
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-1-2023

Model-Free Sliding Mode Control in the Lateral and Direction Model-Free Sliding Mode Control in the Lateral and Direction

Dynamics of an Aircraft Dynamics of an Aircraft

Nicholas Hutson
ndh4970@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hutson, Nicholas, "Model-Free Sliding Mode Control in the Lateral and Direction Dynamics of an Aircraft"
(2023). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11536?utm_source=repository.rit.edu%2Ftheses%2F11536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ROCHESTER INSTITUTE OF TECHNOLOGY

Model-Free Sliding Mode Control in the Lateral and
Direction Dynamics of an Aircraft

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

NICHOLAS HUTSON

Advisor: DR. AGAMEMNON CRASSIDIS

Thesis Committee

Dr. Jason Kolodziej

Dr. Kathleen Lamkin-Kennard

Dr. Sarilyn Ivancic

08/01/2023

DEPARTMENT OF MECHANICAL ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

1

Model-Free Sliding Mode Control in the Lateral and Direction Dynamics of
an Aircraft

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

DEPARTMENT OF MECHANICAL ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

Committee Signatures:

__ Date_________

Dr. Agamemnon Crassidis

Thesis Advisor

___ Date_________

Dr. Jason Kolodziej

Thesis Committee Member

___ Date_________

Dr. Kathleen Lamkin-Kennard

Thesis Committee Member

_____________________________________ Date_________

Dr. Sarilyn Ivancic

Department Representative

2

Abstract

Traditional control methods require extensive tuning or a derivation of a system model making
them increasingly antiquated for use on new, more complex systems. Sliding Mode Control has
emerged as a more effective alternative as a control method that can directly handle nonlinear
systems with increased robustness while guaranteeing stability. However, it is still limited by the
need for a system model for the derivation of the controller form. This work proposes a new
model-free control method based on Sliding Mode Control referred to as Model-Free Sliding
Mode Control where the form of the controller is only dependent on system order, state
measurements, and previous control inputs. Lyapunov’s stability theorem is used to ensure
global asymptotic stability and a boundary layer is incorporated to reduce chattering. The model-
free properties of the controller are enabled by a least-squares online parameter estimation
method used to estimate the control input influence gain matrix of the system directly. The
estimation process is essential as previous work was limited by assuming the bounds of the
control input influence gain matrix are known or the assumption it was unitary. The estimation
method also incorporated exponential forgetting to only include updated data for parameter
estimation, increasing the speed of convergence. Another addition was a bounded gain forgetting
factor to ensure that the magnitude of the control input influence gain was upper bounded. The
performance of this controller was simulated on various example systems to test its performance.
These included single-input, single-output and multi-input, multi-output first and second order
systems. Principally, the controller was implemented to control a lateral-directional state space
model of an aircraft with a shaped input characterizing aircraft roll and yaw dynamics. The
controller proved to exhibit outstanding tracking performance, convergence of estimated
parameters, smooth and acceptable control input, and increased robustness to parameter
uncertainty. Therefore, the controller was proven to be a feasible method to control the lateral
and directional dynamics of an aircraft.

3

TABLE OF CONTENTS

LIST OF FIGURES .. 5

NONMENCLATURE... 7

1.0 PROBLEM INTRODUCTION ... 11

2.0 LITERATURE REVIEW .. 13

2.1 Control Systems based on Sliding Mode Control ... 13

2.2 Model-Free Control Methods.. 15

2.3 Online Parameter Estimation .. 18

3.0 SLIDING MODE CONTROL ... 20

3.1 Fundamentals .. 20

3.1.1 Lyapunov Basics .. 20

3.1.2 Nonlinear Systems ... 20

3.1.3 Autonomous vs Non-Autonomous Systems .. 20

3.1.4 Equilibrium Points ... 21

3.1.5 What Constitutes Stability ... 21

3.1.6 Positive Definite Functions .. 21

3.1.7 Lyapunov’s Direct Method .. 22

3.1.8 Sliding Mode Control... 23

3.1.9 Derivation of SMC Control Law ... 23

3.1.10 Boundary Layer.. 25

3.1.11 Derivation of SISO Model-Free Control Law ... 34

3.1.12 Derivation of MIMO Model-Free Control Law ... 39

3.2 Online Parameter Estimation Methods ... 45

3.2.1 Standard Least-Squares Estimator ... 45

3.2.2 Convergence .. 46

3.2.3 Least-Squares with Exponential Forgetting ... 47

3.2.4 Control Law Implementation ... 47

3.2.5 Bounded Gain Forgetting Factor Tuning ... 48

3.3 Implementation Results .. 49

3.3.1 SISO System .. 49

3.3.2 MIMO System ... 53

3.3.3 First-Order System ... 55

4

3.3.4 Full Control of Lateral Directional State Space Model.. 57

3.3.5 Input Influence Gain Matrix MIMO Example ... 62

3.3.6 Estimating an Input Influence Gain Matrix for State Space Model ... 66

4.0 CONCLUSION .. 70

4.1 Application .. 70

4.2 Future Work .. 70

5.0 REFERENCES .. 72

6.0 APPENDIX .. 75

6.1 Section 3.3.1 MATLAB Code and Simulink Diagrams ... 75

6.1.1 MATLAB Code ... 75

6.1.2 Simulink Diagrams .. 76

6.2 Section 3.3.2 MATLAB Code and Simulink Diagrams ... 77

6.2.1 MATLAB Code ... 77

6.2.2 Simulink Diagrams .. 79

6.3 Section 3.3.3 MATLAB Code and Simulink Diagrams ... 80

6.3.1 MATLAB Code ... 80

6.3.2 Simulink Diagrams .. 82

6.4 Section 3.3.4 MATLAB Code and Simulink Diagrams ... 83

6.4.1 MATLAB Code ... 83

6.4.2 Simulink Diagrams .. 85

6.5 Section 3.3.5 MATLAB Code and Simulink Diagrams ... 86

6.5.1 MATLAB Code ... 86

6.5.2 Simulink Diagrams .. 87

6.6 Section 3.3.6 MATLAB Code and Simulink Diagrams ... 88

6.6.1 MATLAB Code ... 88

6.6.2 Simulink Diagrams .. 91

5

LIST OF FIGURES

Figure 1: Geometric Representation of a Lyapunov Function…………………………. 22
Figure 2: Contour Plot Representation of a Lyapunov Function……………………….. 22
Figure 3: Geometric Representation of Radial Unboundedness………………………... 23
Figure 4: Geometric Representation of Sliding Mode Control…………………………. 24
Figure 5: Chattering Phenomenon……………………………………………………… 25
Figure 6: The Boundary Layer………………………………………………………….. 26
Figure 7: Position Tracking with Constant Input Influence Gain………………………. 49
Figure 8: Velocity Tracking with Constant Input Influence Gain……………………… 49
Figure 9: Acceleration Tracking with Constant Input Influence Gain………………….. 49
Figure 10: Controller Input with Constant Input Influence Gain………………………… 49
Figure 11: Sliding Condition with Constant Input Influence Gain………………………. 50
Figure 12: Boundary Layer Dynamics with Constant Input Influence Gain…………….. 50
Figure 13: Input Influence Gain Estimate with Constant Input Influence Gain…………. 50
Figure 14: Lambda Estimate with Constant Input Influence Gain………………………. 50
Figure 15: Input Influence Gain………………………………………………………….. 51
Figure 16: Position Tracking with Varying Input Influence Gain……………………….. 51
Figure 17: Velocity Tracking with Varying Input Influence Gain………………………. 51
Figure 18: Acceleration Tracking with Varying Input Influence Gain…………………... 52
Figure 19: Control Input with Varying Input Influence Gain……………………………. 52
Figure 20: Sliding Condition Tracking with Varying Input Influence Gain……………... 52
Figure 21: Boundary Layer Dynamics Tracking with Varying Input Influence Gain…… 52
Figure 22: Input Influence Gain Estimate with Varying Input Influence Gain………….. 52
Figure 23: Lambda Estimate with Varying Input Influence Gain………………………... 52
Figure 24: MIMO Input Influence Gain………………………………………………….. 53
Figure 25: MIMO Position Tracking…………………………………………………….. 53
Figure 26: MIMO Velocity Tracking…………………………………………………….. 54
Figure 27: MIMO Acceleration Tracking………………………………………………... 54
Figure 28: x_1 Sliding Condition………………………………………………………… 54
Figure 29: x_2 Sliding Condition………………………………………………………… 54
Figure 30: x_1 Boundary Layer Dynamics………………………………………………. 54
Figure 31: x_2 Boundary Layer Dynamics………………………………………………. 54
Figure 32: MIMO Input Influence Gain Estimate………………………………………... 55
Figure 33: MIMO Lambda Estimate……………………………………………………... 55
Figure 34: MIMO Controller Input………………………………………………………. 55
Figure 35: Roll Rate Tracking……………………………………………………………. 56
Figure 36: Roll Acceleration Tracking…………………………………………………... 56
Figure 37: Roll Boundary Layer Dynamics……………………………………………… 56
Figure 38: Roll Sliding Condition………………………………………………………... 56
Figure 39: Roll Input Influence Gain…………………………………………………….. 57
Figure 40: Roll Input Influence Gain Estimate…………………………………………... 57
Figure 41: Roll Lambda Estimate………………………………………………………... 57
Figure 42: Roll Control Input…………………………………………………………….. 57
Figure 43: State Space Roll Input Position Tracking…………………………………….. 58
Figure 44: State Space Roll Input Velocity Tracking……………………………………. 58
Figure 45: State Space Roll Input Input Influence Gain Estimate……………………….. 59

6

Figure 46: State Space Roll Input Lambda Estimate…………………………………….. 59
Figure 47: State Space Roll Input Roll Boundary Layer Dynamics……………………... 59
Figure 48: State Space Roll Input Yaw Boundary Layer Dynamics…………………….. 59
Figure 49: State Space Roll Input Roll Sliding Condition……………………………….. 59
Figure 50: State Space Roll Input Yaw Sliding Condition………………………………. 59
Figure 51: State Space Roll Input Control Input…………………………………………. 60
Figure 52: State Space Yaw Input Position Tracking……………………………………. 60
Figure 53: State Space Yaw Input Velocity Tracking…………………………………… 60
Figure 54: State Space Yaw Input Input Influence Gain Estimate………………………. 61
Figure 55: State Space Yaw Input Lambda Estimate…………………………………….. 61
Figure 56: State Space Yaw Input Roll Boundary Layer Dynamics…………………….. 61
Figure 57: State Space Yaw Input Yaw Boundary Layer Dynamics…………………….. 61
Figure 58: State Space Yaw Input Roll Sliding Condition………………………………. 61
Figure 59: State Space Yaw Input Yaw Sliding Condition………………………………. 61
Figure 60: State Space Yaw Input Control Input………………………………………… 62
Figure 61: MIMO Gain Matrix Constant B.L. Position Tracking……………………….. 63
Figure 62: MIMO Gain Matrix Constant B.L. Velocity Tracking……………………….. 63
Figure 63: MIMO Gain Matrix Constant B.L. Acceleration Tracking…………………... 63
Figure 64: MIMO Gain Matrix Constant B.L. Controller Input…………………………. 63
Figure 65: MIMO Gain Matrix Constant B.L. x_1 B.L Dynamics………………………. 64
Figure 66: MIMO Gain Matrix Constant B.L. x_2 B.L Dynamics………………………. 64
Figure 67: MIMO Gain Matrix Constant B.L. x_1 Sliding Condition…………………... 64
Figure 68: MIMO Gain Matrix Constant B.L. x_2 Sliding Condition…………………... 64
Figure 69: MIMO Gain Matrix Varying B.L. Position Tracking………………………... 65
Figure 70: MIMO Gain Matrix Varying B.L. Velocity Tracking………………………... 65
Figure 71: MIMO Gain Matrix Varying B.L. Acceleration Tracking………………….... 65
Figure 72: MIMO Gain Matrix Varying B.L. Controller Input………………………….. 65
Figure 73: MIMO Gain Matrix Varying B.L. x_1 B.L Dynamics……………………….. 65
Figure 74: MIMO Gain Matrix Varying B.L. x_2 B.L Dynamics……………………….. 65
Figure 75: MIMO Gain Matrix Varying B.L. x_1 Sliding Condition…………………… 66
Figure 76: MIMO Gain Matrix Varying B.L. x_2 Sliding Condition…………………… 66
Figure 77: State Space Gain Matrix Position Tracking………………………………….. 66
Figure 78: State Space Gain Matrix Velocity Tracking………………………………….. 66
Figure 79: State Space Gain Matrix Roll B.L Dynamics………………………………… 67
Figure 80: State Space Gain Matrix Yaw B.L Dynamics………………………………... 67
Figure 81: State Space Gain Matrix Roll Sliding Condition……………………………... 67
Figure 82: State Space Gain Matrix Yaw Sliding Condition…………………………….. 67
Figure 83: State Space Gain Matrix Controller Input……………………………………. 67
Figure 84: State Space Gain Matrix Yaw Input Position Tracking……………………… 68
Figure 85: State Space Gain Matrix Yaw Input Velocity Tracking……………………… 68
Figure 86: State Space Gain Matrix Yaw Input Roll B.L Dynamics…………………….. 68
Figure 87: State Space Gain Matrix Yaw Input Yaw B.L Dynamics……………………. 68
Figure 88: State Space Gain Matrix Yaw Input Roll Sliding Condition…………………. 69
Figure 89: State Space Gain Matrix Yaw Input Yaw Sliding Condition………………… 69
Figure 90: State Space Gain Matrix Yaw Input Controller Input………………………... 69

7

NONMENCLATURE

A State matrix

B Control input matrix

𝑩 Input influence gain matrix

𝐵(𝑡) Boundary layer surface

𝐵ோ Spherical region in state-space

𝑏 Control input influence gain

𝑏෠ Estimated control input gain

𝑏෨ Estimation error

𝑏௟௢௪௘௥ Lower bound control input gain element

𝑏௨௣௣௘௥ Upper bound control input gain element

𝑑/𝑑𝑡 Derivative in respect to time

𝑑/𝑑𝑥 Derivative in respect to states

DC Direct Current

𝑒ଵ Instantaneous prediction error

𝐸 Estimation error bounding function

IMU Inertial Measurement Unit

INS Inertial Navigation System

𝐽 Cost function

𝐾 Switching gain

𝐾ഥ Updated switching gain

𝑘 Positive integer

𝑘଴ Upper bound for estimator gain matrix magnitude

LQR Linear Quadratic Regulator

MFSMC Model-Free Sliding Mode Control

MIMO Multi-Input-Multi-Output

8

𝑛 Order of system

𝑝଴ Initial estimation gain

𝑃 Estimator gain matrix

𝑃̇ Time derivate of estimator gain matrix

PD Proportional-Derivative

PID Proportional-Integral-Derivative

QSMC Quasi-Sliding Mode Control

RWLS Recursive Weighted Least Squares

𝑠 Sliding surface

𝑠̇ Time derivative of sliding surface

𝑆ோ Sphere in state-space

𝑠𝑎𝑡 Saturation function

𝑠𝑔𝑛 Sign function

SISO Single-Input-Single-Output

SMC Sliding Mode Control

𝑡 Time

TPS Test Pilot School

𝑢 Control input

𝑢ො Estimated control input

𝑢௞ିଵ Previous control input

𝑢௞ିଶ Previous value of previous control input

UV-MRAC Unit Vector Model-Reference Sliding Mode Controller

𝑉 Lyapunov function

𝑉̇ Time derivative of Lyapunov function

VISTA Variable Stability In-flight Simulator Test Aircraft

VSS Variable Stability System

9

𝑊 Signal matrix

𝑥 State measurement

𝑥ௗ Desired state

𝑥̇ௗ Time derivative of desired state

𝑥̈ௗ Second derivative of desired state

𝑥௘ Equilibrium point

𝑥௣ System output vector

𝑥̇ Time derivative of state measurement

𝑥̈ Second derivative of state measurement

𝑥෤ Difference between state measurement and desired state

𝑥଴ Initial value

𝑥௡ Higher order state

𝑦 System output vector

𝛼ଵ Positive Constant

𝜀 Estimation error in input influence gain

𝜀̂ Estimated error in input influence gain estimation

𝜎௟ Lower bound of estimation error

𝜎௨ Upper bound of estimation error

𝛽 Control input gain auxiliary variable

𝛿 Positive onstant

𝜂 Small positive constant

𝜙 Boundary layer

𝜙̇ Time derivative of boundary layer

𝜆 Slope of sliding surface

𝜆௠௜௡ Smallest eigenvalue

𝜆଴ Forgetting factor

10

𝜆(𝑡) Time-varying forgetting factor

11

1.0 PROBLEM INTRODUCTION

Interest in the advancement of control system design has proliferated as systems have become
more complex. Technological development has allowed for the use of much smaller and faster
computers which have made the use of advanced control systems feasible for a wide variety of
applications. Control system design is focused on tracking a desired response while maintaining
the stability of a system. Two popular traditional controllers are the Proportional-Integral-
Derivative (PID) and Linear Quadratic Regulator (LQR) controllers. PID controller design
consists of time and frequency domain analysis to derive the controller gains achieving the
desired response from the system. LQR controller design consists of defining a cost function
based on error in desired outputs. The cost function is minimized to derive the controller gains.
These controllers can often be highly effective for many classes of linear systems. However, they
often require extensive tuning. Additionally, for nonlinear systems, they require an accurate
linear approximation of the system’s dynamics. This can be difficult to derive for higher-order
nonlinear systems, especially with modeling uncertainties. Thus, these controllers are not
applicable to many modern systems that are becoming more complex and nonlinear.

Nonlinear control systems such as Sliding Mode Control (SMC) have been developed as more
effective alternatives for when an accurate linear approximation of the system’s dynamics cannot
be derived in higher-order nonlinear systems. SMC provides a greater robustness in the face of
modeling uncertainty and external disturbances and theoretically has perfect tracking
performance. This is achieved by defining a “sliding surface” as the difference between current
state values and their corresponding desired values. A SMC controller is then designed to switch
between two phases: a reaching phase and a sliding phase. In the reaching phase, the controller
drives the system states onto the sliding surface. In the sliding phase, the controller pushes the
system states to slide towards the stable equilibrium point at the origin. Global asymptotic
stability throughout the process is guaranteed through Lyapunov’s Direct Method. SMC still has
inherent drawbacks. Chattering causes high controller effort and is caused by high frequency
switching in the controller when the state trajectories are not being perfectly aligned on the
sliding surface. The “switching” is caused by a discontinuous term in the control law dependent
on whether the state trajectories are above or below the sliding surface. Traditional SMC also
requires a mathematical reference or plant model for the derivation of the control law. In modern
times, it is increasingly difficult to derive a mathematical model of systems as they become more
complex leading to higher parametric uncertainty.

Thus, a huge benefit is realized in the development a controller that is not dependent on a system
model and can be generalized to all systems. Reis and Crassidis [1] developed a Model-Free
Sliding Mode Controller (MFSMC) for Single-Input-Single-Output (SISO) systems. El Tin and
Crassidis [2] expanded the previous work to apply the controller to squared and non-squared
Multi-Input-Multi-Output (MIMO) systems. However, for the derivation of both of these
controllers, the bounds of the input influence gain matrix were assumed to be known so they
were not truly model-free. Sariful and Crassidis [3] proposed a method extending the MFSMC

12

approach by including a least-squares online parameter estimation law to estimate the increment
to the switching gain in a time-varying boundary layer. The updated method only required
knowledge of the system order, state measurements, and the previous control inputs making it
truly model-free. However, this method assumed a unitary input influence gain which is not true
for most systems. The flaw became evident during flight testing with the Air Force Test Pilot
School (TPS). Stephens et al. [4] implemented this controller method in the longitudinal axis for
pitch rate control of the Calspan Variable Stability System (VSS) Learjet. The controller was
able to push the aircraft dynamics towards the desired dynamics but degraded handling qualities
were observed.

The method described here is intended to solve the gaps outlined in Stephens et al. [4] while the
MFSMC was being flight tested. The new approach uses the least-squares online parameter
estimation method proposed by authors Sariful and Crassidis [3] to estimate the control input
influence gain in real-time in place of the increment to the switching gain. The convergence of
the input influence gain is guaranteed for any defined initial value. Thus, this method is
completely model-free. This method was implemented on SISO and MIMO example systems,
before being implemented in the lateral and directional control of a state space model of an
aircraft.

13

2.0 LITERATURE REVIEW

2.1 Control Systems based on Sliding Mode Control

Yu et al. [5] developed an Adaptive Seeking Sliding Mode controller for a class of nonlinear
systems with modeling uncertainty and external disturbances. The controller retained the
advantageous properties of traditional SMC like robustness against parameter uncertainty and
external disturbances while applying a floating gain to lessen chattering from continuous and
slow-varying unknown external disturbances. The controller can also adaptively estimate and
compensate for parameter uncertainty and unknown external disturbances. The performance of
the controller was tested experimentally as an adaptive cruise control system for off-road
vehicles in terms of velocity tracking. The results of these experiments showed minor tracking
errors and chattering. The work was limited by the fact that a mathematical model was assumed
to derive the control law and the controller was only derived and applied in continuous time.

Lee [6] proposed a discrete-time SMC law that implements fast output sampling. Fast output
sampling has the advantages of an equivalently fast output sampling feedback control and allowing
for arbitrary SMC design. In other words, the eigenvalues of the system can be arbitrarily defined.
This control law also implemented a boundary layer for reduced chatter. The performance of this
controller was simulated in MATLAB/Simulink on an example system with lightly damped
resonance and a discrete-time controller. The results showed that the controller effectively tracked
a step response with the presence of modeling uncertainty. The work was limited by the need for
a plant model to derive the SMC law.

Pai [7] developed a discrete-time integral sliding mode controller for linear systems with
uncertain parameters to track the dynamic inputs of a reference model without delays. This
controller was derived using discrete-time SMC theory and one-step delayed disturbance
approximation. The control law introduced an integral switching surface which eliminated the
reaching phase and therefore, chattering. The proposed controller guaranteed stability of a
closed-loop system and achieved zero-tracking error in the presence of parameter uncertainties
and external disturbances. This was shown by simulating the controller performance in
MATLAB and comparing it to a traditional SMC. The traditional SMC had a higher control
input and the robustness of the proposed controller was also guaranteed for all time unlike the
traditional controller. The work was limited by the fact the SMC algorithm was derived from a
reference system model, it was limited to linear systems, and the lower bound of uncertain
parameters was assumed to be known.

Cunha et al. [8] developed a SMC for the purpose of accurately and robustly tracking the outputs
of linear multivariable systems with a relative degree of one. The controller ensured the closed
loop system was globally exponentially stable and is robust against bounded input disturbances
and parameter uncertainties. The controller was defined by the authors as a unit vector model-
reference sliding mode controller (UV-MRAC). The advantage of the controller is only
information about the plant model needed to derive the UV-MRAC is the knowledge of the

14

matrix that the high frequency gain matrix will be influencing such that the negative of the two
matrices multiplied together is Hurwitz stable. This allows the positive definiteness criteria
needed by other SMC methods to be relaxed. The performance of the controller was simulated
on a third-order system. The controller forced the system outputs to converge quickly to the
reference states while ensuring closed-loop system global exponential stability. However, the
work was limited by the fact that a reference model was required, and it was only applied to
linear systems with a relative degree of one.

Lagrouche et al. [9] developed a higher order integral SMC for nonlinear systems with modeling
uncertainty. The controller was split into two parts: a sliding surface and a discontinuous control.
The sliding surface controlled system trajectories and stabilized the system in finite time while
there were no uncertainties. The discontinuous control was designed to force the system into the
reaching phase and onto the sliding surface such that uncertainties were compensated for. The
performance of the controller was simulated by applying it to the control of a kinematic model of
an automobile to steer the automobile from an initial position over a specified trajectory. The
results of this simulation showed that the system states converged to the desired trajectories within
the desired time and this was done without chattering. The work was limited by the fact that a
reference model is needed to derive the controller, the parameter uncertainty bounds must be
known, and the controller is only designed for single-input, single-output (SISO) systems.

Jing et al. [10] developed a Quasi-Continuous High-Order Sliding Mode Controller for the
variable speed control of a wind turbine. Sliding mode was chosen due to its high robustness to
external disturbances, unmodeled dynamics, and parameter uncertainty. A higher-order (second
order) sliding mode controller was derived to suppress chattering based on a linearized model of
a wind turbine. This controller was applied to both variable speed and pitch control. The
performance of the second order sliding mode controller was simulated for different wind
conditions and compared to a PID and traditional sliding mode controller. The second order
sliding mode controller had better tracking performance and allowed the simulated wind turbine
to generate more power compared to the PID and traditional sliding mode controllers. It was also
able to suppress the chattering associated with traditional SMC. This work is limited by the need
for a plant model. The difficulty in deriving complex, nonlinear plant models is shown by the
fact that the authors used a linearized model of the wind turbine.

Nizar et al. [11] developed a predictive sliding mode controller for systems with a state time-
delay. The authors’ goal was to overcome the difficulty in predicting time delays which are
prevalent in many systems. They achieved this by developing a technique of using sliding mode
control combined with model-based predictive control. A discrete-time delay system and sliding
function were first defined. Then, a sliding mode control law was derived from the sliding
function and a cost function was defined to apply predictive control principles to the control law.
These were used to derive a discrete predictive sliding mode control law. The new control law
was compared to a traditional sliding mode control law on a discrete-time system. The new

15

control method resulted in a faster convergence and less tracking error. However, the method
was limited by the fact that this approach was only applied to a linear system.

The system model for a quadrotor is highly nonlinear and dynamically unstable. Sudhir et al.
[12] developed a robust second-order sliding mode controller for altitude control of a quadrotor.
This controller was derived using the Lyapunov stability approach and an assumed model for a
quadrotor. The tracking of altitude by this controller was simulated in MATLAB. The controller
successfully stabilized the quadrotor and when compared to a conventional sliding mode
controller, it showed better transient performance. The work was limited since the controller was
derived from an assumed model for a quadrotor.

2.2 Model-Free Control Methods

Crassidis and Mizov [13] developed a model-free sliding mode controller that can be applied to
both linear and nonlinear systems to achieve accurate tracking and stability. The controller form
was derived assuming the order of the system is known and is based on observable state
measurements and past controller inputs. Therefore, a system model is not needed for the controller
to work. The authors implemented a boundary layer into the controller to smooth the control effort.
This reduced the tracking precision but reduced the controller effort to a desirable level. The
method produced minimal tracking error for both the linear and nonlinear examples. The work was
limited to single-input cases and a unitary input influence gain was assumed which is not true for
many real systems.

In this work, Crassidis and Reis [1] derived a similar sliding mode controller to Crassidis and
Mizov [13]. The authors extended this previous work by Crassidis and Mizov [13] to systems with
a non-unitary input influence gain and noise in state measurements while maintaining that the
sliding mode controller is based on a known order of the system, observable state measurements,
and past controller inputs. This controller was applied to two nonlinear mass-spring-dampers
systems: one without equipment and measurement noise and one with noise. The noise was
generated using a Gaussian distribution using a variance, mean, and probability distribution from
the system’s sensor datasheet. For both examples, the controller provided great tracking and
eliminated chattering with the implementation of a boundary layer. The work was limited by the
fact that the bounds of the input influence gain matrix were assumed to be known so the controller
was not completely a model-free control approach.

Crassidis and El Tin [2] further extended the work of Crassidis and Mizov [13] and Crassidis and
Reis [1] to MIMO systems with actuator dynamics. The form of the sliding mode controller is
still dependent on knowing the order of the system, observable state measurements, past
controller inputs, and additionally, the shape of the control input influence gain matrix. For
MIMO systems with a square input influence gain matrix, the control law was similar to that
developed by Crassidis and Reis [1]. For underactuated MIMO systems, a transformation matrix
was needed to square the input influence gain matrix. This forced the authors to choose to track
certain outputs over others and resulted in better tracking performance for MIMO systems with

16

a square input influence gain matrix while only some outputs achieved good tracking for
underactuated systems. The controller was first applied to a single-input nonlinear two mass-
spring-damper system and achieved good tracking but with a high control effort. Next, the
controller was applied to a quadcopter which is an underactuated system. Therefore, the
controller achieved good tracking for some outputs, while other outputs and the control input
exhibited high frequency activity. When applied to systems with an actuator-induced time delay
(actuator dynamics), the results from the sliding mode controller were severely degraded,
especially with higher time delays. This was a result of the control law requiring modification to
account for the time delay which produced inconsistent tracking results. Again, the work was
limited by the fact that the bounds of the input influence gain matrix were assumed to be known
so the controller was not completely model-free.

Schulken [14] examined four model-free sliding mode controllers applied in the control of a
quadrotor. This was done because mode-free sliding mode controllers have the advantage of
having no tuning process like that of linear PID controllers. The model-free sliding mode
controllers were simulated on different aerial system models with various disturbances including
the effects of discretization and state estimation. The two best performing controllers were then
applied to a quadrotor system model and their performance was compared to that of a linear PID
controller in terms of tracking error, complexity, and how long it took to tune each controller.
Both the model-free sliding mode controllers and the PID controller were able to display similar
tracking errors in simulation. However, the PID results came after an intensive tuning process.
When applied to real hardware, all control laws exhibited unsatisfactorily high tracking error
during testing to be considered for a real system application. The hardware used in testing did
not directly measure all states required for control so a state estimation algorithm needed to be
developed. The large tracking errors in testing could be attributed to uncertainty in the state
estimation algorithm. The work was limited by needing the input influence gain bounds to be
determined from system models and an unsatisfactory state estimation algorithm.

Sreeraj and Raj [15] further expanded on the work of Crassidis and Mizov [13], Crassidis and
Reis [1], Crassidis and El Tin [2], and Schulken [14]. The authors generalized the model-free
sliding mode control law developed in past works so that it could be applied to a larger class of
unmanned systems. As in past work, the control law was derived with knowledge of the order of
the system, observable state measurements, past controller inputs, and additionally, the shape and
bounds of the control input influence gain matrix. The controller was tested on a simulation of a
quadrotor and its performance was compared to a traditional linear controller in terms of tracking
error and power consumption. This simulation included realistic inputs from joysticks and
inertial measurement units (IMUs) that are used for state measurement. The controller was then
tested on real hardware and compared to a linear controller. The model-free sliding mode
controller had smaller tracking errors and less power consumption than the linear controller. The
work is still limited by the fact that the bounds of the input influence gain matrix were assumed
to be known so the controller was not completely model-free.

17

In this work, Munoz-Vazquez et al. [16] developed a model-free integral sliding mode controller
for position control of a quadrotor. The authors developed their controller with the goal of
adapting velocity field control to the underactuated flight dynamics of a quadrotor. This was
achieved by modifying the nominal reference to include the velocity field as the desired velocity
to be tracked. The controller was designed to include three subsystems. These subsystems
included a model-free control subsystem that ensured the sliding mode for all time, a velocity
field subsystem for defining the magnitude and direction of the velocity field to define a desired
path, and a sliding surface subsystem to assemble invariant manifolds of position and orientation
sliding surfaces. Since the velocity field was used to create the sliding surface, this design
ensures stability by ensuring the quadcopter stays on the passive velocity field. The work was
limited by the fact that the controller is developed from velocity field control instead of directly
controlling states.

Monti [17] expanded on the work of Sreeraj and Raj [15] by implementing their MFSMC law to
an Unmanned Aircraft System (UAS) that is not mounted to a gimbal controlling altitude and is
allowed to freely fly. The specific UAS used in this work was a quadcopter. The robustness of
the developed controller to parameter uncertainties was tested through simulation. Parameters of
the quadcopter were varied through 4 different configurations: original parameters, doubled
mass, doubled moments of inertia, and doubled mass and moments of inertia. The performance
of the MFSMC law controlling these different configurations was compared to a PID controller.
MFSMC law provided better tracking performance and less control effort. This work was limited
by the need to know the control input influence gain matrix. The matrix was derived using
knowledge of the quadcopter system.

Crassidis and Sariful [3] expanded on the work of Crassidis and Mizov [13], Crassidis and Reis
[1], Crassidis and El Tin [2], Schulken [14], Sreeraj and Raj [15], and Monti [17]. The authors
also developed a truly model-free sliding mode controller where the form of the controller is
based on system order, state measurements, and previous control inputs. The authors also
implemented a boundary layer to eliminate high-frequency chattering. However, in an effort to
eliminate the need to bound the input influence gain matrix, the authors estimated the increment
to the switching gain in real time to ensure the sliding condition is being met using a least-
squares estimator. This was done while assuming the input influence gain was unitary. An
exponential forgetting factor was combined with the least-squares estimator to ensure that only
new data was used in the parameter estimation. The authors also developed an automatic
bounded forgetting tuning technique that ensures that the estimated input influence gain matrix is
upper bounded. The controller was applied to linear and nonlinear SISO and MIMO systems and
was implemented in the simulation of a quadcopter. The controller achieved great tracking
results for all cases. The work was limited by the assumption that the input influence gain matrix
was close to being unitary which is not true for most real-world systems. Thus, the control law
may fail if the input influence gain is far from being unitary.

18

Stephens et al. [4] applied the work of Crassidis and Sariful [3] to control in the longitudinal
dynamics of a Calspan VSS Learjet. This work included a limited evaluation to test the ability of
the control law to track desired inputs and carry out single-ship and formation handling quality
tasks to evaluate the control law. The control law was successful in producing desired short-period
dynamics but added a large time delay which inhibited fine tracking. The aircraft pitch acceleration
was measured from six sources: discrete derivative of pitch rate, sliding mode differentiator from
pitch rate, discrete derivative of pitch rate with a lag filter, estimation of pitch rate from
accelerometer and rate signals, finite differentiation with a Muller filter, and Inertial Navigation
System (INS) pitch acceleration. For flight testing, pitch frequency sweeps were input through the
control stick to generate the desired pitch rate. Four aircraft configurations were used to test the
controller: level 1-3 based on Civil Air Patrol criteria and a statically unstable configuration. A
low pass filter was required to be added before flight testing to deal with excessive noise seen in
initial simulations that would disengage the VSS. Testing showed that the MFSMC was able to
drive the aircraft dynamics to the desired dynamics with mixed results. Cooper-Harper handling
qualities rating scale was used for the handling qualities evaluation, and it was determined that the
model used to generate desired dynamics had design features that degraded the resulting handling
qualities generated by the controller. The root of the problem was the assumption of a unitary input
influence gain matrix. The Calspan VSS Learjet and the system model possess an input influence
gain matrix much smaller than one leading to high tracking errors.

2.3 Online Parameter Estimation

Vahidi et al. [18] developed a recursive least squares estimation method with multiple forgetting
factors for the simultaneous real-time estimation of time-varying grade and piecewise constant
mass. This estimation method was based on a physical model of a road-going vehicle in the
longitudinal direction. The authors ran multiple simulations that showed the estimation method
could achieve good estimation precision while under persistent excitation. However, the authors
failed to prove convergence and region of convergence, there was difficulty getting results
without persistent excitation, and a physical model was required.

Sumantri et al. [19] developed a least square based sliding mode controller to solve the
overdetermined problem of translational motion control of a quadrotor and a traditional sliding
mode controller for rotational control. These controllers were derived while ensuring global
stability using Lyapunov’s stability theory. The authors augmented the performance of the
translational controller by implementing a constant plus proportional reaching law to increase
reaching rate. A saturation function with boundary layer was also used to reduce chattering. The
experimental performance of the controller was compared to a traditional proportional-derivative
(PD) controller with and without external disturbances. Without a disturbance, the PD controller
achieved smaller tracking errors. However, the PD controller lost its robustness when a
disturbance was applied while the SMC kept a similar tracking error to the non-disturbance test.
The work was limited by the need for a system model for the quadrotor.

19

Valladolid et al. [20] proposed a discrete-time adaptive quasi-sliding mode controller (QSMC)
based on a recursive weighted least square (RWLS) estimator for a DC motor. The authors
redefine SMCs that use a saturation function and boundary layer to reduce chattering as a
QSMC. This controller deals with the traditional problem of QSMC which is steady state error
due to the use of a saturation function instead of a switching function used in traditional SMC.
This is accomplished with the RWLS estimator that estimates the parameters in the A matrix of
the autoregressive model, not the input influence gain matrix which is set to be constant. The
adaptation law guarantees the convergence of the output of the system to the desired values to be
tracked. The performance of this controller was tested experimentally by applying it to the speed
control of a DC motor and comparing it to a traditional SMC and QSMC. The results of these
tests showed that the RWLS-QSMC reduced chatter compared to the SMC and had smaller
steady-state error compared to the traditional QSMC. The controller was also shown to be able to
effectively control the speed of the DC motor in the nonlinear areas of its dynamics. The work
was limited by the requirement for an initial plant model for a DC motor for the derivation of the
controller.

Many real-world systems have multiple inputs and outputs. These outputs always contain
interference making the perfect, noise-free outputs unmeasurable. Ding [21] developed an
auxiliary model-based recursive generalized least squares algorithm and a least squares-based
iterative algorithm to estimate unmeasurable parameters in the information vector in a MIMO
output-error system with autoregressive noise from measurable outputs. Autoregressive models
specify that the output variable depends linearly on its own previous values and on a stochastic
term. Ding’s algorithms were tested on two examples of MIMO output-error systems with
autoregressive noise and compared against each other. The iterative algorithm had the advantage
of using all measured input and output data to produce more accurate estimates. The work was
limited by the fact that it is only a parameter estimation technique, not a control method.

Ma et al. [22] developed an online multi-parameter estimation method based on recursive least
squares and incorporating a dynamic forgetting factor. This was done to overcome the problems
with traditional recursive least squares with forgetting factor online parameter estimation. These
problems include degenerate-rank, slow convergence, and low estimation accuracy. A full-rank
parameter identification model was derived to establish the online estimation of multiple
parameters of a permanent magnet synchronous motor. A dynamic forgetting factor was then
added to improve convergence. The performance of this method was simulated in MATLAB by
varying parameters of a permanent magnet synchronous motor in multiple ways including slow-
varying and instantaneous variation. The estimation method showed convergence of all
parameters within 0.5ms displaying fast convergence and robustness against parameters varying
in multiple ways. The work was limited by the fact that it is only a parameter estimation
technique, not a control method.

20

3.0 SLIDING MODE CONTROL

3.1 Fundamentals

3.1.1 Lyapunov Basics

The most important characteristic of a control system is if it’s stable or not. A stable system
starts near a desired operating state and stays close to this state for eternity. An unstable system
is highly unpredictable which oftentimes is undesirable. The stability analysis used in this work
is Lyapunov’s direct method. With this method, stability is determined by constructing an
“energy-like” function (Slotine and Li [23]) and examining the function’s time variation
properties.

3.1.2 Nonlinear Systems

A nonlinear dynamic system can be represented by a set of differential equations in the form of:

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) (3.1)
Where f is a 𝑛 × 1 nonlinear vector function, x is the 𝑛 × 1 state vector, u is the control input and
t is time. The number of states is 𝑛 which is the order of the system. A solution 𝑥(𝑡) exists for
the differential equation 3.1 that corresponds to a curve referred to as the state trajectory. A
control law can be defined by:

𝑢 = 𝑔(𝑥, 𝑡) (3.2)
Equation 3.1 can be generalized by plugging equation 3.2 into equation 3.1 to be:

𝑥̇ = 𝑓(𝑥, 𝑔(𝑥, 𝑡), 𝑡) (3.3)
Linear systems are considered to be a special class of nonlinear systems and take the form of:

𝑥̇ = 𝐴(𝑡)𝑥 (3.4)
Where 𝐴(𝑡) is an 𝑛 × 𝑛 matrix.

3.1.3 Autonomous vs Non-Autonomous Systems

Depending on if the system matrix A varies with time or not, linear systems are classified as
being time-varying or time-invariant. These terms are replaced by autonomous and non-
autonomous in nonlinear systems. A nonlinear system is defined as autonomous if a function, 𝑓,
does not depend on time such that the system state equation can be defined as:

𝑥̇ = 𝑓(𝑥) (3.5)
Otherwise, the system is defined as non-autonomous. All physical systems are non-autonomous
since the concept of an autonomous system is an idealized notion akin to a truly linear system. A
physical system’s dynamics are never truly time-invariant, but the system’s properties can
change so slowly that their time variation can be neglected, and the system can be treated as
autonomous. The fundamental difference between autonomous and non-autonomous systems is

21

that the state trajectory of a non-autonomous system is independent of the initial time. The
results make the analysis of the system more difficult than an autonomous system.

3.1.4 Equilibrium Points

When a system trajectory only corresponds to a single point, the point is considered an
equilibrium point. Therefore, when a state 𝑥௘ is an equilibrium point if after 𝑥(𝑡) is equal to 𝑥௘,
it remains equal to 𝑥௘. This means that the constant vector 𝑥௘ satisfies:

𝑓(𝑥௘) = 0 (3.6)
This shows that once all the states reach the equilibrium point, the derivative of the states is zero
and the states will not move away from the equilibrium point.

For a linear time-invariant system:

𝑥̇ = 𝐴𝑥 (3.7)

There is a single equilibrium point at the origin if 𝐴 is nonsingular. Otherwise, there is an infinite

number of equilibrium points in the subspace defined by:

𝐴𝑥 = 0 (3.8)

3.1.5 What Constitutes Stability

Consider a spherical region, 𝐵ோ , defined by ‖𝑥‖ < 𝑅 in state-space and a sphere, 𝑆ோ , defined by
‖𝑥‖ = 𝑅. The equilibrium state 𝑥 = 0 is stable if, for any 𝑅 > 0, there exists 𝑟 > 0 , such that if
‖𝑥(0)‖ < 𝑟, then ‖𝑥(𝑡)‖ < 𝑅 for all 𝑡 ≥ 0. Otherwise, the equilibrium point is considered
unstable (Slotine and Li [23]). In other words, the origin in state-space is stable if a value of 𝑟(𝑅)
can be found such that if starting within region 𝐵ோ , the state will remain in region 𝐵ோ as time
goes to infinity. This definition of stability where a system trajectory can be kept arbitrarily close
to the origin by starting close enough to it is also known as Lyapunov stability.

3.1.6 Positive Definite Functions

Lyapunov’s Direct Method is based on the creation of scalar energy-based functions for the
dynamic system called Lyapunov Functions and examining the time variation of the functions to
determine stability. One property of a Lyapunov Function to analyze for stability is if a function
is positive definite. A scalar, continuous Lyapunov function 𝑉(𝑥) is considered locally positive
definite if 𝑉(0) = 0 and within region 𝐵ோ (Slotine and Li [23]):

𝑥 ≠ 0 => 𝑉(𝑥) > 0

If 𝑉(0) = 0 and the above property is true over the whole state space, then 𝑉(𝑥) is considered
globally positive definite. 𝑉(𝑥) is considered negative definite if −𝑉(𝑥) is positive definite,
positive semi-definite if 𝑉(0) = 0 and 𝑉(𝑥) ≥ 0 for 𝑥 ≠ 0, and negative semi-definite if −𝑉(𝑥)

22

Figure 1: Geometric Representation of a
Lyapunov Function

Figure 2: Contour Plot Representation of a
Lyapunov Function

is positive semi-definite. The phrase “semi-definite” is used when there is a possibility that 𝑉(𝑥)
can equal zero when 𝑥 ≠ 0.

Since x is a time-varying state of the system, 𝑉(𝑥) is a function of time. Therefore, 𝑉(𝑥) is
differentiable with respect to time to analyze the positive-definiteness of the function:

𝑉̇ =
𝑑𝑉(𝑥)

𝑑𝑡
=

𝑑𝑉

𝑑𝑥
𝑥̇ =

𝑑𝑉

𝑑𝑥
𝑓(𝑥)

(3.9)

If, in the region 𝐵ோ, the function 𝑉(𝑥) is positive definite, has continuous partial derivatives, and

the time derivative of 𝑉(𝑥) is negative semi-definite such that 𝑉̇(𝑥) ≤ 0, then 𝑉(𝑥) can be
labeled as a Lyapunov function for the system. The geometric representation is shown in Figures
1 and 2.

3.1.7 Lyapunov’s Direct Method

The fundamental philosophy of Lyapunov’s Direct Method is that if the total energy stored in a
system is being continuously dissipated, the system state trajectory must converge to an
equilibrium point. Slotine and Li [23] split Lyapunov’s Direct Method into two theorems: local
stability and global stability. Local stability is concerned with the stability of the system
arbitrarily close to equilibrium points. For local stability, if, in a region 𝐵ோ, there exists a

continuously differentiable scalar function 𝑉(𝑥) such that 𝑉(𝑥) is positive definite and 𝑉̇(x) is

negative semi-definite locally in 𝐵ோ, then the equilibrium point 𝑥 = 0 is stable. If 𝑉̇(x) is locally
negative definite in 𝐵ோ, then the equilibrium point is asymptotically stable. To prove the global
asymptotic stability of a system, the spherical region, 𝐵ோ, must be expanded to encompass the

23

Figure 3: Geometric Representation of
Radial Unboundedness

whole state space. However, this is necessary, but not sufficient. The function 𝑉 must also be
radially unbounded. This is defined as:

𝑉(𝑥) → ∞ as ห|𝑥|ห → ∞

Therefore, a system is globally asymptotically stable if there exists a scalar function 𝑉(𝑥) that is

continuously differentiable such that 𝑉(𝑥) is positive definite, 𝑉̇(𝑥) is negative definite, and
𝑉(𝑥) is radially unbounded.

3.1.8 Sliding Mode Control

Sliding mode control is based on the principle that it is easier to control first-order systems than
to control general higher order systems. Therefore, the core of sliding mode control is the
replacement of an nth-order problem with an equivalent first-order problem. This is done in two
phases by the control law. First, there is the reaching phase where the control system forces the
system states onto a stable and convergent state trajectory or sliding surface. Second, there is the
sliding phase where the states are kept on the sliding surface by the control law until they reach
equilibrium. These phases are shown geometrically in Figure 4 below.

3.1.9 Derivation of SMC Control Law

Consider the SISO system (Slotine and Li [23]):

𝑥(௡) = 𝑓(𝑥) + 𝑏(𝑥)𝑢 (3.10)

Where 𝑥 is a scalar output of interest, 𝑢 is a scalar control input, 𝑓(𝑥) is a general function that is
not exactly known, 𝑏(𝑥) is the control input influence gain, and n is the order of the system. The

state vector is ൣ𝑥 𝑥̇ … 𝑥(௡ିଵ)൧
்

. For the tracking to be achieved with a finite control u, the

following condition must be met:

24

Figure 4: Geometric Representation of
Sliding Mode Control

𝑥ௗ(0) = 𝑥(0) (3.11)
The tracking error in 𝑥 is defined as:

𝑥෤ = 𝑥 − 𝑥ௗ (3.12)
We shall also define a time-varying, sliding surface s(t) in the state space such that:

𝑠 = (
𝑑

𝑑𝑡
+ 𝜆)௡ିଵ𝑥෤

(3.13)

Where 𝜆 is a positive constant and the slope of the sliding surface. With initial condition 3.11,
the tracking problem becomes a problem of keeping the state trajectories on the sliding surface
or keeping the scalar value of s equal to zero for all time. Thus, the tracking has been simplified
to be a first-order problem of keeping s equal to zero. The inequality to achieve this is defined as:

1

2

𝑑

𝑑𝑡
𝑠ଶ ≤ −𝜂|𝑠|

(3.14)

Where 𝜂 is a positive constant. This inequality is known as the sliding condition and constrains

the squared “distance” to the surface 𝑠(𝑡), 𝑠2, to decrease along all system trajectories. Satisfying
the sliding condition ensures asymptotic stability as it ensures the criteria for Lyapunov stability
are also met at the same time.

In order to satisfy the sliding condition even with uncertainty in 𝑢ො , a term discontinuous across
𝑠(𝑡) is added to the control law such that:

𝑢 = 𝑢ො − 𝐾𝑠𝑔𝑛(𝑠) (3.15)

25

Figure 5: Chattering Phenomenon

Where K is the switching gain and sgn is the sign function defined as:

𝑠𝑔𝑛(𝑠) = +1 𝑖𝑓 𝑠 > 0 (3.16)
𝑠𝑔𝑛(𝑠) = −1 𝑖𝑓 𝑠 < 0 (3.17)

In practice, the implementation of this control law is not perfect. This is because the switching by
the sign function is not instant, and the exact value of s is not known. This leads to what is
known as chattering which is when the states jump back and forth across the sliding surface as
shown in Figure 5.

Chattering leads to undesirably high controller output and can excite high frequency dynamics in
the system. To prevent this, the controller output can be smoothed with a so-called boundary
layer.

3.1.10 Boundary Layer

For a controller to work effectively, chattering oftentimes has to be eliminated. Using a
boundary layer of thickness 𝜙, a neighboring switching surface to the sliding surface can be
defined as (Slotine and Li [23]):

𝐵(𝑡) = {𝑥, |𝑠(𝑥; 𝑡)| ≤ 𝜙} (3.18)

26

Figure 6: The Boundary Layer

The boundary layer thickness can also be made time-varying. To account for this, the sliding
condition must be updated to maintain the attractiveness of the boundary layer:

|𝑠| ≥ 𝜙 →
𝑑

𝑑𝑡
(𝑠 − 𝜙) ≤ −𝜂

(3.19)

|𝑠| ≤ 𝜙 →
𝑑

𝑑𝑡
(𝑠 − (−𝜙)) ≥ −𝜂

(3.20)

Or, combining these equations:

|𝑠| ≥ 𝜙 →
1

2

𝑑

𝑑𝑡
𝑠ଶ ≤ (𝜙̇ − 𝜂)|𝑠|

(3.21)

The addition of the 𝜙̇|𝑠| term defines the fact that the boundary layer attraction condition is

stricter while the boundary layer is shrinking (𝜙̇ < 0) and less strict while it is expanding (𝜙̇ >

0).

Consider the system defined by:

𝑥̈ = 𝑓 + 𝑏𝑢 (3.22)
In addition to updating the sliding condition, if the input influence gain, 𝑏, is assumed to be a
unity gain, a new switching gain is defined as:

𝐾ഥ = 𝐾 − 𝜙̇ (3.23)

And the control law is updated to be:

𝑢 = 𝑢ො − 𝐾ഥ𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ (3.24)

Where sat is the saturation function defined as:

27

𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ =

𝑠

𝜙
 𝑖𝑓 ฬ

𝑠

𝜙
ฬ ≤ 1

(3.25)

𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ = 𝑠𝑔𝑛 ൬

𝑠

𝜙
൰ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.26)

Furthermore, the boundary layer thickness 𝜙 can be tuned so that the state trajectories represent a
first-order filter by defining:

𝜙̇ + 𝜆𝜙 = 𝐾(𝑥𝑑) (3.27)
Where 𝜆 is the bandwidth of the filter such that:

If 𝑏 ≠ 1 in Equation 3.22, the sliding condition can be met by ensuring (𝜙̇ − 𝜂) ≤ 0. This is

ensured when the states are outside the boundary layer, or 𝜙̇ > 0, by defining the switching gain
as:

Where:

𝑏෠ = ට𝑏௟௢௪𝑏௨௣௣
(3.30)

𝛽 = ට𝑏௨௣௣/𝑏௟௢௪ = 𝑏෠𝑏ି1
(3.31)

With 𝑏෠ being the best estimate of the input influence gain and 𝑏௟௢௪ and 𝑏௨௣௣ being the lower and

upper estimated bounds of the input influence gain respectively. The sliding surface for a
second-order system is defined as:

𝑠 = 𝑥̇ − 𝑥̇ௗ + 𝜆(𝑥 − 𝑥ௗ) (3.32)

With the derivative of the sliding surface being defined as:

𝑠̇ = 𝑥̈ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) = 0 (3.33)

Or:

𝑠̇ = 𝑥̈ − 𝑥̈ௗ + 𝜆𝑥෤̇ = 0 (3.34)

Substituting Equation 3.22 into Equation 3.34 gives us:

𝑠̇ = 𝑓 + 𝑏𝑢 − 𝑥̈ௗ + 𝜆𝑥෤̇ = 0 (3.35)

This allows us to define the best estimate of the controller as:

𝐾ഥ(𝑥ௗ)

𝜙
= 𝜆

(3.28)

𝐾ഥ(𝑥) = 𝐾(𝑥) −
𝜙̇

𝛽

(3.29)

28

𝑢ො = 𝑏෠ିଵ(−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇) (3.36)

Substituting this into Equation 3.24 gives us the actual control law of:

𝑢 = 𝑏෠ିଵൣ−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾(𝑥)𝑠𝑔𝑛(𝑠)൧ (3.37)

To check if the controller form is correct so we can implement a boundary layer, Lyapunov’s
stability theorem is used. A positive definite candidate Lyapunov Function is defined as:

𝑉 =
1

2
𝑠ଶ ≥ 0

(3.38)

Taking the derivative gives us:

𝑉̇ = 𝑠𝑠̇ ≤ 0 (3.39)

Substituting Equation 3.34:

𝑉̇ = 𝑠ൣ𝑥̈ − 𝑥̈ௗ + 𝜆𝑥෤̇൧ (3.40)

Substituting the assumed measurement model based on Equation 3.22:

𝑉̇ = 𝑠ൣ𝑓 + 𝑏෠𝑢 − 𝑥̈ௗ + 𝜆𝑥෤̇൧ (3.41)

Substituting Equation 3.37:

𝑉̇ = 𝑠ൣ𝑓መ + 𝑏෠𝑏෠ିଵൣ−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾(𝑥)𝑠𝑔𝑛(𝑠)൧ − 𝑥̈ௗ + 𝜆𝑥෤̇൧ (3.42)

Or:

𝑉̇ = −𝑠𝐾(𝑥)𝑠𝑔𝑛(𝑠)) (3.43)

Or:

𝑉̇ = −𝐾(𝑥)|𝑠| (3.44)

Therefore,

𝑉̇ ≤ (𝜙̇ − 𝜂)|𝑠| (3.45)

This verifies the sliding condition. Therefore, the controller form is correct and, to implement a

boundary layer, 𝐾𝑠𝑔𝑛(𝑠) is replaced with 𝐾ഥ𝑠𝑎𝑡(
௦

థ
):

𝑢 = 𝑏෠ିଵ ൤−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨

(3.46)

Plugging into Equation 3.35 gives us:

29

𝑠̇ = 𝑓 + 𝑏𝑏෠ିଵ ൤−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨ − 𝑥̈ௗ + 𝜆𝑥෤̇

(3.47)

Re-arranging this results in:

𝑠̇ = −𝑏𝑏෠ିଵ𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
) + (𝑓 − 𝑏𝑏෠ିଵ𝑓መ) + (1 − 𝑏𝑏෠ିଵ)(−𝑥̈ௗ + 𝜆𝑥෤̇) (3.48)

Using Equation 3.31, we can re-write this as:

𝑠̇ = −𝛽ିଵ𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
) + (𝑓 − 𝛽ିଵ𝑓መ) + (1 − 𝛽ିଵ)(−𝑥̈ௗ + 𝜆𝑥෤̇) (3.49)

Inside the boundary layer, we can set 𝑠𝑎𝑡 ቀ
௦

థ
ቁ =

௦

థ
, giving us:

𝑠̇ = −𝛽ିଵ𝐾ഥ(
𝑠

𝜙
) + (𝑓 − 𝛽ିଵ𝑓መ) + (1 − 𝛽ିଵ)(−𝑥̈ௗ + 𝜆𝑥෤̇) (3.50)

Assuming the states are inside the boundary layer, we can set 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small
error term, such that:

𝑠̇ = −𝛽ିଵ𝐾ഥ(𝑥ௗ) ൬
𝑠

𝜙
൰ + ൫𝑓(𝑥ௗ) − 𝛽ିଵ𝑓መ(𝑥ௗ)൯ − ൫1 − 𝛽ିଵ൯𝑥̈ௗ + 𝑂(𝜀) (3.51)

Equation 3.51 is a first-order filter that can be tuned such that:

𝑠̇ +
𝜆

𝛽ଶ 𝑠 = 𝑢
(3.52)

Comparing the two equations gives us:

𝜆

𝛽ଶ =
𝐾ഥ(𝑥ௗ)

𝛽𝜙

(3.53)

Plugging in Equation 3.29 gives us:

𝜆

𝛽ଶ =
𝐾(𝑥ௗ) −

𝜙̇
𝛽

𝛽𝜙

(3.54)

Re-writing gives us:

𝜙̇ + 𝜆𝜙 = 𝛽𝐾(𝑥ௗ) (3.55)

To ensure that the sliding condition is met when the states are inside the boundary layer, or 𝜙̇ <

0, the switching gain, 𝐾ഥ, is defined as:

𝐾ഥ(𝑥ௗ) = 𝐾(𝑥ௗ) − 𝛽𝜙̇ (3.56)

Plugging into Equation 3.53, we get:

30

𝜆

𝛽ଶ =
𝐾(𝑥ௗ) − 𝛽𝜙̇

𝛽𝜙

(3.57)

Re-writing gives us:

𝜙̇ +
𝜆

𝛽ଶ 𝜙 =
𝐾(𝑥ௗ)

𝛽

(3.58)

With 𝜙̇ ≥ 0 from Equation 3.55 we get:

𝜙̇ = 𝛽𝐾(𝑥ௗ) − 𝜆𝜙 ≥ 0 (3.59)

Or:

𝐾(𝑥ௗ) ≥
𝜆𝜙

𝛽

(3.60)

With 𝜙̇ ≤ 0 from Equation 3.58, we get:

𝜙̇ =
𝐾(𝑥ௗ)

𝛽
−

𝜆

𝛽ଶ 𝜙 ≤ 0
(3.61)

Or:

𝐾(𝑥ௗ) ≤
𝜆𝜙

𝛽

(3.62)

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we can write:

𝜙(0) =
𝛽

𝜆
𝐾(𝑥ௗ(0))

(3.63)

In summary:

𝐾(𝑥ௗ) ≥
ఒథ

𝛽೏

 𝜙̇ + 𝜆𝜙 = 𝛽
ௗ

𝐾(𝑥ௗ) 𝐾ഥ(𝑥) = 𝐾(𝑥) −
థ̇

𝛽೏

𝐾(𝑥ௗ) ≤
ఒథ

𝛽೏

 𝜙̇ +
ఒ

𝛽೏
మ 𝜙 =

௄(௫೏)

𝛽೏

 𝐾ഥ(𝑥) = 𝐾(𝑥) − 𝛽𝜙̇

𝑢 = 𝑏෠ିଵ ൤−𝑓መ + 𝑥̈ௗ − 𝜆𝑥෤̇ − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨

This is the derivation for a SISO system. For a MIMO system, the sliding condition becomes:

𝑠௜𝑠̇௜ ≤ (𝜙̇௜ − 𝜂௜)|𝑠௜|
𝑖 = 1, … , 𝑚

(3.64)

Where m is the order of the system. To ensure that the sliding condition is met when the states

are outside the boundary layer, or 𝝓̇ > 0, the switching gain is defined as:

31

𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ (3.65)

Where 𝜷 is defined as:

𝜷 = ට𝑩𝒍𝒐𝒘
ିଵ𝑩𝒖𝒑𝒑 = 𝑩෡𝑩ି1

(3.66)

And 𝑩𝒍𝒐𝒘 and 𝑩𝒖𝒑𝒑 are the lower and upper estimated bounds of the input influence gain matrix

respectively. With the controller form being:

𝒖 = 𝒖ෝ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰

𝑖 = 1, … , 𝑚

(3.67)

Consider the actual system:

𝒙̈ = 𝒇 + 𝑩𝒖 (3.68)

Or:

𝑥̈௜ = 𝑓௜(𝑥௜) + ෍ 𝑏௜௝(𝑥௜)𝑢௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.69)

The input influence gain matrix, 𝑩, is a square matrix defined as:

𝑩 = ൥
𝑏ଵଵ … 𝑏ଵ௠

𝑏௠ଵ … 𝑏௠௠

൩
(3.70)

With the derivative of the sliding surface being defined as:

𝑠̇௜ = 𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆𝑥෤̇௜ = 0

𝑖 = 1, … , 𝑚

(3.71)

Substituting Equation 3.69 into Equation 3.71 gives us:

𝑠̇௜ = 𝑓
𝑖

− 𝑥̈ௗ௜
+ 𝜆𝑥෤̇𝑖 + ෍ 𝑏௜௝𝑢௜

௠

௝ୀଵ

= 0

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.72)

This allows us to define the best estimate of the controller as:

𝒖ෝ = 𝑩෡ ିଵ(−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇) (3.73)

Where 𝑩෡ , the best estimate of the input influence gain matrix, is defined as:

𝑩෡ = ට𝑩𝒍𝒐𝒘𝑩𝒖𝒑𝒑
(3.74)

…

…

32

Substituting into Equation 3.67 gives us the actual control law of:

𝒖 = 𝑩෡ିଵ ൤−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨

𝑖 = 1, … , 𝑚

(3.75)

Plugging into Equation 3.72 gives us:

𝒔̇ = 𝒇 + 𝑩𝑩෡ିଵ ൤−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ − 𝒙̈𝒅 + 𝜆𝒙෥̇

𝑖 = 1, … , 𝑚

(3.76)

Re-arranging results in:

𝒔̇ = −𝑩𝑩෡ ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰ + (𝒇 − 𝑩𝑩෡ିଵ𝒇෠) + (1 − 𝑩𝑩෡ିଵ)(−𝒙̈𝒅 + 𝜆𝒙෥̇)

𝑖 = 1, … , 𝑚

(3.77)

Using Equation 3.66, we can re-write this as:

𝒔̇ = −𝜷ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰ + (𝒇 − 𝜷ିଵ𝒇෠) + (𝟏 − 𝜷ିଵ)(−𝒙̈𝒅 + 𝜆𝒙෥̇)

𝑖 = 1, … , 𝑚

(3.78)

Inside the boundary layer, 𝑠𝑎𝑡 ቀ
௦೔

థ೔
ቁ =

௦೔

థ೔
, so we can re-write this as:

𝑠̇௜ = ෍ − ቆ
𝐾ഥ𝑖(𝑥௜)

𝛽
௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + (𝑓

𝑖
− 𝛽

௜௝
ିଵ𝑓

𝑖
෡) + (1 − 𝛽

௜௝
ିଵ)(−𝑥̈ௗ௜

+ 𝜆𝑥෤̇𝑖)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.79)

Assume that inside the boundary layer, 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small error term, such that:

𝑠̇௜ = 𝑂௜(𝜀௜) + ෍ − ቆ
𝐾ഥ𝑖൫𝑥ௗ௜

൯

𝛽
௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + ൬𝑓൫𝑥ௗ௜

൯ − 𝛽
௜௝

ିଵ𝑓መ൫𝑥ௗ௜
൯൰ − ቀ1 − 𝛽

௜௝
ିଵቁ 𝑥̈ௗ௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.80)

Equation 3.80 is a first-order filter that can be tuned such that:

𝒔̇ + 𝜆𝜷ିଶ𝒔 = 𝒖 (3.81)

Comparing the two equations gives us:

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾ഥ𝑖(𝑥ௗ௜

)

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.82)

Plugging in Equation 3.65 gives us:

33

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

ିଵ𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.83)

Re-writing gives us:

𝜙̇௜ + 𝜆𝜙௜ = ෍ 𝛽
௜௝

𝐾௜(𝑥ௗ௜
)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.84)

Or, in vector form:

𝝓̇ + 𝜆𝝓 = 𝜷𝑲(𝑥ௗ) (3.85)

To ensure that (𝝓̇ − 𝜼) ≤ 0 when the states are inside the boundary layer, or 𝜙̇ < 0, the
switching gain, 𝐾ഥ, is defined as:

𝑲ഥ(𝑥ௗ) = 𝑲(𝑥ௗ) − 𝜷𝝓̇ (3.86)

Plugging into Equation 3.83, we get:

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.87)

Re-writing gives us:

𝜙̇௜ + ෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

𝜙௜ = ෍
𝐾௜(𝑥ௗ௜

)

𝛽
௜௝

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.88)

Or, in vector form:

𝝓̇ + 𝜆𝜷ିଶ𝝓 = 𝜷ିଵ𝑲(𝑥ௗ) (3.89)

With 𝝓̇ ≥ 0 from Equation 3.85, we get:

𝝓̇ = 𝜷𝑲(𝑥ௗ) − 𝜆𝝓 ≥ 0 (3.90)

Or:

𝑲(𝑥ௗ) ≥ 𝜆𝜷ିଵ𝝓 (3.91)

With 𝜙̇ ≤ 0 from Equation 3.89, we get:

34

𝝓̇ = 𝜷ିଵ𝐾(𝑥ௗ) − 𝜆𝜷ିଶ𝜙 ≤ 0 (3.92)

Or:

𝑲(𝑥ௗ) ≤ 𝜆𝜷ିଵ𝝓 (3.93)

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we find:

𝝓(0) =
1

𝜆
𝜷𝑲(𝑥ௗ(0))

(3.94)

In summary:

𝑲(𝑥ௗ) ≥ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝝓 = 𝜷
𝒅

𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇

𝑲(𝑥ௗ) ≤ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝜷
𝒅

ିଶ𝝓 = 𝜷
𝒅

ିଵ𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷𝝓̇

𝒖 = 𝑩෡ିଵ ൤−𝒇෠ + 𝒙̈𝒅 − 𝜆𝒙෥̇ − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨

𝑖 = 1, … , 𝑚

3.1.11 Derivation of SISO Model-Free Control Law

The control system for a second-order single-input single-output system was derived with the
following steps:

The following discrete-time measurement model is assumed:

𝑥̈ = 𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ିଵ − 𝑏𝑢 + 𝑏𝑢௞ିଵ (3.95)
Where 𝑥̈ is the measured acceleration, 𝑢 is the control system input, 𝑢௞ି1 is the previous value of
the control system input, and 𝑏 is the control input influence gain that will be estimated. This
equation can be re-written as:

𝑥̈ = 𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ିଵ + 𝜀(𝑢) (3.96)
Where 𝜀(𝑢) is the estimation error in the input influence gain defined by:

𝜀(𝑢) = 𝑏(𝑢௞ି1 − 𝑢) (3.97)
𝜀(𝑢) is assumed to be bounded by a known function, 𝐸, such that:

|𝜀̂(𝑢) − 𝜀(𝑢)| ≤ 𝐸 (3.98)
Where 𝜀̂(𝑢) is the estimated error in the input influence gain estimation assumed to be defined
by:

𝜀̂(𝑢) = 𝑏෠(𝑢௞ି2 − 𝑢௞ି1) (3.99)

And the actual error is bounded by the function:

35

(1 − 𝜎௟)𝜀̂(𝑢) ≤ 𝜀(𝑢) ≤ (1 + 𝜎௨)𝜀̂(𝑢) (3.100)
Where 𝜎௟ and 𝜎௨ are the lower and upper defined bounds.

The sliding surface for a second-order system is defined as:

𝑠 = 𝑥̇ − 𝑥̇ௗ + 𝜆(𝑥 − 𝑥ௗ) (3.101)
Where 𝑥 and 𝑥̇ are the system states to be measured and 𝑥ௗ and 𝑥̇ௗ are the desired states to be
tracked. Taking the derivative of the sliding surface results in:

𝑠̇ = 𝑥̈ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) (3.102)
Plugging in Equation 3.96 and setting 𝑠̇ equal to zero ensures that the state error trajectories do
not move once they reach the sliding surface and gives us:

𝑠̇ = [𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ି1 + 𝜀(𝑢)] − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) = 0 (3.103)
The best estimate for the control input, 𝑢ො , to maintain 𝑠̇ equal to zero is therefore:

𝑢ො = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢)] + 𝑢௞ି1 (3.104)

And adding a discontinuous term to satisfy the sliding condition gives us:

𝑢 = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1 (3.105)

Where 𝜂 is a positive constant. To check if the controller form is correct, Lyapunov’s stability
theorem is used and a positive definite “energy-like” function is defined as:

𝑉 =
1

2
𝑠2 ≥ 0

(3.106)

Taking the derivative results in:

𝑉̇ = 𝑠𝑠̇ ≤ 0 (3.107)

Substituting the assumed measurement model based on Equation 3.96 gives us:

𝑉̇ = 𝑠ൣ[𝑥̈ + 𝑏෠𝑢 − 𝑏෠𝑢௞ି1 + 𝜀̂(𝑢)] − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)൧ (3.108)

Substituting equation 3.105 gives us:

𝑉̇ = 𝑠ൣ[𝑥̈ + 𝑏෠൛𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝜂𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1ൟ − 𝑏෠𝑢௞ି1 + 𝜀̂(𝑢)] − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)൧ (3.109)
Rearranging this equation can give us:

𝑉̇ = 𝑠ൣ𝑥̈ − (𝑥̇ − 𝑥̇ௗ) − 𝑥̈ௗ − 𝜆(𝑥̇ − 𝑥̇ௗ) + 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) + 𝜀̂(𝑢) − 𝜂𝑠𝑔𝑛(𝑠) + 𝑏෠𝑢௞ି1 − 𝑏෠𝑢௞ି1൧ (3.110)
Which results in:

𝑉̇ = −𝑠𝜂𝑠𝑔𝑛(𝑠) (3.111)

Which can be re-written as:

𝑉̇ = −𝜂|𝑠| (3.112)

This verifies the sliding condition. Therefore, 𝜂 can be replaced with the system gain, 𝐾, in
Equation 3.105 resulting in:

36

𝑢 = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1 (3.113)

From the definition of 𝑉̇, we can define the sliding condition as:

𝑠𝑠̇ ≤ −𝜂|𝑠| (3.114)
Substituting in Equation 3.103 gives us:

𝑠ൣ൫𝑥̈ + 𝑏𝑢 − 𝑏𝑢௞ି1 + 𝜀(𝑢)൯ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)൧ ≤ −𝜂|𝑠| (3.115)

Substituting in the best estimate of the control input, 𝑢ො , for 𝑢 gives us:

𝑠 ቂቀ𝑥̈ + 𝑏൛𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾𝑠𝑔𝑛(𝑠)] + 𝑢௞ି1ൟ − 𝑏𝑢௞ି1 + 𝜀(𝑢)ቁ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ)ቃ ≤ −𝜂|𝑠| (3.116)
Using the 𝑠𝐾𝑠𝑔𝑛(𝑠) = 𝐾|𝑠| and rearranging to isolate 𝐾|𝑠| gives us:

𝐾|𝑠| ≥ 𝑠 ቂ(𝑥̈ − 𝑥̈ௗ)൫𝑏෠𝑏ିଵ − 1൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫𝑏෠𝑏ିଵ − 1൯ + ൫𝑏෠𝑏ିଵ − 1൯𝜀̂(𝑢) + 𝑏෠𝑏ିଵ[𝜀(𝑢) − 𝜀̂(𝑢)]ቃ + 𝑏෠𝑏ିଵ𝜂|𝑠| (3.117)
The most conservative estimate for the upper bound of 𝜀(𝑢) is defined as:

𝜀(𝑢) = (1 + 𝜎𝑢)𝜀ො(𝑢) (3.118)
Therefore, the 𝜀(𝑢) − 𝜀̂(𝑢) term can be redefined as:

𝜀(𝑢) − 𝜀̂(𝑢) = (1 + 𝜎௨)𝜀̂(𝑢) − 𝜀̂(𝑢) = 𝜀̂(𝑢) + 𝜎௨𝜀̂(𝑢) − 𝜀̂(𝑢) = 𝜎௨𝜀̂(𝑢) (3.119)
Plugging this into Equation 3.117 gives us:

𝐾|𝑠| ≥ 𝑠ൣ(𝑥̈ − 𝑥̈ௗ)൫𝑏෠𝑏ି1 − 1൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫𝑏෠𝑏ି1 − 1൯ + ൫𝑏෠𝑏ି1 − 1൯𝜀̂(𝑢) + 𝑏෠𝑏ି1𝜎௨𝜀̂(𝑢)൧ + 𝑏෠𝑏ି1𝜂|𝑠| (3.120)
And rearranging this gives us:

𝐾|𝑠| ≥ 𝑠ൣ(𝑥̈ − 𝑥̈ௗ)൫𝑏෠𝑏ି1 − 1൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫𝑏෠𝑏ି1 − 1൯ + ൫𝑏෠𝑏ି1[1 + 𝜎𝑢] − 1൯𝜀̂(𝑢)൧ + 𝑏෠𝑏ି1𝜂|𝑠| (3.121)
Next, we define:

𝑏෠ = ට𝑏௟௢௪𝑏௨௣௣ (3.122)

𝛽 = ඥ𝑏𝑢𝑝𝑝/𝑏
𝑙𝑜𝑤

= 𝑏෠𝑏
−1 (3.123)

Plugging these into Equation 3.121 gives us:

𝐾|𝑠| ≥ 𝑠[(𝑥̈ − 𝑥̈ௗ)(𝛽 − 1) + 𝜆(𝑥̇ − 𝑥̇ௗ)(𝛽 − 1) + (𝛽[1 + 𝜎௨] − 1)𝜀̂(𝑢)] + 𝛽𝜂|𝑠| (3.124)
With the final equation for the system gain being:

𝐾 ≥ |(𝛽 − 1)||(𝑥̈ − 𝑥̈ௗ)| + |(𝛽 − 1)||𝜆(𝑥̇ − 𝑥̇ௗ)| + |(𝛽[1 + 𝜎௨] − 1)||𝜀̂(𝑢)| + 𝛽𝜂 (3.125)
In summary, plugging in Equation 3.99 to Equations and 3.113 and 3.121:

𝑢 = 𝑏෠ି1[−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝐾𝑠𝑔𝑛(𝑠)] + 2𝑢௞ି1 − 𝑢௞ି2 (3.126)

𝐾 = |(𝛽 − 1)||(𝑥̈ − 𝑥̈ௗ)| + |(𝛽 − 1)||𝜆(𝑥̇ − 𝑥̇ௗ)| + |(𝛽[1 + 𝜎௨] − 1)|ห𝑏෠(𝑢௞ି2 − 𝑢௞ି1)ห + 𝛽𝜂 (3.127)

If including a boundary layer, we re-define the sliding condition as:

37

𝑠𝑠̇ ≤ (𝜙̇ − 𝜂)|𝑠| (3.128)

To ensure that the sliding condition is met when the states are outside the boundary layer, or 𝜙̇ >

0, the switching gain, 𝐾ഥ, is defined as:

𝐾ഥ(𝑥) = 𝐾(𝑥) −
𝜙̇

𝛽

(3.129)

From Equation 3.113, 𝐾𝑠𝑔𝑛(𝑠) is replaced with 𝐾ഥ𝑠𝑎𝑡(
௦

థ
):

𝑢 = 𝑏෠ି1 ൤−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
): ൨ + 𝑢௞ି1 (3.130)

Plugging into Equation 3.103 gives us:

𝑠̇ = ൤𝑥̈ + 𝑏 ൜𝑏෠ି1 ൤−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝜀̂(𝑢) − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
): ൨ + 𝑢௞ି1ൠ − 𝑏𝑢௞ି1 + 𝜀(𝑢)൨ − 𝑥̈ௗ + 𝜆(𝑥̇ − 𝑥̇ௗ) (3.131)

And rearranging this gives us:

𝑠̇ = −𝑏𝑏෠ିଵ𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
) + (𝑥̈ − 𝑥̈ௗ)൫1 − 𝑏෠𝑏ିଵ൯ + 𝜆(𝑥̇ − 𝑥̇ௗ)൫1 − 𝑏෠𝑏ିଵ൯ + 𝜀(𝑢) − 𝑏෠𝑏ିଵ𝜀̂(𝑢) (3.132)

Using Equation 3.123, we can re-write this as:

𝑠̇ = −𝛽ିଵ𝐾ഥ𝑠𝑎𝑡 ൬
𝑠

𝜙
൰ + (𝑥̈ − 𝑥̈ௗ)(1 − 𝛽ିଵ) + 𝜆(𝑥̇ − 𝑥̇ௗ)(1 − 𝛽ିଵ) + 𝜀(𝑢) − 𝛽ିଵ𝜀̂(𝑢) (3.133)

Inside the boundary layer, 𝑠𝑎𝑡 ቀ
௦

థ
ቁ =

௦

థ
:

𝑠̇ = −𝛽ିଵ𝐾ഥ ൬
𝑠

𝜙
൰ + (𝑥̈ − 𝑥̈ௗ)(1 − 𝛽ିଵ) + 𝜆(𝑥̇ − 𝑥̇ௗ)(1 − 𝛽ିଵ) + 𝜀(𝑢) − 𝛽ିଵ𝜀̂(𝑢) (3.134)

Assuming the states are inside the boundary layer, 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small error term,
such that:

𝑠̇ = −𝛽ିଵ𝐾ഥ ൬
𝑠

𝜙
൰ + 𝜀(𝑢(𝑥ௗ)) − 𝛽ିଵ𝜀̂(𝑢(𝑥ௗ)) + 𝑂(𝜀)

(3.135)

Equation 3.135 is a first-order filter that can be tuned such that:

𝑠̇ +
𝜆

𝛽ଶ 𝑠 = 𝑢
(3.136)

Comparing the two equations gives us:

𝜆

𝛽ଶ =
𝐾ഥ(𝑥ௗ)

𝛽𝜙

(3.137)

Plugging in Equation 3.129 gives us:

38

𝜆

𝛽ଶ =
𝐾(𝑥ௗ) −

𝜙̇
𝛽

𝛽𝜙

(3.138)

Re-writing this gives us:

𝜙̇ + 𝜆𝜙 = 𝛽𝐾(𝑥ௗ) (3.139)

To ensure that the sliding condition is met when the states are inside the boundary layer, or 𝜙̇ <

0, the switching gain, 𝐾ഥ, is defined as:

𝐾ഥ(𝑥ௗ) = 𝐾(𝑥ௗ) − 𝛽𝜙̇ (3.140)

Plugging into Equation 3.137 we get:

𝜆

𝛽ଶ =
𝐾(𝑥ௗ) − 𝛽𝜙̇

𝛽𝜙

(3.141)

Re-writing gives us:

𝜙̇ +
𝜆

𝛽ଶ 𝜙 =
𝐾(𝑥ௗ)

𝛽

(3.142)

With 𝜙̇ ≥ 0 from Equation 3.139, we get:

𝜙̇ = 𝛽𝐾(𝑥ௗ) − 𝜆𝜙 ≥ 0 (3.143)

Or:

𝐾(𝑥ௗ) ≥
𝜆𝜙

𝛽

(3.144)

With 𝜙̇ ≤ 0 from Equation 3.142, we get:

𝜙̇ =
𝐾(𝑥ௗ)

𝛽
−

𝜆

𝛽ଶ 𝜙 ≤ 0
(3.145)

Or:

𝐾(𝑥ௗ) ≤
𝜆𝜙

𝛽

(3.146)

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we can show:

𝜙(0) =
𝛽

𝜆
𝐾(𝑥ௗ(0))

(3.147)

In summary, plugging in Equation 3.99 to Equations 3.130:

𝑢 = 𝑏෠ିଵ ൤−(𝑥̈ − 𝑥̈ௗ) − 𝜆(𝑥̇ − 𝑥̇ௗ) − 𝐾ഥ𝑠𝑎𝑡(
𝑠

𝜙
)൨ + 2𝑢௞ିଵ − 𝑢௞ିଶ

(3.148)

39

𝐾 = |(𝛽 − 1)||(𝑥̈ − 𝑥̈ௗ)| + |(𝛽 − 1)||𝜆(𝑥̇ − 𝑥̇ௗ)| + |(𝛽[1 + 𝜎௨] − 1)|ห𝑏෠(𝑢௞ିଶ − 𝑢௞ିଵ)ห + 𝛽𝜂 (3.149)

𝐾ௗ = |(𝛽ௗ[1 + 𝜎௨] − 1)||𝑏ො(𝑢௞ିଶ − 𝑢௞ିଵ)| + 𝛽ௗ𝜂 (3.150)

𝐾ௗ ≤
ఒథ

ఉ೏
⇒ 𝜙̇ + 𝜆𝜙 = 𝛽ௗ𝐾ௗ 𝐾ഥ = 𝐾 −

థ̇

ఉ
 (3.151)

𝐾ௗ ≥
ఒథ

ఉ೏
⇒ 𝜙̇ +

ఒథ

ఉ೏
మ =

௄೏

ఉ೏
 𝐾ഥ = 𝐾 − 𝛽𝜙̇ (3.152)

𝜙(0) =
𝛽𝑑𝐾𝑑(0)

𝜆

(3.153)

3.1.12 Derivation of MIMO Model-Free Control Law

For a MIMO system, the following discrete-time measurement model is assumed:

𝒙̈ = 𝒙̈ + 𝑩𝒖 − 𝑩𝒖𝒌ି𝟏 − 𝑩𝒖 + 𝑩𝒖𝒌ି𝟏 (3.154)
Or:

𝑥̈௜ = 𝑥̈௜ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.155)

Where 𝑥̈ is the measured acceleration, 𝑢 is the control system input, 𝑢௞ିଵ is the previous value
of the control system input, 𝑚 is the order of the system, and 𝑏 is the control input influence gain
that will be estimated. The input influence gain matrix, 𝑩, is assumed to be a 2 by 2 square
matrix defined as:

𝑩 = ൤
𝑏ଵଵ 𝑏ଵଶ

𝑏ଶଵ 𝑏ଶଶ
൨ (3.156)

Equation 3.154 can be re-written as:

𝒙̈ = 𝒙̈ + 𝑩𝒖 − 𝑩𝒖𝒌ି𝟏 + 𝜺(𝒖) (3.157)
Or:

𝑥̈௜ = 𝑥̈௜ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.158)

Where 𝜺(𝑢) is the estimation error in the input influence gain defined by:

𝜀௜(𝑢௜) = ෍ 𝑏௜௝(𝑥௜)(𝑢௞ିଵ௜
− 𝑢௜)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.159)

𝜺(𝑢) is assumed to be bounded by a known function, 𝑬, such that:

40

|𝜺ො(𝒖) − 𝜺(𝒖)| ≤ 𝑬 (3.160)
Where 𝜺ො(𝑢) is the estimated error in the input influence gain estimation assumed to be defined
by:

𝜀௜̂(𝑢௜) = ෍ 𝑏෠௜௝(𝑥௜)(𝑢௞ିଶ௜
− 𝑢௞ିଵ௜

)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.161)

And the actual error is bounded by the function:

(1 − 𝝈𝒍)𝜺ො(𝒖) ≤ 𝜺(𝒖) ≤ (1 + 𝝈𝒖)𝜺ො(𝒖) (3.162)
Where 𝝈𝒍 and 𝝈𝒖 are the lower and upper defined bounds respectively. The sliding surface for a
second-order system is defined as:

𝑠௜ = 𝑥̇௜ − 𝑥̇ௗ௜
+ 𝜆(𝑥௜ − 𝑥ௗ௜

)

𝑖 = 1, … , 𝑚

(3.163)

Where 𝑥 and 𝑥̇ are the system states to be measured and 𝑥ௗ and 𝑥̇ௗ are the desired states to be
tracked. Taking the derivative of the sliding surface results in:

𝑠̇௜ = 𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ = 0

𝑖 = 1, … , 𝑚

(3.164)

Plugging in Equation 3.158 and setting 𝑠̇ equal to zero ensures that the state error trajectories do
not move once they reach the sliding surface and gives us:

𝑠̇௜ = 𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

= 0

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.165)

The best estimate for the control input, 𝑢ො , to maintain 𝑠̇ equal to zero is therefore:

𝒖ෝ = 𝑩෡ ିଵ൫−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅)൯ + 𝒖𝒌ି𝟏 (3.166)

And adding a discontinuous term to satisfy the sliding condition gives us:

𝒖 = 𝑩෡ିଵ(−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅)) − 𝜼𝑠𝑔𝑛(𝑠௜)) + 𝒖𝒌ି𝟏
𝑖 = 1, … , 𝑚

(3.167)

Where 𝜂 is a matrix of positive constants. From Equation 3.112, we know that this controller
form verifies the sliding condition. Therefore, 𝜼 can be replaced with the system gain, 𝑲, in
Equation 3.167 resulting in:

𝒖 = 𝑩෡ ିଵ[−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲(𝑥)𝑠𝑔𝑛(𝑠௜)] + 𝒖𝒌ି𝟏

𝑖 = 1, … , 𝑚

(3.168)

We can define the sliding condition as:

41

𝑠௜𝑠̇௜ ≤ −𝜂௜|𝑠௜|
𝑖 = 1, … , 𝑚

(3.169)

Substituting in Equation 3.165 gives us:

𝑠௜ ቎𝑥̈௜ − 𝑥̈ௗ௜
+ 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ + 𝜀௜(𝑢௜) + ෍ 𝑏௜௝(𝑥௜)(𝑢௜ − 𝑢௞ିଵ௜
)

௠

௝ୀଵ

቏ ≤ −𝜂௜|𝑠௜|

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.170)

Substituting in the best estimate of the control input, 𝑢ො , for 𝑢 gives us:

𝒔̇ = 𝒙̈ − 𝒙̈𝒅 + 𝜆(𝒙̇ − 𝒙̇𝒅) + 𝜺(𝒖) + 𝑩൫𝑩෡ିଵ[−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲(𝑥)𝑠𝑔𝑛(𝑠௜)] + 𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟏൯

𝑖 = 1, … , 𝑚
(3.171)

Using the 𝑠௜𝐾௜𝑠𝑔𝑛(𝑠௜) = 𝐾௜|𝑠௜| and rearranging to isolate 𝐾௜|𝑠௜| gives us:

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ ൤൫𝑥̈௜ − 𝑥̈ௗ௜
൯ ቀ𝑏෠௜௝𝑏௜௝

ିଵ
− 1ቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ + ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ 𝜀௜̂(𝑢௜)

௠

௝ୀଵ

+ 𝑏෠௜௝𝑏௜௝
ିଵ

[𝜀௜(𝑢௜) − 𝜀௜̂(𝑢௜)]൨ + 𝑏෠௜௝𝑏௜௝
ିଵ

𝜂௜|𝑠௜|

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.172)

The most conservative estimate for the upper bound of 𝜺(𝑢) is defined as:

𝜺(𝑢) = (1 + 𝝈𝒖)𝜺ො(𝑢) (3.173)
Therefore, the 𝜺(𝑢) − 𝜺ො(𝑢) term can be redefined as:

𝜺(𝑢) − 𝜺ො(𝑢) = (1 + 𝝈𝒖)𝜺ො(𝑢) − 𝜺ො(𝑢) = 𝜺ො(𝑢) + 𝝈𝒖𝜺ො(𝑢) − 𝜺ො(𝑢) = 𝝈𝒖𝜺ො(𝑢) (3.174)
Plugging this into Equation 3.172 gives us:

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ ቂ൫𝑥̈௜ − 𝑥̈ௗ௜
൯ ቀ𝑏෠௜௝𝑏௜௝

ିଵ
− 1ቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ + ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ 𝜀௜̂(𝑢௜)

௠

௝ୀଵ

+ 𝑏෠௜௝𝑏௜௝
ିଵ

𝜎௨௜
𝜀௜̂(𝑢௜)ቃ + 𝑏෠௜௝𝑏௜௝

ିଵ
𝜂௜|𝑠௜|

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.175)

And rearranging this gives us:

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ ቂ൫𝑥̈௜ − 𝑥̈ௗ ௜
൯ ቀ𝑏෠௜௝𝑏௜௝

ିଵ
− 1ቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

− 1ቁ

௠

௝ୀଵ

+ ቀ𝑏෠௜௝𝑏௜௝
ିଵ

ൣ1 + 𝜎௨௜
൧ − 1ቁ 𝜀௜̂(𝑢௜)ቃ + 𝑏෠௜௝𝑏௜௝

ିଵ
𝜂௜|𝑠௜|

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.176)

Next, we define:

𝑩෡ = ට𝑩𝒍𝒐𝒘𝑩𝒖𝒑𝒑
(3.177)

𝜷 = ට𝑩𝒍𝒐𝒘
ିଵ𝑩𝒖𝒑𝒑 = 𝑩෡𝑩ି1

(3.178)

42

Where 𝑩𝒍𝒐𝒘 and 𝑩𝒖𝒑𝒑 are the lower and upper estimated bounds of the input influence gain

matrix respectively. Plugging these into Equation 3.176 gives us:

𝐾௜|𝑠௜| ≥ ෍ 𝑠௜ൣ൫𝑥̈௜ − 𝑥̈ௗ௜
൯൫𝛽௜௝

ିଵ − 1൯ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜
൯൫𝛽௜௝

ିଵ − 1൯ + ൫𝛽௜௝
ିଵൣ1 + 𝜎௨௜

൧ − 1൯𝜀௜̂(𝑢௜)൧ + 𝛽௜௝
ିଵ𝜂௜|𝑠௜|

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.179)

With the final equation for the system gain being:

𝑲 ≥ |(𝜷 − 1)||(𝒙̈ − 𝒙̈𝒅)| + |(𝜷 − 1)||𝜆(𝒙̇ − 𝒙̇𝒅)| + |(𝜷[1 + 𝝈𝒖] − 1)||𝜺ො(𝑢)| + 𝜷𝜼 (3.180)

In summary, plugging in Equation 3.161 to Equations and 3.168 and 3.180:

𝒖 = 𝑩෡ ିଵ[−(𝒙̈ − 𝒙̈𝒅) − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲𝑠𝑔𝑛(𝑠௜)] + 2𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟐

𝑖 = 1, … , 𝑚

(3.181)

𝑲 = |(𝜷 − 1)||(𝒙̈ − 𝒙̈𝒅)| + |(𝜷 − 1)||𝜆(𝒙̇ − 𝒙̇𝒅)| + |(𝜷[1 + 𝝈𝒖] − 1)|ห𝑩෡(𝒖𝒌ି𝟐 − 𝒖𝒌ି𝟏)ห + 𝜷𝜼 (3.182)

Including a boundary layer, the sliding condition becomes:

𝑠௜𝑠̇௜ ≤ (𝜙̇௜ − 𝜂௜)|𝑠௜|
𝑖 = 1, … , 𝑚

(3.183)

Where m is the order of the system. To ensure that the sliding condition, (𝝓̇ − 𝜼) ≤ 0, is met

when the states are outside the boundary layer, or 𝝓̇ > 0, the switching gain is defined as:

𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ (3.184)

From Equation 3.168, 𝐾𝑠𝑔𝑛(𝑠) is replaced with 𝐾ഥ𝑠𝑎𝑡(
௦

థ
):

𝒖 = 𝑩෡ିଵ ൤−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ + 𝒖𝒌ି𝟏

𝑖 = 1, … , 𝑚

(3.185)

Plugging into Equation 3.165 gives us:

𝒔̇ = 𝒙̈ − 𝒙̈𝒅 + 𝜆(𝒙̇ − 𝒙̇𝒅) + 𝜺(𝒖) + 𝑩 ൬𝑩෡ିଵ ൤−𝜺ො(𝒖) − 𝒙̈ + 𝒙̈𝒅 − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜

൰൨ + 𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟏൰

𝑖 = 1, … , 𝑚

(3.186)

And rearranging this gives us:

𝒔̇ = −𝑩𝑩෡ ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜

൰ + (𝒙̈ − 𝒙̈𝒅)൫1 − 𝑩𝑩෡ିଵ൯ + 𝜆(𝒙̇ − 𝒙̇𝒅)൫1 − 𝑩𝑩෡ିଵ൯ + 𝜺(𝑢) − 𝑩𝑩෡ିଵ𝜺ො(𝑢)

𝑖 = 1, … , 𝑚

(3.187)

Using Equation 3.178, we can re-write this as:

𝒔̇ = −𝜷ିଵ𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜

൰ + (𝒙̈ − 𝒙̈𝒅)(1 − 𝜷ିଵ) + 𝜆(𝒙̇ − 𝒙̇𝒅)(1 − 𝜷ିଵ) + 𝜺(𝑢) − 𝜷ିଵ𝜺ො(𝑢) (3.188)

43

𝑖 = 1, … , 𝑚

Inside the boundary layer, 𝑠𝑎𝑡 ቀ
௦೔

థ೔
ቁ =

௦೔

థ೔
, so we can re-write this as:

𝑠̇௜ = ෍ − ቆ
𝐾ഥ𝑖(𝑥𝑖)

𝛽௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + ൫𝑥̈ − 𝑥̈ௗ௜

൯ ቀ1 − 𝛽௜௝
ିଵቁ + 𝜆൫𝑥̇௜ − 𝑥̇ௗ௜

൯ ቀ1 − 𝛽௜௝
ିଵቁ + 𝜀௜(𝑢) − 𝛽௜௝

ିଵ𝜀௜̂(𝑢)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.189)

Assume that inside the boundary layer, 𝑥⃑ = 𝑥ௗሬሬሬሬ⃑ + 𝜀, where 𝜀 is a small error term, such that:

𝑠̇௜ = ෍ − ቆ
𝐾ഥ𝑖(𝑥ௗ௜

)

𝛽
௜௝

ቇ ൬
𝑠௜

𝜙௜
൰ + 𝜀௜(𝑢) − 𝛽

௜௝
ିଵ𝜀௜̂(𝑢)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.190)

Equation 3.190 is a first-order filter that can be tuned such that:

𝒔̇ + 𝜆𝜷ିଶ𝒔 = 𝒖 (3.191)

Comparing the two equations gives us:

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾ഥ𝑖(𝑥ௗ௜

)

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.192)

Plugging in Equation 3.184 gives us:

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

ିଵ𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.193)

Re-writing gives us:

𝜙̇௜ + 𝜆𝜙௜ = ෍ 𝛽
௜௝

𝐾௜(𝑥ௗ௜
)

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.194)

Or, in vector form:

𝝓̇ + 𝜆𝝓 = 𝜷𝑲(𝑥ௗ) (3.195)

To ensure that the sliding condition is met when the states are inside the boundary layer, or 𝝓̇ <

0, the switching gain, 𝐾ഥ, is defined as:

𝑲ഥ(𝑥ௗ) = 𝑲(𝑥ௗ) − 𝜷𝝓̇ (3.196)

Plugging into Equation 3.192 we get:

44

෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

= ෍
𝐾௜(𝑥ௗ௜

) − 𝛽
௜௝

𝜙̇௜

𝛽
௜௝

𝜙௜

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.197)

Re-writing gives us:

𝜙̇௜ + ෍ 𝜆𝛽
௜௝

ିଶ

௠

௝ୀଵ

𝜙௜ = ෍
𝐾௜(𝑥ௗ௜

)

𝛽
௜௝

௠

௝ୀଵ

𝑖 = 1, … , 𝑚 𝑗 = 1, … , 𝑚

(3.198)

Or, in vector form:

𝝓̇ + 𝜆𝜷ିଶ𝝓 = 𝜷ିଵ𝑲(𝑥ௗ) (3.199)

With 𝝓̇ ≥ 0 from Equation 3.195, we get:

𝝓̇ = 𝜷𝑲(𝑥ௗ) − 𝜆𝝓 ≥ 0 (3.200)

Or:

𝑲(𝑥ௗ) ≥ 𝜆𝜷ିଵ𝝓 (3.201)

With 𝝓̇ ≤ 0 from Equation 3.199, we get:

𝝓̇ = 𝜷ିଵ𝐾(𝑥ௗ) − 𝜆𝜷ିଶ𝝓 ≤ 0 (3.202)

Or:

𝑲(𝑥ௗ) ≤ 𝜆𝜷ିଵ𝝓 (3.203)

Assuming 𝑥⃑(0) = 𝑥ௗሬሬሬሬ⃑ (0), we find:

𝝓(0) =
1

𝜆
𝜷𝑲(𝑥ௗ(0))

(3.204)

In summary, plugging Equation 3.161 into Equation 3.185:

𝒖 = 𝑩෡ିଵ ൤−(𝒙̈ − 𝒙̈𝒅) − 𝜆(𝒙̇ − 𝒙̇𝒅) − 𝑲ഥ(𝑥)𝑠𝑎𝑡 ൬
𝑠௜

𝜙௜
൰൨ + 2𝒖𝒌ି𝟏 − 𝒖𝒌ି𝟐

𝑖 = 1, … , 𝑚

(3.205)

𝑲 = |(𝜷 − 1)||(𝒙̈ − 𝒙̈𝒅)| + |(𝜷 − 1)||𝜆(𝒙̇ − 𝒙̇𝒅)| + |(𝜷[1 + 𝝈𝒖] − 1)|ห𝑩෡(𝒖𝒌ି𝟐 − 𝒖𝒌ି𝟏)ห + 𝜷𝜼 (3.206)

𝑲𝒅 = |(𝜷𝒅[1 + 𝝈𝒖] − 1)||𝑩ෝ(𝒖𝒌ି𝟐 − 𝒖𝒌ି𝟏)| + 𝜷𝒅𝜼 (3.207)

𝑲(𝑥ௗ) ≥ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝝓 = 𝜷
𝒅

𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷ିଵ𝝓̇ (3.208)

𝑲(𝑥ௗ) ≤ 𝜆𝜷
𝒅

ିଵ𝝓 𝝓̇ + 𝜆𝜷
𝒅

ିଶ𝝓 = 𝜷
𝒅

ିଵ𝑲(𝑥ௗ) 𝑲ഥ(𝑥) = 𝑲(𝑥) − 𝜷𝝓̇ (3.209)

45

𝝓(0) =
1

𝜆
𝜷𝑲(𝑥ௗ(0))

(3.210)

3.2 Online Parameter Estimation Methods

The basis of parameters estimation is extracting parameter values from measurable system
outputs. A general model for parameter estimation can be defined as (Slotine and Li [23]):

𝑦(𝑘𝑇) = 𝑊(𝑘𝑇)𝑏(𝑘𝑇) (3.211)
Where 𝑏 is the parameter to be estimated, which in our case is the input influence gain, vector 𝑦
includes the outputs from the system used for estimation, 𝑊 is a signal matrix, 𝑇 is the discrete
time step, and 𝑘 is an integer multiplier. This model is only valid for discrete time. The predicted
system output, 𝑦ො, at time 𝑡, can be defined as:

𝑦ො(𝑘𝑇) = 𝑊(𝑘𝑇)𝑏෠(𝑘𝑇) (3.212)

Where 𝑏෠ is the predicted parameter at time 𝑡. Online estimation is based around the fact that the

value of 𝑏෠ is found recursively. In other words, it is updated every time there is a new set of data
for 𝑦 and 𝑊. The instantaneous prediction error, 𝑒1, can then be defined as:

𝑒1 = 𝑦ො(𝑘𝑇) − 𝑦(𝑘𝑇) (3.213)

Or, plugging in Equations 3.211 and 3.212:

𝑒1 = 𝑊𝑏෠(𝑘𝑇) − 𝑊𝑏(𝑘𝑇) = 𝑊𝑏෨ (3.214)

3.2.1 Standard Least-Squares Estimator

The standard least-squares method has the advantage of averaging out the effects of noise in
measurements. This method can be implemented by minimizing the total prediction error with

respect to 𝑏෠(𝑡) (Slotine and Li [23]):

𝐽 = න ቚห𝑦(𝑟) − 𝑊(𝑟)𝑏෠(𝑡)หቚ
ଶ௧

௢

𝑑𝑟
(3.215)

Where the estimated parameter 𝑏෠ satisfies:

න (𝑊்(𝑟)𝑊(𝑟)𝑑𝑟)𝑏෠(𝑡)
௧

௢

= න 𝑊்𝑦𝑑𝑟
௧

௢

(3.216)

We can then define:

𝑃(𝑡) = [න (𝑊்(𝑟)𝑊(𝑟)𝑑𝑟)
௧

௢

]ିଵ
(3.217)

46

But for computational efficiency, it is better to calculate P, the estimator gain matrix, recursively,
so the above equation can be replaced with the following differential equation:

𝑃̇ିଵ = 𝑊்(𝑡)𝑊(𝑡) (3.218)

This can give us the equation:

𝑑

𝑑𝑡
ൣ𝑏෠൧ = −𝑃(𝑡)𝑊்𝑒ଵ

(3.219)

To be able to update P directly, we use the following identity:

𝑑

𝑑𝑡
[𝑃𝑃ିଵ] = 𝑃̇𝑃ିଵ + 𝑃𝑃̇ିଵ = 0

(3.220)

To get the equation:

𝑃̇ = −𝑃𝑊்𝑊𝑃 (3.221)

To successfully implement this method, P and 𝑏෠ must be initialized with finite values. The initial

value of P should be as high as possible within noise sensitivity constraints and 𝑏෠ should be a
best guess.

3.2.2 Convergence

Solving the differential Equations 3.218 and 3.219 above and using Equation 3.221 we can show

that (Slotine and Li [23]):

𝑃ିଵ(𝑡) = 𝑃ିଵ(0) + න 𝑊்(𝑟)𝑊(𝑟)𝑑𝑟
௧

଴

(3.222)

𝑑

𝑑𝑡
ൣ𝑃ିଵ(𝑡)𝑏෨(𝑡)൧ = 0

(3.223)

From which we can define:

𝑏෨(𝑡) = 𝑃(𝑡)𝑃ିଵ(0)𝑏෨(0) (3.224)

If 𝑊 meets the criteria of:

𝜆௠௜௡ ∫ 𝑊்𝑊𝑑𝑟
௧

଴
→ ∞ as 𝑡 → ∞

Where 𝜆௠௜௡ is the smallest eigenvalue of 𝑊, then the gain matrix converges to zero and the

estimated parameters asymptotically converge to their true values. Additionally, for any positive

integer value of k:

47

න 𝑊்𝑊𝑑𝑟
௞ఋାఋ

଴

= ෍ න 𝑊்𝑊𝑑𝑟
௜ఋାఋ

௜ఋ

௞

௜ୀ଴

≥ 𝑘𝛼ଵ𝐼
(3.225)

Where 𝛿 and 𝛼ଵ are positive constants. Therefore, if 𝑊 is under persistent excitation, the above

equation is satisfied and 𝑃 → 0 and 𝑏෨ → 0.

An initial parameter error, 𝑏෨(0), or large initial gain, 𝑃(0), can lead to a small parameter error
for all time. If the initial gain is chosen such that 𝑃(0) = 𝑝0𝐼, then:

𝑏෨(𝑡) = ቈ𝐼 + 𝑝଴ න 𝑊்(𝑟)𝑊(𝑟)𝑑𝑟
௧

଴

቉

ିଵ

𝑏෨(0)
(3.226)

3.2.3 Least-Squares with Exponential Forgetting

When estimating time-varying parameters, it is known that past data is generated by past
parameter values. Therefore, this past data should be discounted when estimating the current
value of parameters. To implement exponential forgetting into least square estimation, the
following cost function is defined (Slotine and Li [23]):

𝐽 = න 𝑒𝑥𝑝[− න 𝜆(𝑟)𝑑𝑟
௧

௦

] ቚห𝑦(𝑠) − 𝑊(𝑠)𝑏෠(𝑡)หቚ
ଶ

𝑑𝑠
௧

௢

(3.227)

Where 𝜆(𝑡) ≥ 0 is the time-varying forgetting factor. The parameter update law stays the same
as:

𝑑

𝑑𝑡
𝑏෠ = −𝑃(𝑡)𝑊்𝑒ଵ

(3.228)

But the gain update law has changed to be:

𝑑

𝑑𝑡
[𝑃ିଵ(𝑡)] = −𝜆(𝑡)𝑃ିଵ + 𝑊்(𝑡)𝑊(𝑡)

(3.229)

Which can be implemented to directly update P in the form of:

𝑃̇ = 𝜆(𝑡)𝑃 − 𝑃𝑊்(𝑡)𝑊(𝑡)𝑃 (3.230)

This exponential forgetting method improves parameter convergence over the traditional least-

squares method by creating exponential convergence of the parameters to their final values. This

is done while still guaranteeing asymptotic convergence of estimated parameters.

3.2.4 Control Law Implementation

Including a boundary layer, we define the sliding condition as:

48

𝑠𝑠̇ ≤ (𝜙̇ − 𝜂)|𝑠| (3.231)

To ensure the global asymptotic stability of the system, we want to ensure that the sliding

condition is met. Thus, we define our instantaneous parameter estimation error based on meeting

the sliding condition as shown below:

𝑒1 = (𝜙̇ − 𝜂)|𝑠| − 𝑠𝑠̇ (3.232)

The value of 𝑒1 is minimized as the state trajectories reach the boundary layer. A boundary layer
closing function is also defined as:

|𝑠| ≥ 𝜙 ⇒ 𝑒1 = (𝜙̇ − 𝜂)|𝑠| − 𝑠𝑠̇ (3.233)
|𝑠| < 𝜙 ⇒ 𝑒1 = −ൣ(𝜙̇ − 𝜂)|𝑠| − 𝑠𝑠̇൧ (3.234)

As the state trajectory reaches a point within the boundary layer, this function starts to reduce the
size of the boundary layer. Reducing the size of the boundary layer decreases tracking error and
controller input over time.

For the implementation of Equation 3.230, the signal matrix, 𝑊 was defined as:

𝑊 = |𝑠| (3.235)
This was done to ensure that the value of 𝑏෠ varied while the value of the sliding surface varied

over time.

3.2.5 Bounded Gain Forgetting Factor Tuning

The benefit of data forgetting is the ability to track slowly varying parameters. However, the gain

matrix 𝑃 can grow unbounded when 𝑊 is not persistently exciting. Therefore, it is desirable to

tune the forgetting factor variation such that data forgetting is active when 𝑊 is persistently

exciting and not active when 𝑊 is not persistently exciting. The magnitude of the gain matrix 𝑃

indicates the excitation level of 𝑊. Therefore, the forgetting factor variation can be made

dependent on ‖𝑃(𝑡)‖ (Slotine and Li [23]) such that:

𝜆(𝑡) = 𝜆0 ቆ1 −
‖𝑃(𝑡)‖

𝑘0
ቇ

(3.236)

Where 𝜆0 is the maximum forgetting rate and 𝑘0 is the bound for the gain matrix magnitude and

both are positive constants. A higher value of 𝜆0 leads to faster forgetting but more oscillations in

the estimated parameters. A higher value of 𝑘0 updates the parameter estimation values faster but

makes the estimator less robust to disturbances in the prediction error. In order for 𝑘0 to be the

upper bound of the gain matrix, we choose ‖𝑃(0)‖ ≤ 𝑘0.

49

Figure 7: Position Tracking with Constant
Input Influence Gain

Figure 8: Velocity Tracking with Constant
Input Influence Gain

Figure 9: Acceleration Tracking with
Constant Input Influence Gain

Figure 10: Controller Input with Constant
Input Influence Gain

3.3 Implementation Results

All of the following simulations used a sampling time of 0.001 seconds as it is easily obtained on
current aircraft control systems. A single desired tracking and parameter varying frequency was
used for each system because the effects of different frequencies were studied in past work by
Dr. Crassidis.

3.3.1 SISO System

The derived control law was implemented on the following nonlinear second-order system:

𝑥̈ + 3𝑥𝑥̇ + 5𝑥ଶ = 3𝑢

With the desired tracking being:

𝑥ௗ(𝑡) = 𝑠𝑖𝑛 ቀ
𝜋

2
𝑡ቁ

The results of simulating the system with the derived control law for 60 seconds and an assumed
constant input influence gain of 3 are shown below:

50

Figure 11: Sliding Condition with Constant
Input Influence Gain

Figure 12: Boundary Layer Dynamics with
Constant Input Influence Gain

Figure 13: Input Influence Gain Estimate
with Constant Input Influence Gain

Figure 14: Lambda Estimate with Constant
Input Influence Gain

Based on experience in the tracking of aircraft systems, Figures 7, 8, and 9 show that the system
was deemed to have excellent tracking. The sliding condition was also met as time went on and
the estimate for the input influence gain and 𝜆 were both convergent as shown by Figures 11, 13,
and 14. This was accomplished with a controller input that was smooth and adequately small as
shown in Figure 10.

Note: the control input influence gain value does not need to be known before simulating the
system with the control system as the control system is wholly model-free. However, to decrease
controller activity, the upper and lower bounds of the input influence gain estimate can be

51

Figure 15: Input Influence Gain

Figure 16: Position Tracking with Varying
Input Influence Gain

Figure 17: Velocity Tracking with Varying
Input Influence Gain

redefined in further simulations to encompass the final estimated value of the input influence
gain.

To demonstrate the robustness of this control law, the input influence gain was varied using a
sine wave defined as:

𝑏(𝑡) = ൬
𝑏௨௣௣ − 𝑏௟௢௪

2
൰ sin(𝑡) +

𝑏௨௣௣ + 𝑏௟௢௪

2

Where 𝑏௨௣௣ and 𝑏௟௢௪ are the upper and lower estimated bounds of the input influence gain

respectively. This is shown in Figure 15. These results of this simulation are also shown below:

52

Figure 18: Acceleration Tracking with
Varying Input Influence Gain

Figure 19: Control Input with Varying Input
Influence Gain

Figure 20: Sliding Condition Tracking with
Varying Input Influence Gain

Figure 21: Boundary Layer Dynamics
Tracking with Varying Input Influence Gain

Figure 22: Input Influence Gain Estimate
with Varying Input Influence Gain

Figure 23: Lambda Estimate with Varying
Input Influence Gain

53

Figure 24: MIMO Input Influence Gain Figure 25: MIMO Position Tracking

As seen in Figures 16, 17, and 18, the controller still provides excellent position, velocity, and
acceleration tracking. Again, sliding condition is met and the estimates for the input influence
gain and 𝜆 are both convergent while the control input is smooth and adequately small.

3.3.2 MIMO System

The control law was also updated to control an example second-order MIMO system as defined
by:

𝑥̈ଵ + 𝑥ଵ𝑥ଶ − 3𝑥̇ଵ + 4𝑥ଶ
ଷ = 𝑏ଵ𝑢ଵ

𝑥̈ଶ + 4𝑥̇ଶ𝑥ଵ + 𝑥ଵ
ଶ + 7𝑥ଶ = 𝑏ଶ𝑢ଶ

With the desired tracking defined by:

𝑥ଵௗ
(𝑡) = sin ቀ

𝜋

2
𝑡ቁ

𝑥ଶௗ
(𝑡) = sin ቀ

𝜋

4
𝑡ቁ

 The input influence gains 𝑏ଵ and 𝑏ଶ were varied as described in Section 3.3.1 to demonstrate the
robustness of the control law. This is shown in Figure 24. Two separate SISO control laws were
used to control each variable.

54

Figure 26: MIMO Velocity Tracking Figure 27: MIMO Acceleration Tracking

Figure 28: 𝑥ଵ Sliding Condition Figure 29: 𝑥ଶ Sliding Condition

Figure 30: 𝑥ଵ Boundary Layer Dynamics Figure 31: 𝑥ଶ Boundary Layer Dynamics

55

Figure 32: MIMO Input Influence Gain
Estimate

Figure 33: MIMO Lambda Estimate

Figure 34: MIMO Controller Input

3.3.3 First-Order System

In preparation for the control of roll and yaw rate for an aircraft, the control law was updated to
control a first-order SISO system. This included the re-derivation of the control law after the
sliding surface and derivative of the sliding surface are updated such that:

𝑠 = 𝑥 − 𝑥ௗ + 𝜆 න (𝑥 − 𝑥ௗ)𝑑𝑡
௧

଴

(3.237)

𝑠̇ = 𝑥̇ − 𝑥̇ௗ + 𝜆(𝑥 − 𝑥ௗ) (3.238)
This control law was implemented on an example first-order SISO system defined as:

𝑥̇ + 7𝑥 + 5𝑥ଷ = 𝑏𝑢
Where the input influence gain, 𝑏, was time varying as described in Section 3.3.1. The desired
tracking signal was updated to be a step function with a magnitude of 1 ran through a transfer
function. To generate a desired “roll” signal, a first-order transfer function was used such that:

56

Figure 35: Roll Rate Tracking Figure 36: Roll Acceleration Tracking

Figure 37: Roll Boundary Layer Dynamics Figure 38: Roll Sliding Condition

𝑝ௗ

𝛿௔
=

𝐾

𝜏𝑠 + 1

Where 𝑝ௗ is the desired roll rate, 𝛿௔ is the aileron step function input, 𝜏 is a roll-mode time
constant set to 0.3 seconds, and 𝐾 is a gain set to 1. The results of simulating the system with the
updated control law are shown below:

57

Figure 39: Position Tracking with Varying
Input Influence Gain

Figure 40: Position Tracking with Varying
Input Influence Gain

Figure 41: Roll Lambda Estimate

Figure 39: Roll Input Influence Gain Figure 40: Roll Input Influence Gain
Estimate

Figure 42: Roll Control Input

As seen in Figures 35 and 36, the controller still provides excellent tracking of roll rate and
acceleration. Again, the sliding condition is met and the estimates for the input influence gain
and λ are both convergent while the control input is smooth and adequately small.

3.3.4 Full Control of Lateral Directional State Space Model

The first aircraft representative system the controller was implemented on was a
lateral/directional state space model:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑦 = 𝐶𝑥 + 𝐷𝑢

Where:

58

Figure 43: State Space Roll Input Position
Tracking

Figure 44: State Space Roll Input Velocity
Tracking

𝐴 = ቌ

-0.2316
-29.4924

0.0633
-3.0169

6.2346
0.0000

-0.0274
1.0000

-0.9956
0.0201

0.0510
0.0000

-0.4169
0.0631

0.0000
0.0000

ቍ 𝐵 = ቌ

-0.0052
36.4909

-0.0310
-8.1090

0.4916
0.0000

2.8274
0.0000

ቍ

𝐶 =

⎝

⎜⎜
⎛

1.0000 0.0000
0.0000 1.0000
0.0000 0.0000

0.0000 0.0000
0.0000 0.0000
1.0000 0.0000

0.0000 0.0000
-29.4924 -3.0169
6.2346 -0.0274

0.0000 1.0000
0.0201 0.0000
-0.4169 0.0000⎠

⎟⎟
⎞

𝐷 =

⎝

⎜⎜
⎛

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
36.4909
0.4916

0.0000
-8.1090
2.8274 ⎠

⎟⎟
⎞

And,

𝑥 = ቌ

𝑝
𝑟
𝑝̇
𝑟̇

 ቍ

Where 𝑝 is roll rate and 𝑟 is yaw rate. Our main goal was to control the system to track a roll rate
step input while maintaining zero yaw rate or vice versa. Separate SISO control laws were used
for roll and yaw rate. The roll rate step input was generated as described in Section 3.3.4. The
yaw rate step input fed through a second-order transfer function:

𝑟ௗ

𝛿௥
=

𝜔௡

𝑠ଶ + 2𝜁𝜔௡ + 𝜔௡
ଶ

Where 𝑟ௗ is the desired yaw rate, 𝛿௥ is the rudder step input, 𝜔௡ is the Dutch roll natural
frequency of 2 rad/sec and 𝜁 is the damping ratio of 0.8 as characterized by a level 1 aircraft.

Two separate SISO control laws were used to control each variable. First, a desired roll step
input of 20 rad/sec was generated with zero desired yaw rate. The results of this simulation are
shown below:

59

Figure 45: State Space Roll Input Input
Influence Gain Estimate

Figure 46: State Space Roll Input Lambda
Estimate

Figure 47: State Space Roll Input Roll
Boundary Layer Dynamics

Figure 48: State Space Roll Input Yaw
Boundary Layer Dynamics

Figure 50: State Space Roll Input Yaw
Sliding Condition

Figure 49: State Space Roll Input Roll
Sliding Condition

60

Figure 51: State Space Roll Input Control
Input

Figure 52: State Space Yaw Input Position
Tracking

Figure 53: State Space Yaw Input Velocity
Tracking

Figures 43 and 44 show that the controller achieved very good roll and yaw rate and acceleration
tracking. Figure 51 shows that the controller effort is reasonable. Figure 45 shows us that the
input influence gain estimated for both roll and yaw converge to a single value. Figure 46 also
shows this for the estimate of lambda where the estimate for roll and yaw both converge to the
actual value of lambda. Most importantly, Figures 49 and 50 show that the sliding condition was
met.

Next, a desired yaw step input of 10 rad/sec was generated with zero desired roll rate. The results
of this simulation are shown below:

61

Figure 54: State Space Yaw Input Input
Influence Gain Estimate

Figure 55: State Space Yaw Input Lambda
Estimate

Figure 56: State Space Yaw Input Roll
Boundary Layer Dynamics

Figure 57: State Space Yaw Input Yaw
Boundary Layer Dynamics

Figure 58: State Space Yaw Input Roll
Sliding Condition

Figure 59: State Space Yaw Input Yaw
Sliding Condition

62

Figure 60: State Space Yaw Input Control
Input

Again, Figures 52 and 53 show that the controller achieved very good roll and yaw rate and
acceleration tracking. However, it did not perform as well as it did for a desired roll rate. Figure
60 shows that the controller effort is reasonable. Figure 54 shows us that the input influence gain
estimated for both roll and yaw converge to a single value. Figure 55 also shows this for the
estimate of lambda where the estimate for roll and yaw both converge to the actual value of
lambda. Most importantly, Figures 58 and 59 show that the sliding condition was met.

3.3.5 Input Influence Gain Matrix MIMO Example

The MIMO control law derived in was implemented in the control of a MIMO system as defined

by:

𝑥̈ଵ + 𝑎ଵ(𝑡)𝑥̇ଵ
ଶ cos(𝑥ଵ) 𝑥ଶ = 6𝑢ଵ + 4𝑢ଶ

𝑥̈ଶ + 𝑎ଶ(𝑡)𝑥̇ଶ
ଶ𝑥ଶ𝑥̇ଵ = 2𝑢ଵ + 3𝑢ଶ

1 ≤ 𝑎ଵ(𝑡) ≤ 2

4 ≤ 𝑎ଶ(𝑡) ≤ 6

Where 𝑎ଵ and 𝑎ଶ were made time-varying such that:

𝑎(𝑡) = ቀ
𝑎௨௣௣ − 𝑎௟௢௪

2
ቁ sin(𝑡) +

𝑎௨௣௣ + 𝑎௟௢௪

2

Where 𝑎௨௣௣ and 𝑎௟௢௪ are the upper and lower estimated bounds of the gains respectively. The

input influence gains were also varied by adding to them a sine function defined by:

𝑓(𝑡) = sin(3𝑡)

63

Figure 61: MIMO Gain Matrix Constant
B.L. Position Tracking

Figure 62: MIMO Gain Matrix Constant
B.L. Velocity Tracking

Figure 63: MIMO Gain Matrix Constant
B.L. Acceleration Tracking

Figure 64: MIMO Gain Matrix Constant
B.L. Controller Input

The desired tracking was defined by:

𝑥ଵௗ
(𝑡) = sin ቀ

𝜋

2
𝑡ቁ

𝑥ଶௗ
(𝑡) = cos ቀ

𝜋

2
𝑡ቁ

Here, a single MIMO control law as derived in Section 3.1.12 was used to control both variables.
However, the square input influence gain matrix was set to be constant and was not estimated in
real-time. First, a constant boundary layer magnitude of 0.5 was used to show the effectiveness
of the control law. The results are shown below:

64

Figure 65: MIMO Gain Matrix Constant
B.L. 𝑥ଵ B.L Dynamics

Figure 66: MIMO Gain Matrix Constant
B.L. 𝑥ଶ B.L Dynamics

Figure 67: MIMO Gain Matrix Constant
B.L. 𝑥ଵ Sliding Condition

Figure 68: MIMO Gain Matrix Constant
B.L. 𝑥ଶ Sliding Condition

Figures 61, 62, and 63 show that this controller had a great tracking response for position,
velocity, but there were a lot of initial oscillations in acceleration tracking. This was achieved
with a smooth and small magnitude controller input as shown in Figure 64. The sliding surface
stayed within the boundary layer and the sliding condition met for both variables, guaranteeing
stability. In an effort to improve performance, the boundary layer was made time varying. The
results of this are shown below:

65

Figure 71: MIMO Gain Matrix Varying
B.L. Acceleration Tracking

Figure 72: MIMO Gain Matrix Varying
B.L. Controller Input

Figure 73: MIMO Gain Matrix Varying
B.L. 𝑥ଵ B.L Dynamics

Figure 74: MIMO Gain Matrix Varying
B.L. 𝑥ଶ B.L Dynamics

Figure 69: MIMO Gain Matrix Varying
B.L. Position Tracking

Figure 70: MIMO Gain Matrix Varying
B.L. Velocity Tracking

66

Figure 75: MIMO Gain Matrix Varying
B.L. 𝑥ଵ Sliding Condition

Figure 76: MIMO Gain Matrix Varying
B.L. 𝑥ଶ Sliding Condition

Figure 77: State Space Gain Matrix Roll
Input Position Tracking

Figure 78: State Space Gain Matrix Roll
Input Velocity Tracking

Figures 69 and 70 show that the controller retains its great position and velocity tracking. Figure
71 shows that there was slightly better acceleration tracking with less oscillation in the beginning
of the simulation. There was still a smooth and small magnitude controller input. Again, the
sliding surface stayed within the boundary layer and the sliding condition was met for both
variables.

3.3.6 Input Influence Gain Matrix for State Space Model

The MIMO control method derived in Section 3.1.12 was implemented in the control of the
lateral-direction state space model defined in Section 3.3.4. However, all of the elements in the B
matrix were set to be positive. Again, the square input influence gain matrix in the control law
was kept constant and was not estimated in real-time. A desired roll input with a magnitude of 20
was generated using the method defined in Section 3.3.3. The results of this simulation are
shown below:

67

Figure 79: State Space Gain Matrix Roll
Input Roll B.L Dynamics

Figure 80: State Space Gain Matrix Roll
Input Yaw B.L Dynamics

Figure 81: State Space Gain Matrix Roll
Input Roll Sliding Condition

Figure 82: State Space Gain Matrix Roll
Input Yaw Sliding Condition

Figure 83: State Space Gain Matrix Roll
Input Controller Input

68

Figure 84: State Space Gain Matrix Yaw
Input Position Tracking

Figure 85: State Space Gain Matrix Yaw
Input Velocity Tracking

Figure 86: State Space Gain Matrix Yaw
Input Roll B.L Dynamics

Figure 87: State Space Gain Matrix Yaw
Input Yaw B.L Dynamics

Figure 77 shows that the controller had great roll and yaw rate tracking performance. The roll
acceleration tracking shown in Figure 78 is slightly worse. Figures 79 and 81 show that the roll
rate sliding surface does not remain within the boundary layer and the sliding condition was not
met initially after each step input. However, the controller quickly counteracted the effects and
brought the sliding surface back within the boundary layer and satisfies the sliding condition.
The yaw rate sliding surface remains within the boundary layer and the sliding condition remains
satisfied for the entire simulation time. This was achieved with a controller input that was
smooth and had a small magnitude.

Next, a desired yaw step input of 10 rad/sec was generated with zero desired roll rate. The results
of this simulation are shown below:

69

Figure 89: State Space Gain Matrix Yaw
Input Yaw Sliding Condition

Figure 88: State Space Gain Matrix Yaw
Input Roll Sliding Condition

Figure 90: State Space Gain Matrix Yaw
Input Controller Input

Figure 84 shows that again, the controller had great roll and yaw rate tracking performance.
However, there was a lot of oscillations in the roll acceleration tracking shown in Figure 85.
Figures 86 and 88 show that the roll rate sliding surface does not remain within the boundary
layer and the sliding condition was not met initially after each step input. However, the controller
quickly counteracted the effects and brought the sliding surface back within the boundary layer
and satisfies the sliding condition. The yaw rate sliding surface remains within the boundary
layer and the sliding condition remains satisfied for the entire simulation time. This was also
achieved with a controller input that was smooth and had a small magnitude.

70

4.0 CONCLUSION

This work encompassed the development of a model-free sliding mode control system for the
application of roll and yaw rate control for an aircraft. This control system is model-free in that
no system model is needed to design a controller. The control input is calculated based on only
knowledge of the system order, state measurements, and the previous control inputs. The model-
free nature of this control system is enabled by the online estimation of the input influence gain.
When implemented on SISO and MIMO nonlinear systems the control system provided good
tracking performance while ensuring global asymptotic stability. It was also robust to modeling
uncertainty. The least-squares online parameter estimation method used to estimate the input
influence gain satisfied the sliding condition while guaranteeing global asymptotic stability. It
also provided values that were convergent and realistic. Finally, this control method was shown
to work on a lateral-directional state space model of an aircraft for roll and yaw rate control.
Therefore, this method is feasible for roll and yaw rate control in an aircraft.

4.1 Application

The majority of existing control methods require extensive development and tuning. This is
becoming a problem as nonlinear systems become more complex with advancements in
technology. It is becoming time intensive to define a mathematical model of these systems.
Oftentimes, the final models are not perfect and have parameter uncertainty. SMC is being
applied more widely for its robustness against modeling uncertainty and external disturbances.
Thus, SMC saves time and money by eliminating most of the development and tuning needed.
However, accurate approximations of system dynamics are still needed for traditional SMC
design.

The work laid out here is truly model-free, requiring only knowledge of the system order, state
measurements, and the previous control inputs for derivation of the control law. Thus, the time,
money, and effort needed for the system modeling and tuning usually required by traditional
SMC and other control methods is eliminated. The work expands the MFSMC to MIMO systems
which expands the utility of the MFSMC to a wide range of systems. This also includes the
control of an aircraft, specifically in the lateral and directional axes. The MFSMC is theoretically
the most efficient in terms of fuel-efficiency as the controller output is only dependent on state
measurements. Thus, the development and application of the MFSMC to aircraft autopilot
designs and other similar applications will increase fuel-efficiency and reduce emissions.

4.2 Future Work

The next phase for this work is to implement the real-time estimation of the input influence gain
matrix for the MIMO control system. This would show that the MIMO control system is able to
be completely model-free. Second, the MIMO control law would need to be implemented on a
nonlinear aircraft model that is a closer representation of an actual aircraft. The next step would
include the implementation of the control law on the hot bench of an aircraft to validate real-

71

world feasibility. Aircraft hot benches provide the most accurate representation of the aircraft
without flight testing. Thus, this would be the final testing before flight testing can occur. There
are a couple of other improvements needed to be made before flight testing as well. Currently,
the gains on the transfer functions used to generate desired roll and yaw rates are unitary. These
gains could be tuned to generate a favorable aircraft response based on pilot feedback. The
simulations performed in this work also assumed that data was coming from perfect sensors.
Therefore, this work can be expanded to test the controller’s robustness against real-world
degrading of measurement signals. This work will culminate with flight testing by the U.S. Air
Force Test Pilot School to test if the control law is viable for lateral and directional control.

72

5.0 REFERENCES

[1] Reis, R. M., 2016, A New Model-Free Sliding Mode Control Method with Estimation A
New Model-Free Sliding Mode Control Method with Estimation of Control Input Error of
Control Input Error.

[2] Crassidis, A., and El Tin, F., 2017, “A Model-Free Control System Based on the Sliding
Mode Control Method with Applications to Multi-Input-Multi-Output Systems,”
International Conference of Control, Dynamic Systems, and Robotics, Avestia Publishing.

[3] Islam, S., 2020, A Model-Free Control System Based on the Sliding Mode Control with
Automatic Tuning Using as On-Line Parameter Estimation Approach.

[4] Stephens, S. S., Fischer, J. P. A., Pelletier, M.-A. C., Navarro, M. A., Sick, T. J.,
Trautschold, M. G., Cotting, M. C., and Crassidis, A., 2023, A Limited Evaluation of a
Model-Free Control Law System.

[5] Yu, H., and Özgüner, Ü., 2006, “Adaptive Seeking Sliding Mode Control,” Proceedings
of the American Control Conference, pp. 4694–4699.

[6] Lee, S. H., and Choo Chung, C., 2003, “Sliding Mode Control Design Using Fast Output
Sampling,” Proceedings of the IEEE Conference on Decision and Control, Institute of
Electrical and Electronics Engineers Inc., pp. 3543–3548.

[7] Pai, M. C., 2009, “Robust Tracking and Model Following of Uncertain Dynamic Systems
via Discrete-Time Integral Sliding Mode Control,” Int J Control Autom Syst, 7(3), pp.
381–387.

[8] Cunha, J. P. V. S., Hsu, L., Costa, R. R., and Lizarralde, F., 2003, “Output-Feedback
Model-Reference Sliding Mode Control of Uncertain Multivariable Systems,” IEEE Trans
Automat Contr, 48(12), pp. 2245–2250.

[9] Laghrouche, S., Plestan, F., and Glumineau, A., 2007, “Higher Order Sliding Mode
Control Based on Integral Sliding Mode,” Automatica, 43(3), pp. 531–537.

[10] Jing, Y., Sun, H., Zhang, L., and Zhang, T., 2017, “Variable Speed Control of Wind
Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method,” Energies
(Basel), 10(10).

[11] Nizar, A., Houda, B. M., and Said, N. A., 2013, “A New Sliding Function for Discrete
Predictive Sliding Mode Control of Time Delay Systems,” International Journal of
Automation and Computing, 10(4), pp. 288–295.

73

[12] Sudhir, and Swamp, A., 2016, “Second Order Sliding Mode Control for Quadrotor,” 2016
IEEE 1st International Conference on Control, Measurement and Instrumentation, CMI
2016, Institute of Electrical and Electronics Engineers Inc., pp. 92–96.

[13] Crassidis, A., and Mizov, A., 2015, A Model-Free Control Algorithm Derived Using the
Sliding Mode Control Method.

[14] Schulken, E., 2017, Investigations of Model-Free Sliding Mode Control Algorithms
Investigations of Model-Free Sliding Mode Control Algorithms Including Application to
Autonomous Quadrotor Flight Including Application to Autonomous Quadrotor Flight.

[15] Raj, A., and Sreeraj, K., 2019, A Model-Free Control Algorithm Based on the Sliding
Mode A Model-Free Control Algorithm Based on the Sliding Mode Control Method with
Applications to Unmanned Aircraft Systems Control Method with Applications to
Unmanned Aircraft Systems.

[16] Munoz-Vazquez, A. J., Parra-Vega, V., Sanchez, A., and Ramirez-Rodriguez, H., 2013,
“A Passive Velocity Field for Navigation of Quadrotors with Model-Free Integral Sliding
Mode Control,” 2013 International Conference on Unmanned Aircraft Systems, ICUAS
2013 - Conference Proceedings, pp. 49–58.

[17] Monti, C., 2020, Model-Free Control of an Unmanned Aircraft Quadcopter Type System.

[18] Vahidi, A., Stefanopoulou, A., and Peng, H., 2005, “Recursive Least Squares with
Forgetting for Online Estimation of Vehicle Mass and Road Grade: Theory and
Experiments,” Vehicle System Dynamics, 43(1), pp. 31–55.

[19] Sumantri, B., Uchiyama, N., and Sano, S., 2013, “Least Square Based Sliding Mode
Control for a Quad-Rotor Helicopter,” 2013 IEEE/SICE International Symposium on
System Integration, SII 2013, IEEE Computer Society, pp. 324–328.

[20] Valladolid, J. D., Ortiz, J. P., and Minchala, L. I., 2016, “Adaptive Quasi-Sliding Mode
Control Based on a Recursive Weighted Least Square Estimator for a DC Motor,” 2016
IEEE Conference on Control Applications, CCA 2016, Institute of Electrical and
Electronics Engineers Inc., pp. 886–890.

[21] Ding, J., 2018, “Recursive and Iterative Least Squares Parameter Estimation Algorithms
for Multiple-Input–Output-Error Systems with Autoregressive Noise,” Circuits Syst
Signal Process, 37(5), pp. 1884–1906.

[22] Ma, Z., Zhang, W., He, J., and Jin, H., 2022, “Multi-Parameter Online Identification of
Permanent Magnet Synchronous Motor Based on Dynamic Forgetting Factor Recursive
Least Squares,” Proceedings of 2022 IEEE 5th International Electrical and Energy

74

Conference, CIEEC 2022, Institute of Electrical and Electronics Engineers Inc., pp. 4865–
4870.

[23] Slotine, J.-J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice-Hall, Inc.,
Englewood Cliffs.

75

6.0 APPENDIX

6.1 Section 3.3.1 MATLAB Code and Simulink Diagrams

6.1.1 MATLAB Code

%Nick Hutson
%Thesis Proposal Model Free Control Example
clear
close all
clc

%define MFSMC gains
lambda = 5; %normally 5 (rad/sec), higher values better tracking and less control
effort
N = 0.1; %normally 0.1
sigmaU = 0.2; %normally 0.2
phi = 0.1;

tau_act=0.1; %normally 0.1 (sec)

%define parameters for input influence gain
const_parm_sw=0; %=1, use constant "b" in system model; =0, use varying "b"
in system model
b_c=1; %value of "b" in system model if const_parm_sw=1
b_upp=5; %upper value of "b" in system model FOR THESIS: nice to
know initial value of b, need it work once so we can start b at right value
b_low=1; %lower value of "b" in system model
gamma=sqrt(b_upp/b_low); %initial estimate of "gamma"
gammaD=gamma; %initial estimate of "gamma(xd), function of desired
states"
ghat=sqrt(b_low*b_upp); %initial estimate of "g"
g_upp_percent=0.1; %percentage of upper value of "g" used to estimate "gamma"
in realtime, normally 0.1
g_low_percent=0.1; %percentage of lower value of "g" used to estimate "gamma"
in realtime, normally 0.1

%varying boundary layer IC
Kd0=gammaD*N;
phi0=(gammaD*Kd0)/lambda;

%gains for estimator for "g_hat"
ghat0=ghat;
P0=5;
lambda0_b=2; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort but more suspectible to noise effects
lambda_sw=1; %=1, use varying lambda technique; =0, use constant lambda so
lambda=lambda0
k0=500; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort (100 is nice)
close_phi_gap_sw=0; %=0, don't close boundary layer gap; =1, close gap which
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem

76

Figure A1: SISO System

Figure A2: SISO System Model

%sign or saturation switching function flag
signum_sw=0; %=1, signum function; =0, saturation function

%boundary layer phi flag
%phi_flag=0; %=1, constant boundary layer; =0, varying boundary layer
%if(phi_flag==1)
 % phi0 = phi;
%end

%"g_hat" switch
g_hat_sw=1; %=0, use constant g_hat; =1, use g_hat from realtime estimator

%run simulation
dt=0.001;
tf=60;

%Initial Conditions
xdot0 = pi/2;
x0 = 0;

sim('ModelFreeSimTake4.slx')

6.1.2 Simulink Diagrams

77

Figure A3: Second-Order SISO Control Law

6.2 Section 3.3.2 MATLAB Code and Simulink Diagrams

6.2.1 MATLAB Code

%Nick Hutson
%Thesis Proposal Model Free Control Example
clear
close all
clc

%define MFSMC gains
lambda = 5; %normally 5 (rad/sec), higher values better tracking and less control
effort
N = 0.1; %normally 0.1
sigmaU = 0.2; %normally 0.2
phi = 0.1;

tau_act=0.1; %normally 0.1 (sec)

%define parameters for input influence gain
const_parm_sw=0; %=1, use constant "b" in system model; =0, use varying "b"
in system model
g_upp_percent=0.1; %percentage of upper value of "g" used to estimate "gamma"
in realtime, normally 0.1
g_low_percent=0.1; %percentage of lower value of "g" used to estimate "gamma"
in realtime, normally 0.1
b1_c=5; %value of "b" in system model if const_parm_sw=1
b1_upp=6; %upper value of "b" in system model FOR THESIS: nice to
know initial value of b, need it work once so we can start b at right value
b1_low=4; %lower value of "b" in system model
gamma1=sqrt(b1_upp/b1_low); %initial estimate of "gamma"
gamma1D=gamma1; %initial estimate of "gamma(xd), function of desired
states"
ghat1=sqrt(b1_low*b1_upp); %initial estimate of "g"
b2_c=3; %value of "b" in system model if const_parm_sw=1
b2_upp=4; %upper value of "b" in system model FOR THESIS: nice to
know initial value of b, need it work once so we can start b at right value
b2_low=2; %lower value of "b" in system model

78

gamma2=sqrt(b2_upp/b2_low); %initial estimate of "gamma"
gamma2D=gamma2; %initial estimate of "gamma(xd), function of desired
states"
ghat2=sqrt(b2_low*b2_upp); %initial estimate of "g"

%varying boundary layer IC
Kd10=gamma1D*N;
phi10=(gamma1D*Kd10)/lambda;
Kd20=gamma2D*N;
phi20=(gamma2D*Kd20)/lambda;

%gains for estimator for "g_hat"
ghat10=ghat1;
ghat20=ghat2;
P10=5;
P20=5;
lambda0_b=2; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort but more suspectible to noise effects
lambda_sw=1; %=1, use varying lambda technique; =0, use constant lambda so
lambda=lambda0
k0=500; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort (100 is nice)
close_phi_gap_sw=0; %=0, don't close boundary layer gap; =1, close gap which
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem

%sign or saturation switching function flag
signum_sw=0; %=1, signum function; =0, saturation function

%boundary layer phi flag
%phi_flag=0; %=1, constant boundary layer; =0, varying boundary layer
%if(phi_flag==1)
 % phi0 = phi;
%end

%"g_hat" switch
g_hat_sw=1; %=0, use constant g_hat; =1, use g_hat from realtime estimator

%run simulation
dt=0.001;
tf=60;

%Initial Conditions
x1dot0 = pi/2;
x10 = 0;
x2dot0 = pi/4;
x20 = 0;

sim('ModelFreeSimTakeMIMO.slx')

79

Figure A4: Second-Order MIMO System

Figure A5: Second-Order MIMO System Model

6.2.2 Simulink Diagrams

80

Figure A6: Second-Order MIMO Control Law

6.3 Section 3.3.3 MATLAB Code and Simulink Diagrams

6.3.1 MATLAB Code

%Nick Hutson
%Single Order Example
clear
close all
clc

roll = 1; %roll input
yaw = 0; %yaw input
K_roll = 1;

zeta_d = 0.19; %min of 0.19
w_nd = 0.4; %rad/s, min of 0.4 rad/sec
tau = 0.3; %s, max of 1.4s

%Initial Conditions
x0 = 0;
xtildeInt0 = 0;

%define MFSMC gains
lambda = 5; %normally 5 (rad/sec), higher values better tracking and less control
effort
N = 0.1; %normally 0.1
sigmaU = 0.2; %normally 0.2
phi_mag = 0.1;

tau_act=0.1; %normally 0.1 (sec)

%define parameters for input influence gain
const_parm_sw=0; %=1, use constant "b" in system model; =0, use varying "b"
in system model
b_c=0.15; %value of "b" in system model if const_parm_sw=1

81

b_upp=0.1; %upper value of "b" in system model FOR THESIS: nice to
know initial value of b, need it work once so we can start b at right value
b_low=1; %lower value of "b" in system model
gamma=sqrt(b_upp/b_low); %initial estimate of "gamma"
gammaD=gamma; %initial estimate of "gamma(xd), function of desired
states"
ghat=sqrt(b_low*b_upp); %initial estimate of "g"
g_upp_percent=0.1; %percentage of upper value of "g" used to estimate "gamma"
in realtime, normally 0.1
g_low_percent=0.1; %percentage of lower value of "g" used to estimate "gamma"
in realtime, normally 0.1

%varying boundary layer IC
phi_flag=0; %=1, constant boundary layer; =0, varying boundary layer
if(phi_flag<0.5)
 Kd0=gammaD*N;
 phi0=(gammaD*Kd0)/lambda;
else
 phi0=phi_mag;
end

%gains for estimator for "g_hat"
ghat0=ghat;
P0=5;
lambda0_b=2; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort but more suspectible to noise effects
lambda_sw=1; %=1, use varying lambda technique; =0, use constant lambda so
lambda=lambda0
k0=500; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort (100 is nice)
close_phi_gap_sw=0; %=0, don't close boundary layer gap; =1, close gap which
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem

%sign or saturation switching function flag
signum_sw=0; %=1, signum function; =0, saturation function

%"g_hat" switch
g_hat_sw=1; %=0, use constant g_hat; =1, use g_hat from realtime estimator

%run simulation
dt=0.001;
tfin=60;

sim('ModelFreeSimTakeSingleOrderTF.slx')

82

Figure A7: First-Order SISO System

Figure A8: First-Order SISO System Model

Figure A9: First-Order SISO Control Law

6.3.2 Simulink Diagrams

83

6.4 Section 3.3.4 MATLAB Code and Simulink Diagrams

6.4.1 MATLAB Code

%Nick Hutson
%Thesis Proposal Model Free Control Lateral State Space
clear
close all
clc

%% Define open-loop model
Alat=[-0.2316 0.0633 -0.9956 0.051
 -29.4924 -3.0169 0.0201 0.0
 6.2346 -0.0274 -0.4169 0.0
 0.0 1.0 0.0631 0.0];
Blat=-[0.0052 0.031
 -36.4909 8.1090
 -0.4916 -2.8274
 0.0 0.0];
Clat=eye(4);Clat(5:6,:)=Alat(2:3,:);
Dlat=zeros(4,2);Dlat(5:6,:)=Blat(2:3,:);
C = Clat([2,3,5,6],:);
D = Dlat([2,3,5,6],:);
%% Simulate
load('AircraftModelParam.mat')

%define desired roll and yaw
roll = 0; %assume to be stick displacement in inches or force in lb
yaw = 10;
K_roll = 1;
K_yaw = 1;

%define MFSMC gains
lambda = 5; %normally 5 (rad/sec), higher values better tracking and less control
effort
N_da = 0.5; %normally 0.1
N_dr = 0.1; %normally 0.1
sigmaU = 0.2; %normally 0.2
phi_mag = 10;

tau_act=0.08; %normally 0.1 (sec)

%define Level 1 aircraft TFs
zeta_d = 0.8; %min of 0.19
w_nd = 2; %rad/s, min of 0.4 rad/sec
tau = 0.3; %s, max of 1.4s

%define parameters for input influence gain
const_parm_sw=1; %=1, use constant "b" in system model; =0, use varying "b"
in system model
g_upp_percent=0.2; %percentage of upper value of "g" used to estimate "gamma"
in realtime, normally 0.1
g_low_percent=0.2; %percentage of lower value of "g" used to estimate "gamma"
in realtime, normally 0.1
b1_c=-Blat(2,1); %value of "b" in system model if const_parm_sw=1

84

b1_upp=b1_c+g_upp_percent*b1_c; %upper value of "b" in system model
FOR THESIS: nice to know initial value of b, need it work once so we can start b at
right value
b1_low=b1_c-g_low_percent*b1_c; %lower value of "b" in system model
gamma1=sqrt(b1_upp/b1_low); %initial estimate of "gamma"
gamma1D=gamma1; %initial estimate of "gamma(xd), function of desired
states"
ghat1=sqrt(b1_low*b1_upp); %initial estimate of "g"
b2_c=-Blat(3,2); %value of "b" in system model if const_parm_sw=1
b2_upp=b2_c+g_upp_percent*b2_c; %upper value of "b" in system model
FOR THESIS: nice to know initial value of b, need it work once so we can start b at
right value
b2_low=b2_c-g_low_percent*b2_c; %lower value of "b" in system model
gamma2=sqrt(b2_upp/b2_low); %initial estimate of "gamma"
gamma2D=gamma2; %initial estimate of "gamma(xd), function of desired
states"
ghat2=sqrt(b2_low*b2_upp); %initial estimate of "g"

%varying boundary layer IC
Kd10=gamma1D*N_da;
phi10=(gamma1D*Kd10)/lambda;
Kd20=gamma2D*N_dr;
phi20=(gamma2D*Kd20)/lambda;

%gains for estimator for "g_hat"
ghat10=ghat1;
ghat20=ghat2;
P10=5;
P20=5;
xtildeInt0 = 0;
lambda0_b=2; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort but more suspectible to noise effects
lambda_sw=1; %=1, use varying lambda technique; =0, use constant lambda so
lambda=lambda0
k0=100; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort (100 is nice)
close_phi_gap_sw=0; %=0, don't close boundary layer gap; =1, close gap which
reduces "g" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem

%boundary layer phi flag
phi_flag=0; %=1, constant boundary layer; =0, varying boundary layer
if(phi_flag<0.5)
 phi0_da=(gamma1D*Kd10)/lambda;
 phi0_dr=(gamma2D*Kd20)/lambda;
else
 phi0_da=phi_mag;
 phi0_dr=phi_mag;
end

%"g_hat" switch
g_hat_sw=1; %=0, use constant g_hat; =1, use g_hat from realtime estimator

%run simulation
dt=0.001;
tfin=10;

85

Figure A10: State Space System

Figure A11: State Space System Model

sim('ModelFreeSimTakeLatSS.slx')

6.4.2 Simulink Diagrams

86

Figure A12: State Space Control Law

6.5 Section 3.3.5 MATLAB Code and Simulink Diagrams

6.5.1 MATLAB Code

%two_in_two_out_MFSMC_coupledB_m.m
%model-free control of 2 coupled 2nd-order systems with coupled B matrix
%open-loop system: x1dotdot+a1(t)*x1dot^2*cos(3*x1)*x2 = 6*u1(t)+4*u2(t)
% x2dotdot+a2(t)*x2dot^2*x2*x1dot = 2*u1(t)+3*u2(t)
% 1<=a1(t)<=2
% 4<=a2(t)<=6

clear all,clc,format short e
close all

% define options
const_parm_sw = 0; %=0, vary the parameters a1(t) and a2(t) in system model; =1,
use constant parameters
signum_sw = 0; %=1, use signum function; =0, use saturation smoothing boundary
layer
constant_b = 1; %=0, use constant B matrix in system model; =1, use varying B
matrix in system model
vary_bl_sw = 1; %=1, use a varying boundary layer; =0, use constant boundary
later
if(vary_bl_sw>0.5)
 signum_sw=0;
end

%define actuator time constant (sec)
tau_act=0.05; %(sec)

%define values for constant system model parameters
a1_c=1.5;a2_c=5;

%state ICs, want to track x1d=sin((pi/2)*t), x2d=cos((pi/2)*t)
x10 = 0.0;
x1dot0 = pi/2;
x20 = 1.0;

87

Figure A13: MIMO Gain Matrix System

x2dot0 = 0.0;
x1TildeInt0 = 0;
x2TildeInt0 = 0;

%define SMC gains
lambda1=20;ita1=4;phi1_constant_bl=0.5;
lambda2=20;ita2=4;phi2_constant_bl=0.5;

%define gains for nonunitary B matrix using matrix approach for CLAW
sigma_u=0.2;
Bupp=[7 5;3 4];
Blow=[5 3;1 2];
invBlow=[1/Blow(1,1) 1/Blow(1,2);1/Blow(2,1) 1/Blow(2,2)];
Bhat=(Bupp.*Blow).^0.5;
inv_Bhat=pinv(Bhat);
beta=(Bupp.*invBlow).^0.5;
beta_inv=[1/beta(1,1) 1/beta(1,2);1/beta(2,1) 1/beta(2,2)];
betad=beta;
betad_inv=beta_inv;
betad_inv_2=betad_inv.*betad_inv;
abs_beta_minus_1=abs(beta-[1 1;1 1]);
abs_betad_minus_1=abs_beta_minus_1;
lambda_mat=[lambda1 0;0 lambda2];
betad_inv_lambda_mat=betad_inv.*lambda_mat;
betad_inv_2_lambda_mat=betad_inv_2.*lambda_mat;
lambda_inv_betad=inv(lambda_mat).*betad;
abs_beta_times_1sigma_minus_1=abs(beta*(1+sigma_u)-[1 1;1 1]);

%simulate system
tf=10;
dt=0.001; %simulation step size
sim('two_in_two_out_MFSMC_coupledB_s')

6.5.2 Simulink Diagrams

88

Figure A14: MIMO Gain Matrix System Model

Figure A15: MIMO Gain Matrix Control Law

6.6 Section 3.3.6 MATLAB Code and Simulink Diagrams

6.6.1 MATLAB Code

%model-free control of lat dir SS model

clear all,clc,format short e
close all

89

%Define open-loop model
Alat=[-0.2316 0.0633 -0.9956 0.051
 -29.4924 -3.0169 0.0201 0.0
 6.2346 -0.0274 -0.4169 0.0
 0.0 1.0 0.0631 0.0];
Blat=-[0.0052 0.031
 -36.4909 8.1090
 -0.4916 -2.8274
 0.0 0.0];
Clat=eye(4);Clat(5:6,:)=Alat(2:3,:);
Dlat=zeros(4,2);Dlat(5:6,:)=Blat(2:3,:);
%C = Clat([2,3,5,6],:);
%D = Dlat([2,3,5,6],:);
C = Clat;
D = Dlat;

%define desired roll and yaw
roll = 20; %assume to be stick displacement in inches or force in lb
yaw = 0;
K_roll = 1;
K_yaw = 1;

%define Level 1 aircraft TFs
zeta_d = 0.8; %min of 0.19
w_nd = 2; %rad/s, min of 0.4 rad/sec
tau = 0.3; %s, max of 1.4s

% define options
const_parm_sw = 0; %=0, vary the parameters a1(t) and a2(t) in system model; =1,
use constant parameters
signum_sw = 0; %=1, use signum function; =0, use saturation smoothing boundary
layer
constant_b = 1; %=0, use constant B matrix in system model; =1, use varying B
matrix in system model
vary_bl_sw = 1; %=1, use a varying boundary layer; =0, use constant boundary
later
if(vary_bl_sw>0.5)
 signum_sw=0;
end
B_hat_sw=0; %=0, use constant B_hat; =1, use B_hat from realtime estimator

%define actuator time constant (sec)
tau_act=0.05; %(sec)

%define values for constant system model parameters
a1_c=1.5;a2_c=5;

%state ICs, want to track x1d=sin((pi/2)*t), x2d=cos((pi/2)*t)
x10 = 0.0;
x1dot0 = pi/2;
x20 = 1.0;
x2dot0 = 0.0;
x1TildeInt0 = 0;
x2TildeInt0 = 0;

90

%set simulation time
tf=10;
dt=0.001; %simulation step size
t = transpose(0:dt:tf);

%define SMC gains
lambda1=15;ita1=4;phi1_constant_bl=0.5;
lambda2=15;ita2=4;phi2_constant_bl=0.5;
N_daMat = [t,ita1*ones(length(t),1)]; %ita matrix
N_drMat = [t,ita2*ones(length(t),1)]; %ita matrix
sigmaU_da = 0.2; %normally 0.2
sigmaU_dr = 0.2; %normally 0.2
sigmaU_daMat = [t,sigmaU_da*ones(length(t),1)]; %sigma matrix
sigmaU_drMat = [t,sigmaU_dr*ones(length(t),1)]; %sigma matrix

%define gains for nonunitary B matrix using matrix approach for CLAW
sigma_u=0.2;
b11 = Blat(2,1);
b12 = Blat(2,2);
b21 = Blat(3,1);
b22 = Blat(3,2);
B = [b11,b12;b21,b22];
b_upp_percent=0.2; %percentage of upper value of "b" used to estimate "beta"
in realtime, normally 0.1
b_low_percent=0.2; %percentage of lower value of "b" used to estimate "beta"
in realtime, normally 0.1
Bupp=B+b_upp_percent*B; %upper value of "b" in system model
Blow=B-b_low_percent*B; %lower value of "b" in system model
invBlow=[1/Blow(1,1) 1/Blow(1,2);1/Blow(2,1) 1/Blow(2,2)];
Bhat=(Bupp.*Blow).^0.5;
Bhat0 = Bhat;
inv_Bhat=pinv(Bhat);
beta=(Bupp.*invBlow).^0.5;
beta_inv=[1/beta(1,1) 1/beta(1,2);1/beta(2,1) 1/beta(2,2)];
betad=beta;
betad_inv=beta_inv;
betad_inv_2=betad_inv.*betad_inv;
abs_beta_minus_1=abs(beta-[1 1;1 1]);
abs_betad_minus_1=abs_beta_minus_1;
lambda_mat=[lambda1 0;0 lambda2];
betad_inv_lambda_mat=betad_inv.*lambda_mat;
betad_inv_2_lambda_mat=betad_inv_2.*lambda_mat;
lambda_inv_betad=inv(lambda_mat).*betad;
abs_beta_times_1sigma_minus_1=abs(beta*(1+sigma_u)-[1 1;1 1]);

%gains for estimator for "B_hat"
P10=50;
P20=50;
P0 = [P10,0;0,P20];
lambda0_b=20; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort but more suspectible to noise effects
lambda_sw=1; %=1, use varying lambda technique; =0, use constant lambda so
lambda=lambda0
k0=200; %higher value cause faster convergence and boundary layer,
phi will be small along with control effort (100 is nice)

91

Figure A16: State Space Gain Matrix System

Figure A17: State Space Gain Matrix System Model

close_phi_gap_sw=0; %=0, don't close boundary layer gap; =1, close gap which
reduces "B" magnitude ('e1*(|s|>=phi)' block in 'K and phi' subsystem

%simulate system
sim('Lat_Dir_MFSMC_coupledB_s')

6.6.2 Simulink Diagrams

92

Figure A18: State Space Gain Matrix Control Law

	Model-Free Sliding Mode Control in the Lateral and Direction Dynamics of an Aircraft
	Recommended Citation

	Microsoft Word - Thesis

