
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-2023

Applying Homomorphic Encryption to a Cross Domain Problem Applying Homomorphic Encryption to a Cross Domain Problem

Cheyenne Dailey
cjd9104@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Dailey, Cheyenne, "Applying Homomorphic Encryption to a Cross Domain Problem" (2023). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11538?utm_source=repository.rit.edu%2Ftheses%2F11538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Applying Homomorphic Encryption to a Cross
Domain Problem

Cheyenne Dailey

Applying Homomorphic Encryption to a Cross
Domain Problem

Cheyenne Dailey
July 2023

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

Applying Homomorphic Encryption to a Cross
Domain Problem

Cheyenne Dailey

Committee Approval:

Dr. Marcin Lukowiak Advisor Date
RIT Department of Computer Engineering

Dr. Stanis law Radziszowski Date
RIT Department of Computer Science

Dr. Sonia Lopez Alarcon Date
RIT Department of Computer Engineering

Dr. Michael Kurdziel Date
L3 Harris Technology

i

Acknowledgments

I would not have been able to accomplish all I have, obtaining a Master’s degree,

without the support of many individuals in my life. First and foremost, I would like

to thank my family. My parents, April and Ted, for pushing me to be the best I

can be and supporting me through all the ups and downs. To my sister, Sierra, who

constantly pushed me to keep going and get it done even when I wanted to give up.

I would like to thank my friends for their time and support through long hours of

coding. Sidney Davis, for listening to long winded rational explanation and offering

help when coding became difficult. Anna Nicolais, for the support and friendship

when things got tough. And to all other friends, who supported me through college

and were willing to listen to the long rants of how my progress was going.

Lastly, I would like to thank my advisors and committee members. Dr. Kurdziel

and Dr. Lopez Alarcon for their positive remarks. Dr. Radziszowski, for always

pushing me to put out my best work and explore all possibilities. And a special

thanks to Dr. Lukowiak, for putting up with me for longer than originally intended

and making sure that I was able to get to where I am today.

ii

Abstract

The Cross Domain Problem (CDP) strives to ensure protected data transference

across varying security domains. In order to accomplish this, a Cross Domain Solution

(CDS) is needed. A common method to protect data is to focus on risk management

between trusted parties; however, untrusted parties pose ongoing concern. The prob-

lem is determining a method that transfers classified data through various security

domains without exposing any information to intermediary parties. Attempts to mit-

igate this problem have been made utilizing Homomorphic Encryption (HE), a type

of encryption that allows for computations to be executed on encrypted data without

needing to decrypt it. Research studies have demonstrated the feasibility of applying

an HE scheme paired with a cipher to successfully create a CDS for untrusted parties.

By researching recent enhancements in the fields of homomorphic encryption,

lightweight ciphers, and hybrid homomorphic ciphers a pair was found with the hope

of practical main steam use has been achieved. The homomorphic scheme, BFV, has

been around for many years with thorough testing and new optimizations applied.

The cipher, Pasta, is a hybrid homomorphic cipher specifically catered to the appli-

cation of homomorphic decryption. Together, a software test case was created that

would mimic the required behavior needed to create a CDS.

The final implementation offered testing of homomorphic decryption with both

3-Round and 4- Round Pasta with acceptable speeds given the processing power

available. Along with the rounds changing, size of key, plaintext, and multiplicative

depth influenced overall performance. Verifying the usability post decryption, com-

parison of values at any index demonstrated the ability to search and compare specific

plaintext or metadata values for viable information about transmission through en-

countered gateways. In both variations, the speed was favorable, proving to be at

least 5 times faster than similar implementations.

iii

Contents

Signature Sheet i

Acknowledgments ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables viii

Acronyms ix

1 Introduction 2

1.1 Motivation . 2

1.2 This Work . 3

2 Background 5

2.1 Cross Domain Solution . 5

2.2 Ciphers . 6

2.2.1 Symmetric Key Ciphers . 7

2.2.2 Asymmetric Key Ciphers . 9

2.2.3 Lightweight Ciphers . 9

2.3 Homomorphic Encryption . 11

2.3.1 Partially Homomorphic Encryption 12

2.3.2 Somewhat Homomorphic Encryption 12

2.3.3 Fully Homomorphic Encryption 13

2.4 Hybrid Homomorphic Encryption . 13

2.4.1 Hybrid Homomorphic Encryption Ciphers 14

3 Lightweight Ciphers 16

3.1 NIST Lightweight Cryptography Finalists 16

3.1.1 ASCON . 17

3.1.2 Elephant . 17

3.1.3 GIFT-COFB . 18

iv

CONTENTS

3.1.4 Grain-128AEAD . 18

3.1.5 ISAP . 19

3.1.6 PHOTON-Beetle . 20

3.1.7 Romulus . 20

3.1.8 SPARKLE . 21

3.1.9 TinyJAMBU . 21

3.1.10 Xoodyak . 22

3.1.11 Performance of Competition Finalists 22

3.2 NIST Lightweight Cryptography Winner 23

4 Hybrid Homomorphic Encryption Ciphers 25

4.1 Fasta . 25

4.2 Pasta . 26

5 Fully Homomorphic Encryption Schemes 29

5.1 Basic Preliminaries and Notation . 29

5.2 Brakerski-Gentry-Verauteren Scheme 30

5.2.1 Optimizations . 31

5.3 Brakerski/Fan-Verauteren Scheme . 32

5.3.1 Optimizations . 33

5.4 Homomorphic Operation Examples 34

5.4.1 Homomorphic Addition . 34

5.4.2 Homomorphic Subtraction . 35

5.4.3 Homomorphic Multiplication 35

5.4.4 Homomorphic Sum . 36

5.4.5 Homomorphic Rotation . 36

6 Component Selection 37

6.1 Cipher Decision . 37

6.1.1 Pursuit of Lightweight Cipher 37

6.1.2 Pursuit of Hybrid Homomorphic Encryption Cipher 38

6.2 Homomorphic Encryption Scheme Decision 39

6.2.1 Library . 39

6.2.2 Scheme . 39

7 Implementation 41

7.1 Hybrid Homomorphic Encryption . 41

v

CONTENTS

7.2 Hybrid Homomorphic Decryption Circuit 42

7.2.1 Linear Layer . 44

7.2.2 S-Box . 45

7.3 Cross Domain Solution Scenario . 46

7.3.1 Application to the Cross Domain Problem 48

7.4 Additional Test Cases . 51

7.4.1 Case 1 . 51

7.4.2 Case 2 . 51

8 Results 54

8.1 3-Round Pasta Results . 55

8.2 4-Round Pasta Results . 57

8.3 Instance Comparison . 58

8.4 Comparison to Previous Work . 59

9 Conclusion 62

9.1 Future Work . 63

Bibliography 64

A Source Code 69

A Source Code 70

A Source Code 71

A Source Code 72

A Source Code 73

A Source Code 74

A Source Code 75

A Source Code 76

A Source Code 77

A Source Code 78

vi

List of Figures

2.1 Cross Domain Problem . 6

2.2 Basic Encryption and Decryption Flow 6

2.3 Block Cipher . 8

2.4 Stream Cipher . 8

2.5 Authenticated Encryption with Associated Data 11

2.6 Hybrid Homomorphic Encryption Overview 14

3.1 ASCON Encryption and Decryption 23

4.1 High-level design of Fasta . 26

4.2 Design of Pasta . 28

7.1 HHE Encryption . 42

7.2 CDS Use Case . 47

7.3 High Level Design Breakdown of a CDS 49

7.4 Test Case 2 Design . 53

vii

List of Tables

3.1 ASCON Family Variants . 17

3.2 Elephant Family Variants . 18

3.3 GIFT-COFB Family Variants . 18

3.4 Grain-128AEAD Family Variants . 18

3.5 ISAP Family Variants . 19

3.6 PHOTON-Beetle Family Variants . 20

3.7 Romulus Family Variants . 20

3.8 SPARKLE Family Variants . 21

3.9 TinyJAMBU Family Variants . 22

3.10 Xoodyak Family Variants . 22

4.1 HHE Components with Pasta . 27

7.1 Selected Classification Values . 50

8.1 HHE Decryption Circuit with 3-Round PASTA Performance 55

8.2 HHE Decryption Circuit with 4-Round PASTA Performance 57

8.3 Parameter Comparison . 60

8.4 Timing Comparison . 60

viii

Acronyms

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

BEHZ Bajard, Eynard, Hasan, and Zucca

BFV Brakerski/Fan-Vercauteren

BGV Brakerski-Gentry-Vaikuntanathan

CBC Cipher Block Chaining

CDP Cross Domain Problem

CDS Cross Domain Solution

CFB Cipher Feedback

CKKS Cheon, Kim, Kim and Song

COFB COmbined FeedBack

CRT Chinese Remainder Theorem

CTR Counter

DES Data Encryption Standard

EaM Encryption-and-MAC

ECB Electronic Code Book

EKE Encrypted Key Exchange

EtM Encrypt-then-MAC

ix

Acronyms

FHE Fully Homomorphic Encryption

FHEW Fastest Homomorphic Encryption in the West

FPGA Field-Programmable Gate Array

GHS Gentry-Halevi-Smart

HE Homomorphic Encryption

HHE Hybrid Homomorphic Encryption

HPS Halevi, Polyakov, and Shoup

HTTPS Hypertext Transport Protocol Secure

KEP Key Encryption Protocol

LWC Lightweight Cipher

LWE Learning with Errors

MAC Message Authentication Code

MtE MAC-then-Encryption

NIST National Institute of Standards and Technology

OFB Output Feedback

PHE Partially Homomorphic Encryption

RLWE Ring Learning with Errors

RNS Residue Number System

x

Acronyms

SFTP Secure File Transfer Protocol

SPN Subsitution-Permutation Network

SWHE Somewhat Homomorphic Encryption

TCP Transmission Control Protocol

TFHE Fast Fully Homomorphic Encryption over the Torus

WSL Windows Subsystem for Linux

YASHE Yet Another Somewhat Homomorphic Encryption

1

Chapter 1

Introduction

1.1 Motivation

Today, digital data is everywhere and used by almost everyone. Smart phones, com-

puters and the IoT allow for instant access and transfer of data between parties.

During data transfers, cryptography is implemented to convert data into a format

that is unreadable for unauthorized parties. Most users are unaware of these trans-

mission protocols, such as Hypertext Transport Protocol Secure (HTTPS), Secure

File Transfer Protocol (SFTP), Transmission Control Protocol (TCP) and others

which are built-in throughout the internet. The goal of a secure transfer is to ensure

that pertinent data relating to the security level, source, destination, and message

contents are never revealed to unauthorized parties.

Transferring information between authorized parties sends encrypted bytes of data

across networks from a source to a destination. However, during transfers its possible

for encrypted data to pass through third-party routers with unknown security levels,

allowing an attacker the opportunity to monitor messages. While the message data

generally remains secure, the attacker could deduce information based on network

traffic flow analysis. Common characteristics, such as source and/or destination IP

addresses, can be evaluated by flow analysis, identifying patterns of possibly related

data.

2

Chapter 1. Introduction

The exposure of origin, destination and other routing information is where the

Cross Domain Problem (CDP) originates. There is a need to protect information,

regardless of security level, during transmission across domains of unknown classifi-

cations. The solution to this problem is known as a Cross Domain Solution (CDS).

Previous solutions have focused on protected networks that manage the risks associ-

ated within the transfer, which is only a partial solution. The goal of a CDS is to

protect the authentication, confidentiality, and integrity of data across any interme-

diate party.

In 2018, Cody Tinker examined the feasibility of Homomorphic Encryption (HE)

as a CDS [1, 2]. This work confirmed that the CDP can be addressed with the use

of an HE scheme paired with a Lightweight Cipher (LWC). In his implementation,

Yet Another Somewhat Homomorphic Encryption (YASHE) [3] was chosen as the

HE scheme and SIMON [4] was chosen as the LWC. The results of Tinker’s work

demonstrated that it could be done; however, the overall results showed that the

practicality of mainstream use was still not where it needed to be. Since this pre-

liminary test, advancements have taken place in both fields, LWCs and HE schemes,

opening up the possibility of a solution that yields better results in efficiency, com-

plexity, and security. In addition to new LWC enhancements, there has also been

work towards Hybrid Homomorphic Encryption (HHE) ciphers which are specifically

designed to work with HE, ;ending themselves even further to such applications as

this. By comparing current options and conducting further testing, a viable instance

may be found.

1.2 This Work

The objective of this thesis was to research advancements in recent years to deter-

mine a cipher and HE scheme pair, what some are calling HHE, that will provide

improved performance when applied as a CDS. The original focus was on evaluating

3

Chapter 1. Introduction

LWC finalists from the NIST Lightweight Cryptography Competition [5] along with

recent enhancements to HE schemes. The LWCs, while possible candidates, contained

more complex computations that would not lend themselves as nicely to the type of

implementation this work set out to achieve. However, while researching the ciphers,

HHE catered ciphers were found, such as Rasta [6] and its newer variants. After

comparison of the variants and weighing their pros and cons, the choice was made to

use Pasta [7] for the base preliminary encryption method.

When researching the progress made towards HE schemes in recent years, there

were two routes to consider. The first regarding optimizations made to existing sec-

ond generation schemes, Brakerski/Fan-Vercauteren (BFV) [8] and Brakerski-Gentry-

Vaikuntanathan (BGV) [9], and the second, looking at the newer third generation

schemes, Fast Fully Homomorphic Encryption over the Torus (TFHE) [10] and Fastest

Homomorphic Encryption in the West (FHEW) [11]. The former was chosen primar-

ily on the basis of being around for over 10 years, but also completing extensive testing

in both performance and security. The third generation schemes, while promising,

require additional testing and optimization to improve the trade off between perfor-

mance and security. After delving into the existing schemes, the final choice for the

HE portion was to use BFV.

With the selection of both parts, and familiarization of design and functionality,

a prototype application was constructed to mimic the desired CDS behavior. Ini-

tial application logic for Pasta and BFV was pulled from [12] and [13] respectively.

The timing of various segments of implementation were captured and recorded for

comparison. Furthermore, the application was designed to test two renditions of the

homomorphic decryption circuit, one using 3-round Pasta and one using 4-round.

With preliminary verification of successful decryption, and to confirm the ability to

compare specific values and perform trivial computations on the resulting homomor-

phically encrypted data, testing was performed for proof of possible future use cases.

4

Chapter 2

Background

2.1 Cross Domain Solution

The CDS is a controlled interface that provides the ability to access or transfer in-

formation between different security domains, whether that be done manually or

automatically [14]. The messages transferred in these instances typically pertain to

classified information that require security clearances. During transmission, not all

networks used to move the data have the proper security levels. Therefore, networks

should not be able to identify the classification level, or the path taken to arrive at

the current router. The purpose of a CDS is to solve the CDP, depicted in Figure

2.1, to ensure that data reaches its intended target while maintaining the security of

contents and involved parties.

Current solutions use protected platforms with specialized software applications

which function as a guard between security domains [15] and focus on security policies

and risk management. The information passed between these domains is subjugated

to meet acceptance criteria prior to transmission. While this addresses part of the

problem, it restricts transfers to networks with the proper security level.

5

Chapter 2. Background

Figure 2.1: Cross Domain Problem

2.2 Ciphers

Ciphers, also known as encryption algorithms, are methods for encrypting and de-

crypting data. Encryption algorithms are computational procedures that makes the

information unreadable to anyone besides the intended recipient [16]. As shown in

Figure 2.2, encryption transforms the original message, the plaintext, into the cipher-

text using the key. When decrypting data, the ciphertext reverts back to the original

plaintext, using the same key in this instance. Not all ciphers execute the same

algorithm, so there may be other variables necessary to complete the computation;

however, the baseline described is constant among ciphers.

Figure 2.2: Basic Encryption and Decryption Flow

6

Chapter 2. Background

Ciphers use one of two types of keys, symmetric keys or asymmetric keys. A key

is a string of bits created to scramble and unscramble data when using a cipher. Pro-

tocols such as Key Encryption Protocol (KEP) generate randomized keys of specified

lengths from a set of all possible keys, known as a key space.

When generating keys, one must consider the strength and security a key will offer

with the cipher of choice. The security strength of a cipher is dependent on how hard

it is to break the code, determine the key used, mathematically [17]. Distributing

generated keys to authorized parties can be a concern since secure sharing is essen-

tial yet sometimes challenging. A common approach to mitigate the issue is to use

Encrypted Key Exchange (EKE) to share a key over an unsecured network without

exposure.

2.2.1 Symmetric Key Ciphers

A symmetric key cipher [18], also known as a private key cipher, is used for both

encryption and decryption. For example, Party A wishes to converse securely with

Party B. Party A generates a key and shares it with Party B, using something like

EKE. The key is then used to encrypt messages sent between key holders. When a

message is received, the key is used to decrypt the encrypted data. By requiring the

key for decryption, only those authorized can revert the received ciphertext back to

the original plaintext. This method protects against attackers, who manage to obtain

the ciphertext during transmission, from easily deciphering the message. There are

two types of ciphers that utilize this symmetric structure, block ciphers and stream

ciphers.

With the same key used for encryption and decryption, a new private key is neces-

sary for every secure group conversation. Private key management is critical in order

to prevent the shared key from being leaked, stolen, or used in other transactions.

7

Chapter 2. Background

2.2.1.1 Block Ciphers

Block ciphers are designed to accept a fixed input of size b bits producing a ciphertext

of equal size, shown in Figure 2.3. Should the plaintext be larger than the fixed b

bits, the message is broken down into smaller blocks, as the name implies.

Figure 2.3: Block Cipher

Block ciphers typically operate with block sizes of 8-bytes or 16-bytes of plaintext.

For larger sizes, different mode options are available: Electronic Code Book (ECB),

Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB),

Counter (CTR) [18].

2.2.1.2 Stream Ciphers

Stream ciphers are designed to encrypt bits individually, depicted in Figure 2.4.

Figure 2.4: Stream Cipher

The key is transformed into a key stream where each bit is XORed with the incom-

8

Chapter 2. Background

ing plaintext bit. There are two types of key streams, synchronous and asynchronous.

A synchronous key stream uses only the key, while an asynchronous key stream uses

both the key and the outputted ciphertext.

2.2.2 Asymmetric Key Ciphers

An asymmetric key cipher, also known as a public key cipher, is where authorized

parties possess a private key, as in symmetric cryptography, and a public key [18]. For

example, say Party A generates a pair of keys using a KEP; one public key shared

with other authorized parties and one private key kept secret by Party A. These

parties, say Party B and C, then encrypt messages to Party A using this public key;

however, they cannot decrypt any messages encrypted with the public key. In order

to decrypt the data, the private key is needed which is held solely by Party A.

An asymmetric key creates a secure, one-way communication method. In the case

that both parties would like to send encrypted messages, Party B would need to

generate their own key pair and share their public key with Party A. A public key

can be shared with multiple authorized parties since decryption is dependent on the

private key, held by the key generator. Asymmetric keys remove the need to generate

a new key for every secure conversation.

2.2.3 Lightweight Ciphers

Ciphers are designed to run efficiently on desktop and server environments, restrict-

ing performance on devices where resources are limited. A lightweight cipher aims to

provide solutions for these resource-constrained devices [19]. For hardware applica-

tions, attention to resource consumption is critical to minimize area used on device.

For software applications, the number of registers along with the number of bytes of

memory used must also be considered. LWC focus on these aspects, being conscious

of the software and hardware footprints consumed.

9

Chapter 2. Background

In 2013, National Institute of Standards and Technology (NIST) started a study

on lightweight cryptography to examine the current performance of NIST-approved

cryptographic standards. In the process of the study, workshops were conducted to

share standardization processes and collect public feedback. Five years later (2018),

NIST invited candidates to compete in standardizing one or more lightweight ci-

phers following the criteria explained in [5]. Submissions were required to implement

Authenticated Encryption with Associated Data (AEAD) along with the option of

hashing. Fifty-seven candidates responded to the request, with 56 being accepted

into Round 1 of the competition. The original 56 competitors were reduced during

eliminations, sending 32 into Round 2. Finally, after another round of eliminations,

10 contenders were labeled as finalists in 2021. As of February 2023, ASCON [20] has

been selected the winner for standardization.

2.2.3.1 Authenticated Encryption with Associated Data

Authenticated Encryption [21] is a method of enhancing encryption methods by in-

corporating authentication to prove its integrity. In addition to the base encryption,

a Message Authentication Code (MAC) or tag is generated at encryption and de-

cryption to verify that the data was not tampered with during transmission. The

associated data portion of AEAD [22] is additional information that is incorporated

with the original plaintext message. Associated data is often used as a header to

expose non-confidential data in network packets to aid in routing. Figure 2.5 demon-

strates the overall concept of AEAD; however, there are a few different ways that the

MAC can be calculated.

There are different methods to how a MAC is generated. The first is Encrypt-

then-MAC (EtM), where the plaintext is encrypted first then the resulting ciphertext

is used to create the tag with a secondary key. The ciphertext and MAC are trans-

mitted together so that on decryption, the MAC can be validated. Another type

10

Chapter 2. Background

Figure 2.5: Authenticated Encryption with Associated Data

is Encryption-and-MAC (EaM), where the plaintext is used to generate the MAC

and encrypted without the MAC. Both the ciphertext and the MAC use the same

key. The last approach is MAC-then-Encryption (MtE), where the plaintext is used

to generate the MAC first. The result is then appended onto the plaintext and en-

crypted with the same key a second time. In this instance, only the ciphertext is sent,

given the MAC is baked into it.

2.3 Homomorphic Encryption

HE is an encryption method for the execution of operations on encrypted data, such

as addition and multiplication [23]. Typically, in an effort to preserve the plaintext,

data must be decrypted before normal computations can be executed, compromising

user privacy. HE allows for computations to be done without changing the nature of

the encrypted data [24] on any domain and without the need to decrypt the data. In

other words, operations on ciphertexts will also execute similarly on the underlying

plaintext, preserving the information.

Craig Gentry stated that given a ciphertext, anyone should be able to apply HE

11

Chapter 2. Background

to output a ciphertext that encrypts the result for any desired function as long as

it can be efficiently computed [25]. The final result should not reveal the given

ciphertext, the function operated on the ciphertext, or any plaintext values. HE can

be broken down into three types of schemes to address certain desires for speed and

complexity: Partially Homomorphic Encryption (PHE), Somewhat Homomorphic

Encryption (SWHE) and Fully Homomorphic Encryption (FHE).

2.3.1 Partially Homomorphic Encryption

One of the first types of HE schemes developed, PHE was designed to allow unlimited

computations on encrypted data while constraining the computations to one oper-

ation, either addition or multiplication. Notable examples of PHE schemes include

RSA in 1978 and El-Gamal in 1985 [23]. Due to this restraint, applications of PHE

are limited. One instance where this type of scheme performs well is e-voting [26].

2.3.2 Somewhat Homomorphic Encryption

SWHE schemes are designed to allow for the execution of a set of operations, typically

addition and multiplication, with a limited number of calls to each. When using

SWHE, computations on ciphertext must be monitored in order to ensure that the

operations execute successfully. When too many computations are executed, i.e. the

multiplicative depth supported is exceeded, the noise growth can skew results from

their expected output. This affects the use cases, requiring an understanding of the

schemes application complexity and depth prior to using SWHE schemes. Instances

where complexity and depth of computations are unknown limit the use of SWHE

schemes. If a SWHE is used without that knowledge, resources can be depleted before

the application completes its function.

12

Chapter 2. Background

2.3.3 Fully Homomorphic Encryption

FHE schemes are designed to combine the positive aspects of both PHE and SWHE,

allowing for an unlimited number of operation calls using a set of operations. Due to

the lack of limitations in execution and operations, FHE is the most flexible of the

HE schemes. Creating a true FHE was difficult to construct, until 2009 when Craig

Gentry had a breakthrough [25]. Using Gentry’s FHE as a baseline, many others have

published their own schemes, adding improvements over the years. Some examples

include the leveled FHE BGV and BFV [21, 27, 28, 8]. The reason this solution is not

currently predominant in mainstream encryption is due to underlying computational

challenges within FHE schemes that have yet to be resolved.

2.4 Hybrid Homomorphic Encryption

While the coined term Hybrid Homomprohic Encryption (HHE) is still relatively

new, introductions from Latuter et al. [29] defining the overall concept of HHE, has

been around for a few years. HHE is the notion of encrypting the plaintext with

a symmetric cipher first before sending it to the corresponding server. Once at the

intermediate point, the data will use homomorphic operations to decrypt the data,

converting the instance from the symmetric cipher into a homomorphic ciphertext,

as seen in Figure 2.6. In the homomorphic state, remaining computations can be

executed against the information. An example of this dual encryption state use case

would be to compare a specific value for traffic redirection without exposing the

plaintext data on the server.

Following Figure 2.6, the data (m) is encrypted with the selected symmetric cipher

and the symmetric key (sym key), generating ct. Moving into the HE space, the

ciphertext ct is encrypted homomorphically to produce hhe ct. The same procedure is

taken to homomorphically encrypt the sym key, generating hhe key. A translation of

13

Chapter 2. Background

Figure 2.6: Hybrid Homomorphic Encryption Overview

the symmetric cipher’s decryption algorithm that uses HE operations is developed to

create the HHE Decrypt function within the HE space. Using the function, along with

hhe ct and hhe key, a ciphertext solely encrypted by the HE scheme is derived, he ct.

From here, operations could be executed on he ct ; however, should no computation

be executed, if he ct is decrypted, it should result in the original data m.

Many factors can influence the cipher selection though a key feature needed is

finding a simplistic decryption circuit, with minimal operations, that does not sacri-

fice security. Reduced rounds and minimal complex computations result in an overall

lower multiplicative depth. Multiplicative depth is the number of consecutive multi-

plications performed on a ciphertext within HE. Due to the sizing factor of multiplica-

tions in HE, higher depths are the main culprit behind slower, impractical application

of HHE.

2.4.1 Hybrid Homomorphic Encryption Ciphers

HHE ciphers are specifically designed with compatibility to HE implementations in

mind. This compatibility stems from the focus on maintaining a low multiplicative

depth and minimizing computational complexity. Typically, One route to achieve

this is to create a cipher with a reduced number of rounds. There are a few examples

14

Chapter 2. Background

of existing HHE ciphers that have varying benefits for overall use or specific compat-

ibility with an HE scheme. Examples include Rasta [6], Fasta [30], Pasta [7], and

others.

15

Chapter 3

Lightweight Ciphers

3.1 NIST Lightweight Cryptography Finalists

The NIST Lightweight Cryptography Competition launched in August 2018 looking

for LWC to be considered for lightweight cryptographic standards [5]. Competitors

were allowed to submit for both AEAD and HASH functions as long as they adhered

to the requirements.

Competitors were required to submit AEAD algorithms and up to a family of 10

algorithms with varying internal or external variables. The AEAD algorithms are

required to support four inputs: variable-length plaintext, variable-length associated

data, a fixed-length nonce of at least 96-bits, and a fixed-length key of at least 128-

bits. The output was required to be a variable-length ciphertext. All algorithms

submitted needed to provide a minimum of 128-bit security.

The competition began with 57 submissions, which turned into 56 candidates go-

ing into Round 1 after initial review. Evaluations were completed prior to selecting

32 candidates to continue into Round 2. In 2021, the 10 finalists were selected: AS-

CON, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, PHOTON-Beetle, Romulus,

Sparkle, TinyJambu, and Xoodyak.

16

Chapter 3. Lightweight Ciphers

3.1.1 ASCON

ASCON, developed by Dobraunig et al. [20], was first introduced in the CAESAR

competition from 2014 to 2019, becoming the primary choice for lightweight authen-

ticated encryption. Their submission into NIST’s competition included two AEAD

algorithms, ASCON-128 (primary) and ASCON-128a, whose parameters are shown

in Table 3.1 [31]. The rounds are broken into a triplet a, b, and c, where a is the

number of rounds during initialization, b is the number of rounds during message

processing, and c is the number of rounds for finalization.

Table 3.1: ASCON Family Variants

AEAD Variants Key Nonce Tag # Rounds
(bits) (bits) (bits)

ASCON-128 128 128 128 12,6,12
ASCON-128a 128 128 128 12,8,12
ASCON-80pq 160 128 128 12,6,12

The AEAD algorithm is based on duplex mode with an improved keyed initializa-

tion and finalization function using permutations. ASCON’s permutations are broken

down into three stages: addition of a round constant, substitution layer using a 5-bit

S-box, and linear layer with 64-bit diffusion functions. Overall, the process is bro-

ken down into initialization, processing associated data, processing the plaintext, and

finalization.

3.1.2 Elephant

Elephant, developed by Beyne et al.[32], submitted a family of three AEAD algo-

rithms: Dumbo (primary), Jumbo, and Delirium. The parameters of each variant are

given in Table 3.2 [31].

Elephant is a permutation-based AEAD that uses a nonce-based encrypt-then-

MAC construction. The design utilizes a counter mode along with a varient of the

Wegman-Carter-Shoup MAC function.

17

Chapter 3. Lightweight Ciphers

Table 3.2: Elephant Family Variants

AEAD Variants Key Nonce Tag Permutation # Rounds
(bits) (bits) (bits)

Dumbo 128 96 64 160-bit Spongent 80
Jumbo 128 96 64 176-bit Spongent 90
Delirium 128 96 128 200-bit KECCEK 18

3.1.3 GIFT-COFB

GIFT-COFB, developed by Banik et al.[33], submitted only one algorithm to the

competition. The parameters for GIFT-COFB are given in Table 3.3 [31].

Table 3.3: GIFT-COFB Family Variants

AEAD Variants Key Nonce Tag
(bits) (bits) (bits)

GIFT-COFB 128 128 128

The LWC submitted is comprised of two components, GIFT-128, a 128-bit Subsitution-

Permutation Network (SPN) block cipher based on PRESENT, and COmbined Feed-

Back (COFB), a block cipher based AEAD mode. GIFT-128 was designed for hard-

ware optimization with 40-48 rounds. One round of GIFT-128 is comprised of three

stages: SubCells, PermBits, and AddRoundKey.

3.1.4 Grain-128AEAD

Grain-128AEAD, developed by Hell et al.[34], submitted one algorithm to the com-

petition. The parameters for Grain-128AEAD are given in Table 3.4 [31].

Table 3.4: Grain-128AEAD Family Variants

AEAD Variants Key Nonce Tag
(bits) (bits) (bits)

Grain-128AEAD 128 96 64

Grain-128AEAD is a bit-oriented feedback shift register that was optimized for

hardware implementations. The first version, Grain v1, was selected as a finalist

18

Chapter 3. Lightweight Ciphers

in the eSTREAM portfolio for hardware. For the NIST competition, version 2 was

submitted which utilizes a refined, smaller version of Grain-128a. In addition to

shrinking the size, version 2 added security against key reconstruction.

3.1.5 ISAP

ISAP, developed by Dobraunig et al.[35], submitted a family of four AEAD algo-

rithms; ISAP-K-128a (primary), ISAP-A-128a, ISAP-K-128, and ISAP-A-128. At its

core, ISAP uses one of two permutations, ASCON or KECCAK, as shown in Table

3.5 [31]. Rate is broken up into a tuple, where the first value represents the size of the

rate for the nonce processing in re-keying and the second value is the size of the rate

for all other phases. Rounds is also broken up into a 4-tuple, with sH , sB, sE, and

sK . The values represent the rounds of permutation executed during authentication

phase (sH), nonce processing phase (sB), encryption and decryption phases (sE), and

session key generation (sK).

Table 3.5: ISAP Family Variants

AEAD Variants Key Nonce Tag Permutation Rate # Rounds
(bits) (bits) (bits) (bits)

ISAP-K-128a 128 128 128 400-bit KECCAK 144,1 16,1,8,8
ISAP-A-128a 128 128 128 320-bit ASCON 64,1 12,1,6,12
ISAP-K-128 128 128 128 400-bit KECCAK 144,1 20,12,12,12
ISAP-A-128 128 128 128 320-bit ASCON 64,1 12,12,12,12

ISAP is a permutation-based AEAD algorithm created with a wider range of

security against implementation attacks. The mode implemented is a nonce-based

encrypt-then-MAC construction, by XORing the message with the keystream, with

authentication based on hash-then-MAC paradigm. The rounds are given in a set,

with the rounds per phase: authentication phase, nonce processing phase, encryption

and decryption phases, and re-keying function phase.

19

Chapter 3. Lightweight Ciphers

3.1.6 PHOTON-Beetle

PHOTON-Beetle, developed by Bao et al.[36], submitted a family of two AEAD al-

gorithms; PHOTON-Beetle-AEAD[128] (primary) and PHOTON-Beetle-AEAD[32],

provided in Table 3.6 [31]. The rate is provided in two parts, a/b, with a-bit absorbing

rate and b-bit squeezing rate.

Table 3.6: PHOTON-Beetle Family Variants

AEAD Variants Key Nonce Tag Rate
(bits) (bits) (bits)

PB-AEAD[128] 128 128 128 128/128
PB-AEAD[32] 128 128 128 32/128

The rate specified in Table 3.6 provides the bit absorbing rate first followed by

the bit squeezing rate. PHOTON-Beetle consists of two parts, a 256-bit, 12 round

PHOTON permutation and the sponge-based mode Beetle. PHOTON256 is comprised

of four layers, AddConstant, SubCells, ShiftRows, and MixColumns.

3.1.7 Romulus

Romulus, developed by Iwata et al.[37], submitted two separate families: nonce-

based AEAD, Romulus-N (primary N1) and nonce misuse-resistant AEAD Romulus

M. Both families consist of three variants, shown in Table 3.7 [31].

Table 3.7: Romulus Family Variants

AEAD Variants Family TBC # Rounds Key Nonce Tag
(bits) (bits) (bits)

Romulus-N1 SKINNY-128-384 56 128 128 128
Romulus-N2 Romulus-N SKINNY-128-384 56 128 96 128
Romulus-N3 SKINNY-128-256 48 128 96 128
Romulus-M1 SKINNY-128-384 56 128 128 128
Romulus-M2 Romulus-M SKINNY-128-384 56 128 96 128
Romulus-M3 SKINNY-128-256 48 128 96 128

Romulus is based on the tweakable block cipher SKINNY. The SKINNY per-

muatation used consists of five layers for 40 rounds: SubCells, AddConstancts, Ad-

20

Chapter 3. Lightweight Ciphers

dROundTweaky, ShiftRows, and Mix Columns. Romulus-N implements a rate-1

TBC-based combined feedback mode while Romulus-M implements a MAC-then-

encrypt mode.

3.1.8 SPARKLE

SPARKLE, developed by Beierle et al.[38], submitted a family of four AEAD algo-

rithm variants: SCHWAEMM128-128, SCHWAEMM192-192, SCHWAEMM256-128

(primary), and SCHWAEMM256-256. All variant parameters are given in Table 3.8

[31]. The b-bit SPARKLE permutation is defined by the r -bit rate and c-bit capacity,

where b = r + c. The number of step is also broken into a tuple x, y, where x is the

steps in the SPARKLE permutation that process the associated data and message,

and y is the steps used in initialization and finalization.

Table 3.8: SPARKLE Family Variants

AEAD Variants Key Nonce Tag b,r,c Steps
(bits) (bits) (bits)

SCHWAEMM128-128 128 128 128 256,128,128 7,10
SCHWAEMM192-192 192 192 192 384,192,192 7,11

SCHWAEMM256-128 128 256 128 384,256,128 7,11
SCHWAEMM256-256 256 256 256 512,256,256 8,12

SPARKLE permutaions are comprised of two main components, an ARX-box

Alzette which is a 64-bit block, 32-bit key cipher and a linear diffusion layer. Similar

to a Subsitution-Permutation Network, SPARKLE implements a parallel application

of Alzette with branch-dependent constants.

3.1.9 TinyJAMBU

TinyJAMBU, developed by Wu and Huang[39], submitted a family of three AEAD

variants; TinyJAMBU-128 (primary), TinyJAMBU-192, TinyJAMBU-256. In Table

3.9 [31], all variants and their parameters are given.

21

Chapter 3. Lightweight Ciphers

Table 3.9: TinyJAMBU Family Variants

AEAD Variants Key Nonce Tag State Size
(bits) (bits) (bits) (bits)

TinyJAMBU-128 128 96 64 128
TinyJAMBU-192 192 96 64 128
TinyJAMBU-256 256 96 64 128

TinyJAMBU, derived from JAMBU, focused on reducing the size of the original

base cipher using keyed permutations. Encryption is broken down into four stages,

initialization which handles key and nonce setup, the processing of associated data,

the actual encryption, and the finalization of generating the authentication tag.

3.1.10 Xoodyak

Xoodyak, developed by Daemen et al. [40], submitted a single AEAD algorithm,

Xoodyakv1. Table 3.10 [31] provides the parameters for each submission.

Table 3.10: Xoodyak Family Variants

AEAD Variants Key Nonce Tag
(bits) (bits) (bits)

Xoodyakv1 128 128 128

Xoodyak is based on a duplex construction that features a full-state variant when

fed with a secret key. Xoodoo permutations are a 384-bit permutation, inspired by

Keccak, that are sized with a focus on efficiency. The five-step process for encrypting

with Xoodyak are Cyclist the key, Absorb the nonce, Absorb the associated data,

encrypt the plaintext, and Squeeze the tag.

3.1.11 Performance of Competition Finalists

Software and hardware performance was analyzed for the finalists by NIST, as well

as outside parties. Upon examination of the software performance tests conducted

by NIST [41], Renner et al. [42], and Weatherly [43], along with the hardware perfor-

mance tests conducted by the GMU CERG group [44], Aagaard and Zidaric [45], and

22

Chapter 3. Lightweight Ciphers

Khairallah et al. [46], two ciphers stood out as candidates: ASCON and TinyJAMBU.

ASCON demonstrated consistent performance in both hardware with smaller resource

footprint than others, and software with reduced code size and fast processing, that

exceeded the others, including the baseline cipher, AES. TinyJAMBU performed the

best overall in software, having a small code size with the fastest processing, and

moderate performance in hardware, due to low resource consumption.

3.2 NIST Lightweight Cryptography Winner

In February 2023, NIST announced the winner of the competition. ASCON was

selected for lightweight cryptography standardization. While the rationale behind

the final decision is yet to be released, the overall performance of ASCON, whose

algorithms are depicted in Figure 3.1, was the most consistent across hardware and

software and outperformed most in both departments.

Figure 3.1: ASCON Encryption and Decryption

The features offered by ASCON, as well as its previous top performance in the

CAESAR competition, made it one of the best candidates to win the competition. It

23

Chapter 3. Lightweight Ciphers

accomplished lightweight and flexible hardware application, demonstrating through-

put of 4.9-7.3 Gbps while using less then 10 kGE. This performance is theorized of

being able to be increased further for even smaller applications or higher speeds.

Given the top performance in hardware and software, it lends itself to cross-platform

design scenarios where a back-end server would be needed.

Thorough testing, both from this and previous competitions, has concluded high

cryptanalyic security with no indications of weaknesses. The improved initialization

and finalization strengthen the already strong sponge-based design. The choice to use

bit-sliced S-boxes prevents cache-timing attacks and the log algebraic degree of the S-

box offers higher order protection using masking and sharing-based countermeasures.

24

Chapter 4

Hybrid Homomorphic Encryption Ciphers

In recent years, ciphers have been developed that specifically catered to Hybrid Ho-

momorphic implementations. The base version, Rasta, was developed in 2018 by

Dobraunig et al.[6]. Rasta is a symmetric cipher that has low AND depth, which

lends itself to a lower overall multiplicative depthwithout sacrificing security. To ac-

complish this design, the Rasta cipher family applies permutations to the secret key,

producing a keysteam that is used to obfuscate the plaintext.

Over the years, there have been variants on Rasta including Agrasta, Dasta, Fasta,

Masta, Pasta and others. Many of the variants offer reduced rounds and/or improved

performance. For this work, focus was directed towards Fasta and Pasta for being

the newer of the variants with promising performance.

4.1 Fasta

Fasta was developed in 2021 by Cid et al.[30] as a variant of Rasta with the focus of

creating a BGV-friendly linear layer. The original implementation of Fasta for use

with BGV was catering to the application in the library HElib, which offers a levelled

version of the HE scheme. At a high level, as depicted in Figure 4.1, the 329-bit secret

key is copied into five different states of the same size, shifting four of the states by a

value between 1 and 4 to the left. The result is a keystream comprised of 1645 bits.

The size of the states is derived from searching for the value of m that coincides with

25

Chapter 4. Hybrid Homomorphic Encryption Ciphers

128-bits of security both in standalone and HHE application, along with a large, odd

number of slots. The sweet spot determined for this implementation was a prime m

equal to 30269, resulting in 329 slots.

Figure 4.1: High-level design of Fasta

Keystream generation occurs over 6 rounds of an affine layer, Aαj
, and a non-

linear transformation, χ, followed by a final affine layer and a feed-forward XOR of

the states and the secret key. The affine layer is comprised of two parts, a rotation-

based linear transformation and a round constant added to the state. The non-linear

layer is composed of multiplication and addition of various indices within the state to

define the new value at that index. These states produce a 1645 bit keystream that is

added to the plaintext to produce the ciphertext and subtracted from the ciphertext

to produce the plaintext.

4.2 Pasta

Pasta was developed in 2021 by Dobraunig et al.[7] as a variant of Rasta with the focus

of optimization for integer HHE implementations. How this was accomplished was

26

Chapter 4. Hybrid Homomorphic Encryption Ciphers

from the idea of converting Rasta to Ft
p. Unlike many existing ciphers that operate

over Z2 or F2, Pasta works in Fp, where p is a large prime. The main caveat to the

operating on plaintexts in Z2 is that the construction of binary circuits is required to

handle HHE integer cases. The goal of Pasta was to efficiently and securely realize

HHE over Fp while achieving same sized keystream and plaintext/ciphertext.

Pasta has the option of 3 rounds, Pasta-3, or 4 rounds, Pasta-4, with guaranteed

128-bit security. Table 4.1 depicts the main differences between the two variations

of Pasta. Pasta defines its variables in words, where 1 word is equivalent to a 16-bit

value. The two instances, 3-round and 4-round Pasta, are designed to provide at least

128 bits of security when used with prime fields Fp where log2(p > 16) and the gcd(p

- 1, 3) = 1. This feat is accomplished by using SHAKE128 [47].

Table 4.1: HHE Components with Pasta

Rounds Plaintext Size Key Size Ciphertext Size
(words) (words) (words)

3 128 256 128
4 32 64 32

To operate in Ft
p, a feed-forward operation replaced Rasta’s truncation, preventing

man-in-the-middle attacks more efficiently. This change led to the larger state sizes

presented in Table 4.1. As noted in the table, the key size correlates to twice that

of the plaintext and/or ciphertext. Pasta breaks its large key into two, equally sized

state vectors in which computations are enacted against so that the final keystream

is equal in size to the plaintext. The overall design of this keystream generation with

the final application to either the plaintext or ciphertext is shown in Figure 4.2.

A single round of Pasta is comprised of a linear layer followed by the application

of an S-Box. The linear layer executes a matrix multiplication and adding of a round

constant to both states, then mixes the states together. To reduce the cost of the

linear layer, Pasta went with 2t random elements that are used to construct two

matrices. When combined, the matrices formed the single 2t x 2t matrix with a

27

Chapter 4. Hybrid Homomorphic Encryption Ciphers

Figure 4.2: Design of Pasta

cheap mixing operation. The 2t random elements are where the two state arrays

come into play in Pasta’s algorithm.

Pasta has two different S-Box implementations. The primary choice is the Feistel

S-Box that uses a quadratic function, rotations and masking in its execution. The

corresponding equation given in Equation 4.1

S(−→x) = −→x + (rot(−1)(
−→x) ◦ −→m)2 (4.1)

The second implementation is only used during the final round, the S-Box Cube.

As the name implies, the state is cubed in this instance, as shown in Equation 4.2.

While Feistel S-Box is the primary choice due to the minimal multiplicative depth,

the S-Box Cube is added in to increase the ability to combat linearization attacks

and reduce the state size.

S(−→x) = (−→x)3 (4.2)

The rounds are executed then a final linear layer is applied at the end to generate

the final keystream. This final linear layer is not followed by any additional S-box

applications. Only the first of the two states is used as the final keystream. The value

derived is then added to the plaintext to produce the ciphertext for encryption and

subtracted from the ciphertext to produce the plaintext for decryption.

28

Chapter 5

Fully Homomorphic Encryption Schemes

5.1 Basic Preliminaries and Notation

The FHE schemes operate with a polynomial ring R, which is defined as R =

Z[x]/(f (x)). The function f (x) is a monic irreducible polynomial of degree d. The

most common functions are either Φm(x), where the m is the m-th roots of unity for

the minimal polynomial, or xd+1, where d = 2n. The elements are often represented

as a vector of the coefficients of the polynomial form.

When integer q > 1, a set of integers can be denoted by (−q/2, q/2] in Zq. Zq

is only representing a set and not the same as the ring Z/qZ. This puts Rq as a

set of polynomials in R with coefficients in Zq. The ciphertext elements are reduced

by the integer q which acts as a modulo to place the value in the range (−q/2, q/2].

The plaintext modulus is defined as t < q, creating the message space R/tR. This

means that R with coefficients modulo t. A radix-w system is used where w represent

integers, lw,q = [logw(q)] + 1.

The schemes describe two functions, the decomposition and power functions, de-

noted by Dw,q and Pw,q. Word decomposition is derived as integer z in the interval

(−q/2, q/2], which can be denoted as
∑lw,q−1

i ziw
i. The summation can be rewritten

to accommodate ring element x ∈ R when zi is within [0, w], creating
∑lw,q−1

i xiw
i.

The ring element is mapped to a vector of lw,q where the values are the decompo-

29

Chapter 5. Fully Homomorphic Encryption Schemes

sition’s of the original values. The power function operates similarly on the same

mapping except the ring element is scaled with the exponential of the radix integer.

The decomposition function and power function are defined as

Dw,q : R→ Rlw,q , x→ ([x0]w, [x1]w, ..., [xlw,q−1]w)

Pw,q : R→ Rlw,q , x→ ([x]q, [xw]q, ..., [xw
lw,q−1]q)

5.2 Brakerski-Gentry-Verauteren Scheme

Brakerski-Gentry-Verauteren (BGV) [9] expanded on the FHE scheme using weaker

security assumptions in order to achieve better performance. The goal was to create

an FHE scheme without needing to use bootstrapping, though a version with boot-

strapping is a follow-on. Brakerski and Verauteren’s original work on BV [48] was

built upon to achieve this improved performance.

• KeyGen(d, q, χ): returning

sk = SecretKeyGen(d, q, χ)

pk = PublicKeyGen(d, q, χ, sk)

sk’ = sk ⊗ sk ∈ Rqj

sk” = BitDecomp(sk’, qi)

τ = SwitchKeyGen(sk”, sk−1)

• Encrypt(pk, m): where m ∈ R, set m = (m, 0) ∈ R2
2, with r ← χ, e ← χ2,

returning

ct = m + 2 · e + aTL · r ∈ R2
qL

• Decrypt(sk, ct): assuming the ciphertext ct is encrypted with sj, returning

m = [[⟨ct, sj⟩]]2

30

Chapter 5. Fully Homomorphic Encryption Schemes

• Refresh(ct, τsk′′→sk−1 , qj, qj−1): performs

Expand: ct1 = Powersof2(ct, qj)

Switch Moduli: ct2 = Scale(ct1, qj, qj−1, 2)

Switch Keys: ct3 = SwitchKey(τsk′′→sk−1 , ct2. qj−1)

• Add(pk, ct1, ct2): Two ciphertexts encrypted under sj returning

ct3 = ct1 + ct2

ct4 = Refresh(ct3, τsk′′→sk−1 , qj, qj−1)

• Mult(pk, ct1, ct2): Two ciphertexts encrypted under sj returning

ct3 = Llong
ct1,ct2(x⊗x)

ct4 = Refresh(ct3, τsk′′→sk−1 , qj, qj−1)

5.2.1 Optimizations

Since original development in 2011, variants have emerged with improvements. The

main addition to the design was developed by Gentry-Halevi-Smart (GHS) which

offered scaled messages [49] that use Residue Number System (RNS). RNS operates

on large integers by decomposing them into smaller numbers that fit into machine

words of 64-bits. The main benefit of using a RNS variant is that the requirement of

moduli qi = 1 mod t does not need to be met to perform modulus switching.

The library OpenFHE [13] offers four different versions of BGV with different RNS

optimizations. The first is FIXEDMANUAL which uses a manual modulus switching

implementation with the BGVrns variant. The second is FIXEDAUTO which still

uses the BGVrns, but automatically implements modulus switching after the first

multiplication. The third option, FLEXIBLEAUTO, uses theGHS with RNS with

automatic modulus switching after the first multiplication.

31

Chapter 5. Fully Homomorphic Encryption Schemes

The last option, and the default mode, is FLEXIBLEAUTOEXT, which uses the

same design as FLEXIBLEAUTO with the addition of automatic modulus switching

before the first homomorphic multiplication. While the other modes can run faster,

the default offers the fastest speeds for smaller ring dimensions paired with a smaller

ciphertext modulus while still satisfying the same level of security. In addition to the

speed in certain cases, FLEXIBLEAUTOEXT also supports larger plaintext moduli.

5.3 Brakerski/Fan-Verauteren Scheme

Brakerski/Fan-Verauteren (BFV) [8], also referred to as FV, is considered a second

generation FHE scheme developed in 2012. BFV is an extension of Brakerski’s encryp-

tion scheme [50] where implementation of Learning with Errors (LWE) is converted

to Ring Learning with Errors (RLWE). BFV can be used as a SWHE with the ability

to relinearize ciphertexts or an FHE with the use of bootstrapping. The leveled FHE

scheme offers noise that grows linearly with the depth of evaluation circuits.

• KeyGen(d, q, χkey, χerr, w): returning

pk = (b,a) = ([-(Rqχkey) + χerr], Rq)

sk = χkey

evk = γ = ([Pw,q)(χkey)
2 - (χerr + Rqχkey)]q, Rq)

• Encrypt(pk, m): where m ∈ Rt, p0 = pk[0], p1 = pk[1], u ← R2, e1, e2 ← χ,

returning

ct = ([p0 · u+ e1 +∆ ∗m]q, [p1 · u+ e2]q)

• Decrypt(sk, ct): where s = sk, c0 = ct[0], c1 = ct[1], returning

m = ([t
q
· [c0 + (c1 · s)]q])t ∈ R

32

Chapter 5. Fully Homomorphic Encryption Schemes

• Add(ct1, ct2): where ct1 = (c1,0, c1,1) and ct2 = (c2,0, c2,1), returning

ctadd = (c1,0 + c2,0, c1,1 + c2,1)

• Mult(ct1, ct2, evk): returning ctmult, which represents (c0, c1, c2)

ctmult = (([t·(ct1[0]·ct2[0])
q

])q, ([
t·(ct1[0]·ct2[1]+ct1[1]·ct2[0])

q
])q, ([

t·(ct1[1]·ct2[1])
q

])q)

• Relin(ctmult, rlk): where ctmult = [c0, c1, c2] is a degree 2 ciphertext, returning

ct’ = [c’0, c’1] as a 1 degree ciphertext

c’0 = [c0 +
∑l

i=0 rlk[i][0] · c(i)2]q

c’1 = [c1 +
∑l

i=0 rlk[i][1] · c(i)2]q

5.3.1 Optimizations

Since original development in 2012, variants have emerged with improvements. Like

BGV, BFV also makes use of RNS optimizations, specifically impacting the execution

of multiplications. For BFV, there are two different RNS variations that have been

created. The first was introduced by Bajard, Eynard, Hasan, and Zucca (BEHZ)

[51], with the goal of eliminating the need for multi-precision arithmetic and suggest-

ing techniques to use full RNS in BFV-like schemes. The second was proposed by

Halevi, Polyakov, and Shoup (HPS) [52], which focuses on optimizing decryption and

multiplication in the RNS by using Chinese Remainder Theorem (CRT) to manipu-

late large coefficients in the ciphertext polynomials. Making improvements from the

BEHZ, HPS claims simpler, faster procedures with lower noise growth.

The library OpenFHE [13] offers four different versions of BFV. The first is HPS,

which uses the RNS design proposed in [52], with procedures that use mix of integers

and floating-point operations. The second is BEHZ which uses the RNS proposed by

[51], with procedures based on integer arithmetic. The third option, HPSPOVERQ,

33

Chapter 5. Fully Homomorphic Encryption Schemes

uses HPS with static noise estimation to choose the size of RNS moduli. The last

option, and the default in the library, is HPSPOVERQLEVELED. Expanding upon

HPSPOVERQ, modulus switching is applied inside homomorphic encryption to re-

duce computational complexity. In addition to the modes, there is the option of

STANDARD or EXTENDED when it comes to the modulus Q. STANDARD mode

executes encryption with a fresh modulus and the EXTENDED uses a larger mod-

ulus by using auxiliary moduli for homomorpic multiplication followed by modulus

switching. STANDARD is the default used.

5.4 Homomorphic Operation Examples

Homomorphic operations have expanded beyond the basic addition and multiplica-

tion, using these computations as building blocks to create more functionality. Within

the homomorphic library OpenFHE [53, 13], the functions EvalAdd, EvalSub, Eval-

Mult, EvalSum and EvalRotate are offered, along with others that lend themselves to

different use cases. Below defines how these operations affect the ciphertext. All ex-

amples will uses the following values for two ciphertexts, given as their integer values,

and the plaintext modulus:

c1 = [1, 100, 1000, 5000]

c2 = [2, 20, 200, 1000]

ptm = 65537

The plaintext modulus ptm is set tp 65537 in this example since that is the value

recommended when working with integers.

5.4.1 Homomorphic Addition

The two ciphertexts, c1 and c2, can be homomorphically added together by perform-

ing EvalAdd on each element:

34

Chapter 5. Fully Homomorphic Encryption Schemes

c3 = EvalAdd(c1, c2) = [c1 + c2]

c3 = [[1, 100, 1000, 5000] + [2, 20, 200, 1000]]

c3 = [3, 120, 1200, 6000]

Since the results do not exceed the plaintext modulus, the values computed are

the values stored.

5.4.2 Homomorphic Subtraction

The two ciphertexts, c1 and c2, can be homomorphically subtracted together by

performing EvalSub on each element:

c3 = EvalSub(c1, c2) = [c1 + (-c2)]

c3 = [[1, 100, 1000, 5000] + [-2, -20, -200, -1000]]

c3 = [-1, 80, 800, 4000]

Since the results do not exceed the plaintext modulus, the values computed are

the values stored.

5.4.3 Homomorphic Multiplication

The two ciphertexts, c1 and c2, can be homomorphically multiplied together by

performing EvalMult on each element:

c3 = EvalMult(c1, c2) = [c1 · c2]

c3 = [[1, 100, 1000, 5000] · [2, 20, 200, 1000]]

c3 = [2, 2000, 3389, 19188]

Since the last two elements, when multiplied together, exceed the plaintext mod-

ulus, the result is mod by ptm. The logic behind the last elements is as follows:

c3[3] = 1,000 · 200 = 200,000 mod 65,537 = 3389

c3[4] = 5,000 · 1,000 = 5,000,000 mod 65,537 = 19,188

35

Chapter 5. Fully Homomorphic Encryption Schemes

5.4.4 Homomorphic Sum

A new feature offered is calculating the sum of the elements contained within a given

ciphertext using EvalSum. Using c1, each element is added with all subsequent values

and stored in its current index.

c3 = EvalSum(c1, 4) = [
∑

c1]

c3 = [(1 + 100 + 1000 + 5000), (100 + 1000 + 5000), (1000 + 5000), (5000)]

c3 = [6101, 6100, 6000, 5000]

Since the results do not exceed the plaintext modulus, the values computed are

the values stored.

5.4.5 Homomorphic Rotation

A ciphertext, c1, can be rotated to the left or to the right by x spaces using EvalRo-

tate.

c3 = EvalRotate(c1, -2) = c1 ¿¿ 2

c3 = [1, 100, 1000, 5000] ¿¿ 2 = [1000, 5000, 1, 100]

c4 = EvalRotate(c2, 3) = c2 ¡¡ 3

c4 = [2, 20, 200, 1000] ¡¡ 3 = [1000, 2, 20, 200]

In order to differentiate between which direction the array is shifted, the index

value is either set to a positive value for a left shift or a negative value for a right

shift.

36

Chapter 6

Component Selection

6.1 Cipher Decision

The first choice required was selecting a cipher that would be paired with an HE

scheme. The original choice and the choice implemented differ due to discoveries made

while attempting to develop the application. About halfway through the design, focus

shifted from using a lightweight cipher to using a hybrid homomorphic encryption

cipher.

6.1.1 Pursuit of Lightweight Cipher

The original direction of this research was to investigate the latest improvements

to lightweight cryptography. Given the taxing computations that can result from

heavy, robust ciphers, lightweight options were thought to offer small, less complex

decryption circuits that would translate better into hybrid homomorphic application.

To find the best candidates, the NIST Lightweight Competition had a selection of well

vetted contenders with 10 finalists on which to focus. After analyzing the hardware

and software results [41, 42, 43, 44, 45, 46], it was evident that the top two contenders

were ASCON [20] and TinyJAMBU [39]. All demonstrated strong performance in

both hardware and software, with ASCON edging the others out in hardware while

TinyJAMBU did the same in software.

37

Chapter 6. Component Selection

The initial cipher choice was TinyJAMBU; however, ASCON ended up winning

the competition. The smaller code size and overall more simplistic logic offered by

TinyJAMBU seemed to be the better choice. Upon initial testing and implementa-

tion, it turned out that implementing TinyJAMBU in this scenario was more complex

and challenging then originally theorized. The logic needed to translate the decryp-

tion circuit into a homomorphically compatible circuit would have resulted in poor

performance overall. ASCON was reconsidered for a short period of time after Tiny-

JAMBU proved more difficult. It had similar complexity issues that made it less

compatible with homomorphic encryption where it stands now.

6.1.2 Pursuit of Hybrid Homomorphic Encryption Cipher

When the possibility of achieving a working product seemed slim, research led to

the discovery of hybrid homomorphic encryption ciphers. Rasta, being one of the

predominant choices, was outdated with many newer variants that provided improve-

ments to performance. The latest two, Fasta and Pasta, appeared to have the most

promising results. First looking into Fasta for advertised fast processing, it was noted

that the design was catered specifically towards BGV. If that HE scheme had been

selected, Fasta would have been the choice; however, the HE choice was to use BFV

which required a different set of evaluations between the ciphers.

The final decision came down to the operating field along with what could add

to the HE community. Pasta is designed to cater towards integers while Fasta works

more with binary circuits. With the HE scheme choices broken down between BGV

and BFV, it made more sense to work with Pasta since both share the use of integers

more. Performing a deeper dive between the two ciphers also revealed that translating

Pasta’s decryption circuit to homomorphic decryption would be more straight forward

given that it was not specifically designed to work with one instance. The flexibility

to possibly work with various HE schemes in the future made Pasta the right choice.

38

Chapter 6. Component Selection

6.2 Homomorphic Encryption Scheme Decision

6.2.1 Library

There are multiple libraries available with open-source HE schemes that offer a variety

of functionality. Most have a limited number of supported schemes, reducing the

flexibility of the user’s choice. Long standing libraries such as HELib [54] and SEAL

[55] cater to one, maybe two schemes. To avoid limiting the possibilities of the

implementation, a library that had multiple options was searched for, leading to

Palisade [56] which later became OpenFHE [13].

Developed by Polyakov, Rohloff, and Cousins, OpenFHE came about in 2022 as

an extension of the original Palisade. Developers from various libraries came together

in order to create a cohesive destination for post-quantum HE code. It is designed

for usability, performance, modularity and cross-platform support. Of the existing

libraries, OpenFHE has source code for all major FHE schemes, including BGV [9],

BFV [8], Cheon, Kim, Kim and Song (CKKS) [57], FHEW [11], and TFHE [10].

While OpenFHE remains under continued development, the features available are

sufficient for creating a prototype for this project. While this implementation only

uses one of the FHE schemes, the parallelism between implementations opens up the

possibility for future extensions that use other schemes.

6.2.2 Scheme

Looking at the new development in HE, there are now fourth generation schemes.

The second generation schemes are BFV and BGV, the third generation schemes are

FHEW and TFHE, and the fourth generation scheme is CKKS. CKKS makes use of

machine learning which is more complex than this implementation required, so it was

not considered. Now, the main research now was to look between second and third

generation sets and decide upon which to perform a deeper dive.

39

Chapter 6. Component Selection

Third generation schemes were developed in 2015 and 2018. When it comes to

new technological enhancements, especially in the post-quantum field, that is still

relatively new. While new does not equal bad, the testing and optimizations per-

formed on the ciphers is not up to par with that of older schemes. FHEW and TFHE

are both designed to evaluate arbitrary Boolean circuits with bootstrapping after

each gate evaluation. While the schemes demonstrate improved speeds with stronger

assumptions and optimized bootstrapping, there are reported disadvantages at this

time in the relation between performance and security. For increased performance,

security is sacrificed and vice versa. Due to this, focus was directed towards second

generation FHE schemes.

Second generation schemes have been around for over 10 years with extensive

testing and new optimizations added recently. With verified security and performance

metrics, it seemed logical to look at BFV and BGV for current enhancements that

could cater toward this implementation. Both schemes offered variants that make use

of RNS to improve noise growth and computational complexity. Comparing the two

in [27], it was determined that BFV offers more robust noise estimate inaccuracies

while BGV requires precise noise estimates to avoid decryption failure. Furthermore,

the leveled versions of BFV have one less bit per multiplication level, reducing noise

further. For smaller plaintext moduli, BFV offers faster performance; whereas for

larger plaintext moduli, BGV is the suggested choice. This comparison of performance

and reduced noise growth supported the final decision of BFV.

40

Chapter 7

Implementation

The overall implementation of the project was to develop a working translation of

the Pasta decryption circuit into a homomorphic compatible instance. Using the

OpenFHE library’s BFVrns, the design was implemented where BFV operations were

used to replicate the behavior of Pasta to homomorphically decrypt. Once that was

successfully designed and tested, follow-on test cases were created to show potential

use.

Note that the way functions operate in BFV is that the operation is performed

element by element, as described in Section 5.4. This means that the value at a[0] is

added or multiplied by the element in b[0] and then stored in the result c[0]. This

design, along with the inability to cleanly index the array while it is encrypted, adds

a few extra steps to translate the decryption circuit originally given by Pasta [12].

7.1 Hybrid Homomorphic Encryption

Before decrypting the instance, the plaintext must first be encrypted. The overview

of the encryption process is given in Fig. 7.1. Pasta’s encryption function is used

first, shown in Appendix A lines 100 to 105. This logic is taken directly from [12],

where a plaintext, m, is encrypted using the Pasta’s symmetric key, k pasta.

The result, ct pasta in this instance, is sent along with the symmetric key to be

encrypted under HE. In addition to those values, the BFV public and private key pair

41

Chapter 7. Implementation

Figure 7.1: HHE Encryption

is passed as well. Given Pasta’s symmetric key, kpasta, which is double the length of

the ciphertext, the value is split evenly into two state arrays, state1 and state2. The

state arrays are comprised of the words stored in kpasta, where each index houses one

word. These values are encrypted with BFVrns and the homomorphic public key.

Lastly, before switching from Pasta encrypted to BFV encrypted, the ciphertext,

ctpasta, must be encrypted a second time with BFVrns and the homomorphic public

key. The values passed on to the decryption circuit are state1, state2 and cthhe.

7.2 Hybrid Homomorphic Decryption Circuit

As explained in Section 4.2, the main logic of the decryption circuit follows the gen-

eration of the keystream that is subtracted from the ciphertext to obtain the original

plaintext. In the main logic of the decryption circuit, Algorithm 1, a declaration of

the number of rounds, R, is needed. Pasta offers the option of 3 rounds or 4 rounds

with different constraints on key, plaintext, and ciphertext size as stated in Table 4.1.

Reference to the function can also be found in Appendix A, called HHE Decrypt.

Three values are required to do these operations: the doubly encrypted ciphertext

along with the two states, state1 and state2

A key thing to note is that rc represents the round constant. This constant is

a randomly generated vector of length equal to the state size. In order to generate

42

Chapter 7. Implementation

Algorithm 1 HHE Decrpyion Circuit

Require: 3 ≤ R ≥ 4
Require: state1, state2, cthhe
r ← 0
while r < R do

matmul(state1, rc)
matmul(state2, rc)
addRC(state1, rc)
addRC(state2, rc)
mix(state1, state2)
if r < R− 1 then

sboxFeistel(state1)
sboxFeistel(state2)

else
sboxCube(state1)
sboxCube(state2)

matmul(state1, rc)
matmul(state2, rc)
addRC(state1, rc)
addRC(state2, rc)
mix(state1, state2)
ctbfv ← cthhe − state1

the vector, which does not allow zero values, Keccak’s HashSqueeze function is used,

which is built off of SHAKE128 [47]. The round constant is assigned a new vector

between each function call, so no rc in Algorithm 1 is the same value. The source code

given in Appendix A shows the regeneration of the vector that was assigned as rc. To

reduce complexity, rc is passed in as a plaintext given the continual changes; however,

encrypting it as a homomorphic ciphertext would be a trivial switch. The performance

impact of such a change should also be minimal given that the multiplicative depth

would not be impacted.

The majority of the functions referenced in Algorithm 1 are for generating the

keystream, which upon completion, is the value stored in state1. Once the keystream

is computed, state1 is subtracted from the ciphertext in BFV to convert the doubly

encrypted value, cthhe, to solely BFV encrypted value, ctbfv, shown in Appendix A

line 479.

43

Chapter 7. Implementation

7.2.1 Linear Layer

The linear layer is comprised of three functions: matmul, addRC, and mix. Focusing

first on matmul, Appendix A lines 231-273, the function executes matrix multiplica-

tion as summarized in Algorithm 2. Given the ciphertext size, X, a state, and the

round constant, the state is multiplied by a set of rows calculated with the current

row and the round constant. The key size is halved for these calculations due to the

state being one half of the whole key.

Algorithm 2 Matrix Multiplication

Require: state, rc
X ← cipher size
temp← HE.Ciphertext(0) # Empty Ciphertext
row ← rc
while x < X do

mult← state · row ← BFV.EvalMult(state, row)
sum←

∑
mult[i]← BFV.EvalSum(mult,X)

masked← sum · 10..00← BFV.EvalMult(sum, 10..00)
sum← masked >> x← BFV.EvalRotate(masked, 0− x)
temp← temp+ sum← BFV.EvalAdd(temp, sum)
row ← recalc row(row)

state← temp

Since the state is encrypted under BFV, computations are executable against it.

Following the design of Pasta’s matmul function [12], the state is multiplied by the

row, which is initially set as the round constant. The result, mult, is then summed

together, where each element is added together with all trailing values. The array

created from this has the sum at sum[0] equal to mult [0] plus all subsequent index

values, the sum at sum[1] equal to mult [1] plus all subsequent index values, and so on.

The only value of interest is stored at sum[0] which is why the ciphertext is multiplied

by a mask of 1 followed by 0’s until equal the to length of X. Per the earlier statement

of index based operations, the array must rotate the first element to the right x spaces

in order to add the value to the correct location. Since BFV offers both left and right

44

Chapter 7. Implementation

rotations, negative values are needed to indicate a right shift. Finally, the result of all

computations are added into the temporary ciphertext and the row is recalculated.

Once every index has been filled, the final temp array is stored back as the new state.

Overall, the multiplicative depth of this function, per call, is 2.

The next two functions, addRC and mix, are pretty straight forward. For addRC,

as shown in Algorithm 3 or lines 216-222 in Appendix A, the state and the generated

round constant are added together and stored back in the state.

Algorithm 3 Add Round Constant

Require: state, rc
state← state+ rc← EvalAdd(state, rc)

The mix state, Algorithm 4 or lines 280-285 in Appendix A, adds together state1

and state2 to produce a ciphertext containing the sum of both states. The resulting

sum is then added to each of the states. Both of these functions have a multiplicative

depth of zero given no multiplication operations needed.

Algorithm 4 Mix States

Require: state1, state2
sum← state1 + state2← EvalAdd(state1, state2)
state1← state1 + sum← EvalAdd(state1, sum)
state2← state2 + sum← EvalAdd(state2, sum)

7.2.2 S-Box

As introduced in Section 4.2, Pasta uses two different S-Boxes in order to maintain

low multiplicative depth while also combating linear attacks. Used for all rounds but

the last, the Feistel S-Box, Algorithm 5 or lines 308-322 in Appendix A, has more

complex logic while only having a multiplicative depth of 1.

The Feistel logic squares the given state. The result is then shifted right one to

mimic the desired mask of a rotated 01..11 vector. In BFV, the shift leaves an extra

value past the desired size since the size grows with multiplications. To mitigate the

45

Chapter 7. Implementation

Algorithm 5 SBox Feistel

Require: state
square← state2 ← EvalSquare(state)
shifted← square >> 1← EvalRotate(square,−1)
shifted← shifted · 11..10← EvalMult(shifted, 11...110)
state← state+ shifted← EvalAdd(state, shifted)

impact of the extra element, a mask is multiplied to maintain the array. The masked,

shifted value is then added with the state and stored as the new state.

The final round in the decryption circuit uses the S-Box Cube, Algorithm 6 or lines

294-299 in Appendix A. As the name implied, the state is cubed. Since BFV does

not yet offer a cube function, the state is squared first, then the product multiplied

against the state again. Given that there are two subsequent multiplications, the

multiplicative depth is 2.

Algorithm 6 SBox Cube

Require: state
square← state2 ← EvalSquare(state)
state← state · square← EvalMult(state, square)

7.3 Cross Domain Solution Scenario

Before designing a test for a CDS, understanding the use case is necessary. As pre-

viously defined, a CDS is a form of controlled interface that provides manual or

automatic access and transfer information between different security domains [14].

Since the goal is to avoid revealing route data, the scenario implemented will emulate

that use case.

The idea is that there are multiple sources that are trying to send data to a specific

endpoint, as depicted in Figure 7.2. That destination is defined by a correlating

classification. The sources feed the information into an unknown domain, such as

a broadcast network, that sends the data to gateways. These gateways have an

46

Chapter 7. Implementation

unknown classification. All gateways are equally likely to be chosen, with no known

classification; therefore, the data used to dictate the endpoint must be protected.

Figure 7.2: CDS Use Case

The endpoints shown in Figure 7.2 show a subset of the possible security domains.

The common list used for classifications include: Top Secret, Secret, Confidential,

Restricted, Official Use Only, and Unclassified. There are classifications beyond Top

Secret; however, they are not the focus for this scenario. Classifications can be

stacked, where multiple apply to a set of data depending on the use case, but are

referenced by the highest clearance needed for that information. While multiple

users could co-exist in a classification domain, they may not have the need-to-know

to access the information intended for another user in the domain. This requires the

need to head to a specific destination address because, while this case only shows one

of each, there could be multiple domains of the same sensitivity.

To avoid revealing information to the unprotected domain and gateways but still

47

Chapter 7. Implementation

reach the correct endpoint, identifying certain encrypted values is crucial. By com-

paring the actual and expected values, a single result can be checked where a zero

means that the value matches. If the value does not match, a random value will be

returned. Based on the result, the gateway can be told if the data should proceed to

the classified domain.

7.3.1 Application to the Cross Domain Problem

The main test case for this implementation is the application to the CDP. The design

mimics a CDS use case shown in Figure 7.3. A distribution center will stage most of

the information, having the keys generated for both Pasta and BFV. The metadata

for Pasta is encrypted, where the data houses the classification level along with any

other desired information. The m gateway, the classification comparison value, is

encrypted under BFV. The security level of m gateway could be Top Secret, Secret,

Confidential, Restricted, Official, or Unclassified. In order for later comparison to

be accurate, the value is placed in a plaintext array at the designated index, then

encrypted. Lastly, in this stage, Pasta’s symmetric key is encrypted under BFV as

to not be revealed.

From there, BFV’s public and private keys, along with the Pasta ciphertext and

HE encrypted symmetric key, are sent to the gateway. At the gateway, the Pasta

ciphertext can be doubly encrypted using BFV. Once encrypted, the hybrid homo-

morphic decryption circuit can be executed to create a ciphertext of the data that

is solely encrypted under BFV. This hybrid homomorphic decryption is the same

process as explained in the Section 7.2.

The comparison takes place next between the gateway classification value and

the encrypted data, now referred to as BFV(m producer). The comparison check,

as describe in Algorithm 7, is a subtraction, which should result in a ciphertext of

all zeros when the values match. OpenFHE has developed a subtraction method for

48

Chapter 7. Implementation

Figure 7.3: High Level Design Breakdown of a CDS

BFV that uses addition as the base in the background. This allows for a simplistic

way of checking if the values are the same, subtracting the actual by the desired. If

the result is zero, then its a match. With the computations executed by index, it is

possible to compare multiple values at once, as depicted in Appendix A lines 591-645.

49

Chapter 7. Implementation

Algorithm 7 Application of a CDS

Require: ctbfv, ct size, indexes, values
mask ← vector(0, ct size)
for index ∈ indexes do

mask[index]← 1

masked← ctbfv ·mask ← EvalMult(ctbfv,mask)
comp← vector(0, ct size)
for index ∈ indexes do

comp[index]← value

diff ← masked− comp← EvalSub(masked, comp)

The resulting ciphertext from the comparison is passed to the router where it will

be decrypted using BFV. The result will be an array of all zeros should the value

match. If any value is not zero, then it is not a match. Based on the results, the

router can allow or reject the payload message from the producer to continue to the

destination. If approved for transit, at the destination, the payload can be decrypted

as usual using Pasta’s decryption circuit and Pasta’s secret key.

For this implementation, an arbitrary set of 16-bit values were selected to act as

classification indicators that could be incorporated into the payload. Table 7.1 shows

the random values generated. Should the user desire a longer classification value to

increase variation, it is possible that two indexes could be used in tandem to have a

32-bit value.

Table 7.1: Selected Classification Values

Classification Hex Value

Top Secret 0x0CFE2
Secret 0x0A645

Confidential 0x028A9
Restricted 0x06D43
Official 0x0C489

Unclassified 0x057C2

Another instance that could be used in the metadata incorporated into the payload

is the destination address. While the values are only 16-bits the use of two or more

50

Chapter 7. Implementation

indexes could increase the amount of bits that could be used in comparison. For

example, using two indexes an IPv4 address can be derived from 32-bits. The one

caveat to the split indexed value is that the user may need to perform computations

outside of the homomorphic implementation to know what value would allow those

comparisons.

7.4 Additional Test Cases

Two separate test cases were derived for this project to observe usability along with

the impact of increased multiplicative depth beyond the application of the case study.

Each offers a different use case, from straight forward decryption circuit to arbitrary

computations that demonstrate future capabilities. Both test cases were designed

to work with 3-round and 4-round Pasta decryption circuits, in turn, testing large

plaintext/key pairs and smaller plaintext/key pairs respectively. Over the course of

the tests the multiplicative depth varies, thus impacting the results in each case.

7.4.1 Case 1

Test case 1 operates on the bare minimum. The purpose of this test is to give a

baseline comparison of the decryption circuit with other tests and verify the accuracy

of said circuit. When executing in a 3-round Pasta instance, the multiplicative depth

is 12. For a 4-round Pasta instance, the multiplicative depth is 15. The run difference

stems solely from the extra round. Appendix A lines 498-538 shows the test which

decrypts the final ciphertext then compares the resulting plaintext with the original

used. If the values matched, then it was successful.

7.4.2 Case 2

Test case 2 is designed to show that multiple computations could be executed follow-

ing the completion of the decryption circuit. This proof of concept introduces the

51

Chapter 7. Implementation

possibility of operations done on the ciphertext after the homomorphic decryption

circuit is applied. The original idea was to demonstrate the ability to gather the sum

of all elements within the ciphertext array. The sum would allow the user to calculate

the average of the ciphertext, modulo the plaintext modulus. The user could then

take the resulting decrypted value and divide by the size of the ciphertext. One day,

possibly, there will be a division option created within HE that would allow for this

to be done so decryption before final calculations is not necessary.

The instance developed for this case was slightly more complex, adding an ad-

ditional multiplication into the mix. The purpose of the new design, in Algorithm

8, Appendix A lines 547-580, was to increase the multiplicative depth to emulate

how additional computations would impact timing. The logic to execute this case

added 2 multiplicative depth in the 3-round Pasta instance, and 3 in the 4-round

implementation.

Algorithm 8 Test Case 2

Require: ctbfv, ct− size
mult← ct2bfv ·mask ← EvalSquare(ctbfv)
sum←

∑
mult← EvalSum(mult, ct− size)

sum← sum · 10..00← EvalMult(sum, 10..00)

The test case is pretty straight forward. The ctbfv created from the decryption

circuit is squared. In theory, the result could be multiplied by any ciphertext; however,

for simplicity ctbfv was reused. The sum of all elements in the product array are then

summed homomorphically, with the overall sum stored in sum[0]. In order to obtain

just that first value when decrypted, the sum is multiplied by a mask that will zero

out all other array indexes, as shown in Figure 7.4.

The output of the function, he pt, is the decrypted result of the computations,

with a value stored in the first element of the resulting array. That value can be

used to get the average of the data set by dividing by the number of elements in the

ciphertext. While this cannot be homomorphically done as previously mentioned, it

52

Chapter 7. Implementation

Figure 7.4: Test Case 2 Design

can be done post process without exposed additional data.

53

Chapter 8

Results

All test instances were executed on an HP Envy 16G laptop with an Intel i7 proces-

sor at 2.90GHz. For best results, a Linux distribution was set up using a Windows

Subsystem for Linux (WSL) that had this project’s implementation code along the

OpenFHE library installed. Initial test runs resulted in core crashes due to mem-

ory consumption. To mitigate this issue, the allocated flash memory to the virtual

environment was increased to 128G of the available 512G SSD. Another constraint

added to execution was that the only application running was this implementation.

If the processing power was split between applications, timing would be thrown off

drastically. At runtime now, execution could complete regardless of the multiplicative

depth needed (within reason).

In order to discover the proper depth to use for all stages, an approximation

was chosen based on the algorithms defined in Section 7.2 along with the number

of rounds needed in each instance. An initial test value was selected then executed.

By viewing the outputs at each function’s completion, it was possible to track when

relinearization failed to maintain proper sizing. When the multiplicative depth is

not high enough, the result returns a ciphertext array that contains elements beyond

the original size, as well as incorrect values than what would normally result from

the multiplication of the values. Through trial and error, the minimal depth for the

decryption circuit was found: 2 per linear layer, 1 per Feistel S-Box, and 2 per Cube

54

Chapter 8. Results

S-Box. The increase in depth for the subsequent tests was derived in the same fashion.

For the main scenario and the test instances, the CryptoContext parameters were

kept the same except for the multiplicative depth. The plaintext modulus selected

was 65537, which was the recommended modulo for dealing with integers. The se-

curity parameter in BFV was set to HEStd 128 classic, which is OpenFHE’s 128-bit

security guarantee for BFV. This standard declaration set all other necessary param-

eters to ensure the application adhered to the desired security. Lastly, the maximum

relinearization degree was set to 3. The generation of the CryptoContext can be seen

in Appendix]A, lines 150-207.

8.1 3-Round Pasta Results

3-Round Pasta was the first to be tested. Table 4.1 shows sizes for key components

utilized for the implementation. A plaintext array of 128 words, each work 16-bits,

was selected and paired with a key array of 256 words, also 16-bits each. With the

key split into the two arrays and used to generate the keysteam, the final ciphertext

shared the format of the plaintext with 128 words in an array format.

All three test cases were run with the the same parameters, plaintext, and key,

with the only variation being the multiplicative depth. Test 1 had a depth of 12,

test 2 was 14, and the CDS application was 13. Timing for each test, Table 8.1, is

averaged and recorded for the various stages. The post-decryption computations for

test case 2 and the CDS application took minimal time, varying from milliseconds

and max a second.

Table 8.1: HHE Decryption Circuit with 3-Round PASTA Performance

Depth Crypto Context R1 R2 R3 Final LL Total
(min) (min) (min) (min) (min) (min)

12 1.77 2.81 2.97 3.01 2.97 13.54
13 2.10 4.33 4.25 4.25 3.99 18.92
14 2.17 4.32 4.25 4.18 3.95 18.88

55

Chapter 8. Results

Measurements were broken down into segments in order to observe variations at

a deeper level. The “Crypto Context” is the time it takes for BFV to configure itself

with the correct parameters. During this time, rotational keys are generated for all

necessary left or right shifts. All columns labeled “R#” correspond with the time to

complete that number round. “Final LL” monitors the time it takes to execute the

final linear layer and ”Total” is the total time to complete the decryption circuit at

that multiplicative depth.

Seen in Table 8.1, as the multiplicative depth increases, so does the overall time

it takes to run the decryption circuit. Intuitively, the smaller the required depth, the

faster the time. This is due to fewer times the relinearization needs to be done to

maintain the proper ciphertext size. Each round per row relatively takes the same

amount of time. A key occurrence to note is that the final round tends to be the

fastest despite having one more multiplicative depth used due to the reduced logic in

Cube S-Box. The final linear layer was always the fastest.

Test case 1 applied the simple decryption circuit with no additional operations

once ctbfv was obtained, taking roughly 13.54 minutes to execute. The ciphertext

was decrypted and each element was compared to the original plaintext to confirm

accuracy. In the sense of cryptography where speed is critical, 13 minutes seems

long, but it is much better than implementations in previous years. Looking at the

results from Tinker’s research [2], while there are multiple configurations, the config-

uration with 128-bit security took roughly 17 hours. With previous records of hours

to homomorphically decrypt a ciphertext, getting the instance down to minutes is a

significant improvement. Enhancements to speed could be improved before practical

use; one method would be to execute the procedure on a more powerful processor.

Test case 2 took longer than the base case, as expected, given the increased mul-

tiplicative depth. One instance was processed for case 2, following Algorithm 8 with

a pre-calculated value on hand to verify the results. Further testing with this case

56

Chapter 8. Results

was not conducted because it was a verification test as opposed to the main focal

implementation.

The CDS application had a few different instances that checked different index

values to confirm accuracy of the checks. The average of the timing results was used to

obtain the additional time the multiplicative depth contributed. The timing for only

one check was recorded, but if multiple checks were done, the depth would increase

further and result in longer times as well. However, if multiple indexes needed to be

checked in one ciphertext, it would be possible to do so with the same multiplicative

depth as a single index since operations are performed on a particular index.

8.2 4-Round Pasta Results

4-Round Pasta was the first to be tested. Table 4.1 gives the sizes for key components

that were utilized for the implementation. A plaintext array of 32 words, each 16-bits,

was selected and paired with a key array of 64 words, also each 16-bits. With the

key split into the two arrays and used to generate the keysteam, the final ciphertext

shared the format of the plaintext with 32 words in an array format.

All three test cases were run with the the same parameters, plaintext, and key,

with only variation being the multiplicative depth. Test 1 had a depth of 15, test 2

was 18, and the application of the CDS needing 17. Timing for each test, Table 8.2,

was averaged and recorded for the various stages. Similar to the 3-round instance,

test case 2 and the CDS application timing results from additional computations

post-decryption were minimal.

Table 8.2: HHE Decryption Circuit with 4-Round PASTA Performance

Depth Crypto Context R1 R2 R3 R4 Final LL Total
(min) (min) (min) (min) (min) (min) (min)

15 0.93 1.01 0.98 1.08 1.00 0.98 5.98
17 1.22 1.26 1.17 1.21 1.21 1.22 7.30
18 1.35 1.38 1.29 1.75 2.04 1.63 9.45

57

Chapter 8. Results

The base case with a multiplicative depth of 15 had great results, taking just

under 6 minutes to execute. Compared to 17 hours [2], this is a drastic improvement.

There is still concern that the time may be longer than that which would be deemed

feasible in mainstream use, but it is a step in the right direction. Similar to the

statements from 3-round Pasta, using a more powerful processor could significantly

reduce the execution time as wall.

Test case 2 took longer than the base, as expected. The time increasing by 2

minutes as the multiplicative depth grew from 17 to 18. Despite increasing the base

depth by three for test 2, the resulting time was still under 10 minutes.

The CDS application performed even better then test case 2 since the multiplica-

tive depth was smaller. With a minute and a half difference from the base imple-

mentation to comparing values, the time is favorable. Again, while 7.30 minutes

is fast compared to other HE instances, it could possibly be faster with parameter

optimizations and processor selection.

8.3 Instance Comparison

Comparing the results in Table 8.1 and 8.2, note that while 3-round Pasta has smaller

multiplicative depths, the execution time is much greater to its 4-round counterpart.

The reason for this comes from the size of the ciphertext. Performing computations

on a ciphertext of 128 words verses 32 words will impact overall performance. When

relinearization takes place, it executes over every element in the encrypted array,

increasing time for longer instances.

While the plaintext size for both instances could be up-scaled to create multiple

block instances, scaling down is a difficult feat. Pasta designed both instances to

default to a specific key size that will generate a keysteam of half that size. Initial

testing to reduce the plaintext size for 3-round Pasta proved to increase the multi-

plicative depth in order to obtain the correct values. Since the trailing end of the

58

Chapter 8. Results

plaintext would be zeros, the resulting addition or subtraction of the keystream would

skew those values. A mitigation to this would be to incorporate the multiplication

of a mask at the end of homomorphic decryption circuit to ensure correct sizing, but

that increases the multiplicative depth and overall timing.

Based on the base runs and the subsequent tests, the best option for this instance

is the 4-round Pasta. Typically, more rounds of the same type of logic would in-

crease lead time due to the extra computations. The difference in time and depth

demonstrates the additional impact that the size of the key and plaintext play on

the results. In this instance, a smaller ciphertext and key size lend itself to better

overall performance. Despite test cases 2 and 3 for 4-round also requiring an extra

multiplicative depth than that of 3-round test cases, performance still exceeds that

of 3-round’s base case.

8.4 Comparison to Previous Work

In order to analyze how the implementation created compared to previous work,

the results fared against those created by Cody Tinker in [2]. The examples pulled

from Tinker’s work were implemented with SIMON [4] and YASHE [3] with varying

degrees of security. For the most accurate evaluation, test case δ was chosen for

also having 128-bit security claims. In addition to this, test case α was used as

the fastest implementation accomplished with the pair, though only offering 64-bit

security. To obtain an idea of how the parameters compared, Table 8.3 was compiled

with the instances’ security, number of rounds, the polynomial ring degree (N), and

the coefficient size (log2(q)).

The largest difference overall between the parameter configurations is the amount

of round needed. The implementations accomplished in this project required only 3

or 4 rounds compared to the SIMON/YASHE taking either 32 or 44 rounds. The

polynomial ring degree also differed with δ at the highest with 65536. Both of the

59

Chapter 8. Results

Table 8.3: Parameter Comparison

Instance Security Bits # Rounds N log2(q)
α SIMON/YASHE 64 32 16384 885
δ SIMON/YASHE 128 44 65536 1760

3-Round PASTA/BFV 128 3 32768 540
4-Round PASTA/BFV 128 4 32768 660

PASTA/BFV instances had the same ring degree of 32768, while α had the smallest at

16384. Lastly, the coefficient sizes varied with both SIMON/YASHE implementations

having larger sizes than PASTA/BFV.

With the 4 instances decided upon, timing was compiled for all cases and given in

Table 8.4. Here, three stages of the process were timed. The first is the Encrypt Key,

the time in which it took to encrypt the symmetric cipher’s key with the HE scheme

of choice. The second is Decryption, the time in which it took for the decryption

of the doubly encrypted ciphertext. The third is Evaluate Metadata, the time in

which it took to complete the comparison of the classification value within the HE

ciphertext.

Table 8.4: Timing Comparison

Instance Encrypt Key Decryption Evaluate Metadata
(s) (s) (s)

α SIMON/YASHE 5.4 2433.0 612.0
δ SIMON/YASHE 78.6 64367.6 8079.1

3-Round PASTA/BFV 0.321 1135.2 0.156
4-Round PASTA/BFV 0.382 438.0 0.256

Across all stages, the PASTA/BFV instances outperformed the previous imple-

mented pair. Starting off with encrypting the symmetric key, both 3- and 4-Round

PASTA/BFV tests completed in under a second, with α coming in at 5.4 seconds

and δ taking 78.6 seconds. For this projects implementations, the time was taken to

encrypt both halves of the key. The decryption times are even better, with 7.3 min-

utes for the 4-Round instance and just under 19 minutes for the 3-Round instance.

Tinker’s instances, when converted to more readable times, come out to 40 minutes

60

Chapter 8. Results

for α and 17 hours for δ. That the fastest of Tinker’s implementations still took twice

as long as the slower of the two round tests shows the progress made in both fields,

hybrid homomorphic ciphers and HE. Lastly, the evaluation of the metadata. Again,

3- and 4-Round instance completed in under a second while their counterparts took

approximately 10 minutes or 2 hours.

61

Chapter 9

Conclusion

The progress made since Tinker tested a SIMON and YASHE pairing [1] in 2018

clearly shows how much the post-quantum field of research has grown. From initial

pairings of everyday ciphers, to now having HHE ciphers specifically catered to these

types of implementations, a major step forward in the post-quantum field.

The 4-round Pasta homomorphic decryption circuit created in BFV demonstrates

the progression toward a feasible solution for many post-quantum applications, such

as for the CDP. A homomorphic decryption taking 7.3 minutes compared to the

previous 17 hours is a dramatic decrease in time. This 7.3 minute mark could still

be improved upon as practical use desires, or even demands, faster speeds for cross

network traffic. Still, it is nearly to the point that mainstream use may be feasible

in a year or so. While 4-round Pasta performed the best, 3-round Pasta’s decryption

circuit still offered substantial results that prove practicality is coming soon. A time of

just under 19 minutes for large message types in a CDS scenario is not an unreasonable

starting point for improvement.

Subsequent testing proved application to different instances feasible that could

lead to additional use cases. With the ability to compare any value, future opportu-

nities exist; such as, routing checks without exposing data or even adding sensitive

data within random data to further obscure information. Executing arbitrary calcu-

lations post homomorphic decryption demonstrates the operations and formulas that

62

Chapter 9. Conclusion

could be run against the encrypted data. The possibilities are endless.

9.1 Future Work

As the field of data security continues to grows, there are many areas where the

work accomplished in this study can be expanded upon. OpenFHE [53] plans to

implement bootstrapping for BFV in their library. Once available, bootstrapping to

reduce the overall multiplicative depth could result in better performance and should

be considered. In addition to bootstrapping, the library could develop and offer a

form of division, making test case 2 complete for calculating the average of a set of

encrypted data. Future additions to this library could open up many possible test

improvements, pushing the limits HHE implementations.

Other opportunities of exploration come from the choices selected. Rasta [6] has

multiple variants that cater to implementation with HHE instances. One of the older

variants, or even a newer one, could better lend itself to a test instance such as this.

The same logic applies to the HE scheme. The OpenFHE library was chosen for having

the latest and greatest FHE schemes from second to fourth generation. With similar

structured logic, translating the decryption circuit between instances is feasible. For

example, BFV and BGV share many, if not all of the same function calls. By tweaking

parameters and initialization, it stands to reason that the conversion from one to the

other could be achieved.

Lastly, testing the performance and functionality on other devices may prove

beneficial. Given the specs of the laptop used, it is feasible that a stronger processor

could provide even faster results. The other question would be how the design behaves

on hardware and the constraints presented by that. The options are endless.

63

Bibliography

[1] C. Tinker, “Exploring the application of homomorphic encryption for a cross
domain solution.” [Online]. Available: https://scholarworks.rit.edu/theses/
9855/

[2] C. Tinker, K. Millar, A. Kaminsky, M. Kurdziel, M. Lukowiak, and S. Radzis-
zowski, “Exploring the application of homomorphic encryption to a cross domain
solution,” in MILCOM 2019 - 2019 IEEE Military Communications Conference
(MILCOM), pp. 1–6, ISSN: 2155-7586.

[3] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security
for a ring-based fully homomorphic encryption scheme.” [Online]. Available:
http://eprint.iacr.org/2013/075

[4] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK families of lightweight block ciphers.” [Online].
Available: http://eprint.iacr.org/2013/404

[5] “Submission requirements and evaluation criteria for the lightweight
cryptography standardization process,” p. 17. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/final-lwc-submission-requirements-august2018.pdf

[6] C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander,
E. List, F. Mendel, and C. Rechberger, “Rasta: A cipher with low
ANDdepth and few ANDs per bit,” report Number: 181. [Online]. Available:
https://eprint.iacr.org/2018/181

[7] C. Dobraunig, L. Grassi, L. H. C. Rechberger, M. Schofnegger, and R. Walch,
“Pasta: A case for hybrid homomorphic encryption,” p. 42. [Online]. Available:
https://eprint.iacr.org/2021/731

[8] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption.”
[Online]. Available: http://eprint.iacr.org/2012/144

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic encryption
without bootstrapping.” [Online]. Available: http://eprint.iacr.org/2011/277

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
fully homomorphic encryption over the torus,” report Number: 421. [Online].
Available: https://eprint.iacr.org/2018/421

[11] L. Ducas and D. Micciancio, “FHEW: Bootstrapping Homomorphic Encryption
in Less Than a Second,” in Advances in Cryptology – EUROCRYPT 2015, E. Os-
wald and M. Fischlin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015,
pp. 617–640.

64

https://scholarworks.rit.edu/theses/9855/
https://scholarworks.rit.edu/theses/9855/
http://eprint.iacr.org/2013/075
http://eprint.iacr.org/2013/404
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://eprint.iacr.org/2018/181
https://eprint.iacr.org/2021/731
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2011/277
https://eprint.iacr.org/2018/421

BIBLIOGRAPHY

[12] “Framework for hybrid homomorphic encryption,” original-date:
2020-11-11T08:09:14Z. [Online]. Available: https://github.com/IAIK/
hybrid-HE-framework

[13] “OpenFHE - open-source fully homomorphic encryp-
tion library,” original-date: 2022-03-04T21:18:20Z. [On-
line]. Available: https://github.com/openfheorg/openfhe-development/blob/
122f470e0dbf94688051ab852131ccc5d26be934/docs/index.rst

[14] C. of National Security Systems, “Committee of National Security Systems
(CNSS) Glossary,” no. 4009, 2015. [Online]. Available: https://cryptosmith.
files.wordpress.com/2015/08/glossary-2015-cnss.pdf

[15] C. Chanderasekaran and W. Simpson, “Cross-domain solutions in an era of in-
formation sharing,” p. 6.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms, 3rd ed. MIT Press.

[17] Rafael. What is key length in cryptography and why is important? [Online].
Available: https://justcryptography.com/key-length/

[18] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for
Students and Practitioners. Springer Berlin Heidelberg. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-04101-3

[19] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report
on Lightweight Cryptography,” p. NIST IR 8114. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

[20] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlaf-
fer, “Ascon v1.2 : Submission to nist.” [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

[21] A. Chakraborti, N. Datta, A. Jha, and M. Nandi, “Structural Classification
of Authenticated Encryption Schemes,” p. 12. [Online]. Available: https://
csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/
documents/papers/structural-classification-lwc2020.pdf

[22] P. Rogaway, “Authenticated-encryption with associated-data.”

[23] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A Survey on Homomorphic
Encryption Schemes: Theory and Implementation,” vol. 51, no. 4, pp. 1–35.
[Online]. Available: https://dl.acm.org/doi/10.1145/3214303

[24] P. V. Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt, and R. H. Jhaveri, “Survey
of various homomorphic encryption algorithms and schemes,” vol. 91, pp. 26–32.

65

https://github.com/IAIK/hybrid-HE-framework
https://github.com/IAIK/hybrid-HE-framework
https://github.com/openfheorg/openfhe-development/blob/122f470e0dbf94688051ab852131ccc5d26be934/docs/index.rst
https://github.com/openfheorg/openfhe-development/blob/122f470e0dbf94688051ab852131ccc5d26be934/docs/index.rst
https://cryptosmith.files.wordpress.com/2015/08/glossary-2015-cnss.pdf
https://cryptosmith.files.wordpress.com/2015/08/glossary-2015-cnss.pdf
https://justcryptography.com/key-length/
http://link.springer.com/10.1007/978-3-642-04101-3
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/structural-classification-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/structural-classification-lwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/documents/papers/structural-classification-lwc2020.pdf
https://dl.acm.org/doi/10.1145/3214303

BIBLIOGRAPHY

[25] C. Gentry and D. Boneh, “A Fully Homomorphic Encryption Scheme,” vol. 20,
no. 09, 2009.

[26] J. Benaloh, “Verifiable secret-ballot elections,” Ph.D. dissertation, Septem-
ber 1987. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/verifiable-secret-ballot-elections/

[27] I. Iliashenko and V. Zucca, “Faster homomorphic comparison operations for
BGV and BFV.” [Online]. Available: http://eprint.iacr.org/2021/315

[28] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of encryp-
tion/decryption architectures for BFV homomorphic encryption scheme,” vol. 28,
no. 2, pp. 353–362, conference Name: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

[29] K. Lauter, M. Naehrig, and V. Vaikuntanathan, “Can homomorphic
encryption be practical?” report Number: 405. [Online]. Available:
https://eprint.iacr.org/2011/405

[30] C. Cid, J. P. Indrøy, and H. Raddum, “FASTA - a stream cipher
for fast FHE evaluation,” report Number: 1205. [Online]. Available:
https://eprint.iacr.org/2021/1205

[31] M. Sonmez Turan, K. McKay, D. Chang, C. Calik, L. Bassham,
J. Kang, and J. Kelsey, “Status Report on the Second Round of the
NIST Lightweight Cryptography Standardization Process.” [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf

[32] T. Beyne, L. Chen, Yu, C. Dobraunig,
and B. Mennink, “Elephant v2.” [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf

[33] S. Banik, A. Chakraborti, T. Iwata, K. Minematsu, M. Nandi, T. Peyrin,
Y. Sasaki, S. Meng Sim, and Y. Todo, “Gift-cofb v1.1.” [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf

[34] M. Hell, T. Johansson, A. Maximov, E. Ab, W. Meier,
J. Sonnerup, and H. Yoshida, “Grain-128aeadv2 - a
lightweight AEAD stream cipher,” p. 38. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf

[35] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink, R. Primas,
and T. Unterluggauer, “Isap v2.0 : Submission to nist.” [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/isap-spec-final.pdf

66

https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
http://eprint.iacr.org/2021/315
https://eprint.iacr.org/2011/405
https://eprint.iacr.org/2021/1205
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf

BIBLIOGRAPHY

[36] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin, and K. Yasuda,
“Photon-beetle authenticated encryption and hash family.” [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf

[37] C. Guo, T. Iwata, M. Khairallah, K. Minematsu,
and T. Peyrin, “Romulus,” p. 57. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf

[38] C. Beierle, A. Biryukov, A. Moradi, L. Perrin, A. R. Shahmirzadi, A. Udovenko,
and Q. Wang, “Schwaemm and esch: Lightweight authenticated encryption
and hashing using the sparkle permutation family,” p. 98. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf

[39] H. Wu and T. Huang, “TinyJAMBU: A family of lightweight au-
thenticated encryption algorithms (version 2),” p. 40. [Online]. Avail-
able: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

[40] J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer,
“Xoodyak, a lightweight cryptographic scheme,” pp. 60–87. [Online]. Available:
https://tosc.iacr.org/index.php/ToSC/article/view/8618

[41] “Benchmarking of lightweight cryptographic algorithms on microcontrollers,”
original-date: 2020-10-01T18:40:19Z. [Online]. Available: https://github.com/
usnistgov/Lightweight-Cryptography-Benchmarking

[42] S. Renner, E. Pozzobon, and J. Mottok, “A hardware in the loop benchmark
suite to evaluate NIST LWC ciphers on microcontrollers,” vol. 12282, pp.
495–509, series Title: Lecture Notes in Computer Science. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-61078-4 28

[43] R. Weatherly. Lightweight cryptography primitives: Main page. [Online].
Available: https://rweather.github.io/lightweight-crypto/index.html

[44] K. Mohajerani, R. Haeussler, R. Nagpal, F. Farahmand, A. Abdulgadir, J.-P.
Kaps, and K. Gaj, “FPGA benchmarking of round 2 candidates in the NIST
lightweight cryptography standardization process: Methodology, metrics, tools,
and results.” [Online]. Available: http://eprint.iacr.org/2020/1207

[45] Aagaard and N. Zidaric, “ASIC benchmarking of round 2 candidates in
the NIST lightweight cryptography standardization process,” p. 49. [Online].
Available: https://eprint.iacr.org/2021/049.pdf

[46] M. Khairallah, T. Peyrin, and A. Chattopadhyay, “Preliminary hardware
benchmarking of a group of round 2 NIST lightweight AEAD candidates,” p.
163. [Online]. Available: https://eprint.iacr.org/2020/1459.pdf

67

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://tosc.iacr.org/index.php/ToSC/article/view/8618
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
https://link.springer.com/10.1007/978-3-030-61078-4_28
https://rweather.github.io/lightweight-crypto/index.html
http://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2021/049.pdf
https://eprint.iacr.org/2020/1459.pdf

BIBLIOGRAPHY

[47] M. J. Dworkin, “SHA-3 standard: Permutation-based hash and extendable-
output functions,” last Modified: 2018-11-10T10:11-05:00 Publisher: Mor-
ris J. Dworkin. [Online]. Available: https://www.nist.gov/publications/
sha-3-standard-permutation-based-hash-and-extendable-output-functions

[48] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) LWE.” [Online]. Available: https://eprint.iacr.org/2011/344

[49] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of
the AES circuit,” report Number: 099. [Online]. Available: https:
//eprint.iacr.org/2012/099

[50] Z. Brakerski, “Fully homomorphic encryption without modulus switching from
classical GapSVP.” [Online]. Available: http://eprint.iacr.org/2012/078

[51] J.-C. Bajard, J. Eynard, A. Hasan, and V. Zucca, “A full RNS variant
of FV like somewhat homomorphic encryption schemes.” [Online]. Available:
https://eprint.iacr.org/2016/510

[52] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of the BFV
homomorphic encryption scheme,” report Number: 117. [Online]. Available:
https://eprint.iacr.org/2018/117

[53] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise,
S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov,
S. R.V, K. Rohloff, J. Saylor, D. Suponitsky, M. Triplett, V. Vaikuntanathan,
and V. Zucca, “OpenFHE: Open-source fully homomorphic encryption library,”
report Number: 915. [Online]. Available: https://eprint.iacr.org/2022/915

[54] S. Halevi and V. Shoup, “Design and implementation of HElib: a
homomorphic encryption library,” report Number: 1481. [Online]. Available:
https://eprint.iacr.org/2020/1481

[55] “Microsoft SEAL (release 4.1),” https://github.com/Microsoft/SEAL, Jan.
2023, microsoft Research, Redmond, WA.

[56] PALISADE homomorphic encryption software library – an open-source lattice
crypto software library. [Online]. Available: https://palisade-crypto.org/

[57] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers.” [Online]. Available: https://eprint.iacr.
org/2016/421

68

https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions
https://eprint.iacr.org/2011/344
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2012/099
http://eprint.iacr.org/2012/078
https://eprint.iacr.org/2016/510
https://eprint.iacr.org/2018/117
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2020/1481
https://github.com/Microsoft/SEAL
https://palisade-crypto.org/
https://eprint.iacr.org/2016/421
https://eprint.iacr.org/2016/421

1 // myImpl.cpp
2 #include <cstring>
3 #include <chrono>
4 #include <iostream>
5 #include <iterator>
6 #include <string>
7 #include <vector>
8 #include <ctime>
9

10 #include "cryptocontext.h"
11 #include "gen-cryptocontext.h"
12 #include "openfhe.h"
13
14 #include "include/plain.h"
15
16 #define PRINT 1
17 #define DEBUG 0
18 int g_test = 0;
19
20 // Global Variables to compare performance
21 usint ptm = 65537; // PTM recommended for integers
22 uint64_t nonce = 123456789; // Arbitrary nonce used for testing
23
24 //Two states arrays stored in a vector
25 std::vector<Ciphertext<DCRTPoly>> states(2, 0);
26 //Vector the length of the plaintext/ciphertext
27 std::vector<uint64_t> randRay(MY_PARAMS.cipher_size, 0);
28 //Final ciphertext after HHE_Decryt
29 Ciphertext<DCRTPoly> final_ct;
30 //HE Key Pair
31 KeyPair<DCRTPoly> keyPair;
32 //HE CryptoContext
33 CryptoContext<DCRTPoly> cc ;
34
35 /*
36 * Main function to run test cases appropriately
37 */
38 int main(int argc, char* argv[]) {
39 unsigned int mdepth = 0;
40 // If 3-round test, set PASTA_3 variables
41 if (*argv[1] == '3'){
42 cout << "3" << endl;
43 plaintext = plaintext3;
44 MY_PARAMS = PASTA3_PARAMS;
45 ROUNDS = PASTA_3::PASTA_R;
46 mdepth = pasta3_depth;
47 }
48 // If 4-round test, set PASTA_4 variables
49 else {
50 plaintext = plaintext4;
51 MY_PARAMS = PASTA4_PARAMS;
52 ROUNDS = PASTA_4::PASTA_R;
53 mdepth = pasta4_depth;
54 }
55 ZpCipherParams params = MY_PARAMS;
56 std::vector<int> indexes = [1, 5, 10];
57 std::vector<int64_t> compVals = [plaintext.plaintext[1], plaintext.plaintext[5],

plaintext.plaintext[10]]
58
59 switch(*argv[2]){
60 case '1':
61 default:
62 mdepth += test1_depth; // Add necessary extra depth from base value
63 prepare_hhe(params, mdepth); // Run HHE_Decryt
64 test_case_1(params); // Confirm successful HHE_Decryt
65 break;
66 case '2':
67 mdepth += test2_depth; // Add necessary extra depth from base value
68 prepare_hhe(params, mdepth); // Run HHE_Decryt

Appendix A: Source Code

69

69 test_case_2(params); // Square and sum ciphertext
70 break;
71 case '3':
72 mdepth += test3_depth; // Add necessary extra depth from base value
73 prepare_hhe(params, mdepth); // Run HHE_Decryt
74 cds_example(params, indexes, compVals); // Compare values at indexes
75 break;
76 }
77 return 0;
78 }
79
80
81 /*
82 * prepare_hhe(ZpCipherParams params, unsigned int mdepth)
83 *
84 * Encrypts the plaintext using Pasta with the correct params for rounds
85 * Calls the homomorphic decryption circuit to convert from Pasta.Enc(ptxt) to

HE.Enc(ptxt)
86 *
87 * ZpCipherParams params - Pasta parameters for plaintext, key, and ciphertext size
88 * unsigned int mdepth - multiplicative depth
89 */
90 void prepare_hhe(ZpCipherParams params, unsigned int mdepth){
91 // Timing logic to get start time
92 auto start = std::chrono::system_clock::now();
93
94 size_t size = plaintext.plaintext.size();
95 size_t num_block = ceil((double)size/ params.plain_size);
96 Pasta pasta(plaintext.key, ptm);
97 std::vector<uint64_t> ctxt = plaintext.plaintext;
98
99 // Pasta Encryption - taken from [12]

100 for (uint64_t i = 0; i < num_block; i++){
101 block keystream = pasta.keystream(nonce, i);
102 for(size_t j = i * params.plain_size; j < (i + 1) * params.plain_size && j < size

; j++){
103 ctxt[j] = (ctxt[j] + keystream[j - i * params.plain_size]) % ptm;
104 }
105 }
106
107 // Timing logic to get end time, takes difference of start and end to get elapsed

time
108 auto end = std::chrono::system_clock::now();
109 std::chrono::duration<double> elapsed_seconds = end-start;
110
111 if(PRINT) {
112 cout << "Plaintext: " << plaintext.plaintext << endl << endl;
113 cout << "Key: " << plaintext.key << endl << endl;
114 cout << "Ciphertext: " << ctxt << endl << endl;
115 cout << "Time To Encrypt: " << (elapsed_seconds.count()) << " sec" << endl <<

endl;
116 }
117
118 //Convert the unsigned ciphertext array to signed array
119 std::vector<int64_t> signed_ctxt;
120 for(int i = 0; i < params.cipher_size; i++){
121 signed_ctxt.push_back((int64_t)ctxt[i]);
122 }
123 std::vector<int64_t> signed_key;
124 for(int i = 0; i < params.key_size; i++){
125 signed_key.push_back((int64_t)plaintext.key[i]);
126 }
127
128 // Timing start for homomorphic decryption circuit execution
129 start = std::chrono::system_clock::now();
130
131 //Call hybrib homomorphic decryption circuit to get HE.Enc(ptxt) from Pastas ctxt
132 final_ct = HHE_Decryt(signed_ctxt, signed_key, params, mdepth);
133

Appendix A: Source Code

70

134 // Timing logic to get end time, takes difference of start and end to get elapsed
time

135 end = std::chrono::system_clock::now();
136 elapsed_seconds = end-start;
137 cout << "Time To Decrypt: " << (elapsed_seconds.count()/60) << " min" << endl <<

endl;
138 }
139
140
141 /*
142 * GenerateBFVrnsContext(usint ptm, unsigned int adepth, unsigned int mdepth)
143 *
144 * Generates the cryptocontext for BFV (OpenFHEs accessor to BFV functions)
145 *
146 * usint ptm - plaintext modulus
147 * unsigned int mdepth - multiplicative depth
148 * ret - CryptoContext<DCRTPoly> BFV crypto context (access to BFV functions)
149 */
150 CryptoContext<DCRTPoly> GenerateBFVrnsContext(usint ptm, unsigned int mdepth) {
151
152 // Start timing for generating BFVs crytocontext
153 auto start = std::chrono::system_clock::now();
154 auto end = std::chrono::system_clock::now();
155 std::chrono::duration<double> elapsed_seconds;
156
157 cout << "Generating BFV Crypto Context...";
158 start = std::chrono::system_clock::now();
159
160 // Set parameters for BFV, the plaintext modulus, multiplicative depth,

relineariation degree,
161 // and security level
162 CCParams<CryptoContextBFVRNS> parameters;
163 parameters.SetPlaintextModulus(ptm);
164 parameters.SetMultiplicativeDepth(mdepth);
165 parameters.SetMaxRelinSkDeg(3);
166 parameters.SetSecurityLevel(HEStd_128_classic);
167
168 CryptoContext<DCRTPoly> cc = GenCryptoContext(parameters);
169
170 // enable features that you wish to use
171 cc->Enable(PKE); // Public Key Encryption
172 cc->Enable(KEYSWITCH); // Key Switching
173 cc->Enable(LEVELEDSHE); // leveled HE
174 cc->Enable(ADVANCEDSHE); // Advanced HE
175
176 // Generate Secert and Public key pair
177 keyPair = cc->KeyGen();
178
179 // Create array of rotation values to generate rotation keys
180 std::vector<int> rot(MY_PARAMS.key_size/2, 0);
181 for (int i = (MY_PARAMS.key_size/2 - 1); i >= 0; i--){
182 rot[(MY_PARAMS.key_size/2 -1) - i] = i - (MY_PARAMS.key_size/2 - 1);
183 }
184 rot.push_back(30);
185
186 // Generate keys for rotating, summation, and multiplication
187 cc->EvalRotateKeyGen(keyPair.secretKey, rot);
188 cc->EvalSumKeyGen(keyPair.secretKey);
189 cc->EvalMultKeyGen(keyPair.secretKey);
190
191 // Timing logic to get end time, takes difference of start and end to get elapsed

time
192 end = std::chrono::system_clock::now();
193 elapsed_seconds = end -start;
194 cout << "done - Time To Generate Context: " << (elapsed_seconds.count()/60) << "

min" << endl << endl;
195
196 #if PRINT
197 std::cout << "\nParameters BFVrns for depth " << mdepth << std::endl;

Appendix A: Source Code

71

198 std::cout << "p = " << cc->GetCryptoParameters()->GetPlaintextModulus() <<
199 std::endl; std::cout << "n = " <<
200 cc->GetCryptoParameters()->GetElementParams()->GetCyclotomicOrder() / 2 <<
201 std::endl; std::cout << "log2 q = " <<
202 log2(cc->GetCryptoParameters()->GetElementParams()->GetModulus().ConvertToDouble())
203 << "\n" << std::endl;
204 #endif
205
206 return cc;
207 }
208
209 /*
210 * add_rc(char st)
211 *
212 * Add the round constant to the state
213 *
214 * char st - 0 or 1 for state1 or state2
215 */
216 void add_rc(char st){
217 // Homomorphically pack the random vector into a plaintext
218 std::vector<int64_t> rands = unsigned2signed(randRay);
219 Plaintext rand_pt = cc->MakePackedPlaintext(rands);
220 // Add the random vector to the state and store back in the state
221 states[st] = cc->EvalAdd(states[st], rand_pt);
222 }
223
224 /*
225 * matmul(char st)
226 *
227 * Perform matrix multiplication on the state
228 *
229 * char st - 0 or 1 for state1 or state2
230 */
231 void matmul(char st) {
232
233 // Initialize temporary vectors/plaintext for use
234 std::vector<int64_t> test(MY_PARAMS.key_size/2, 0);
235 std::vector<int64_t> mask(MY_PARAMS.key_size/2, 0);
236 mask[0] = 1;
237 Ciphertext<DCRTPoly> temp = cc->Encrypt(keyPair.publicKey, cc->MakePackedPlaintext(

test));
238
239 // Set current row to the random vector
240 std::vector<uint64_t> curr_row = randRay;
241 // For every element in the ciphertext
242 for (uint16_t i = 0; i < MY_PARAMS.cipher_size; i++) {
243 // Format the current row into a packed plaintext
244 std::vector<int64_t> signed_curr_row = unsigned2signed(curr_row);
245 Plaintext row = cc->MakePackedPlaintext(signed_curr_row);
246
247 // Multiplying row and state, mod included in calculation
248 Ciphertext<DCRTPoly> mult = cc->EvalMult(states[st], row);
249 // Get the sum of all elements in ciphertext
250 Ciphertext<DCRTPoly> sum = cc->EvalSum(mult, MY_PARAMS.cipher_size);
251 // Multiply by mask to get only first element
252 Ciphertext<DCRTPoly> masked = cc->EvalMult(sum, cc->MakePackedPlaintext(mask));
253 // Rotate first value to the correct index location
254 Ciphertext<DCRTPoly> sumMult = cc->EvalRotate(masked, 0 - i);
255 // Add the calculated value to the temp ciphertext at i index
256 temp = cc->EvalAdd(temp, sumMult);
257
258 // Calculate the next row value
259 if (i != MY_PARAMS.key_size/2 - 1) {
260 std::vector<uint64_t> temp_row;
261 for (auto j = 0; j < MY_PARAMS.key_size/2; j++) {
262 uint64_t tmp = ((uint128_t)(randRay[j]) * curr_row[MY_PARAMS.key_size/2

- 1]) % ptm;
263 if (j) {
264 tmp = (tmp + curr_row[j - 1]) % ptm;

Appendix A: Source Code

72

265 }
266 temp_row.push_back(tmp);
267 }
268 curr_row = temp_row;
269 }
270 }
271 // Set state ciphertext to the temp ciphertext
272 states[st] = temp;
273 }
274
275 /*
276 * mix()
277 *
278 * Mix state1 and state2
279 */
280 void mix(){
281 // Add the states together
282 Ciphertext<DCRTPoly> sum = cc->EvalAdd(states[0], states[1]);
283 cc->EvalAddInPlace(states[0], sum); // Add sum to state1
284 cc->EvalAddInPlace(states[1], sum); // Add sum to state2
285 }
286
287 /*
288 * sbox_cube(char st)
289 *
290 * Sbox Cube lookup on the state
291 *
292 * char st - 0 or 1 for state1 or state2
293 */
294 void sbox_cube(char st){
295 //Each element squared and stored in its own slot
296 Ciphertext<DCRTPoly> square = cc->EvalSquare(states[st]);
297 // Multiply the squared and state to get cubed result, store in state
298 states[st] = cc->EvalMult(states[st], square);
299 }
300
301 /*
302 * sbox_feistel(char st)
303 *
304 * Sbox Feistel lookup on the state
305 *
306 * char st - 0 or 1 for state1 or state2
307 */
308 void sbox_feistel(char st){
309 // Inintalize mask plaintext
310 std::vector<int64_t> mask(MY_PARAMS.key_size + 1, 1);
311 mask[MY_PARAMS.key_size] = 0;
312 Plaintext mask_pt = cc->MakePackedPlaintext(mask);
313
314 //Each element squared and stored in its own slot
315 Ciphertext<DCRTPoly> square = cc->EvalSquare(states[st]);
316 Ciphertext<DCRTPoly> shifted = cc->EvalRotate(square, -1); //Shift right 1
317
318 // Multiply result and mask to keep expected amount of words
319 shifted = cc->EvalMult(shifted, mask_pt);
320 // Add shifted and the current state and store back in the state
321 cc->EvalAddInPlace(states[st], shifted);
322 }
323
324 /*
325 * HHE_Decryt(std::vector<int64_t> cipher, std::vector<int64_t> key, ZpCipherParams

params, unsigned int mdepth)
326 *
327 * Hybrid Homomorphic Decryption Circuit
328 *
329 * std::vector<int64_t> cipher - Pasta's encrypted ciphertext properly formatted
330 * std::vector<int64_t> key - Pasta's key properly formatted
331 * ZpCipherParams params - Pasta parameters for plaintext, key, and ciphertext size
332 * unsigned int mdepth - multiplicative depth

Appendix A: Source Code

73

333 *
334 * ret - Ciphertext<DCRTPoly> - return the final ciphertext, solely encrypted by the HE

scheme
335 */
336 Ciphertext<DCRTPoly> HHE_Decryt(std::vector<int64_t> cipher, std::vector<int64_t> key,

ZpCipherParams params, unsigned int mdepth){
337
338 // Generate the CryptoContext for BFV
339 cc = GenerateBFVrnsContext(ptm, mdepth);
340
341 // Initialize values for later use
342 std::vector<int64_t> blank(params.plain_size, 0);
343 std::vector<int64_t> key1, key2;
344 for(int i = 0; i < params.key_size/2; i++) key1.push_back(key[i]);
345 for(int i = params.key_size/2; i < params.key_size; i++) key2.push_back(key[i]);
346
347 // Homomorphically pack Pasta's ciphertext and key into HE plaintexts
348 Plaintext pt = cc->MakePackedPlaintext(cipher);
349 Plaintext key_pt1 = cc->MakePackedPlaintext(key1);
350 Plaintext key_pt2 = cc->MakePackedPlaintext(key2);
351 // Homomorphically encrypt the packed plaintexts
352 Ciphertext<DCRTPoly> ct = cc->Encrypt(keyPair.publicKey, pt);
353 Ciphertext<DCRTPoly> res = cc->Encrypt(keyPair.publicKey, cc->MakePackedPlaintext(

blank));
354
355 // Initialize values related to size and Pasta's SHAKE_128 calls
356 size_t size = cipher.size();
357 size_t num_block = ceil((double)size / params.cipher_size);
358 Pasta pasta(plaintext.key, ptm);
359
360 if (PRINT) {
361 cout << "Cipher Size: " << size << endl;
362 cout << "Params Cipher Size: " << params.cipher_size << endl;
363 cout << "Params Plain Size: " << params.plain_size << endl;
364 cout << "Num Blocks: " << num_block << endl;
365 }
366
367 //Main decryption circuit - decrypt each block depending on size of ciphertext
368 for (uint64_t b = 0; b < num_block; b++) {
369 pasta.init_shake(nonce, b);
370 // Homomorphically encrypt Pasta's key into two states
371 states[0] = cc->Encrypt(keyPair.publicKey, key_pt1);
372 states[1] = cc->Encrypt(keyPair.publicKey, key_pt2);
373
374 // Ininitalize timing variables
375 auto start = std::chrono::system_clock::now();
376 auto end = std::chrono::system_clock::now();
377 std::chrono::duration<double> elapsed_seconds;
378
379 // Perform r rounds
380 for (uint8_t r = 0; r < ROUNDS; r++){
381 std::cout << "Round " << (int)r + 1 << std::endl;
382
383 // Start of how long matrix multiplication takes for both states
384 start = std::chrono::system_clock::now();
385 randRay = pasta.get_random_vector(false); // Generate new random vector
386 cout << "\tMatmul...." ;
387 matmul(0); // Execute matmul on state1
388 randRay = pasta.get_random_vector(false); // Generate new random vector
389 matmul(1); // Execute matmul on state2
390 end = std::chrono::system_clock::now(); // End time
391 elapsed_seconds = end-start; // Get time it took to do both

matmul
392 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
393 if (DEBUG){
394 decrypt_print_state(0);
395 decrypt_print_state(1);
396 }
397

Appendix A: Source Code

74

398 // Start of how long add_rc takes for both states
399 start = std::chrono::system_clock::now();
400 cout << "\tAddRc...." ;
401 randRay = pasta.get_random_vector(false); // Generate new random vector
402 add_rc(0); // Execute add_rc on state 1
403 randRay = pasta.get_random_vector(false); // Generate new random vector
404 add_rc(1); // Execute add_rc on state 1
405 end = std::chrono::system_clock::now(); // End time
406 elapsed_seconds = end-start; // Get time it took to do both

add_rc
407 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
408 if (DEBUG){
409 decrypt_print_state(0);
410 decrypt_print_state(1);
411 }
412
413 // Start of how long mixing states takes
414 start = std::chrono::system_clock::now();
415 cout << "\tMix...." ;
416 mix(); // Execute mix on both states
417 end = std::chrono::system_clock::now(); // End time
418 elapsed_seconds = end-start; // Get time it took to do mix of

states
419 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
420
421 // Start of how long sbox takes
422 start = std::chrono::system_clock::now();
423 if(r == ROUNDS - 1) {
424 cout << "\tSbox Cube...." ;
425 sbox_cube(0); // Execute Sbox Cube on state1
426 sbox_cube(1); // Execute Sbox Cube on state2
427 } else {
428 cout << "\tSbox feistal...." ;
429 sbox_feistel(0); // Execute Sbox Feistel on state1
430 sbox_feistel(1); // Execute Sbox Feistel on state2
431 }
432 end = std::chrono::system_clock::now(); // End time
433 elapsed_seconds = end-start; // Get time it took to do both

sbox lookups
434 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
435
436 if (DEBUG){
437 decrypt_print_state(0);
438 decrypt_print_state(1);
439 }
440 }
441
442 cout << "Final Linear Layer" << endl;
443 // Start of how long matrix multiplication takes for both states
444 start = std::chrono::system_clock::now();
445 randRay = pasta.get_random_vector(false); // Generate new random vector
446 cout << "\tMatmul...." ;
447 matmul(0); // Execute matmul on state1
448 randRay = pasta.get_random_vector(false); // Generate new random vector
449 matmul(1); // Execute matmul on state2
450 end = std::chrono::system_clock::now(); // End time
451 elapsed_seconds = end-start; // Get time it took to do both matmul
452 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
453 if (DEBUG){
454 decrypt_print_state(0);
455 }
456 // Start of how long add_rc takes for both states
457 start = std::chrono::system_clock::now();
458 cout << "\tAddRc...." ;
459 randRay = pasta.get_random_vector(false); // Generate new random vector
460 add_rc(0); // Execute add_rc on state 1
461 randRay = pasta.get_random_vector(false); // Generate new random vector
462 add_rc(1); // Execute add_rc on state 1
463 end = std::chrono::system_clock::now(); // End time

Appendix A: Source Code

75

464 elapsed_seconds = end-start; // Get time it took to do both add_rc
465 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
466 if (DEBUG){
467 decrypt_print_state(0);
468 }
469 // Start of how long mixing states takes
470 start = std::chrono::system_clock::now();
471 cout << "\tMix...." ;
472 mix(); // Execute mix on both states
473 end = std::chrono::system_clock::now(); // End time
474 elapsed_seconds = end-start; // Get time it took to do mix of states
475 cout << "done - Time " << elapsed_seconds.count() << " seconds" << endl;
476
477 // Subract state1, the key stream, from the ciphertext to get homomorphically
478 // encrypted ciphertext only
479 res = cc->EvalSub(ct, states[0]);
480
481 if (DEBUG){
482 decrypt_print_state(0);
483 decrypt_print(ct);
484 }
485
486 }
487 return res;
488 }
489
490 /*
491 * test_case_1(ZpCipherParams params)
492 *
493 * Test Case 1, Verify that the HHE_Decryt worked as expected, result should
494 * match the plaintext
495 *
496 * ZpCipherParams params - Pasta parameters for plaintext, key, and ciphertext size
497 */
498 void test_case_1(ZpCipherParams params){
499 cout << "Test 1 - Confirming Decrypted Results" << endl;
500
501 // HE Decryption
502 Plaintext ptxt;
503 cc->Decrypt(keyPair.secretKey, final_ct, &ptxt);
504 // Convert from int64_t to uint64_t to compare to original values
505 std::vector<uint64_t> plain = signed2unsigned(ptxt->GetPackedValue());
506
507 // Remove excess zero slots created at end of array
508 std::vector<uint64_t> sliced;
509 for(int i = 0; i < params.plain_size; i++) sliced.push_back(plain[i]);
510 cout << sliced << endl;
511
512
513 bool fail = false;
514 // Check if there are values beyond the specified plaintext size
515 if (plain.size() > params.plain_size){
516 for (int i = 0; i < params.plain_size; i++){
517 if (plain[i] != plaintext.plaintext[i]){
518 cout << "At index " << i << " got " << plain[i] << " instead of " <<

plaintext.plaintext[i] << endl;
519 fail = true;
520 }
521 }
522 if (plain[params.plain_size] != 0) {
523 cout << "Result has more values than expected " << params.plain_size << endl;
524 fail = true;
525 }
526 }
527 else {
528 // Check that the arrays are identical
529 if (plain != plaintext.plaintext) fail = true;
530 }
531

Appendix A: Source Code

76

532 // Report Status
533 if (!fail){
534 cout << "SUCCESS" << endl;
535 } else {
536 cout << "FAIL" << endl;
537 }
538 }
539
540 /*
541 * test_case_2(ZpCipherParams params)
542 *
543 * Test Case 2, square the ciphertext then take the sum of all elements
544 *
545 * ZpCipherParams params - Pasta parameters for plaintext, key, and ciphertext size
546 */
547 void test_case_2(ZpCipherParams params){
548 int ret = 0;
549
550 // Initialize timing variables
551 auto start = std::chrono::system_clock::now();
552 auto end = std::chrono::system_clock::now();
553 std::chrono::duration<double> elapsed_seconds;
554 // Initialize mask vector
555 std::vector<int64_t> mask (params.plain_size, 0);
556 mask[0] = 1;
557
558 // Start timing
559 start = std::chrono::system_clock::now();
560
561 // Square the ciphertext
562 Ciphertext<DCRTPoly> mult = cc->EvalSquare(final_ct);
563 // Take the sum of all elements in ciphertext
564 Ciphertext<DCRTPoly> sum = cc->EvalSum(mult, params.cipher_size);
565 // Multiply by the mask to obtain only the first value
566 Ciphertext<DCRTPoly> first = cc->EvalMult(sum, cc->MakePackedPlaintext(mask));
567
568 Plaintext res;
569 // HE Decryption of the resulting ciphertext
570 cc->Decrypt(keyPair.secretKey, first, &res);
571 // Convert to proper signage
572 ret = signed2unsigned(res->GetPackedValue())[0];
573 // Stop timing
574 end = std::chrono::system_clock::now();
575 // Get elapsed time
576 elapsed_seconds = end-start;
577 decrypt_print(mult);
578 decrypt_print(sum);
579 cout << "sumOf(ct * ct) = " << ret << " - Time " << elapsed_seconds.count() << "

seconds" << endl;
580 }
581
582 /*
583 * cds_example(ZpCipherParams params, int index, int64_t compVal)
584 *
585 * Implements a mock use case of looking for a specific value in the array
586 *
587 * ZpCipherParams params - Pasta parameters for plaintext, key, and ciphertext size
588 * std::vector<int> indexes - index at which to check the value
589 * std::vector<int64_t> indexes compVal - value for comparison
590 */
591 void cds_example(ZpCipherParams params, std::vector<int> indexes, std::vector<int64_t>

compVal){
592 int ret = 0;
593 // Initialize timing variables
594 auto start = std::chrono::system_clock::now();
595 auto end = std::chrono::system_clock::now();
596 std::chrono::duration<double> elapsed_seconds;
597
598 // Start time

Appendix A: Source Code

77

599 start = std::chrono::system_clock::now();
600 cout << "Comparing index " << index << " for value " << compVal << endl;
601 // Initalize the mask vector plaintext for which index to checl
602 std::vector<int64_t> vec(params.cipher_size, 0);
603 for (int i = 0; i < indexes.size(); i++){
604 vec[indexes[i]] = 1;
605 }
606 Plaintext vecpt = cc->MakePackedPlaintext(vec);
607 // Initialize vector plaintext with the value at the correct index
608 for (int i = 0; i < indexes.size(); i++){
609 vec[indexes[i]] = compVal[i];
610 }
611 Plaintext ptt = cc->MakePackedPlaintext(vec);
612
613 // Multiply by the mask plaintext to get value at index
614 Ciphertext<DCRTPoly> masked = cc->EvalMult(final_ct, vecpt);
615 // Subtract the actual by the expected
616 Ciphertext<DCRTPoly> diff = cc->EvalSub(masked, ptt);
617 decrypt_print(diff);
618
619 Plaintext res;
620 // HE Decrypt the ciphertext
621 cc->Decrypt(keyPair.secretKey, diff, &res);
622 // Convert to correct formatting type
623 std::vector<uint64_t> plain = signed2unsigned(res->GetPackedValue());
624 // Check that the first element equals 0, i.e. it is a match
625 for (int i = 0; i < indexes.size(); i++){
626 if (plain[indexes[i]] != 0){
627 ret = 0;
628 break;
629 }
630 else{
631 ret = 1;
632 }
633 }
634 // Stop time
635 end = std::chrono::system_clock::now();
636 elapsed_seconds = end - start;
637
638
639 if (ret <= 0){
640 cout << "FAILURE - NO MATCH - Time " << elapsed_seconds.count() << " seconds" <<

endl;
641 } else {
642 elapsed_seconds = end-start;
643 cout << "SUCCESS - FOUND MATCH - Time " << elapsed_seconds.count() << " seconds"

<< endl;
644 }
645 }
646

Appendix A: Source Code

78

	Applying Homomorphic Encryption to a Cross Domain Problem
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	This Work

	Background
	Cross Domain Solution
	Ciphers
	Symmetric Key Ciphers
	Asymmetric Key Ciphers
	Lightweight Ciphers

	Homomorphic Encryption
	Partially Homomorphic Encryption
	Somewhat Homomorphic Encryption
	Fully Homomorphic Encryption

	Hybrid Homomorphic Encryption
	Hybrid Homomorphic Encryption Ciphers

	Lightweight Ciphers
	NIST Lightweight Cryptography Finalists
	ASCON
	Elephant
	GIFT-COFB
	Grain-128AEAD
	ISAP
	PHOTON-Beetle
	Romulus
	SPARKLE
	TinyJAMBU
	Xoodyak
	Performance of Competition Finalists

	NIST Lightweight Cryptography Winner

	Hybrid Homomorphic Encryption Ciphers
	Fasta
	Pasta

	Fully Homomorphic Encryption Schemes
	Basic Preliminaries and Notation
	Brakerski-Gentry-Verauteren Scheme
	Optimizations

	Brakerski/Fan-Verauteren Scheme
	Optimizations

	Homomorphic Operation Examples
	Homomorphic Addition
	Homomorphic Subtraction
	Homomorphic Multiplication
	Homomorphic Sum
	Homomorphic Rotation

	Component Selection
	Cipher Decision
	Pursuit of Lightweight Cipher
	Pursuit of Hybrid Homomorphic Encryption Cipher

	Homomorphic Encryption Scheme Decision
	Library
	Scheme

	Implementation
	Hybrid Homomorphic Encryption
	Hybrid Homomorphic Decryption Circuit
	Linear Layer
	S-Box

	Cross Domain Solution Scenario
	Application to the Cross Domain Problem

	Additional Test Cases
	Case 1
	Case 2

	Results
	3-Round Pasta Results
	4-Round Pasta Results
	Instance Comparison
	Comparison to Previous Work

	Conclusion
	Future Work

	Bibliography
	Source Code
	Source Code
	Source Code
	Source Code
	Source Code
	Source Code
	Source Code
	Source Code
	Source Code
	Source Code

