control system for a second-order single-input single-output system was derived with the 
following steps: 

The following discrete-time measurement model is assumed: 

𝑥̈ = 𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ିଵ − 𝑏𝑢 + 𝑏𝑢௞ିଵ (3.95) 
Where 𝑥̈ is the measured acceleration, 𝑢 is the control system input, 𝑢௞ି1 is the previous value of 
the control system input, and 𝑏 is the control input influence gain that will be estimated. This 
equation can be re-written as: 

𝑥̈ = 𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ିଵ + 𝜀(𝑢) (3.96) 
Where 𝜀(𝑢) is the estimation error in the input influence gain defined by: 

𝜀(𝑢) = 𝑏(𝑢௞ି1 − 𝑢) (3.97) 
𝜀(𝑢) is assumed to be bounded by a known function, 𝐸, such that: 

|𝜀̂(𝑢) − 𝜀(𝑢)| ≤ 𝐸 (3.98) 
Where 𝜀̂(𝑢) is the estimated error in the input influence gain estimation assumed to be defined 
by: 

𝜀̂(𝑢) = 𝑏෠(𝑢௞ି2 − 𝑢௞ି1) (3.99) 

And the actual error is bounded by the function: 
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(1 − 𝜎௟)𝜀̂(𝑢) ≤ 𝜀(𝑢) ≤ (1 + 𝜎௨)𝜀̂(𝑢) (3.100) 
Where 𝜎௟ and 𝜎௨ are the lower and upper defined bounds. 

The sliding surface for a second-order system is defined as: 

𝑠 = 𝑥̇ − 𝑥̇ௗ + 𝜆(𝑥 − 𝑥ௗ) (3.101) 
Where 𝑥 and 𝑥̇ are the system states to be measured and 𝑥ௗ and 𝑥̇ௗ are the desired states to be 
tracked. Taking the derivative of the sliding surface results in: 

𝑠̇ = 𝑥̈ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) (3.102) 
Plugging in Equation 3.96 and setting 𝑠̇ equal to zero ensures that the state error trajectories do 
not move once they reach the sliding surface and gives us:  

𝑠̇ = [𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ି1 + 𝜀(𝑢)] − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) = 0 (3.103) 
The best estimate for the control input, 𝑢ො , to maintain 𝑠̇ equal to zero is therefore: 

𝑢ො = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢)] + 𝑢௞ି1 (3.104) 

And adding a discontinuous term to satisfy the sliding condition gives us: 

𝑢 = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1 (3.105) 

Where 𝜂 is a positive constant. To check if the controller form is correct, Lyapunov’s stability 
theorem is used and a positive definite “energy-like” function is defined as: 

𝑉 =
1

2
𝑠2 ≥ 0 

(3.106) 

Taking the derivative results in: 

𝑉̇ = 𝑠𝑠̇ ≤ 0 (3.107) 

Substituting the assumed measurement model based on Equation 3.96 gives us: 

𝑉̇ = 𝑠ൣ[𝑥̈ + 𝑏෠𝑢 − 𝑏෠𝑢௞ି1 + 𝜀̂(𝑢)] − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)൧ (3.108) 

Substituting equation 3.105 gives us: 

𝑉̇ = 𝑠ൣ[𝑥̈ + 𝑏෠൛𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1ൟ − 𝑏෠𝑢௞ି1 + 𝜀̂(𝑢)] − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)൧ (3.109) 
Rearranging this equation can give us: 

𝑉̇ = 𝑠ൣ𝑥̈ − (𝑥̇ − 𝑥̇ௗ) − 𝑥̈ௗ − 𝜆(𝑥̇ − 𝑥̇ௗ) + 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) + 𝜀̂(𝑢) − 𝜂𝑠𝑔𝑛(𝑠) + 𝑏෠𝑢௞ି1 − 𝑏෠𝑢௞ି1൧ (3.110) 
Which results in: 

𝑉̇ = −𝑠𝜂𝑠𝑔𝑛(𝑠) (3.111) 

Which can be re-written as: 

𝑉̇ = −𝜂|𝑠| (3.112) 

This verifies the sliding condition. Therefore, 𝜂 can be replaced with the system gain, 𝐾, in 
Equation 3.105 resulting in: 
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𝑢 = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1 (3.113) 

From the definition of 𝑉̇, we can define the sliding condition as: 

𝑠𝑠̇ ≤ −𝜂|𝑠| (3.114) 
Substituting in Equation 3.103 gives us: 

𝑠ൣ൫𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ି1 + 𝜀(𝑢)൯ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)൧ ≤ −𝜂|𝑠| (3.115) 

Substituting in the best estimate of the control input, 𝑢ො , for 𝑢 gives us: 

𝑠 ቂቀ𝑥̈ + 𝑏൛𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1ൟ − 𝑏𝑢௞ି1 + 𝜀(𝑢)ቁ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)ቃ ≤ −𝜂|𝑠| (3.116) 
Using the 𝑠𝐾𝑠𝑔𝑛(𝑠) = 𝐾|𝑠| and rearranging to isolate 𝐾|𝑠| gives us: 

𝐾|𝑠| ≥  𝑠 ቂ(𝑥̈ − 𝑥̈ௗ)൫𝑏෠𝑏ିଵ − 1൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫𝑏෠𝑏ିଵ − 1൯ + ൫𝑏෠𝑏ିଵ − 1൯𝜀̂(𝑢) + 𝑏෠𝑏ିଵ[𝜀(𝑢) − 𝜀̂(𝑢)]ቃ + 𝑏෠𝑏ିଵ𝜂|𝑠| (3.117) 
The most conservative estimate for the upper bound of 𝜀(𝑢) is defined as: 

𝜀(𝑢) = (1 + 𝜎𝑢)𝜀ො(𝑢) (3.118) 
Therefore, the 𝜀(𝑢) − 𝜀̂(𝑢) term can be redefined as: 

𝜀(𝑢) − 𝜀̂(𝑢) = (1 + 𝜎௨)𝜀̂(𝑢) − 𝜀̂(𝑢) = 𝜀̂(𝑢) + 𝜎௨𝜀̂(𝑢) − 𝜀̂(𝑢) = 𝜎௨𝜀̂(𝑢) (3.119) 
Plugging this into Equation 3.117 gives us: 

𝐾|𝑠| ≥  𝑠ൣ(𝑥̈ − 𝑥̈ௗ)൫𝑏෠𝑏ି1 − 1൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫𝑏෠𝑏ି1 − 1൯ + ൫𝑏෠𝑏ି1 − 1൯𝜀̂(𝑢) + 𝑏෠𝑏ି1𝜎௨𝜀̂(𝑢)൧ + 𝑏෠𝑏ି1𝜂|𝑠| (3.120) 
And rearranging this gives us: 

𝐾|𝑠| ≥  𝑠ൣ(𝑥̈ − 𝑥̈ௗ)൫𝑏෠𝑏ି1 − 1൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫𝑏෠𝑏ି1 − 1൯ + ൫𝑏෠𝑏ି1[1 + 𝜎𝑢] − 1൯𝜀̂(𝑢)൧ + 𝑏෠𝑏ି1𝜂|𝑠| (3.121) 
Next, we define: 

𝑏෠ = ට𝑏௟௢௪𝑏௨௣௣ (3.122) 

𝛽 = ඥ𝑏𝑢𝑝𝑝/𝑏
𝑙𝑜𝑤

= 𝑏෠𝑏
−1 (3.123) 

Plugging these into Equation 3.121 gives us: 

𝐾|𝑠| ≥  𝑠[(𝑥̈ − 𝑥̈ௗ)(𝛽 − 1) + 𝜆(𝑥̇ − 𝑥̇ௗ)(𝛽 − 1) + (𝛽[1 + 𝜎௨] − 1)𝜀̂(𝑢)] + 𝛽𝜂|𝑠| (3.124) 
With the final equation for the system gain being: 

𝐾 ≥ |(𝛽 − 1)||(𝑥̈ − 𝑥̈ௗ)| + |(𝛽 − 1)||𝜆(𝑥̇ − 𝑥̇ௗ)| + |(𝛽[1 + 𝜎௨] − 1)||𝜀̂(𝑢)| + 𝛽𝜂 (3.125) 
In summary, plugging in Equation 3.99 to Equations and 3.113 and 3.121: 

𝑢 = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝐾𝑠𝑔𝑛(𝑠)] + 2𝑢௞ି1 − 𝑢௞ି2 (3.126) 

𝐾 = |(𝛽 − 1)||(𝑥̈ − 𝑥̈ௗ)| + |(𝛽 − 1)||𝜆(𝑥̇ − 𝑥̇ௗ)| + |(𝛽[1 + 𝜎௨] − 1)|ห𝑏෠(𝑢௞ି2 − 𝑢௞ି1)ห + 𝛽𝜂  (3.127) 

If including a boundary layer, we re-define the sliding condition as: 
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𝑠𝑠̇ ≤ (𝜙̇ − 𝜂)|𝑠| (3.128) 

To ensure that the sliding condition is met when the states are outside the boundary layer, or 𝜙̇ >

0, the switching gain, 𝐾ഥ, is defined as: 

𝐾ഥ(𝑥) = 𝐾(𝑥) −
𝜙̇

𝛽
 

(3.129) 

From Equation 3.113, 𝐾𝑠𝑔𝑛(𝑠) is replaced with 𝐾ഥ𝑠𝑎𝑡(
௦

థ
): 

𝑢 = 𝑏෠ି1 ൤−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
): ൨ + 𝑢௞ି1 (3.130) 

Plugging into Equation 3.103 gives us: 

𝑠̇ = ൤𝑥̈ + 𝑏 ൜𝑏෠ି1 ൤−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
): ൨ + 𝑢௞ି1ൠ − 𝑏𝑢௞ି1 + 𝜀(𝑢)൨ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) (3.131) 

And rearranging this gives us: 

𝑠̇ = −𝑏𝑏෠ିଵ𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
) + (𝑥̈ − 𝑥̈ௗ)൫1 − 𝑏෠𝑏ିଵ൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫1 − 𝑏෠𝑏ିଵ൯ + 𝜀(𝑢) − 𝑏෠𝑏ିଵ𝜀̂(𝑢) (3.132) 

Using Equation 3.123, we can re-write this as: 

𝑠̇ = −𝛽ିଵ𝐾ഥ𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ + (𝑥̈ − 𝑥̈ௗ)(1 − 𝛽ିଵ) + 𝜆(𝑥̇ − 𝑥̇ௗ)(1 − 𝛽ିଵ) + 𝜀(𝑢) − 𝛽ିଵ𝜀̂(𝑢) (3.133) 

Inside the boundary layer, 𝑠𝑎𝑡 ቀ
௦

థ
ቁ =

௦

థ
: 

𝑠̇ = −𝛽ିଵ𝐾ഥ ൬
𝑠

𝜙
൰ + (𝑥̈ − 𝑥̈ௗ)(1 − 𝛽ିଵ) + 𝜆(𝑥̇ − 𝑥̇ௗ)(1 − 𝛽ିଵ) + 𝜀(𝑢) − 𝛽ିଵ𝜀̂(𝑢) (3.134) 

Assuming the states are inside the boundary layer, 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small error term, 
such that: 

𝑠̇ = −𝛽ିଵ𝐾ഥ ൬
𝑠

𝜙
൰ + 𝜀(𝑢(𝑥ௗ)) − 𝛽ିଵ𝜀̂(𝑢(𝑥ௗ)) + 𝑂(𝜀) 

(3.135) 

Equation 3.135 is a first-order filter that can be tuned such that: 

𝑠̇ +
𝜆

𝛽ଶ 𝑠 = 𝑢 
(3.136) 

Comparing the two equations gives us:  

𝜆

𝛽ଶ =
𝐾ഥ(𝑥ௗ)

𝛽𝜙
 

(3.137) 

Plugging in Equation 3.129 gives us: 
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𝜆

𝛽ଶ =
𝐾(𝑥ௗ) −

𝜙̇
𝛽

𝛽𝜙
 

(3.138) 

Re-writing this gives us: 

𝜙̇ + 𝜆𝜙 = 𝛽𝐾(𝑥ௗ) (3.139) 

To ensure that the sliding condition is met when the states are inside the boundary layer, or 𝜙̇ <

0, the switching gain, 𝐾ഥ, is defined as: 

𝐾ഥ(𝑥ௗ) = 𝐾(𝑥ௗ) − 𝛽𝜙̇ (3.140) 

Plugging into Equation 3.137 we get: 

𝜆

𝛽ଶ =
𝐾(𝑥ௗ) − 𝛽𝜙̇

𝛽𝜙
 

(3.141) 

Re-writing gives us: 

𝜙̇ +
𝜆

𝛽ଶ 𝜙 =
𝐾(𝑥ௗ)

𝛽
 

(3.142) 

With 𝜙̇ ≥ 0 from Equation 3.139, we get: 

𝜙̇ = 𝛽𝐾(𝑥ௗ) − 𝜆𝜙 ≥ 0 (3.143) 

Or: 

𝐾(𝑥ௗ) ≥
𝜆𝜙

𝛽
 

(3.144) 

With 𝜙̇ ≤ 0 from Equation 3.142, we get: 

𝜙̇ =
𝐾(𝑥ௗ)

𝛽
−

𝜆

𝛽ଶ 𝜙 ≤ 0 
(3.145) 

Or: 

𝐾(𝑥ௗ) ≤
𝜆𝜙

𝛽
 

(3.146) 

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we can show: 

𝜙(0) =
𝛽

𝜆
𝐾(𝑥ௗ(0)) 

(3.147) 

In summary, plugging in Equation 3.99 to Equations 3.130: 

𝑢 = 𝑏෠ିଵ ൤−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨ + 2𝑢௞ିଵ − 𝑢௞ିଶ 

(3.148) 
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𝐾 = |(𝛽 − 1)||(𝑥̈ − 𝑥̈ௗ)| + |(𝛽 − 1)||𝜆(𝑥̇ − 𝑥̇ௗ)| + |(𝛽[1 + 𝜎௨] − 1)|ห𝑏෠(𝑢௞ିଶ − 𝑢௞ିଵ)ห + 𝛽𝜂  (3.149) 

𝐾ௗ = |(𝛽ௗ[1 + 𝜎௨] − 1)||𝑏ො(𝑢௞ିଶ − 𝑢௞ିଵ)| + 𝛽ௗ𝜂 (3.150) 

𝐾ௗ ≤
ఒథ

ఉ೏
⇒ 𝜙̇ + 𝜆𝜙 = 𝛽ௗ𝐾ௗ 𝐾ഥ = 𝐾 −

థ̇

ఉ
 (3.151) 

𝐾ௗ ≥
ఒథ

ఉ೏
⇒ 𝜙̇ +

ఒథ

ఉ೏
మ =

௄೏

ఉ೏
 𝐾ഥ = 𝐾 − 𝛽𝜙̇ (3.152) 

𝜙(0) =
𝛽𝑑𝐾𝑑(0)

𝜆
 

(3.153) 

3.1.12 Derivation of MIMO Model-Free Control Law 

For a MIMO system, the following discrete-time measurement model is assumed: 

𝒙̈ = 𝒙̈ + 𝑩𝒖 − 𝑩𝒖𝒌ି𝟏 − 𝑩𝒖 + 𝑩𝒖𝒌ି𝟏 (3.154)
Or: 

𝑥̈௜ = 𝑥̈௜ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.155) 

Where 𝑥̈ is the measured acceleration, 𝑢 is the control system input, 𝑢௞ିଵ is the previous value 
of the control system input, 𝑚 is the order of the system, and 𝑏 is the control input influence gain 
that will be estimated. The input influence gain matrix, 𝑩, is assumed to be a 2 by 2 square 
matrix defined as: 

𝑩 = ൤
𝑏ଵଵ 𝑏ଵଶ

𝑏ଶଵ 𝑏ଶଶ
൨ (3.156)

Equation 3.154 can be re-written as: 

𝒙̈ = 𝒙̈ + 𝑩𝒖 − 𝑩𝒖𝒌ି𝟏 + 𝜺(𝒖) (3.157)
Or: 

𝑥̈௜ = 𝑥̈௜ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.158) 

Where 𝜺(𝑢) is the estimation error in the input influence gain defined by: 

𝜀௜(𝑢௜) = ෍ 𝑏௜௝(𝑥௜)(𝑢௞ିଵ௜
− 𝑢௜)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.159) 

𝜺(𝑢) is assumed to be bounded by a known function, 𝑬, such that: 
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|𝜺ො(𝒖) − 𝜺(𝒖)| ≤ 𝑬 (3.160) 
Where 𝜺ො(𝑢) is the estimated error in the input influence gain estimation assumed to be defined 
by: 

𝜀௜̂(𝑢௜) = ෍ 𝑏෠௜௝(𝑥௜)(𝑢௞ିଶ௜
− 𝑢௞ିଵ௜

)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.161) 

And the actual error is bounded by the function: 

(1 − 𝝈𝒍)𝜺ො(𝒖) ≤ 𝜺(𝒖) ≤ (1 + 𝝈𝒖)𝜺ො(𝒖) (3.162) 
Where 𝝈𝒍 and 𝝈𝒖 are the lower and upper defined bounds respectively. The sliding surface for a 
second-order system is defined as: 

𝑠௜ = 𝑥̇௜ − 𝑥̇ௗ௜
+ 𝜆(𝑥௜ − 𝑥ௗ௜

) 

𝑖 = 1, … , 𝑚 

(3.163) 

Where 𝑥 and 𝑥̇ are the system states to be measured and 𝑥ௗ and 𝑥̇ௗ are the desired states to be 
tracked. Taking the derivative of the sliding surface results in: 

𝑠̇௜ = 𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ = 0 

𝑖 = 1, … , 𝑚 

(3.164)

Plugging in Equation 3.158 and setting 𝑠̇ equal to zero ensures that the state error trajectories do 
not move once they reach the sliding surface and gives us:  

𝑠̇௜ = 𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

= 0 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.165)

The best estimate for the control input, 𝑢ො , to maintain 𝑠̇ equal to zero is therefore: 

𝒖ෝ = 𝑩෡ ିଵ൫−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅)൯ + 𝒖𝒌ି𝟏 (3.166) 

And adding a discontinuous term to satisfy the sliding condition gives us: 

𝒖 = 𝑩෡ିଵ(−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅)) − 𝜼𝑠𝑔𝑛(𝑠௜)) + 𝒖𝒌ି𝟏 
𝑖 = 1, … , 𝑚 

(3.167) 

Where 𝜂 is a matrix of positive constants. From Equation 3.112, we know that this controller 
form verifies the sliding condition. Therefore, 𝜼 can be replaced with the system gain, 𝑲, in 
Equation 3.167 resulting in: 

𝒖 = 𝑩෡ ିଵ[−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲(𝑥)𝑠𝑔𝑛(𝑠௜)] + 𝒖𝒌ି𝟏 

𝑖 = 1, … , 𝑚 

(3.168) 

We can define the sliding condition as: 
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𝑠௜𝑠̇௜ ≤ −𝜂௜|𝑠௜| 
𝑖 = 1, … , 𝑚 

(3.169) 

Substituting in Equation 3.165 gives us: 

𝑠௜ ቎𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

቏ ≤ −𝜂௜|𝑠௜| 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.170) 

Substituting in the best estimate of the control input, 𝑢ො , for 𝑢 gives us: 

𝒔̇ = 𝒙̈ − 𝒙̈𝒅 + 𝜆(𝒙̇ − 𝒙̇𝒅) + 𝜺(𝒖) + 𝑩൫𝑩෡ିଵ[−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲(𝑥)𝑠𝑔𝑛(𝑠௜)] + 𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟏൯ 

𝑖 = 1, … , 𝑚 
(3.171) 

Using the 𝑠௜𝐾௜𝑠𝑔𝑛(𝑠௜) = 𝐾௜|𝑠௜| and rearranging to isolate 𝐾௜|𝑠௜| gives us: 

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ ൤൫𝑥̈௜ − 𝑥̈ௗ௜
൯ ቀ𝑏෠௜௝𝑏௜௝

ିଵ
− 1ቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ + ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ 𝜀௜̂(𝑢௜)

௠

௝ୀଵ

+ 𝑏෠௜௝𝑏௜௝
ିଵ

[𝜀௜(𝑢௜) − 𝜀௜̂(𝑢௜)]൨ + 𝑏෠௜௝𝑏௜௝
ିଵ

𝜂௜|𝑠௜| 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.172) 

The most conservative estimate for the upper bound of 𝜺(𝑢) is defined as: 

𝜺(𝑢) = (1 + 𝝈𝒖)𝜺ො(𝑢) (3.173) 
Therefore, the 𝜺(𝑢) − 𝜺ො(𝑢) term can be redefined as: 

𝜺(𝑢) − 𝜺ො(𝑢) = (1 + 𝝈𝒖)𝜺ො(𝑢) − 𝜺ො(𝑢) = 𝜺ො(𝑢) + 𝝈𝒖𝜺ො(𝑢) − 𝜺ො(𝑢) = 𝝈𝒖𝜺ො(𝑢) (3.174) 
Plugging this into Equation 3.172 gives us: 

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ ቂ൫𝑥̈௜ − 𝑥̈ௗ௜
൯ ቀ𝑏෠௜௝𝑏௜௝

ିଵ
− 1ቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ + ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ 𝜀௜̂(𝑢௜)

௠

௝ୀଵ

+ 𝑏෠௜௝𝑏௜௝
ିଵ

𝜎௨௜
𝜀௜̂(𝑢௜)ቃ + 𝑏෠௜௝𝑏௜௝

ିଵ
𝜂௜|𝑠௜| 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.175) 

And rearranging this gives us: 

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ ቂ൫𝑥̈௜ − 𝑥̈ௗ ௜
൯ ቀ𝑏෠௜௝𝑏௜௝

ିଵ
− 1ቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ

௠

௝ୀଵ

+ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

ൣ1 + 𝜎௨௜
൧ − 1ቁ 𝜀௜̂(𝑢௜)ቃ + 𝑏෠௜௝𝑏௜௝

ିଵ
𝜂௜|𝑠௜| 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.176) 

Next, we define: 

𝑩෡ = ට𝑩𝒍𝒐𝒘𝑩𝒖𝒑𝒑 
(3.177)

𝜷 = ට𝑩𝒍𝒐𝒘
ିଵ𝑩𝒖𝒑𝒑 = 𝑩෡𝑩ି1 

(3.178)
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Where 𝑩𝒍𝒐𝒘 and 𝑩𝒖𝒑𝒑 are the lower and upper estimated bounds of the input influence gain 

matrix respectively. Plugging these into Equation 3.176 gives us: 

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ൣ൫𝑥̈௜ − 𝑥̈ௗ௜
൯൫𝛽௜௝

ିଵ − 1൯ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜
൯൫𝛽௜௝

ିଵ − 1൯ + ൫𝛽௜௝
ିଵൣ1 + 𝜎௨௜

൧ − 1൯𝜀௜̂(𝑢௜)൧ + 𝛽௜௝
ିଵ𝜂௜|𝑠௜|

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.179) 

With the final equation for the system gain being: 

𝑲 ≥ |(𝜷 − 1)||(𝒙̈ − 𝒙̈𝒅)| + |(𝜷 − 1)||𝜆(𝒙̇ − 𝒙̇𝒅)| + |(𝜷[1 + 𝝈𝒖] − 1)||𝜺ො(𝑢)| + 𝜷𝜼 (3.180) 

In summary, plugging in Equation 3.161 to Equations and 3.168 and 3.180: 

𝒖 = 𝑩෡ ିଵ[−(𝒙̈ − 𝒙̈𝒅) − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲𝑠𝑔𝑛(𝑠௜)] + 2𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟐 

𝑖 = 1, … , 𝑚 

(3.181) 

𝑲 = |(𝜷 − 1)||(𝒙̈ − 𝒙̈𝒅)| + |(𝜷 − 1)||𝜆(𝒙̇ − 𝒙̇𝒅)| + |(𝜷[1 + 𝝈𝒖] − 1)|ห𝑩෡(𝒖𝒌ି𝟐 − 𝒖𝒌ି𝟏)ห + 𝜷𝜼 (3.182) 

Including a boundary layer, the sliding condition becomes: 

𝑠௜𝑠̇௜ ≤ (𝜙̇௜ − 𝜂௜)|𝑠௜| 
𝑖 = 1, … , 𝑚 

(3.183) 

Where m is the order of the system. To ensure that the sliding condition, (𝝓̇ − 𝜼) ≤ 0, is met 

when the states are outside the boundary layer, or 𝝓̇ > 0, the switching gain is defined as: 

𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ (3.184) 

From Equation 3.168, 𝐾𝑠𝑔𝑛(𝑠) is replaced with 𝐾ഥ𝑠𝑎𝑡(
௦

థ
): 

𝒖 = 𝑩෡ିଵ ൤−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ + 𝒖𝒌ି𝟏 

𝑖 = 1, … , 𝑚 

(3.185)

Plugging into Equation 3.165 gives us: 

𝒔̇ = 𝒙̈ − 𝒙̈𝒅 + 𝜆(𝒙̇ − 𝒙̇𝒅) + 𝜺(𝒖) + 𝑩 ൬𝑩෡ିଵ ൤−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜

൰൨ + 𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟏൰ 

𝑖 = 1, … , 𝑚 

(3.186)

And rearranging this gives us: 

𝒔̇ = −𝑩𝑩෡ ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜

൰ + (𝒙̈ − 𝒙̈𝒅)൫1 − 𝑩𝑩෡ିଵ൯ + 𝜆(𝒙̇ − 𝒙̇𝒅)൫1 − 𝑩𝑩෡ିଵ൯ + 𝜺(𝑢) − 𝑩𝑩෡ିଵ𝜺ො(𝑢) 

𝑖 = 1, … , 𝑚 

(3.187)

Using Equation 3.178, we can re-write this as: 

𝒔̇ = −𝜷ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜

൰ + (𝒙̈ − 𝒙̈𝒅)(1 − 𝜷ିଵ) + 𝜆(𝒙̇ − 𝒙̇𝒅)(1 − 𝜷ିଵ) + 𝜺(𝑢) − 𝜷ିଵ𝜺ො(𝑢) (3.188)
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𝑖 = 1, … , 𝑚 

Inside the boundary layer, 𝑠𝑎𝑡 ቀ
௦೔

థ೔
ቁ =

௦೔

థ೔
, so we can re-write this as: 

𝑠̇௜ = ෍ − ቆ
𝐾ഥ𝑖(𝑥𝑖)

𝛽௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + ൫𝑥̈ − 𝑥̈ௗ௜

൯ ቀ1 − 𝛽௜௝
ିଵቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ1 − 𝛽௜௝
ିଵቁ + 𝜀௜(𝑢) − 𝛽௜௝

ିଵ𝜀௜̂(𝑢)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.189)

Assume that inside the boundary layer, 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small error term, such that: 

𝑠̇௜ = ෍ − ቆ
𝐾ഥ𝑖(𝑥ௗ௜

)

𝛽
௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + 𝜀௜(𝑢) − 𝛽

௜௝
ିଵ𝜀௜̂(𝑢)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.190)

Equation 3.190 is a first-order filter that can be tuned such that: 

𝒔̇ + 𝜆𝜷ିଶ𝒔 = 𝒖 (3.191) 

Comparing the two equations gives us:  

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾ഥ𝑖(𝑥ௗ௜

)

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.192)

Plugging in Equation 3.184 gives us: 

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

ିଵ𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.193)

Re-writing gives us: 

𝜙̇௜ + 𝜆𝜙௜ = ෍ 𝛽
௜௝

𝐾௜(𝑥ௗ௜
)

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.194)

Or, in vector form: 

𝝓̇ + 𝜆𝝓 = 𝜷𝑲(𝑥ௗ) (3.195) 

To ensure that the sliding condition is met when the states are inside the boundary layer, or 𝝓̇ <

0, the switching gain, 𝐾ഥ, is defined as: 

𝑲ഥ(𝑥ௗ) = 𝑲(𝑥ௗ) − 𝜷𝝓̇ (3.196) 

Plugging into Equation 3.192 we get: 
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෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.197)

Re-writing gives us: 

𝜙̇௜ + ෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

𝜙௜ = ෍
𝐾௜(𝑥ௗ௜

)

𝛽
௜௝

௠

௝ୀଵ

 

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚 

(3.198)

Or, in vector form: 

𝝓̇ + 𝜆𝜷ିଶ𝝓 = 𝜷ିଵ𝑲(𝑥ௗ) (3.199)

With 𝝓̇ ≥ 0 from Equation 3.195, we get: 

𝝓̇ = 𝜷𝑲(𝑥ௗ) − 𝜆𝝓 ≥ 0 (3.200) 

Or: 

𝑲(𝑥ௗ) ≥ 𝜆𝜷ିଵ𝝓 (3.201) 

With 𝝓̇ ≤ 0 from Equation 3.199, we get: 

𝝓̇ = 𝜷ିଵ𝐾(𝑥ௗ) − 𝜆𝜷ିଶ𝝓 ≤ 0 (3.202) 

Or: 

𝑲(𝑥ௗ) ≤ 𝜆𝜷ିଵ𝝓 (3.203) 

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we find: 

𝝓(0) =
1

𝜆
𝜷𝑲(𝑥ௗ(0)) 

(3.204) 

In summary, plugging Equation 3.161 into Equation 3.185: 

𝒖 = 𝑩෡ିଵ ൤−(𝒙̈ − 𝒙̈𝒅) − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ + 2𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟐 

𝑖 = 1, … , 𝑚 

(3.205) 

𝑲 = |(𝜷 − 1)||(𝒙̈ − 𝒙̈𝒅)| + |(𝜷 − 1)||𝜆(𝒙̇ − 𝒙̇𝒅)| + |(𝜷[1 + 𝝈𝒖] − 1)|ห𝑩෡(𝒖𝒌ି𝟐 − 𝒖𝒌ି𝟏)ห + 𝜷𝜼  (3.206) 

𝑲𝒅 = |(𝜷𝒅[1 + 𝝈𝒖] − 1)||𝑩ෝ(𝒖𝒌ି𝟐 − 𝒖𝒌ି𝟏)| + 𝜷𝒅𝜼 (3.207) 

𝑲(𝑥ௗ) ≥ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝝓 = 𝜷
𝒅

𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ (3.208) 

𝑲(𝑥ௗ) ≤ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝜷
𝒅

ିଶ𝝓 = 𝜷
𝒅

ିଵ𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷𝝓̇ (3.209) 
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𝝓(0) =
1

𝜆
𝜷𝑲(𝑥ௗ(0)) 

(3.210) 

 

3.2 Online Parameter Estimation Methods 

The basis of parameters estimation is extracting parameter values from measurable system 
outputs. A general model for parameter estimation can be defined as (Slotine and Li [23]): 

𝑦(𝑘𝑇) = 𝑊(𝑘𝑇)𝑏(𝑘𝑇) (3.211) 
Where 𝑏 is the parameter to be estimated, which in our case is the input influence gain, vector 𝑦 
includes the outputs from the system used for estimation, 𝑊 is a signal matrix, 𝑇 is the discrete 
time step, and 𝑘 is an integer multiplier. This model is only valid for discrete time. The predicted 
system output, 𝑦ො, at time 𝑡, can be defined as: 

𝑦ො(𝑘𝑇) = 𝑊(𝑘𝑇)𝑏෠(𝑘𝑇) (3.212) 

Where 𝑏෠ is the predicted parameter at time 𝑡. Online estimation is based around the fact that the 

value of 𝑏෠ is found recursively. In other words, it is updated every time there is a new set of data 
for 𝑦 and 𝑊. The instantaneous prediction error, 𝑒1, can then be defined as: 

𝑒1 = 𝑦ො(𝑘𝑇) − 𝑦(𝑘𝑇) (3.213) 

Or, plugging in Equations 3.211 and 3.212: 

𝑒1 = 𝑊𝑏෠(𝑘𝑇) − 𝑊𝑏(𝑘𝑇) = 𝑊𝑏෨ (3.214) 

 

3.2.1 Standard Least-Squares Estimator 

The standard least-squares method has the advantage of averaging out the effects of noise in 
measurements. This method can be implemented by minimizing the total prediction error with 

respect to 𝑏෠(𝑡) (Slotine and Li [23]): 

𝐽 = න ቚห𝑦(𝑟) − 𝑊(𝑟)𝑏෠(𝑡)หቚ
ଶ௧

௢

𝑑𝑟 
(3.215) 

Where the estimated parameter 𝑏෠ satisfies: 

න (𝑊்(𝑟)𝑊(𝑟)𝑑𝑟)𝑏෠(𝑡)
௧

௢

= න 𝑊்𝑦𝑑𝑟 
௧

௢

 
(3.216) 

We can then define: 

𝑃(𝑡) = [න (𝑊்(𝑟)𝑊(𝑟)𝑑𝑟)
௧

௢

]ିଵ 
(3.217) 
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But for computational efficiency, it is better to calculate P, the estimator gain matrix, recursively, 
so the above equation can be replaced with the following differential equation: 

𝑃̇ିଵ = 𝑊்(𝑡)𝑊(𝑡) (3.218) 

This can give us the equation: 

𝑑

𝑑𝑡
ൣ𝑏෠൧ = −𝑃(𝑡)𝑊்𝑒ଵ 

(3.219) 

To be able to update P directly, we use the following identity: 

𝑑

𝑑𝑡
[𝑃𝑃ିଵ] =  𝑃̇𝑃ିଵ + 𝑃𝑃̇ିଵ = 0 

(3.220) 

To get the equation: 

𝑃̇ = −𝑃𝑊்𝑊𝑃 (3.221) 

To successfully implement this method, P and 𝑏෠ must be initialized with finite values. The initial 

value of P should be as high as possible within noise sensitivity constraints and 𝑏෠ should be a 
best guess. 

3.2.2 Convergence 

Solving the differential Equations 3.218 and 3.219 above and using Equation 3.221 we can show 

that (Slotine and Li [23]): 

𝑃ିଵ(𝑡) = 𝑃ିଵ(0) + න 𝑊்(𝑟)𝑊(𝑟)𝑑𝑟
௧

଴

 
(3.222) 

𝑑

𝑑𝑡
ൣ𝑃ିଵ(𝑡)𝑏෨(𝑡)൧ = 0 

(3.223) 

From which we can define: 

𝑏෨(𝑡) = 𝑃(𝑡)𝑃ିଵ(0)𝑏෨(0) (3.224) 

If 𝑊 meets the criteria of: 

𝜆௠௜௡ ∫ 𝑊்𝑊𝑑𝑟
௧

଴
→ ∞ as 𝑡 → ∞ 

Where 𝜆௠௜௡ is the smallest eigenvalue of 𝑊, then the gain matrix converges to zero and the 

estimated parameters asymptotically converge to their true values. Additionally, for any positive 

integer value of k: 
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න 𝑊்𝑊𝑑𝑟
௞ఋାఋ

଴

= ෍ න 𝑊்𝑊𝑑𝑟
௜ఋାఋ

௜ఋ

௞

௜ୀ଴

≥ 𝑘𝛼ଵ𝐼 
(3.225) 

Where 𝛿 and 𝛼ଵ are positive constants. Therefore, if 𝑊 is under persistent excitation, the above 

equation is satisfied and 𝑃 → 0 and 𝑏෨ → 0. 

An initial parameter error, 𝑏෨(0), or large initial gain, 𝑃(0), can lead to a small parameter error 
for all time. If the initial gain is chosen such that 𝑃(0) = 𝑝0𝐼, then: 

𝑏෨(𝑡) = ቈ𝐼 + 𝑝଴ න 𝑊்(𝑟)𝑊(𝑟)𝑑𝑟
௧

଴

቉

ିଵ

𝑏෨(0) 
(3.226) 

3.2.3 Least-Squares with Exponential Forgetting 

When estimating time-varying parameters, it is known that past data is generated by past 
parameter values. Therefore, this past data should be discounted when estimating the current 
value of parameters. To implement exponential forgetting into least square estimation, the 
following cost function is defined (Slotine and Li [23]): 

𝐽 = න 𝑒𝑥𝑝[− න 𝜆(𝑟)𝑑𝑟
௧

௦

] ቚห𝑦(𝑠) − 𝑊(𝑠)𝑏෠(𝑡)หቚ
ଶ

𝑑𝑠
௧

௢

 
(3.227) 

Where 𝜆(𝑡) ≥ 0 is the time-varying forgetting factor. The parameter update law stays the same 
as: 

𝑑

𝑑𝑡
𝑏෠ = −𝑃(𝑡)𝑊்𝑒ଵ 

(3.228) 

But the gain update law has changed to be: 

𝑑

𝑑𝑡
[𝑃ିଵ(𝑡)] = −𝜆(𝑡)𝑃ିଵ + 𝑊்(𝑡)𝑊(𝑡) 

(3.229) 

Which can be implemented to directly update P in the form of: 

𝑃̇ = 𝜆(𝑡)𝑃 − 𝑃𝑊்(𝑡)𝑊(𝑡)𝑃 (3.230) 

This exponential forgetting method improves parameter convergence over the traditional least-

squares method by creating exponential convergence of the parameters to their final values. This 

is done while still guaranteeing asymptotic convergence of estimated parameters. 

3.2.4 Control Law Implementation 

Including a boundary layer, we define the sliding condition as: 
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𝑠𝑠̇ ≤ (𝜙̇ − 𝜂)|𝑠| (3.231) 

To ensure the global asymptotic stability of the system, we want to ensure that the sliding 

condition is met. Thus, we define our instantaneous parameter estimation error based on meeting 

the sliding condition as shown below: 

𝑒1 = (𝜙̇ − 𝜂)|𝑠| − 𝑠𝑠̇ (3.232) 

The value of 𝑒1 is minimized as the state trajectories reach the boundary layer. A boundary layer 
closing function is also defined as: 

|𝑠| ≥ 𝜙 ⇒ 𝑒1 = (𝜙̇ − 𝜂)|𝑠| − 𝑠𝑠̇ (3.233) 
|𝑠| < 𝜙 ⇒ 𝑒1 = −ൣ(𝜙̇ − 𝜂)|𝑠| − 𝑠𝑠̇൧ (3.234) 

As the state trajectory reaches a point within the boundary layer, this function starts to reduce the 
size of the boundary layer. Reducing the size of the boundary layer decreases tracking error and 
controller input over time. 

For the implementation of Equation 3.230, the signal matrix, 𝑊 was defined as: 

𝑊 = |𝑠| (3.235) 
This was done to ensure that the value of 𝑏෠ varied while the value of the sliding surface varied 

over time. 

3.2.5 Bounded Gain Forgetting Factor Tuning 

The benefit of data forgetting is the ability to track slowly varying parameters. However, the gain 

matrix 𝑃 can grow unbounded when 𝑊 is not persistently exciting. Therefore, it is desirable to 

tune the forgetting factor variation such that data forgetting is active when 𝑊 is persistently 

exciting and not active when 𝑊 is not persistently exciting. The magnitude of the gain matrix 𝑃 

indicates the excitation level of 𝑊. Therefore, the forgetting factor variation can be made 

dependent on ‖𝑃(𝑡)‖  (Slotine and Li [23]) such that: 

𝜆(𝑡) = 𝜆0 ቆ1 −
‖𝑃(𝑡)‖

𝑘0
ቇ 

(3.236) 

Where 𝜆0 is the maximum forgetting rate and 𝑘0 is the bound for the gain matrix magnitude and 

both are positive constants. A higher value of 𝜆0 leads to faster forgetting but more oscillations in 

the estimated parameters. A higher value of 𝑘0 updates the parameter estimation values faster but 

makes the estimator less robust to disturbances in the prediction error. In order for 𝑘0 to be the 

upper bound of the gain matrix, we choose ‖𝑃(0)‖ ≤ 𝑘0. 
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Figure 7: Position Tracking with Constant 
Input Influence Gain 

Figure 8: Velocity Tracking with Constant 
Input Influence Gain 

Figure 9: Acceleration Tracking with 
Constant Input Influence Gain 

Figure 10: Controller Input with Constant 
Input Influence Gain 

3.3 Implementation Results 

All of the following simulations used a sampling time of 0.001 seconds as it is easily obtained on 
current aircraft control systems. A single desired tracking and parameter varying frequency was 
used for each system because the effects of different frequencies were studied in past work by 
Dr. Crassidis.  

3.3.1 SISO System 

The derived control law was implemented on the following nonlinear second-order system: 

𝑥̈ + 3𝑥𝑥̇ + 5𝑥ଶ = 3𝑢 

With the desired tracking being:  

𝑥ௗ(𝑡) = 𝑠𝑖𝑛 ቀ
𝜋

2
𝑡ቁ 

The results of simulating the system with the derived control law for 60 seconds and an assumed 
constant input influence gain of 3 are shown below:  
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Figure 11: Sliding Condition with Constant 
Input Influence Gain 

Figure 12: Boundary Layer Dynamics with 
Constant Input Influence Gain 

Figure 13: Input Influence Gain Estimate 
with Constant Input Influence Gain 

Figure 14: Lambda Estimate with Constant 
Input Influence Gain 

 

  

  

  

 

Based on experience in the tracking of aircraft systems, Figures 7, 8, and 9 show that the system 
was deemed to have excellent tracking. The sliding condition was also met as time went on and 
the estimate for the input influence gain and 𝜆 were both convergent as shown by Figures 11, 13, 
and 14. This was accomplished with a controller input that was smooth and adequately small as 
shown in Figure 10.  

Note: the control input influence gain value does not need to be known before simulating the 
system with the control system as the control system is wholly model-free. However, to decrease 
controller activity, the upper and lower bounds of the input influence gain estimate can be 
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Figure 15: Input Influence Gain 

Figure 16: Position Tracking with Varying 
Input Influence Gain 

Figure 17: Velocity Tracking with Varying 
Input Influence Gain 

redefined in further simulations to encompass the final estimated value of the input influence 
gain. 

To demonstrate the robustness of this control law, the input influence gain was varied using a 
sine wave defined as:  

𝑏(𝑡) = ൬
𝑏௨௣௣ − 𝑏௟௢௪

2
൰ sin(𝑡) +

𝑏௨௣௣ + 𝑏௟௢௪

2
 

Where 𝑏௨௣௣ and 𝑏௟௢௪ are the upper and lower estimated bounds of the input influence gain 

respectively. This is shown in Figure 15. These results of this simulation are also shown below: 
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Figure 18: Acceleration Tracking with 
Varying Input Influence Gain 

Figure 19: Control Input with Varying Input 
Influence Gain 

Figure 20: Sliding Condition Tracking with 
Varying Input Influence Gain 

Figure 21: Boundary Layer Dynamics 
Tracking with Varying Input Influence Gain 

Figure 22: Input Influence Gain Estimate 
with Varying Input Influence Gain 

Figure 23: Lambda Estimate with Varying 
Input Influence Gain 
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Figure 24: MIMO Input Influence Gain Figure 25: MIMO Position Tracking 

As seen in Figures 16, 17, and 18, the controller still provides excellent position, velocity, and 
acceleration tracking. Again, sliding condition is met and the estimates for the input influence 
gain and 𝜆 are both convergent while the control input is smooth and adequately small. 

3.3.2 MIMO System 

The control law was also updated to control an example second-order MIMO system as defined 
by: 

𝑥̈ଵ + 𝑥ଵ𝑥ଶ − 3𝑥̇ଵ + 4𝑥ଶ
ଷ = 𝑏ଵ𝑢ଵ 

𝑥̈ଶ + 4𝑥̇ଶ𝑥ଵ + 𝑥ଵ
ଶ + 7𝑥ଶ = 𝑏ଶ𝑢ଶ 

With the desired tracking defined by: 

𝑥ଵௗ
(𝑡) = sin ቀ

𝜋

2
𝑡ቁ 

𝑥ଶௗ
(𝑡) = sin ቀ

𝜋

4
𝑡ቁ 

 The input influence gains 𝑏ଵ and 𝑏ଶ were varied as described in Section 3.3.1 to demonstrate the 
robustness of the control law. This is shown in Figure 24. Two separate SISO control laws were 
used to control each variable. 
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Figure 26: MIMO Velocity Tracking Figure 27: MIMO Acceleration Tracking 

Figure 28: 𝑥ଵ Sliding Condition Figure 29: 𝑥ଶ Sliding Condition 

Figure 30: 𝑥ଵ Boundary Layer Dynamics Figure 31: 𝑥ଶ Boundary Layer Dynamics 
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Figure 32: MIMO Input Influence Gain 
Estimate 

Figure 33: MIMO Lambda Estimate 

Figure 34: MIMO Controller Input 

     

 

 

 

3.3.3 First-Order System 

In preparation for the control of roll and yaw rate for an aircraft, the control law was updated to 
control a first-order SISO system. This included the re-derivation of the control law after the 
sliding surface and derivative of the sliding surface are updated such that: 

𝑠 = 𝑥 − 𝑥ௗ + 𝜆 න (𝑥 − 𝑥ௗ)𝑑𝑡
௧

଴

 
(3.237)

𝑠̇ = 𝑥̇ − 𝑥̇ௗ + 𝜆(𝑥 − 𝑥ௗ) (3.238)
This control law was implemented on an example first-order SISO system defined as: 

𝑥̇ + 7𝑥 + 5𝑥ଷ = 𝑏𝑢 
Where the input influence gain, 𝑏, was time varying as described in Section 3.3.1. The desired 
tracking signal was updated to be a step function with a magnitude of 1 ran through a transfer 
function. To generate a desired “roll” signal, a first-order transfer function was used such that: 



56 
 

Figure 35: Roll Rate Tracking Figure 36: Roll Acceleration Tracking 

Figure 37: Roll Boundary Layer Dynamics Figure 38: Roll Sliding Condition 

𝑝ௗ

𝛿௔
=

𝐾

𝜏𝑠 + 1
 

Where 𝑝ௗ is the desired roll rate,  𝛿௔ is the aileron step function input, 𝜏 is a roll-mode time 
constant set to 0.3 seconds, and 𝐾 is a gain set to 1. The results of simulating the system with the 
updated control law are shown below: 
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Figure 39: Position Tracking with Varying 
Input Influence Gain 

Figure 40: Position Tracking with Varying 
Input Influence Gain 

Figure 41: Roll Lambda Estimate 

Figure 39: Roll Input Influence Gain Figure 40: Roll Input Influence Gain 
Estimate 

Figure 42: Roll Control Input 

 

  

   

As seen in Figures 35 and 36, the controller still provides excellent tracking of roll rate and 
acceleration. Again, the sliding condition is met and the estimates for the input influence gain 
and λ are both convergent while the control input is smooth and adequately small. 

3.3.4 Full Control of Lateral Directional State Space Model 

The first aircraft representative system the controller was implemented on was a 
lateral/directional state space model: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

Where: 
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Figure 43: State Space Roll Input Position 
Tracking 

Figure 44: State Space Roll Input Velocity 
Tracking 

𝐴 = ቌ

-0.2316
-29.4924

0.0633
-3.0169

6.2346
0.0000

-0.0274
1.0000

-0.9956
0.0201

0.0510
0.0000

-0.4169
0.0631

0.0000
0.0000

ቍ 𝐵 = ቌ

-0.0052
36.4909

-0.0310
-8.1090

0.4916
0.0000

2.8274
0.0000

ቍ 

𝐶 =

⎝

⎜⎜
⎛

1.0000 0.0000
0.0000 1.0000
0.0000 0.0000

0.0000 0.0000
0.0000 0.0000
1.0000 0.0000

0.0000 0.0000
-29.4924 -3.0169
6.2346 -0.0274

0.0000 1.0000
0.0201 0.0000
-0.4169 0.0000⎠

⎟⎟
⎞

𝐷 =

⎝

⎜⎜
⎛

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
36.4909
0.4916

0.0000
-8.1090
2.8274 ⎠

⎟⎟
⎞

 

And, 

𝑥 = ቌ 

𝑝
𝑟
𝑝̇
𝑟̇

 ቍ 

Where 𝑝 is roll rate and 𝑟 is yaw rate. Our main goal was to control the system to track a roll rate 
step input while maintaining zero yaw rate or vice versa. Separate SISO control laws were used 
for roll and yaw rate. The roll rate step input was generated as described in Section 3.3.4. The 
yaw rate step input fed through a second-order transfer function: 

𝑟ௗ

𝛿௥
=

𝜔௡

𝑠ଶ + 2𝜁𝜔௡ + 𝜔௡
ଶ
 

Where 𝑟ௗ is the desired yaw rate, 𝛿௥ is the rudder step input, 𝜔௡ is the Dutch roll natural 
frequency of 2 rad/sec and 𝜁 is the damping ratio of 0.8 as characterized by a level 1 aircraft. 

Two separate SISO control laws were used to control each variable. First, a desired roll step 
input of 20 rad/sec was generated with zero desired yaw rate. The results of this simulation are 
shown below: 
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Figure 45: State Space Roll Input Input 
Influence Gain Estimate 

Figure 46: State Space Roll Input Lambda 
Estimate 

Figure 47: State Space Roll Input Roll 
Boundary Layer Dynamics 

Figure 48: State Space Roll Input Yaw 
Boundary Layer Dynamics 

Figure 50: State Space Roll Input Yaw 
Sliding Condition 

Figure 49: State Space Roll Input Roll 
Sliding Condition 
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Figure 51: State Space Roll Input Control 
Input 

Figure 52: State Space Yaw Input Position 
Tracking 

Figure 53: State Space Yaw Input Velocity 
Tracking 

 

 

Figures 43 and 44 show that the controller achieved very good roll and yaw rate and acceleration 
tracking. Figure 51 shows that the controller effort is reasonable. Figure 45 shows us that the 
input influence gain estimated for both roll and yaw converge to a single value. Figure 46 also 
shows this for the estimate of lambda where the estimate for roll and yaw both converge to the 
actual value of lambda. Most importantly, Figures 49 and 50 show that the sliding condition was 
met. 

Next, a desired yaw step input of 10 rad/sec was generated with zero desired roll rate. The results 
of this simulation are shown below: 
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Figure 54: State Space Yaw Input Input 
Influence Gain Estimate 

Figure 55: State Space Yaw Input Lambda 
Estimate 

Figure 56: State Space Yaw Input Roll 
Boundary Layer Dynamics 

Figure 57: State Space Yaw Input Yaw 
Boundary Layer Dynamics 

Figure 58: State Space Yaw Input Roll 
Sliding Condition 

Figure 59: State Space Yaw Input Yaw 
Sliding Condition 
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Figure 60: State Space Yaw Input Control 
Input 

 

 

Again, Figures 52 and 53 show that the controller achieved very good roll and yaw rate and 
acceleration tracking. However, it did not perform as well as it did for a desired roll rate. Figure 
60 shows that the controller effort is reasonable. Figure 54 shows us that the input influence gain 
estimated for both roll and yaw converge to a single value. Figure 55 also shows this for the 
estimate of lambda where the estimate for roll and yaw both converge to the actual value of 
lambda. Most importantly, Figures 58 and 59 show that the sliding condition was met. 

3.3.5 Input Influence Gain Matrix MIMO Example 

The MIMO control law derived in was implemented in the control of a MIMO system as defined 

by: 

𝑥̈ଵ + 𝑎ଵ(𝑡)𝑥̇ଵ
ଶ cos(𝑥ଵ) 𝑥ଶ = 6𝑢ଵ + 4𝑢ଶ 

𝑥̈ଶ + 𝑎ଶ(𝑡)𝑥̇ଶ
ଶ𝑥ଶ𝑥̇ଵ = 2𝑢ଵ + 3𝑢ଶ 

1 ≤ 𝑎ଵ(𝑡) ≤ 2 

4 ≤ 𝑎ଶ(𝑡) ≤ 6 

Where 𝑎ଵ and 𝑎ଶ were made time-varying such that: 

𝑎(𝑡) = ቀ
𝑎௨௣௣ − 𝑎௟௢௪

2
ቁ sin(𝑡) +

𝑎௨௣௣ + 𝑎௟௢௪

2
 

Where 𝑎௨௣௣ and 𝑎௟௢௪ are the upper and lower estimated bounds of the gains respectively. The 

input influence gains were also varied by adding to them a sine function defined by: 

𝑓(𝑡) = sin(3𝑡) 
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Figure 61: MIMO Gain Matrix Constant 
B.L. Position Tracking 

Figure 62: MIMO Gain Matrix Constant 
B.L. Velocity Tracking 

Figure 63: MIMO Gain Matrix Constant 
B.L. Acceleration Tracking 

Figure 64: MIMO Gain Matrix Constant 
B.L. Controller Input 

The desired tracking was defined by: 

𝑥ଵௗ
(𝑡) = sin ቀ

𝜋

2
𝑡ቁ 

𝑥ଶௗ
(𝑡) = cos ቀ

𝜋

2
𝑡ቁ 

Here, a single MIMO control law as derived in Section 3.1.12 was used to control both variables. 
However, the square input influence gain matrix was set to be constant and was not estimated in 
real-time. First, a constant boundary layer magnitude of 0.5 was used to show the effectiveness 
of the control law. The results are shown below:  
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Figure 65: MIMO Gain Matrix Constant 
B.L. 𝑥ଵ B.L Dynamics 

Figure 66: MIMO Gain Matrix Constant 
B.L. 𝑥ଶ B.L Dynamics 

Figure 67: MIMO Gain Matrix Constant 
B.L. 𝑥ଵ Sliding Condition 

Figure 68: MIMO Gain Matrix Constant 
B.L. 𝑥ଶ Sliding Condition 

   

  

 

 

Figures 61, 62, and 63 show that this controller had a great tracking response for position, 
velocity, but there were a lot of initial oscillations in acceleration tracking. This was achieved 
with a smooth and small magnitude controller input as shown in Figure 64. The sliding surface 
stayed within the boundary layer and the sliding condition met for both variables, guaranteeing 
stability. In an effort to improve performance, the boundary layer was made time varying. The 
results of this are shown below: 
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Figure 71: MIMO Gain Matrix Varying 
B.L. Acceleration Tracking 

Figure 72: MIMO Gain Matrix Varying 
B.L. Controller Input 

Figure 73: MIMO Gain Matrix Varying 
B.L. 𝑥ଵ B.L Dynamics 

Figure 74: MIMO Gain Matrix Varying 
B.L. 𝑥ଶ B.L Dynamics 

Figure 69: MIMO Gain Matrix Varying 
B.L. Position Tracking 

Figure 70: MIMO Gain Matrix Varying 
B.L. Velocity Tracking 
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Figure 75: MIMO Gain Matrix Varying 
B.L. 𝑥ଵ Sliding Condition 

Figure 76: MIMO Gain Matrix Varying 
B.L. 𝑥ଶ Sliding Condition 

Figure 77: State Space Gain Matrix Roll 
Input Position Tracking 

Figure 78: State Space Gain Matrix Roll 
Input Velocity Tracking 

 

 

Figures 69 and 70 show that the controller retains its great position and velocity tracking. Figure 
71 shows that there was slightly better acceleration tracking with less oscillation in the beginning 
of the simulation. There was still a smooth and small magnitude controller input. Again, the 
sliding surface stayed within the boundary layer and the sliding condition was met for both 
variables.  

3.3.6 Input Influence Gain Matrix for State Space Model 

The MIMO control method derived in Section 3.1.12 was implemented in the control of the 
lateral-direction state space model defined in Section 3.3.4. However, all of the elements in the B 
matrix were set to be positive. Again, the square input influence gain matrix in the control law 
was kept constant and was not estimated in real-time. A desired roll input with a magnitude of 20 
was generated using the method defined in Section 3.3.3. The results of this simulation are 
shown below:  
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Figure 79: State Space Gain Matrix Roll 
Input Roll B.L Dynamics 

Figure 80: State Space Gain Matrix Roll 
Input Yaw B.L Dynamics 

Figure 81: State Space Gain Matrix Roll 
Input Roll Sliding Condition 

Figure 82: State Space Gain Matrix Roll 
Input Yaw Sliding Condition 

Figure 83: State Space Gain Matrix Roll 
Input Controller Input 
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Figure 84: State Space Gain Matrix Yaw 
Input Position Tracking 

Figure 85: State Space Gain Matrix Yaw 
Input Velocity Tracking 

Figure 86: State Space Gain Matrix Yaw 
Input Roll B.L Dynamics 

Figure 87: State Space Gain Matrix Yaw 
Input Yaw B.L Dynamics 

Figure 77 shows that the controller had great roll and yaw rate tracking performance. The roll 
acceleration tracking shown in Figure 78 is slightly worse. Figures 79 and 81 show that the roll 
rate sliding surface does not remain within the boundary layer and the sliding condition was not 
met initially after each step input. However, the controller quickly counteracted the effects and 
brought the sliding surface back within the boundary layer and satisfies the sliding condition. 
The yaw rate sliding surface remains within the boundary layer and the sliding condition remains 
satisfied for the entire simulation time. This was achieved with a controller input that was 
smooth and had a small magnitude. 

Next, a desired yaw step input of 10 rad/sec was generated with zero desired roll rate. The results 
of this simulation are shown below: 
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Figure 89: State Space Gain Matrix Yaw 
Input Yaw Sliding Condition 

Figure 88: State Space Gain Matrix Yaw 
Input Roll Sliding Condition 

Figure 90: State Space Gain Matrix Yaw 
Input Controller Input 

  

 

 

 

 

 

Figure 84 shows that again, the controller had great roll and yaw rate tracking performance. 
However, there was a lot of oscillations in the roll acceleration tracking shown in Figure 85. 
Figures 86 and 88 show that the roll rate sliding surface does not remain within the boundary 
layer and the sliding condition was not met initially after each step input. However, the controller 
quickly counteracted the effects and brought the sliding surface back within the boundary layer 
and satisfies the sliding condition. The yaw rate sliding surface remains within the boundary 
layer and the sliding condition remains satisfied for the entire simulation time. This was also 
achieved with a controller input that was smooth and had a small magnitude. 
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4.0 CONCLUSION 

This work encompassed the development of a model-free sliding mode control system for the 
application of roll and yaw rate control for an aircraft. This control system is model-free in that 
no system model is needed to design a controller. The control input is calculated based on only 
knowledge of the system order, state measurements, and the previous control inputs. The model-
free nature of this control system is enabled by the online estimation of the input influence gain. 
When implemented on SISO and MIMO nonlinear systems the control system provided good 
tracking performance while ensuring global asymptotic stability. It was also robust to modeling 
uncertainty. The least-squares online parameter estimation method used to estimate the input 
influence gain satisfied the sliding condition while guaranteeing global asymptotic stability. It 
also provided values that were convergent and realistic. Finally, this control method was shown 
to work on a lateral-directional state space model of an aircraft for roll and yaw rate control. 
Therefore, this method is feasible for roll and yaw rate control in an aircraft. 

4.1 Application 

The majority of existing control methods require extensive development and tuning. This is 
becoming a problem as nonlinear systems become more complex with advancements in 
technology. It is becoming time intensive to define a mathematical model of these systems. 
Oftentimes, the final models are not perfect and have parameter uncertainty. SMC is being 
applied more widely for its robustness against modeling uncertainty and external disturbances. 
Thus, SMC saves time and money by eliminating most of the development and tuning needed. 
However,  accurate approximations of system dynamics are still needed for traditional SMC 
design.  

The work laid out here is truly model-free, requiring only knowledge of the system order, state 
measurements, and the previous control inputs for derivation of the control law. Thus, the time, 
money, and effort needed for the system modeling and tuning usually required by traditional 
SMC and other control methods is eliminated. The work expands the MFSMC to MIMO systems 
which expands the utility of the MFSMC to a wide range of systems. This also includes the 
control of an aircraft, specifically in the lateral and directional axes. The MFSMC is theoretically 
the most efficient in terms of fuel-efficiency as the controller output is only dependent on state 
measurements. Thus, the development and application of the MFSMC to aircraft autopilot 
designs and other similar applications will increase fuel-efficiency and reduce emissions. 

4.2 Future Work 

The next phase for this work is to implement the real-time estimation of the input influence gain 
matrix for the MIMO control system. This would show that the MIMO control system is able to 
be completely model-free. Second, the MIMO control law would need to be implemented on a 
nonlinear aircraft model that is a closer representation of an actual aircraft. The next step would 
include the implementation of the control law on the hot bench of an aircraft to validate real-
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world feasibility. Aircraft hot benches provide the most accurate representation of the aircraft 
without flight testing. Thus, this would be the final testing before flight testing can occur. There 
are a couple of other improvements needed to be made before flight testing as well. Currently, 
the gains on the transfer functions used to generate desired roll and yaw rates are unitary. These 
gains could be tuned to generate a favorable aircraft response based on pilot feedback. The 
simulations performed in this work also assumed that data was coming from perfect sensors. 
Therefore, this work can be expanded to test the controller’s robustness against real-world 
degrading of measurement signals. This work will culminate with flight testing by the U.S. Air 
Force Test Pilot School to test if the control law is viable for lateral and directional control.  
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6.0 APPENDIX 

6.1 Section 3.3.1 MATLAB Code and Simulink Diagrams 

6.1.1 MATLAB Code 

%Nick Hutson 
%Thesis Proposal Model Free Control Example 
clear 
close all 
clc 
 
%define MFSMC gains 
lambda = 5;    %normally 5 (rad/sec), higher values better tracking and less control 
effort 
N = 0.1;         %normally 0.1 
sigmaU = 0.2;    %normally 0.2 
phi = 0.1; 
 
tau_act=0.1;   %normally 0.1 (sec) 
 
%define parameters for input influence gain 
const_parm_sw=0;           %=1, use constant "b" in system model; =0, use varying "b" 
in system model 
b_c=1;               %value of "b" in system model if const_parm_sw=1 
b_upp=5;                   %upper value of "b" in system model FOR THESIS: nice to 
know initial value of b, need it work once so we can start b at right value 
b_low=1;                   %lower value of "b" in system model 
gamma=sqrt(b_upp/b_low);   %initial estimate of "gamma" 
gammaD=gamma;             %initial estimate of "gamma(xd), function of desired 
states" 
ghat=sqrt(b_low*b_upp);   %initial estimate of "g" 
g_upp_percent=0.1;         %percentage of upper value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
g_low_percent=0.1;         %percentage of lower value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
 
%varying boundary layer IC 
Kd0=gammaD*N; 
phi0=(gammaD*Kd0)/lambda; 
 
%gains for estimator for "g_hat" 
ghat0=ghat; 
P0=5; 
lambda0_b=2;            %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort but more suspectible to noise effects 
lambda_sw=1;            %=1, use varying lambda technique; =0, use constant lambda so 
lambda=lambda0 
k0=500;                 %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort (100 is nice) 
close_phi_gap_sw=0;     %=0, don't close boundary layer gap; =1, close gap which 
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem 
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Figure A1: SISO System 

Figure A2: SISO System Model 

%sign or saturation switching function flag 
signum_sw=0;  %=1, signum function; =0, saturation function 
 
%boundary layer phi flag 
%phi_flag=0;   %=1, constant boundary layer; =0, varying boundary layer 
%if(phi_flag==1) 
 %  phi0 = phi;  
%end 
 
%"g_hat" switch 
g_hat_sw=1;   %=0, use constant g_hat; =1, use g_hat from realtime estimator 
 
%run simulation 
dt=0.001; 
tf=60; 
 
%Initial Conditions 
xdot0 = pi/2; 
x0 = 0; 
 
sim('ModelFreeSimTake4.slx') 

6.1.2 Simulink Diagrams 
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Figure A3: Second-Order SISO Control Law 
 

6.2 Section 3.3.2 MATLAB Code and Simulink Diagrams 

6.2.1 MATLAB Code 

%Nick Hutson 
%Thesis Proposal Model Free Control Example 
clear 
close all 
clc 
 
%define MFSMC gains 
lambda = 5;    %normally 5 (rad/sec), higher values better tracking and less control 
effort 
N = 0.1;         %normally 0.1 
sigmaU = 0.2;    %normally 0.2 
phi = 0.1; 
 
tau_act=0.1;   %normally 0.1 (sec) 
 
%define parameters for input influence gain 
const_parm_sw=0;           %=1, use constant "b" in system model; =0, use varying "b" 
in system model 
g_upp_percent=0.1;         %percentage of upper value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
g_low_percent=0.1;         %percentage of lower value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
b1_c=5;               %value of "b" in system model if const_parm_sw=1 
b1_upp=6;                   %upper value of "b" in system model FOR THESIS: nice to 
know initial value of b, need it work once so we can start b at right value 
b1_low=4;                   %lower value of "b" in system model 
gamma1=sqrt(b1_upp/b1_low);   %initial estimate of "gamma" 
gamma1D=gamma1;             %initial estimate of "gamma(xd), function of desired 
states" 
ghat1=sqrt(b1_low*b1_upp);   %initial estimate of "g" 
b2_c=3;               %value of "b" in system model if const_parm_sw=1 
b2_upp=4;                   %upper value of "b" in system model FOR THESIS: nice to 
know initial value of b, need it work once so we can start b at right value 
b2_low=2;                   %lower value of "b" in system model 
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gamma2=sqrt(b2_upp/b2_low);   %initial estimate of "gamma" 
gamma2D=gamma2;             %initial estimate of "gamma(xd), function of desired 
states" 
ghat2=sqrt(b2_low*b2_upp);   %initial estimate of "g" 
 
%varying boundary layer IC 
Kd10=gamma1D*N; 
phi10=(gamma1D*Kd10)/lambda; 
Kd20=gamma2D*N; 
phi20=(gamma2D*Kd20)/lambda; 
 
%gains for estimator for "g_hat" 
ghat10=ghat1; 
ghat20=ghat2; 
P10=5; 
P20=5; 
lambda0_b=2;            %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort but more suspectible to noise effects 
lambda_sw=1;            %=1, use varying lambda technique; =0, use constant lambda so 
lambda=lambda0 
k0=500;                 %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort (100 is nice) 
close_phi_gap_sw=0;     %=0, don't close boundary layer gap; =1, close gap which 
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem 
 
%sign or saturation switching function flag 
signum_sw=0;  %=1, signum function; =0, saturation function 
 
%boundary layer phi flag 
%phi_flag=0;   %=1, constant boundary layer; =0, varying boundary layer 
%if(phi_flag==1) 
 %  phi0 = phi;  
%end 
 
%"g_hat" switch 
g_hat_sw=1;   %=0, use constant g_hat; =1, use g_hat from realtime estimator 
 
%run simulation 
dt=0.001; 
tf=60; 
 
%Initial Conditions 
x1dot0 = pi/2; 
x10 = 0; 
x2dot0 = pi/4; 
x20 = 0; 
 
sim('ModelFreeSimTakeMIMO.slx') 
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Figure A4: Second-Order MIMO System 

Figure A5: Second-Order MIMO System Model 

6.2.2 Simulink Diagrams 
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Figure A6: Second-Order MIMO Control Law 

 

 

6.3 Section 3.3.3 MATLAB Code and Simulink Diagrams 

6.3.1 MATLAB Code 

%Nick Hutson 
%Single Order Example 
clear 
close all 
clc 
 
roll = 1; %roll input 
yaw = 0; %yaw input 
K_roll = 1; 
 
zeta_d = 0.19; %min of 0.19 
w_nd = 0.4; %rad/s, min of 0.4 rad/sec 
tau = 0.3; %s, max of 1.4s 
 
%Initial Conditions 
x0 = 0; 
xtildeInt0 = 0; 
 
%define MFSMC gains 
lambda = 5;    %normally 5 (rad/sec), higher values better tracking and less control 
effort 
N = 0.1;         %normally 0.1 
sigmaU = 0.2;    %normally 0.2 
phi_mag = 0.1; 
 
tau_act=0.1;   %normally 0.1 (sec) 
 
%define parameters for input influence gain 
const_parm_sw=0;           %=1, use constant "b" in system model; =0, use varying "b" 
in system model 
b_c=0.15;               %value of "b" in system model if const_parm_sw=1 
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b_upp=0.1;                   %upper value of "b" in system model FOR THESIS: nice to 
know initial value of b, need it work once so we can start b at right value 
b_low=1;                   %lower value of "b" in system model 
gamma=sqrt(b_upp/b_low);   %initial estimate of "gamma" 
gammaD=gamma;             %initial estimate of "gamma(xd), function of desired 
states" 
ghat=sqrt(b_low*b_upp);   %initial estimate of "g" 
g_upp_percent=0.1;         %percentage of upper value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
g_low_percent=0.1;         %percentage of lower value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
 
%varying boundary layer IC 
phi_flag=0;   %=1, constant boundary layer; =0, varying boundary layer 
if( phi_flag<0.5 ) 
    Kd0=gammaD*N; 
    phi0=(gammaD*Kd0)/lambda; 
else 
    phi0=phi_mag; 
end 
 
%gains for estimator for "g_hat" 
ghat0=ghat; 
P0=5; 
lambda0_b=2;            %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort but more suspectible to noise effects 
lambda_sw=1;            %=1, use varying lambda technique; =0, use constant lambda so 
lambda=lambda0 
k0=500;                 %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort (100 is nice) 
close_phi_gap_sw=0;     %=0, don't close boundary layer gap; =1, close gap which 
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem 
 
%sign or saturation switching function flag 
signum_sw=0;  %=1, signum function; =0, saturation function 
 
%"g_hat" switch 
g_hat_sw=1;   %=0, use constant g_hat; =1, use g_hat from realtime estimator 
 
%run simulation 
dt=0.001; 
tfin=60; 
 
sim('ModelFreeSimTakeSingleOrderTF.slx') 
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Figure A7: First-Order SISO System 

Figure A8: First-Order SISO System Model 

Figure A9: First-Order SISO Control Law 

6.3.2 Simulink Diagrams 
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6.4 Section 3.3.4 MATLAB Code and Simulink Diagrams 

6.4.1 MATLAB Code 

%Nick Hutson 
%Thesis Proposal Model Free Control Lateral State Space 
clear 
close all 
clc 
 
%% Define open-loop model 
Alat=[ -0.2316  0.0633 -0.9956  0.051 
      -29.4924 -3.0169  0.0201  0.0 
        6.2346 -0.0274 -0.4169  0.0 
        0.0     1.0     0.0631  0.0   ]; 
Blat=-[  0.0052  0.031 
      -36.4909  8.1090 
       -0.4916 -2.8274 
        0.0     0.0    ]; 
Clat=eye(4);Clat(5:6,:)=Alat(2:3,:); 
Dlat=zeros(4,2);Dlat(5:6,:)=Blat(2:3,:); 
C = Clat([2,3,5,6],:); 
D = Dlat([2,3,5,6],:); 
%% Simulate 
load('AircraftModelParam.mat') 
 
%define desired roll and yaw 
roll = 0; %assume to be stick displacement in inches or force in lb 
yaw = 10; 
K_roll = 1; 
K_yaw = 1; 
 
%define MFSMC gains 
lambda = 5;    %normally 5 (rad/sec), higher values better tracking and less control 
effort 
N_da = 0.5;         %normally 0.1 
N_dr = 0.1;         %normally 0.1 
sigmaU = 0.2;    %normally 0.2 
phi_mag = 10; 
 
tau_act=0.08;   %normally 0.1 (sec) 
 
%define Level 1 aircraft TFs 
zeta_d = 0.8; %min of 0.19 
w_nd = 2; %rad/s, min of 0.4 rad/sec 
tau = 0.3; %s, max of 1.4s 
 
%define parameters for input influence gain 
const_parm_sw=1;           %=1, use constant "b" in system model; =0, use varying "b" 
in system model 
g_upp_percent=0.2;         %percentage of upper value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
g_low_percent=0.2;         %percentage of lower value of "g" used to estimate "gamma" 
in realtime, normally 0.1 
b1_c=-Blat(2,1);               %value of "b" in system model if const_parm_sw=1 



84 
 

b1_upp=b1_c+g_upp_percent*b1_c;                   %upper value of "b" in system model 
FOR THESIS: nice to know initial value of b, need it work once so we can start b at 
right value 
b1_low=b1_c-g_low_percent*b1_c;                   %lower value of "b" in system model 
gamma1=sqrt(b1_upp/b1_low);   %initial estimate of "gamma" 
gamma1D=gamma1;             %initial estimate of "gamma(xd), function of desired 
states" 
ghat1=sqrt(b1_low*b1_upp);   %initial estimate of "g" 
b2_c=-Blat(3,2);               %value of "b" in system model if const_parm_sw=1 
b2_upp=b2_c+g_upp_percent*b2_c;                   %upper value of "b" in system model 
FOR THESIS: nice to know initial value of b, need it work once so we can start b at 
right value 
b2_low=b2_c-g_low_percent*b2_c;                   %lower value of "b" in system model 
gamma2=sqrt(b2_upp/b2_low);   %initial estimate of "gamma" 
gamma2D=gamma2;             %initial estimate of "gamma(xd), function of desired 
states" 
ghat2=sqrt(b2_low*b2_upp);   %initial estimate of "g" 
 
%varying boundary layer IC 
Kd10=gamma1D*N_da; 
phi10=(gamma1D*Kd10)/lambda; 
Kd20=gamma2D*N_dr; 
phi20=(gamma2D*Kd20)/lambda; 
 
%gains for estimator for "g_hat" 
ghat10=ghat1; 
ghat20=ghat2; 
P10=5; 
P20=5; 
xtildeInt0 = 0; 
lambda0_b=2;            %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort but more suspectible to noise effects 
lambda_sw=1;            %=1, use varying lambda technique; =0, use constant lambda so 
lambda=lambda0 
k0=100;                 %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort (100 is nice) 
close_phi_gap_sw=0;     %=0, don't close boundary layer gap; =1, close gap which 
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem 
 
%boundary layer phi flag 
phi_flag=0;   %=1, constant boundary layer; =0, varying boundary layer 
if( phi_flag<0.5 ) 
    phi0_da=(gamma1D*Kd10)/lambda; 
    phi0_dr=(gamma2D*Kd20)/lambda;  
else 
    phi0_da=phi_mag; 
    phi0_dr=phi_mag; 
end 
 
%"g_hat" switch 
g_hat_sw=1;   %=0, use constant g_hat; =1, use g_hat from realtime estimator 
 
%run simulation 
dt=0.001; 
tfin=10; 
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Figure A10: State Space System 

Figure A11: State Space System Model 

sim('ModelFreeSimTakeLatSS.slx') 

6.4.2 Simulink Diagrams 
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Figure A12: State Space Control Law 

 

 

6.5 Section 3.3.5 MATLAB Code and Simulink Diagrams 

6.5.1 MATLAB Code 

%two_in_two_out_MFSMC_coupledB_m.m 
%model-free control of 2 coupled 2nd-order systems with coupled B matrix 
%open-loop system: x1dotdot+a1(t)*x1dot^2*cos(3*x1)*x2 = 6*u1(t)+4*u2(t) 
%                  x2dotdot+a2(t)*x2dot^2*x2*x1dot     = 2*u1(t)+3*u2(t) 
%                  1<=a1(t)<=2 
%                  4<=a2(t)<=6 
 
clear all,clc,format short e 
close all 
 
% define options 
const_parm_sw  = 0;  %=0, vary the parameters a1(t) and a2(t) in system model; =1, 
use constant parameters 
signum_sw      = 0;  %=1, use signum function; =0, use saturation smoothing boundary 
layer 
constant_b     = 1;  %=0, use constant B matrix in system model; =1, use varying B 
matrix in system model 
vary_bl_sw     = 1;  %=1, use a varying boundary layer; =0, use constant boundary 
later 
if( vary_bl_sw>0.5 ) 
    signum_sw=0; 
end 
 
%define actuator time constant (sec) 
tau_act=0.05;        %(sec) 
 
%define values for constant system model parameters 
a1_c=1.5;a2_c=5; 
 
%state ICs, want to track x1d=sin((pi/2)*t), x2d=cos((pi/2)*t) 
x10    = 0.0; 
x1dot0 = pi/2; 
x20    = 1.0; 
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Figure A13: MIMO Gain Matrix System 

x2dot0 = 0.0; 
x1TildeInt0 = 0; 
x2TildeInt0 = 0; 
 
%define SMC gains 
lambda1=20;ita1=4;phi1_constant_bl=0.5; 
lambda2=20;ita2=4;phi2_constant_bl=0.5; 
 
%define gains for nonunitary B matrix using matrix approach for CLAW 
sigma_u=0.2; 
Bupp=[7 5;3 4]; 
Blow=[5 3;1 2]; 
invBlow=[1/Blow(1,1) 1/Blow(1,2);1/Blow(2,1) 1/Blow(2,2)]; 
Bhat=(Bupp.*Blow).^0.5; 
inv_Bhat=pinv(Bhat); 
beta=(Bupp.*invBlow).^0.5; 
beta_inv=[1/beta(1,1) 1/beta(1,2);1/beta(2,1) 1/beta(2,2)]; 
betad=beta; 
betad_inv=beta_inv; 
betad_inv_2=betad_inv.*betad_inv; 
abs_beta_minus_1=abs(beta-[1 1;1 1]); 
abs_betad_minus_1=abs_beta_minus_1; 
lambda_mat=[lambda1 0;0 lambda2]; 
betad_inv_lambda_mat=betad_inv.*lambda_mat; 
betad_inv_2_lambda_mat=betad_inv_2.*lambda_mat; 
lambda_inv_betad=inv(lambda_mat).*betad; 
abs_beta_times_1sigma_minus_1=abs(beta*(1+sigma_u)-[1 1;1 1]); 
 
%simulate system 
tf=10; 
dt=0.001; %simulation step size 
sim('two_in_two_out_MFSMC_coupledB_s') 

6.5.2 Simulink Diagrams 
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Figure A14: MIMO Gain Matrix System Model 

Figure A15: MIMO Gain Matrix Control Law 

 

 

 

 

 

6.6 Section 3.3.6 MATLAB Code and Simulink Diagrams 

6.6.1 MATLAB Code 

%model-free control of lat dir SS model 
 
clear all,clc,format short e 
close all 
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%Define open-loop model 
Alat=[ -0.2316  0.0633 -0.9956  0.051 
      -29.4924 -3.0169  0.0201  0.0 
        6.2346 -0.0274 -0.4169  0.0 
        0.0     1.0     0.0631  0.0   ]; 
Blat=-[  0.0052  0.031 
      -36.4909  8.1090 
       -0.4916 -2.8274 
        0.0     0.0    ]; 
Clat=eye(4);Clat(5:6,:)=Alat(2:3,:); 
Dlat=zeros(4,2);Dlat(5:6,:)=Blat(2:3,:); 
%C = Clat([2,3,5,6],:); 
%D = Dlat([2,3,5,6],:); 
C = Clat; 
D = Dlat; 
 
%define desired roll and yaw 
roll = 20; %assume to be stick displacement in inches or force in lb 
yaw = 0; 
K_roll = 1; 
K_yaw = 1; 
 
%define Level 1 aircraft TFs 
zeta_d = 0.8; %min of 0.19 
w_nd = 2; %rad/s, min of 0.4 rad/sec 
tau = 0.3; %s, max of 1.4s 
 
% define options 
const_parm_sw  = 0;  %=0, vary the parameters a1(t) and a2(t) in system model; =1, 
use constant parameters 
signum_sw      = 0;  %=1, use signum function; =0, use saturation smoothing boundary 
layer 
constant_b     = 1;  %=0, use constant B matrix in system model; =1, use varying B 
matrix in system model 
vary_bl_sw     = 1;  %=1, use a varying boundary layer; =0, use constant boundary 
later 
if( vary_bl_sw>0.5 ) 
    signum_sw=0; 
end 
B_hat_sw=0;   %=0, use constant B_hat; =1, use B_hat from realtime estimator 
 
%define actuator time constant (sec) 
tau_act=0.05;        %(sec) 
 
%define values for constant system model parameters 
a1_c=1.5;a2_c=5; 
 
%state ICs, want to track x1d=sin((pi/2)*t), x2d=cos((pi/2)*t) 
x10    = 0.0; 
x1dot0 = pi/2; 
x20    = 1.0; 
x2dot0 = 0.0; 
x1TildeInt0 = 0; 
x2TildeInt0 = 0; 
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%set simulation time 
tf=10; 
dt=0.001; %simulation step size 
t = transpose(0:dt:tf); 
 
%define SMC gains 
lambda1=15;ita1=4;phi1_constant_bl=0.5; 
lambda2=15;ita2=4;phi2_constant_bl=0.5; 
N_daMat = [t,ita1*ones(length(t),1)]; %ita matrix 
N_drMat = [t,ita2*ones(length(t),1)]; %ita matrix 
sigmaU_da = 0.2;    %normally 0.2 
sigmaU_dr = 0.2;    %normally 0.2 
sigmaU_daMat = [t,sigmaU_da*ones(length(t),1)]; %sigma matrix 
sigmaU_drMat = [t,sigmaU_dr*ones(length(t),1)]; %sigma matrix 
 
%define gains for nonunitary B matrix using matrix approach for CLAW 
sigma_u=0.2; 
b11 = Blat(2,1); 
b12 = Blat(2,2); 
b21 = Blat(3,1); 
b22 = Blat(3,2); 
B = [b11,b12;b21,b22]; 
b_upp_percent=0.2;         %percentage of upper value of "b" used to estimate "beta" 
in realtime, normally 0.1 
b_low_percent=0.2;         %percentage of lower value of "b" used to estimate "beta" 
in realtime, normally 0.1 
Bupp=B+b_upp_percent*B;   %upper value of "b" in system model 
Blow=B-b_low_percent*B;   %lower value of "b" in system model 
invBlow=[1/Blow(1,1) 1/Blow(1,2);1/Blow(2,1) 1/Blow(2,2)]; 
Bhat=(Bupp.*Blow).^0.5; 
Bhat0 = Bhat; 
inv_Bhat=pinv(Bhat); 
beta=(Bupp.*invBlow).^0.5; 
beta_inv=[1/beta(1,1) 1/beta(1,2);1/beta(2,1) 1/beta(2,2)]; 
betad=beta; 
betad_inv=beta_inv; 
betad_inv_2=betad_inv.*betad_inv; 
abs_beta_minus_1=abs(beta-[1 1;1 1]); 
abs_betad_minus_1=abs_beta_minus_1; 
lambda_mat=[lambda1 0;0 lambda2]; 
betad_inv_lambda_mat=betad_inv.*lambda_mat; 
betad_inv_2_lambda_mat=betad_inv_2.*lambda_mat; 
lambda_inv_betad=inv(lambda_mat).*betad; 
abs_beta_times_1sigma_minus_1=abs(beta*(1+sigma_u)-[1 1;1 1]); 
 
%gains for estimator for "B_hat" 
P10=50; 
P20=50; 
P0 = [P10,0;0,P20]; 
lambda0_b=20;            %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort but more suspectible to noise effects 
lambda_sw=1;            %=1, use varying lambda technique; =0, use constant lambda so 
lambda=lambda0 
k0=200;                 %higher value cause faster convergence and boundary layer, 
phi will be small along with control effort (100 is nice) 
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Figure A16: State Space Gain Matrix System 

Figure A17: State Space Gain Matrix System Model 

close_phi_gap_sw=0;     %=0, don't close boundary layer gap; =1, close gap which 
reduces "B" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem 
 
%simulate system 
sim('Lat_Dir_MFSMC_coupledB_s') 

6.6.2 Simulink Diagrams 
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Figure A18: State Space Gain Matrix Control Law 
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