
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-17-2023

Efficient Synchronous Byzantine Consensus Efficient Synchronous Byzantine Consensus

Nibesh Shrestha
nxs4564@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Shrestha, Nibesh, "Efficient Synchronous Byzantine Consensus" (2023). Thesis. Rochester Institute of
Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11516?utm_source=repository.rit.edu%2Ftheses%2F11516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Efficient Synchronous Byzantine Consensus

by

Nibesh Shrestha

B.Eng., Tribhuvan University (2013)

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

July 17, 2023

Efficient Synchronous Byzantine Consensus

by

Nibesh Shrestha

Committee Approval:
We, the undersigned committee members, certify that we have advised and/or supervised the
candidate on the work described in this dissertation. We further certify that we have reviewed the
dissertation manuscript and approve it in partial fulfillment of the requirements of the degree of
Doctor of Philosophy in Computing and Information Sciences.

Dr. Pencheng Shi Date

Dissertation Advisor

Dr. Kartik Nayak (Duke University) Date

Dissertation Co-Advisor

Dr. Stanis law Radziszowski Date

Dissertation Committee Member

Dr. Matthew Fluet Date

Dissertation Committee Member

Dr. Ricardo Figueroa Date

Dissertation Defense Chairperson

Certified by:

Dr. Pencheng Shi Date

Ph.D. Program Director, Computing and Information Sciences

ii

© 2023 Nibesh Shrestha

iii

Efficient Synchronous Byzantine Consensus

by

Nibesh Shrestha

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in

Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

With the emergence of decentralized technologies such as Blockchains, Byzantine consensus proto-
cols have become a fundamental building block as they provide a consistent service despite some
malicious and arbitrary process failures. While the Byzantine consensus problem has been exten-
sively studied for over four decades under various settings, many challenges and open problems still
exist. Improving the communication complexity and the latency or round complexity are the two
key challenges in the design of efficient and scalable solutions for the Byzantine consensus problem.
This thesis focuses on improving the communication complexity and the round complexity of the
synchronous Byzantine consensus problem under various setup assumptions.

In this thesis, I will first present OptSync, a new paradigm to achieve optimistic responsiveness that
allows a consensus protocol to commit with the best-possible latency under all conditions. A lower
bound that relates to the commit latencies for an optimistically responsive protocol and matching
upper bound protocols with optimal commit latency under all conditions will be presented.

Then, I will discuss consensus protocols in the absence of threshold setup; this setting supports
efficient reconfiguration of participating parties. In this setting, I will present two efficient consensus
protocols that incur quadratic communication per decision and optimistically responsive latency
during optimistic conditions.

Next, I will discuss the design of communication and round efficient protocols for distributed key
generation (DKG). I will present a new framework to solve the DKG problem and present two
new constructions following the framework. The first protocol incurs cubic communication in
expectation and expected constant rounds, while the second protocol incurs cubic communication
in the worst-case and linear round complexity. Improved constructions for several useful primitives
such as gradecast and multi-valued validated Byzantine agreement will also be presented.

Finally, I will present communication and round efficient protocols for parallel broadcast where all
parties wish to broadcast their input. A generic reduction from parallel broadcast to graded parallel
broadcast and validated Byzantine consensus will be presented along with improved constructions
for gradecast with multiple grades and multi-valued validated Byzantine agreement.

iv

Acknowledgments

I am immensely grateful to the many people who have supported me throughout my PhD journey.

First and foremost, I would like to thank my advisors, Professor Pengcheng Shi and Professor Kartik
Nayak for their unwavering support and guidance throughout my doctoral studies. Professor Shi
always provided me with valuable suggestions despite me not working in the area of his expertise.
He has always been a kind and amazing person to interact with. I spent most of my time as
a graduate student working with Kartik. I started working with Kartik when I knew very little
about research. But, he always showed faith in my ability and supported me throughout. I will
forever remember a quote he stated “the devil is in the details” to emphasize the importance
of thinking rigorously about research problems, an art I am still learning to master. His ability
to clearly articulate ideas and relentlessly work on challenging research problems is something I
wish to inherit. His mentorship has been instrumental in my academic growth, and I could not
have completed this work without his guidance. He also introduced me to an amazing group of
researchers who helped me broaden my horizons and expand my knowledge. I also very much
appreciate his guidance during my job search and his advice on many other aspects of life.

I would also like to extend my gratitude to my mentors, including Ittai Abraham, Aniket Kate and
Dahlia Malkhi. Numerous research discussions we had, has helped me explore the field of consensus
and applied cryptography, and deepen my understanding. Your contributions to this work have
been significant, and I am grateful for the opportunity to work with you. Your insights, feedback,
and support have been critical in shaping my research, and I am fortunate to have had you as
mentors.

I am thankful to my student collaborator Adithya Bhat, specially for his mentorship on various
secret sharing schemes. I also benefit from numerous technical discussions with Aditya Asgaonkar,
Francesco D’Amato, Julian Loss, Atsuki Momose, Ling Ren, Sarisht Wadhwa, Sravya Yandamuri
and Luca Zanolini. I would like to thank them for their valuable time. I would also like to thank
Maofan “Ted” Yin for his wonderful consensus libraries.

I am grateful to Professors Matthew Fluet and Stanis law Radziszowski for their invaluable contri-
butions as members of my doctoral committee, offering insightful suggestions that greatly enhanced
the quality of this thesis. I would also like to extend my gratitude to Professors Mohan Kumar and
Peizhao Hu for their guidance during the early part of my doctoral studies. I am also thankful to
Professor Arthur Nunes Harwitt, with whom I had the opportunity to work as a teaching assistant
during my PhD study.

I would also like to express my appreciation to my friends: Robik, Binyul, Krishna, Garegin, and
Avinash for their friendship and support throughout my PhD journey. Your presence, humor, and
encouragement have been a source of comfort and inspiration during challenging times. Thank you
for being a part of my life and for making my graduate school experience more enjoyable.

Finally, I would like to thank my parents, my sisters, my brother and my wife, Pranisha who have
been an endless source of love and understanding throughout this period. Your encouragement has
been instrumental in my academic achievements, and I am forever grateful for your presence in my
life.

v

Contents

1 Introduction 1

1.1 Overview of Contributions . 4

2 Background 7

2.1 Byzantine Broadcast and Byzantine Agreement . 7

2.2 Byzantine Fault Tolerant State Machine Replication 9

2.3 Multi-valued Validated Byzantine Agreement . 10

2.4 Parallel Broadcast . 11

2.5 Primitives . 12

3 On the Optimality of Optimistic responsiveness 13

3.1 Introduction . 13

3.2 Model and Definitions . 18

3.3 A Lower Bound on the Latency of Optimistic Responsiveness 18

3.4 Optimal Optimistic Responsiveness with 2∆-synchronous Latency 21

3.4.1 Steady State Protocol . 25

3.4.2 View-change Protocol . 28

3.4.3 Safety and Liveness . 29

3.5 Optimal Optimistic Responsiveness with ∆-synchronous Latency 33

3.5.1 Protocol . 34

3.5.2 View Change Protocol . 35

3.5.3 Safety and Liveness . 36

3.6 Optimistic Responsiveness with Optimistically Responsive View-Change 38

3.6.1 Steady State Protocol . 39

3.6.2 View-change Protocol . 41

3.6.3 Safety and Liveness . 43

3.7 Evaluation . 49

vi

3.7.1 Implementation Details and Methodology . 49

3.7.2 Basic Performance . 50

3.7.3 Scalability and Comparison with Prior Work 51

3.8 Related Work . 53

4 Efficient State Machine Replication without Threshold Signatures 55

4.1 Introduction . 55

4.2 Model and Preliminaries . 56

4.2.1 Primitives . 56

4.3 BFT SMR Protocol . 57

4.3.1 Protocol Details . 58

4.3.2 Safety and Liveness . 62

4.4 Related Work . 65

5 Efficient Optimistically Responsive State Machine Replication without Thresh-
old Signatures 67

5.1 Introduction . 67

5.2 Model and Definitions . 68

5.2.1 Primitives . 68

5.3 Optimistically Responsive State Machine Replication 70

5.3.1 Protocol Details . 73

5.3.2 Safety and Liveness . 79

5.4 Related Work . 84

6 Synchronous Distributed Key Generation without Broadcasts 86

6.1 Introduction . 86

6.1.1 Key Technical Ideas and Results . 87

6.2 Related Work . 92

6.2.1 Related Works in Distributed Key Generation Literature 92

6.2.2 Related Works in Byzantine Agreement Literature 94

6.3 Model and Preliminaries . 95

6.3.1 Definitions . 96

6.3.2 Primitives . 97

6.4 Secure DKG with Two Broadcast Rounds . 99

6.4.1 Security Analysis . 102

6.5 Communication Optimal Weak Gradecast . 106

vii

6.5.1 Security Analysis . 107

6.6 Recoverable Set of Shares . 109

6.6.1 Security Analysis . 112

6.7 Oblivious Leader Election . 115

6.7.1 Security Analysis . 117

6.8 Multi-Valued Validated Byzantine Agreement . 118

6.8.1 Security Analysis . 120

6.9 Distributed Key Generation . 122

6.9.1 DKG with O(κn3) communication and expected O(1) rounds 123

6.9.2 DKG with worst-case O(κn3) communication and O(t) rounds 124

6.10 A Lower Bound on the Communication Complexity of Weak Gradecast 125

7 Communication and Round Efficient Parallel Broadcast Protocols 127

7.1 Introduction . 127

7.1.1 Key Technical Ideas and Results . 128

7.2 Model and Preliminaries . 134

7.2.1 Definitions . 134

7.2.2 Primitives . 135

7.3 Gradecast with Multiple Grades . 136

7.3.1 Security Analysis . 138

7.4 Graded Parallel Broadcast . 140

7.4.1 Security Analysis . 142

7.5 Multi-valued Validated Byzantine Agreement . 143

7.5.1 Protocol Details . 144

7.5.2 Security Analysis . 148

7.6 Parallel Broadcast . 150

7.6.1 Security Analysis . 151

7.7 Related Work . 152

7.7.1 Related Works in Parallel Broadcast Literature 152

7.7.2 Related Works in MVBA Literature . 154

8 Conclusion and Future Work 155

Bibliography 156

viii

Chapter 1

Introduction

Byzantine fault tolerant (BFT) consensus protocols provide a consistent service despite some ma-

licious and arbitrary process failures. These protocols have been particularly useful in developing

infrastructures that span across multiple entities some of which may be incentivized to act mali-

ciously. As a result, Byzantine consensus protocols have been widely adopted to build decentral-

ized blockchain technologies that promise tamper-proof ledger services without a central authority.

While the Byzantine cosensus problem has been extensively studied for over 40 years under various

models and assumptions with numerous protocols and impossibility results, many challenges and

open problems still exist. Improving the communication complexity (i.e., reducing the number

of bits honest parties exchange) and the latency or round complexity (i.e., the time required to

reach a decision) are the two key challenges in the design of efficient and scalable solutions for the

Byzantine consensus problem.

The Byzantine consensus problem has been studied under various network models. Widely studied

network models include asynchronous model [17, 8], partially synchronous model [45, 32, 104, 27]

and synchronous model [7, 71]. Protocols designed under asynchronous and partially synchronous

model are tolerant to arbitrary delays in the network while protocols designed under synchrony

assumption require messages to arrive at the specified time. However, asynchronous or partially

synchronous Byzantine consensus protocols can tolerate only up to one-third Byzantine failures [45]

while synchronous Byzantine consensus typically tolerate one-half Byzantine failures [52, 54, 71] or

even 99% Byzantine failures [43]. This thesis focuses on improving the communication complex-

ity and the round complexity of synchronous Byzantine consensus protocols under various setup

assumptions.

1

The first chapter (Chapter 3) addresses the latency concern of the synchronous Byzantine consen-

sus. In general, synchronous Byzantine consensus protocols tolerate up to one-half Byzantine fail-

ures. However, the latency to commit a consensus decision inherently depends on the prior-known

pessimistic network delay ∆. This is in constrast to the partially synchronous or asynchronous

consensus protocols which can commit responsively at actual network speed δ (δ << ∆). A recent

work Thunderella [90] introduced the notion of optimistic responsiveness to allow a synchronous

consensus protocol to commit at network speed in O(δ) time when certain optimistic conditions

are met. In particular, the protocol can commit responsively when the leader and > 3n/4 replicas

behave honestly, where n is the total number of replicas in the system. However, the Thun-

derella paradigm of optimistic responsiveness required explicit back-and-forth switching between

two modes–fast mode where replicas commit in O(δ) time during optimistic conditions, and slow

mode where the commit latency depends on ∆ during non-optimistic conditions with some interme-

diary transition phase which incurs additional latency. Their paradigm has two major drawbacks:

(i) it is hard to know whether optimistic conditions are met or not; switching to the fast path in-

correctly will cause undue switching latency, and (ii) the adversary can worsen the overall latency

by behaving honestly while on the slow path (thereby triggering a switch to the fast path) and

not responding when on the fast path; forcing a switch to the slow path which incurs additional

switching latency in between. To address these concerns, this thesis presents OptSync [100], a new

paradigm of optimistic responsiveness where both slow and fast mode exist simultaneously and

allows the protocol to commit with the best-possible commit latency under all circumstances. In

the process, the paradigm also removes the need to perform explicit back-and-forth switching and

its associated switching latency. A lower bound on the latency for such an optimistically responsive

protocol and matching upper bound protocols that achieve the optimal latency are presented along

with experimental evaluations that show significant latency improvement over the prior art.

The second and third chapters (Chapters 4 and 5) address the communication complexity of the

Byzantine consensus protocol in the absence of threshold setup. All prior known synchronous BFT

protocols [71, 50, 4, 104, 27, 8, 84] tolerating t < n/2 Byzantine faults assume threshold setup and

make use of threshold signatures to reduce their communication complexity. However, threshold

signatures require an initial setup phase called distributed key generation (DKG) to establish

threshold keys among all participating replicas and hence, are not suitable in a setting where the

participating replicas can change over time. In essence, the protocols relying on threshold signatures

are not reconfiguration-friendly. In the absence of threshold signatures, all of the protocols incur

cubic-communication; and hence are not scalable. This thesis explores design of communication

efficient synchronous BFT protocols in the absence of threshold setup and threshold signatures. Two

new BFT state machine replication (SMR) protocols with O(κn2) communication per consensus

2

decision even in the absence of threshold signatures (κ is the security parameter) and varying

commit latency are presented. Getting rid of threshold signatures allows for efficient reconfiguration

of the participating replicas and does not require generating threshold keys each time a new replica

joins the system. Efficient reconfiguration-friendly BFT SMR plays an important role in the design

of several applications. Randpiper [21] and OptRand [22] uses these BFT SMR protocols to design

efficient random beacon protocols [23] with the same complexity metric.

While chapters 4 and 5 design communication efficient BFT consensus protocols in the absence of

threshold setup i.e., without DKG setup, DKG protocols are useful in many other cryptographic

protocols such as threshold signatures [24, 99] and threshold encryption schemes [39]. The fourth

chapter (Chapter 6) explores the design of communication and round efficient protocols for the

distributed key generation problem. All prior works on synchronous DKG protocols [93, 87, 59, 30]

assume a “broadcast channel” to abstract consensus mechanism and incur O(κn4) communication

and linear round complexity. This thesis presents a new framework to achieve communication

and round efficient protocols to solve the DKG problem. In this framework, a broadcast chan-

nel is replaced with weaker consensus primitives such as gradecast which can be achieved in a

communication efficient manner. By making use of the framework, two efficient DKG protocols

are presented that incur O(κn3) communication with either linear latency or expected constant

round complexity. In the process, improved construction for gradecast and multi-valued validated

Byzantine agreement are also obtained.

Finally, this thesis presents efficient constructions for parallel broadcast primitive, where all n par-

ties wish to broadcast ` bit messages in parallel. Prior approaches for parallel broadcast näıvely

run n instances of Byzantine agreement (or Byzantine broadcast) primitives increasing the com-

munication complexity by the undesirable factor of n along with linear round complexity. This

thesis shows a reduction from parallel broadcast tolerating t < n/2 Byzantine faults to graded

parallel broadcast (a new primitive we introduce) and use a single instance of validated Byzantine

consensus to achieve parallel broadcast protocols with O(n2`+ κn3) communication and expected

constant number of rounds. In the process, improved constructions for gradecast protocol with

multiple grades with asymptotically optimal communication complexity and a multi-valued vali-

dated Byzantine agreement protocol with asymptotically optimal communication complexity are

also obtained.

3

1.1 Overview of Contributions

This section presents an overview of the research conducted for this thesis.

Chapter 3: On the Optimality of Optimistic Responsiveness. Synchronous consensus pro-

tocols, by definition, have a worst-case commit latency that depends on the bounded network delay.

The notion of optimistic responsiveness was recently introduced to allow synchronous protocols to

commit instantaneously when some optimistic conditions are met. In this work [100], we revisit

this notion of optimistic responsiveness and present optimal latency results.

We present a lower bound for Byzantine Broadcast that relates the latency of optimistic and

synchronous commits when the designated sender is honest and while the optimistic commit can

tolerate some faults. We then present two matching upper bounds for tolerating t faults out of

n = 2t+1 parties. Our first upper bound result achieves optimal optimistic and synchronous commit

latency when the designated sender is honest and the optimistic commit can tolerate at least one

fault. We experimentally evaluate this protocol and show that it achieves throughput comparable

to state-of-the-art synchronous and partially synchronous protocols and under optimistic conditions

achieves latency better than the state-of-the-art. Our second upper bound result achieves optimal

optimistic and synchronous commit latency when the designated sender is honest but the optimistic

commit does not tolerate any faults. The presence of matching lower and upper bound results make

both of the results tight for n = 2t+ 1. Our upper bound results are presented in a state machine

replication setting with a steady-state leader who is replaced with a view-change protocol when

they do not make progress. For this setting, we also present an optimistically responsive protocol

where the view-change protocol is optimistically responsive too.

Material in this chapter first appeared as: Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik

Nayak. On the Optimality of Optimistic Responsiveness. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security, pages 839–857, 2020

Chapters 4 and 5: Communication Efficient State Machine Replication without Thresh-

old Signatures. Byzantine consensus protocols, in general, assume threshold setup and rely

on threshold signatures to achieve good communication complexity. However, protocols relying

on threshold setup do not allow efficient reconfiguration of participating parties. In the ab-

sence of threshold setup, prior Byzantine consensus protocols incur cubic communication per de-

cision. Avoiding threshold setup allows for efficient reconfiguration of participating parties. In

this work [21], we design a communication efficient BFT consensus protocol that incurs O(κn2)

4

communication per decision without threshold signatures and tolerates optimal t < n/2 Byzantine

failures. The resulting construction has been useful to achieve consensus in widespread applications

such as random beacons [21] and distributed key generation [101].

While the above BFT consensus protocol achieve a communication efficient solution to consensus, it

incurs a large latency to reach a decision. In this work [22], we design OptRand, an optimistically

responsive consensus protocol that commits decisions at actual network speed during optimistic

conditions. This protocol incurs O(κn2) communication per decision in the absence of threshold

setup and commits decisions in an optimistically responsive manner. This protocol closely follows

the optimistic responsiveness paradigm introduced in Chapter 3.

Material in Chapter 4 first appeared as: Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik

Nayak. Randpiper–reconfiguration-friendly random beacons with quadratic communication. In

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security,

pages 3502–3524, 2021.

Material in Chapter 5 first appeared as: Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik

Nayak. OptRand: Optimistically responsive distributed random beacons. In Proceedings of the

30th Network and Distributed System Security Symposium (NDSS), 2023.

Chapter 6: Synchronous Distributed key generation without Broadcasts. Distributed

key generation (DKG) is a key building block in developing many efficient threshold cryptosystems.

This work [101] initiates the study of communication complexity and round complexity of DKG

protocols over a point-to-point (bounded) synchronous network. Our key result is the first syn-

chronous DKG protocol for discrete log-based cryptosystems with O(κn3) communication complex-

ity (κ denotes a security parameter) that tolerates any t < n/2 Byzantine faults among n parties.

We present two variants of the protocol: (i) a protocol with worst-case O(κn3) communication

and O(t) rounds, and (ii) a protocol with expected O(κn3) communication and expected constant

rounds. In the process of achieving our results, we design (1) a novel weak gradecast protocol with

a communication complexity of O(κn2) for linear-sized inputs and constant rounds, (2) a primitive

called “recoverable set of shares” for ensuring recovery of shared secrets, (3) an oblivious leader elec-

tion protocol with O(κn3) communication and constant rounds, and (4) a multi-valued validated

Byzantine agreement (MVBA) protocol with O(κn3) communication complexity for linear-sized

inputs and expected constant rounds. Each of these primitives is of independent interest.

Material in Chapter 6 is currently under submission.

5

Chapter 7: Communication and Round Efficient Parallel Broadcast protocols. This

work [11] focuses on the parallel broadcast primitive, where each of the n parties wish to broadcast

their `-bit input in parallel. We consider the authenticated model with PKI and digital signatures

that is secure against t < n/2 Byzantine faults under a synchronous network.

We show a generic reduction from parallel broadcast to a new primitive called graded parallel

broadcast and a single instance of validated Byzantine agreement. Using our reduction, we obtain

parallel broadcast protocols with O(n2`+κn3) communication (κ denotes a security parameter) and

expected constant rounds. Thus, for inputs of size ` = Ω(n) bits, our protocols are asymptotically

free.

Our graded parallel broadcast uses a novel gradecast protocol with multiple grades with asymptot-

ically optimal communication complexity of O(n`+κn2) for inputs of size ` bits. We also present a

multi-valued validated Byzantine agreement protocol with asymptotically optimal communication

complexity of O(n` + κn2) for inputs of size ` bits in expectation and expected constant rounds;

this protocol may be of independent interest.

Material in Chapter 7 is currently under submission.

6

Chapter 2

Background

There are various formulations of the Byzantine consensus problem in the literature. In this chapter,

we review a few widely studied formulations. The term “consensus” is used as a collective term for

all such variations.

2.1 Byzantine Broadcast and Byzantine Agreement

Two well-studied formulations are Byzantine broadcast and Byzantine agreement, as introduced

by Pease, Shostak and Lamport [91, 77]. In Byzantine broadcast, there is a designated sender who

tries to broadcast a value to all parties. Up to t out of n participating parties may be Byzantine

faulty and perform arbitrary actions. The non-faulty parties are said to be honest and execute the

protocol as specified. At the end of the protocol execution, all honest parties are required to agree

on a common value. To rule out trivial outputs (such as all honest parties outputs ⊥), a validity

requirement is placed to ensure all honest parties output the sender’s value when the sender is

honest. More formally, the Byzantine broadcast problem is defined as as follows.

Definition 2.1.1 (Byzantine Broadcast [43]). A Byzantine broadcast protocol provides the following

three guarantees.

• Agreement. If two honest replicas commit values b and b′ respectively, then b = b′.

• Termination. All honest replicas eventually commit.

7

• Validity. If the designated sender is honest, then all honest replicas commit on the value it

proposes.

In Byzantine agreement problem, all parties provide an input value; there is no designated sender.

Up to t out of n participating parties are allowed to be Byzantine faulty. The requirements for

agreement and termination are similar to the Byzantine broadcast. A requirement for validity is

placed to rule to trivial solutions and requires all honest parties output a common input value b

which is the input of all honest parties. More formally, the Byzantine agreement problem is defined

as follows.

Definition 2.1.2 (Byzantine Agreement [77]). A Byzantine agreement protocol provides the fol-

lowing three guarantees.

• Agreement. If two honest replicas commit values b and b′ respectively, then b = b′.

• Termination. All honest replicas eventually commit.

• Validity. If all honest parties hold the same input value b, then they all commit on b.

Lamport, Shostak and Pease [91, 77] studied lower bounds on the number of parties required to

tolerate t Byzantine faults assuming synchronous communication model. In synchronous commu-

nication model, the protocol is executed in synchronized rounds and messages sent by an honest

party at the beginning of a round is guaranteed to be received by the end of the round. In the plain

authenticated model (without public key infrastructure (PKI) and digital signatures), they showed

Byzantine broadcast and agreement can be solved if and only if t < n/3. The plain authenticated

model is also called unauthenticated model. In the authenticated model, assuming PKI and digital

signatures, Byzantine broadcast can be solved if t < n− 1 and Byzantine agreement can be solved

if t < n/2. They also presented protocols with optimal fault-tolerance; albeit their protocol had

exponential communication complexity.

Fully polynomial protocols were later given by Dolev and Strong [43] for t < n/2 case in the

authenticated setting and by Garay and Moses [58] for t < n/3 case in the unauthenticated setting.

Dolev and Reischuk [41] showed a communication complexity lower bound of Ω(n2) for Byzantine

broadcast, which also applies to Byzantine agreement. Berman, Garay and Perry [20] provided

the first protocol with optimal communication complexity for t < n/3 in the unauthenticated

setting. Very recently, Momose and Ren [84] gave Byzantine agreement protocol with O(κn2)

communication for t < n/2 in the authenticated setting.

8

A lower bound on round complexity for deterministic Byzantine consensus problem has been given

in several works [51, 12, 43]. In particular, any deterministic Byzantine consensus problem must

incur at least t + 1 rounds. To circumvent the lower bound, randomization has been used to

achieve consensus in constant expected rounds in several works [49, 50, 71]. In the asynchronous

communication model, where messages are eventually delivered, a well-known FLP impossibility

result [53] rules out any deterministic solutions. Randomization [17, 26] and partial synchrony [45]

has been proposed to circumvent the lower bound.

2.2 Byzantine Fault Tolerant State Machine Replication

The Byzantine broadcast and Byzantine agreement formulations are interesting formulations to

study theoretical feasiblity results. However, they consider a single consensus instance i.e., decision

on a single value. In a practical setting, it is desirable to keep committing new decisions and build

a common log of committed decisions. This notion is captured by state machine replication [97]

formulation. In state machine replication (SMR) formulation, there are designated parties called

clients who supply commands/requests to a set of parties who execute the consensus protocol.

The set of parties who execute the consensus protocol are called replicas. Replicas provide a

consistent service despite some replicas failing arbitrarily i.e., Byzantine failures. The consistent

service provides two guarantees–safety and liveness. Safety requires honest replicas to not commit

different values at the same log position while liveness requires client request to be eventually

committed. More formally, Byzantine fault tolerant state machine replication is defined as follows.

Definition 2.2.1 (Byzantine Fault-tolerant State Machine Replication [97]). A Byzantine fault-

tolerant state machine replication protocol commits client requests as a linearizable log to provide a

consistent view of the log akin to a single non-faulty server, providing the following two guarantees.

• Safety. Honest replicas do not commit different values at the same log position.

• Liveness. Each client request is eventually committed by all honest replicas.

In general, a BFT SMR protocol consists of a designated replica called the leader who proposes

client requests to other replicas. In this regard, the Byzantine broadcast and BFT SMR formulation

may appear as the same. However, BFT SMR protocol requires at least n ≥ 2t + 1 [97] while

Byzantine broadcast can be solved for t < n − 1 in the authenticated synchronous setting. The

key difference is that Byzantine broadcast requires honest parties to stay in agreement while BFT

9

SMR additionally requires public verifiability (i.e., the external clients should be able to verify a

committed decision) which requires t < n/2. In the asynchronous communication model, both the

problems are equivalent as both the formulations require t < n/3.

A well-known BFT SMR protocol called Practical Byzantine Fault Tolerance (PBFT) [32] was

given by Castro and Liskov that works in the partial synchrony model and has optimal resilience

(i.e., t < n/3). A number of follow-up works [9, 80, 33] have been proposed to improve its efficiency.

Protocols in partial synchrony model provide safety during the periods of asynchrony and liveness

during the period of synchrony. All of these solutions have O(κn2) communication per consensus

decision. A recent work HotStuff [104] provided the first SMR protocol with linear communication

complexity assuming threshold signatures.

In synchronous setting, the protocols [3, 43, 71] were mostly designed assuming lock-step synchrony

model where honest parties are assumed to have access to synchronized rounds which is not prac-

tical. Later, Dfinity [65, 6] introduced non lock-step synchrony model where the local measured ∆

time is assumed to be a correct upper bound for the network delay. This allowed a synchronous

protocol to make progress at actual network speed while commit depends on the pessimistic net-

work delay ∆. In their protocol, the latency to commit a decision required 17∆ time. In this

model, a recent work [9] reduced the commit latency to only ∆ and showed its optimality. A

series of recent works [90, 89, 7] explored the notion of optimistic responsiveness to allow a syn-

chronous consensus protocol to commit at actual network delay when certain optimistic conditions

are met. Additionally, we note that all known BFT SMR protocols in the synchronous model have

O(κn2) communication per consensus decision in the presence of threshold signatures, and cubic

communication without it.

2.3 Multi-valued Validated Byzantine Agreement

Most formulations of Byzantine consensus require the output value be the input of at least one

honest party. In multi-valued validated Byzantine agreement (MVBA) formulation, the output

value can be the input of any party including a Byzantine party; as long as it is externally valid.

In an MVBA protocol, there is an external valid function ex-validation that every party has access

to. Every honest parties start with some externally valid input vi, and on termination must output

a value. An MVBA protocol has the following properties:

Definition 2.3.1 (Multi-valued Validated Byzantine Agreement [8, 79, 101]). A protocol solves

multi-valued validated Byzantine agreement if it satisfies following properties except with negligible

10

probability in the security parameter κ:

• Validity. If an honest party decides a value v, then ex-validation(v) = true.

• Agreement. No two honest parties decide on different values.

• Termination. If all honest parties start with externally valid values, all honest parties

eventually decide.

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [28] to allow

honest parties to agree on any externally valid values. Their protocol works in asynchronous

communication model and has optimal resilience (t < n/3) with O(n2`+κn2 +n3) communication

for input of size `. Abraham et al. [8] gave an MVBA protocol with optimal resilience and O(n2`+

κn2) communication in the same asynchronous setting. Lu et al. [79] extended the work of Abraham

et al. [8] to handle long messages of size ` with a communication complexity of O(n` + κn2). To

the best of our knowledge, prior to our work, MVBA has not been explored in the synchronous

communication model.

2.4 Parallel Broadcast

In parallel broadcast primitive (aka, interactive consistency [91]), all parties wish to broadcast their

input in parallel. The parallel broadcast problem is formally defined as follows:

Definition 2.4.1 (Parallel Broadcast [91]). In a parallel broadcast protocol, each party Pi has its

input value vi and each party Pi outputs a n-element vector Vi of values. A parallel broadcast

protocol tolerating t Byzantine failures has the following properties:

• Agreement. All honest parties must agree on the same vector of values V = [v1, . . . , vn].

• Validity. If the input of an honest party Pj is vj, then Vi[j] = vj.

• Termination. All honest parties must eventually decide on a vector V.

The notion of parallel-broadcast was originally introduced by Pease, Shostak and Lamport [91].

They studied the problem in both authenticated and unauthenticated model and showed that

the problem can be solved for t < n/3 in the unauthenticated model and for t < n − 1 in the

11

authenticated model. They also gave upper bound protocols with optimal fault tolerance, but with

exponential communication complexity. Efficient solutions for parallel broadcast has been explored

in several works [18, 1, 103] under various models and setup assumptions.

2.5 Primitives

In this work, we use several primitives which are explained below:

Linear erasure and error correcting codes. We use standard (n, b) Reed-Solomon (RS)

codes [95]. This code encodes b data symbols into codewords of n symbols and can decode b

elements of the codewords to recover the original data.

• ENC. Given inputsm1, . . . ,mb, an encoding function ENC computes (s1, . . . , sn) = ENC(m1, . . . ,mb),

where (s1, . . . , sn) are codewords of length n. A combination of any b elements of the codeword

uniquely determines the input message and the remaining of the codeword.

• DEC. The function DEC computes (m1, . . . ,mb) = DEC(s1, ..., sn), and is capable of tolerating

up to c errors and d erasures in codewords (s1, . . . , sn), if and only if n− b ≥ 2c+ d.

Cryptographic accumulators. The cryptographic accumulator constructs an accumulation

value for a set of values and produces witness for each value in the set. Given accumulation

value and a witness, any party can verify if a value is in the set. Formally, given a parameter κ,

and a set D of n values d1, . . . , dn, an accumulator has the following interface:

• Gen(1κ, n): takes a parameter κ and an accumulation threshold n (an upper bound on the number

of values that can be accumulated securely), returns an accumulator key ak. The accumulator

key ak is part of the trusted setup and therefore is public to all parties.

• Eval(ak,D): takes an accumulator key ak and a set D of values to be accumulated, returns an

accumulation value z for the value set D.

• CreateWit(ak, z, di,D): takes an accumulator key ak, an accumulation value z for D and a value

di, returns ⊥ if di 6∈ D ,and a witness wi if di ∈ D.

• Verify(ak, z, wi, di): takes an accumulator key ak, an accumulation value z for D, a witness wi

and a value di, returns true if wi is the witness for di ∈ D, and false otherwise.

12

Chapter 3

On the Optimality of Optimistic

responsiveness

3.1 Introduction

Byzantine fault-tolerant (BFT) protocols based on a synchronous network have a high resilience

of up to one-half Byzantine faults. In comparison, BFT protocols under asynchronous or partially

synchronous networks can tolerate only one-third Byzantine faults. Although partially synchronous

protocols have a lower tolerance for Byzantine faults, they have an advantage in terms of the latency

to commit – they can commit in O(δ) time where δ is the actual latency of the network. On the

other hand, the latency for synchronous protocols depends on ∆, where ∆ is a pessimistic bound

on the network delay.

A recent work, Hybrid Consensus [89], formalized this difference by introducing a notion called

responsiveness. A protocol is responsive if its commit latency depends only on the actual net-

work delay δ, but not the pessimistic upper bound ∆. In this regard, asynchronous and partially

synchronous protocols are responsive by design, whereas synchronous protocols are not.

For synchronous protocols, a notion called optimistic responsiveness was introduced by Thun-

derella [90]; this allows synchronous protocols to commit responsively when some optimistic condi-

tions are met. Thunderella is safe against up to one-half Byzantine faults. Moreover, if a “leader”

and > 3n/4 replicas are honest, and if they are on a “fast-path”, then replicas can commit respon-

sively in O(δ) time; otherwise, the protocol falls back to a “slow-path”, which has a commit latency

13

that depends on ∆.

The Thunderella paradigm of optimistic responsiveness requires replicas to know which of the two

paths they are on, and explicitly switch between them. If, at some point, the optimistic conditions

cease to be met, the replicas switch to the slow-path. When they believe the optimistic conditions

start to hold again, they switch back to the fast-path. Thunderella uses Nakamoto’s protocol [85]

or the Dolev-Strong protocol [43] as their slow-path. Thus, the slow-path, as well as the switch

between the two paths, is extremely slow, requiring O(κ∆) and O(n∆) latency respectively (where

κ is a security parameter). The slow-path latency can be improved to 2∆ using state-of-the-art

synchronous protocols [7].

Can we further improve the latency of optimistically responsive synchronous protocols? Before

answering the question, let us emphasize an important point in the study of optimistic responsive-

ness: replicas do not know whether the optimistic conditions are met. If all the replicas know, in

the case of Thunderella, whether or not fewer than 1
4 replicas are Byzantine, then we can use a

protocol with optimal latency for that setting. Under optimistic conditions, we can use partially

synchronous protocols [104, 75, 34, 32] to commit responsively; otherwise, we can use a state-of-

the-art synchronous protocol tolerating a minority faults to commit in ∆ + O(δ) time [7, 9]. In

contrast, the slow-path–fast-path switching paradigm, even if it uses optimal protocols in the two

respective paths, still leaves a lot to be desired. If we start off in the wrong path, then we incur an

additional switching delay, making the latency worse than either of the competing options under

their respective conditions. More importantly, since there is no way to verify whether the optimistic

conditions hold, such a protocol cannot tell when to switch to the fast-path, and hence will likely

“miss out” on some periods with optimistic conditions.

This chapter explores optimality of optimistic responsiveness with the above restriction in mind.

Specifically, we ask,

What is the optimal latency of an optimistically responsive synchronous protocol?

To answer this question, we obtain upper and lower bounds for the latency of such protocols. We

also show that our protocol has better latency and comparable throughput in practice compared

to state-of-the-art synchronous and partially synchronous protocols.

A lower bound on the latency of an optimistically responsive synchronous protocol.

Our first result presents a lower bound on the latency of such optimistically responsive synchronous

protocols. Specifically, we show the following result:

14

Theorem 1 (Lower bound on the latency of an optimistically responsive synchronous protocol,

informal). There does not exist a Byzantine Broadcast protocol in an unsynchronized start model

that can tolerate t ≥ n/3 faults and achieve the following simultaneously when the designated sender

is honest, messages sent by non-faulty parties arrive instantaneously, and all honest parties start

at time 0:

(i) (optimistic commit) all honest parties commit before time O(δ) when there are max(1, n − 2t)

crash faults, and

(ii) (synchronous commit) all honest parties commit before time 2∆ − O(δ) when there are t crash

faults.

Thus, if a Byzantine Broadcast protocol tolerating t ≥ n/3 corruption has an optimistic (fast) com-

mit with latency O(δ) while still being able to tolerate max(1, n− 2t) faults, then the synchronous

(slow) commit should have a latency ≥ 2∆ − O(δ) when tolerating t faults. This lower bound

applies to protocols in an unsynchronized start model where parties do not all start the protocol

at the same time (explained later).

Our next two results present matching upper bounds for n = 2t + 1. In our protocols, when

the conditions for an optimistic commit are met, replicas commit optimistically. Otherwise, they

commit using the synchronous commit rule. Thus, intuitively, they exist on both paths simultane-

ously without requiring an explicit switch. Since all of our upper bounds require O(δ) time for the

optimistic commit, whenever appropriate, we also call it a responsive commit.

Optimal optimistic responsiveness with 2∆-synchronous latency and > 3n/4-sized re-

sponsive quorum. Our first protocol obtains optimistic responsiveness where the synchronous

commit has a commit latency of 2∆, while the responsive commit has a latency of 2δ using quorums

of size > 3n/4. Specifically, we show the following:

Theorem 2 (Optimistic responsiveness with 2∆-synchronous latency and > 3n/4-sized responsive

quorum, informal). There exists a Byzantine Broadcast protocol tolerating < n/2 faults, and under

an honest sender achieves the following simultaneously:

(i) (responsive commit) a commit latency of 2δ when > 3n/4 replicas are honest, and

(ii) (synchronous commit) a commit latency of 2∆ +O(δ) otherwise.

Intuitively, the fundamental property that this upper bound provides in comparison to Thunderella

15

or Sync HotStuff is simultaneity, i.e., replicas do not need to agree on specific paths for performing

a responsive commit or a synchronous commit. Moreover, the parameters obtained in this result

are optimal. First, the early stopping lower bound due to Dolev-Reischuk-Strong [42] states that

when the number of faults is f , and the maximum number of faults is t, each execution of Byzantine

Broadcast requires min(t+ 1, f + 2) rounds. Hence, no protocol tolerating a fault can have latency

less than 2δ. Second, the > 3n/4 quorum size is tight due to a lower bound in Thunderella [90];

the bound says that no protocol can have a worst-case resilience of one-half Byzantine replicas

while being optimistically responsive for more than n/4 Byzantine replicas. Finally, latency for the

synchronous commit is optimal (ignoring O(δ) delays) due to our first result.

Optimal optimistic responsiveness with ∆-synchronous latency and n-sized responsive

quorum. The 2∆−O(δ) latency bound for a synchronous commit is applicable when the optimistic

commit can tolerate max(1, n−2t) faults. In this result, we show that the synchronous latency can

be improved if the optimistic commit guarantees hold only when all n = 2t+ 1 replicas are honest.

Theorem 3 (Optimistic responsiveness with ∆-synchronous latency and n-sized responsive quo-

rum, informal). There exists a Byzantine Broadcast protocol tolerating < n/2 faults, and under an

honest sender achieves the following simultaneously:

(i) (responsive commit) a commit latency of 2δ when all n replicas are honest, and

(ii) (synchronous commit) a commit latency of ∆ +O(δ) otherwise.

The responsive commit latency is optimal due to Dolev et al. [42] while the synchronous commit

latency ∆ is optimal (ignoring O(δ) delays) due to the lower bound in Sync HotStuff [7].

Implementation and evaluation. We implement and evaluate the performance of our first

protocol and compare it with state-of-the-art synchronous and partially synchronous protocols.

We note that although the upper bounds were presented for Byzantine Broadcast in the theorem

statements, in practice, such protocols will be useful in a state machine replication (SMR) setting

for consensus on a sequence of values. Hence, we describe as well as implement our protocols in an

SMR setting. In the SMR setting, our protocols assume a steady state leader proposing a sequence

of values. Whenever the leader does not make progress, it is replaced using a view-change protocol.

An honest designated sender in Byzantine Broadcast is thus equivalent to having an honest leader in

a state machine replication setting. Thus, when the leader is honest, our protocol from Theorem 2

can commit every value optimistically in 2δ time and synchronously in 2∆ + O(δ). Moreover, the

16

honest leader can propose consecutive values as fast as 2δ time independent of whether commits

are performed responsively or synchronously.

In our evaluation, we observe that under optimistic conditions, our latency is better than even

a partially synchronous protocol such as HotStuff [104] since HotStuff requires more rounds of

communication. Our protocol also obtains a throughput comparable to these protocols.

Optimistic responsiveness with responsive view-change. Our upper bound protocols can

commit responsively when the leader is honest and optimistic conditions are met. However, when

executing on a sequence of values, for reasons such as fairness or distribution of work, we may

want to change leaders every block, or every few blocks. Indeed, several recent protocols have been

designed with this goal in mind [7, 34, 35, 60, 65, 98]. For the upper bounds described earlier, the

view-change protocols, although efficient, still require 4∆+O(δ) time. Such a latency is reasonable

if a view-change happens only occasionally. However, the incurred latency maybe high if we need

to change views after every block. Moreover, the latency is incurred even when the optimistic

conditions are met.

Our final result addresses this concern and presents a protocol which has an optimistically responsive

view-change as well. Thus, when rotating among honest leaders and if > 3n/4 replicas are honest,

the steady state commit and view change can both finish in O(δ) time. On the other hand, even

if the optimistic conditions are not met, the protocol requires 2∆ time to do a view change and

3∆ +O(δ) time to commit a block in the steady state.

Summary of contributions. To summarize, we make the following contributions in this work:

1. We present a lower bound on the latency for optimistic responsiveness (Section 3.3).

2. We then present two upper bound results. Section 3.4 presents an optimal optimistically respon-

sive protocol with 2∆-synchronous latency tolerating at least 1 fault in the responsive commit.

We present an optimal optimistically responsive protocol with ∆-synchronous latency tolerating

no crash faults in the responsive commit in Section 3.5.

3. We present an optimistically responsive protocol that includes an optimistically responsive view-

change (Section 3.6).

4. We evaluate our 2∆-synchronous protocol (Section 3.7).

17

3.2 Model and Definitions

We consider a standard State Machine Replication (SMR) problem used for building a fault tolerant

service to process client requests. The system consists n replicas out of which t < n/2 replicas are

Byzantine faulty. Byzantine replicas may behave arbitrarily. The aim is to build a consistent

linearizable log across all non-faulty (honest) replicas such that the system behaves like a single

non-faulty server in the presence of t < n/2 Byzantine replicas.

We assume the network between replicas includes a standard synchronous communication channel

with point-to-point, authenticated links between them. Messages between replicas may take at

most ∆ time before they arrive, where ∆ is a known maximum network delay. To provide safety

under adversarial conditions, we assume that the adversary is capable of delaying the message for

an arbitrary time upper bounded by ∆. The actual message delay in the network is denoted by δ.

We make use of digital signatures and a public-key infrastructure (PKI) to prevent spoofing and

replays and to validate messages. Message x sent by a replica p is digitally signed by p’s private

key and is denoted by 〈x〉p.

3.3 A Lower Bound on the Latency of Optimistic Responsiveness

An optimistically responsive synchronous protocol has two commit rules – an optimistic commit rule

and a synchronous commit rule. This section presents a lower bound that captures the relationship

between the latencies of the two commit rules. Essentially, it says that if the optimistic commit

rule is too fast, then the synchronous commit rule has to be correspondingly slower. Specifically,

the sum of the latencies of the two commit rules should be at least 2∆ time.

In a bit more detail, suppose that there exists a protocol with an optimistic commit rule tolerating

max(1, n − 2t) faults with a commit latency of < α time for some 0 < α < ∆ when all messages

arrive instantaneously. The lower bound then proves that if the optimistically responsive protocol

can tolerate t ≥ n/3 Byzantine faults, then its synchronous commit rule cannot have a latency

< 2∆ − α. The converse is also true: if there exists a protocol tolerating t ≥ n/3 faults and

committing with a latency of < 2∆− α, then it cannot commit with < α latency in an optimistic

case that tolerates max(1, n− 2t) faults even when messages arrive instantaneously.

Unsynchronized starts. Often, in protocols involving multiple parties, not all parties start the

protocol at the same time due to network delays. We refer to this model as the unsynchronized-

18

start model. Such a model captures state machine replication protocols where replicas move to the

next view/slot at different times.

To formalize this model, we assume that honest parties start the protocol execution at different

times decided by an adversary such that the following conditions hold: (i) each honest party starts

the protocol at time < ∆ and (ii) an honest party starts the protocol before receiving a message

from any other party. Byzantine parties, on the other hand, are assumed to start the protocol

execution at time 0. The parties start the protocol with a fixed state independent of when the

protocol execution started; in particular, they do not have access to the execution start time.

Intuition and proof. The intuition behind the lower bound is to show a split-brain attack that

can be performed by a minority of Byzantine replicas if a protocol has a sum of latencies for the

two commit rules to be less than 2∆. For simplicity, we present the intuition with n = 2t+1. First,

observe that any protocol tolerating minority Byzantine faults cannot use quorum sizes larger than

n− t = t+ 1 in the worst case. Hence, it is always possible that a single honest replica R commits

to a value due to a quorum of messages received from only the Byzantine replicas if it does not wait

long enough before committing. Second, since the optimistic commit rule can tolerate at least one

crash fault, replicas (set P) committing through the optimistic rule may commit without receiving

any messages from replica R. Thus, to avoid a safety violation through a split-brain attack, replicas

in P and R must communicate protocol instance specific messages with each other. Using the fact

the start message from the trusted environment may be delayed by β < ∆, replicas in P may start

the protocol only at β time after which they receive messages instantaneously. Moreover, it takes

∆ time for messages from P to arrive at R. For a specific value of β = ∆ − α, R may commit

a different value if it commits within 2∆ − α time. On the other hand, since P is performing an

optimistic commit, it may not wait for more than α time after receiving its start message (at time

β) before committing. This is not sufficient to receive any message from R. Thus, the sum of the

latencies of the two commit rules should be at least 2∆ time. We now present the formal lower

bound below.

Theorem 4 (Lower bound on the latency of an optimistically responsive synchronous protocol).

For 0 < α < ∆, there does not exist a Byzantine Broadcast protocol in an unsynchronized start

model that can tolerate t ≥ n/3 faults and achieve the following simultaneously when the designated

sender is honest, messages sent by non-faulty parties arrive instantaneously, and all honest parties

start at time 0:

(i) (optimistic commit) all honest parties commit before time α when there are max(1, n−2t) crash

faults, and

19

(ii) (synchronous commit) all honest parties commit before time 2∆−α when there are t crash faults.

Proof. Suppose there exists a protocol that simultaneously achieves both properties above. We will

show a sequence of worlds, and through an indistinguishability argument prove a violation in the

agreement property of such a protocol. Consider parties being split into three groups P , Q, and R

such that |P | ≤ t, |Q| ≤ t, and |R| = max(1, n− 2t). We suppose the designated sender is in Q.

We set β = ∆ − α. Recall that under a synchrony assumption, each message can take anywhere

from 0 to ∆ time to arrive at its destination. We consider four worlds as follows.

World 0.

Setup. Parties in P ∪Q are honest while parties in R have crashed. The honest sender sends input

value b. All parties start at 0.

Message schedule. All messages sent among parties in P ∪Q are delivered instantaneously.

Execution and views of honest players. This execution satisfies (i), so all honest parties commit

before time α. By the validity property of Byzantine Broadcast, all parties in P ∪ Q commit b

before time α.

World 1.

Setup. Parties in P ∪Q are honest while parties in R have crashed. The honest sender sends input

value b. All parties start at β.

Message schedule. All messages sent among parties in P ∪Q are delivered instantaneously.

Execution and views of honest players. In an unsynchronized start model, since the starting states

of parties do not depend on when they start, this execution is indistinguishable to World 0. Hence,

all parties in P ∪Q commit b before time α+ β.

World 2.

Setup. Parties in Q∪R are honest while parties in P have crashed. The honest sender sends input

value b′ 6= b. All parties start at 0.

Message schedule. All the messages sent among parties in Q ∪R are delivered instantaneously.

20

Execution and views of honest players. This execution satisfies (ii), so all honest parties commit

before time β + ∆ = 2∆− α. By the validity property, all parties in Q ∪R commit b′ before time

β + ∆.

World 3.

Setup. Parties in P ∪ R are honest while parties in Q (which includes the designated sender) are

Byzantine. Parties in P start at time β while parties in R start at time 0.

Message schedule. The parties in Q perform a split-brain attack where they behave like in World 2

towards parties in R, and behave like in World 1 towards parties in P . Hence, we will denote each

brain of Q as Q1 and Q2 such that Q1 only communicates with P and Q2 only communicates with

R.

Parties in Q1 send messages to parties in P only after time β. Messages sent between P ∪Q1 are

delivered instantaneously (like in World 1). Messages between Q2∪R are delivered instantaneously

(like in World 2). In addition, all messages sent across R and P are delayed by ∆. Messages

received by a party in Q1 from P are forwarded to its other brain replica in Q2.

Execution and views of honest parties. Since messages from R to P are delayed to the maximum

∆ time and Q1 behaves exactly as in World 1, the views of parties in P are exactly the same as in

World 1 until time ∆. Hence, parties in P commit b before time α+ β = ∆.

Similarly, the view of R until time β+ ∆ is exactly the same as World 2 since P does not send any

message until time β and messages from P to R are delayed by ∆. Q2 receives (via Q1) the same

set of messages from P as Q in World 2 did. So, Q2 behaves towards R just like Q in World 2

did. Hence, parties in R commit b′ before time β + ∆ = 2∆ − α. This leads to a violation of the

agreement property between P and R.

3.4 Optimal Optimistic Responsiveness with 2∆-synchronous La-

tency

We first present a simple synchronous consensus protocol that achieves optimal optimistic respon-

siveness when the optimistic commit does not require a quorum of all replicas. In a synchronous

commit, a replica commits 2∆ time after voting (recall that ∆ is an upper bound on the maximum

network delay) if an equivocating proposal has not been detected. In a responsive commit, a replica

21

can commit immediately, i.e., without waiting for the 2∆ time period, if a sufficient number of

replicas have voted for the block and no equivocation has been detected. For every block, a replica

opportunistically waits to commit using either of the commit rules.

Recall that δ ≤ ∆ is the actual network delay. If a “leader” is honest then no matter what the

adversary does, the system can commit a block in time 2∆ +O(δ). But if there are > 3n/4 honest

replicas along with an honest leader, then the system can commit in time O(δ) (in an optimistically

responsive manner).

Why does our protocol perform better than protocols in the slow-path–fast-path

paradigm? The general strategy employed in the protocols with back-and-forth slow-path–fast-

path paradigm is to start on one of the two paths, say, the slow path. When the optimistic

conditions are met, an explicit switch is performed to move to the fast path. Similarly, when a lack

of progress is detected on the fast path, the protocol makes another switch to the slow path. The

explicit switch between the paths incurs a latency of at least ∆ in all of these protocols.

Under minority Byzantine faults, the adversary can attack the above strategy to worsen the commit

latency compared to a protocol with a single slow path. For example, when the protocol is on the

slow path, the adversary responds promptly and the replicas receive > 3n/4 responses thereby

triggering a switch to fast path. Once on the fast path, the adversary stops responding and

prevents progress. This forces an explicit switch to the slow path again. Under this attack, a single

decision can incur a latency of 4∆ if the replicas are on the fast path and then switch to the slow

path to commit. On the fast path, replicas never commit if the adversary does not respond.

Our protocol avoids this concern by avoiding an explicit switch. Instead, both paths are active

simultaneously. As a result, when the leader is honest, the commit latency is 2δ during optimistic

executions and 2∆ otherwise.

View-based execution. Like PBFT [32], our protocol progresses through a series of numbered

views with each view coordinated by a distinct leader. Views are represented by non-negative

integers with 0 being the first view. The leader of the current view v is determined by (v mod n).

Within each view, also called the steady state, the leader is expected to propose values and keep

making progress by committing client requests at increasing heights. An honest replica participates

in any one view at a time and moves to a higher numbered view when the current view fails to

make progress. If the replicas detect equivocation or lack of progress in a view, they initiate a

view-change by blaming the current leader. When a quorum of replicas have blamed the current

leader, they perform a view-change and replace the faulty leader.

22

Blocks and block format. Client requests are batched into blocks. Each block references its

predecessor with the exception of the genesis block which has no predecessor. We call a block’s

position in the chain as its height. A block Bk at height k has the format, Bk := (bk, H(Bk−1))

where bk denotes a proposed value at height k, Bk−1 is the block at height k − 1 and H(Bk−1) is

the hash digest of Bk−1. The predecessor for the genesis block is ⊥. A block Bk is said to be valid

if (1) its predecessor block is valid, or if k = 1, predecessor is ⊥, and (2) client requests in the block

meet application-level validity conditions and are consistent with its chain of requests in ancestor

blocks.

Block extension and equivocation. A block Bk extends a block Bl (k ≥ l) if Bl is an ancestor

of Bk. Note that a block Bk extends itself. Two blocks Bk and B′k′ proposed in the same view

equivocate one another if they are not equal to and do not extend one another.

Block certificates. A block certificate represents a set of signatures on a block by a quorum

of replicas. Given a ratio 0 ≤ α < 1, a block Bk and a view v we denote by Cαv (Bk) a set of

bαnc + 1 signatures from different replicas on block Bk signed in view v. In this section, we will

use synchronous certificate where α = 1/2, and responsive certificate where α = 3/4. Whenever

the distinction between the two is not important, we will represent the certificates by Cv(Bk) and

ignore the superscript α. In the next section, we will also use full certificates which require all n

replicas to sign.

Chain certificates. We use the notion of chain certificates to compare different chains when

replicas receive many of them. Most earlier protocols (e.g., HotStuff [104] or Sync HotStuff [7])

compared certified chains using just the views and heights. However, in our protocol, there are two

types of certificates, a responsive certificate and a synchronous certificate, and hence, comparing

them is subtle. As we will see, the rank of a chain will be completely determined by the block

with the highest synchronous certificate from the largest view and the block’s ancestors’ highest

responsive certificate in this view. A chain certificate comprises of a pair of certificates C3/4v (Bk)

and C1/2v (B`). Each element in the pair is either a block certificate or ⊥ such that (i) if either of

them are not ⊥, both certificates are from the same view, (ii) if not ⊥’s, the first certificate has

threshold 3/4, the second has threshold 1/2, and (iii) block B` extends block Bk, if C3/4v (Bk) is not

⊥.

Ranking chain certificates. Given two chain certificates CC = (C3/4v (Bk),C
1/2
v (B`)) and CC′ =

(C3/4v′ (Bk′),C
1/2
v′ (B`′)), they are first ranked by views, i.e., CC < CC′ if v < v′. While moving from

view v to any higher view, our protocol ensures that if a certified block Bk is committed in view

23

v, then all honest replicas lock on a chain certificate that extends Bk. Hence, a certificate chain

produced in a higher view will always include Bk. Said another way, a certificate chain CC′ in a

higher view will extend Bk; if it does not, it must be the case that Bk was not committed by any

honest replica in view v. Thus, it is safe to extend CC′.

For chain certificates in the same view v, they are first ranked based on the height of the responsive

certificate, i.e., CC < CC′ if k < k′. In our protocol, we ensure that if there exists a responsive

certificate for a block Bk′ in view v, i.e., C3/4v (Bk′) exists, there cannot exist a responsive certificate

for a conflicting block at any height in view v. Thus, if there is a responsive certificate for Bk

in view v, then Bk′ must extend Bk. Moreover, we also ensure that if C3/4v (Bk) exists, no replica

will have synchronously committed on an equivocating block B` with certificate Cv(B`). Thus,

any equivocating chain with chain certificate CC will not contain committed blocks that are not

extended by CC′.

Finally, if both chain certificates are in the same view v and have a common responsive certificate

in the view (or both do not have a responsive certificate), the chain certificates are ranked by

the heights of synchronous certificates, i.e., CC < CC′ if ` < `′. Our protocol ensures that if Bk is

committed synchronously in view v, then there does not exist an equivocating certified block. Thus,

if equivocating C1/2v (B`) and C1/2v (B`′) exist, both B` and B`′ could not have been committed. To

ease the rule in the case where they do not equivocate and one chain certificate extends the other,

we select higher of the two.

Thus, given two chain certificates CC = (C3/4v (Bk),C
1/2
v (B`)) and CC′ = (C3/4v′ (Bk′),C

1/2
v′ (B`′)), we

say CC < CC′ if:

1. v < v′ (the chain certificates are first ranked by view),

2. v = v′ and k < k′ (secondly by responsive certificates),

3. v = v′ and k = k′ and ` < `′ (finally by sync certificates).

The above comparison uses numerical value −1 to represent a ⊥.

Tip of a chain certificate. The tip of a chain certificate is the highest block in the chain. Given a

CC = (C3/4(Bk), C1/2(B`)), if C1/2(B`) 6= ⊥ then define tip(CC) = B`, otherwise define tip(CC) = Bk.

Updating chain certificates. Each replica stores CC, the highest chain certificate it has ever

received. Any time a new block certificate is received, the replica updates its highest ranked chain

24

certificate using the comparison rule described earlier.

3.4.1 Steady State Protocol

Our protocol executes the following steps in iterations within a view v. Refer Figures 3.1 and 3.2.

Let v be the view number and replica L be the leader of view v. While in view v, a replica r runs the
following protocol:

1. Propose. If replica r is the leader L, upon receiving Cv(Bk−1), it broadcasts
〈propose, Bk, v, Cv(Bk−1)〉L where Bk extends Bk−1.

2. Vote. Upon receiving the first proposal 〈propose, Bk, v, Cv(Bk−1)〉L with a valid view v certificate
for a block at height k−1 (not necessarily from L) where Bk extends Bk−1, if no leader equivocation
is detected, forward the proposal to all replicas, broadcast a vote in the form of 〈vote, Bk, v〉r, set
commit-timerv,k to 2∆, and start counting down.

3. (Non-blocking) Commit rules. Replica r commits block Bk using either of the following rules if
r is still in view v:

(a) Responsive commit. On receiving b3n/4c + 1 votes for Bk, i.e., C3/4v (Bk), commit Bk and all
its ancestors immediately. Abort commit-timerv,k.

(b) Synchronous commit. If commit-timerv,k reaches 0, commit Bk and all its ancestors.

4. (Non-blocking) Blame and quit view.

- Blame if no progress. For p > 0, if fewer than p proposals trigger r’s votes in (2p + 4)∆ time
in view v, broadcast 〈blame, v〉r.

- Quit view on t+1 blame messages. Upon gathering t+1 distinct 〈blame, v〉r messages, broadcast
〈quit-view, v, CC〉 along with t+1 blame messages where CC is the highest ranked chain certificate
known to r. Abort all view v timers, and quit view v.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast
〈quit-view, v, CC〉r along with the equivocating proposals, abort all view v timers, and quit
view v.

Figure 3.1: Steady state protocol for optimal optimistic responsiveness with 2∆-synchronous la-
tency and > 3n/4-sized quorum.

Propose. The leader L of view v proposes a blockBk := (bk, H(Bk−1)) by broadcasting 〈propose, Bk
, v, Cv(Bk−1)〉L. The proposal contains a block at height-k extending a block Bk−1 at height k− 1,

the view number v, and a view-v certificate for Bk−1. The leader makes such a proposal as soon as it

receives a view-v certificate for Bk−1. The first view-v certificate is obtained during the view-change

process as will be described in the next subsection.

Vote. When a replica r receives the first proposal for Bk either from L or through some other

replica, if r hasn’t received a proposal for an equivocating block, i.e., it has not detected a leader

25

Let L and L’ be the leaders of view v and v + 1, respectively. Each replica r runs the following steps.

i) Status. Wait for 2∆ time. Until this time, if a replica receives any chain certificates, the replica
updates its chain certificate CC to the highest possible rank. Set lockv+1 to be the highest ranked
chain certificate at the end of the 2∆ wait. Send 〈status, lockv+1〉r to L′. Enter view v + 1.

ii) New-view. The new leader L′ waits for 2∆ time after entering view v + 1. L′ broadcasts
〈new-view, v + 1, lockv+1〉L′ , where lockv+1 is the highest ranked chain certificate known to L′ af-
ter this wait.

iii) First vote. Upon receiving the first 〈new-view, v + 1, lock′〉L′ , if lockv+1 ≤ lock′, then broadcast
〈new-view, v + 1, lock′〉L′ and 〈vote, tip(lock′), v + 1〉r.

Figure 3.2: View-change protocol for optimal optimistic responsiveness with 2∆-synchronous la-
tency and > 3n/4-sized quorum.

equivocation in view v, it broadcasts a vote for Bk in the form of 〈vote, Bk, v〉r, and forwards the

proposal to all replicas. It also starts a synchronous commit-timerk,v and sets it to 2∆.

Observe that the certificate in the proposal need not be the same as the certificate that replica r

has obtained. Specifically, replica r can vote for a proposal containing a synchronous certificate for

the previous block even if it holds a responsive certificate for the same block, and vice versa.

Commit. The protocol includes two commit rules and the replica commits using the rule that is

triggered first. In a responsive commit, a replica commits block Bk and its ancestors immediately if

the replica receives > 3n/4 votes for Bk in view v. Note that a responsive commit doesn’t depend

on the commit-timer and ∆, and a replica can commit at the actual speed of the network (δ). When

a replica’s commit-timerv,k for Bk expires in view v, the replica synchronously commits Bk and all

its ancestors. When a replica commits Bk, it aborts commit-timers for all its ancestors.

The commit step is non-blocking and it does not affect the critical path of progress. The leader

can make a proposal for the next block as soon as it receives a certificate for the previous block

independent of whether replicas have committed blocks for previous heights.

Note that if an honest replica commits a block Bk in view v using one of the rules, it is not

necessary that all honest replicas commit Bk in view v using the same rule, or commit Bk at

all. Some Byzantine replicas may decide to send votes to only a few honest replicas causing some

honest replicas to commit using a responsive rule whereas some others using a synchronous rule.

A Byzantine leader could send an equivocating block to some honest replicas and prevent them

from committing. The protocol ensures safety despite all inconsistencies introduced by Byzantine

replicas.

26

Blame and quit view. A view-change is triggered when replicas observe lack of progress or

an equivocating proposal from the current leader. If an honest replica learns an equivocation,

it broadcasts 〈blame, v〉r message along with the equivocating proposals and quits view v. The

equivocating proposals serve as a proof of misbehavior and all honest replicas blame the leader to

trigger a view-change. To ensure progress, the leader is expected to propose at least one block every

2∆ time that trigger the replica’s vote. Otherwise, replicas blame the current leader. Replicas quit

view v when they receive t+ 1 blame messages, detect equivocation. On quitting view v, replica r

broadcasts 〈quit-view, v, CC〉r where CC is the highest ranked chain certificate known to r.

We now provide some intuition on why either of these commit rules are safe within a view. We

discuss safety across views in the subsequent section.

Why does a responsive commit ensure safety within a view? Consider an honest replica

r that responsively commits a block Bk at time τ . This is because it received b3n/4c+ 1 votes for

Bk by time τ and it did not observe any equivocation until then. It is easy to see that if there

exists b3n/4c+ 1 votes for Bk, no other equivocating block B′k′ at any height k′ can be committed

responsively due to a simple quorum intersection argument. Under a minority corruption, any two

quorums of size b3n/4c + 1 intersect in t + 1 replicas out of which at least one replica is honest.

This honest replica will not vote for two equivocating blocks.

A synchronous commit of an equivocating block cannot happen due to the following reason. Since

replica r hasn’t received an equivocation until time τ , no replica has voted for an equivocating

proposal until time τ −∆. Hence, their synchronous 2∆ window for committing an equivocating

block ends at time > τ + ∆. A commit for Bk at time τ implies that some honest replica must

have voted and forwarded the corresponding proposal before time τ and this will arrive by time

τ + ∆ at all honest replicas. This will prevent any other replica from committing an equivocating

block. Observe that a responsive commit does not imply that an equivocating block B′k′ will not

be certified; hence, during a view-change, we need to be able to carefully extend the chain that

contains a block that has been committed by some other replica.

Why does a synchronous commit ensure safety within a view? Consider an honest replica

r that votes for a block Bk at time τ and commits at time τ + 2∆ because it did not observe an

equivocation until then. This implies (i) all honest replicas have received Bk by time τ + ∆, and

(ii) no honest replica has voted for an equivocating block by time τ +∆. Due to the rules of voting,

no honest replica will vote for an equivocating block in this view after time τ + ∆ ruling out an

equivocating commit through either of the two rules.

27

3.4.2 View-change Protocol

The view-change protocol is responsible for replacing a possibly faulty leader with a new leader

to maintain liveness. In the process, it needs to maintain safety of any commit that may have

happened in the previous views.

Status. After quitting view v, a replica waits for 2∆ time before entering view v + 1. The 2∆

wait ensures that all honest replicas receive a certificate for a block Bk before entering view v+ 1 if

some honest replica committed Bk in view v. This is critical to maintain the safety of the commit

in view v. The replica updates its chain certificate CC to the highest possible rank and sets lockv+1

to CC. It then sends lockv+1 to the next leader L′ via a 〈status, lockv+1〉r.

New-view. Leader L′ waits 2∆ time after entering view v + 1 to receive a status message from

all honest replicas. Based on these status messages, L′ picks the highest ranked chain certificate

lock′. It creates a new-view message 〈new-view, v + 1, lock′〉L′ and sends it to all honest replicas.

The highest ranked chain certificate across all honest replicas at the end of view v helps an honest

leader to appropriately send a new-view message that will be voted upon by all honest replicas and

maintain the liveness of the protocol.

First vote. Upon receiving a 〈new-view, v + 1, lock′〉L′ message, if the certified chain certificate

lock′ has a rank no lower than r’s locked chain certificate lockv+1, then it forwards the new-view

message to all replicas and broadcasts a vote for it.

Next, we provide some intuition on how the view-change protocol ensures safety across views and

liveness.

Why do replicas lock on chains extending committed blocks before entering the next

view? In this protocol, we use locks to ensure safety. The protocol guarantees that if an honest

replica commits a block (through either rule), then at the end of the view all honest replicas will

lock on a chain certificate that extends the committed block. At the start of the next view, when

the leader sends a lock through the new-view message, by testing whether this lock is higher than

the lock stored locally, an honest replica ensures that only committed blocks are extended.

What ensures that replicas lock on chains extending committed blocks before entering

the next view? Suppose an honest replica r responsively commits a block Bk in view v at time

τ . Notice that no honest replica has entered view v + 1 by time τ + ∆; otherwise, replica r must

28

have received blame certificate by time τ due to the 2∆ wait in the status step. In addition, replica

r sends a quit-view message containing the highest certified chain certificate CC such that tip(CC)
extends Bk when quitting view v. CC reaches all honest replicas by the time an honest replica

enters view v + 1. In the proof, we show there does not exist an equivocating chain certificate CC′

that ranks higher than CC. Thus, all honest replicas lock on CC or higher before entering view v+1.

If replica r synchronously commits Bk in view v at time τ , then replica r voted for Bk at time

τ − 2∆. It did not detect an equivocation or blame certificate by time τ . This implies all honest

replicas will vote for Bk at time τ − ∆ and receive C1/2v (Bk) by time τ . As noted earlier, there

does not exist an equivocating certificate in view v during synchronous commit. Hence, all honest

replicas will lock on CC containing C1/2v (Bk) before entering view v + 1.

How does the protocol ensure liveness? The protocol ensures liveness by allowing a new

honest leader to always propose a block that will be voted for by all honest replicas. All honest

replicas send their locked chain certificate to the next leader L′ at the start of the new view in a

status message. L′ could be lagging and enter v + 1 ∆ time after other replicas. Thus, it waits

2∆ time to collect chain certificates from all honest replicas. If L′ is honest, it extends the highest

ranked chain certificate lock′. This suffices to ensure that all honest replicas vote on its proposal,

in turn, ensuring liveness when the leader is honest. In the new view, as long as the leader keeps

proposing valid blocks, honest replicas will vote and keep committing new blocks.

3.4.3 Safety and Liveness

We say a block Bk is committed directly in view v if an honest replica successfully runs the responsive

commit rule 3(a) or the synchronous commit rule 3(b) on block Bk. Similarly, we say a block Bk is

committed indirectly if it is a result of directly committing a block B` (` > k) that extends Bk but

is not equal to Bk.

We say that a replica is in view v at time τ if the replica executes the Enter view v of Step i) in

Figure 3.2 by time τ and did not execute any Quit view of Step Step 2 in Figure 3.1 for view v at

time τ or earlier.

Claim 5. If a block Bk is committed directly in view v using the responsive commit rule, then a

responsive certificate for an equivocating block B′k′ in view v does not exist.

Proof. If replica r commits Bk due to the responsive commit rule in view v, then r must have

29

received b3n/4c + 1 votes, i.e., C3/4v (Bk), forming a quorum for Bk in view v. A simple quorum

intersection argument shows that a responsive certificate for equivocating block B′k′ cannot exist.

Claim 6. If a block Bk is committed directly in view v using the responsive commit rule, then there

does not exist a chain certificate CC in view v, such that CC > (C3/4v (Bk),⊥) where a block in CC
equivocates Bk.

Proof. By Claim 5, no equivocating block can have a responsive block certificate. So all responsive

block certificates must extend Bk. Since we assume that CC > (C3/4v (Bk),⊥) then it must be that

either CC is of the form (C3/4v (Bk), C
1/2
v (B`)) and by definition B` extends Bk, or CC is of the form

(C3/4v (Bk′), C
1/2
v (B`′)) where Bk′ extends Bk and again by transitivity B`′ must extend Bk.

Claim 7. If a block Bk is committed directly in view v using the synchronous commit rule, then a

block certificate for an equivocating block B′k′ does not exist in view v.

Proof. Suppose replica r directly commits block Bk at time τ using the synchronous commit rule.

So replica r voted and forwarded the proposal for Bk at time τ − 2∆ and its commit-timerv,k

expired without detecting equivocation. By synchrony assumption, all replicas receive the forwarded

proposal for Bk by time τ −∆. Since they do not vote for equivocating blocks, they will not vote

for B′k′ received at time > τ −∆. Moreover, no honest replica must have voted for an equivocating

block at time ≤ τ −∆. Otherwise, replica r would have received the equivocating proposal by time

τ and it wouldn’t have committed. Since no honest replica votes for an equivocating block, B′k′

will not be certified.

Claim 8. If a block Bk is committed directly in view v using the responsive commit rule, then all

honest replicas receive a chain certificate CC such that tip(CC) extends Bk before entering view v+1.

Proof. Suppose replica r directly commits block Bk at time τ using the responsive commit rule.

No honest replica r′ has entered view v + 1 at time ≤ τ + ∆; otherwise replica r′ must have sent a

blame certificate at time ≤ τ −∆ (due to 2∆ wait in the status step) and r must receive the blame

certificate at time ≤ τ and wouldn’t commit.

By Claim 6, there doesn’t exists a conflicting chain certificate CC′ > (C3/4v (Bk),⊥) such that tip(CC′)
does not extend Bk. Thus, the highest ranked chain certificate CC in view v must have tip(CC)
extend Bk. Replica r sends CC when it quits view v after time τ .

30

Let τ ′ be the time in which replica r′ enters view v + 1 (with τ ′ > τ + ∆). Replica r must have

received a blame certificate between time τ and τ ′−∆ and sent a quit-view message containing CC
which arrives at replica r′ at time ≤ τ ′. Hence, all honest replicas receive CC before entering view

v + 1.

Claim 9. If a block Bk is directly committed in view v at time τ using the synchronous commit

rule, then all honest replicas receive Cv(Bk) before entering view v + 1.

Proof. We will prove that if a block Bk is directly committed in view v at time τ using the

synchronous commit rule, then (i) all honest replicas are in view v at time τ − ∆, (ii) all honest

replicas vote for Bk at time ≤ τ − ∆, and (iii) all honest replicas receive Cv(Bk) before entering

view v + 1. Part (iii) is the desired claim.

Suppose honest replica r synchronously commits Bk at time τ in view v. It votes for block Bk at

time τ −2∆. Thus, replica r entered view v at time ≤ τ −2∆. Due to the 2∆ wait before sending a

status message, replica r must have sent a blame certificate or equivocating blocks at time ≤ τ−4∆

which arrives all honest replicas at time ≤ τ − 3∆. Hence, all honest replicas enter view v at time

≤ τ −∆ (again due to 2∆ wait in the status step). Also, observe that no honest replica has quit

view v at time ≤ τ − ∆. Otherwise, replica r hears of blame certificate or equivocation at time

≤ τ . This proves part (i).

Replica r received a proposal for Bk which contains Cv(Bk−1) at time τ − 2∆. Thus, replica r’s

vote and forwarded proposal for Bk arrives all honest replicas by time τ − ∆. No honest replica

has voted for an equivocating block at time ≤ τ −∆; otherwise replica r would have received an

equivocation at time ≤ τ . Thus, all honest replicas will vote for Bk at time ≤ τ −∆. This proves

part (ii).

The votes from all honest replicas will arrive at all honest replicas by time ≤ τ . By part(i) of the

claim and 2∆ wait in the status step, honest replicas do not enter view v + 1 at time ≤ τ + ∆.

Thus, all honest replicas receive Cv(Bk) before entering view v + 1.

Lemma 10. If an honest replica directly commits a block Bk in view v, then: (i) all honest replicas

have lockv+1 such that tip(lockv+1) extends Bk, (ii) for any chain certificate CC′ that the adversary

can create and any honest lock lockv+1, either CC′ < lockv+1 or tip(CC′) extends Bk.

Proof. If Bk is committed using the responsive commit rule, then by Claim 8, all honest replicas

receive CC such that tip(CC) extends Bk before entering view v + 1 and by Claim 6 there doesn’t

31

exist chain certificate CC′ such that CC′ > (Cv(Bk),⊥) and CC′ equivocates Bk. Similarly, If Bk is

committed using the synchronous commit rule, then by Claim 9, all honest replicas receive Cv(Bk)
before entering view v+ 1 and by Claim 7, there doesn’t exists a view v certificate that equivocates

Bk. Since, honest replicas lock on highest ranked chain certificate, tip(lockv+1) must extend Bk. By

similar argument, any CC′ that an adversary creates either has CC′ < lockv+1 or tip(CC′) extends

Bk.

The following lemma considers safety of directly committed blocks across views.

Lemma 11 (Unique Extensibility). If an honest replica directly commits a block Bk in view v, and

Cv′(Bk′) is a view v′ > v block certificate, then Bk′ extends Bk. Moreover, all honest replicas have

lockv′ such that tip(lockv+1) extends Bk.

Proof. The proof is by induction on views v′ > v. For a view v′, we prove that if Cv′(tip(lock′))

exists then it must extend Bk. A simple induction shows that all later block certificates must also

extend tip(lock′), this follows directly from the vote rule in Figure 3.1 step 7.

For the base case, where v′ = v+1, the proof that Cv′(tip(lock′)) extends Bk follows from Lemma 10

because the only way such a block can be certified is some honest votes for it. However, all honest

are locked on a block that extends Bk and a chain certificate with a higher rank for an equivocating

block does not exist. Thus, no honest replica will first vote (Figure 3.2 step iii)) for a block that

does not extend Bk. The second part follows directly from Lemma 10.

Given that the statement is true for all views below v′, the proof that Cv′(tip(lock′)) extends Bk

follows from the induction hypothesis because the only way such a block can be certified is if some

honest votes for it. An honest party with a lock lock will vote only if tip(lockv′) has a valid block

certificate and lock ≥ lockv′ . Due to Lemma 10 and the induction hypothesis on all block certificates

of view v < v′′ < v′ is must be that Cv′(tip(lock)) extends Bk.

Theorem 12 (Safety). Honest replicas do not commit conflicting blocks for any height `.

Proof. Suppose for contradiction that two distinct blocks B` and B′` are committed at height `.

Suppose B` is committed as a result of Bk being directly committed in view v and B′` is committed

as a result of B′k′ being directly committed in view v′. This implies Bk extends B` and B′k′ extends

B′`. Without loss of generality, assume v ≤ v′; if v = v′, further assume k ≤ k′. If v = v′ and

k ≤ k′, by Claim 6 and Claim 7, B′k′ extends Bk. Similarly, if v < v′, by Lemma 11, B′k′ extends

Bk. Thus, B′` = B`.

32

Theorem 13 (Liveness). All honest replicas keep committing new blocks.

Proof. In a view, a leader has to propose at least p blocks that trigger honest replicas votes in

(2p + 4)∆ time. As long as the leader proposes at least p valid blocks, honest replicas will keep

voting and committing proposed blocks. If the Byzantine leader equivocates or proposes less than

p blocks, a view-change will occur. Eventually, there will be an honest leader due to round-robin

leader election.

Next, by Lemma 10, all honest replicas lock on a highest certified chain before entering a new view.

The leader may enter the new view ∆ time later than others; hence need to wait for 2∆ before

proposing. Due to 2∆ wait, the new leader receives the highest locked certified chains from all

honest replicas. If the leader is honest, the leader will extend upon the tip of the highest ranked

certified chain. Honest replicas will vote for the new block since the lock sent by the leader is at

least as large as their lock. Moreover, the honest leader doesn’t equivocate and keeps proposing

at least p blocks. This prevents forming a blame certificate to cause view-change and all honest

replicas will keep committing new blocks.

3.5 Optimal Optimistic Responsiveness with ∆-synchronous La-

tency

Recall that our lower bound in Section 3.3 showed that we cannot have the following two commit

latencies simultaneously: (i) a responsive commit with O(δ) latency where max(1, n−2t) faults are

tolerated in the responsive mode, and (ii) a synchronous commit with < 2∆ latency simultaneously.

The previous section showed a protocol when at least one fault is tolerated in the responsive commit.

In this section, we will present a protocol with a synchronous latency of ∆ + O(δ) when no faults

are tolerated in the responsive commit. For a synchronous commit, an honest replica commits a

block in ∆+O(δ) time after receiving a valid proposal for the block if no equivocating proposals are

received and t+ 1 replicas have voted. A responsive commit completes immediately when a replica

receives acknowledgments for a block from all replicas and no equivocation has been detected. The

protocol has a commit latency of 2δ as long as all replicas are behaving honestly and responding

promptly.

Unlike the protocol in the previous section where a replica immediately votes for a valid proposal,

in this protocol, a replica sends an ack for the proposed block immediately and votes only if it does

not detect any equivocation ∆ time after its ack. Using an ack message to obtain ∆ latency under

33

an honest leader was proposed by Abraham et al. [9]. We augment this idea to use a set of 2t+ 1

signed ack messages to obtain responsiveness simultaneously. The 2t+ 1 signed acks from the same

view for a block Bk is called a full certificate and represented as Cfv (Bk). As before, we call a set of

t+1 signed vote messages for Bk as synchronous certificate and represent it as C1/2v (Bk). Whenever

the distinction is not important, we represent certificates as Cv(Bk). Later in the section, we show

that if there exists a certificate (either full or synchronous) for a block Bk in a view v, there cannot

exist a certificate for an equivocating block in view v. Hence, we define a simple certificate ranking

rule. Certified blocks are first ranked by views and then by height, i.e., (i) blocks certified in a

higher view have a higher rank, and (ii) for blocks certified in the same view, a higher height implies

a higher rank.

3.5.1 Protocol

The steady state protocol runs following steps within a view v.

Propose. The Leader L of view v proposes a block Bk by extending a highest certified block

Cv′(Bk−1) known to L. If the leader has just entered the view, it waits for 2∆ time to receive the

highest certified blocks from all honest replicas in which case v′ < v. Otherwise, the leader proposes

as soon as it learns a certificate for the previous block proposed in the same view.

Ack. The protocol includes an additional ack step before voting. A replica r broadcasts an ack

〈ack, Bk, v〉 for a proposed block Bk if (i) it hasn’t detected any equivocation in view v, and (ii)

Cv′(Bk−1) has rank equal to or higher than its own locked block. Once replica r sends an ack, it

starts a vote-timerv,k initialized to ∆ time and starts counting down. Replica r also broadcasts the

received proposal.

Vote. When vote-timerv,k for block Bk expires, if replica r hasn’t heard of any equivocation in

view v, it broadcasts a vote 〈vote, Bk, v〉.

Commit. Replica r can commit either responsively or synchronously based on which rule is

triggered first. A responsive commit is triggered when r receives 2t + 1 ack messages for Bk, i.e.,

Cfv (Bk) and r commits Bk and all its ancestors immediately. Replica r stops vote-timerv,k and

broadcasts Cfv (Bk) to all honest replicas. Similarly, replica r synchronously commits Bk along

with its all ancestors when it receives t+ 1 vote messages for Bk, i.e., C1/2v (Bk). r also broadcasts

C1/2v (Bk) to all replicas. Like before, both the commit paths are non-blocking and the leader can

34

Let v be the view number and replica L be the leader of the current view. A replica r runs the following
protocol in iterations:

1. Propose. If replica r is the leader L, upon receiving Cv′(Bk−1), it broadcasts
〈propose, Bk, v, Cv′(Bk−1)〉L where Bk extends Bk−1. If it is the first block in this view, i.e., v′ < v,
then it waits for an additional 2∆ time after entering the view before proposing the highest certified
block received from the status step.

2. Ack. Upon receiving the first proposal 〈propose, Bk, v, Cv′(Bk−1)〉L (not necessarily from L) at height
k in view v, if Cv′(Bk−1) is ranked greater than or equal to its locked block, forward the proposal to
all replicas and broadcast an acknowledgment in the form of 〈ack, Bk, v〉. Set vote-timerv,k to ∆ and
start counting down.

3. Vote. If vote-timerv,k reaches 0, send a vote for Bk in the form of 〈vote, Bk, v〉.

4. (Non-blocking) Commit. Replicas can commit block Bk using either of the following rules:

(a) Responsive commit. On receiving 2t+ 1 acks for Bk, i.e., Cfv (Bk) in view v, commit Bk and all
its ancestors immediately. Stop vote-timerv,k and notify the certificate Cfv (Bk).

(b) Synchronous commit. On receiving t+ 1 votes for Bk, i.e., C1/2v (Bk) in view v, commit Bk and

all its ancestors immediately. Notify the certificate C1/2v (Bk) to all replicas.

5. (Non-blocking) Blame and quit view.

- Blame if no progress. For p > 0, if fewer than p proposals trigger r’s votes in (3p + 4)∆ time
in view v, broadcast 〈blame, v〉r.

- Quit view on t+1 blame messages. Upon gathering t+1 distinct 〈blame, v〉r messages, broadcast
them, abort all view v timers, and quit view v.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast the equivo-
cating proposals signed by L, abort all view v timers, and quit view v.

Figure 3.3: Steady state protocol for optimal optimistic responsiveness with ∆-synchronous latency
and n-sized quorum.

keep proposing as soon as it learns a certificate for previous block.

3.5.2 View Change Protocol

Let L and L′ be the leader of view v and v + 1, respectively. Each replica r runs the following steps.

(i) Status. Wait for 2∆ time. Pick the highest certified block Bk′ with certificate Cv′(Bk′). Lock on
Cv′(Bk′), and send Cv′(Bk′) to the new leader L′. Enter view v + 1.

Figure 3.4: View-change protocol for optimal optimistic responsiveness with ∆-synchronous latency
and n-sized quorum.

Blame and quit view step remains identical to the one in Figure 3.2.

35

Status. During this step, a replica r waits for 2∆ time and locks on the highest certified block

Cv′(Bk′) known to r. It forwards Cv′(Bk′) to the next leader and enters next view. As shown

in Lemma 17, the 2∆ wait ensures that all honest replicas lock on the highest-certified block

corresponding to a commit at the end of the view, which, in turn, is essential to maintain the safety

of the protocol. The status message along with the accompanying 2∆ wait in the propose step

ensures liveness, i.e., it ensures that an honest leader proposes a block that extends locks held by

all honest replicas and hence will be voted upon by all honest replicas.

Next, we provide some intuition on why either of these commit rules are safe within a view.

Why does a responsive commit ensure safety within a view? A replica commits a block

Bk responsively only when it receives acks from all replicas which includes all honest replicas. This

implies no honest replicas will either ack or vote for an equivocating block B′k′ at any height k′.

Hence, an equivocating block B′k′ will neither receive 2t + 1 acks nor t + 1 votes required for a

commit.

Why does a synchronous commit ensure safety within a view? An honest replica r

synchronously commits a block Bk at time t when it receives t + 1 votes for Bk and hears no

equivocation by time τ . This implies no honest replica has voted for an equivocating block B′k′

by time τ − ∆. At least one honest replica r′ sent an ack for Bk by time τ − ∆. r′s ack arrives

all honest replicas by time τ . Hence, honest replicas will neither ack nor vote for an equivocating

block B′k′ after time τ . This also prevents honest replicas from committing an equivocating block

after time τ .

3.5.3 Safety and Liveness

We say a block Bk is committed directly in view v if any of the two commit rules are triggered for

Bk. Similarly, a block Bk is committed indirectly if it is a result of directly committing a block B`

(` > k) that extends Bk but is not equal to Bk.

Claim 14. If an honest replica directly commits a block Bk in view v using the responsive commit

rule, then there does not exist a certificate for an equivocating block in view v.

Proof. If replica r commits Bk in view v using responsive commit rule, r must have received 2f + 1

acks, i.e., Cfv (Bk). This implies all honest replicas have sent ack for Bk and no honest replica would

send ack or vote for an equivocating block B′k′ in view v. Since, a certificate for B′k′ requires either

36

2t+ 1 acks for full certificate or at least one vote from an honest replica for synchronous certificate,

a certificate for an equivocating block cannot exist.

Claim 15. If an honest replica directly commits a block Bk in view v using the synchronous commit

rule, then there does not exist a certificate for an equivocating block in view v.

Proof. Suppose replica r synchronously commits Bk in view v at time τ without detecting an equiv-

ocation. Observe that an equivocating responsive certificate does not exist since replica r would

not ack two equivocating blocks. Hence, we need to only show that a synchronous equivocating

certificate does not exist. We show it with the following two arguments. First, r votes for Bk at

time ≤ τ and sends an ack for Bk at time ≤ τ − ∆. r’s ack for Bk arrives all honest replicas by

time τ . Hence, no honest replica will vote for an equivocating block B′k′ at time ≥ τ . Second, no

honest replica must have sent an equivocating ack at time ≤ τ − ∆. Otherwise, replica r would

not have committed. This also implies that no honest replica will vote for an equivocating block

at time ≤ τ (due to the ∆ wait between ack and vote).

Lemma 16. If an honest replica directly commits a block Bk in view v then, (i) there doesn’t exist

an equivocating certificate in view v, and (ii) all honest replicas receive Cv(Bk) before entering view

v + 1.

Proof. Part(i) follows immediately from Claim 14 and Claim 15.

Suppose replica r commits Bk at time τ either responsively or synchronously. r notifies the cer-

tificate (Cfv (Bk) or C1/2v (Bk)) which arrives at all honest replicas at time ≤ τ + ∆. Observe that

no honest replica r′ has entered view v + 1 at time ≤ τ + ∆. Otherwise, due to 2∆ wait before

entering the new view, r′ must have sent either equivocating or a blame certificate at time ≤ τ −∆;

r must have received the blame certificate at time ≤ τ . It would have quit view and not committed.

Hence, all honest replicas receive Cv(Bk) before entering view v + 1.

Lemma 17. If an honest replica directly commits a block Bk in view v, then all honest replicas

lock on a certified block that ranks higher than or equal to Cv(Bk) before entering view v + 1.

Proof. By Lemma 16 part (ii), all honest replicas will receive Cv(Bk) before entering view v+1. By

Lemma 16 part (i), no equivocating certificate exists in view v. Since replicas lock on the highest

37

certified block as soon as they enter the next view, all honest replicas lock on a certified block that

ranks higher than or equal to Cv(Bk) before entering view v + 1.

Lemma 18 (Unique Extensibility). If an honest replica directly commits a block Bk in view v,

then any certified block that ranks equal to or higher than Cv(Bk) must extend Bk.

Proof. Any certified block B′k′ in view v of rank equal to or higher than Cv(Bk) must extend Bk.

Otherwise, B′k′ equivocates Bk and by Lemma 16, B′k′ cannot be certified in view v. For views

higher than v, we prove the lemma by contradiction. Let S be the set of certified blocks that rank

higher than Cv(Bk), but do not extend Bk. Suppose for contradiction S 6= ∅. Let Cv∗(B`∗) be a

lowest ranked block in S. Also, note that if B`∗ does not extend Bk, then B`∗−1 does not extend

Bk either.

For Cv∗(B`∗) to exist, some honest replica must vote for B`∗ in view v either upon receiving a

proposal 〈propose, B`∗ , v∗, Cv′(B`∗−1)〉 for v′ < v or 〈propose, B`∗ , v∗, Cv∗(B`∗−1)〉. If it is the former,

then Cv′(B`∗−1) must rank higher than or equal to Cv(Bk). This is because due to Lemma 17 all

honest replicas will have received a certified block that ranks higher than or equal to Cv(Bk) before

entering view v + 1. Moreover, replicas only lock on blocks of monotonically increasing ranks.

However, since v′ < v∗, the rank of Cv′(B`∗−1) is less than Cv∗(B`∗) by our certificate ranking rule.

This contradicts the fact that Cv∗(B`∗) is a lowest ranked block in S. If it is the latter, then observe

that Cv∗(B`∗−1) exists in view v∗. Again, this certificate is ranked higher than Cv(Bk) since v∗ > v.

Also, this certificate is ranked lower than Cv∗(B`∗) due to its height. Hence, this contradicts the

fact that Cv∗(B`∗) is a lowest ranked block in S.

Safety. The safety proof is identical to that of Theorem 12 except Lemma 18 needs to be invoked.

Liveness. The liveness proof is similar to that of Theorem 13.

3.6 Optimistic Responsiveness with Optimistically Responsive View-

Change

The protocols in Section 3.4 and Section 3.5 are optimistically responsive in the steady-state.

However, whenever a leader needs to be replaced, the view-change protocol must always incur a

synchronous wait. This suffices if leaders are replaced occasionally, e.g., when a leader replica

38

crashes. However, in a democracy-favoring approach it may be beneficial to replace leaders after

every block, or every few blocks. In such a scenario, the synchronous wait during view-change

will increase the latency of the protocol. For example, the protocol in Section 3.4 waits at least

4∆ time during view-change to ensure that the new leader collects status from all honest replicas.

Thus, in an execution where leaders are changed after every block, even when the leader is honest,

this protocol requires at least 4∆ + O(δ) for one block to be committed even during optimistic

executions, and requires at least 6∆ when < 3n/4 replicas are honest.

In this section, we present a protocol that is optimistically responsive in both the steady state as

well as view-change. In a world with rotating honest leaders, when > 3n/4 replicas are honest, this

protocol can commit blocks in O(δ) time and replace leaders in O(δ) time. When more than n/4

replicas are malicious with rotating honest leaders, the protocol still commits in 5∆ +O(δ) time.

3.6.1 Steady State Protocol

We make following modifications to the steady state protocol in Section 3.4 to support a respon-

sive view-change. In a synchronous commit, a replica commits within 3∆ time after voting if no

equivocation or blame certificate has been received. The additional ∆ wait in the synchronous

commit accounts for the responsive view-change that may occur before all honest replicas receive

a certificate for committed blocks. The propose and vote steps remain identical. However, after

voting for Bk, the commit-timerv,k is set to 3∆ time.

Pre-commit. The protocol includes an additional pre-commit step with two pre-commit rules

active simultaneously. The pre-commit is identical to the commit step in the previous protocol.

A replica pre-commits using the rule that is triggered first. In a responsive pre-commit, a replica

r pre-commits a block Bk immediately when it receives b3n/4c + 1 votes for Bk, i.e., C3/4v (Bk) in

view v and broadcasts commit message via 〈commit, Bk, v〉r.

In a synchronous pre-commit, a replica pre-commits Bk when its commit-timerv,k reaches ∆ and

broadcasts 〈commit, Bk, v〉r.

Commit. In a responsive commit, a replica commits a block Bk immediately along with its

ancestors when it receives b3n/4c + 1 commit messages for Bk. In a synchronous commit, a

replica commits Bk and all its ancestors when its commit-timerv,k expires and it doesn’t detect

an equivocation or blame certificate. As before, the commit rules are non-blocking to rest of the

execution.

39

Let v be the view number and replica L be the leader of the current view. While in view v, a replica r
runs the following steps in iterations:

1. Propose. If replica r is the leader L, upon receiving Cv(Bk−1), it broadcasts
〈propose, Bk, v, Cv(Bk−1)〉L where Bk extends Bk−1.

2. Vote. Upon receiving the first proposal 〈propose, Bk, v, Cv(Bk−1)〉L with a valid view v certificate
for Bk−1 (not necessarily from L) where Bk extends Bk−1, forward the proposal to all replicas,
broadcast a vote in the form of 〈vote, Bk, v〉r. Set commit-timerv,k to 3∆ and start counting down.

3. Pre-commit. Replica r pre-commits Bk using one of the following rules if r is still in view v:

(a) Responsive Pre-commit. On receiving b3n/4c + 1 votes for Bk, i.e., C3/4v (Bk) in view v, pre-
commit Bk and broadcast 〈commit, Bk, v〉r.

(b) Synchronous Pre-commit. If commit-timerv,k reaches ∆, pre-commit Bk and broadcast
〈commit, Bk, v〉r to all replicas.

4. (Non-blocking) Commit. If replica r is still in view v, r commits Bk using the following rules:

(a) Responsive Commit. On receiving b3n/4c + 1 commit messages for Bk in view v, commit Bk

and all its ancestors. Stop commit-timerv,k.

(b) Synchronous Commit. If commit-timerv,k reaches 0, commit Bk and all its ancestors.

5. Yield. Upon committing at least a block in view v, Leader L broadcasts 〈yield, v〉L when it wants
to renounce leadership.

6. (Non-blocking) Blame and quit view.

- Blame if no progress. For p > 0, if fewer than p proposals trigger r’s votes in (2p + 4)∆ time
in view v, broadcast 〈blame, v〉r.

- Quit view on t + 1 blame messages. Upon gathering t + 1 distinct blame messages, broadcast
〈quit-view, v, CC〉 along with t+ 1 blame messages where CC is the highest ranked chain certifi-
cate known to r. Abort all view v timers, and quit view v. Set view-timerv+1 to 2∆ and start
counting down.

- Quit view on detecting equivocation. If leader equivocation is detected, broadcast
〈quit-view, v, CC〉r along with the equivocating proposals, abort all view v timers, and quit
view v. Set view-timerv+1 to 2∆ and start counting down.

- Quit view on yield. Upon receiving yield, broadcast 〈quit-view, v, CC〉r message along with yield
message, abort all view v timers, and quit view v. Set view-timerv+1 to 2∆ and start counting
down.

Figure 3.5: Steady state protocol for optimistically responsive view-change.

40

Yield. When leader L wants to relinquish his leadership in view v, L broadcasts 〈yield, v〉L. The

yield message forces an explicit view-change and useful for democracy-favoring leader policy and

change leader after every block. Ideally, an honest leader issues yield after committing at least one

block itself in view v.

Blame and quit view. The conditions for blaming the leader remains identical to earlier protocols.

We make modifications in how a replica quits a view. Replicas quit view v when they receive t+ 1

blame messages, detect equivocation or receive a yield message from the current leader. On quitting

view v, replica r broadcasts 〈quit-view, v, CC〉r where CC is the highest ranked chain certificate

known to r. Replica r also broadcasts messages that triggered quitting view v, for example, a

blame certificate or yield message. After quitting view v, replica r sets view-timerv+1 to 2∆ and

starts counting down.

The requirements for a pre-commit in this protocol is identical to the requirements for a commit

in the protocol in Section 3.4. Hence, a similar intuition for those steps apply here as well.

3.6.2 View-change Protocol

Let L and L′ be the leader of view v and v + 1, respectively.

i) Status. Replica r can enter view v + 1 using one of the following rules:

a) Responsive. Upon gathering b3n/4c+1 distinct quit-view messages, broadcast them. Update its
chain certificate CC to the highest possible rank. Set lockv+1 to CC and send 〈status, lockv+1〉r
to L′. Enter view v + 1 immediately. Stop view-timerv+1.

b) Synchronous. When view-timerv+1 expires, update its chain certificate CC to the highest possible
rank. Set lockv+1 to CC and send 〈status, lockv+1〉r to L′. Enter view v + 1.

ii) New View. Upon receiving a set S of t+1 distinct status messages after entering view v+1, broadcast
〈new-view-resp, v + 1, lockv+1〉L′ along with S where lockv+1 is highest ranked chain certificate in S.

iii) First Vote. Upon receiving the first 〈new-view-resp, v+1, lock′〉L′ along with S, if lock′ has a highest
rank in S, update lockv+1 to lock′, broadcast 〈new-view-resp, v+1, lock′〉L′ , and 〈vote, tip(lock′), v+1〉r.

Figure 3.6: The optimistically responsive view-change protocol

Unlike a synchronous view-change as shown in Figure 3.2 that waits 2∆ before entering a new

view, a responsive view-change allows replicas to quit current view and immediately transition to

the next view without any delay. In the new view, a leader can also propose blocks without waiting

for an additional 2∆ time. We make the following modifications to the view-change protocol to

accommodate the responsive view-change.

41

Status. The status step includes two rules for entering into the new view. A replica r enters into

view v + 1 based on which rule is triggered first. A responsive rule is triggered when replica r

receives responsive quit-view certificate Q
3/4
B of b3n/4c+ 1 quit-view messages in view v and enters

view v + 1 immediately. Replica r broadcasts Q
3/4
B to all replicas, updates its lock, lockv+1 to a

highest ranked chain certificate and sends lockv+1 to the new leader L′ via a status message. The

responsive status rule ensures that a replica receives a responsively committed blocks when making

immediate transition to a higher view. This is critical to maintain the safety of protocol (explained

later). Due to the synchrony assumption, all other honest replicas receive Q
3/4
B within ∆ time and

transition immediately to view v + 1.

The synchronous status rule is triggered when view-timerv+1 expires. Note that the view-timerv was

set to 2∆. The 2∆ wait ensures that all honest replicas receive a highest ranked chain certificate

CC in the quit-view message before entering view v + 1. Replica r enters view v + 1, and updates

its lock, lockv+1 to a highest ranked chain certificate and sends lockv+1 to the new leader L′ via

〈status, lockv+1〉r.

New-View. Upon entering view v+1, the leader waits for a set S of t+1 status messages. We call

the set S of t + 1 status messages as status certificate. Based on the status certificate S, L′ picks

the highest ranked chain certificate lockv+1 and broadcasts new-view message 〈new-view-resp, v +

1, lockv+1〉L′ along with S. Sending S along with new-view message justifies that tip(lockv+1)

extends committed blocks in previous view.

First-Vote. Upon receiving a 〈new-view-resp, v + 1, lock′〉L′ message along with status certificate

S, if chain certificate lock′ has the highest rank in S, then it forwards the new-view message to all

replicas and broadcasts a vote for it. Note that replica r may have lockv+1 with rank higher than

lock′. A replica votes for lock′ as long as lock′ is vouched by S. This is critical to ensure safety

across views.

Next, we provide some intuition on how the view-change protocol provides liveness and safety across

views.

How is the safety of a responsive commit maintained across views? Suppose an honest

replica r responsively commits a block Bk at time t. A responsive commit for a block Bk requires a

set Q
3/4
C of b3n/4c+1 commit messages. A responsive view-change requires a set Q

3/4
B of b3n/4c+1

quit-view messages. Due to a quorum intersection argument, Q
3/4
C and Q

3/4
B intersect in at least one

honest replica h which sends chain certificate CC such that tip(CC) extends Cv(Bk). Observe that

42

this also explains why highest ranked chain certificate is sent with a quit-view message. The highest

chain certificate CC such that tip(CC) extends Cv(Bk) from the honest replica h at the intersection

allows another replica r′ performing a responsive view change to learn about the commit of Bk.

A synchronous view-change waits 2∆ time before moving to a higher view. If an honest replica

h ∈ Q3/4
C pre-commits responsively, the chain certificate CC sent by replica h in quit-view message

reaches replica r′ by the time the replica r′ enters view v + 1. Similarly, if replica h ∈ Q3/4
C pre-

commits synchronously, honest replicas making a synchronous view-change receive Cv(Bk) by the

time replica h pre-commits. Thus, all honest replicas lock on chain certificate CC such that tip(CC)
extends Cv(Bk).

How is the safety of a synchronous commit maintained across views? Consider replica

r votes for Bk at time τ − 3∆ and synchronously commits at time τ . Note that no honest replica

has entered a higher view by time τ −∆. This implies all honest replicas receive Cv(Bk) by time

τ −∆. Any view-change after τ −∆ will receive Cv(Bk) or higher and honest replicas will lock on

chain certificate CC such that tip(CC) extends Cv(Bk) before entering a higher view.

Why is it safe to vote for a valid new-view message with a lower ranked lock? The

commit rules in the protocol ensure that there does not exist an equivocating chain certificate CC ′

such that tip(CC ′) does not extend committed blocks. This implies honest replicas lock on chain

certificates that extend the committed blocks. After entering a higher view, honest replicas send

their locked chain certificates via a status message. The new leader collects a status certificate S
of t + 1 status messages, extends on the highest ranked certified block in S. Note that an honest

replica sends a status message only after entering a higher view and has locked on a chain certificate

that extends committed blocks in the previous view. As S contains status from at least one honest

replica, the highest ranked chain certificate lock′ in S will extend committed blocks in the previous

view. Thus, it is safe for replicas to unlock a lock with a rank higher than lock′.

In the new view, due to the status certificate, all honest replicas will vote for the new-view message

sent by an honest leader. Subsequently, in the steady state, honest replicas will keep committing

new blocks.

3.6.3 Safety and Liveness

Claim 19. If a block Bk is committed directly in view v using the responsive commit rule, then

there does not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC) extends Bk

43

and a block in CC′ equivocates Bk.

Proof. If a replica r responsively commits a block Bk in view v, then r must have received b3n/4c+1

distinct commit messages out of which at least a set R of b(n− t)/2 + 1c are from honest replicas.

An honest replica (say, r′ ∈ R) sends commit message only if it pre-commits and has not sent a

blame message.

Replica r′ can pre-commit in two ways. First, r′ received b3n/4c + 1 votes for Bk in view v and

pre-committed responsively. This case is identical to responsive commit rule for the protocol in

Section 3.4. By Claim 6, an equivocating chain certificate CC′ of rank higher than (C3/4v (Bk),⊥)

cannot exist in view v. Second, replica r′ voted for Bk at time τ −2∆ and received no equivocation

or blame certificate by time τ and synchronously pre-commits at time τ . This case is identical to

synchronous commit rule for the protocol in Section 3.4. By Claim 7, there does not exist a block

certificate for an equivocating block in view v. Thus, chain certificate CC′ with an equivocating

block such that CC′ > CC cannot exist in view v.

Claim 20. If a block Bk is directly committed in view v, using the synchronous commit rule then

there does not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC) extends Bk

and a block in CC′ equivocates Bk.

Proof. Replica r synchronously commits a block Bk when its commit-timerv,k expires. Replica r

could pre-commit in two ways. First, replica r pre-commits responsively. The responsive pre-

commit rule is identical to the responsive commit rule for the protocol in Section 3.4. By Claim 6,

an equivocating chain certificate CC′ of rank higher than (C3/4v (Bk),⊥) cannot exist in view v.

Second, replica r synchronously pre-commits at time τ , i.e., it voted for Bk at time τ − 2∆ and

received no equivocation or blame certificate by time τ . This case is identical to synchronous

commit rule for the protocol in Section 3.4. By Claim 7, there does not exist a block certificate

for an equivocating block in view v. Thus, chain certificate CC′ with an equivocating block cannot

exist in view v.

Lemma 21. If a block Bk is directly committed in view v, then there does not exist a chain certificate

CC′ in view v such that CC′ > CC where tip(CC) extends Bk and a block in CC′ equivocates Bk.

Proof. Straightforward from Claim 19 and Claim 20.

44

Claim 22. Let Bk be a block proposed in view v using Step 1 in Figure 3.5. If an honest replica

votes for Bk at time τ in view v and detects no equivocation or blame certificate at time ≤ τ + 2∆,

then (i) all honest replicas are in view v at time τ + ∆, (ii) all honest replicas vote for Bk at time

≤ τ + ∆.

Proof. Suppose an honest replica r votes for Bk at time τ in view v and detects no equivocation

or blame certificate by time τ + 2∆. This implies two facts. First, replica r entered view v at time

≤ τ . If r entered view v responsively, i.e., by receiving a responsive quit-view certificate, Q
3/4
B of

b3n/4c+1 quit-view messages, it must have sent Q
3/4
B at time ≤ τ . All honest replicas receive Q

3/4
B

and enter view v at time ≤ τ + ∆. If r quit the previous view due to t+ 1 blame messages, it must

have sent the blame certificate at time ≤ τ − 2∆ which arrives all honest replicas at time ≤ τ −∆.

Due to the 2∆ wait after receiving t+ 1-sized blame certificate, all honest replicas enter view v at

time ≤ τ + ∆. We note that no honest replica has quit view v at time ≤ τ + ∆; otherwise, replica

r receives a blame certificate at time ≤ τ + 2∆. This proves part (i) of the claim.

Replica r received a proposal for Bk which contains Cv(Bk−1) at time τ . Replica r’s vote and

forwarded proposal for Bk arrives at all honest replicas at time ≤ τ + ∆. No honest replica has

voted for an equivocating block or received a blame certificate at time ≤ τ + ∆; otherwise replica

r would have received an equivocation or blame certificate at time ≤ τ + 2∆. Thus, all honest

replicas will vote for Bk at time ≤ τ + ∆. This proves part (ii) of the claim.

Claim 23. Let Bk be a block proposed in view v using Step 1 in Figure 3.5. If an honest replica

votes for Bk at time τ in view v and detects no equivocation or blame certificate at time ≤ τ + 3∆,

then (i) all honest replicas are still in view v at time τ + 2∆ (ii) all honest replicas receive Cv(Bk)
at time ≤ τ + 2∆.

Proof. Suppose an honest replica r votes for a block Bk at time τ in view v and detects no equivo-

cation or blame certificate by time τ + 3∆. Trivially, replica r has not received an equivocation or

blame certificate by time τ + 2∆. By Claim 22 (i), all honest replicas are in view v at time τ + ∆.

No honest replica has quit view v by time τ +2∆; otherwise replica r must receive blame certificate

by time τ + 3∆ contradicting our hypothesis. Thus, all honest replicas are still in view v at time

τ + 2∆. This proves part (i) of the claim.

If replica r receives no equivocation or blame certificate at time ≤ τ + 3∆, it is easy to see that

replica r receives no equivocation or blame certificate by time τ + 2∆. By Claim 22, all honest

replicas vote at time ≤ τ + ∆. By synchrony assumption, all honest replicas receive at least t+ 1

45

votes for Bk i.e., Cv(Bk) at time ≤ τ + 2∆. This proves part (ii) of the claim.

Claim 24. If an honest replica directly commits a block Bk in view v using the responsive commit

rule, then all honest replicas receive a chain certificate CC before entering view v + 1 such that

tip(CC) extends Bk.

Proof. We first discuss the case where some replica performs a view-change due to a responsive quit-

view certificate, and then discuss a view-change due to a synchronous blame certificate. Suppose

an honest replica r receives a set Q
3/4
C of b3n/4c+ 1 commit messages for block Bk in view v and

responsively commits Bk at time τ . Thus, all honest replicas in Q
3/4
C must have received Cv(Bk)

before sending the commit message. By Claim 19, there does not exist a chain certificate CC′ in

view v such that CC′ > CC where tip(CC) extends Bk and a block in CC′ equivocates Bk. Consider

the quorum Q
3/4
B that made some honest replica r′ enter view v + 1. r′ receives a responsive quit-

view certificate of b3n/4c + 1 quit-view messages each of which contains a chain certificate when

the quit-view message was sent. By quorum intersection argument, Q
3/4
C and Q

3/4
B must intersect

in at least one honest replica. Thus, the intersecting honest replica must include a higher ranked

chain certificate CC where tip(CC) extends Bk in quit-view message. This implies any replica that

makes a responsive view-change must receive CC before entering view v + 1.

Consider a view-change due to a synchronous blame certificate. Observe that any honest replica

(say, replica u) that quits view v due to a synchronous blame certificate has not entered view v+ 1

at time τ + ∆; otherwise replica u must have sent a blame certificate at time ≤ τ −∆ (due to the

2∆ wait in the status step) and r must receive the blame certificate at time ≤ τ and r wouldn’t

commit.

Let τ ′ be the time in which replica u enters view v+ 1 (with τ ′ > τ + ∆). If some honest replica r′

in Q
3/4
C pre-committed responsively, r′ must have received a blame certificate between time τ and

τ ′−∆ and sent a quit-view message containing CC and replica u receives CC at time ≤ τ ′. Similarly,

if replica r′ synchronously pre-commits Bk by time τ , it votes for Bk by time τ − 2∆ and detects

no equivocation or blame certificate by time τ . By Claim 22 (ii), all honest replicas vote for Bk by

time τ−∆. Hence, replica u receives Cv(Bk) by time τ before entering view v+1. This implies any

replica that makes a synchronous view-change has CC before entering view v + 1 such that tip(CC)
extends Bk.

Claim 25. If an honest replica directly commits a block Bk in view v using the synchronous commit

rule, then all honest replicas receive a chain certificate CC before entering view v+1 such that tip(CC)
extends Bk.

46

Proof. Suppose an honest replica r synchronously commits a block Bk at time τ in view v. Its

commit-timerv,k for Bk expires at time τ without detecting an equivocation or blame certificate.

Replica r waits for 3∆ before its commit-timerv,k expires. Replica r votes for Bk in view v at time

τ −3∆ and detects no equivocation or blame certificate by time τ . By Claim 23, all honest replicas

are in view v at time τ −∆ and receive Cv(Bk) by time τ −∆. Thus, all honest replicas receive

Cv(Bk) before entering view v + 1. This implies all honest replicas have a chain certificate CC such

that tip(CC) extends Bk.

Lemma 26. If an honest replica directly commits a block Bk in view v, then all honest replicas

have lockv+1 before entering view v + 1 such that tip(lockv+1) extends Bk.

Proof. By Claim 24 and Claim 25, all honest replicas receive a certificate chain CC such that tip(CC)
extends Bk. By Lemma 21, there does not exists an equivocating chain certificate CC′ in view v

such that CC′ > CC. Since, honest replicas lock on highest ranked chain certificate, all honest

replicas update lockv+1 to CC with tip(lockv+1) extending Bk.

Claim 27. If an honest replica directly commits a block Bk in view v, the tip of a highest ranked

chain certificate CC in a view v status certificate, i.e., tip(CC) must extend Bk.

Proof. Suppose an honest replica r commits a block Bk in view v. By Lemma 26, all honest replicas

lock on CC before entering view v+ 1 such that tip(CC) extends Bk. An honest replica sends status

message containing their CC only after entering view v+1. A view v status certificate contains a set

S of t+ 1 status messages which includes the status message from at least one honest replica. By

Lemma 21, there does not exist a chain certificate CC′ in view v such that CC′ > CC where tip(CC)
extends Bk and a block in CC′ equivocates Bk. Thus, the tip of highest ranked chain certificate CC
in S, i.e., tip(CC) must extend Bk.

Corollary 28. If the tip of highest ranked chain certificate CC in a view v status certificate, i.e.,

tip(CC) does not extend a block Bk, then Bk has not been committed in view v.

Lemma 29 (Unique Extensibility). If an honest replica directly commits a block Bk in view v, and

Cv′(Bk′) is a view v′ > v block certificate, then Bk′ extends Bk. Moreover, all honest replicas have

lockv′ such that tip(lockv+1) extends Bk.

Proof. The proof is by induction on the view v′ > v. For a view v′, we prove that if Cv′(tip(lock′))

exists then it must extend Bk. A simple induction then shows that all later block certificates must

also extend tip(lock′), this follows directly from the Vote rule in line 2.

47

For the base case, where v′ = v+1, the proof that Cv′(tip(lock′)) extends Bk follows from Lemma 26

because the only way such a block can be certified is if some honest replica votes for it. However,

all honest replicas are locked on a block that extends Bk and a chain certificate with a higher rank

for an equivocating block does not exist. Although, honest replicas unlock on their locked chain

certificates lockv+1 and lock on a highest ranked chain certificate lock′ in a status certificate S, by

Claim 27, tip(lock′) must extend Bk. Thus, no honest replica will first vote (Figure 3.2 step iii))

for a block that does not extend Bk. The second part follows directly from Lemma 26.

Given that the statement is true for all views below v′, the proof that Cv′(tip(lock′)) extends Bk

follows from the induction hypothesis because the only way such a block can be certified is if some

honest votes for it. An honest party with a lock lock will vote only if tip(lockv′) has a valid block

certificate and lock ≥ lockv′ . Due to Lemma 26 and the induction hypothesis on all block certificates

of view v < v′′ < v′ is must be that Cv′(tip(lock)) extends Bk.

Safety. The safety proof remains identical to that of Theorem 12 except Lemma 21 and Lemma 29

needs to be invoked.

Theorem 30 (Liveness). All honest replicas keep committing new blocks.

Proof. In a view, a leader has to propose at least p blocks that trigger honest replica’s votes in

(2p + 4)∆ time. As long as the leader proposes at least p valid blocks, honest replicas will keep

voting for the blocks and keep committing the proposed blocks. If the Byzantine leader equivocates

or proposes less than p blocks, a view-change will occur. Eventually, there will be an honest leader

due to round-robin leader election.

Next, we show that once the leader is honest, a view-change will not occur and all honest replicas

keep committing new blocks. If a block Bk has been committed in a previous view, by Lemma 26,

all honest replicas lock on a chain certificate lockv+1 such that tip(CC) extends Bk before entering

a new view. After entering a new view, honest replicas send their locked CC to the new leader in

status message. The new leader extends on the tip of a highest ranked chain certificate (say, lock′)

in a status certificate S. Even if some honest replicas are locked on chain certificates (say, CC”)

that rank higher than lock′, by Corollary 28 it is safe to unlock on CC”. Hence, honest replicas

will vote for blocks that extend tip(lock′). After that, the honest leader can propose at least one

block in 2∆ time and keep making progress. Moreover, the honest leader doesn’t equivocate. This

ensures all honest replicas keep committing new blocks.

48

3.7 Evaluation

In this section, we evaluate the performance of the protocol with optimal optimistic responsiveness

with 2∆ synchronous latency and > 3n/4 sized quorum (Section 3.4). Here after, we call the pro-

tocol OptSync for brevity. We first evaluate the throughput and latency of OptSync under varying

batch sizes and payload. We then compare OptSync with Sync HotStuff [7] and HotStuff [104] at

optimal batch size under different payloads and system size.

3.7.1 Implementation Details and Methodology

Our implementation is an adaption of the open-source implementation of Sync HotStuff. We modify

the core consensus logic to replace the core Sync HotStuff code with OptSync.

In our implementation, each block consists of a batch of client commands. Each command contains

a unique command identifier and an associated payload. The number of commands in a block

determines its batch size. The throughput and latency results were measured from the perspective

of external clients that run on separate machines from that of the replicas. The clients broadcast

a configurable outstanding number of commands to every replica. Clients issue more commands

when the issued commands have been committed. In all of our experiments, we ensure that the

performance of replicas are not limited by lack of client commands.

Experimental Setup. All our replicas and clients were installed on Amazon EC2 c5.4xlarge

instances. Each instance has 16 vCPUs supported by Intel Xeon Platinum 8000 processors with

maximum network bandwidth of upto 10Gbps. The network latency between two machines is

measured to be less than 1ms. We used secp256k1 for digital signatures in votes and quorum

certificate consists of an array of secp256k1 signatures.

Baselines. We make comparisons with two state-of-the-art protocols: (i) HotStuff, a partially

synchronous protocol, and (ii) Sync HotStuff, a synchronous protocol. OptSync shares the same

codebase with HotStuff and Sync HotStuff, and thus enables a fair comparison between the pro-

tocols. Although, HotStuff has a revolving leader policy, for fair comparison we chose to compare

with HotStuff under stable leader policy as both OptSync and Sync HotStuff have a stable leader in

the steady state. In all of the experiments, the curves represented by OptSync show the protocol’s

performance when the optimistic conditions are met. When the optimistic conditions are not met,

our protocol behaves identically to Sync HotStuff (without responsiveness) and the curves marked

49

as Sync HotStuff describe the protocol’s performance.

40 90 140 190 240 290

Throughput (Kops/sec)

1

3

5

7

L
a
te

n
cy

(m
s)

OptSync-b100
OptSync-b400
OptSync-b800

(a) Varying batch sizes.

130 180 230 280

Throughput (Kops/sec)

1

3

5

7

9

L
a
te

n
cy

(m
s)

OptSync-p0
OptSync-p128
OptSync-p1024

(b) Varying payload.

Figure 3.7: Throughput vs. latency at varying batch sizes and payload at ∆ = 50ms and t = 1.

3.7.2 Basic Performance

We first evaluate the basic performance of OptSync when the tolerating t = 1 fault with a syn-

chronous delay ∆ = 50ms. We measure the observed throughput (i.e., number of committed com-

mands per second) and the end-to-end latency for clients. In our first experiment (Figure 3.7a),

each command has a zero-byte payload and we vary batch size at different values, 100, 400, and

800 as represented by the three lines in the graph. Each point in the graph represents the measured

throughput and latency for a run with a given load sent by clients. Basically, clients maintain an

outstanding number of commands at any moment and issue more commands immediately when

previous commands have been committed. We vary the size of outstanding commands to simu-

late different loads. As seen in the graph, the throughput increases with increasing load without

increasing latency upto a certain point before reaching saturation. After saturation, the latency

increases while the throughput either remains consistent or slightly degrades. We observe that the

throughput is maximum at around 280 Kops/sec when the batch size is 400 with a good latency

of around 3ms. We set the batch size to be 400 for our following experiments.

In our second experiment (Figure 3.7b), we vary the command request/response payload at different

values in bytes 0/0, 128/128 and 1024/1024 with a fixed batch size of 400. Not surprisingly, as the

payload size increases, each command requires a higher bandwidth and the throughput, measured

in number of commands, decreases. We also observe a marginal drop in latency with increasing

payload.

50

1 4 8 16

Faulty Replicas (f)

0

50

100

150

200

250

300
T

h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Sync-HS-p0
HotStuff-p0
OptSync-p0

(a) f vs. throughput.

1 4 8 16

Faulty Replicas (f)

0

30

60

90

120

L
a
te

n
cy

(m
s)

Sync-HS-p0
HotStuff-p0
OptSync-p0

(b) f vs. latency.

Figure 3.8: Performance as function of faults at ∆ = 50ms, optimal batch size, and 0/0 payload.

1 4 8 16

Faulty Replicas (f)

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

Sync-HS-p1024
HotStuff-p1024
OptSync-p1024

(a) t vs throughput.

1 4 8 16

Faulty Replicas (f)

0

40

80

120

160

200

240

L
a
te

n
cy

(m
s)

Sync-HS-p1024
HotStuff-p1024
OptSync-p1024

(b) t vs latency.

Figure 3.9: Performance as function of faults at ∆ = 50ms, optimal batch size, and 1024/1024
payload.

3.7.3 Scalability and Comparison with Prior Work

Next, we study how OptSync scales as the number of replicas increase. We also compare with Hot-

Stuff and Sync HotStuff. First, we study how the protocols perform with zero-payload commands

to understand the raw overhead incurred by the underlying consensus mechanism at different val-

ues of t (Figure 3.8). Then, we study how the protocols perform at a higher payload of 1024/1024

(Figure 3.9). We use a batch size of 400 and a synchronous delay ∆ of 50ms for both these ex-

periments. Each data point in the graphs represent the throughput and latency at the saturation

point without overloading the replicas. We note that we are using 2t+ 1 replicas for OptSync and

Sync HotStuff, and 3t+ 1 replicas for HotStuff.

Comparison with HotStuff. The throughput of OptSync is slightly less than HotStuff for smaller

system sizes (Figures 3.8a, 3.9a). But at higher faults, OptSync performs better than HotStuff for

all payloads. This is because in both cases the system is bottlenecked by a leader communicating

with all other replicas and since OptSync requires fewer replicas to tolerate t faults, its performance

scales better than HotStuff.

In terms of latency (Figures 3.8b, 3.9b), OptSync performs much better than HotStuff. OptSync

51

commits in a single round of votes wherease HotStuff requires 3 rounds.

Comparison with Sync HotStuff. OptSync is identical to Sync HotStuff except for the re-

sponsive commit-path. The throughput of OptSync is consistently better than Sync HotStuff

(Figures 3.8a, 3.9a). This is because Sync HotStuff, due to the synchronous wait time, needs to

maintain a higher load of blocks at any time. In terms of latency, since the optimistic commit in

OptSync does not incur O(∆) delays, it’s latency is far superior. We note that Sync HotStuff [7]

work does describe an optimistically responsive protocol (that was not implemented). However,

since they explicitly need to know whether optimistic conditions are met, they will always incur at

least a 2∆ delay to switch paths, and hence will have a worse latency.

0 10 20 30 40 50 60 70

Time (s)

0

50

100

150

200

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Time (s)

0

50

100
L

a
te

n
cy

(m
s)

Figure 3.10: Throughput and latency vs time with two commit rules triggered intermittently at
∆ = 50ms and t = 1.

Performance under changing conditions. We further evaluate the performance of OptSync

when the optimistic conditions are triggered intermittently and replicas commit using different

commit rules. To simulate adversarial behavior where some replicas intermittently do not vote, we

have t replicas who only intermittently vote and switch their behavior every 5s. The other t + 1

replicas always vote for all the proposed blocks. Figure 3.10 shows the throughput and latency

for the commands across execution time. For latency, each point refers to the average latency

for commands that were committed in the past 50ms. The commit latency switches between

3ms when optimistic conditions are met and 104ms when optimistic conditions are not met. The

throughput remains consistent at around 200Kops/sec irrespective of the commit rules triggered.

In comparison, protocols such as Sync HotStuff that follow the fast-path–slow-path paradigm will

require an explicit view-change if sufficient replicas do not vote in the fast path, and hence require

a view-change to commit.

52

3.8 Related Work

There has been a long line of work on Byzantine agreement starting at the Byzantine Generals

Problem [77]. Dolev and Strong [43] presented a deterministic solution to the Byzantine Broadcast

problem in the synchronous model tolerating t < n − 1 faults with a t + 1 round complexity.

Several other works [4, 17, 50, 55, 71, 94, 65] have been proposed to improve the round complexity.

We review the most recent and closely related works below. In particular, we make comparisons

with synchronous BFT protocols with the notion of optimistic and synchronous commit paths.

Compared to all of these protocols, our responsive commit incurs an optimal latency of 2δ and

synchronous commit incurs a latency of 2∆ time while tolerating the same number of faults.

Thunderella. The idea of optimistic responsiveness in a back-and-forth slow-path–fast-path paradigm

was first introduced in Thunderella [90]. They commit a decision in a single round under optimistic

executions. Their path switching time and the synchronous latency is O(κ∆) or O(n∆), where κ

is a security parameter.

Sync HotStuff. Like Thunderella, Sync HotStuff [7] is presented in a back-and-forth slow-path–

fast-path paradigm. If started in the wrong path, their responsive commit will incur a latency of

2∆ +O(δ) time and synchronous commit incurs 4∆ +O(δ) time. Compared to them, our protocol

in Section 3.6 can also perform an optimistically responsive view change, while their view change

always incurs a 2∆ delay.

Comparison with works having simultaneity in commits. Our upper bound results are

not the first results to use simultaneous paths. There are works such as Zyzzyva [74], SBFT [62]

and FaB [80] which have considered the notion of simultaneous paths under partial synchrony.

Similarly, a recent work called PiLi [35] achieves simultaneity under a synchronous assumption.

Ours is the first work that achieves simultaneity under a synchrony assumption while obtaining

optimal latency.

PiLi. PiLi [35] presents a BFT SMR protocol that progresses through a series of epochs. The pro-

tocol assumes lock-step execution in epochs. Each epoch lasts for O(δ) (resp. 5∆) under optimistic

(resp. synchronous) conditions or O(δ). The protocol commits 5 blocks after 13 consecutive epochs.

PiLi has a responsive (resp. synchronous) latency of at least 16δ-26δ (resp. 40∆-65∆).

Hybrid-BFT. Hybrid-BFT [83] is an independent and concurrent work. They propose an optimisti-

cally responsive protocol with both responsive and synchronous commit paths existing simultane-

53

ously. However, after a responsive commit, their protocol waits for 7∆ time before starting the next

block. From the perspective of a client, if a command is sent to replicas just after processing some

command, the replicas will not process them for 7∆ time; though after that, it will immediately

commit within O(δ) time. In comparison, our protocols will commit within O(δ) time without

waiting for a synchronous delay. Their synchronous commits also incur a similar 7∆ delay after

starting a block. They also introduce a responsive view-change; however, a synchronous wait of 7∆

before the view-change makes it not responsive in essence.

After this work, Kim et al. [72] investigated optimistic responsiveness in the weakly-synchronous

model called mobile sluggish model [63]. Abraham et al. [10] studied optimistically responsive

view-change with t < n/2 fault tolerance.

54

Chapter 4

Efficient State Machine Replication

without Threshold Signatures

4.1 Introduction

There has been a long sequence of work on improving the communication complexity of consensus

protocols [71, 50, 4, 104, 27, 8, 84]. In the synchronous SMR setting, the optimal communication

complexity per consensus decision of an SMR protocol is O(κn2) bits [4, 7, 100, 84]. However, all of

these solutions use threshold signatures. Our result improves upon the communication complexity

in the absence of threshold signatures. Specifically, we show the following:

Theorem 31 (Informal). Assuming public-key infrastructure and a universal structured reference

string setup under q-SDH assumption, there exists a state machine replication protocol with amor-

tized O(κn2) communication complexity per consensus decision tolerating t < n/2 Byzantine faults.

To be precise, the protocol incurs O(κn2) communication complexity under q-strong Diffie-Hellman

(SDH) assumption [25] (whose parameters can be generated using distributed protocols) orO(κn2 log n)

without it. Getting rid of threshold signatures allows for efficient reconfiguration of the participat-

ing replicas and does not require generating threshold keys each time a new replica joins the system.

It is in this sense that our system is reconfiguration-friendly. Thus, an efficient BFT protocol in

this setting is of independent interest. We reduce communication by making use of efficient erasure

coding schemes [95] and cryptographic accumulators [15] to efficiently broadcast large messages

at the expense of increase in latency of SMR protocol. The resulting protocol has been used in

55

RandPiper [21] to obtain communication efficient random beacon protocol of the same complexity

metrics.

4.2 Model and Preliminaries

We consider a system consisting of n replicas out of which at most t = b(n− 1)/2c replicas can be

Byzantine. The Byzantine replicas may behave arbitrarily. When we assume an adaptive adversary;

the replicas can be corrupted into being Byzantine at any time during the execution of the protocol.

A replica that is not faulty throughout the execution is considered to be honest and executes the

protocol as specified.

We assume the network between replicas consists of point-to-point secure (authenticated and con-

fidential) synchronous communication channels. Messages between replicas may take at most ∆

time before they arrive, where ∆ is a known maximum network delay. To provide safety under

adversarial conditions, we assume that the adversary is capable of delaying the message for an

arbitrary time upper bounded by ∆. In addition, we assume all honest replicas have clocks moving

at the same speed. They also start executing the protocol within ∆ time from each other. This

can be easily achieved by using the clock synchronization protocol [4] once at the beginning of the

protocol.

We make use of digital signatures and a public-key infrastructure (PKI) to prevent spoofing and

replays and to validate messages. Message x sent by a replica p is digitally signed by p’s private

key and is denoted by 〈x〉p. In addition, we use H(x) to denote the invocation of the random oracle

H on input x.

4.2.1 Primitives

In this section, we present several primitives used in our protocol.

Linear erasure and error correcting codes. We use standard (b, n) Reed-Solomon (RS)

codes [95] with b = t + 1. This code encodes t + 1 data symbols into code words of n sym-

bols and can decode the t + 1 elements of code words to recover the original data. The interfaces

to (b, n) RS codes are presented in Section 2.5

Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation

56

value for a set of values using Eval function and produces a witness for each value in the set using

CreateWit function. Given the accumulation value and a witness, any party can verify if a value is

indeed in the set using Verify function. More details on these functions are provided in Section 2.5.

In this protocol, we use collision free bilinear accumulators from Nguyen [88] as cryptographic accu-

mulators which generates constant sized witness, but requires q-SDH assumption. Alternatively, we

can use Merkle trees [81] (and avoid q-SDH assumption) at the expense of O(log n) multiplicative

communication.

Normalizing the length of cryptographic building blocks. Let λ denote the security param-

eter, κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and

witness of the accumulator. Further, let κ = max(κh, κa); we assume κ = Θ(κh) = Θ(κa) = Θ(λ).

Throughout the chapter, we will use the same parameter κ to denote the hash size, signature size

and accumulator size for convenience.

4.3 BFT SMR Protocol

In this section, we present our BFT SMR protocol. Our SMR protocol achieves O(κn2) bits com-

munication complexity with a universal structured reference string (SRS) setup under the q-SDH

assumption, or O(κn2 log n) bits communication complexity without the q-SDH setup assumption.

In particular, we do not use threshold signatures, and thus avoid any distributed key generation

during the setup or proactive secret sharing during reconfiguration. We note that prior synchronous

BFT SMR protocols [7, 35, 100] with honest majority incur O(κn3) communication per consensus

decision without threshold signatures.

Epochs. Our protocol progresses through a series of numbered epochs with each epoch coordinated

by a distinct leader. Epochs are numbered by integers starting with 1. The leaders for each epoch

are rotated irrespective of the progress made in each epoch. For simplicity, we use round-robin

leader election in this section and the leader of epoch e, represented as Le, is determined by e mod

n. Each epoch lasts for 11∆ time.

Blocks and block format. An epoch leader’s proposal is represented as a block. Each block

references its predecessor with the exception of the genesis block which has no predecessor. We

call a block’s position in the chain as its height. A block Bh at height h has the format, Bh :=

(bh, H(Bh−1)) where bh denotes the proposed payload at height h, Bh−1 is the block at height h−1

57

and H(Bh−1) is the hash digest of Bh−1. The predecessor for the genesis block is ⊥. A block Bh

is said to be valid if (1) its predecessor block is valid, or if h = 1, predecessor is ⊥, and (2) the

payload in the block meets the application-level validity conditions.

A block Bh extends a block Bl (h ≥ l) if Bl is an ancestor of Bh. Note that a block’s height h and

its epoch e need not necessarily be the same.

Certified blocks, and locked blocks. A block certificate on a block Bh consists of t+ 1 distinct

signatures in an epoch e and is represented by Ce(Bh). Block certificates are ranked by epochs,

i.e., blocks certified in a higher epoch has a higher rank. During the protocol execution, each

replica keeps track of all certified blocks and keeps updating the highest ranked certified block to

its knowledge. Replicas will lock on highest ranked certified blocks and do not vote for blocks that

do not extend highest ranked certified blocks to ensure safety of a commit.

Equivocation. Two or more messages of the same type but with different payload sent by an

epoch leader are considered an equivocation. In this protocol, the leader of an epoch e sends

propose and vote-cert messages (explained later) to all other replicas. In order to facilitate efficient

equivocation checks, the leader sends the payload along with the signed hash of the payload. When

an equivocation is detected, broadcasting the signed hash suffices to prove equivocation by Le.

4.3.1 Protocol Details

We first describe a simple function that is used by an honest replica to forward a long message

received from the epoch leader.

Deliver function. The Deliver() function (refer Figure 4.2) implements efficient broadcast of long

messages using erasure coding techniques and cryptographic accumulators. The input parameters

to the function are message type mtype, long message b, accumulation value ze corresponding to

object b and epoch e in which the deliver function is invoked. The input message type mtype

corresponds to message type containing large message b sent by leader Le of epoch e. In order

to facilitate efficient leader equivocation checks, the input message type mtype, hash of object b,

accumulation value ze and epoch e are signed by leader Le.

When the function is invoked using the above input parameters, the message b is partitioned into

t + 1 data symbols. The t + 1 data symbols are then encoded into n codewords (s1, . . . , sn) using

ENC function (defined in Section 4.2). Then, the cryptographic witness wi is computed for each

58

Let e be the current epoch and Le be the leader of epoch e. For each epoch e, replica r performs
the following operations:

1. Epoch advancement. When epoch-timere−1 reaches 0, enter epoch e. Upon entering
epoch e, send highest ranked certificate Ce′(Bl) to Le. Set epoch-timere to 11∆ and start
counting down.

2. Propose. Le waits for 2∆ time after entering epoch e and broadcasts
〈propose, Bh, Ce′(Bl), zpe, e〉Le where Bh extends Bl. Ce′(Bl) is the highest ranked certifi-
cate known to Le.

3. Vote. If epoch-timere ≥ 7∆ and replica r receives the first proposal pe =
〈propose, Bh, Ce′(Bl), zpe, e〉Le where Bh extends a highest ranked certificate, invoke
Deliver(propose, pe, zpe, e). Set vote-timere to 2∆ and start counting down. When vote-timere
reaches 0, send 〈vote, H(Bh), e〉i to Le.

4. Vote cert. Upon receiving t+ 1 votes for Bh, Le broadcasts 〈vote-cert, Ce(Bh), zve, e〉Le .

5. Commit. If epoch-timere ≥ 3∆ and replica r receives the first ve =
〈vote-cert, Ce(Bh), zve, e〉Le , invoke Deliver(vote-cert, ve, zve, e). Set commit-timere to 2∆ and
start counting down. When commit-timere reaches 0, if no equivocation for epoch-e has been
detected, commit Bh and all its ancestors.

6. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Le and stop
performing epoch e operations.

Figure 4.1: BFT SMR Protocol with O(κn2) bits communication per epoch and optimal re-
silience

Deliver(mtype, b, ze, e):

1. Partition input b into t + 1 data symbols. Encode the t + 1 data symbols into n codewords
(s1, . . . , sn) using ENC function. Compute witness wj ∀sj ∈ (s1, . . . , sn) using CreateWit function.
Send 〈codeword,mtype, sj , wj , ze, e〉i to jth replica ∀j ∈ [n].

2. If jth replica receives the first valid codeword 〈codeword,mtype, sj , wj , ze, e〉 for the accumulator ze,
forward the codeword to all the replicas.

3. Upon receiving t+ 1 valid codewords for the accumulator ze, decode b using DEC function.

Figure 4.2: Deliver function

59

codewords (s1, . . . , sn) using CreateWit (defined in Section 4.2). Then, the codeword and witness

pair (sj , wj) is sent to the jth replica along with the accumulation value ze, message type mtype,

and Le’s signature on the message.

When the jth replica receives the first valid codeword sj for an accumulation value ze such that

the witness wj verifies the codeword sj (using Verify function defined in Section 4.2), it forwards

the codeword and witness pair (sj , wj) to all replicas. Note that jth replica forwards only the

first codeword and witness pair (sj , wj). Thus, it is required that all honest replicas forward the

codeword and witness pair (sj , wj) for long message b; otherwise all honest replicas may not receive

t + 1 codewords for b. When a replica r receives t + 1 valid codewords corresponding to the first

accumulation value ze it receives, it reconstructs the object b. Note that replica r reconstructs

object b for the first valid share even though it detects equivocation in an epoch.

The Deliver function contains two communication steps and hence requires 2∆ time to ensure all

honest replicas can receive at least t + 1 codewords sufficient to reconstruct the original input

b. Invoking Deliver on a long message of size ` incurs O(n` + (κ + w)n2) bits where κ is the

size of accumulator and w is the size of the accumulator witness. The witness size is O(κ) and

O(κ log n) when bilinear accumulators and Merkle trees are respectively used as witnesses. Thus,

the total communication complexity to broadcast a single message of size ` is O(n`+ κn2) bits, or

O(n`+ κn2 log n) bits without the q-SDH assumption.

BFT SMR Protocol. Our BFT SMR protocol is described in Figure 4.1. Consider an epoch

e and its epoch leader Le. To ensure an honest leader can always make progress, leader Le first

collects highest ranked certificate Ce′(Bh) from all honest replicas. In each epoch, at a high level,

there are two “rounds” of communication from the epoch leader. The first round involves leader

making a proposal and the second round involves sending certificates to aid in committing the

proposal.

Efficient propagation of proposal. In the first round, the leader proposes a block Bh to

every replica (step 2) by extending the highest ranked certificate Ce′(Bh). The proposal for Bh,

conceptually, has the form 〈propose, Bh, Ce′(Bl), zpe, e〉Le where zpe is the accumulation value for

the pair (Bh, Ce′(Bl)). In order to facilitate efficient equivocation checks, the leader signs the tuple

〈propose, H(Bh, Ce′(Bl)), zpe, e〉 and sends Bh and Ce′(Bl) separately. The size of this signed message

is O(κ) bits. In case of equivocation, all-to-all broadcast of this signed message incur only O(κn2)

in communication.

If the received proposal is valid and it extends the highest ranked certificate known to a replica

60

r, replica r forwards the proposal. Forwarding the received proposal is required to ensure all

honest replicas receive a common proposal; otherwise only a subset of the replicas may receive the

proposal if the leader is Byzantine. Observe that the size of the proposal is linear as it contains

certificate Ce′(Bl) (which is linear in the absence of threshold signatures). A näıve approach of

forwarding the entire proposal incurs O(κn3) when all replicas broadcast their proposal. In order

to save communication, replicas forward the proposal by invoking Deliver function. For linear sized

proposal, invoking Deliver incurs O(κn2) bits (or O(κn2 log n) bits without q-SDH assumption) in

communication.

Observe that the Deliver primitive requires 2∆ time. In particular, we need to ensure all honest

replicas forward their codeword and witness pair for the proposal. Thus, our protocol waits for

2∆ time (i.e., vote-timere) before voting to check for equivocation. Hence, if no equivocation is

detected at the end of 2∆ wait, all honest replicas forwarded their codeword and witness pair for

the proposal and all honest replicas can reconstruct the proposal. At the end of 2∆ wait, if there

no equivocation is detected, replicas vote for the proposed block Bh (step 3).

Ensuring the receipt of a certificate efficiently. Observe that a vote message is O(κ) sized

and hence, it can be broadcast using all-to-all communication with communication complexity of

O(κn2). However, if every replica that commits needs to ensure that all honest parties receive

a certificate for the block being committed, this can result in O(κn3) complexity again. This is

because, all-to-all broadcast of linear sized certificate incurs O(κn3). One might try to invoke

Deliver to propagate the certificate. However, this does not save communication. This is because,

in general, there can be exponentially many combinations of t+ 1 signatures forming a certificate

depending on the set of signers, and each replica may invoke Deliver on a different combination.

This issue can be addressed if we ensure that there is a single certificate for a block. Hence, we

use the leader to collect signatures and form a single certificate (step 3). The leader forwards

this certificate via 〈vote-cert, Ce(Bh), zve, e〉Le to all replicas (step 4) where zve is the accumulation

value of Ce(Bh). Similar to the proposal, the hash of the certificate is signed to allow for efficient

equivocation checks. It is important to note that two different certificates for the same value is still

considered an equivocation in this step.

To ensure that every honest replica receives this certificate, we again resort to the Deliver primitive

which yields a communication complexity of O(κn2) when all honest parties are invoking it using

the same certificate. Again, to tolerate malicious behaviors such as sending multiple different

certificates for the same block (due to which none of them may be delivered), we treat the vote-cert

message similar to the proposal and perform equivocation checks. Thus, replicas commit only if

61

they observe no equivocation 2∆ time after they invoke Deliver (step 5).

Epoch timers. Observe that we set the epoch timer epoch-timere for each epoch e to be 11∆.

This is the maximum time required for an epoch when the leader is honest and all messages take

∆ time. Similarly, in different steps, we make appropriate checks w.r.t. epoch-timere to ensure that

the protocol is making sufficient progress within the epoch.

Latency. We note that all honest replicas commit in the same epoch when the epoch leader is

honest. However, when the epoch leader is Byzantine, only some honest replicas may commit in

that epoch. Due to the round-robin leader selection, there will be at least one honest leader every

t + 1 epochs and all honest replicas commit common blocks up to the honest epoch. Thus, our

protocol has a worst-case commit latency of t+ 1 epochs.

4.3.2 Safety and Liveness

We say a block Bh is committed directly in epoch e if it is committed as a result of its own

commit-timere expiring. We say a block Bh is committed indirectly if it is a result of directly

committing a proposal B` (` > h) that extends Bh.

Claim 32. If an honest replica delivers an object b at time τ in epoch e and no honest replica has

detected an epoch e equivocation by time τ + ∆, then all honest replicas will receive object b by time

τ + 2∆ in epoch e.

Proof. Suppose an honest replica r delivers an object b at time τ in epoch e. Replica r must

have sent valid codewords and witness 〈codeword,mtype, sj , wj , ze, e〉i computed from object b to

all replicas at time τ . The codewords arrive at all honest replicas by time τ + ∆.

Since no honest replica has detected an epoch e equivocation by time τ + ∆, it must be that either

honest replicas will forward their codeword 〈codeword,mtype, sj , wj , ze, e〉 when they receive the

codewords sent by replica r or they already sent the corresponding codeword when they either

delivered object b or received the codeword from some other replica r′. In any case, all honest

replicas will forward their epoch e codeword corresponding to object b by time τ + ∆. Thus, all

honest replicas will have received t + 1 valid codewords for a common accumulation value ze by

time τ + 2∆ sufficient to decode object b by time τ + 2∆.

Claim 33. If an honest replica votes for a block Bh at time τ in epoch e, then all honest replicas

62

receive Bh by time τ .

Proof. Suppose an honest replica r votes for a block Bh at time τ in epoch e. Replica r must have

received proposal pe for Bh by time τ − 2∆ and detected no epoch e equivocation by time τ . This

implies no honest replica detected an epoch e equivocation by time τ − ∆. Replica r must have

invoked Deliver(propose, pe, zpe, e) at time τ − 2∆. By Claim 32, all honest replicas receive pe by

time τ . Thus, all honest replicas must have received Bh by time τ .

Lemma 34. If an honest replica directly commits a block Bh in epoch e, then (i) no equivocating

block certificate exists in epoch e, and (ii) all honest replicas receive Ce(Bh) before quitting epoch e.

Proof. Suppose an honest replica r commits a block Bh in epoch e at time τ . Replica r must have

received a vote-cert for Bh at time τ − 2∆ such that its epoch-timere ≥ 3∆ and did not detect an

equivocation by time τ . This implies no honest replica detected an epoch e equivocation by time

τ −∆. In addition, some honest replica r′ must have voted for Bh by time τ − 2∆. By Claim 33,

all honest replicas would receive Bh by time τ − 2∆.

For part (i), observe that no honest replica received an equivocating proposal by time τ − 2∆;

otherwise, all honest replicas would have received a codeword for equivocating proposal by time

τ − ∆ and replica r would not commit. And, no honest replica would vote for an equivocating

block after time τ −2∆ (since they have received Bh by time τ −2∆). Thus, an equivocating block

certificate does not exist in epoch e.

For part (ii), observe that replica r must have invoked Deliver(vote-cert, ve, zve, e) for ve = Ce(Bh)

at time τ − 2∆ and did not detect epoch e equivocation by time τ . By Claim 32, all honest

replicas receive ve by time τ . Note that replica r must have its epoch-timere ≥ 3∆ at time τ − 2∆.

Since, all honest replicas are synchronized within ∆ time, all other honest replicas must have

epoch-timere ≥ 2∆ at time τ − 2∆. Thus, all replicas are still in epoch e at time τ and receive

Ce(Bh) before quitting epoch e.

Lemma 35 (Unique Extensibility). If an honest replica directly commits a block Bh in epoch e,

then any certified blocks that ranks higher than Ce(Bh) must extend Bh.

Proof. The proof is by induction on epochs e′ > e. For an epoch e′, we prove that if a certificate

Ce′(Bh′) exists then it must extend Bh.

63

For the base case, where e′ = e + 1, the proof that Ce′(Bh′) extends Bh follows from Lemma 34.

The only way Ce′(Bh′) for Bh′ forms is if some honest replica votes for Bh′ . However, by Lemma 34,

there does not exist any equivocating block certificate in epoch e and all honest replicas receive

and lock on Ce(Bh) before quitting epoch e. Thus, a block certificate cannot form for a block that

does not extend Bh.

Given that the statement is true for all epochs below e′, the proof that Ce′(Bh′) extends Bh follows

from the induction hypothesis because the only way such a block certificate forms is if some honest

replica votes for it. An honest replica votes in epoch e′ only if Bh′ extends a valid certificate

Ce′′(Bh′′). Due to Lemma 34 and the induction hypothesis on all block certificates of epoch e <

e′′ < e′, Ce′(Bh′) must extend Bh.

Theorem 36 (Safety). Honest replicas do not commit conflicting blocks for any epoch e.

Proof. Suppose for the sake of contradiction two distinct blocks Bh and B′h are committed in epoch

e. Suppose Bh is committed as a result of Bh′ being directly committed in epoch e′ and B′h is

committed as a result of B′h′′ being directly committed in epoch e′′. Without loss of generality,

assume h′ < h′′. Note that all directly committed blocks are certified. By Lemma 35, B′h′′ extends

Bh′ . Therefore, Bh = B′h.

Claim 37. Let Bh be a block proposed in epoch e. If the leader of an epoch e is honest, then all

honest replicas commit Bh and all its ancestors in epoch e.

Proof. Suppose leader Le of an epoch e is honest. Let τ be the earliest time when an honest replica

r enters epoch e. Due to ∆ delay between honest replicas, all honest replicas enter epoch e by time

τ + ∆. Some honest replicas might have received a higher ranked certificate than leader Le before

entering epoch e; thus, they send their highest ranked certificate to leader Le.

Leader Le might have entered epoch e at time τ while some honest replicas enter epoch e only at

time τ + ∆. The 2∆ wait in the Propose step ensures that the leader can receive highest ranked

certificates from all honest replicas. However, leader Le may enter epoch e ∆ time after the earliest

honest replicas. Due to 2∆ wait after entering epoch e, leader Le collects the highest ranked

certificate Ce′(Bl) by time τ + 3∆ and sends a valid proposal pe = 〈propose, Bh, e, Ce′(Bl), zpe〉Le for

a block Bh that extends Ce′(Bl) which arrives all honest replicas by time τ + 4∆.

Thus, all honest replicas satisfy the constraint epoch-timere ≥ 7∆. In addition, Bh extends the

highest ranked certificate. So, all honest replicas will invoke Deliver(propose, pe, zpe, e) and set

64

vote-timere to 2∆ which expires by time τ + 6∆. All honest replicas send vote for Bh to Le which

arrives Le by time τ + 7∆. Leader Le forwards Ce(Bh) which arrives all honest replicas by time

τ + 8∆. Note that all honest replicas satisfy the constraint epoch-timere ≥ 3∆ and honest replicas

set their commit-timere to 2∆ which expires by time τ + 10∆. Moreover, no equivocation exists

in epoch e. Thus, all honest replicas will commit Bh and its ancestors in epoch e before their

epoch-timere expires.

Theorem 38 (Liveness). All honest replicas keep committing new blocks.

Proof. For any epoch e, if the leader Le is Byzantine, it may not propose any blocks or propose

equivocating blocks. Whenever an honest leader is elected in epoch e, by Claim 37, all honest

replicas commit in epoch e. Since we assume a round-robin leader rotation policy, there will be an

honest leader every t+ 1 epochs, and thus the protocol has a commit latency of t+ 1 epochs.

Lemma 39 (Communication complexity). Let ` be the size of block Bh, κ be the size of accumulator

and w be the size of witness. The communication complexity of the protocol is O(n`+ (κ+ w)n2)

bits per epoch.

Proof. At the start of an epoch e, each replica sends a highest ranked certificate to leader Le. Since,

size of each certificate is O(κn), this step incurs O(κn2) bits communication. A proposal consists

of a block of size ` and block certificate of size O(κn). Proposing O(n+ `)-sized object to n replicas

incurs O(κn2 + n`). Delivering O(κn + `)-sized object has a cost O(n` + (κ + w)n2), since each

replica broadcasts a codeword of size O((n+ `)/n), a witness of size w and an accumulator of size

κ.

In Vote cert step, the leader broadcasts a certificate for block Bh which incurs O(κn2) com-

munication. Delivering O(κn)-sized Ce(Bh) incurs O((κ + w)n2) bits. Hence, the total cost is

O(n`+ (κ+ w)n2) bits.

4.4 Related Work

There has been a long line of work in improving the latency and communication complexity of

consensus protocols [71, 50, 4, 104, 27, 8, 84, 100, 9]. The state-of-the-art BFT SMR protocols [4,

7, 100, 9] incur quadratic communication per consensus decision while using threshold signatures.

Without threshold signatures, they incur cubic communication per consensus decision. Our BFT

65

SMR protocol makes progress in the setting where threshold signatures are not desirable. Our

protocol incurs O(κn2) communication complexity under the q-SDH assumption or O(κn2 log n)

without it at the expense of increased latency.

66

Chapter 5

Efficient Optimistically Responsive

State Machine Replication without

Threshold Signatures

5.1 Introduction

Improving the communication complexity of consensus protocols has been the research agenda of

many works [71, 50, 4, 104, 27, 8, 84, 21] as it directly relates to the scalability of the system. The

best communication complexity of SMR protocols is O(κn2) bits per consensus decision [4, 7, 100,

84], where κ is the security parameter. However, all of these protocols use threshold signatures. In

the previous chapter, we presented a BFT SMR protocol with O(κn2) communication per consensus

decision without the use of threshold signatures. Getting rid of threshold signatures allows for

efficient reconfiguration of the participating replicas and does not require generating threshold keys

each time a new replica joins the system. However, the BFT SMR protocol incurred a large latency

to check for any misbehavior from the leader while propagating large messages. This prevents the

protocol from progressing at network speed even during optimistic conditions. Another challenge

in obtaining optimistic responsiveness is to synchronize all replicas when some replicas move to

the next epoch. Typically, this is performed by replicas sharing synchronization proofs to all other

replicas [40, 4]; in the absence of threshold signatures, these proofs tend to be O(n) sized, making

the communication cubic again.

67

Our protocol relies on aggregated secret opened in a verifiable manner in an epoch to synchronize all

the replicas. The size of a aggregated secret is O(κ) bits and thus, the communication complexity

for synchronization stays quadratic. In addition, our protocol makes use of erasure coding and

cryptographic accumulators in a way that does not require replicas to wait for Ω(∆) to check for

equivocating behavior from the leader. Combining these two ideas, our protocol achieves optimistic

responsiveness. Our protocol closely follows the optimistic responsive paradigm introduced in

Chapter 3.

5.2 Model and Definitions

We consider a system P := {P1, . . . , Pn} consisting of n replicas in a reliable, authenticated all-to-

all network, where up to t < n/2 replicas can be Byzantine faulty. We assume static corruption

and the Byzantine replicas can behave arbitrarily. A replica that is not corrupted is considered to

be honest and executes the protocol as specified.

Communications between replicas are synchronous. If an honest replica Pi sends a message x to

another replica Pj at time τ , Pj receives the message by time τ + δ. The delay parameter δ is

upper bounded by ∆. The upper bound ∆ is known, but δ is unknown to the system. δ can be

regarded as an actual delay in the real-world network. We assume all honest replicas have clocks

moving at the same speed. They also start executing the protocol within ∆ time from each other.

This can be easily achieved by using the clock synchronization protocol [4] once at the beginning

of the protocol.

We make use of digital signatures and a public-key infrastructure (PKI) to prevent spoofing and

replays and to validate messages. Message x sent by a replica p is digitally signed by p’s private

key and is denoted by 〈x〉p. In addition, we use H(x) to denote the invocation of the random oracle

H on input x; H(x) is also called hash-digest of input x.

5.2.1 Primitives

In this section, we present primitives used in our protocol.

Linear erasure and error correcting codes. We use standard (n, b) Reed-Solomon (RS)

codes [95]. This code encodes b data symbols into codewords of n symbols and can decode b

68

elements of the codewords to recover the original data. The interfaces to (b, n) RS codes are

presented in Section 2.5

In this protocol, we instantiate the RS codes with n equal the number of all replicas, and b equal

to bn/4c+ 1.

Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation

value for a set of values using Eval function and produces a witness for each value in the set using

CreateWit function. Given the accumulation value and a witness, any party can verify if a value is

indeed in the set using Verify function. More details on these functions are provided in Section 2.5.

In this protocol, we use collision free bilinear accumulators from Nguyen [88] as cryptographic accu-

mulators which generates constant sized witness, but requires q-SDH assumption. Alternatively, we

can use Merkle trees [81] (and avoid q-SDH assumption) at the expense of O(log n) multiplicative

communication.

Publicly Verifiable Secret Sharing. We assume the existence of an aggregatable Publicly

Verifiable secret sharing scheme PVSS [64]. We use the interfaces to a secure PVSS scheme PVSS

as described as follows:

• PVSS.Deal(s) : Given input a secret s, outputs a vector of commitments v := (PVSS.v1,. . . ,

PVSS.vn) and an encrypted secret shares c := (PVSS.c1,. . . , PVSS.cn).

• PVSS.Verify(v, c) : Given input a vector of commitments and encrypted secret shares, output 1

if the secret sharing is valid; otherwise 0.

• PVSS.Aggregate(v1, c1,v2, c2) : Given two valid PVSS tuples, output an aggregated PVSS tuple

(v, c).

• PVSS.ShVrfy(v1, si): Verify if the secret share si is correct. 0 indicates a failure and 1 indicates

a success.

• PVSS.Recon(PVSS.~S): Given a set of t+ 1 secret shares, PVSS.~S, reconstruct the shared secret

s.

Normalizing the length of cryptographic building blocks. Let λ denote the security param-

eter, κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and

witness of the accumulator and κv = κv(λ) denote the size of secret share and witness of a secret.

69

Further let κ = max(κh, κa, κv); we assume κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout the

chapter, we can use the same parameter κ to denote the hash size, signature size, accumulator size

and secret share size for convenience.

5.3 Optimistically Responsive State Machine Replication

In this section, we present OptRand, an optimistically responsive random beacon protocol. Our

protocol is a novel combination of state machine replication (SMR) protocol and random beacon

protocol to achieve an optimistically responsive random beacons. Prior work [21, 36] used SMR as

a black box to achieve consensus on the shared secrets to construct a random beacon protocol. In

contrast, our protocol uses the generated random beacons to achieve responsiveness. In particular,

we use aggregated secrets to synchronize between honest replicas and achieve responsiveness.

The underlying SMR protocol includes an optimistic path that can make progress at the network

speed i.e., in O(δ) time during optimistic condition when the leader and > 3n/4 replicas behave

honestly. Under standard conditions, i.e., when only > n/2 replicas behave honestly, the SMR

protocol makes progress in O(∆) time. We follow the optimistic responsive paradigm introduced

in Chapter 3, i.e., our protocol does not require explicit back-and-forth switching between slow

synchronous mode and fast optimistic mode. Similar to the optimistically responsive view-change

protocol in OptSync, our protocol changes leaders in an optimistically responsive manner.

Epochs. Our protocol progresses through a series of numbered epochs with epoch r coordinated

by a distinct leader Lr rotated in a round-robin manner. During optimistic conditions, the system

progresses through epochs responsively, i.e., in O(δ) time; otherwise each epoch lasts for 11∆ time.

Blocks and block format. A block Bh at height h has the format, Bh := (bh, H(Bh−1)) where bh

denotes the proposed payload at height h and H(Bh−1) is the hash digest of Bh−1. The predecessor

for the genesis block is ⊥. In our protocol, the payload bh is set to the aggregated PVSS commitment

and encryption. A block Bh is said to be valid if (1) its predecessor block is valid, or if h = 1,

predecessor is ⊥, and (2) the payload in the block is a valid PVSS vector, and (3) a valid DLPoK

decomposition proof is provided by the leader. A block Bh extends a block Bl (h ≥ l) if Bl is an

ancestor of Bh.

Certified blocks, and locked blocks. A block certificate represents a set of signatures on a block

in an epoch by a quorum of replicas. We use two types of signed vote messages: a responsive vote

70

resp-vote and a synchronous vote sync-vote. Accordingly, we consider two types of block certificates.

A responsive certificate C3/4r (Bh) for a block Bh consists of b3n/4c + 1 distinct resp-vote on Bh in

epoch r. Similarly, a synchronous certificate C1/2r (Bh) consists of t+ 1 distinct sync-vote on Bh in

epoch r. Whenever the distinction is not important, we will represent the certificates by Cr(Bh).

Certified blocks are ranked by epochs, i.e., blocks certified in a higher epoch have a higher rank.

We do not rank between responsive and synchronous certificate from the same epoch. During the

protocol execution, each replica keeps track of all certified blocks and keeps updating the highest

certified block to its knowledge. Replicas will lock on highest ranked certified blocks and do not

vote for blocks that do not extend highest ranked block certificates to ensure safety of a commit.

Equivocation. Two or more messages of the same type but with different payload sent by an

epoch leader is considered an equivocation. In this protocol, the leader of an epoch e sends propose,

resp-cert, and sync-cert messages (explained later) to all other replicas. In order to facilitate efficient

equivocation checks, the leader sends the payload along with signed hash of the payload. When an

equivocation is detected, broadcasting the signed hash suffices to prove equivocation by Lr.

Background: Dissecting BFT SMR in Chapter 4. In Chapter 4, we presented a communi-

cation efficient BFT SMR protocol that incurs O(κn2) communication per decision to decide on

O(n)-sized input without using threshold signatures. The efficient communication was achieved by

making use of erasure coding schemes, cryptographic accumulators and broadcast of equivocating

hashes (if any). In that protocol, we used (n, t + 1) RS codes to encode large messages. When a

replica receives a valid proposal from the leader, it uses RS codes to encode the proposal into n

codewords (s1, . . . , sn) and compute corresponding cryptographic witnesses (w1, . . . , wn), and send

each codeword and witness pair (si, wi) to replica j ∀j ∈ [n]. A replica votes for the proposed block

only if it does not detect any equivocation for 2∆ time. The 2∆ wait before voting ensures (i) no

honest replica received an equivocating proposal and conflicting (s′i, w
′
i) before receiving (si, wi) (ii)

all honest replicas receive at least t+ 1 codewords for the proposed block sufficient to reconstruct

the proposal.

To ensure safety of a committed block, in general, SMR protocols ensure that all honest replicas

receive and lock a certificate for the proposed block. A certificate consisting of t + 1 signatures

for the proposed block is linear in size in the absence of threshold signatures. Thus, an all-to-

all broadcast of the certificate trivially incurs cubic communication. The BFT SMR protocol of

RandPiper solves the issue using following technique. First, replicas send their vote only to the

leader. The leader is expected to collect t + 1 votes, form a single certificate and send it to all

71

replicas. Second, in order to ensure the certificate is propagated among all honest replicas, instead

of broadcasting it to all replicas, they use RS codes to encode the certificate, send the codeword

and witnesses and wait for 2∆ to check for an equivocation before making a commit.

Achieving optimistic responsiveness. The techniques employed by the BFT SMR protocol

enables communication efficient consensus on O(n)-sized input. However, that technique requires

waiting for Ω(∆) time to detect equivocation before making a decision.

In this chapter, we propose a new technique that allows us to responsively make decision and change

leaders without relying on equivocation detection.

We modify the BFT SMR in the following manner: First, we use (n, bn/4c + 1) RS codes to

encode large messages (in the Deliver primitive in Figure 5.1). This allows decoding with bn/4c+1

codewords at the expense of doubled codeword size. Second, a replica sends a responsive vote to the

leader as soon as it receives a valid block proposal. The replica also sends the RS coded codewords

and witnesses to all other replicas. The leader collects b3n/4c+1 votes, forms a responsive certificate

and sends the responsive certificate to all replicas. The replicas broadcast an ack message in response

to the responsive certificate and commit on receiving > 3n/4 distinct ack messages. In addition,

they also send RS coded codewords and witnesses for the responsive certificate. The existence of

> 3n/4 ack messages ensures that all honest parties can reconstruct the proposed blocks and the

responsive certificate. In particular, at least bn/4c+ 1 honest replicas must have received the block

proposal and the responsive certificate for the committed block and they have forwarded their

codewords to all replicas. Thus, all honest replica must receive bn/4c + 1 codewords sufficient to

reconstruct the proposed blocks and the responsive certificate.

Responsively changing epochs. The above technique allows an honest replica to responsively

commit a decision. In order to responsively change epochs, a synchronization primitive is required

to signal all honest replicas to move to a higher epoch. Prior works [7, 100, 9] perform an all-

to-all broadcast of certificates to synchronize between epochs which incurs cubic communication

without threshold signatures. In this protocol, we broadcast aggregated secret opened in an epoch

to synchronize all the replicas. The size of aggregated secret is O(κ) bits and all-to-all broadcast

of O(κ)-sized aggregated secret does not blow up communication.

In cases when optimistic conditions are not met, the underlying consensus mechanism works similar

to the BFT SMR in RandPiper except we use (n, bn/4c+ 1) RS codes.

72

5.3.1 Protocol Details

Deliver(mtype,m, zr, r):

1. Partition input m into bn/4c + 1 data symbols. Encode the bn/4c + 1 data symbols into n codewords
(s1, . . . , sn) using ENC function. Compute witness wj ∀sj ∈ (s1, . . . , sn) using CreateWit function. Send
〈codeword,mtype, sj , wj , zr, r〉r to replica j ∀j ∈ [n].

2. If jth replica receives the first valid codeword 〈codeword,mtype, sj , wj , zr, r〉 for the accumulator zr,
forward the codeword to all the replicas.

3. Upon receiving bn/4c+ 1 valid codewords for a common accumulator zr, decode m using DEC function.

Figure 5.1: Deliver function

Deliver function. We first present a Deliver function (refer Figure 5.1) that is used by an honest

replica to propagate long messages received from the epoch leader.

The Deliver function enables efficient broadcast of long messages using erasure coding techniques

and cryptographic accumulators. The input parameters to the function are a keyword mtype,

long message m, accumulation value zr corresponding to message m and epoch r in which Deliver

function is invoked. The input keyword mtype corresponds to message type containing long message

b sent by leader Lr. In order to facilitate efficient leader equivocation, the input keyword mtype,

hash of long message m, accumulation value zr, and epoch r are signed by leader Lr.

When the Deliver() function is invoked using above input parameters, the message m is first divided

into bn/4c + 1 data symbols. The bn/4c + 1 data symbols are then encoded into n codewords

(s1, . . . , sn) using ENC function (defined in Section 2.5). Then, the cryptographic witness wi is

computed for each codewords (s1, . . . , sn) using CreateWit (defined in Section 2.5). Then, the

codeword and witness pair (sj , wj) is sent to the replica j ∀j ∈ [n] along with the accumulation

value zr, keyword mtype, and Lr’s signature on the message.

When a jth replica receives the first valid codeword and witness pair (sj , wj) for an accumulation

value zr such that the witness wj verifies the codeword sj , it forwards the share (sj , wj) to all

replicas. The validity of the codeword can be checked using Verify function (defined in Section 2.5).

We note that jth replica forwards a single codeword and witness pair (sj , wj) for each message type

mtype in an epoch.

An honest replica r considers only the first codeword for each message type mtype from each

replica j ∈ [n]. When a replica r receives bn/4c+ 1 valid codewords along with their witnesses for

a common accumulation value zr, it decodes long message m corresponding to accumulation value

73

Let r be the current epoch, Lr be the leader of epoch r and Pr be the set of removed replicas. For each
epoch r, replica r performs following operations:

1. Epoch advancement. Replica Pi advances to epoch r using following rules:

(a) When epoch-timerr−1 reaches 0, enter epoch r.

(b) On receiving aggregated secret Rr−1, broadcast Rr−1. Wait until Cr−1(Bl) is received and
enter epoch r.

Upon entering epoch r, send PVSS tuple (vi, ci) and highest ranked certificate Cr′(Bl) to Lr. Set
epoch-timerr to 11∆ and start counting down.

2. Propose. Wait for t+ 1 PVSS tuples and either Cr−1(Bl) or 2∆ time after entering epoch r. Upon
receiving t + 1 valid PVSS tuples, Lr aggregates them to obtain (v, c). Set bh := (v, c) and send
〈propose, Bh, Cr′(Bl), zpa, r〉Lr to replica Pj ∀Pj ∈ P where Bh extends Bl and Cr′(Bl) is the highest
ranked certificate known to Lr.

3. Vote. If epoch-timerr ≥ 7∆ and replica Pi receives the first proposal pr :=
〈propose, Bh, Cr′(Bl), zpa, r〉Lr

, check the validity of the (v, c). If valid and Bh extends a high-
est ranked certificate, invoke Deliver(propose, pr, zpa, r) and send 〈resp-vote, H(Bh), r〉Pi to Lr. Set
vote-timerr to 2∆ and start counting down. When vote-timerr reaches 0, send 〈sync-vote, H(Bh), r〉Pi

to Lr.

4. Resp cert. On receiving b3n/4c+ 1 resp-vote for Bh, Lr broadcasts 〈resp-cert, C3/4r (Bh), zra, r〉Lr
.

5. Sync cert. On receiving t+ 1 sync-vote for Bh, Lr broadcasts 〈sync-cert, C1/2r (Bh), zsa, r〉Lr .

6. Ack. Upon receiving the first responsive certificate rc := 〈resp-cert, C3/4r (Bh), zra, r〉Lr
, invoke

Deliver(resp-cert, rc, zra, r) and broadcast 〈ack, H(Bh), zra, r〉Pi
.

7. Commit. Replica Pi commits using one of the following rules:

(a) Responsive. If epoch-timerr ≥ 2∆ and replica Pi receives 〈ack, H(Bh), zra, r〉 from b3n/4c + 1
distinct replicas and detects no equivocation, commit Bh and all its ancestors.

(b) Synchronous. If epoch-timerr ≥ 3∆ and replica Pi receives the first certificate (either responsive
or synchronous), set commit-timerr to 2∆ and start counting down. If the received certificate is

synchronous i.e., sc := 〈sync-cert, C1/2r (Bh), zsa, r〉Le
, invoke Deliver(sync-cert, sc, zsa, r). When

commit-timerr reaches 0, if no epoch-r equivocation has been detected, commit Bh and all its
ancestors.

8. Update, reconstruct and output. When replica Pi commits or when epoch r ends, perform
following operations:

(a) Commit block B` proposed in epoch r− t if the highest ranked chain extends B` (if B` has not
been committed).

(b) If block B` proposed by Lr−t has been committed by epoch r, update Q(Lr−t) with (v, c)
shared in b`. Otherwise, remove Lr−t from future proposals, i.e., Pr ← Pr ∪ {Lr−t}.

(c) Obtain (v, c) corresponding to block committed in Dequeue(Q(Lr)). Broadcast decrypted
share di. On receiving share dj from another replica Pj , ensure that PVSS.ShVrfy(dj) = 1. On
receiving t+ 1 valid shares in S, reconstruct B and Rr ← PVSS.Recon(S). Broadcast (B,Rr).
On receiving (B,Rr) from others, accept Rr if Rr = e(B, g′2) and e(B, g2) = e(g1, g

s
2).

(d) Compute and output Or ← H(Rr).

9. (Non-blocking) Equivocation. Broadcast equivocating hashes signed by Lr and stop performing
epoch r operations, except Step 8.

Figure 5.2: Optimistically responsive BFT SMR with O(κn2) bits communication per epoch.

74

zr using DEC function (defined in Section 2.5). Observe that since we use (n, bn/4c+ 1) RS codes,

bn/4c+ 1 valid codewords are sufficient to decode the original message. Any invalid codewords are

discarded. We note that replica r decodes message m as long as there are bn/4c+1 valid codewords

(considering only the first codeword from each replica) corresponding to message m even though it

detects equivocation in an epoch. Since, n > 3(bn/4c+1), an honest replica r may receive bn/4c+1

valid codewords for upto three different long messages and replica r decodes all of them. This does

not affect the correctness of our protocol in any way. Looking ahead, our protocol requires that a

committed block is received by all honest replicas. We ensure that at least one of three decoded

message belongs to the committed block.

This function is similar to the Deliver function in Chapter 4 except that we use (n, bn/4c+ 1) RS

codes instead of (n, t + 1) RS codes used in [21]. As a result, the size of codeword is doubled

and the communication is increased by a factor of 2. However, this does not linearly blow up the

communication complexity and the communication complexity still remains O(κn2) (more details

in Lemma 39). Our beacon protocol is described in Figure 5.2. Replicas maintain a chain of

blocks to add blocks proposed by leaders, a queue Q() to store a recently committed PVSS vector

proposed by an epoch leader and set Pr to keep track of removed replicas. Before the start of the

beacon protocol execution, a setup phase is executed where we establish PVSS parameters and

public keys pki for every replica Pi ∈ P. We also buffer one secret share for aggregated PVSS

tuples for every replica Pi, i.e., fill Q(Pi) for Pi ∈ P. The replicas in P \ Pr are selected as leaders

in a round-robin manner.

After the setup phase, the replicas execute following steps in each epoch r.

Epoch advancement. Each replica keeps track of epoch duration epoch-timerr for epoch r. A

replica Pi enters epoch r (i) when its epoch-timerr−1 expires, or (ii) when it receives a round r − 1

aggregated secret Rr−1 and a round r−1 block certificate Cr−1(Bl). Upon entering epoch r, replica

Pi generates PVSS vector (vi, ci) and sends the PVSS tuple and its highest ranked certificate to

the leader Lr. In addition, it aborts all timers below epoch r and sets epoch-timerr to 11∆ and

starts counting down.

Propose. Upon entering epoch r, if Leader Lr has Cr−1(Bl), it proposes as soon as it receives

t + 1 PVSS tuples; otherwise, it waits for 2∆ time to ensure it can receive the highest ranked

certificate from all honest replicas. Upon receiving t + 1 PVSS tuples from I ⊂ [n], it aggregates

the PVSS tuples to obtain aggregated PVSS committments v, aggregated encrypted secret shares

c. The leader Lr constructs a block Bh by extending on the highest ranked certificate Cr′(Bl)

75

known to Lr with payload bh set to (v, c) and sends proposal pr := 〈propose, Bh, Cr′(Bl), zpa, r〉Lr
Here, zpa is the accumulation value for the pair (Bh, Cr′(Bl)). The proposal for Bh is com-

mon to all replicas while the NIZK proof πj corresponds to replica Pj . While conceptually, the

leader is sending 〈propose, Bh, Cr′(Bl), zpa, r〉Lr , to facilitate equivocation checks it instead sends

〈propose, H(Bh, Cr′(Bl)), zpa, r〉Lr with Bh and Cr′(Bl) sent separately. Here, zpa is the accumu-

lation value for the pair (Bh, Cr′(Bl)). The size of the signed message is O(κ) and hence can

be broadcast during equivocation or while delivering pr without incurring cubic communication

overhead.

Vote. If replica Pi receives a proposal pr := 〈propose, Bh, Cr′(Bl), zpa, r〉Lr it first checks PVSS

verification for (v, c). We call such a proposal valid. If replica Pi receives the valid proposal

and the proposed block Bh extends the highest ranked certificate known to the replica such

that its epoch-timerr ≥ 7∆, then it invokes Deliver(propose, pr, zpa, r) and sends a responsive vote

〈resp-vote, H(Bh), r〉Pi immediately to Lr. In addition, the replica sets its vote-timerr to 2∆ and

starts counting down. When vote-timerr reaches 0 and detects no epoch r equivocation, the replica

sends a synchronous vote 〈sync-vote, H(Bh), r〉Pi to Lr. If block Bh does not extend the highest

ranked certificate known to the replica or receives proposal pr when its epoch-timerr < 7∆, the

replica simply ignores the proposal and does not vote for Bh.

Resp cert. When the leader Lr receives b3n/4c + 1 distinct resp-vote messages for the proposed

block Bh in epoch r, denoted by C3/4r (Bh), Lr broadcasts 〈resp-cert, C3/4r (Bh), zra, r〉Lr to all replicas

where zra is the accumulation value of C3/4r (Bh). Similar to the proposal, the hash of the certifi-

cate C3/4r (Bh) is signed to allow for efficient equivocation checks. Since our protocol requires the

certificate to be delivered to all parties in case of a commit, we require two different certificates for

the same block shared by a leader to be considered an equivocation.

Sync cert. When leader Lr receives t + 1 distinct sync-vote messages for the proposed block Bh

in epoch r, denoted by C1/2r (Bh), Lr broadcasts 〈sync-cert, C1/2r (Bh), zra, r〉Lr to all replicas where

zra is the accumulation value of C1/2r (Bh). Again, the hash of the certificate C1/2r (Bh) is signed to

allow for efficient equivocation checks.

Ack. When a replica Pi receives a responsive certificate rc := 〈resp-cert, C3/4r (Bh), zra, r〉Lr while

in epoch r, it invokes Deliver(resp-cert, rc, zra, r) to deliver rc and broadcasts 〈ack, H(Bh), zra, r〉Pi
to all replicas. If epoch-timerr ≤ 3∆, replica Pi sets commit-timerr to 2∆ and starts counting down.

Commit. The protocol includes two commit rules and the replica commits using the rule that is

76

triggered first. In responsive commit, a replica commits block Bh and all its ancestors immediately

when it receives > 3n/4 ack messages for a responsive certificate C3/4r (Bh) with a common accu-

mulation value zra such that its epoch-timerr is large enough (2∆). Note that a responsive commit

happens at the actual speed of the network (δ).

In synchronous commit, when replica Pi receives the valid epoch r certificate when its epoch-timerr is

large enough (3∆), it sets commit-timerr to 2∆ and starts counting down. If the received certificate

is synchronous i.e., sc := 〈sync-cert, C1/2r (Bh), zra, r〉Lr , it invokes Deliver(sync-cert, sc, zsa, r) and

sets commit-timerr to 2∆. When commit-timerr reaches 0, if no equivocation for epoch-r has been

detected, replica Pi commits Bh and all its ancestors. The Deliver() message ensures that all honest

replicas have received Cr(Bh) before quitting epoch r.

In addition to above commit rules, we include an additional commit rule. We consider a block

B` proposed in epoch r − t proposed by Lr−t committed if the highest ranked chain at the end of

epoch r extends B` even though none of the blocks that extends B` proposed after epoch r− t have

been committed using either of the above commit rules. This commit rule helps in committing safe

blocks possibly uncommitted due to responsively moving to higher epoch.

We note that if an honest replica commits a block Bh in epoch r using one of the commit rules,

it is not necessary that all honest replicas commit Bh in epoch r using the same rule, or commit

Bh at all. Depending on how Byzantine replicas behave, only some honest replicas may receive

> 3n/4 ack messages and commit using responsive commit rule while some other honest replicas

may commit using synchronous commit rule. It is also possible that only some honest replica

commits Bh while no commit rules are triggered for rest of the honest replicas. For example, an

honest replica commits a block Bh responsively but all other replicas detect equivocation in the

epoch. In such a case, we ensure that all honest replicas receive and lock on a certificate for Bh,

i.e., Cr(Bh), to ensure safety of a commit. Eventually after t + 1 epochs, all honest replicas will

commit Bh using our third commit rule.

Equivocation. At any time in epoch r, if a replica Pi detects an equivocation, it broadcasts

equivocating hashes signed by leader Lr. Replica Pi also stops performing epoch r operations

except update, reconstruct and output steps described below. In addition, if epoch-timerr > 2∆,

replica Pi resets epoch-timerr to 2∆ to assist in terminating a faulty epoch faster.

Update. The update step ensures that the leaders failing to commit a block in t + 1 epochs are

removed the active set of replicas, i.e., if the leader Lr−t of epoch r− t fails to add a new block by

the end of epoch r, Lr−t is removed from future proposals, i.e., Pr ← Pr ∪ {Lr−t}. On the other

77

hand, if block B` proposed by Lr−t−1 has been committed by epoch r, update Q(Lr−t) with (v, c)

shared in b`.

Reconstruct and output. replica Pi starts to reconstruct aggregated secret Rr when replica

Pi commits or when its epoch-timerr expires. It obtains (v, c) corresponding to block committed

in Dequeue(Q(Lr)) and decrypts the share by computing di = c
sk−1
i

i . It then broadcasts di to all

other replicas. On receiving share dj from another replica Pj , it verifies it using PVSS.ShVrfy(dj).

On receiving t + 1 valid shares in S, it reconstructs Rr ← PVSS.Recon(S). In addition, it also

broadcasts the aggregated secret Rr. An epoch r beacon output Or is the hash of the aggregated

secret Rr, i.e., Or ← H(Rr).

Observe that the size of aggregated secretRr isO(κ) and all-to-all broadcast of the aggregated secret

does not blow up communication. Moreover, the aggregated secret Rr cannot be reconstructed

without an honest replica sending its secret share. Thus, we use the aggregated secret Rr to

synchronize all other replicas and responsively change epochs.

Latency and communication complexity. When the epoch leader is Byzantine, not all honest

replicas may be locked on a certificate for a common block at the end of the epoch. When the

epoch leader is honest, at least one honest replica commits block Bh proposed by an honest epoch

leader and all honest replicas lock on a certificate for common block Bh and do not act on block

proposals that do not extend Bh afterwards. Thus, block Bh and all its ancestors are finalized in

an honest epoch. Due to round-robin leader selection, there will be at least one honest leader every

t+ 1 epochs and all honest replicas finalize on common blocks up to the honest epoch. Thus, our

protocol has a commit latency of t+1 epochs. Our protocol has communication cost of O((κ+w)n2)

bits per epoch.

Why is it safe to commit a block B` proposed t+ 1 epochs earlier if the highest ranked

chain extends B`? The round robin leader selection policy ensures that there will be at least

one honest leader in last t + 1 epochs. An honest epoch leader Lr ensures it extends the highest

ranked block certificate from all honest replicas. Our protocol ensures that the block Bh proposed

by the leader Lr is committed by at least one honest replica in epoch r and all honest replicas

receive and lock on a certificate for block Bh. Thus, no honest replica acts on the future block

proposals that do not extend Bh and the highest ranked chain after epoch r always extends Bh,

and all its ancestors. This concludes that if block B` proposed t+ 1 epochs earlier is extended by

the highest ranked chain, there will never be an equivocating chain that does not extend B` and it

is safe commit a block B`.

78

5.3.2 Safety and Liveness

We say a block Bh is committed directly in epoch r if an honest replica successfully runs one of

the following commit rules (i) responsive commit rule (Step 7a), or (ii) synchronous commit rule

(Step 7b) in Figure 5.2. We say a block Bh is committed indirectly if it is a result of directly

committing a block B` (` > h) that extends Bh.

Fact 40. If an honest replica sends sync-vote for block Bh in epoch r, then no equivocating block

certificate exists in epoch r.

Proof. Suppose an honest replica Pi sends a sync-vote for block Bh in epoch r at time τ . Replica Pi

must have invoked Deliver(propose, pr, zpa, r) to deliver proposal pr for Bh at time τ − 2∆ and did

not detect an epoch r equivocation by time τ . Observe that no honest replica invoked Deliver and

sent resp-vote nor sync-vote for equivocating block proposals before time τ −∆; otherwise replica

Pi must have received a codeword for equivocating proposal i.e., an epoch r equivocation by time

τ . In addition, all honest replicas receive their codeword for proposal pr by time τ − ∆ and will

neither send resp-vote nor sync-vote for equivocating block proposals after time τ − ∆. Thus, no

equivocating block certificate exists in epoch r.

Fact 41. If a responsive certificate for block Bh exists in epoch r, then no equivocating block

certificate exists in epoch r.

Proof. A responsive certificate for block Bh in epoch r, i.e., C3/4r (Bh) requires resp-vote from

b3n/4c + 1 replicas in epoch r. A simple quorum intersection argument shows that a responsive

certificate for an equivocating block B′h′ cannot exist in epoch r.

Suppose for the sake of contradiction, an equivocating synchronous block certificate C1/2r (B′h′) for

block B′h′ exists in epoch r. At least one honest replica, say replica Pi, must have sent sync-vote

for B′h′ in epoch r. By Fact 40, an equivocating block certificate i.e., C3/4r (Bh) cannot exists.

However, since C3/4r (Bh) exists, replica Pi must not have sent sync-vote for B′h′ in epoch r. A

contradiction.

Lemma 42. If an honest replica directly commits a block Bh in epoch r using the responsive commit

rule (Step 7b), then (i) no equivocating block certificate exists in epoch r, and (ii) all honest replicas

receive a block certificate for Bh before entering epoch r + 1.

79

Proof. Suppose an honest replica Pi directly commits a block Bh in epoch r using responsive commit

rule at time τ . Replica Pi must have received 〈ack, H(Bh), zra, r〉 for Bh from a set R of b3n/4c+ 1

replicas when its epoch-timerr ≥ 2∆ and detected no epoch r equivocation by time τ . At least

bn/4c + 1 of them are honest and have received C3/4r (Bh) (corresponding to accumulation value

zra). By Fact 41, there does not exist an equivocating block certificate in epoch r. This proves

part(i) of the Lemma.

For part (ii), observe that replica Pi has its epoch-timerr ≥ 2∆ at time τ . Since, honest replicas

are synchronized within ∆ time, honest replicas that are still in epoch r at time τ must have

epoch-timerr ≥ ∆ at time τ . In addition, since replica Pi did not detect an epoch r equivocation at

time τ , no honest replica detected epoch r equivocation before time τ −∆ and did not reset their

epoch-timerr to 2∆ before time τ−∆. Thus, honest replicas that are still in epoch r at time τ must

have epoch-timerr ≥ ∆ at time τ . Since, replica Pi received 〈ack, H(Bh), zra, r〉 from a set R′ of at

least bn/4c+1 honest replicas at time τ , replicas in R′ must have invoked Deliver(resp-cert, rc, zra, r)

for rc := C3/4r (Bh) by time τ and their codewords for C3/4r (Bh) arrives all honest replicas by time

τ + ∆.

Suppose for the sake of contradiction, some honest replica Pj did not receive an epoch r block

certificate before entering epoch r + 1. If replica Pj entered epoch r + 1 when its epoch-timerr

expired, replica Pj must be in epoch r at time τ + ∆ (since, its epoch-timerr ≥ ∆ at time τ) and

must have received bn/4c + 1 valid codewords for C3/4r (Bh) sufficient to reconstruct C3/4r (Bh) by

time τ + ∆. A contradiction. On the other hand, if replica Pj enters epoch r + 1 by receiving a

aggregated secret Rr before its epoch-timerr expired, it waits for an epoch r block certificate. By

Fact 41, there does not exist an equivocating block certificate in epoch r. Thus, the only block

certificate replica Pj can receive is C1/2r (Bh) or C3/4r (Bh). If replica Pj has not received any block

certificate, replica Pj receives bn/4c + 1 valid codewords for C3/4r (Bh) by time τ + ∆ sufficient to

reconstruct C3/4r (Bh). Again a contradiction. This proves part(ii) of the Lemma.

Lemma 43. If an honest replica directly commits a block Bh in epoch r using synchronous commit

rule (Step 7b), then (i) no equivocating block certificate exists in epoch r, and (ii) all honest replicas

receive a block certificate for Bh before entering epoch r + 1.

Proof. Suppose an honest replica Pi directly commits a block Bh in epoch r at time τ . Replica Pi

must have received either a synchronous certificate i.e., C1/2r (Bh) (or a responsive certificate i.e.,

C3/4r (Bh)) at time τ − 2∆ when its epoch-timerr ≥ 3∆ and did not detect an epoch r equivocation

by time τ . If replica Pi received C1/2r (Bh), at least one honest replica must have sent sync-vote

for Bh and by Fact 40, no equivocating block certificate exists in epoch r. Similarly, if replica Pi

80

received C3/4r (Bh), by Fact 41, there does not exist an equivocating block certificate in epoch r.

This proves part(i) of the Lemma.

For part (ii), observe that replica Pi must have invoked Deliver(sync-cert, sc, zve, e) for sc = C1/2r (Bh)

(or Deliver(resp-cert, rc, zve, e) for rc = C3/4r (Bh)) at time τ − 2∆ and did not detect an epoch r

equivocation by time τ . Moreover, no honest replica received aggregated secret Rr along with

Cr(Bh) before time τ − ∆; otherwise replica Pi must have received aggregated secret Rr before

time τ and having already received Cr(Bh), would not commit using synchronous commit rule.

Observe that no honest replica detected an epoch r equivocation by time τ −∆; otherwise, replica

Pi must have detected the equivocation by time τ and would not commit. Thus, all honest replicas

will receive and forward their codewords for C1/2r (Bh) (or C3/4r (Bh)) by time τ −∆ and all honest

replicas will receive at least t+ 1 codewords sufficient to decode C1/2r (Bh) (or C3/4r (Bh)) by time τ .

Since, all honest replicas are synchronized within ∆ time, all other honest replicas must have

epoch-timerr ≥ 2∆ at time τ −2∆. Thus, honest replicas that quit epoch r when their epoch-timerr

expired must still be in epoch r at time τ and receive C1/2r (Bh) (or C3/4r (Bh)) before entering epoch

r + 1. If some honest replica, say replica Pj , enters epoch r + 1 by receiving aggregated secret

Rr, it waits for an epoch r block certificate. By part(i) of the Lemma, there does not exist an

equivocating block certificate in epoch r. Thus, the block certificate must be either C3/4r (Bh) or

C1/2r (Bh). This proves part(ii) of the Lemma.

Lemma 44. If an honest replica directly commits a block Bh in epoch r, then (i) no equivocating

block certificate exists in epoch r, and (ii) all honest replicas receive and lock on Cr(Bh) before

entering epoch r + 1.

Proof. Straight forward from Lemma 42 and Lemma 43.

Lemma 45 (Unique Extensibility). If an honest replica directly commits a block Bh in epoch r,

then any certified blocks that ranks higher than Cr(Bh) must extend Bh.

Proof. The proof is by induction on epochs r′ > r. For an epoch r′, we prove that if a Cr′(Bh′)
exists then it must extend Bh.

For the base case, where r′ = r + 1, the proof that Cr′(Bh′) extends Bh follows from Lemma 44.

The only way Cr′(Bh′) for Bh′ forms is if some honest replica votes for Bh′ . However, by Lemma 44,

there does not exist any equivocating block certificate in epoch r and all honest replicas receive

81

and lock on Cr(Bh) before quitting epoch r. Thus, a block certificate cannot form for a block that

does not extend Bh.

Given that the statement is true for all epochs below r′, the proof that Cr′(Bh′) extends Bh follows

from the induction hypothesis because the only way such a block certificate forms is if some honest

replica votes for it. An honest replica votes in epoch r′ only if Bh′ extends a valid certificate

Cr′′(Bh′′). Due to Lemma 44 and the induction hypothesis on all block certificates of epoch r <

r′′ < r′, Cr′(Bh′) must extend Bh.

Lemma 46. Let Bh be a block proposed in epoch r. If the leader of an epoch r is honest, then at

least one honest replica commits block Bh and all honest replicas lock on Cr(Bh) before entering

epoch r + 1.

Proof. Suppose leader Lr of an epoch r is honest. Let τ be the earliest time when an honest replica

Pi enters epoch r. Due to ∆ delay between honest replicas, all honest replicas enter epoch r by

time τ + ∆. Some honest replicas might have received a higher ranked certificate than leader Lr

before entering epoch r; thus, they send their highest ranked certificate to leader Lr.

Leader Lr needs to ensure that it has the highest ranked certificate before proposing in epoch r. If

Lr has Cr−1(Bl), Cr−1(Bl) is already the highest ranked certificate and Lr proposes immediately.

Otherwise, it waits for 2∆ time to ensure it can receive highest ranked certificates Cr′(Bl) from

all honest replicas. If Lr entered epoch r ∆ time after replica Pi, Lr sends a valid proposal

pr = 〈propose, Bh, r, Cr′(Bl), zpa〉Lr by time τ +3∆ which arrives all honest replicas by time τ +4∆.

In any case, all honest replicas receive a valid proposal Bh that extends the highest ranked certificate

while satisfying the constraint epoch-timerr ≥ 7∆. Thus, all honest replicas will send resp-vote to

leader Lr. In addition, all honest replicas will invoke Deliver(propose, pr, zpa, r) and set vote-timerr

to 2∆ which expires by time τ + 6∆. If b3n/4c + 1 replicas send resp-vote to Lr, leader Lr can

immediately broadcast 〈resp-cert, C3/4r (Bh), zra, r〉Lr to all other replicas. All honest replicas will

then broadcast ack to all other replicas. If an honest replica, say replica Pi, receives b3n/4c+ 1 ack

messages, it commits responsively. Observe that all honest replicas receive C3/4r (Bh) from the leader

before epoch r ends. On the other hand, if no honest replica received b3n/4c+ 1 ack messages, all

honest replicas will set their commit-timerr to 2∆ on receiving 〈resp-cert, C3/4r (Bh), zra, r〉Lr . Since,

no equivocation exists in epoch r, at least one honest replica (the earliest honest replica), say replica

Pi, will commit in epoch r. All other replicas will either commit when their commit-timerr expires

or move to epoch r + 1 on receiving aggregated secret Rr. In either case, they lock on C3/4r (Bh)

and satisfies the Lemma.

82

Next we discuss the case when optimistic conditions are not met, i.e., b3n/4c + 1 replicas do

not send resp-vote for Bh or do not send ack messages. In this case, all honest replicas will at

least send sync-vote for Bh to Lr which arrives Lr by time τ + 7∆. Leader Lr forwards Cr(Bh)

which arrives all honest replicas by time τ +8∆. Note that all honest replicas satisfy the constraint

epoch-timerr ≥ 3∆ and honest replicas set their commit-timerr to 2∆ which expires by time τ+10∆.

Moreover, no equivocation exists in epoch r. Thus, the earliest honest replica, say replica Pj that

sets commit-timerr will commit. All other replicas will either commit when their commit-timerr

expires or move to epoch r + 1 on receiving aggregated secret Rr. In either case, they lock on

C1/2r (Bh) and satisfies the Lemma.

Lemma 47. If an honest replica commits a block B` proposed in epoch r − t at the end of epoch

r such that the highest ranked chain in epoch r extends B`, then any certified blocks in epoch r or

higher must extend B`.

Proof. Due to round robin leader election, there will at least one honest leader between epoch

r − t and r, say epoch r′. By Lemma 46, at least one honest replica directly commits a block Bh

proposed in epoch r′. By Lemma 44 all honest replicas lock on Cr′(Bh) and do not vote for blocks

that do not extend Bh. By Lemma 45, any certified blocks that ranks higher than Cr′(Bh) must

extend Bh. Thus, the highest ranked chain at the end of epoch r must extend Cr′(Bh).

Since, the highest ranked chain at the end of epoch r extends B` and B` was proposed at epoch

r− t < r′, Bh extend B`. By Lemma 45, any certified blocks that ranks higher than Cr′(Bh) must

extend Bh. Thus, any certified blocks in epoch r or higher must extend B`.

Theorem 48 (Safety). Honest replicas do not commit conflicting blocks for any epoch r.

Proof. Suppose for the sake of contradiction two distinct blocks Bh and B′h are committed in epoch

r. Suppose Bh is committed as a result of Bh′ being directly committed in epoch r′ and B′h is

committed as a result of B′h′′ being directly committed in epoch r′′. Without loss of generality,

assume h′ < h′′. Note that all directly committed blocks are certified. By Lemma 45 and Lemma 47,

B′h′′ extends Bh′ . Therefore, Bh = B′h.

Theorem 49 (Liveness). All honest replicas keep committing new blocks.

Proof. For any epoch r, if the leader Lr is Byzantine, it may not propose any blocks or propose

equivocating blocks. Whenever an honest leader is elected in epoch r, by Lemma 46, at least one

honest replica commits block Bh proposed in epoch r and all other honest replicas lock on Cr(Bh)

83

proposed in epoch r i.e., all honest replicas add block Bh proposed in epoch r. Since we assume

a round-robin leader rotation policy, there will be an honest leader every t + 1 epochs, and every

time an honest leader is selected, all honest replicas keep committing new blocks.

Lemma 50 (Communication complexity). Let κ be the size of accumulator and w be the size of

witness. The communication complexity of the protocol is O((κ+ w)n2) bits per epoch.

Proof. At the start of an epoch r, each replica sends a highest ranked certificate and O(κn)-sized

PVSS tuple to leader Lr. Since, size of each certificate and PVSS tuple is O(κn), this step incurs

O(κn2) bits communication. A proposal for a block Bh consists of O(κn)-sized aggregated PVSS

tuple, and a block certificate of size O(κn). Proposing O(κn)-sized block to n replicas incurs

O(κn2). Delivering O(κn)-sized message has a cost O((κ + w)n2), since each replica broadcasts a

codeword of size O((κn)/n), a witness of size w and an accumulator of size κ.

In Resp cert step, the leader broadcasts a responsive certificate for block Bh, i.e, C3/4r (Bh) which

incurs O(κn2) communication. Delivering O(κn)-sized C3/4r (Bh) incurs O((κ+ w)n2) bits. Again,

in Sync cert step, the leader broadcasts a synchronous certificate for block Bh, i.e, C1/2r (Bh) which

incurs O(κn2) communication. Delivering O(κn)-sized C1/2r (Bh) incurs O((κ + w)n2) bits. In

Ack step, replicas perform an all-to-all broadcast of κ-sized accumulator which incurs O(κn2) bits

communication.

During reconstruction, replicas broadcast κ-sized secret shares and w-sized witness. All-to-all

broadcast of secret shares and witness incur O((κ+w)n2) bits communication. In addition, replicas

broadcast O(κ)-sized aggregated secret Rr at the end of epoch r which incurs O(κn2). Hence, the

total cost is O((κ+ w)n2) bits.

5.4 Related Work

There has been a long line of work in improving communication complexity of consensus proto-

cols [71, 50, 4, 104, 8, 84] and round complexity of consensus protocols [43, 4, 17, 50, 55, 71, 94].

We review the most recent and closely related works below. Compared to all of these protocols, our

protocol incurs O(κn2) communication per consensus decision while avoiding the use of threshold

signatures. Moreover, our protocol is optimistically responsive with a responsive commit latency of

4δ and synchronous commit latency of 4∆ + 3δ in common case when messages arrive at network

speed (or 7∆ in the worst case). Our protocol follows rotating leader paradigm and can change

84

leaders in optimistically responsive manner.

With respect to the communication complexity, the state-of-the-art synchronous BFT SMR pro-

tocols [4, 7, 100, 9] incur quadratic communication per consensus decision while using threshold

signatures. Without threshold signatures, they incur cubic communication per consensus decision.

To the best of our knowledge, the only optimally resilient protocol to achieve O(κn2) commu-

nication without threshold signature is BFT SMR protocol presented in chapter 4. However, the

protocol is not responsive even under optimistic conditions and commits a decision every 11∆ time.

With respect to optimistic responsiveness, protocols due to Thunderella [90] and Sync HotStuff [7]

are presented in a back-and-forth slow-path–fast-path paradigm. If started in the wrong path, these

protocol cannot commit responsively. Recent work such as PiLi [35], OptSync [100] and Hybrid-

BFT [83] achieve simultaneity between responsive and synchronous modes. However, they incur

cubic communication without the use of threshold signatures. Ours is the first work that achieves

simultaneity under synchrony assumption with O(κn2) communication while avoiding threshold

signatures.

OptSync. OptSync [100] (Chapter 3) presents an optimistically responsive protocol with optimal

2δ latency during responsive commit and 2∆ synchronous latency. However, the protocol follow

stable leader paradigm and incur synchronous delay of 2∆ while changing leaders. We also provide

a separate protocol that support changing leaders in optimistically responsive manner in O(δ) time.

Compared to the protocols in Chapter 3, OptRand can change leaders responsively only when the

new leader has highest ranked certificate; otherwise our protocol incurs 2∆ wait.

Hybrid-BFT. Hybrid-BFT [83] presents an optimistically responsive protocol with both responsive

and synchronous commit paths existing simultaneously. They also follow rotating leader paradigm

and has responsive commit latency of 2δ and synchronous commit latency of 2∆ + 2δ. Similar to

our work, their protocol can also change leaders in responsive manner only when the new leader

has highest ranked certificate; otherwise the protocol waits for 2∆ time.

85

Chapter 6

Synchronous Distributed Key

Generation without Broadcasts

6.1 Introduction

The problem of distributed key generation (DKG) is setting up a common public key and its

corresponding secret keys among a set of participating parties without a trusted entity. DKG pro-

tocols are used to reduce the number of trust assumptions placed in cryptographic protocols such as

threshold signatures [24, 99] and threshold encryption schemes [39]. These threshold cryptosystems

can themselves be used to implement random beacons [44, 29], reduce the complexity of consensus

protocols [104, 7], in multiparty computation protocols [66, 67], or to outsource management of

secrets to multiple, semi-trusted authorities [46, 76].

Given its widespread applications and their recent adoption in practice (e.g., [44]), we need effi-

cient solutions for DKG. An ideal solution for DKG would have low communication complexity,

low latency, optimal resilience, and provide uniform randomness of generated keys such that the

generated keys can be useful in a wider class of cryptosystems while being secure. This work fo-

cuses on the synchronous network setting where messages sent by a sender will arrive at a receiver

within a single round. Synchronous protocols have the advantage of tolerating up to a minority

corruption. While a myriad of DKG protocols [93, 59, 30, 87, 64] have been proposed in this setting,

existing solutions fall short in one way or the other. For example, Pedersen’s DKG [93] produces

non-uniform keys in the presence of the adversary, the DKG protocol due to Gennaro et al. [59]

has high latency as it requires additional secret sharing using Feldman’s VSS [48], and the protocol

86

due to Gurkhan et al. [64] does not generate keys for discrete log-based cryptosystems.

Moreover, all the DKG protocols considered in the synchronous model assume a broadcast channel

(that provides a consensus abstraction) and invoke Ω(n) broadcasts across two or more rounds [14],

where n is the number of parties. Since the best-known Byzantine consensus protocols with opti-

mal resilience incur at least O(κn3) communication (κ is a security parameter) in the absence of

DKG-based threshold signatures, instantiating a broadcast channel with state-of-the-art Byzantine

broadcast [43, 4] or Byzantine agreement [71] trivially blows up the communication complexity to

O(κn4). Moreover, due to the use of multiple broadcast channel rounds, the latency of such pro-

tocols in a point-to-point network setting has not been explored. This leaves us with the following

open question: Can we design a synchronous DKG protocol supporting a wide class of cryptosystems

with o(κn4) communication complexity, good latency, and tolerating a minority corruption?

We answer this question positively by showing two DKG protocols for discrete log-based cryp-

tosystems each with O(κn3) communication complexity. The first protocol has worst-cast O(κn3)

communication and O(t) rounds whereas the second protocol has expected O(κn3) communication

and constant rounds in expectation.

6.1.1 Key Technical Ideas and Results

Our DKG protocols avoid the broadcast channel assumption and use a Byzantine consensus pro-

cess in a non-black-box fashion to achieve O(κn3) communication. Compared to the existing

broadcast-based DKG protocols which require Ω(n) broadcasts over two or more rounds, our pro-

tocols require a single invocation of consensus instance. While DKG protocols [73, 5] without

broadcast channel assumption have been explored in the asynchronous model, they either incur

high communication [73] or do not generate keys for discrete log-based cryptosystems [5] or use

stronger cryptographic assumptions [38]. More importantly, protocols designed for asynchronous

or partially-synchronous settings can only tolerate up to t < n/3 Byzantine failures, which is sub-

optimal for many DKG applications such as random beacons [44]. In the synchronous model, we

provide the first solutions to DKG without a broadcast channel with all the desirable properties

with O(κn3) communication.

A typical approach among existing works is to perform n parallel verifiable secret sharings [48, 92]

such that all honest parties agree on a common set of qualified parties QUAL who correctly performed

secret sharing and then compute final public key and secret keys from the secret shares of all

parties in QUAL. In our protocols, we replace broadcast channels with weaker primitives such

87

Figure 6.1: Overview of sub-protocols and their dependencies

as gradecast [49, 71]. Thus, parties first perform secret sharing by using this weaker primitive to

identify a set of at least n−t parties who correctly shared their secrets, where t is the fault tolerance.

During the sharing phase, no consensus primitives are invoked to agree on the set of qualified parties.

The downside of this approach is that different honest parties may have different views regarding

the acceptance of shared secrets. As a result, different honest parties obtain different sets of at

least n− t parties (say AcceptListi for party Pi) who they accept to have performed secret sharing

correctly. For DKG, it is required that all honest parties compute the final public key and secret

keys from a common set of parties. Thus, we need to agree on a common set of parties too. Parties

then use a Byzantine consensus primitive to agree on one common set where the input is their

individual AcceptList. Once, the Byzantine consensus primitive terminates and outputs a common

set AcceptListk, the final public key and secret keys are computed from AcceptListk. Note that this

approach requires only a single instance of Byzantine consensus.

Key Building Blocks

1. Communication optimal weak gradecast. As a building block, we first provide a commu-

nication optimal weak gradecast protocol satisfying the gradecast definition of Katz and Koo [71]1.

Our weak gradecast protocol incurs O(n` + κn2) communication for ` bit input and does not re-

quire use of threshold signatures. In the same setting, the gradecast protocol of Katz and Koo [71]

incurs a communication complexity of O(κn3) even for a single bit input. Specifically, we show the

1This definition is slightly weaker than the one presented by Feldman and Micali [49].

88

Table 6.1: Comparison of related works on Distributed Key Generation

Net. Res. Comm. Round Sim. Dlog Setup
Crypto

Assumption

Pedersen [93] sync. 1/2 O(κn4) O(t) 7 X PKI DL
Gennaro et al. [59] sync. 1/2 O(κn4) O(t) X X PKI DL
Canetti et al. [30] sync. 1/2 O(κn4) O(t) X X PKI DL
Neji et al. [87] sync. 1/2 O(κn4) O(t) X X PKI RO+CDH
ETHDKG [96] sync. 1/2 O(κn4) O(t) 7 X PKI RO+CDH

Gurkhan et al. [64] sync. logn Õ(κn3) O(t) 7 7 PKI RO+SXDH+CBDH
NIDKG [61] sync. 1/2 O(κn4) O(t) X X PKI RO+DDH+. . .*

Hybrid-DKG [69] psync. 1/3 O(κn4) O(t) X X PKI RO+DL
Kokoris et al. [73] async. 1/3 O(κn4) O(t) 7 X PKI RO+DDH

Abraham et al. [5] async. 1/3 Õ(κn3) E(O(1)) 7 7 PKI RO+SXDH
Das et al. [38] async. 1/3 O(κn3) E(O(logn)) X X PKI RO+DCR+DDH
Das et al. [37] async. 1/3 O(κn3) E(O(logn)) X X PKI RO+DL

Our work (§ 6.9.1) sync. 1/2 O(κn3) E(O(1)) X X PKI+PoT RO+CDH+q-SDH
Our work (§ 6.9.2) sync. 1/2 O(κn3) O(t) X X PKI+PoT RO+q-SDH

κ is the security parameter. Net. refers to the network model. Res. refers to the number of Byzantine faults tolerated in the
system. Comm. refers to the communication complexity. Sim. means the protocol maintains secrecy which can be proven via
a simulator. Primitive refers to the cryptographic primitives used. PoT refers to the power of tau setup required for bilinear
accumulators. This setup can be removed by making use of Merkle trees at the cost of logn multiplicative communication

overhead. E(.) implies “in expectation”. *NIDKG assumes RO, rleaf-IND-CCA, DDH, Erasures, and one-more DH.

following result:

Theorem 51 (Informal). Assuming a public-key infrastructure and a universal structured reference

string under q-SDH assumption, there exists a gradecast protocol for an input of size ` bits with

O(n`+ κn2) communication tolerating t < n/2 Byzantine faults.

2. Recoverable set of shares using weak gradecast. We use the gradecast primitive to

perform communication efficient secret sharing. A consequence of using gradecast (instead of

broadcast channels) is that parties may have different views regarding the acceptance of the shared

secrets. For instance, each party Pi outputs a different set AcceptListi and this set may also contain

Byzantine parties. However, we still do guarantee that for any set output by any party (including

Byzantine parties), there is verifiable proof vouching that all parties in the set have correctly shared

their secrets and these secrets are thus recoverable. We call this sub-protocol “Recoverable set of

shares”. Using our communication optimal gradecast, our recoverable set of shares protocol can be

achieved in O(κn3) communication and constant rounds.

3. Oblivious leader election. We design a communication efficient oblivious leader election

(OLE) protocol (aka, common coin) with O(κn3) communication and constant rounds. The OLE

protocol elects a common honest leader with probability at least 1
2 . While OLE protocols have been

89

Table 6.2: Comparison of related works on MVBA with `-bit input

Network Resilience Communication Round Assumption

Cachin et al. [28] async. 1/3 O(n2`+ κn2 + n3) E(O(1)) Threshold setup
VABA [8] async. 1/3 O(n2`+ κn2) E(O(1)) Threshold setup
DUMBO-MVBA [79] async. 1/3 O(n`+ κn2) E(O(1)) Threshold setup

Our work sync. 1/2 O(n2`+ κn3) E(O(1)) PKI

E(.) implies “in expectation”.

designed in the past, they either required n2 weaker VSS instances with Ω(n4) communication [71]

or required stronger cryptographic assumptions to achieve O(κn3) communication [5]. In this work,

we build an OLE protocol using only n weaker VSS instances. Our OLE protocol makes use of n

weaker VSS instance and a non-interactive threshold signature scheme [29] to generate randomness.

The threshold signature scheme requires a prior threshold setup which is essentially a DKG setup.

To circumvent this necessity, we make use of the AcceptList output by parties in the recoverable set

of shares protocol as an intermediate threshold setup for each party. The intermediate threshold

setup suffices to use the threshold signature scheme and generate the required randomness for each

party. Our OLE protocol works in the random oracle and has CDH assumption. In particular, we

show the following:

Theorem 52 (Informal). Assuming a public-key infrastructure, a universal structured reference

string under q-SDH assumption, random oracle, and CDH, there exists an oblivious leader election

protocol with O(κn3) communication and O(1) rounds tolerating t < n/2 Byzantine faults.

4. Agreeing on a recoverable set of shares using efficient multi-valued validated Byzan-

tine agreement. Our next goal is to agree on one such set output by one of the parties. We stress

that due to the proof associated with the output of the recoverable set of shares protocol, we can

agree on the set output by any party, including a Byzantine party. However, here, the size of the set

and its proof is linear, which can potentially worsen the communication complexity again. Thus,

we need a consensus primitive that takes long messages as inputs and outputs one of the “valid”

input values. Such a primitive is called multi-valued validated Byzantine agreement (MVBA) [28]

in the literature.

MVBA was first formulated by Cachin et al. [28] to allow honest parties to decide on any externally

valid values. Recent works [8, 79] have given communication efficient protocols for MVBA in the

asynchronous model tolerating t < n/3 Byzantine faults. For long messages of size `, the protocol

due to Abraham et al. [8] incurs O((`+κ)n2) communication and the protocol due to Lu et al. [79]

90

incurs O(n` + κn2). Both of these works assume a threshold setup. Without threshold setup

assumptions, the communication blows up by a factor of n in all of the above protocols.

To the best of our knowledge, no MVBA protocols have been formulated in the synchronous model

tolerating t < n/2 faults. Recently, Nayak et al. [86] provides an efficient BA protocol for long

messages. However, since it is a BA protocol, they output a value only when all honest parties

start with the same large input. We construct the first MVBA protocol in the synchronous setting

without threshold setup. Our MVBA protocol incurs expected O(n2` + κn3) communication for

inputs of ` bit and expected 36 rounds. Specifically, we show the following result:

Theorem 53 (Informal). Assuming a public-key infrastructure, random oracle, CDH, and a uni-

versal structured reference string under q-SDH assumption, there exists a multi-valued validated

Byzantine agreement protocol for an input of size ` with expected O(n2`+κn3) communication and

expected 36 rounds tolerating t < n/2 Byzantine faults.

Efficient distributed key generation. Using our recoverable set of shares protocol where parties

output different sets of size at least n− t parties and our MVBA protocol, honest parties can agree

on a common set from which the final public key and secret keys are computed. In particular, we

obtain a DKG protocol with expected O(κn3) communication and expected 47 rounds.

Theorem 54 (Informal). Assuming public-key infrastructure, random oracle, a universal struc-

tured reference string under q-SDH assumption and CDH, there exists a protocol that solves secure

synchronous distributed key generation tolerating t < n/2 Byzantine faults with expected O(κn3)

communication and expected 47 rounds.

Although the DKG protocol terminates in constant expected time, it can take linear time in the

worst case. In this case, the protocol incurs O(κn4) communication. As an alternative, we provide

a protocol that incurs O(κn3) communication in the worst-case. RandPiper [21] provides a BFT

SMR protocol with O(κn2) communication per epoch even for O(n)-sized input. Here, an epoch is

a period that incurs 7 rounds. In this protocol, we execute the BFT SMR protocol for t+ 1 epochs

with each epoch coordinated by a distinct leader. The leader proposes his set AcceptList along with

the proof. Honest parties output the first committed set to compute the final public key and secret

keys. In particular, we obtain the following result:

Theorem 55 (Informal). Assuming a public-key infrastructure, and a universal structured reference

string under q-SDH assumption there exists a protocol that solves secure synchronous distributed

key generation tolerating t < n/2 Byzantine faults with O(κn3) communication and 11 + 7(t + 1)

rounds.

91

Limitations. In this work, we assume that the adversary is static, similar to several DKGs [68,

59, 93, 87, 96, 64] in the literature. Canetti et al. [30] show how to build adaptively secure DKG

protocols and several of our techniques could be applicable in realizing their protocol in the point-

to-point network setting. Very recently, Bacho et al. [13] gave a relaxed definition of DKG and

show that prior DKG protocols such as Gennaro et al [59] are adaptively-secure under this relaxed

definition. It could be interesting to see if our protocols are adaptively-secure under their relaxed

definition. In addition, our protocols make the q-SDH assumption. This assumption is only used

for bilinear accumulators which could be replaced with Merkle tree accumulators resulting in a

log n multiplicative overhead in the communication complexity.

6.2 Related Work

6.2.1 Related Works in Distributed Key Generation Literature

We review the most recent and closely related DKG protocols. An overview of the closely related

work is provided in Table 6.1. While a myriad of DKG protocols [93, 59, 30, 87, 64, 96, 47, 61] have

been proposed in the synchronous model, all of these protocols assume a broadcast channel. All

of these protocols invoke Ω(n) parallel broadcasts. A natural choice to instantiate the broadcast

channels is via Byzantine consensus primitives such as Byzantine Broadcast [43, 4] or Byzantine

agreement [71]. To the best of our knowledge, all optimally resilient deterministic Byzantine con-

sensus protocols incur O(κn3) communication without threshold signatures and t+ 1 rounds [43].

For randomized consensus protocols, the best known protocol with optimal resilience in this setting

is Katz and Koo [71] which incurs O(κn4) communication. Although, randomized consensus proto-

cols terminate in expected constant rounds, n parallel instances of randomized consensus requires

expected O(log n) rounds to terminate [18]. For the sake of simplicity, we assign a communication

of O(κn4) and O(t) rounds for the DKG protocols that use broadcast channel in Table 6.1. Com-

pared to all prior DKG protocols, our protocols do not use broadcast channel and use Byzantine

consensus protocols. In fact, our protocols require a single consensus invocation and incur either

expected O(κn3) communication and expected O(1) rounds or worst-case O(κn3) communication

and O(t) rounds. Our protocols are secure against static failures and generate uniform keys for

discrete logarithm based cryptosystems.

We also argue that the protocols by Momose and Ren [84] and Tsimos et al. [103] are relevant but not

sufficient to achieve our goals. Momose and Ren [84] gave a deterministic BA protocol with O(κn2)

communication with sub-optimal resilience of t < (1− ε)n/2 for a small constant ε. Using their BA

92

protocol to instantiate broadcast channels will result in DKG protocols with O(κn3) communication

but with sub-optimal resilience and linear round complexity. Similarly, Tsimos et al. [103] present

a communication-efficient broadcast protocol RandomBroadcast in the bulletin PKI setting. It

works with t < (1− ε) resilience, O(κ2n2) communication, linear round complexity, and negligible

error probability. Using RandomBroadcast to instantiate broadcast channels will result in DKG

protocols with optimal resilience, O(κ2n3) communication, linear round complexity and negligible

error probability. In contrast, our protocols have optimal resilience, O(κn3) communication and

expected O(1) rounds (or O(t) rounds).

Pedersen [93] introduced the first efficient DKG protocol for discrete log cryptosystems in the

synchronous setting. Their protocol is based on n parallel invocations of Feldman VSS [48]. Gennaro

et al. [59] showed that Pedersen’s DKG protocol can be biased by an adversary to generate non-

uniform keys. To remove the bias, they proposed a new DKG protocol that requires additional

secret sharing rounds; hence, is less efficient. Canneti et al. [30] extended Gennaro et al.’s DKG to

handle adaptive corruptions.

Neji et al. [87] presented an efficient DKG protocol to remove the bias without the additional secret

sharing round. However, in their protocol, honest parties still need to agree on whether to perform

reconstruction for a secret shared by a party which requires additional consensus invocation.

Gurkhan et al. [64] presented DKG protocol without a complaint phase by using publicly verifiable

secret sharing (PVSS) [31] scheme. However, they tolerate only log n Byzantine faults and do not

generate keys for discrete-logarithms based cryptosystems; reducing its usefulness.

Recently, Groth [61] presents a non-interactive DKG protocol with a refresh procedure that allows

refreshing the secret key shares to a new committee. Erwig et al. [47] considers large scale non-

interactive DKG protocol and handles mobile Byzantine faults. Both of above protocols assume

broadcast channels.

Several other works tackle the DKG problem from different angels. Kate et al. [69] reduced the

size of input to the broadcast channel from O(n) to O(1) by using polynomial commitments [70].

Tomescu et al. [102] reduce the computational cost of dealings in Kate et al. [69] at the cost of a

logarithmic increase in communication cost. Schindler et al. [96] instantiate the broadcast channel

with the Ethereum blockchain. In Table 6.1, we replaced the Ethereum blockchain with Byzantine

consensus primitives for fair comparison.

Kate et al. [69] gave the first practical DKG protocol in the partially synchronous communica-

tion model which requires 3t + 2f + 1 parties to tolerate t Byzantine faults and f crash faults.

93

Kokoris-Kogias et al. [73] gave the first DKG protocol in asynchronous communication model with

optimal resilience (t < n/3). Their protocol has O(κn4) communication and O(t) rounds overhead.

Abraham et al. [5] gave an improved DKG protocol with O(κn3) communication and expected

O(1) round complexity. However, their protocol uses PVSS and hence does not generate keys for

dlog-based cryptosystems. Das et al. [38] gave the dlog-based DKG protocol with O(κn3) commu-

nication and optimal resilience in the asynchronous model. However, their protocol incurs expected

O(log n) round complexity and requires stronger Decisional Composite Residuosity (DCR) assump-

tion. Very recently, Das et al. [37] gave the dlog-based DKG protocol with O(κn3) communication

and optimal resilience in the asynchronous model with discrete-log assumption. However, their

construction still incurs O(log n) round complexity. We note that while DKG protocols have been

designed with lesser assumption (i.e., DL assumption in Das et al. [37]) in the asynchronous model

tolerating t < n/3 Byzantine failures, designing protocols tolerating t < n/2 Byzantine failures

presents its own unique challenges and does not make our protocols sub-optimal.

Recent works without broadcast channel assumption. We emphasize the importance of

investigating protocols in the synchronous model without broadcast channels. Recent works [21, 22]

have studied design of efficient randomness beacon protocols in the synchronous model without

broadcast channel assumption.

6.2.2 Related Works in Byzantine Agreement Literature

There has been a long line of work in improving communication and round complexity of consensus

protocols [71, 50, 4, 104, 27, 8, 84, 100]. We review the most recent and closely related works.

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [28] to allow

honest parties to agree on any externally valid values. Their protocol works in asynchronous

communication model and has optimal resilience (t < n/3) with O(n2`+κn2 +n3) communication

for input of size `. Later, Abraham et al. [8] gave an MVBA protocol with optimal resilience

and O((` + κ)n2) communication in the same asynchronous setting. Lu et al. [79] extended the

work of Abraham et al. [8] to handle long messages of size ` with a communication complexity of

O(n` + κn2). All of these protocols assumed threshold setup. In the absence of threshold setup,

the communication complexity blows up by a factor of n in all of these protocols.

To the best of our knowledge, no MVBA protocol has been formulated in the synchronous setting

tolerating t < n/2 Byzantine faults. Our MVBA protocol incurs O(n2`+ κn3) for inputs of size `

and does not assume threshold setup and terminates in expected constant rounds.

94

Our MVBA protocol can also be used for binary inputs as a Binary Byzantine Agreement (BBA)

protocol tolerating t < n/2 Byzantine faults and terminating in expected O(1) rounds. Feldman

and Micali [50] were the first to give a BBA protocol that terminates in constant expected rounds.

Their protocol works in plain authenticated model without PKI and tolerates t < n/3 Byzantine

faults (which is optimal). In the authenticated setting, Katz and Koo [71] gave a BBA protocol

tolerating t < n/2 Byzantine faults terminating in expected constant rounds. Their protocol incurs

O(κn4) communication and terminates in expected 4 epochs. We extend the BBA protocol of Katz

and Koo [71] and reduce its communication by linear factor while handling multi-valued input

by designing a communication optimal gradecast protocol. A simple and efficient BBA tolerating

t < n/3 Byzantine faults in the authenticated model was given by Micali [82]. Abraham et al. [4]

reduced the round complexity of BBA protocol to expected 10 rounds. However, their protocol

required a threshold setup to generate a perfect common coin; a perfect common coin ensures all

honest parties output the same random value. Compared to their work, our work does not require

a threshold setup and executes with a weak common coin.

Very recently, Abraham et al. [1] gave a BBA protocol in the authenticated model without PKI

and digital signatures tolerating t < n/3 Byzantine faults. Their protocol has an expected commu-

nication complexity of O(n4 log n) and expected constant rounds.

6.3 Model and Preliminaries

We consider a system consisting of n parties (P1, . . . , Pn) with pair-wise reliable, authenticated

point-to-point channels, where up to t < n/2 parties can be Byzantine faulty. The model of

corruption is static i.e., the adversary picks the corrupted parties before the start of protocol

execution. The Byzantine parties may behave arbitrarily. A non-faulty party is said to be honest

and executes the protocol as specified. We assume a synchronous communication model. Thus, if

an honest party sends a message at the beginning of some round, the recipient receives the message

by the end of that round.

Setup. Let p be a prime number that is poly(κ) bits long, and G be a group of order p such that

it is computationally infeasible except with negligible probability in κ to compute discrete log. Let

Zp denote its scalar field. Moreover, let g and h denote the generators of G where a ∈ Zp such that

ga = h is not known to any t subset of the nodes.

We make the standard computational assumption on the infeasibility to compute discrete logarithms

95

called the discrete-log assumption [59]. In particular, we assume that the adversary is unable to

compute discrete logarithms modulo large (based on the security parameter κ) primes.

We make use of digital signatures and PKI to prevent spoofing and replays and to validate messages.

Message x sent by a party Pi is digitally signed by Pi’s private key and is denoted by 〈x〉i. We

denote H(x) to represent invocation of the random oracle H on input x. In addition, we use a hash

function H ′ : G→ {0, 1}κ in our leader election protocol.

Equivocation. Two or more messages of the same type but with different payload sent by a party

is considered an equivocation. In order to facilitate efficient equivocation checks, the sender sends

the payload along with signed hash of the payload. When an equivocation is detected, broadcasting

the signed hash suffices to prove equivocation by the sender.

6.3.1 Definitions

Distributed key generation. A DKG protocol for n parties (P1, . . . , Pn) generates private

outputs (x1, . . . , xn) called the shares and a public output y.

Definition 6.3.1 (Secure DKG for Dlog based cryptosystems [59]). A dlog based DKG protocol

that distributes a secret x among n parties through shares (x1, . . . , xn) where xi is a share output

to party Pi is t-secure if in the presence of an adversary that corrupts up to t parties, the following

requirements for correctness and secrecy are maintained.

Correctness.

C1. All subsets of t + 1 shares provided by honest parties define the same unique secret

key x ∈ Zp.

C2. All honest parties have same value of public key y = gx ∈ G, where x ∈ Zp is secret

guaranteed by (C1).

C3. x is uniformly distributed in Zp (and hence y is uniformly distributed in G).

Secrecy. No information on x can be learned by the adversary except for what is implied by

the value y = gx.

More formally, the secrecy condition is expressed in terms of simulatability: for every (probabilistic

polynomial-time) adversary A that corrupts up to t parties, there exists a (probabilistic polynomial-

time) simulator S, such that on input an element y ∈ G, produces an output distribution which is

96

polynomially indistinguishable from A’s view of a run of the DKG protocol that ends with y as its

public key output.

Weak Gradecast. Weak gradecast is a relaxed version of gradecast [49] introduced by Katz and

Koo [71].

Definition 6.3.2 (Weak Gradecast [71]). A protocol with a designated sender Pi holding an initial

input v is a weak gradecast protocol tolerating t < n/2 Byzantine parties if the following conditions

hold

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, 2}.

2. If the sender is honest, each honest party outputs vi with a grade of 2.

3. If an honest party Pi outputs a value v with a grade of 2, then all honest parties output value

v with a grade of ≥ 1.

Oblivious leader election. An oblivious leader election protocol elects a common honest leader

with some constant probability.

Definition 6.3.3 (Oblivious Leader Election [71]). A protocol for parties P1, . . . , Pn is an oblivious

leader election protocol with fairness α tolerating t Byzantine failures if each honest party Pi outputs

a value vi ∈ [1, n] and the following conditions holds with probability at least α:

There exists a value j ∈ [1, n] such that (i) each honest party Pi outputs vi = j, and (ii) party Pj

is honest.

6.3.2 Primitives

In this section, we present several primitives used in our protocols.

Linear erasure and error correcting codes. We use standard (t + 1, n) Reed-Solomon (RS)

codes [95]. This code encodes t+ 1 data symbols into code words of n symbols using ENC function

and can decode the t+ 1 elements of code words to recover the original data using DEC function.

More details on ENC and DEC are provided in Section 2.5.

Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation

value for a set of values using Eval function and produces a witness for each value in the set using

97

CreateWit function. Given the accumulation value and a witness, any party can verify if a value is

indeed in the set using Verify function. More details on these functions are provided in Section 2.5.

In this chapter, we use collision free bilinear accumulators from Nguyen [88] as cryptographic accu-

mulators which generates constant sized witness, but requires q-SDH assumption. Alternatively, we

can use Merkle trees [81] (and avoid q-SDH assumption) at the expense of O(log n) multiplicative

communication.

Non-interactive threshold signature scheme. We use (t, n) non-interactive threshold signature

scheme of Cachin et al. [29] in one of our protocols. The threshold signature scheme is secure against

static adversary. The threshold signature scheme of Cachin et al. [29] consists of following interfaces:

- The randomized key generation algorithm KeyGenTS that takes a security parameter κ as

input and outputs a tuple (sk1, . . . , skn) of secret keys, a tuple (pk1, . . . , pkn) and a common

public key pk.

- The deterministic signing algorithm SignTS that takes as input ski and a message m and

outputs a signature σi on m.

- The deterministic share verification algorithm ShareVerifyTS that takes as input public key

pki, a signature share σi and tuple (i,m). It outputs a bit b ∈ {0, 1} indicating whether σi is

a valid signature share on m under secret key ski.

- The deterministic combining CombineTS takes as input a tuple of public keys (pk1, . . . , pkn),

a message m, and a list of t + 1 pairs (i, σi). It outputs either a signature σ on m or ⊥, if

(i, σi) contains ill-formed signature shares.

- The deterministic verification algorithm VerifyTS takes as input a signature σ, a message m

and a common public key pk. It outputs a bit b ∈ {0, 1} indicating whether σ is a valid

signature on m.

Non-Interactive Proof-of-Equivalence of commitments [69]. Given two commitments C〈g〉(s) =

gs and C〈g,h〉(s, r) = gshr to the same value s for generators g, h ∈ G and s, r ∈ Zp, a prover

proves that she knows s and r such that C〈g〉(s) = gs and C〈g,h〉(s, r) = gshr. We denote it by

NIZKPK≡Com(s, r, g, h, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com ∈ Z3
p.

NIZKPK≡Com is generated as follows:

98

- Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .

- Compute hash c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t1, t2), where H≡Com : G6 → Zp is a random

oracle hash function.

- Let u1 = v1 − c · s and u2 = v2 − c · r.

- Send the proof π≡Com = (c, u1, u2) along with C〈g〉(s) and C〈g,h〉(s, r).

The verifier checks this proof (given π≡Com, g, h, C〈g〉(s), C〈g,h〉(s, r)) as follows:

- Let t′1 = gu1C〈g〉(s)c and t′2 = hu2(
C〈g,h〉(s,r)
C〈g〉(s)

)c.

- Accept the proof as valid if c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t′1, t′2).

Normalizing the length of cryptographic building blocks. Let λ denote the security param-

eter, κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and

witness of the accumulator and κv = κv(λ) denote the size of secret share and witness of a secret.

Further, let κ = max(κh, κa, κv); we assume κ = Θ(κh) = Θ(κv) = Θ(κa) = Θ(λ). Throughout the

chapter, we can use the same parameter κ to denote the hash size, signature size, accumulator size

and secret share size for convenience.

6.4 Secure DKG with Two Broadcast Rounds

We first present a secure DKG protocol assuming a broadcast channel motivated from Gennaro et

al. DKG [59]. The presented DKG reduces the number of required rounds with broadcast to two,

which is a significant improvement over [59] requiring three broadcast rounds in the best case and

five broadcast rounds otherwise.2 In later sections, we replace the broadcast channel with a novel

consensus primitives to design communication-efficient DKG protocols.

Gennaro et al. [59] presented a secure DKG protocol that produces uniform public keys based on

Pedersen’s VSS [92]. In their protocol, each party, as a dealer, selects a secret uniformly at random

and shares the secret using Pedersen’s VSS protocol. Since Pedersen’s VSS provides information

theoretic secrecy guarantees, the adversary has no information about the public key and hence

2Using NIZK similar to us, the number of rounds for Gennaro et al. DKG [59] can be reduced to two in the
best case and three otherwise in a rather straightforward manner; however, reducing to two broadcast rounds in all
situations is the key challenge here.

99

cannot bias it. At the end of the secret sharing, a set of qualified parties QUAL who correctly

shared their secret is defined. Once the set QUAL is fixed, parties in set QUAL invoke an additional

round of secret sharing using Feldman’s VSS [48] to generate the final public key. While this

approach ensures generation of uniform keys and maintains secrecy, it adds additional overhead

as it incurs more latency and communication to perform additional secret sharing. In addition to

the above overhead, Pedersen VSS requires three broadcast rounds. In particular, parties post the

commitment, complaints and secret shares corresponding to the complaints on to the broadcast

channel during the sharing phase.

The protocol in Figure 6.2 improves upon the DKG protocol of Gennaro et al. [59] in the following

ways.

Improving latency in the sharing phase. We improve latency by reducing information posted

on the broadcast channel by using improved eVSS (iVSS) protocol [21] which requires only 2

broadcast rounds.3 Reducing the broadcast rounds greatly improves latency as broadcast channels

are generally instantiated using Byzantine broadcast or Byzantine agreement protocols which have

worst-case linear round complexity.

In iVSS, the dealer posts commitments on the broadcast channel and privately sends the secret

shares to each party. Instead of posting the complaints on the broadcast channel, parties multicast

blame message if they receive invalid secret shares or receive no secret shares at all. Parties then

forward all blame messages to the dealer4. The dealer is expected to send secret shares corresponding

to the blame messages (i.e., secret shares sij , s
′
ij if a Pj sent blame message against dealer Pi). If

the dealer sends all secret shares corresponding to the blame message it forwarded, a party sends a

vote message to the dealer. Upon receiving t+ 1 vote messages, the dealer posts a vote-certificate

containing t + 1 vote messages. Honest parties consider the dealer to be honest if they see the

vote-certificate on the broadcast channel.

Observe that using iVSS scheme, the dealer posts only the commitment and vote-certificate on the

broadcast channel. This improves the sharing phase by one broadcast round.

Using commitments to evaluations instead of commitments to coefficients. In VSS

such as Pedersen’s VSS and Feldman’s VSS and thus in [59], commitments to the secret share are

commitments to the coefficients of a t-degree polynomial, which imply verifying a share requiresO(t)

3Alternatively, we can use broadcast optimal VSS protocol of Backes et al. [14] which has 2 broadcast rounds. We
prefer iVSS protocol for its simplicity.

4In an implementation, we can only forward up to t blames instead of all the blames.

100

Sharing Phase

1. Deal. Each party (as a dealer) Pi selects two random polynomials fi(y), f ′i(y) ∈ Zp[y] of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′i(y) = bi0 + bi1y + · · ·+ bity

t

Let si = ai0 = fi(0). Party Pi posts Cik = gfi(k)hf
′
i(k) ∀k ∈ {1, . . . , n} on the broadcast channel. Party Pi

computes the secret shares sij = fi(j), s
′
ij = f ′i(j) and sends sij , s

′
ij privately to Pj ∀j ∈ [n].

2. Blame. Each party Pi verifies that the commitment vector contains a t degree polynomial (Equation (6.2)).
For j ∈ [n], check if

gsji · hs
′
ji = Cji (6.1)

n∏
k=1

CCodekjk = 1G, where {Code1, . . . ,Coden} ∈ C⊥ using Equation (6.4) (6.2)

If the check fails for (dealer) party Pj , send 〈blame, j〉i to all parties and collect all the blames.

3. Forward blame. If more than t blame messages are collected for party Pj as the dealer in the previous step,
do not send anything for dealer Pj until the Decide step (Step 6).

Otherwise, for every 〈blame, j〉k received from party Pk, forward the blame messages to the dealer Pj .

4. Open. Each party Pi, who as a dealer, received 〈blame, i〉k from any party Pj , sends valid secret shares sik, s′ik
(that verifies Equation (6.1)) to party Pj .

5. Vote. If in Step 2, a party Pi received ≤ t 〈blame, j〉k messages and party Pj sent valid secret shares sjk, s′jk
for every 〈blame, j〉k it forwarded to party Pj , send a vote 〈vote, j〉i to party Pj . Forward the secret shares sjk,
s′jk to party Pk.

6. Decide. If party Pi, as a dealer, receives t + 1 〈vote, i〉 messages, post the vote-certificate on the broadcast
channel.

Each party Pi marks a party Pj qualified if it receives a vote-certificate for party Pj on the broadcast channel;
otherwise the party is disqualified. Party Pi builds a set of non-disqualified parties QUAL.

Generating Public key

7. Party Pi sets its share of the secret as xi =
∑
j∈QUAL sji, and computes x′i =

∑
j∈QUAL s

′
ji, C〈g〉(xi) = gxi ,

C〈g,h〉(xi, x′i) = gxihx
′
i and π≡Comi = NIZKPK≡Com(xi, x

′
i, g, h, C〈g〉(xi), C〈g,h〉(xi, x′i)). Party Pi sends (C〈g〉(xi),

π≡Comi) to all parties.

8. Upon receiving a tuple (C〈g〉(xj), π≡Comj), compute C〈g,h〉(xj , x′j) = gxjhx
′
j locally as follows:

gxjhx
′
j =

∏
m∈QUAL

Cmj (6.3)

Ensure π≡Comj verifies NIZKPK≡Com between C〈g〉(xj) and C〈g,h〉(xj , x′j).
9. Upon receiving t+ 1 valid gxj values, perform Lagrange interpolation in the exponent to obtain y = gx. Output

y as the public key and xi as the private key.

Figure 6.2: Secure distributed key generation in dlog-based cryptosystems

101

computations. This results in O(nt) computations per VSS instance in the complaint stage (where

every party verifies opening of up to t complaints) and during reconstruction. SCRAPE [31, Section

2.1] showed how to commit (using discrete log commitments) to evaluations instead of coefficients

of the polynomial and verify that the committed evaluations are of a degree t polynomial by using

the property of coding schemes: if C is the code space for an (n, t) sharing, then the following

vector

C⊥ := {Code1, . . . ,Coden;Codei = poly(i)
n∏

j=1,j 6=i
1/(i− j)

poly(x) is a random polynomial of degree n− t+ 1} (6.4)

is orthogonal to C. We can check that the Pedersen’s commitments to the evaluations are an (n, t)

sharing (see Equation (6.1)). If λ is logg h, then commitments to evaluations form a polynomial

gfhf
′

= gf+λf
′
which is another (n, t) polynomial thereby allowing to use the coding technique. This

is an information-theoretic technique and therefore does not affect the security of the underlying

VSS.

Removing additional secret sharing while generating public key. We remove the additional

secret sharing performed using Feldman’s VSS by taking an alternate approach [69]. Instead of

executing an additional secret sharing, assuming random oracle, we make use of the NIZK proof

of equivalence of commitments NIZKPK≡Com to generate the public key. This approach does not

require additional secret sharing via Feldman’s VSS. Once the sharing phase is completed, a set of

qualified parties QUAL is finalized. Then, each party Pi computes its share of the shared secrets i.e.,

xi =
∑

Pj∈QUAL sji and x′i =
∑

Pj∈QUAL s
′
ji along with commitments C〈g〉(xi), C〈g,h〉(xi, x′i). It then

multicasts commitment of its share C〈g〉(xi) and the corresponding NIZKPK≡Com proof π≡Comi to

prove Pi knows xi and x′i.

All parties can compute the commitment C〈g,h〉(xi, x′i) locally as shown in Equation (6.3) and verify

the correctness of commitment C〈g〉(xi) using π≡Comi. The final public key Y is computed via

Lagrange interpolation in the exponent using t+ 1 distinct commitments C〈g〉(xi).

6.4.1 Security Analysis

We rely on the following Lemma of [92].

Lemma 56 ([92]). Under the discrete-log assumption, Pedersen’s VSS satisfies following properties

102

in the presence of a polynomially bounded adversary that corrupts up to t parties.

(i) If the dealer is not disqualified during the sharing phase, then all honest parties hold secret

shares that interpolate to unique polynomial of degree t. In particular, any t + 1 of these

shares suffice to reconstruct the secret σ.

(ii) The protocol produces information (i.e., commitments Ck and secret shares σi) that can be

used at reconstruction time to test for the correctness of each secret share; thus, reconstruction

is possible, even in the presence of malicious parties, from any subset of shares containing at

least t+ 1 correct secret shares.

(iii) The view of the adversary is independent of the value of the secret σ, and therefore the secrecy

of σ is unconditional.

Note that Lemma 56 also holds when using evaluations instead of coefficients as discussed in Sec-

tion 6.9. The coding check (see Equation (6.2)) ensures that the shared commitments to evaluations

are indeed a t degree polynomial except with 1/p probability in Zp. Since p is sufficiently large

(poly(κ)), the probability of the check failing is negligible in the security parameter.

Fact 57. If a dealer Pi receives a vote-certificate, all honest parties must have received their cor-

responding secret shares sij, s
′
ij.

Proof. Suppose a dealer Pi receives a vote-certificate i.e, t + 1 vote messages. At least one of the

vote messages is sent by an honest party (say Pj). An honest party Pj sends a vote message only

when it receives no blame messages or receives up to t blame messages and dealer Pi sent secret

shares sik, s
′
ik for every 〈blame, i〉k message it forwarded.

If party Pj received no blame messages, all honest parties must have received their corresponding

secret shares sij , s
′
ij ; otherwise honest parties would have sent blame messages. On the other

hand, if party Pj received f ≤ t blame messages, n− t− f honest parties must have received their

corresponding secret shares; otherwise, these honest parties would have sent blame messages and

party Pj would have received more than f blame messages. Since party Pj forwards secret shares

sik, s
′
ik to party Pk for every 〈blame, i〉k message it received, all honest parties must have received

corresponding secret shares.

Theorem 58. Under discrete-log assumption and random oracle, the protocol in Figure 6.2 is a se-

cure protocol for distributed key generation in dlog-based cryptosystem tolerating t < n/2 Byzantine

faults.

103

Let B be the set of parties controlled by the adversary, and G be the set of honest parties (run by the
simulator S). Without of loss of generality, let B = [P1, Pt′] and G = [Pt′+1, Pn], where t′ ≥ t. Let Y ∈ G
be the input public key and H≡Com : G6 → Zp is a random oracle hash table for NIZKPK≡Com.

1. Perform Step 1 through Step 6 on the behalf of the uncorrupted parties Pt′+1, . . . , Pn exactly as secure
DKG protocol (refer Figure 6.2) until set QUAL is finalized. At the end of Step 6, the following holds:

- Set QUAL is well-defined with at least one honest party in it.

- The adversary’s view consists of polynomials fi(y), f ′i(y) for Pi ∈ B, the secret shares sij , s
′
ij for

Pi ∈ QUAL ∩ G, Pj ∈ B, and the commitments Ci for Pi ∈ QUAL.

- S knows all fi(y) and f ′i(y) for Pi ∈ QUAL as it knows n− t′ shares for each of those.

2. Perform the following computations for each i ∈ {t+ 1, . . . , n} before Step 6 (refer Figure 6.2).

(a) Compute xj for party Pj ∈ B. Similarly, compute xj for party Pj ∈ [Pt′+1, Pt]. Interpolate in the
exponent (0, Y) and (j, gxj) for j ∈ [1, t] to compute C〈g〉(x∗i) = gx

∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random challenges ci ∈ Zp and responses

ui,1, ui,2 ∈ Zp, computing the commitments ti,1 = (gx
∗
i)cigui,1 and ti,2 =

C〈g,h〉(xi,x
′
i)

ci

C〈g〉(x∗i)
hui,2 and

include entry 〈(g, h, C〈g〉(x∗i), C〈g,h〉(xi, x′i), ti,1, ti,2), ci〉 in the hash table H≡Com so that π≡Com =
(ci, ui,1, ui,2).

3. In the end, x =
∑

Pi∈QUAL si such that Y = gx.

Figure 6.3: Simulator for Secure DKG

Proof. We first prove correctness of the protocol. Observe that all honest parties build the same

set of non-disqualified parties QUAL in Step 6. This is true because the commitment to the shared

polynomials and vote-certificates are posted on the broadcast channel and broadcast channel ensures

all honest parties output a common value.

Note that if a party Pj ∈ QUAL, it must have posted its commitment and vote-certificate on the

broadcast channel. By Fact 57, all honest parties have received secret shares shared by party Pj .

This implies party Pj is not disqualified during the sharing phase. By part (i) of Lemma 56, all

honest parties hold correct secret shares and any t+1 of these secret shares suffices to reconstruct the

secret sj . This is true for all parties Pj ∈ QUAL. Since, the secret key x is sum of individual secret sj

contributed by Pj ∈ QUAL and each secret sj can be reconstructed using Lagrange interpolation via

a combination of t+1 secret shares provided by honest parties, the secret key x can be reconstructed

via t+ 1 shares provided by honest parties. This proves property C1 of a secure DKG protocol.

By part (ii) of Lemma 56, there exists information (i.e., commitments) that can be used to verify

correctness of each secret share. Observe that each honest party Pj sends gxj and NIZKPK≡Com

proof π≡Comj at the end of sharing phase. Each party Pi can verify correctness of C〈g〉(xj) by

104

checking Equation (6.3). A valid NIZKPK≡Com proof π≡Comj proves in zero knowledge that party

Pj knows xj and x′j thus proving the correctness of gxj . By using t + 1 valid gxj , honest parties

can compute the same gx via Lagrange interpolation in the exponent which is the public key. This

proves property C2 of a secure DKG protocol.

Observe that the secret key x is the sum of secrets shared by parties in QUAL which contains at

least one honest party and honest parties select their secret uniformly at random. This suffices to

prove property C3 of a secure DKG protocol.

We now prove secrecy. Our proof of secrecy is based on the proof of secrecy in earlier works [59, 69].

We provide a simulator S for our secure DKG protocol in Figure 6.3. Without loss of generality,

we assume the adversary A compromises parties P1, . . . , Pt′ , where t′ ≤ t, denoted by set B. The

rest of the parties Pt′+1, . . . , Pn, denoted by set G are controlled by the simulator.

Informally, the simulator S with input Y runs as follows. S will run on the behalf of the honest

parties G Step 1 until Step 6 following exactly the instructions. At this point, the set QUAL is

well-defined and S knows all fi(y) and f ′i(y) for Pi ∈ QUAL as it knows n − t′ shares for each of

those. Observe that the view of adversary A that interacts with S is identical to the view of A that

interacts with honest parties in a regular run of the protocol. In particular, A sees the following

distribution of data:

- Polynomials fi(y), f ′i(y) for Pi ∈ B

- Values fi(j), f
′
i(j) for i ∈ G, j ∈ B and values Ci for Pi ∈ QUAL

S will then change the secret shared by one honest party (say Pn) to “hit” the desired public key Y

such that the above data distribution observed by A remains identical. For parties Pi ∈ (G \{Pn}),
the input polynomial fi(y) and f ′i(y) remains identical. Thus, their data distribution remains

identical. For party Pn, the input polynomial is modified such that gf
∗
n(0) = gs

∗
n = Y∏

Pj∈QUAL\{Pn}
gsi

and f∗n(j) = snj for j ∈ [1, t]. Define f ′∗(y) such that f∗n(y) + λf ′∗n (y) = fn(y) + λf ′n(y), where

λ = logg(h). Observe that for these polynomials, the evaluations and commitments seen by parties

in B is identical to the real run of the protocol.

Simulator S will then compute gxj for party Pj ∈ [P1, Pt] and interpolate in the exponent (0, Y)

and (j, gxj) for j ∈ [1, t] to compute C〈g〉(x∗i) = gx
∗
i and the corresponding NIZKPK≡Com and publish

these values. Observe that these values pass the verification in the real run of protocol.

It remains to be shown that polynomials f∗i (y) and f ′∗i (y) belong to the right distribution. For

105

QUAL \ (G \ {Pn}), this is trivially true as they are defined identically to fi(y) and f ′i(y) which

were chosen uniformly at random. For f∗n, the polynomial evaluates to random values fn(j) at

j ∈ [1, t] and evaluates to logg(s
∗
n) required to hit Y . Finally, f ′∗n (y) is defined as f∗n(y) +λf ′∗n (y) =

fn(y) + λf ′n(y), and since f ′n(y) is chosen to be random, so is f
′∗
n (y).

6.5 Communication Optimal Weak Gradecast

One of the main tools in the design of our communication efficient protocols is our communication

optimal weak gradecast protocol. Gradecast (aka graded broadcast) is a relaxed version of broadcast

introduced by Feldman and Micali [49] which can be obtained in constant number of rounds.

Feldman and Micali [49] provided a gradecast protocol tolerating t < n/3 Byzantine faults in the

plain authenticated model without PKI and digital signatures. Later, Katz and Koo [71] provided

a slightly weaker gradecast protocol in the authenticated model tolerating t < n/2 Byzantine faults

using PKI and digital signatures. The gradecast protocol of Katz and Koo [71] incurs O(κn3)

communication even for a single bit input in the absence of threshold signatures. In this work, we

present a gradecast protocol with a optimal communication complexity of O(n` + κn2) for ` bit

input.

Our gradecast (refer Figure 6.4) implements weaker gradecast [71] (Definition 6.3.2) which relaxes

gradecast [49] when no honest party outputs a grade of 2 and allows honest parties to output

different values with a grade of 1. In particular, when an honest party Pj outputs a value v with a

grade of 1, our primitive allows other honest parties to output a different value v′ with a grade of

1 when no honest party outputs a value with a grade of 2. This weaker gradecast suffices for our

purpose. In Section 6.10, we show a quadratic lower bound on the communication complexity of

weak gradecast for completeness.

Deliver. We recall the Deliver function (refer Figure 4.2) used by an honest party to efficiently

propagate long messages. This function is adapted from Chapter 4 where linear-sized messages

are propagated among all honest parties with O(κn2) communication cost. The Deliver function

enables efficient propagation of long messages using erasure coding techniques and cryptographic

accumulators. The input parameters to the function are a keyword mtype, long message m, accumu-

lation value ze corresponding to message m and epoch e in which Deliver function is invoked. The

input keyword mtype corresponds to message type containing long message m sent by its sender.

In order to facilitate efficient leader equivocation, the input keyword mtype, hash of long message

m, accumulation value ze, and epoch e are signed by the sender of message m. We omit epoch

106

parameter when the Deliver function is not invoked within an epoch. The Deliver function incurs 2

rounds.

Set oi = ⊥ and gi = ⊥. Each party Pi performs the following operations:

- Round 1: If party Pj is the designated sender, then it multicasts its input value v in the form of 〈gcast, v, z〉j
where z is the accumulation value of v.

- Round 2: If party Pi receives pr := 〈gcast, v, z〉j for the first time, then invoke Deliver(gcast, pr, z).

- Round 4: If party Pi invoked Deliver in round 2 and no party Pj equivocation has been detected so far, set
oi = v and gi = 2. Let vi be the first value received. If vi = ⊥, set oi = ⊥ and gi = 0, else if oi = ⊥, set oi = vi
and gi = 1. Output (oi, gi).

- At any round: If equivocating hashes signed by party Pj are detected, multicast the equivocating hashes.

Figure 6.4: Weak Gradecast with O(n`+ (κ+ w)n2) communication.

The gradecast protocol is presented in Figure 6.4. In round 1, the designated sender Pj sends value

v by multicasting 〈gcast, v, z〉j where z is the accumulation value for value v. We note that the

size of input value v can be large. To facilitate efficient equivocation checks, the sender Pj signs

〈gcast, H(v), z〉 and sends v separately. Whenever an equivocation by the sender is detected, multi-

casting signed hashes suffices to prove equivocation by the sender. The reduction in communication

is obtained via the use of efficient erasure coding schemes [95], cryptographic accumulators [15] and

multicast of equivocating hashes (if any). Multicasting of equivocating hashes been explored in

several efficient BFT protocols [7, 100, 10].

In round 2, if party Pi receives 〈gcast, v, z〉j , it invokes Deliver to propagate long message v. Note

that Deliver function requires 2 rounds. Round 3 accommodates steps of Deliver function invoked

in rounds 2. In round 4, each party Pi sets its output value and initial grades based on whether

they invoked Deliver in round 2 and received any value.

6.5.1 Security Analysis

Lemma 59. Suppose party Pj is the designated sender. If an honest party invokes Deliver in round

r for a value m sent by party Pj and no honest party has detected a party Pj equivocation by round

r + 1, then all honest parties will receive value m by round r + 2.

Proof. Suppose an honest party Pi invokes Deliver at round r for a value m sent by party Pj . Party

Pi must have sent valid code words and witness 〈codeword, mtype, sk, wk, ze, e〉i computed from

value m to every party Pk ∀k ∈ [n] at round r. The code words and witness arrive at all honest

parties by round r + 1.

107

Since no honest party has detected a party Pj equivocation by round r + 1, it must be that either

honest parties will forward their code word 〈codeword,mtype, sk, wk, ze, e〉 when they receive the

code words sent by party Pi or they already sent the corresponding code word when they either

invoked Deliver for value m or received the code word from some other party. In any case, all honest

parties will forward their code word corresponding to value m by round r + 1. Thus, all honest

parties will have received t+1 valid code words for a common accumulation value ze by round r+2

sufficient to decode value m.

Theorem 60. The protocol in Figure 6.4 is a gradecast protocol satisfying Definition 6.3.2.

Proof. Suppose party Pj is the designated sender with its input value v.

We first consider the case when an honest party Pi outputs value v with a grade gi = 2. Honest

party Pi must have invoked Deliver for value v by round 2 and did not detect a party Pj by round

4. This implies no honest party detected a party Pj equivocation by round 3. By Lemma 59, all

honest parties receive value v by round 4. In addition, since party Pi invoked Deliver for value v

by round 2, all honest parties receive a code word for value v by round 3. Thus, value v is the

first value received by all honest parties. Since v 6= ⊥, all honest parties will output value v with a

grade ≥ 1.

Next, we consider the case when the designated sender is honest. Since, the sender is honest, it

sends its input value v to all honest parties such that all honest parties receive value v in round

2. Thus, all honest parties invoke Deliver to propagate value v in round 2. Moreover, the honest

sender does not equivocate. Thus, all honest parties output value v with a grade of 2 in round 4.

The case where each honest party outputs a value with a grade ∈ {0, 1, 2} is trivial by design.

Lemma 61 (Communication Complexity). Let ` be the size of the input, κ be the size of accumu-

lator, and w be the size of witness. The communication complexity of the protocol in Figure 6.4 is

O(n`+ (κ+ w)n2).

Proof. At the start of the protocol, the sender multicasts its value of size ` to all party Pj ∀j ∈ [n]

along with κ sized accumulator. This step incurs O(n`+κn). Invoking Deliver on an object of size `

incurs O(n`+(κ+w)n2), since each party multicasts a code word of size O(`/n), a witness of size w

and an accumulator of size κ. Thus, the overall communication complexity is O(n`+(κ+w)n2).

108

6.6 Recoverable Set of Shares

In Section 6.4, we presented a secure DKG protocol by assuming broadcast channels. In general,

broadcast channels are instantiated using Byzantine Broadcast (BB) or Byzantine agreement (BA)

protocols. To the best of our knowledge, all known BB and BA protocols tolerating t < n/2

Byzantine faults incur O(κn3) communication in the absence of threshold signatures [43, 4, 71].

The secure DKG protocol required 2n broadcasts. Thus, instantiating broadcast channel using

BB or BA protocols for our secure DKG protocol trivially incurs O(κn4) communication. In this

section, we present a slightly weaker sharing protocol by appropriately replacing the broadcast

channel with multicast and our weak gradecast. This protocol completes in constant rounds and

acts as a building block towards constructing the DKG. We call this protocol Recoverable Set of

Shares.

In the sharing phase of our secure DKG protocol with broadcast channels (refer Figure 6.2), each

honest party outputs a common set QUAL consisting of size at least n−t parties such that the secrets

shared by parties in set QUAL can be reconstructed. In more detail, honest parties have a common

decision on which parties correctly shared their secret at the end of the sharing phase. Requiring

this agreement was free in the presence of broadcast channels; however, under a point-to-point

network, it blows up communication complexity.

Thus, in our protocol, we instead rely on the use of weaker primitive such as gradecast instead of

consensus to share secrets. As a result, each honest party Pi may have a different view regarding

the acceptance of the shared secret. Thus, each honest party Pi outputs a possibly different set

AcceptListi of at least n− t parties which they accept to have shared the secret correctly; i.e., party

Pi observes the secrets shared by parties in AcceptListi can be reconstructed. It is in this regard,

we call our protocol recoverable set of shares as the secret shared by parties in AcceptListi can be

reconstructed.

We stress that in recoverable set of shares protocol, honest parties need not agree on a common set

and may output a different set of at least n − t parties which they believe have shared the secret

properly. To ensure that the final keys for DKG are generated for a common set, parties need

to agree on one such set. In the following section, we present a multi-valued validated Byzantine

agreement protocol to agree on a common set.

We call an AcceptList certified if it is accompanied by a set of signatures from at least t + 1

parties. The set of t + 1 signatures on AcceptList forms the certificate for AcceptList and denoted

as AC(AcceptList).

109

Each party Pi performs the following operations:

1. (Round 1) Distribute. Each party Pi selects two random polynomials fi(y), f ′i(y) over Zp of degree t:

fi(y) = ai0 + ai1y + · · ·+ aity
t, f ′i(y) = bi0 + bi1y + · · ·+ bity

t

Let si = ai0 = fi(0). Party Pi generates the commitment Cik = gfi(k)hf
′
i(k) ∀k ∈ {1, . . . , n}. Let VSS. ~Ci

represent Cik ∀k ∈ {1, . . . n}. Party Pi multicasts its proposal 〈propose,VSS. ~Ci, zpi〉i. Party Pi computes the
shares sij = fi(j), s

′
ij = f ′i(j) and sends sij , s

′
ij to Pj ∀j ∈ [n].

2. (Round 2) Blame/Forward. If party Pi receives commitment commj := 〈propose,VSS. ~Cj , zpj〉j and valid
secret share sji, s

′
ji (i.e., satisfy Equation (6.1) with VSS. ~Cj), then invoke Deliver(propose, commj , zpj ,−). If no

valid secret shares has been received from party Pj , multicast 〈blame, j〉i to all parties.

3. (Round 3) Request open. Collect all blames received so far. If up to t blame are received for party Pj ,
forward the blame messages to party Pj .

4. (Round 4) Open. Party Pi sends secret shares sik, s′ik to party Pj , for every blame 〈blame, i〉k received from
party Pj .

5. (Round 5) Vote. Upon receiving valid secret shares sjk, s′jk for every 〈blame, j〉k it forwarded and no party Pj
equivocation has been detected, send 〈vote, H(commj)〉i to party Pj . Forward secret share sjk to party Pk for
every 〈blame, j〉k it received. If no blames for party Pj has been received by round 3 and no party Pj equivocation
has been detected, send 〈vote, H(commj)〉i to party Pj .

6. (Round 6) Vote cert. Upon receiving t+ 1 distinct vote messages for commi (denoted by C(commi)), invoke
weak gradecast (refer Figure 6.4) to propagate C(commi).

7. (Round 9) Propose Grade Let (oj,i, gj,i) be the output of weak gradecast with party Pj as the sender. Set
AcceptListi[j] = gj,i. Multicast 〈accept-list,AcceptListi〉i.

8. (Round 10) Verify and Ack. Upon receiving 〈accept-list,AcceptListj〉j from party Pj , if the following condi-
tions hold send 〈ack, H(AcceptListj)〉i to party Pj .

(a) |{h |AcceptListj [h] = 2}| ≥ n− t
(b) If AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n].

9. (At any round) Equivocation. If equivocating hashes signed by party Pj are detected, multicast the equiv-
ocating hashes.

Figure 6.5: Recoverable Set of Shares

Definition 6.6.1 (Recoverable Set of Shares). Each party Pi, as a dealer, secret shares a uniformly

random input si. Each honest party outputs an n element certifed list AcceptListi with an entry

corresponding to each party as a dealer such that AcceptListi[j] ∈ {0, 1, 2} ∀j ∈ [n]. A recoverable

set of shares protocol tolerating t Byzantine failures satisfies the following properties:

1. If dealer Pj is honest, then each honest party Pi outputs AcceptListi[j] = 2.

2. A certified AcceptListi must have |{h |AcceptListi[h] = 2}| ≥ n− t.

3. If AcceptListi is certified and AcceptListi[j] = 2, then secret sj can be recovered from the secret

shares sji received by each honest party Pi.

110

Protocol details. At the start of the protocol (refer Figure 6.5), each honest party Pi selects two

random t degree polynomials fi(y) =
∑

k aiky
k over Zp and f ′i(y) =

∑
k biky

k over Zp such that

fi(0) = si and f ′i(0) = s′i. Party Pi generates the commitment Cik = gfi(k)hf
′
i(k) ∀k ∈ {1, . . . , n}.

Let VSS. ~Ci represent Cik ∀k ∈ {1, . . . n.}. Party Pi multicasts the commitment in the form of a

proposal 〈propose,VSS. ~Ci, zpi〉i where zpi is the accumulation value of VSS. ~Ci. In order to facilitate

efficient equivocation checks, party Pi signs 〈propose, H(VSS. ~Ci), zpi〉 separately and sends VSS. ~Ci

separately. Party Pi also privately sends secret share sij , s
′
ij to party Pj ∀j ∈ [n].

If a party Pj receives valid secret share sij , s
′
ij along with the proposal commi := 〈propose,VSS. ~Ci, zpi〉i

by the start of round 2, it invokes Deliver(propose, commi, zpi,−) to propagate the commitment

VSS. ~Ci; otherwise party Pj multicasts 〈blame, i〉j . Observe that we ignore the epoch e parameter

in Deliver as the current protocol is not executed in an epoch.

Party Pj waits to collect any blame messages sent by other parties. If up to t blame messages are

received for Pi, Pj forwards the blame messages to party Pi. Party Pi then privately sends secret

shares sik, s
′
ik to party Pj , for every blame 〈blame, i〉k received from party Pj . Upon receiving valid

secret shares for all 〈blame, i〉k it forwarded, party Pj sends a vote 〈vote, H(commi)〉 to party Pi

and also forwards secret shares sik, s
′
ik to party Pk if no party Pi has been detected by round 5.

Additionally, if no blame messages are received for Pi by round 3, party Pj sends 〈vote, H(commi)〉
to party Pi at round 5.

Party Pi then waits to collect t+1 vote messages for H(commi), denoted by C(commi). A certificate

on the commi implies that secret si shared by party Pi can be reconstructed later. Party Pi then

gradecasts C(commi). Invocation of gradecast on C(commi) ensures that if the party Pi is honest,

all honest parties output a common C(commi) with a grade of 2 and if an honest party Pk output

C(commi) with a grade of 2, all other honest parties output the certificate with a grade ≥ 1.

Note that all parties (at least all honest parties) are executing the secret sharing phase. Thus, at

the end of gradecast step, each honest party outputs at least n− t certificates with a grade of 2 and

outputs at most t values with a grade ≤ 2. We call the list of grades for party Pj as AcceptListj .

This list is a set of parties which party Pj observes to have shared their secret properly and each

secret can be reconstructed. Party Pj then multicasts its AcceptListj to all other parties. Party

Pk then checks the validity of AcceptListj by checking if (i) |{h |AcceptListj [h] = 2}| ≥ n − t, and

(ii) if AcceptListj [h] = 2 then AcceptListk[h] ≥ 1 ∀h ∈ [n]. The first check ensures that AcceptListj

contains at least n − t entries with AcceptListj [h] = 2. This check trivially satisfies for AcceptList

sent by an honest party as each honest party receives at least n − t certificates with a grade of 2.

Later, the DKG protocols use secrets from parties in AcceptListj such that AcceptListj [h] = 2 to

111

compute the final keys. This is required to ensure security of DKG protocol. The second check

ensures that all the secrets corresponding to AcceptListj [h] = 2 are recoverable; observe that if

AcceptListj [h] = 2 then AcceptListk[h] ≥ 1 due to weak gradecast properties. This implies party

Pk has received a C(commh) from party Ph and C(commh) implies the secret shared by party Ph

can be reconstructed. If the checks pass, party Pk sends 〈ack, H(AcceptListj)〉k to party Pj . A set

of t + 1 ack (ack-cert) messages for AcceptListj (denoted by AC(AcceptListj)) implies at least one

honest party has verified that all the secrets corresponding to AcceptListj [h] = 2 can be recovered.

The idea of using gradecast to perform secret sharing has been explored before in the works of

Feldman and Micali [49, 50] to generate common source of randomness. Compared to their work,

our protocols work in authenticated model with t < n/2 resilience and invoke a single gradecast

per secret sharing. Their protocols work in unauthenticated model without PKI with t < n/4 [49]

and t < n/3 [50] resilience and involved multiple invocation of gradecast per secret sharing.

6.6.1 Security Analysis

Lemma 62. If an honest party sends vote for a commitment comm, then (i) all honest parties

receive comm, (ii) all honest parties receive their valid secret shares corresponding to commitment

comm.

Proof. Suppose an honest party Pi sends a vote for commitment commk := 〈propose,VSS. ~Ck, zpk〉k
at round 5. Party Pi must have received up to t blame messages for party Pk. This implies

at least one honest party Pj received valid secret shares sk,j , s
′
k,j and commitment commk and

invoked Deliver(propose, commk, zpk,−) at round 2. Moreover, party Pi did not detect party Pk

equivocation by round 5. This implies no honest party detected party Pk equivocation by round 3.

By Lemma 59, all honest parties receive the commitment commk by round 4. This proves part (i)

of the Lemma.

For part (ii), party Pi can send vote message on two occasions: (a) when it does not detect a

〈blame, k〉 by round 3 and party k equivocation by round 5, and (b) when party k sent valid secret

shares for every 〈blame, k〉 message it forwarded and does not detect any party k equivocation by

round 5.

In case (a), party Pi did not detect a party k equivocation by round 5 and 〈blame, k〉 by round

3. Observe that all honest parties must have received valid secret shares corresponding to the

commitment commk; otherwise party Pi must have received 〈blame, k〉 by round 3 (since honest

112

parties send 〈blame, k〉 if no valid secret shares are received at round 2). Thus, all honest parties

receive valid secret shares corresponding to commitment commk.

In case (b), party Pi receives valid secret shares from party Pk for every 〈blame, k〉 (up to t blame)

messages it forwarded and detected no party k equivocation by round 5. Observe that party Pi

received f ≤ t 〈blame, k〉 messages and received valid secret shares for every 〈blame, k〉 message it

forwarded. This implies at least n− t−f honest parties have received valid shares for commitment

commk from party Pk; otherwise, party Pi would have received more than f 〈blame, k〉 message by

round 3. Since, party Pi forwards f received secret shares corresponding to f received 〈blame, k〉,
all honest parties receive valid secret shares corresponding to commitment commk.

Lemma 63. If an honest party sends an ack for a grade list AcceptListj, then all honest parties

have valid secret shares corresponding to commh for all h such that AcceptListj [h] = 2.

Proof. Suppose an honest party Pi sends an ack for a grade list AcceptListj . Then, it must be

that if AcceptListj [h] = 2 then AcceptListi[h] ≥ 1 ∀h ∈ [n]. Party Pi sets AcceptListi[h] ≥ 1 when

it receives a vote certificate C(commh). If there is a vote certificate C(commh) for value commh,

then at least one honest party (say party Pk) must have voted for commh. By Lemma 62 part (ii),

all honest parties have valid secret shares corresponding to commitment commh. Thus, all honest

parties have valid secret shares corresponding to commh for all h such that AcceptListj [h] = 2.

Lemma 64 (Liveness). Each honest party Pi will receive an ack-cert for its grade list AcceptListi.

Proof. Consider an honest party Pi. Party Pi will send valid commitment VSS. ~Ci and secret shares

sij , s
′
ij to party Pj ∀j ∈ [n] in round 1. All honest parties will receive their valid secret shares sij ,

s′ij and commitment commi in round 2. Thus, no honest party will send 〈blame, i〉 for party Pi.

Observe that up to t Byzantine parties can always send 〈blame, i〉. Honest parties wait until round

3 to collect blame messages for any party. Honest parties forward 〈blame, i〉 to party Pi which

party Pi receives by round 4. Party Pi forwards valid secret shares to party Pj for every 〈blame, i〉
message it received from party Pj which party Pj receives by round 5. Thus, party Pj will send

vote for party Pi which party Pi receives by round 6. This implies party Pi collects t + 1 distinct

vote messages by round 6.

Party Pi invokes weak gradecast to propagate C(commi) which completes by round 9. Due to the

properties of weak gradecast, for an honest party Pi, all honest parties set AcceptList[i] to 2. Thus,

113

for any honest party Pj , all honest parties set AcceptList[j] to 2. This implies all honest parties will

have |{h |AcceptListj [h] = 2}| ≥ n− t.

Next, we consider the case when an honest party sets AcceptListi[l] = 2 for a Byzantine party Pl

and receive C(comml). Due to the properties of weak gradecast, all honest parties receive C(comml)

and set AcceptList[l] ≥ 1. Thus, for every AcceptListi[h] = 2 then AcceptList[h] ≥ 1 for all honest

parties.

Party Pi multicasts its AcceptListi in round 9. Since, AcceptListi satisfies both the conditions

|{h |AcceptListi[h] = 2}| ≥ n − t and AcceptListi[h] = 2 then AcceptList[h] ≥ 1, all honest parties

will send ack for AcceptListi proposed by party Pi and party Pi will receive ack-cert for AcceptListi

the end of round 10.

Theorem 65. The protocol in Figure 6.5 is a recoverable set of shares protocol satisfying Defini-

tion 6.6.1.

Proof. Straight forward from Lemma 62, Lemma 63 and Lemma 64

Lemma 66 (Communication Complexity). Let ` be the size of commitment comm, κ be the size

of secret share and accumulator, and w be the size of witness. The communication complexity of

the protocol is O(n2`+ (κ+ w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi multicasts commi of size ` to all party Pj ∀j ∈ [n]

and sends secret share si,j to party Pj ∀j ∈ [n]. This step incurs O(n2` + κn3). In the Forward

step, parties invoke Deliver for the first commj from party Pj for j ∈ [n]. Invoking Deliver on an

object of size ` incurs O(n`+ (κ+ w)n2), since each party multicasts a code word of size O(`/n),

a witness of size w and an accumulator of size κ. Thus, invoking Deliver on n commitments incurs

O(n2`+ (κ+ w)n3).

In the Blame step, honest parties may blame up to t Byzantine parties if they do not receive valid

secret shares. Multicast of t blame from each party incurs O(κtn2) communication. In addition,

t Byzantine parties always can blame honest parties. Honest parties forward up to t 〈blame, j〉
messages to party Pj . This incurs O(κtn2) communication.

In the Private open step each party can send up to t secret shares to all other parties. This incurs

O(κtn2) for all parties. In the Vote cert step, each party multicasts O(n)-sized vote-cert to all other

parties which incurs O(κn3) in communication. Invoking Deliver on an O(n)-sized certificate incurs

O(n2 + (κ+ w)n2). For n certificate, this step incurs O(n3 + (κ+ w)n3).

114

In the Propose grade step, each party multicast their grade list of size O(n). Multicast of O(n)-sized

grade list by n parties incurs O(n3) communication. Thus, the total communication complexity is

O(n2`+ (κ+ w)n3) bits.

6.7 Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) (aka, common coin) protocol that

outputs a common honest leader with some constant probability called the fairness. In the absence

of an existing threshold (DKG) setup, the OLE protocol was designed via n2 parallel invocations of

weaker VSS primitives such as graded VSS [49] or moderated VSS [71] which trivially incurs Ω(n4)

communication. A recent work [5] designs an OLE protocol tolerating t < n/3 Byzantine faults

using Aggregatable PVSS [64] for the asynchronous model which incurs O(κn3) communication.

However, Aggregatable PVSS requires additional cryptographic assumptions which is not desirable.

In this work, we build an OLE protocol using n parallel invocations of weaker VSS primitives and

a non-interactive threshold signature scheme [29]. Note that our OLE protocol does not require a

prior threshold (DKG) setup phase despite making use of threshold signatures. Our OLE protocol

works in the random oracle model and requires CDH assumption. The resulting protocol incurs a

communication complexity of O(κn3) and constant rounds.

Construction. The starting point of our construction is the threshold coin-tossing scheme of

Cachin et al. [29] which makes use of non-interactive threshold signature scheme. The threshold

signature scheme requires a prior threshold setup which is essentially a DKG. The threshold setup

establishes a tuple (sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn) of verification keys. After

the threshold setup phase, each party signs a common message (e.g., an epoch number) with its

threshold secret key to obtain a threshold share. A combination of any t+1 valid threshold shares is

then used to obtain a unique and random threshold signature σ. A random oracle H ′′ : G→ {0, 1}
is then used to generate an unbiased and unpredictable random bit from the threshold signature σ.

Note that the threshold signature scheme requires a prior threshold setup to establish a tuple

(sk1, . . . , skn) of secret keys, a tuple (vk1, . . . , vkn) of verification keys. We fulfill this requirement

by using the output of recoverable set of shares protocol (Section 6.6) to establish a local threshold

setup corresponding to each party. In recoverable set of shares protocol, each party Pi outputs

an AcceptListi along with AC(AcceptListi). An AcceptListi consists of at least n − t entries with

grades of 2 and all honest parties will contain secret shares shared by parties in AcceptListi whose

grades are 2. Thus, each party Pj uses secret shares shared by parties in an AcceptListi with

115

Each party Pi performs the following operations:

1. Each party Pi invokes recoverable set of shares protocol (refer Figure 6.5). Each party Pi outputs (AcceptList2i
AC(AcceptList2i)).

2. Each party Pi invokes weak gradecast to propagate (AcceptList2i,AC(AcceptList2i)).
3. Let (oj,i, gradei[j]) be the output with party Pj as dealer. Let oj,i contains AcceptList2j . If gradei[j] ≥ 1, set

local dkgi[j] = AcceptList2j , local dkg gradei[j] = gradei[j].

- Set skj,i =
∑
m∈AcceptList2j |AcceptList2j [m]=2 smi, vkj,i = gskj,i , and sk′j,i =

∑
m∈AcceptList2j |AcceptList2j [m]=2 s

′
ji.

- Compute C〈g〉(skj,i), C〈g,h〉(skj,i, sk′j,i)) and π≡Comj,i = NIZKPK≡Com(skj,i, sk
′
j,i, g, h, C〈g〉(skj,i), C〈g,h〉(skj,i, sk′j,i)).

Multicast (vkj,i, π≡Comj,i) to all parties.

Figure 6.6: Threshold setup protocol

grades of 2 to compute its secret key ski,j and verification key vki,j = gski,j to establish local DKG

setup local dkg[i] corresponding to party Pi. Note that this establishes a separate threshold setup

for each party. With local DKG setup local dkg[i] as the threshold setup for party Pi, parties

collectively generate a unique and random threshold signature σi. Parties then use a random oracle

H ′ : G → {0, 1}κ to generate a random coin value assigned to party Pi. A party with highest (or

lowest) coin value is selected to be the leader.

Looking ahead, the final DKG is also computed from one of the valid AcceptList output from

the recoverable set of shares. Making use of the secret shares in an AcceptList output from the

recoverable set of shares during this local DKG setup phase will leak the final public key before

the final DKG is decided. Note that the final public key can be computed from t + 1 verification

keys. This allows the adversary ability to force the final DKG to have certain final public key. To

circumvent this issue, we execute two separate instances of recoverable set of shares in parallel; one

instance to setup local DKG instances and the other to setup the final DKG instance. To remove

this ambiguity, we call the accept list output from the recoverable set of shares executed for local

DKG as AcceptList2 i.e. each party Pi outputs an AcceptList2i along with AC(AcceptList2i).

Protocol details. The setup phase of the protocol is presented in Figure 6.6. Each party Pi

invokes recoverable set of shares protocol and outputs AcceptList2i (along with AC(AcceptList2i)).
Each party Pi then invokes weak gradecast to propagate (AcceptList2i, AC(AcceptList2i)). At the

end of the setup phase, each party Pi sets up the local DKG instance for each party Pj (i.e.,

local dkgi[j]) as AcceptList2j if local dkg gradei[j] ≥ 1. If local dkg gradei[j] = 2, due to weak

gradecast properties, all honest parties have a common local DKG instance for party Pj (i.e.,

local dkg[j]). In addition, for an honest party Pj , all honest parties will have a common local DKG

instance local dkg[j]. Each party Pi also computes required secret keys skj,i, verification keys vkj,i

for local DKG instance local dkgi[j] computed from local dkgi[j] as shown in Figure 6.6.

116

Let sid be the input of party Pi.
Set Xi ← ∅. Each party Pi performs following operations:

1. Perform σj,i = SignTS(skj,i, (j, sid)) and multicast σj,i if local dkg gradei[j] ≥ 1 ∀j ∈ [n].

2. Upon receiving a set S of t + 1 valid signature shares for party Pj , compute σj = CombineTS(pk, sid, S) and
Xi[j]← H ′(σj).

3. Perform `← argmaxh{Xi[h]|local dkg gradei[h] = 2}. Output P`.

Figure 6.7: Oblivious Leader Election

The OLE protocol is presented in Figure 6.7. The input to the protocol is a sequence id sid. Once

the local DKG instances are setup, each party Pi uses its secret key skj,i to sign a common message

i.e., (j, sid) (for party Pj) if local dkg gradei[j] ≥ 1 to obtain a threshold share σj,i. A set of t + 1

valid signature shares corresponding to local dkg[j] is combined to form a single threshold signature

σj and a hash H ′(σj) generates coin value for party Pj . We note that two or more parties could

output the same grade list (i.e, AcceptList2) in the recoverable set of shares protocol; hence their

local DKG might be same. However, parties sign a distinct message e.g. (j, sid) for party Pj . Such

generated threshold signatures are unique and random regardless of their local DKG instance being

common; hence the coin value is also random. Honest parties consider coin values for party Pj only

if local dkg gradei[j] = 2. Note that if local dkg gradei[j] = 2, a threshold signature σj will exist

for party Pj . This is because all honest parties will have local dkg grade[j] ≥ 1 and a common

local dkg[j] due to weak gradecast properties and each honest party Pi will send their signature

share σj,i. A coin value is then computed as H ′(σj). The party P` with highest coin value is elected

as leader.

Round complexity and communication complexity. The threshold setup phase has a latency

of 15 rounds to invoke recoverable set of shares, n parallel instances of weak-gradecast and distribute

verification keys. The OLE protocol requires only 1 round to generate threshold signatures. The

threshold setup phase invokes recoverable set shares, n parallel weak-gradecasts with an input

of size O(κn) and sharing verification keys. This incurs O(κn3) communication. The threshold

signature generation incurs O(κn3) communication.

6.7.1 Security Analysis

Our coin generation protocol is similar to the threshold coin-tossing scheme of [29]. In Cachin et

al. [29], the coin value is a single bit computed from the threshold signature using H ′′ : G→ {0, 1}.
In our scheme, the coin value is a κ bit string computed from the threshold signature using H ′ :

117

G→ {0, 1}κ. We rely on the following Lemma of [29].

Lemma 67 ([29]). In the random oracle model, the coin-tossing scheme of Cachin et al. [29] is

secure i.e., satisfies robustness and unpredictability under CDH assumption.

We note that in the proof of the above Lemma, Cachin et al. [29] show the threshold signature

generation is robust and unpredictable. This suffices to show that our coin-tossing scheme is also

secure.

Theorem 68. In the random oracle model and under CDH assumption, the protocol in Figure 6.7

is an oblivious leader election protocol with fairness at least 1
2 .

Proof. We first show termination i.e., honest party Pi will obtain a threshold signature σj (and

coin value for party Pj) if local dkg gradei[j] = 2. This is because all honest parties will have

local dkg grade[j] ≥ 1 and a common local dkg[j] due to weak gradecast properties. Thus, each

honest party Pk will send their signature share σj,k i.e., a set of t+ 1 valid signature shares will be

available sufficient to obtain threshold signature σj (and coin value H ′(σj)).

By Lemma 67 the threshold signature generation protocol satisfies robustness and unpredictability.

Thus, the coin value generated from threshold signature is robust and unpredictable.

Observe that each party Pi signs a distinct message (i.e, (j, sid)) for each part Pj . Thus, the

threshold signature σj for each party Pj is unique and random even if two or more parties have the

same local DKG instance; hence each party Pj will be assigned random coin value (H ′(σj)). Since,

the coin value assigned to a party is random, the coin value assigned to an honest party will be a

global maximum with probability at least n−t
n . The probability that coin values of any two parties

can be maximum is bounded by 1
2κ . Thus, all honest parties select the coin value corresponding to

a common honest leader with probability n−t
n −

1
2κ ≥

1
2 when κ = 2 log n.

6.8 Multi-Valued Validated Byzantine Agreement

In Section 6.6, we presented a recoverable set of shares protocol where each honest party Pi outputs

a (possibly different) set AcceptListi along with AC(AcceptListi)–both of which are linear sized. For

DKG, all honest parties need to agree on a common set of parties whose secret shares are used

to compute final secret keys and a public key. Thus, we need a consensus primitive that takes a

different O(n)-sized input from each party and outputs a common set which is valid. Here, a valid

118

set is accompanied by its ack certificate and can potentially also be the input of a Byzantine party.

Such a consensus primitive is called a multi-valued validated Byzantine agreement.

Multi-valued validated Byzantine agreement (MVBA) was introduced by Cachin et al. [28] to allow

honest parties to agree on any externally valid value. Recent works [8, 79] have proposed MVBA

protocols for the asynchronous communication model tolerating t < n/3 Byzantine faults. To the

best of our knowledge, no MVBA protocol have been proposed in the synchronous communication

model for t < n/2 case. In this chapter, we present a synchronous MVBA protocol tolerating

t < n/2 Byzantine faults with O(n2` + κn3) communication for inputs of size ` bits and expected

constant rounds.

We extend the Binary Byzantine agreement (BBA) protocol of Katz and Koo [71] to MVBA for

large (` = Θ(n)) input. The BBA protocol of Katz and Koo [71] tolerates t < n/2 Byzantine

faults and terminates in expected 4 epochs. Their protocol involves invoking n parallel gradecasts;

with each gradecast propagating small sized input. As mentioned before, their gradecast protocol

incurs O(κn3) communication for a single bit input; thus, their protocol trivially incurs O(κn4)

communication. We replace their gradecast protocol with our communication optimal gradecast

protocol from Section 6.5. Our gradecast protocol incurs only O(κn2) communication while prop-

agating O(n)-sized input. Using our gradecast protocol allows BBA protocol of Katz and Koo [70]

to handle large input while simultaneously reducing the communication to O(κn3).

To circumvent the linear round lower bound for a deterministic BA protocol [43], BA protocols use

a common source of randomness called common coin to achieve agreement in constant expected

rounds. The common coin is weak if all honest parties obtain a common honest leader with some

constant probability (and with the remaining probability either the common leader is Byzantine

or honest parties may disagree on the leader). In Katz and Koo BBA, the weak common coin was

obtained by invoking n2 moderated VSS instances which incurs Ω(κn4) communication and blows

up the communication complexity. In this work, we replace their weak common coin protocol with

our communication efficient leader election protocol from Section 6.7 which outputs a common

honest leader with probability at least 1
2 . Our OLE protocol incurs O(κn3) communication and a

single round after an initial setup phase (refer to Figure 6.6) which incurs 15 rounds.

Our MVBA protocol in presented in Figure 6.8. The underlying consensus mechanism is identical

to the BBA protocol of Katz and Koo [71]. In round 1, each party Pi invokes weak gradecast

protocol to propagate its input vi. Our weak gradecast protocol incurs 4 rounds. Rounds 2 and 3

accommodates the steps of the weak gradecast protocol. Again in round 4, each party Pi invokes

weak gradecast protocol to propagate its updated input vi. Rounds 5 and 6 accommodates the

119

Let vi be party Pi’s input and e be the current epoch. Each party Pi sets locki ← ⊥. Each party Pi performs
following operations.

1. (Round 1) Propose. Each party Pi invokes weak gradecast to propagate vi.

2. (Round 4) Update. Let (vj,i, gradei[j]) be the output with party Pj as the dealer. Let Svi := {j : vj,i =
v ∧ gradei[j] = 2} and S̃vi := {j : vj,i = v ∧ gradei[j] ≥ 1}. If locki = ⊥, then:

(a) If |S̃vi | > t, update vi ← v.

(b) If |Svi | > t, set locki ← 1.

Invoke weak gradecast (refer Figure 6.4) to propagate vi.

3. (Round 7) Update2. Again, let (vj,i, gradei[j]) be the output with party Pj as the dealer. Define Svi and S̃vi
as above. If locki = ⊥ and |S̃vi | > t, set vi ← v. Multicast vi.

4. (Round 8) Leader election. Invoke OLE protocol with input e.

5. (Round 9) Terminate/Advance Epoch. Let P` be the output of leader election protocol.

(a) If locki = 0, output vi and terminate.

(b) If locki = 1, set locki = 0. If locki = ⊥ and |Svi | ≤ t, v`,i 6= ⊥ and ex-validation(v`,i) = true, update
vi ← v`,i. Advance to epoch e+ 1.

6. (At any round) Equivocation. If equivocating hashes signed by party Pj are detected, multicast the equiv-
ocating hashes.

Figure 6.8: MVBA with O(n2`+ κn3) communication and expected 4 epochs.

steps of the weak gradecast protocol. In round 8, parties invoke the OLE protocol to elect a leader.

Round complexity. By Theorem 68, a common honest leader is selected with probability at least
1
2 and all honest parties terminate in the next 2 epochs. Thus, the expected number of epochs

required is 4 epochs.

6.8.1 Security Analysis

Lemma 69. If an honest party sets lock to 1 with a value v in epoch e, then all honest parties

adopt value v in epoch e.

Proof. Suppose an honest party Pi sets locki to 1 in epoch e. Party Pi must have received value v

from a set Q of at least t + 1 parties such that |Svi | > t. By the properties of weak gradecast, all

other honest parties receive value v corresponding to parties in Q with a grade ≥ 1 (i.e., all other

honest parties have grade[j] ≥ 1 ∀j ∈ Q) and |S̃v| > t for all other honest parties and all honest

parties adopt value v in the Update step.

Once all honest parties adopt value v in the Update step, they invoke weak-gradecast to propagate

120

value v at the end of the Update step. Since, honest parties do not equivocate and send value v

in a timely manner, all honest parties output value v such that grade[j] to 2. Thus, |S̃vi | > t and

|Svi | > t in the Update2 step. Since, |Svi | > t, no honest party will adopt value v` selected from the

proposal election protocol. Thus, all honest parties adopt value v in epoch e.

Lemma 70. If all honest parties start an epoch e with same input v, then all honest parties decide

value v and terminate by the end of epoch e+ 1.

Proof. Suppose all honest parties start an epoch e with the same input v. All honest parties invoke

weak-gradecast with value v in the Propose step. By the properties of weak gradecast, for an honest

dealer, all honest parties output a grade of 2. Thus, all honest parties will set grade[j] = 2 for all

other honest parties. Thus, for value v, all honest parties have |Svi | > t and |S̃vi | > t If lock = ⊥,

honest parties set lock to 1.

Similarly, all honest parties invoke weak-gradecast with value v in the Update2 step. By similar

argument, all honest parties will set grade[j] = 2 for all other honest parties i.e., |Svi | > t and

|S̃vi | > t for all honest parties at the of Update 2 step. Moreover, no honest party will adopt the

value output from the proposal election protocol.

Honest parties with lock = 0, output v and terminate in epoch e. All the remaining honest parties

with lock = 1, set lock = 0 and advances to epoch e + 1. In the next epoch, all the remaining

honest parties have lock = 1 and will not update its value and stick to value v. At the end of epoch

e+ 1, they set their lock = 0, output value v and terminate. Thus, all honest parties output v and

terminate by the end of epoch e+ 1.

Theorem 71. The protocol in Figure 6.8 solves MVBA.

Proof. We first consider external validity i.e., if an honest party decides a value v, then ex-validation(v) =

true. Observe that an honest party Pi decides a value v only when its sets locki = true. An honest

party sets locki = true only when it observes |Svi | > t. Thus, at least one honest party Pj must

have sent value v in Propose step. Honest party Pj sends value v either when its input at the start

of the protocol execution is v in which case ex-validation(v) = true, or when its updates its value vj

to v at the end of an epoch. In the latter case, party Pj checks if ex-validation(v) = true.

Next, we consider agreement. Consider an epoch e and let P` be the common leader in epoch e

elected via OLE protocol. There are two cases to consider.

121

Case I. locki = 1 for at least one honest party Pi with a value v in epoch e. By Lemma 69, all

honest party adopt value v in epoch e and enter epoch e+ 1 with same value v. By Lemma 70, all

honest parties output value v and terminate by epoch e+ 2.

Case II. locki = ⊥ for all honest parties in epoch e. If leader P` is honest, leader P` sends the

same value v` to all parties. If |Svi | ≤ t for all honest parties, then all honest parties adopt the

value v` in epoch e. By Lemma 70, all honest parties output value v` and terminate in epoch e+ 2.

If |Svi | > t for at least one honest party Pi in the Update2 step, by the properties of weak-gradecast,

|S̃v| > t for all honest parties. Thus, all honest parties including leader P` adopt value v in the

Update2 step. If the leader P` is honest, it sends the same value v to all parties. Honest parties

with |Svi | ≤ t adopt value v` which is the same value adopted by party Pi with |Svi | > t. Thus, all

honest parties have value v at the end of epoch e. By Lemma 70, all honest parties output value v

and terminate by epoch e+ 2.

Lemma 72 (Communication Complexity). Let ` be the size of input v for each party, κ be the

size of accumulator and w be the size of witness. The communication complexity of the protocol is

O(n2`+ (κ+ w)n3) bits per epoch.

Proof. At the start of the protocol, each party Pi invokes weak gradecast with O(`)-sized proposal.

By Lemma 61, this step incurs O(n2` + (κ + w)n3). Similarly, in the Update2 step, each party

invokes weak gradecast with O(`)-sized proposal. By Lemma 61, this step also incurs O(n2`+ (κ+

w)n3). The proposal election protocol has a communication complexity of O(κn3). Thus, the total

communication complexity of the protocol is O(n2`+ (κ+ w)n3) bits per epoch.

6.9 Distributed Key Generation

Finally, we present two communication efficient DKG protocols with O(κn3) communication. The

first protocol incurs expected O(κn3) communication and terminates in expected constant rounds

while the second protocol incurs O(κn3) communication in the worst case and terminates in t+ 1

epochs. The DKG protocols in this section differs from the secure DKG protocol of Section 6.4 in

the following ways. First, we replace the broadcast channel with weaker consensus primitives and

use a single invocation of consensus instance. Second, in the secure DKG protocol, the final public

key and secret keys are computed from the secret shares of all honest parties. In particular, all

honest parties belong to set QUAL and the public key and secret keys are computed from parties in

122

1. Deal/Setup. Each party Pi invokes recoverable set of shares protocol (refer Figure 6.5). Each party Pi outputs
a set AcceptListi with an ack-cert for AcceptListi (i.e., AC(AcceptListi)). Each party Pi also invokes threshold
setup phase (refer Figure 6.6) in parallel.

2. MVBA. Each party Pi invokes MVBA (Figure 6.8) with input (AcceptListi, AC(AcceptListi)). Let AcceptListk
be the output of all honest parties.

3. Generating keys. Let xi =
∑
j∈AcceptListk|AcceptListk[j]=2 sji and x′i =

∑
j∈AcceptListk|AcceptListk[j]=2 s

′
ji

be the sum of secret shares in AcceptListk. Compute C〈g〉(xi), C〈g,h〉(xi, x′i) and π≡Comi =
NIZKPK≡Com(xi, x

′
i, g, h, C〈g〉(xi), C〈g,h〉(xi, x′i)).

- Multicast (C〈g〉(xi), π≡Comi) to all parties.

- Verify the received (C〈g〉(xi), π≡Comj) as shown in Equation (6.3).

- Upon receiving t + 1 valid C〈g〉(xi), interpolate them to obtain y = gx. Set y as the public key and xi as
the private key.

Figure 6.9: DKG with expected O(κn3) communication and expected O(1) rounds

QUAL. In contrast, the DKG protocols in this section compute the final public key and secret keys

from a common set of at least n − t parties where at least n − 2t parties are honest (i.e., at least

one honest party when n = 2t+ 1). This suffices to ensure construction of a secure DKG protocol.

6.9.1 DKG with O(κn3) communication and expected O(1) rounds

The DKG protocol uses recoverable set of shares protocol (refer Figure 6.5) to perform secret

sharing. The threshold setup protocol (refer Figure 6.6) is also executed at the start of the execution.

At the end of the recoverable set of shares, each honest party Pi outputs a (possibly different) set

of at least n− t parties (AcceptListi) which they observe to have correctly shared their secret along

with an ack-cert for AcceptListi (AC(AcceptListi)). The ack-cert for AcceptListi serves an external

validity function to the MVBA protocol i.e., if there is an AC(AcceptListi) for AcceptListi, then

ex-validation(AcceptListi) = true. Note that both AcceptListi and AC(AcceptListi) are linear sized.

Each honest party Pi then invokes MVBA protocol with (AcceptListi, AC(AcceptListi)) as input.

At the end of MVBA protocol, each honest party outputs a common set AcceptListk. The final

secret key and public key is then computed using secret shares shared by parties h such that

AcceptListk[h] = 2 using the reconstruction protocol in Figure 6.2.

Latency and communication complexity. The recoverable set of shares protocol has a round

complexity of 10 rounds and O((κ+ w)n3) communication. The threshold setup protocol incurs a

communication of O((κ + w)n3) and 15 rounds; but is executed in parallel and completes before

the OLE protocol is invoked in the MVBA protocol. Thus, it does not increase overall round

complexity of the protocol. The MVBA protocol incurs expected 4 epochs (with each epoch being

123

9 rounds) and O((κ+ w)n3) communication where the size of input is O(κn). The reconstruction

phase requires O(κn2) communication and a single round. Thus, the protocol incurs O((κ+w)n3)

communication and expected 47 rounds.

6.9.2 DKG with worst-case O(κn3) communication and O(t) rounds

While the above protocol terminates in expected 4 epochs in the best case, it has probabilistic

termination and may require a linear number of epochs in the worst case with a communication of

O(κn4). As an alternate solution, we present a DKG protocol with guaranteed termination in t+ 1

epochs with O(κn3) communication in the worst case. The protocol is presented in Figure 6.10. In

the protocol, honest parties execute the recoverable set of shares protocol and each honest party Pi

outputs a (possibly different) set of at least n− t parties (AcceptListi) which they observe to have

correctly shared their secret along with an ack-cert for AcceptListi (AC(AcceptListi)). The tuple

(AcceptListi, AC(AcceptListi)) is input into a leader-based Byzantine fault tolerant state machine

replication (BFT SMR) protocol from Chapter 4 to agree on a common set. We present a brief

overview of the BFT SMR.

1. Deal. Each party Pi invokes recoverable set of shares protocol (refer Figure 6.5). Each party Pi output a set
AcceptListi with an ack-cert for AcceptListi.

2. BFT SMR. Each party Pi participates in BFT SMR [21] with input AcceptListi and AC(AcceptListi). The BFT
SMR protocol is executed in round-robin manner with first t+ 1 leaders. Let AcceptListk be the first committed
value of all honest parties.

3. Generating keys. Let xi =
∑
j∈AcceptListk|AcceptListk[j]=2 sji and x′i =

∑
j∈AcceptListk|AcceptListk[j]=2 s

′
ji

be the sum of secret shares in AcceptListk. Compute C〈g〉(xi), C〈g,h〉(xi, x′i)) and π≡Comi =
NIZKPK≡Com(xi, x

′
i, g, h, C〈g〉(xi), C〈g,h〉(xi, x′i).

- Multicast (C〈g〉(xi), π≡Comi) to all parties.

- Verify the received (C〈g〉(xi), π≡Comj) as shown in Equation (6.3).

- Upon receiving t + 1 valid C〈g〉(xi), interpolate them to obtain y = gx. Set y as the public key and xi as
the private key.

Figure 6.10: DKG with worst-case O(κn3) communication and t+ 1 epochs

BFT SMR from Chapter 4. The BFT SMR protocol is a communication efficient rotating-

leader SMR protocol with O(κn2) communication per epoch even for O(n)-sized input. The BFT

SMR protocol has optimal resilience i.e., tolerates t < n/2 Byzantine faults. The leaders are rotated

in each epoch, where an epoch is a duration of 7 rounds. When the leader of an epoch is honest, all

honest parties commit the proposed value in the same epoch, whereas, when the leader of the epoch

is Byzantine, some honest parties may require linear number of epochs to commit the proposed

124

value. The BFT SMR utilizes the “block-chaining” paradigm i.e., each proposal is represented in

the form of a block which explicitly extends a block B proposed earlier by including hash of previous

block B. In this paradigm, when a block B is committed, all its ancestors are also committed.

In this DKG protocol, we execute the BFT SMR protocol for t + 1 epochs. In each epoch, the

epoch leader is expected to propose its (AcceptList, AC(AcceptList)). If the epoch leader is honest,

all honest parties commit the proposed set in the same epoch; otherwise honest parties may require

linear number of epochs when the leader is Byzantine to commit the proposed value or commit no

value at all if the Byzantine leader does not propose. Since the BFT SMR protocol is executed

for t + 1 epochs, there will be at least one honest leader; thus all honest parties commit at least

one set. Honest parties output the first committed set and perform reconstruction using this set

to generate the final secret key and public key.

Latency and communication complexity. The recoverable set of shares protocol incurs a

latency of 10 rounds and O(κn3) communication. The BFT SMR protocol incurs O(κn2) commu-

nication per epoch; O(κn3) communication for t+ 1 epochs. The length of each epoch is 7 rounds.

The reconstruction phase requires O(κn2) communication and a single round . Thus, the protocol

incurs O(κn3) communication in the worst-case and 11 + 7 ∗ (t+ 1) rounds.

6.10 A Lower Bound on the Communication Complexity of Weak

Gradecast

In this section, we show a quadratic communication lower bound for the weak gradecast protocol.

The proof of this lower bound is a trivial extension of the communication lower bound for Byzantine

broadcast by Dolev and Reischuk [41].

Lemma 73. There does not exist a protocol for weak gradecast tolerating t Byzantine parties with

a communication complexity of at most t2/4 messages.

Proof. Suppose for the sake of contradiction, there exists such a protocol. Consider the parties

being partitioned into the following two sets: A: a set of dt/2e parties, and B: all remaining parties

which includes the designated sender r.

We consider two executions W1 and W2 where the third property of weak gradecast (i.e., if an

honest party outputs a value v with a grade of 2, all other honest parties output value v with a

125

grade ≥ 1) is violated in the W2. In the first execution (W1), all parties in A are Byzantine. Parties

in A do not communicate with each other. Towards B, parties in A execute honestly except they

ignore the first dt/2e messages from parties in B. The designated sender r ∈ A sends value v to all

parties. Since, the maximum faults in W1 is dt/2e and the designated sender is honest, all honest

parties decide value v with a grade of 2.

Since the communication complexity of the protocol is at most t2/4, there must exist a party (say s)

in A that receives at most t/2 messages from parties in B; otherwise the communication complexity

will be more than t2/4. Let Bs be the set of all parties that send messages to party s in W1.

In the second execution (W2), all parties in A\{s} are Byzantine and all parties in Bs are Byzantine

which includes the designated sender r. The total number of Byzantine parties is (dt/2e − 1) +

dt/2e ≤ t which is within allowed fault threshold t. The designated sender r sends value v. The

parties in Bs execute the protocol in the same way as in W1 except they do not send any messages

to party s. Parties in A\{s} execute the protocol in the same way as in W1. Party s in W1 behave

as an honest party which did not receive the first dt/2e messages which is similar to party s in W2

which receives no messages. Thus, parties in B \ Bs cannot distinguish W1 and W2. Thus, they

decide value v with a grade of 2. Since, party s does not receive any messages in W2, it does not

decide v with a grade ≥ 1. This violates the third property of weak gradecast where if an honest

party outputs a value v with a grade of 2, then all honest parties need to output a value v with a

grade of ≥ 1. A contradiction.

Theorem 74. Let CC(`) be the communication complexity of weak gradecast for ` bit input. Then

CC(`) = Ω(n`+ n2)

Proof. Since each party must learn ` bit input, the protocol needs Ω(n`) bits (The argument

follows from [56]). From Lemma 73, weak gradecast requires Ω(n2) even for a single bit input.

Thus, CC(`) = Ω(n`+ n2) for ` bit input.

126

Chapter 7

Communication and Round Efficient

Parallel Broadcast Protocols

7.1 Introduction

Parallel broadcast is a primitive where all parties wish to broadcast ` bit messages in parallel. It is

an important building block, central to many cryptographic protocols like verifiable secret sharing,

multi-party computation [16, 19], where all parties often broadcast ` bit messages in parallel in

the same round. Design of efficient protocols for parallel broadcast is of paramount importance

as any improvements for parallel broadcast also results in improvement of these primitives. In

this work, we focus on improving the communication complexity (i.e., reducing the number of bits

honest parties exchange) and the round complexity (i.e., the time required to reach a decision)

of parallel broadcast in the synchronous authenticated model with PKI and digital signatures

tolerating t < n/2 Byzantine failures under various setup assumptions.

Existing works on parallel broadcast either näıvely run n instances of Byzantine agreement (or

Byzantine broadcast) primitives (increasing the communication complexity by undesirable factor of

n) [18, 1] or incur high round complexity along with strong cryptographic assumptions [103]. While

existing solutions for parallel broadcast have optimal fault tolerance of t < n [43] or nearly optimal

fault tolerance of t < (1 − ε)n [103], they incur high communication and Ω(t) round complexity.

This work investigates the communication complexity and round complexity of parallel broadcast

protocol when the fault tolerance is t < n/2. To be specific, we ask the following question:

127

Can we design a parallel broadcast protocol with o(κn4) communication (κ denotes a

security parameter) and a good round complexity while tolerating t < n/2 Byzantine

faults?

We answer this question affirmatively by showing two parallel broadcast protocols each with O(n2`+

κn3) communication for inputs of size ` bits and termination in constant expected rounds. Thus,

for inputs for size ` = Ω(n) bits, our protocols have no asymptotic overhead. Our first protocol

works in the authenticated model with PKI and digital signatures and is secure against a static

adversary. Our second protocol relies on threshold setup assumption to obtain security against a

(strongly rushing) adaptive adversary.

7.1.1 Key Technical Ideas and Results

Parallel broadcast is a primitive where all parties wish to broadcast ` bit messages in parallel [91].

It can be implemented näıvely by invoking n instances of Byzantine broadcast [43] or Byzantine

agreement [4] primitives in parallel in a “black box” manner. However, this technique increases

the communication complexity by an undesirable factor of n. Moreover, invoking n concurrent

instances of randomized Byzantine agreement protocol [4] (that terminates in expectedO(1) rounds)

terminates in expected O(log n) rounds [18]; thus increasing the round complexity. Our work focuses

on improving communication complexity while keeping a constant expected round complexity.

Towards communication efficient parallel broadcast. Instead of relying on n instances of

expensive Byzantine Broadcast (or Byzantine Agreement) primitive, we obtain parallel broadcast

using a combination of n instances of a gradecast primitive [71, 101] and only one instance of

(validated) agreement protocol. To ensure an overall communication complexity of O(n2` + κn3)

for inputs of size ` bits, we improve the communication complexity of gradecast to O(n` + κn2)

and the validated agreement protocol to O(n`+ κn2) in expectation. In the following, we will first

describe our improvements to each of the primitives, before describing parallel broadcast.

Gradecast with multiple grades. Gradecast is a relaxed version of broadcast introduced by

Feldman and Micali [49] where parties output a value along with a grade. Basic versions of grade-

cast [71, 101] have grades in the range of {0, 1, 2}. We rely on a version of gradecast that supports

grades in the range {0, 1, 2, 3, 4} (we will explain later the need for this version of gradecast). At

a high level, our gradecast with multiple grades provides the following guarantees: (i) the grades

of all honest parties are maximum i.e., 4 when the sender is honest, (ii) honest parties may output

128

different grades when the sender is Byzantine; but the grades of any two honest parties differ by at

most 1, (iii) when an honest party outputs a value with a grade of 2, all honest parties output the

same value with grade of ≥ 1, (iv) two honest parties may output different values with a grade of

1 when no honest party has a grade of 2.

We give a construction with a communication complexity of O(n` + κn2). The key technique we

employ to design communication efficient gradecast is to have parties multicast smaller chunks

of messages (via extension techniques [86]) only once and then “silently” waiting to detect any

conflicting messages while simultaneously increasing the grades when no conflicting messages are

detected.

While gradecast with grades up to 4 suffices for our purpose, we generalize it to arbitrary number

of grades {0, 1, . . . , g∗} where g∗ is the maximum supported grade. We note that Garay et al. [57]

also formulated gradecast with multiple grades and gave a construction with a communication

complexity of O(g∗(`+ κ)n2) for ` bit input. We give a slightly relaxed definition.1 We obtain the

following result:

Theorem 75. Assuming a public-key infrastructure, digital signatures and a universal structured

reference string under q-SDH assumption, there exists a g∗-gradecast protocol tolerating t < n/2

Byzantine faults with O(n`+κn2) communication for an input of size ` bits and a round complexity

of 3g∗ − 2.

Graded parallel broadcast: Composing n instances of gradecast with multiple grades

and ensuring validated output. Parties invoke gradecast with multiple grades with each party as

a sender to propagate their input and output an n-element list of grades (GradeList) corresponding

to each party as sender. Note that GradeList of two honest parties may be different; especially

the grades corresponding to a Byzantine sender. Looking ahead, our aim is to feed the GradeList

of each party into a multi-valued validated Byzantine agreement (MVBA) protocol to agree on a

common GradeList and output the final vector based on the grades in the agreed GradeList to solve

the parallel broadcast problem.

Note that in MVBA, the output GradeList can be an input of any party, including a Byzantine

party as long as the output GradeList meets some validity conditions. However, a Byzantine party

may set arbitrary grades corresponding to honest senders. In order to restrict a Byzantine party

from setting arbitrary grades corresponding to honest senders in its GradeList, we define the notion

1Our relaxation allows honest parties to output different values with a grade of 1 when no honest party has a
grade of 2 while they require honest parties to output the same value with a grade of 1.

129

of valid GradeList. A valid GradeList is one that has been verified by at least one honest party. An

honest party verifies a given GradeList by checking against its own GradeList and ensuring that the

grades corresponding to a sender differ by at most 1. This restricts the grades corresponding to

honest parties to be in a specific range in a valid GradeList.

Given this notion of valid GradeList, let us see why we need a gradecast that supports grades in the

range {0, 1, 2, 3, 4} where honest parties output a common value with the highest grade of 4 when

the sender is honest. Consider a Byzantine party who may set arbitrary grades corresponding to an

honest sender in its GradeList. For its GradeList to be valid, it must set a grade of at least 3 for its

GradeList to be verified by an honest party. Then we can compute the final output vector (to solve

parallel broadcast) by considering values that have grades at least 3 in the agreed valid GradeList.

This ensures honest inputs are always included in the final output vector. Note that the Byzantine

party may also set a grade of at least 3 corresponding to a Byzantine sender in its GradeList. The

GradeList will be verified as long as an honest party has a grade of at least 2 corresponding to this

Byzantine sender. Note that our gradecast protocol ensures that all honest parties have output the

same value when an honest party sets a grade of at least 2. This ensures consistency in the final

output vector.

To see why gradecast protocol that supports fewer grades does not work, let us conider a consider

a gradecast where the maximum grade is 3. We consider a GradeList of a Byzantine party who

may set a grade of 2 corresponding to an honest sender (to ensure the GradeList is verified). In this

version, in order to ensure honest inputs are included in the final vector, we need to output values

with grades of at least 2 in the agreed GradeList. However, the Byzantine party may also set a

grade of 2 corresponding to Byzantine sender for which no honest party has a grade of 2; different

honest parties may have different values in this case. Thus, this violates consistency.

We formally define the process of invoking n parallel instances of gradecast with multiple grades and

obtaining (possibly different) valid GradeList as graded parallel broadcast. We obtain the following

result,

Theorem 76. Assuming a public-key infrastructure, digital signatures and a universal structured

reference string under q-SDH assumption, there exists a graded parallel broadcast protocol tolerating

t < n/2 Byzantine faults with O(n2`+κn3) communication for an input of size ` bits and constant

rounds.

Agreeing on a common valid GradeList using efficient multi-value validated Byzantine

agreement. We make use of a single instance of multi-valued validated Byzantine agreement

130

Table 7.1: Comparison of related works on MVBA with `-bit input

Model Resilience Communication Latency Adversary

Shrestha et al. [101] PKI t < n/2 E(O(n2`+ κn3)) E(O(1)) static

This work threshold setup t < n/2 E(O(n`+ κn2)) E(O(1)) adaptive

E(.) implies “in expectation”.

(MVBA) to agree on a common GradeList. In MVBA, each party starts with a different externally

valid input (possibly large) and outputs a common value; the output value can be input of any

party as long as it is externally valid. To the best of our knowledge, the MVBA protocol from Chap-

ter 6 which works in the authenticated model with PKI and digital signatures is the only known

synchronous MVBA protocol. That protocol is secure against a static adversary tolerating t < n/2

faults with O(n2`+ κn3) communication in expectation and expected O(1) rounds.

In order to improve communication complexity and provide security against an adaptive security, in

this chapter, we design an MVBA protocol secure against a (strongly rushing) adaptive adversary

tolerating t < n/2 Byzantine faults. Our MVBA protocol incurs O(n` + κn2) communication in

expectation and terminates in expected constant rounds but assumes threshold setup and relies

on adaptively-secure threshold signature scheme [78]. Following the communication lower bound

results of Abraham et al. [2] and Fitzi et al. [56], our MVBA protocol has optimal communication

complexity. Specifically, we show the following result:

Theorem 77. Assuming a public-key infrastructure, digital signatures, threshold setup and a uni-

versal structured reference string under q-SDH assumption, there exists a multi-valued validated

Byzantine agreement protocol tolerating t < n/2 Byzantine faults with O(n`+ κn2) communication

in expectation for inputs of size ` bits, termination in expected O(1) rounds and security against a

(strongly rushing) adaptive adversary.

The starting point of our MVBA construction is the Byzantine synod protocol of Abraham et

al. [4] which is secure against a (strongly rushing) adaptive adversary and incurs O((` + κ)n2)

communication in expectation and terminates in expected constant rounds. We present a brief

overview of their protocol to understand O(n2`) term.

In their protocol, parties first multicast their `-bit proposals and collect acknowledgements from

at least t + 1 parties. A proposal is said to be “prepared” if it collects acknowledgements from

t + 1 parties. Each of the parties then propose these prepared proposals. This is followed by a

leader election phase where they always obtain a common leader. With probability at least 1/2,

131

this leader is honest. Once the leader is elected, parties only consider the prepared proposal of

the leader. If such a proposal exists and there are no equivocating prepared proposals from the

leader, the proposal is committed; otherwise parties perform a “view-change” to restart the process.

Having parties create prepared proposals before a leader election prevents an adaptive adversary

from corrupting the elected party and creating equivocating proposals. For proposals of size `

bits each, a multicast of n proposals trivially incurs O(n2`) communication even with the use of

extension techniques [86].

Our MVBA protocol inherits the underlying consensus mechanism of their protocol and improves

the dissemination of the proposals to obtain O(n`+ κn2) communication. Our solution uses Reed-

Solomon erasure codes [95] to decode large messages into n code words and cryptographic accumu-

lators [88] to verify the correctness of the code words.

In our protocol, each party Pi encodes its ` bit proposal to n code words (si,1, . . . , si,n) via Reed-

Solomon erasure codes and sends a code word si,j to party Pj ∀j ∈ [n] along with a cryptographic

witness to verify the correctness of the code word si,j . Each party Pj , upon receiving a valid

code word si,j , sends an acknowledgment to party Pi. Party Pi considers its proposal “prepared”

once it receives t + 1 acknowledgments. We stress that a party receives a single valid code word

corresponding to the proposal; and not the full proposal. This differs from extension techniques [86]

where all parties receive the full proposal. For all n proposals each of size ` bits, this process only

incurs O(n`+κn2) communication. Having proposals prepared in this manner still gives that same

advantages against an adaptive adversary with reduced communication.

Later in the protocol, when the prepared proposal is selected during leader election phase, the

full proposal needs to be retrieved before committing it. An original proposal can be decoded

with t + 1 valid code words for the proposal. Note, however that a “prepared” proposal does not

imply sufficient code words required to decode the proposal will be available. A Byzantine party

may send a valid code word corresponding to its proposal to a single honest party and collect t

acknowledgements from Byzantine parties to have its proposal prepared. Thus, having a proposal

prepared does not guarantee its availability. We consider such proposals as “bad”. When such

a bad proposal is selected during the leader election phase, we “wait” for a few rounds to detect

recoverability of the proposal and perform view-change when we are unable to decode the selected

proposal i.e., we rely on synchrony to detect and filter out bad proposals. Once an honest leader is

elected, its prepared proposal can be decoded and committed.

Efficient parallel broadcast. Finally, we obtain efficient protocols for parallel broadcast using

the above primitives. In particular, we use the graded parallel broadcast and MVBA protocol to

132

Table 7.2: Comparison of related parallel broadcast protocols

Model Resilience Communication Latency Adversary

Tsimos et al. [103] PKI t < (1− ε)n Õ(κ2n3`) O(t log t) adaptive

Tsimos et al. [103] trusted PKI t < (1− ε)n Õ(κ4n2`) O(κ log t) adaptive
Abraham et al. [1] unauthenticated t < n/3 O(n2`) + E(O(n4 logn)) E(O(1)) static

This work + [101] PKI t < n/2 O(n2`) + E(O(κn3)) E(O(1)) static
This work threshold setup t < n/2 O(n2`+ κn3) + E(O(κn2)) E(O(1)) adaptive

Tsimos et al. [103] and Abraham et al. [1] do not assume q-SDH assumption. Tsimos et al. [103] has Õ in the
communication complexity which hides a logn factor unrelated to the q-SDH assumption. Without q-SDH setup

assumption, our protocols would have logn multiplicative factor in the communication complexity. E(.) implies “in
expectation”.

achieve parallel broadcast protocol. Specifically, we obtain the following main result:

Theorem 78. Assuming a public key infrastructure and digital signatures, if we have a graded par-

allel broadcast tolerating t < n/2 Byzantine faults with a communication complexity of x and round

complexity of y, and a MVBA protocol tolerating t < n/2 Byzantine faults with a communication

complexity of a and a round complexity of b, we can have a parallel broadcast protocol tolerating

t < n/2 Byzantine faults with a communication complexity of x+a and a round complexity of y+b.

We obtain different results for parallel broadcast depending on the variant of the validated Byzan-

tine agreement used. Our first parallel broadcast protocol uses the MVBA protocol from Chapter 6

which is a secure against a static adversary with O(n2`+ κn3) communication in expectation and

expected O(1) rounds. Using this MVBA protocol, we obtain the following corollary:

Corollary 79. Assuming a public-key infrastructure, digital signatures, and a universal structured

reference string under q-SDH assumption there exists a protocol secure against static adversary that

solves parallel broadcast tolerating t < n/2 Byzantine faults with O(n2`) +E(O(κn3)) communica-

tion and expected O(1) rounds.

Our second parallel broadcast protocol uses our MVBA protocol (Theorem 71). We obtain the

following corollary:

Corollary 80. Assuming a public-key infrastructure, digital signatures, threshold setup, and a

universal structured reference string under q-SDH assumption there exists a protocol that solves

parallel broadcast tolerating t < n/2 Byzantine faults with O(n2`+κn3)+E(O(κn2)) communication,

termination in expected O(1) rounds and security against a (strongly rushing) adaptive adversary.

133

Observe that our second parallel broadcast has O(n2`+ κn3) +E(O(κn2)) communication. In the

common case, the protocol terminates in expected constant number of rounds with total communi-

cation complexity of O(n2`+ κn3). In the worst case, when the protocol runs for linear number of

rounds, this protocol still incurs O(n2`+κn3) communication; thus this protocol incurs O(n2`+κn3)

communication even in the worst-case.

Related Work. Table 7.1 and Table 7.2 presents comparisons with recent results in MVBA and

parallel broadcast literature. We present a detailed discussion in Section 7.7.

7.2 Model and Preliminaries

We consider a system consisting of n parties (P1, . . . , Pn) in a reliable, authenticated all-to-all

network, where up to t < n/2 parties can be Byzantine faulty. The Byzantine parties may behave

arbitrarily. We consider two kinds of adversaries: (i) a static adversary, and (ii) a strongly rushing

adaptive adversary. A static adversary corrupts parties before the start of the protocol execution

whereas a strongly rushing adaptive adversary can adaptively decide which t parties to corrupt at

any time during protocol execution. In addition, due to “strongly-rushing” nature of the adversary,

the adversary is capable of corrupting a party Ph after observing message sent by party Ph in round

r and remove round r messages sent by party Ph before they reach other honest parties and send

round r messages after corrupting it [4]. A party that is not faulty throughout the execution is

considered to be honest and executes the protocol as specified.

We assume a synchronous communication model. Thus, if an honest party sends a message at the

beginning of some round, the recipient receives the message by the end of that round. We make

use of digital signatures and a public-key infrastructure (PKI) to prevent spoofing and replays and

to validate messages. Message x sent by a node Pi is digitally signed by Pi’s private key and is

denoted by 〈x〉i. In addition, we use H(x) to denote the invocation of the random oracle H on

input x.

7.2.1 Definitions

Gradecast with multiple grades. Gradecast with multiples grades was originally introduced by

Garay et al. [57] that supports arbitrary number of grades. We present a slightly different definition

of gradecast with multiple grades.

134

Definition 7.2.1 (Gradecast with multiple grades). A protocol with a designated sender Pi holding

an initial input v is a g∗-gradecast protocol tolerating t Byzantine faults if the following conditions

hold:

1. Each honest party Pj outputs a value vj with a grade gj ∈ {0, 1, . . . , g∗}.

2. If the sender is honest, each honest party Pj outputs v with a grade gj = g∗.

3. If two honest parties Pj and Pk output values with grades gj and gk respectively, then |gj−gk| ≤
1.

4. If an honest party Pj outputs a value v with a grade gj > 1, then all honest parties output

value v.

7.2.2 Primitives

In this section, we present several primitives used in our protocols.

Linear erasure and error correcting codes. We use standard (t + 1, n) Reed-Solomon (RS)

codes [95]. This code encodes t+ 1 data symbols into code words of n symbols using ENC function

and can decode the t+ 1 elements of code words to recover the original data using DEC function.

More details on ENC and DEC functions are provided in Section 2.5.

Cryptographic accumulators. A cryptographic accumulator scheme constructs an accumulation

value for a set of values using Eval function and produces a witness for each value in the set using

CreateWit function. Given the accumulation value and a witness, any party can verify if a value is

indeed in the set using Verify function. More details on these functions are provided in Section 2.5.

In this chapter, we use collision free bilinear accumulators from Nguyen [88] as cryptographic accu-

mulators which generates constant sized witness, but requires q-SDH assumption. Alternatively, we

can use Merkle trees [81] (and avoid q-SDH assumption) at the expense of O(log n) multiplicative

communication.

Normalizing the length of cryptographic building blocks. Let λ denote the security param-

eter, κh = κh(λ) denote the hash size, κa = κa(λ) denote the size of the accumulation value and

witness of the accumulator. Further, let κ = max(κh, κa); we assume κ = Θ(κh) = Θ(κa) = Θ(λ).

135

Throughout the chapter, we will use the same parameter κ to denote the hash size, signature size

and accumulator size for convenience.

7.3 Gradecast with Multiple Grades

In this section, we present a communication efficient gradecast protocol that supports multiple

grades. Gradecast (aka graded broadcast) is a relaxed version of broadcast introduced by Feldman

and Micali [49]. In gradecast, parties output a value along with a grade. Informally, the grade

output by a party is an indicator of the “confidence” in the output produced by it. Thus, when the

grade output by an honest party is high, other honest parties are expected to output the same value

(even though their grade may be lower). When the grades are lower, there may be some amount

of disagreement between the output values of different honest parties too. This is in contrast to

broadcast which requires honest parties to reach a unanimous decision.

The gradecast protocol of Feldman and Micali [49] supports three grades {0, 1, 2} and their protocol

tolerates t < n/3 Byzantine faults in the plain authenticated model without PKI. Later, Garay et

al. [57] generalized the gradecast protocol to the case of an arbitrary number of grades {0, 1, . . . , g∗}
where g∗ is the maximum supported grade. They gave a protocol in the authenticated model with

PKI and digital signatures tolerating t < n Byzantine faults and a communication complexity of

O(g∗(`+ κ)n2) for input of size ` bits and a round complexity of 2g∗ + 1. In this work, we present

a slightly different definition of the gradecast with multiple grades and show a construction that

satisfies this definition with a communication complexity of O(n`+ κn2) for input of size ` bits.

Our definition of gradecast with multiple grades differs from the definition of Garay et al. [57] in the

following ways. First, our definition allows honest parties to output different values with a grade of

1 when no honest party outputs a grade > 1 while their definition restricts honest parties to output

the same value with a grade of 1. Second, our definition requires the grades of any two honest

parties to differ by at most 1, i.e., for any two honest parties Pj and Pk, we require |gj − gk| ≤ 1

while the definition of Garay et al. [57] only requires gk ≥ gj − 1 when gj ≥ 2.

Next, we construct a protocol M-Gradecast(v, g∗) where v is the sender’s value and g∗ is the maxi-

mum supported grade. M-Gradecast(v, g∗) works in the authenticated model with PKI and digital

signatures and tolerates t < n/2 Byzantine faults.

Deliver. As a building block, we first present a Deliver function (refer Figure 4.2) used by an

136

honest party to efficiently propagate long messages. This function is adapted from Chapter 4 where

linear-sized messages are propagated among all honest parties with O(κn2) communication cost.

The Deliver function enables efficient propagation of long messages using erasure coding techniques

and cryptographic accumulators. The input parameters to the function are a keyword mtype, long

message m and an accumulation value ze corresponding to message m. The input keyword mtype

corresponds to message type containing long message m sent by its sender. In order to facilitate

efficient leader equivocation, the input keyword mtype, hash of long message m and accumulation

value ze are signed by the sender of message m. The Deliver function incurs 2 rounds.

Equivocation. Two or more messages of the same type but with different payload sent by a party

is considered an equivocation. In order to facilitate efficient equivocation checks, the sender sends

the payload along with signed hash of the payload. When an equivocation is detected, broadcasting

the signed hash suffices to prove equivocation by the sender.

Set oi = ⊥ and gi = ⊥. Each party Pi performs the following operations:

- Round 1: If party Pj is the designated sender, then it multicasts its input value v in the form of 〈gcast, v, z〉j
where z is the accumulation value of v.

- Round 2h (h ∈ [1, g∗ − 1]): If party Pi receives pr := 〈gcast, v, z〉j for the first time, then invoke
Deliver(gcast, pr, z).

- Round 2g∗: If party Pi invoked Deliver and no party Pj equivocation has been detected so far, set oi = v and
gi = 2. Let vi be the first value received. If vi = ⊥, set oi = ⊥ and gi = 0, else if oi = ⊥, set oi = vi and gi = 1.

- Round 2g∗ + h (h ∈ [1, g∗ − 2]): If party Pi invoked Deliver for value v by Round 2g∗ − 2(h+ 1) and no party
Pj equivocation has been detected so far, set gi = gi + 1. At Round 3g∗ − 2, output (oi, gi).

- At any round: If equivocating hashes signed by party Pj are detected, multicast the equivocating hashes.

Figure 7.1: M-Gradecast(v, g∗) with O(n`+ (κ+ w)n2) communication.

The M-Gradecast(v, g∗) protocol is presented in Figure 7.1. In round 1, the designated sender Pj

sends value v by multicasting 〈gcast, v, z〉j where z is the accumulation value for value v. We note

that the size of input value v can be large. In order to facilitate efficient equivocation checks, the

sender Pj signs 〈gcast, H(v), z〉 and sends v separately. Whenever an equivocation by the sender

is detected, multicasting signed hashes suffices to prove equivocation by the sender. Note that

the size of the signed message 〈gcast, H(v), z〉 is O(κ) bits. Thus, all-to-all multicast of the signed

message 〈gcast, H(v), z〉 incurs only O(κn2) communication. The reduction in communication is

obtained via the use of efficient erasure coding schemes [95], cryptographic accumulators [15] and

multicast of equivocating hashes (if any). Multicasting of equivocating hashes been explored in

several communication efficient BFT protocols [100, 10, 22].

During rounds 2h for h ∈ [1, g∗ − 1], if party Pi receives 〈gcast, v, z〉j for the first time, it invokes

137

Deliver to propagate long message v, i.e., if party Pi invoked Deliver in round 2, it does not invoke

Deliver again in later rounds. Note that Deliver function requires 2 rounds. Rounds 2h + 1 for

h ∈ [1, g∗ − 1] accommodates steps of Deliver function invoked in rounds 2h for h ∈ [1, g∗ − 1]. We

note that although parties may invoke Deliver to propagate long message v in different rounds, they

forward their code words only the first time. For example, if a party Pi invoked Deliver in round 2

and an honest party Pk received its first valid code word (sk, wk) in round 3 for accumulator z, it

forwards the code word to all parties in round 3. Later, if some other party (say party Ph) invokes

Deliver in round 4 and party Pk receives code word (sk, wk) again in round 5, party Pk does not

forward (sk, wk) again. This helps in keeping communication complexity to O(n`+ κn2).

In round 2g∗, each party Pi sets its output value and initial grades. If party Pi invoked Deliver

for value v at any prior rounds, and it did not detect any equivocation so far, it sets oi = v and

gi = 2. We note that an honest party decodes long messages corresponding to the first valid code

word they receive even though it detects equivocation as long as it receives t+ 1 valid code words.

Let vi be the first value received. If vi = ⊥, it sets oi = ⊥ and gi = 0. Otherwise if oi = ⊥, set

oi = vi and gi = 1 irrespective of the equivocation.

In round 2g∗+h for h ∈ [1, g∗−2], each party Pi updates their grade gi based on when they invoked

Deliver and if they have detected any equivocation so far.

Optimal communication complexity. Our M-Gradecast(v, g∗) incurs O(n`+ κn2) communica-

tion for input of ` bits. In Chapter 6, we showed a communication lower bound of Ω(n`+ n2) for

weak-gradecast problem where grades are in the range {0, 1, 2} for input of size ` bits. The com-

munication lowerbound can trivially be extended to show the optimal communication complexity

of our M-Gradecast(v, g∗) protocol.

7.3.1 Security Analysis

Claim 81. Suppose party Pj is the designated sender. If an honest party invokes Deliver in round

r for a value m sent by party Pj and no honest party has detected a party Pj equivocation by round

r + 1, then all honest parties will receive value m by round r + 2.

Proof. Suppose an honest party Pi invokes Deliver at round r for a value m sent by party Pj . Party

Pi must have sent valid code words and witness 〈codeword, mtype, sk, wk, ze〉i computed from value

m to every party Pk ∀k ∈ [n] at round r. The code words and witness arrive at all honest parties

138

by round r + 1.

Since no honest party has detected a party Pj equivocation by round r + 1, it must be that either

honest parties will forward their code word 〈codeword,mtype, sk, wk, ze〉 when they receive the code

words sent by party Pi or they already sent the corresponding code word when they either invoked

Deliver for value m or received the code word from some other party. In any case, all honest parties

will forward their code word corresponding to value m by round r+ 1. Thus, all honest parties will

have received t+ 1 valid code words for a common accumulation value ze by round r+ 2 sufficient

to decode value m.

Theorem 82. The protocol in Figure 7.1 is a g∗-gradecast protocol satisfying Definition 7.2.1.

Proof. Suppose party Pj is the designated sender with its input value v. Let g∗ be the maximum

grade.

We first consider the case when an honest party Pi outputs value v with a grade gi = 2 and no

honest party outputs a value with a grade > 2. Honest party Pi must have invoked Deliver for

value v by round 2g∗− 2 and did not detect a party Pj by round 2g∗. This implies no honest party

detected a party Pj equivocation by round 2g∗− 1. By Claim 81, all honest parties receive value v

by round 2g∗. In addition, since party Pi invoked Deliver for value v by round 2g∗ − 2, all honest

parties receive a code word for value v by round 2g∗ − 1. Thus, value v is the first value received

by all honest parties. Since v 6= ⊥, all honest parties will output value v with a grade ≥ 1.

Next, we consider the case when an honest party Pi outputs a value v with a grade gi > 2. Without

loss of generality, assume gi is the highest grade output by any honest party. Let h = gi− 2. Since,

party Pi outputs value v with a grade gi > 2, it must have invoked Deliver to propagate value v

by round 2g∗ − 2(h + 1) and did not detect any party Pj equivocation by round 2g∗ + h. This

implies no other honest party detected a party Pj equivocation by round 2g∗ + h− 1. With h ≥ 1,

2g∗ + h − 1 > 2g∗ − 2(h + 1) + 1. Thus, by Claim 81, all other honest parties receive value v by

round 2g∗− 2h. The honest parties that did not invoke Deliver by round 2g∗− 2(h+ 1) will invoke

Deliver for value v by round 2g∗−2h. Since no other honest party detected a party Pj equivocation

by round 2g∗ + h− 1, all honest parties will set a grade of 2 in round 2g∗. In addition, all honest

parties will set a grade of at least 2 + h− 1 = gi − 1 by round 2g∗ + h− 1. Thus, all honest parties

will output value v with a grade at least gi − 1.

This also proves that if an honest party Pi outputs a value v with a grade gi > 1, then all honest

parties output value v.

139

Next, we consider the case when the designated sender is honest. Since, the sender is honest, it

sends its input value v to all honest parties such that all honest parties receive value v in round

2. Thus, all honest parties invoke Deliver to propagate value v in round 2. Moreover, the honest

sender does not equivocate. Thus, all honest parties set a grade of 2 in round 2g∗ and set a grade

of 2 + g∗ − 2 = g∗ in round 3g∗ − 2.

The case where each honest party outputs a value with a grade ∈ {0, 1, . . . , g∗} is trivial by design.

Lemma 83 (Communication Complexity). Let ` be the size of the input, κ be the size of accumu-

lator, and w be the size of witness. The communication complexity of the protocol in Figure 7.1 is

O(n`+ (κ+ w)n2).

Proof. At the start of the protocol, the sender multicasts its value of size ` to all party Pj ∀j ∈ [n]

along with κ sized signed message containing accumulator and hash of large message. This step

incurs O(n`+κn). An honest party invokes Deliver only on the first value it receives where it sends a

code word of size O(`/n), a witness of size w and an accumulator of size κ to each party. Moreover,

each party multicasts a code word of size O(`/n), a witness of size w and an accumulator of size

κ. Thus, for all honest parties, this process incurs O(n`+ (κ+w)n2) and the overall complexity is

O(n`+ (κ+ w)n2).

7.4 Graded Parallel Broadcast

In this section, we present a new primitive that we call Graded Parallel Broadcast. Graded parallel

broadcast is a relaxation of parallel broadcast [103] and uses gradecast with multiple grades to

propagate its input. In this work, we consider an instance of gradecast with multiple grades where

the grades can be in the range {0, 1, . . . , 4}. In our construction, each party Pi uses M-Gradecast(., 4)

to propagate its input vi and output an n-element list of values along with an n-element list of

grades (GradeListi). Looking ahead, our aim is to have each party Pi feed its output of graded

parallel broadcast (i.e., GradeListi) into a Byzantine consensus primitive to agree on a common

GradeListh. The agreed GradeListh can be a Byzantine parties’ input too. However, a Byzantine

party may set arbitrary grades in its GradeList corresponding to an honest sender and prevent

honest input from appearing in the final output. In order to prevent this scenario, we restrict a

Byzantine party from setting arbitrary grades and consider only a valid GradeList. A valid GradeList

has (i) at least n− t entries of grade 4, i.e., |{h |GradeList[h] = 4}| ≥ n− t, (ii) GradeList[i] ∈ {3, 4}

140

corresponding to honest sender Pi. Note that for an honest sender Pk, each honest party Pi sets a

grade GradeListi[k] = 4. Thus, a valid GradeList must have at least n − t entries of 4. Moreover,

due to the properties of M-Gradecast(., 4), the grades of two parties for the same sender can differ

by at most 1. Since each honest party sets a grade of 4 for an honest sender Pk, a Byzantine

party must set a grade of at least 3 corresponding to an honest sender Pk for its GradeList to be

valid. In the final parallel broadcast protocol, we consider all values with grades in the range {3, 4}
corresponding to agreed GradeList.

In graded parallel broadcast, we ensure that a valid GradeList is certified, i.e., it is accompanied

by a set of signatures from at least t + 1 parties. A set of t + 1 signatures on GradeList forms the

certificate for GradeList and denoted as AC(GradeList).

Definition 7.4.1 (Graded Parallel Broadcast). Each party Pi, as a sender, sends its input vi.

Each honest party Pj outputs an n-element list of values along with a n-element list GradeListj with

an entry corresponding to each party as a sender such that GradeListj [h] ∈ {0, 1, 2, 3, 4} ∀h ∈ [n]. A

graded parallel Broadcast protocol tolerating t Byzantine failures satisfies the following properties:

1. If sender Pi is honest, then each honest party Pj sets GradeListj [i] = 4.

2. A certified GradeListk must have |{h |GradeListk[h] = 4}| ≥ n− t.

3. If the sender Pi is honest and GradeListk is certified, then GradeListk[i] ∈ {3, 4}.

4. If GradeListk is certified and GradeListk[i] ∈ {3, 4}, then all honest parties have received a

common value vi.

Each party Pi with its initial input vi performs following operations:

1. (Round 1) Propose. Each party Pi invokes M-Gradecast(vi, 4).

2. (Round 10) Propose Grade. Let (oj,i, gj,i) be the output of M-Gradecast of party Pi with party Pj as sender.
Set GradeListi[j] = gj,i. Multicast 〈grade-list,GradeListi〉i.

3. (Round 11) Verify and Ack. Upon receiving 〈grade-list,GradeListj〉j from party Pj , if the following conditions
hold send 〈ack, H(GradeListj)〉i to party Pj .

(a) |{h |GradeListj [h] = 4}| ≥ n− t
(b) |GradeListj [h]− GradeListi[h] < 2| ∀h ∈ [n].

Figure 7.2: Graded Parallel Broadcast with O(n2`+ (κ+ w)n3) communication

Protocol Details. Each party Pi uses M-Gradecast(., 4) to propagate its input vi. At the end of

M-Gradecast(., 4) invocation, each honest party Pi outputs an n element list of values along with

141

n element list of grades, denoted by GradeListi, with an entry corresponding to each party as a

sender.

Party Pi then multicasts its GradeListi to all other parties. Party Pj then checks the validity of

GradeListi by checking if (i) |{h |GradeListi[h] = 4}| ≥ n−t, and (ii) |GradeListj [h]−GradeListi[h] < 2|
∀h ∈ [n]. The first check ensures that GradeListi contains at least n−t entries with GradeListi[h] = 4.

Note that for an honest sender Pk, each honest party Pi outputs a value with GradeListi[k] = 4.

Thus, a valid GradeList must have at least n − t entries of 4. In addition, due to the properties

of M-Gradecast(., 4), the grades of any two parties corresponding to a sender differs by at most

1. Thus, a valid GradeList must satisfy |GradeListj [h] − GradeListi[h] < 2| ∀h ∈ [n]. This check

also prevents a Byzantine party from setting too low grades corresponding to an honest sender;

otherwise its GradeList would not be certified. Thus, a Byzantine party must set a grade of at least

3 corresponding to an honest sender for its GradeList to be certified.

If the checks pass, party Pj sends 〈ack, H(GradeListi)〉j to party Pi. A set of t + 1 ack (ack-cert)

messages for GradeListi (denoted by AC(GradeListi)) implies at least one honest party has verified

GradeListi.

7.4.1 Security Analysis

Theorem 84. The protocol in Figure 7.2 is a graded Parallel Broadcast protocol satisfying Defini-

tion 7.4.1.

Proof. If the sender Pi is honest, it propagates its input vi using M-Gradecast. By Theorem 82,

each honest party Pj output GradeListj with GradeListj [i] = 4.

Next, we consider a certified grade list GradeListk. The only way GradeListk gets certified is if at least

one honest party Pj sends an ack for it. If an honest party Pj sends an ack for a grade list GradeListk,

then it must be that (i) |{h |GradeListk[h] = 4}| ≥ n− t and (ii) |GradeListk[h]− GradeListj [h] < 2|
∀h ∈ [n]. Trivially, this implies a certified GradeListk must have |{h |GradeListk[h] = 4}| ≥ n − t.
This also implies that if GradeListk[h] ∈ {3, 4}, GradeListj [h] must be at least 2. By the properties

of M-Gradecast (Definition 7.2.1), if an honest party outputs a value vh with a grade of > 1, all

honest parties output a common value vh. Thus, all honest parties have common value vh for all h

such that GradeListk[h] = {3, 4}.

Next, we consider the grades in GradeListk[j] for an honest sender Pj . We know from the fact that

142

for an honest sender Pj , by the properties of M-Gradecast(v, 4), all honest parties will set a grade

of 4. An honest party Pi will send an ack for GradeListk only if |GradeListk[j] − GradeListi[j] < 2|.
This implies GradeListk[j] must be at least 3 i.e. GradeListk[j] ∈ {3, 4}.

Lemma 85 (Communication Complexity). Let ` be the size of commitment comm, κ be the size

of secret share and accumulator, and w be the size of witness. The communication complexity of

the protocol is O(n2`+ (κ+ w)n3) bits per epoch.

Proof. In the Propose step, each party Pi invokes M-Gradecast(., 4) protocol. By Lemma 83, the

communication complexity of one invocation of M-Gradecast protocol is O(n`+ (κ+ w)n2). Thus,

this step incurs O(n2`+ (κ+ w)n3).

In the Propose grade step, each party multicast their GradeList of size O(n). Multicast of O(n)-sized

GradeList by n parties incurs O(n3) communication. In the Verify and Ack step, each party sends

at most n ack messages. This step incurs O(κn2) communication. Thus, the total communication

complexity is O(n2`+ (κ+ w)n3) bits.

7.5 Multi-valued Validated Byzantine Agreement

In this section, we present an efficient protocol for multi-valued validated Byzantine agreement

(MVBA) secure against a strongly rushing adaptive adversary. MVBA protocol allows honest

parties to agree on any externally valid input; the agreed value can be the input of a Byzantine

party as long as it is externally valid. The problem of multi-valued validated Byzantine agreement

has been extensively studied in the asynchronous model. In the synchronous model, we gave

an MVBA protocol (in Chapter 6) in the authenticated model with PKI and digital signatures

tolerating t < n/2 Byzantine faults and secure against a static adversary. The MVBA protocol

from Chapter 6 incurs a communication complexity of O(n2`+κn3) communication in expectation

for input of size ` bits and terminates in expected O(1) rounds.

In this work, we improve upon our result from Chapter 6 by a linear factor in communication and

also design an MVBA protocol secure against a strongly rushing adaptive adversary. We make

threshold setup assumptions and rely on adaptively-secure threshold signature scheme due to Loss

and Moran [78] to perform a perfect leader election where all honest parties obtain a common leader

all the time. This assumption provides us with three major advantages (i) the leader election can

be performed in O(κn2) communication, (ii) we can obtain security against an adaptive adversary,

143

Each party Pi with its input vi performs following operations:

- Round 1: Each party Pi partitions its input vi into t+ 1 data symbols and encode the t+ 1 data symbols into n
code words (si,1, . . . , si,n) using ENC function. Compute accumulation value zvi using Eval function and witness
wi,j ∀si,j ∈ (si,1, . . . , si,n) using CreateWit function. Send 〈codeword, si,j , wi,j , zvi〉i to party Pj ∀j ∈ [n].

- Round 2: If party Pi receives the first valid code word 〈codeword, sj,i, wj,i, zvj 〉j for the accumulator zvj , send
an 〈ack, zvj 〉i.

- Round 3: Upon receiving t+ 1 distinct 〈ack, zvi〉∗ message, create a threshold signature, denoted as AC(zvi).

Figure 7.3: Proposal Dispersal with O(n`+ κn2) communication

and (iii) since the leader election is perfect (i.e, all honest parties observe a common leader), we

only need to ensure the leader’s proposal is propagated among all parties; this allows us to obtain

O(n`+ κn2) communication in expectation and security against an adaptive adversary.

The starting point of our construction is the adaptively-secure Byzantine synod protocol of Abra-

ham et al. [4] which has a communication complexity of O((` + κ)n2) for ` bit input values and

termination in expected 16 rounds. Our MVBA protocol inherits the underlying consensus mech-

anism of their protocol and improves the dissemination of the proposals to obtain O(n` + κn2)

communication. Our solution uses Reed-Solomon erasure codes [95] to decode large messages into

n code words and cryptographic accumulators [88] to verify the correctness of the code words.

Section 7.1.1 presents the key ideas behind our improvement.

Epoch. Our protocol progresses through a series of numbered epochs. Each epoch lasts for 8

rounds.

Certified values and ranking. A certificate on a value vi consists of t + 1 distinct signatures

in an epoch e and is represented by Ce(vi). Certificates are ranked by epochs, i.e., values certified

in a higher epoch has a higher rank. During the protocol execution, each party keeps track of all

certified blocks and keeps updating the highest ranked certified block to its knowledge. Parties lock

on the highest ranked certified values and do not vote for values other than the locked values to

ensure safety of a commit.

7.5.1 Protocol Details

We first present a protocol used by all parties to efficiently distribute their long ` bit input vi

at the cost of O(n` + κn2) communication. This protocol is executed before the MVBA protocol

(refer Figure 7.4).

144

Proposal dispersal. In proposal dispersal protocol (refer Figure 7.3), each party makes use of

erasure coding techniques and cryptographic accumulators to efficiently distribute its long message.

Each party Pi partitions its input vi into t + 1 data symbols. The t + 1 data symbols are then

encoded into n code words (si,1, . . . , si,n) using ENC function and a corresponding accumulation

value zvi is computed. Then, the cryptographic witness wi,j is computed for each code word

si,j ∈ (si,1, . . . , si,n) using CreateWit. Then, the code word and witness pair (si,j , wi,j) is sent to

the partyPj ∀j ∈ [n] along with the accumulation value zvi .

When a party Pj receives the first valid code word si,j for an accumulation value zvi such that the

witness wi,j verifies the code word si,j , it sends an 〈ack, zvi〉j to party Pi. When party Pi receives

t + 1 ack messages for zvi , it forms an ack-cert for value vi, denoted as AC(zvi). Note that an

ack-cert for value vi does not imply all honest parties have received valid code words corresponding

to value vi; this only implies at least one honest party has received a valid code word corresponding

to value vi. When the sender Pi is honest, then all honest parties will receive a valid code word

corresponding to value vi which is sufficient to decode value vi. In the MVBA protocol that follows,

each party Pi proposes accumulation value zvi along with AC(zvi) and honest parties only consider

proposals containing an ack-cert. Collecting an ack-cert for a proposal is similar to having a proposal

prepared in the Byzantine synod protocol of Abraham et al. [4]. However, it does not guarantee

that all honest parties will be able to decode the proposed value.

In the proposal dispersal protocol, each party Pj receives only a single code word si,j corresponding

to value vi. For n proposals each of size ` bit, this protocol incurs O(n`+ (κ+w)n2) bits where κ

is the size of accumulator and w is the size of the accumulator witness.

MVBA Protocol. At the start of the MVBA protocol (refer Figure 7.4), no party has a certificate

for any proposed value; thus each party Pi sends a status message with an empty certificate.

Consequently, CCi = ⊥ for each party Pi and each party Pi multicasts its own value (zvi ,AC(zvi))
in the propose step of the first epoch. In subsequent epochs, parties send proposals corresponding

to the highest ranked certificate known to them. Note that a valid proposal is accompanied by

an ack-cert which can only be formed during a proposal dispersal phase; this is because a ack-cert

consists of at least t+1 ack for zvi and honest parties send ack for zvi only in the proposal dispersal

phase. In the MVBA protocol, all parties send their proposals first and a leader is elected in a later

round. This prevents an adaptive adversary from corrupting the elected party and sending valid

equivocating proposals afterwards; this is because ack-cert for an equivocating proposal cannot

form afterwards.

In round 3, parties participate in the adaptively-secure threshold coin tossing scheme due to

145

Each party Pi with its input vi executes the proposal disperal protocol (refer Figure 7.3) and outputs AC(zvi).
Then, each party Pi performs the following operations for each epoch e:

1. (Round 1) Status. Multicast the highest ranked certificate known to party Pi in the form of
〈status, Ce′(zvh),AC(zvh)〉i.

2. (Round 2) Propose. Let CCi := Ce′(zvh) be the highest ranked certificate known to party Pi at the end of
Status round. If CCi 6= ⊥, set vali = (zvh ,AC(zvh)); otherwise set vali = (zvi ,AC(zvi)). Each party Pi multicasts
〈propose, vali, CCi, e〉i.

3. (Round 3) Elect. Each party Pi participates in threshold coin tossing scheme from [78]. Let Le be leader of
epoch e.

4. (Round 4) Forward. Upon receiving the first valid proposal 〈propose, (zvh ,AC(zvh)), CCLe , e〉Le forward the
proposal. If CCi ≤ CCLe , party Pi forwards a valid code word 〈codeword, sh,i, wh,i, zvh , e〉i consistent with
accumulator zvh sent by party Ph during proposal dispersal phase (if party Pi received a code word for zvh).

5. (Round 5) Decode. Upon receiving t + 1 valid code words for the accumulator zvh , decode vh using DEC
function if party Pi has not already received vh in earlier epochs. Send 〈codeword, sh,j , wh,j , zvh , e〉i to party Pj
∀j ∈ [n].

6. (Round 6) Forward2. If party Pi receives the first valid code word 〈codeword, sh,i, wh,i, zvh , e〉∗ for the
accumulator zvh , forward the code word to all the parties.

7. (Round 7) Vote. If party Pi receives vh by round 5, CCi ≤ CCLe , ex-validation(vh) = true and no equivocating
proposal by Le has been detected so far in epoch e, multicast a vote in the form of 〈vote, e,H(zvh)〉i.

8. (Round 8) Commit. Upon receiving t+1 distinct vote for zvh (denoted by Ce(zvh)), multicast Ce(zvh), commit
vh and multicast 〈terminate, e,H(vh)〉i.

9. (At any time) Terminate. Upon receiving t+ 1 〈terminate, e,H(vh)〉∗ messages, multicast it, output vh and
terminate.

10. (At any time) Equivocation. Multicast the equivocating proposals signed by Le. Stop performing epoch e
operations.

Figure 7.4: MVBA with O(n`+ κn2) bits communication per epoch and expected O(1) epochs

146

Loss and Moran [78] to randomly select a common leader Le for epoch e. The leaders are

elected uniformly at random, a common honest leader is elected with probability at least 1
2 . Let

〈propose, (zvh ,AC(zvh)), CCLe , e〉 be L′es proposal for epoch e. If CCi ≤ CCLe , party Pi forwards a

code word (sh,i, wh,i) corresponding to the Le’s proposal for zvh if party Pi has received (sh,i, wh,i)

either during the proposal dispersal phase or in earlier epochs. We note again that an ack-cert on

accumulation value zvh (i.e., AC(zvh)) does not imply that all honest parties have received valid

code words corresponding to value vh during proposal dispersal phase. Thus, all honest parties

may not forward their code word corresponding to value vh in round 4.

In round 5, if party Pi receives t + 1 valid code words for the accumulator zh, it decodes value

vh using DEC function. Party Pi again encodes value vh and sends code word (sh,j , wh,j) to party

Pj ∀j ∈ [n]. In round 6, party Pj forwards the valid code word (sh,j , wh,j) to all parties if it has

not already forwarded the code word (sh,j , wh,j) in round 4. Multicasting code words in 5 and

forwarding codewords in rounds 5 and 6 ensures that if an honest party successfully decodes vh, all

honest parties will receive value vh by the end of round 6.

Note that the elected leader could be Byzantine and that leader might not have sent valid code

words to all honest parties during proposal dispersal phase and all honest parties may not have

received valid code words corresponding to value vh although an AC(zvh) exists. Thus, it is possible

that no honest party receives t+ 1 valid code words for accumulator zvh required to decode value

vh in round 5. In such a case, we ensure no honest party commits value vh. In our protocol, we

require that an honest party be able to decode value vh in timely manner before voting for value

vh and later commit it. In particular, we rely on synchrony assumption to detect “bad” proposals

and prevent it from getting committed.

Thus, party Pi votes for value vh only if it decodes value vh by round 5. Party Pi also checks if

it did not detect equivocating proposals made by leader Le in epoch e. This check ensures that if

an honest party votes for a value vh in round 7, all honest parties receive value vh by round 7. In

addition, party Pi also checks the proposed value is externally valid (i.e., ex-validation(vh) = true)

and the leader Le is proposing with the highest ranked certificate. This ensures the safety of a

committed value in earlier epochs.

An honest party Pi commits value vh if it receives t + 1 distinct votes for vh. It multicasts the

vote certificate and 〈terminate, e,H(vh)〉. In the next round, all honest parties will receive the vote

certificate and not vote for lower ranked certificates in future epochs. In addition, if an honest party

receives t + 1 distinct 〈terminate, e,H(zvh)〉 in a round, all honest parties receive the termination

certificate, output value vh and terminate in the next round.

147

Optimal communication complexity. Each party needs to learn ` bit input; thus, a protocol

must incur Ω(n`) communication [56]. In Abraham et al. [2], they show Ω(n2) communication is

required even for a randomized Byzantine agreement protocol secure against a strongly adaptive

adversary. Thus, our MVBA protocol has optimal communication complexity of O(n` + κn2) in

expectation.

Round complexity. In an epoch, an honest leader is elected with probability at least 1
2 . All

honest parties commit and terminate in the same epoch when an honest leader is elected. Thus,

the protocol terminates in expected 2 epochs. The proposal dispersal phase requires 2 rounds.

Multicast of the termination certificate requires one more additional round. Thus, the protocol

terminates in 19 rounds in expectation.

7.5.2 Security Analysis

Claim 86. If an honest party votes for value vh at round 7, then all honest parties receive value

vh by round 7.

Proof. Suppose an honest party Pi votes for value vh at round 7 in epoch e. Then party Pi must

have decoded value vh by round 5 and did not detect equivocating proposals by leader Le by

round 7. Party Pi must have sent valid code words and witness 〈codeword, mtype, sh,k, wh,k, zvh〉i
computed from value vh to every party Pk ∀k ∈ [n] at round 5. The code words and witness arrive

at all honest parties by round 6. In addition, no honest party detected an equivocating proposal

by round 6 in epoch e.

Since no honest party detected an equivocating proposal by round 6 in epoch e., it must be that

either honest parties will forward their code word 〈codeword,mtype, sh,k, wh,k, zvh〉 when they receive

the code words sent by party Pi or they already sent the corresponding code word in round 5 or

received the code word from some other party. In any case, all honest parties will forward their

code word corresponding to value vh by round 6. Thus, all honest parties will have received t + 1

valid code words for a common accumulation value zvh by round 7 sufficient to decode value vh.

Lemma 87. If an honest party commits value vh in epoch e, then (i) an equivocating certificate

does not exist in epoch e, and (ii) all honest parties receive Ce(zvh) by the end of epoch e.

Proof. Suppose an honest party Pi commits value vh in epoch e. Party Pi must have received at

least t+ 1 vote messages for value vh at round 8 in epoch e. At least one honest party (say party

148

Pj) must have voted for value vh at round 7 in epoch e. Party Pj votes for value vh when it receives

value vh by round 5, invokes Deliver for value vh and does not detect any equivocating proposal by

leader Le by round 7. By Claim 86, all honest parties receive value vh by round 7. Thus, no honest

party votes for a conflicting value and an equivocating certificate does not exist in epoch e. This

proves part (i) of the Lemma.

For part (ii), note that party Pi multicasts Ce(zvh) when it commits value vh in round 8. Thus,

all honest parties receive Ce(zvh) by end of round 8. By part (i) of the Lemma, an equivocating

certificate does not exist. Thus, all honest parties will receive Ce(zvh) by the end of epoch e.

Theorem 88 (Safety). If two honest parties commit v and v′, then v = v′.

Proof. Suppose an honest party Pi commits value v in epoch e. By Lemma 87, all honest parties

receive Ce(v) by the end of epoch e and no equivocating certificate exists in epoch e. Thus, no

honest party votes for values other than v in any epoch e′ > e and an equivocating certificate

cannot form in epochs higher than e′ > e. Thus, it must be that if two honest party commits to v

and v′, then v = v′

Theorem 89 (Termination). If the leader Le of epoch e is honest, all honest parties terminate by

epoch e.

Proof. Suppose the leader Le of epoch e is honest. Leader Le will send the same proposal

(zvh ,AC(zvh)) to all parties by extending the highest ranked certificate known to all honest parties.

Thus, each honest party Pi will forward valid code word (si, wi) corresponding to value vh to all

parties in round 4 and all honest parties will receive t + 1 valid code words sufficient to decode

value vh in round 5. Thus, each honest party Pi will vote for value vh in epoch 7, receive Ce(zvh)

by round 8 and commit vh. In addition each honest party Pi will multicast 〈terminate, e,H(vh)〉i ,

receive t+ 1 distinct terminate, terminate by the end of round 8 of epoch e.

Theorem 90. The protocol in Figure 6.8 is a multi-valued validated Byzantine agreement protocol

satisfying Definition 2.3.1

Proof. For a value vh to be decided at least one honest party must vote for it. For an honest party

to vote for value vh it must be that ex-validation(vh) = true. The proofs for safety and termination

follows immediately from Theorem 88 and Theorem 89.

149

Lemma 91 (Communication Complexity). Let ` be the size of the input, κ be the size of accu-

mulator, and w be the size of witness. The communication complexity of the MVBA protocol is

O(n`+ (κ+ w)n2)) in expectation.

Proof. In the proposal dispersal phase, each party sends a code word of size O(`/n), a witness of

size w and an accumulator of size κ to all other parties. In addition, each party sends κ-sized ack

message to all other parties. Thus, this phase incurs O(n`+ (κ+ w)n2) communication.

In the protocol in Figure 6.8, the status step incurs O(κn2) as each party sends O(κ)-sized threshold

signature to all other parties. The propose step also incurs O(κn2) communication. The leader

election phase in round 3 incurs O(κn2) communication. In the Forward step (round 4) each party

multicasts code word of size O(`/n), witness of size w bits, accumulator of size O(κ) bits with a

total communication complexity of O(n`+(κ+w)n2) bits. Similarly, in Decode step and Forward2,

each party sends code word of size O(`/n), witness of size w bits, accumulator of size O(κ) bits

with a total communication complexity of O(n`+ (κ+ w)n2) bits.

In Vote step, each party multicasts O(κ)-sized vote message to all other parties, this incurs O(κn2)

communication. In the commit step, each party multicasts O(κ)-sized vote certificate and O(κ)-

sized terminate messages. All-to-all multicast of O(κ)-sized termination certificate also incurs

O(κn2) communication. Thus, the protocol incurs O(n`+ (κ+w)n2)) communication in an epoch.

Note that the protocol terminates in expected constant epochs. Thus, the communication com-

plexity of the protocol is O(n`+ (κ+ w)n2)) in expectation.

7.6 Parallel Broadcast

Finally, we present two communication efficient parallel broadcast protocols tolerating t < n/2

Byzantine faults with a communication complexity of O(n2` + κn3) for input of size ` bits and

expected O(1) rounds under various setup assumptions. The first protocol is in the authenticated

model with PKI and digital signatures. It is secure against a static adversary. The second protocol

is secure against an adaptive adversary, but assumes threshold setup and uses adaptively-secure

threshold signature scheme.

We present parallel broadcast protocols with expected constant rounds in Figure 7.5. In this

protocol, each party Pi first uses graded parallel broadcast to propagate their input vi and output a

n-element list of values along with a n-element grade list GradeListi accompanied by AC(GradeListi).

150

The tuple (GradeListi, AC(GradeListi)) is then input to an MVBA protocol to agree on a common

certified GradeListh. The ack certificate on GradeList servers as the external validity function.

Parties then output V with V[j] = vj if GradeListh[j] ∈ {3, 4} ∀j ∈ [n]. We give two variants of the

protocol depending upon the MVBA protocol being considered.

1. Graded parallel broadcast. Each party Pi invokes graded parallel broadcast protocol (refer Figure 7.2) with
its input vi and outputs an n element list of values along with (GradeListi, AC(GradeListi)).

2. MVBA. Each party Pi participates in MVBA with input GradeListi and AC(GradeListi). Let GradeListh be the
output of the MVBA protocol.

3. Output. Set V[j] = vj if GradeListh[j] ∈ {3, 4} ∀j ∈ [n]. Output V.

Figure 7.5: Parallel broadcast with O(n2`+ κn3) communication and expected O(1) rounds

Using MVBA protocol from Chapter 6. In Chapter 6, we gave an MVBA protocol in the

authenticated model with PKI and digital signatures with security against a static adversary. The

MVBA protocol incurs O(κn3) communication in expectation when ` = O(n) (i.e., the size of

(GradeList,AC(GradeList)) and terminates in expected O(1) rounds. Using this MVBA protocol,

gives us a parallel broadcast protocol secure against static adversary in the authenticated model

with PKI and digital signatures. The resulting parallel broadcast protocol has O(n2`)+E(O(κn3))

communication and terminates in expected constant rounds.

Using MVBA from Section 7.5. In the second variant, we make use of our MVBA protocol

from Section 7.5. Using our MVBA protocol, gives us a parallel broadcast protocol secure against a

(strongly rushing) adaptive adversary. The graded parallel broadcast protocol has a communication

complexity of O(n2` + κn3) and the MVBA protocol has a communication complexity of O(κn2)

when ` = O(n) (the size of (GradeList,AC(GradeList)). Thus, the resulting parallel broadcast

protocol will have O(n2` + κn3) + E(O(κn2)) communication and terminates in expected O(1)

rounds.

7.6.1 Security Analysis

Theorem 92. The protocol in Figure 7.5 is a parallel broadcast protocol satisfying Definition 2.4.1.

Proof. By Theorem 90, all honest parties eventually terminate with a common GradeListh where

external validity function is presence of AC(GradeListh). Termination follows from termination

property of the underlying MVBA protocol.

151

By the properties of graded parallel broadcast(Theorem 84), all honest parties receive the same

value vj such that GradeListh[j] ∈ {3, 4}. Since, all honest parties compute final vector V based on

common GradeListh. Thus, agreement holds.

In addition, the grades corresponding to honest parties in GradeListh are in the range {3,4}. Thus,

validity holds.

7.7 Related Work

7.7.1 Related Works in Parallel Broadcast Literature

The problem of parallel broadcast (aka, interactive consistency) was originally introduced by Pease

et al [91]. In the same work, they show two variants of the protocol (i) a protocol with t < n/3

resilience in the plain authenticated model or unauthenticated model, and (ii) a protocol with t < n

resilience in the authenticated model with authenticators. Both of their protocols had exponential

communication complexity and Θ(t) round complexity.

Ben’or and El-Yaniv [18] showed how to achieve expectedO(1) rounds for the interactive consistency

problem tolerating t < n/3 Byzantine faults in the plain authenticated model. In their solution,

they invoked O(n log n) instances of the BA protocol due to Feldman and Micali [49] in a “black-

box” fashion to achieve expected O(1) round parallel broadcast protocol. Their construction has a

very high communication as each instance of BA protocol of Feldman and Micali [49] has O(n6 log n)

communication (without q-SDH setup assumption) even for a single bit.

Very recently, Abraham et al. [1] gave an efficient protocol in the plain authenticated model toler-

ating t < n/3 Byzantine faults and security against an adaptive adversary. Their protocol incurs

O(n2` + n4 log n) communication (without q-SDH setup assumption) in expectation for input of

size ` bits and expected O(1) rounds.

In the authenticated model with PKI and digital signatures, the notion of parallel broadcast was

recently explored by Tsimos et al. [103]. They show two variants of the protocol each tolerating

t < (1− ε)n Byzantine faults and security against an adaptive adversary. The first protocol works

in the authenticated model with PKI and digital signatures and incurs Õ(κ2n3) communication

for single bit input and O(t log t) rounds. Their second protocol has stronger setup assumptions.

In particular, they require a trusted dealer to setup the keys and relies on bit-specific committee

election [2] to reduce communication. In addition, their protocol requires parties to erase their

152

signatures once a message has been sent. Their protocol incurs Õ(κ4n2) communication for single

bit input and O(κ log t) rounds.

Closely related technique. In a recent work [1], Abraham et al. gave a parallel broadcast

protocol in the unauthenticated model tolerating t < n/3 Byzantine faults with a communication

complexity of O(n2`) + E(O(n4 log n)) and termination in expected O(1) rounds. Their protocol

relies on the idea of Fitzi and Garay [55] where multiple BA sub-protocols are run in parallel when

only a single leader election is invoked per iteration for all the sub-protocols. In their construction,

each party first propagates their ` bit input via a gradecast protocol where each gradecast invocation

costs O(n` + n3 log n); the total communication complexity of n parallel gradecast is O(n2` +

n4 log n). It is followed by parallel invocation of n instances of BA protocol where each BA protocol

has a communication complexity of O(n3 log n) bits for a single bit input. In addition, their leader

election protocol has a communication complexity of O(n4 log n) bits. The resulting protocol has

a communication complexity of O(n2`) + E(O(n4 log n)) for input of size ` bits.

We note that their technique is relevant but not sufficient to achieve our goal. In the authenti-

cated model with PKI and digital signatures, to the best of our knowledge, the MVBA protocol

from Chapter 6, when used as a BA protocol, is the most efficient protocol in the setting which

has a communication complexity of O(κn3) in expectation and termination in expected constant

rounds. Parallel invocation of O(n) instances of this BA protocol would result in O(κn4) communi-

cation in each round. In contrast, our parallel broadcast in the setting incurs O(n2`) +E(O(κn3))

communication.

With threshold setup assumption, to the best of our knowledge, the BA protocol due to Abraham et

al. [4] is the most efficient protocol which has a communication complexity of O(κn2) in expectation

and termination in expected constant rounds. Following the technique of Abraham et al. [1],

we can use M-Gradecast(., 2) to propagate ` bit input at the total communication complexity of

O(n2`+ κn3). Then, parallel invocation of O(n) instances of binary BA protocol due to Abraham

et al. [4] along with a single leader election protocol across all BA instances will result in expected

O(κn3) communication and termination in expected constant rounds. The total communication

complexity of the protocol following their technique is O(n2`) + E(O(κn3)) and termination in

expected constant rounds. In the same setting, our protocol incurs O(n2` + κn3) + E(O(κn2))

communication and expected constant rounds. In the worst case, when the protocol runs for linear

number of rounds, the protocol following their technique would incur O(n2`+κn4) communication,

while our protocol incurs O(n2`+ κn3) communication.

153

7.7.2 Related Works in MVBA Literature

Multi-valued validated Byzantine agreement was first introduced by Cachin et al. [28] to allow

honest parties to agree on any externally valid values. Their protocol works in asynchronous

communication model and has optimal t < n/3 resilience with O(n2` + κn2 + n3) communication

for input of size `. Later, Abraham et al. [8] gave an MVBA protocol with optimal resilience

and O(n2` + κn2) communication in the same asynchronous setting. Lu et al. [79] extended the

work of Abraham et al. [8] to handle long messages of size ` with a communication complexity

of O(n` + κn2). All of these protocols assume threshold setup, are secure against an adaptive

adversary and terminate in expected O(1) rounds. We provide technical differences with MVBA

protocol of Lu et al. [79].

Comparison with MVBA protocol of Lu et al. [79]. In the MVBA protocol due to Lu et

al. [79], they use (t + 1, n) RS codes with t < n/3 to distribute ` bit proposal during proposal

dispersal phase. In their protocol, they collect an ack-cert consisting of 2t + 1 ack messages. If

there is an ack-cert for a proposal, this implies at least t+ 1 honest parties have received valid code

words for the proposal. This is sufficient to decode the proposal since the protocol uses (t + 1, n)

RS codes. Thus, in their protocol, ack-cert for a proposal implies honest parties have sufficient

valid code words to decode the original proposal and honest parties can agree on any proposal with

an ack-cert. This is in contrast to our protocol since honest parties may not be able to decode the

proposal even though the proposal is accompanied by an ack-cert. Our protocol relies on synchrony

to filter out such “bad” proposals.

Comparison with MVBA protocol from Chapter 6. To the best of our knowledge, the

MVBA protocol from Chapter 6 is the first MVBA protocol in the synchronous model tolerating

t < n/2 Byzantine faults secure against static adversary. The protocol from Chapter 6 works in the

plain PKI model without threshold setup and incurs O(n2`+κn3) for inputs of size ` and expected

constant rounds. In this chapter, we present an MVBA protocol with better communication and

security against a strongly rushing adaptive adversary. Our protocol relies on threshold setup

assumption and incurs O(n` + κn2) for inputs of size ` bits and terminates in expected O(1)

rounds.

154

Chapter 8

Conclusion and Future Work

This thesis focused on improving the communication complexity and the round complexity of several

synchronous Byzantine consensus primitives under various settings. Chapter 3 studied latency of

optimistically responsive synchronous consensus protocols and presented consensus protocols that

commits with the best-possible latency under all conditions. We also provided a prototype imple-

mentation along with evaluation results. Chapters 4 and 5 studied the communication complexity

of consensus protocols in the absence of threshold setup. In this setting, we presented two new

efficient consensus protocols that incur quadratic communication per decision and optimistically

responsive latency during optimistic conditions.

Chapter 6 presented a new framework to solve the DKG problem and provided two new protocols

following this framework. Both of these protocols incur cubic communication with either expected

constant rounds or linear round complexity. Finally, Chapter 7 studied the communication com-

plexity and the round complexity of parallel broadcast. We showed a generic reduction from parallel

broadcast to graded parallel broadcast and validated Byzantine consensus. Using this reduction, we

presented two parallel broadcast protocols with cubic communication and expected O(1) rounds.

Future work. The lower bound on the communication complexity to solve the DKG problem still

remains an open research question. It is an interesting direction to either show a cubic communi-

cation lower bound on the DKG problem or to obtain a protocol with subcubic communication.

Similarly, Chapter 7 presented efficient protocols for parallel broadcast when the fault tolerance is

t < n/2. It is an interesting direction to design efficient protocols for parallel broadcast when the

fault tolerance is t ≥ n/2.

155

Bibliography

[1] Ittai Abraham, Gilad Asharov, Shravani Patil, and Arpita Patra. Asymptotically free broad-
cast in constant expected time via packed vss. In Theory of Cryptography: 20th International
Conference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings, Part I, pages
384–414. Springer, 2023.

[2] Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling Ren, and
Elaine Shi. Communication complexity of Byzantine agreement, revisited. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 317–326, 2019.

[3] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Efficient
synchronous Byzantine consensus. arXiv preprint arXiv:1704.02397, 2017.

[4] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
Byzantine agreement with expected O(1) rounds, expected O(n2) communication, and op-
timal resilience. In International Conference on Financial Cryptography and Data Security,
pages 320–334. Springer, 2019.

[5] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Reaching consensus for asynchronous distributed key generation. arXiv preprint
arXiv:2102.09041, 2021.

[6] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Dfinity consensus, explored.
IACR Cryptol. ePrint Arch., 2018:1153, 2018.

[7] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 654–667, 2020.

[8] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal vali-
dated asynchronous Byzantine agreement. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pages 337–346, 2019.

[9] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of Byzan-
tine broadcast: A complete categorization. In Proceedings of the 2021 ACM Symposium on
Principles of Distributed Computing, PODC’21, page 331–341, New York, NY, USA, 2021.
Association for Computing Machinery.

156

[10] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Optimal good-case latency for rotating
leader synchronous bft. In 25th International Conference on Principles of Distributed Systems,
2022.

[11] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Communication and round efficient
parallel broadcast protocols. Cryptology ePrint Archive, 2023.

[12] Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient consensus
requires t+ 1 rounds. Information Processing Letters, 71(3-4):155–158, 1999.

[13] Renas Bacho and Julian Loss. On the adaptive security of the threshold bls signature scheme.
In CCS’2022, pages 193–207, 2022.

[14] Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable secret sharing
revisited. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 590–609. Springer, 2011.

[15] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes
without trees. In International conference on the theory and applications of cryptographic
techniques, pages 480–494. Springer, 1997.

[16] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Efficient
constant-round mpc with identifiable abort and public verifiability. In Advances in
Cryptology–CRYPTO 2020: 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II, pages 562–592.
Springer, 2020.

[17] Michael Ben-Or. Another advantage of free choice (extended abstract) completely asyn-
chronous agreement protocols. In Proceedings of the second annual ACM symposium on
Principles of distributed computing, pages 27–30, 1983.

[18] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time.
Distributed Computing, 16(4):249–262, 2003.

[19] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Providing Sound Foundations for
Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 351–371. 2019.

[20] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed consensus. In
Computer science, pages 313–321. Springer, 1992.

[21] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Randpiper–reconfiguration-
friendly random beacons with quadratic communication. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 3502–3524, 2021.

[22] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. OptRand: Optimistically
responsive distributed random beacons. In Proceedings of the 30th Network and Distributed
System Security Symposium (NDSS), 2023.

157

[23] Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems. ACM
SIGACT News, 15(1):23–27, 1983.

[24] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In International Workshop on Public Key
Cryptography, pages 31–46. Springer, 2003.

[25] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the sdh assump-
tion in bilinear groups. Journal of cryptology, 21(2):149–177, 2008.

[26] Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computa-
tion, 75(2):130–143, 1987.

[27] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD
thesis, University of Guelph, 2016.

[28] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Annual International Cryptology Conference, pages
524–541. Springer, 2001.

[29] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople:
Practical asynchronous Byzantine agreement using cryptography. Journal of Cryptology,
18(3):219–246, 2005.

[30] Ran Canetti, Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Annual International Cryptology Conference, pages
98–116, 1999.

[31] Ignacio Cascudo and Bernardo David. Scrape: Scalable randomness attested by public enti-
ties. In ACNS, pages 537–556. Springer, 2017.

[32] Miguel Castro, Barbara Liskov, et al. Practical Byzantine Fault Tolerance. In OSDI, vol-
ume 99, pages 173–186, 1999.

[33] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. Base: Using abstraction to improve
fault tolerance. ACM Transactions on Computer Systems (TOCS), 21(3):236–269, 2003.

[34] T-H Hubert Chan, Rafael Pass, and Elaine Shi. Pala: A simple partially synchronous
blockchain. IACR Cryptology ePrint Archive, 2018:981, 2018.

[35] T-H Hubert Chan, Rafael Pass, and Elaine Shi. Pili: An extremely simple synchronous
blockchain. IACR Cryptology ePrint Archive, 2018:980, 2018.

[36] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt: Scalable distributed
randomness beacon with transparent setup. Technical report, Cryptology ePrint Archive,
Report 2021/100. https://eprint. iacr. org/2021/100, 2021.

[37] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. Practical asynchronous
high-threshold distributed key generation and distributed polynomial sampling. Cryptology
ePrint Archive, Paper 2022/1389, 2022.

158

[38] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 2518–2534. IEEE, 2022.

[39] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in Cryptology, 9th
Annual International Cryptology Conference, volume 435, pages 307–315, 1989.

[40] Danny Dolev, Joseph Y Halpern, Barbara Simons, and Ray Strong. Dynamic fault-tolerant
clock synchronization. Journal of the ACM (JACM), 42(1):143–185, 1995.

[41] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzantine agree-
ment. Journal of the ACM (JACM), 32(1):191–204, 1985.

[42] Danny Dolev, Ruediger Reischuk, and H Raymond Strong. Early stopping in Byzantine
agreement. Journal of the ACM (JACM), 37(4):720–741, 1990.

[43] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

[44] Drand. Drand - a distributed randomness beacon daemon.

[45] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[46] Paolo D’Arco and Douglas R Stinson. On unconditionally secure robust distributed key
distribution centers. In International Conference on the Theory and Application of Cryptology
and Information Security, pages 346–363, 2002.

[47] Andreas Erwig, Sebastian Faust, and Siavash Riahi. Large-scale non-interactive threshold
cryptosystems through anonymity. IACR Cryptology ePrint Archive, 2021:1290, 2021.

[48] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pages 427–438. IEEE, 1987.

[49] Paul Feldman and Silvio Micali. Optimal algorithms for Byzantine agreement. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 148–161, 1988.

[50] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

[51] Michael J Fischer and Nancy A Lynch. A lower bound for the time to assure interactive
consistency. Technical report, GEORGIA INST OF TECH ATLANTA SCHOOL OF IN-
FORMATION AND COMPUTER SCIENCE, 1981.

[52] Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs for dis-
tributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[53] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

159

[54] Matthias Fitzi. Generalized communication and security models in Byzantine agreement. PhD
thesis, ETH Zurich, 2002.

[55] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols for strong and differential
consensus. In Proceedings of the twenty-second annual symposium on Principles of distributed
computing, pages 211–220, 2003.

[56] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued Byzantine agreement. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed comput-
ing, pages 163–168, 2006.

[57] Juan A Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity
of authenticated broadcast with a dishonest majority. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’07), pages 658–668. IEEE, 2007.

[58] Juan A Garay and Yoram Moses. Fully polynomial Byzantine agreement for n¿ 3 t processors
in t+ 1 rounds. SIAM Journal on Computing, 27(1):247–290, 1998.

[59] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

[60] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling Byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 51–68, 2017.

[61] Jens Groth. Non-interactive distributed key generation and key resharing. IACR Cryptol.
ePrint Arch., 2021:339, 2021.

[62] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: a scalable decentral-
ized trust infrastructure for blockchains. arXiv preprint arXiv:1804.01626, 2018.

[63] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tolerance.
In Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part I 39, pages 499–529.
Springer, 2019.

[64] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin
Tomescu. Aggregatable distributed key generation. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 147–176. Springer, 2021.

[65] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfinity technology overview series,
consensus system. arXiv preprint arXiv:1805.04548, 2018.

[66] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asynchronous
multi-party computation with optimal resilience. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 322–340. Springer, 2005.

160

[67] Dennis Hofheinz and Jörn Müller-Quade. A synchronous model for multi-party computa-
tion and the incompleteness of oblivious transfer. Proceedings of Foundations of Computer
Security—FCS, 4:117–130, 2004.

[68] Aniket Kate and Ian Goldberg. Distributed key generation for the internet. In 29th IEEE
International Conference on Distributed Computing Systems, pages 119–128, 2009.

[69] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in the wild. IACR
Cryptol. ePrint Arch., 2012:377, 2012.

[70] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to poly-
nomials and their applications. In International conference on the theory and application of
cryptology and information security, pages 177–194. Springer, 2010.

[71] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine
agreement. In Annual International Cryptology Conference, pages 445–462. Springer, 2006.

[72] Justin Kim, Vandan Mehta, Kartik Nayak, and Nibesh Shrestha. Brief announcement: Mak-
ing synchronous bft protocols secure in the presence of mobile sluggish faults. In Proceedings
of the 2021 ACM Symposium on Principles of Distributed Computing, pages 375–377, 2021.

[73] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous dis-
tributed key generation for computationally-secure randomness, consensus, and threshold
signatures. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1751–1767, 2020.

[74] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative Byzantine fault tolerance. ACM SIGOPS Operating Systems Review,
41(6):45–58, 2007.

[75] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014.

[76] Torus Lab. Torus: Globally accessible public key infrastructure for everyone. https://tor.
us/, 2021.

[77] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[78] Julian Loss and Tal Moran. Combining asynchronous and synchronous Byzantine agreement:
The best of both worlds. Cryptology ePrint Archive, 2018.

[79] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal multi-
valued validated asynchronous Byzantine agreement, revisited. In Proceedings of the 39th
Symposium on Principles of Distributed Computing, pages 129–138, 2020.

[80] J-P Martin and Lorenzo Alvisi. Fast Byzantine consensus. IEEE Transactions on Dependable
and Secure Computing, 3(3):202–215, 2006.

161

https://tor.us/
https://tor.us/

[81] Ralph C Merkle. A digital signature based on a conventional encryption function. In Con-
ference on the theory and application of cryptographic techniques, pages 369–378. Springer,
1987.

[82] Silvio Micali. Byzantine agreement, made trivial, 2016.

[83] Atsuki Momose, Jason Paul Cruz, and Yuichi Kaji. Hybrid-bft: Optimistically responsive
synchronous consensus with optimal latency or resilience. Cryptology ePrint Archive, 2020.

[84] Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated byzantine
agreement. In 35th International Symposium on Distributed Computing, 2021.

[85] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, page 21260, 2008.

[86] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved exten-
sion protocols for Byzantine broadcast and agreement. In 34th International Symposium on
Distributed Computing (DISC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[87] Wafa Neji, Kaouther Blibech, and Narjes Ben Rajeb. Distributed key generation protocol with
a new complaint management strategy. Security and communication networks, 9(17):4585–
4595, 2016.

[88] Lan Nguyen. Accumulators from bilinear pairings and applications. In Cryptographers’ track
at the RSA conference, pages 275–292. Springer, 2005.

[89] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model. In 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[90] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.
In Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 3–33. Springer, 2018.

[91] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[92] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual international cryptology conference, pages 129–140. Springer, 1991.

[93] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In EURO-
CRYPT’91, page 522–526, 1991.

[94] Michael O Rabin. Randomized Byzantine generals. In 24th Annual Symposium on Founda-
tions of Computer Science (sfcs 1983), pages 403–409. IEEE, 1983.

[95] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

162

[96] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R Weippl. Ethdkg:
Distributed key generation with ethereum smart contracts. IACR Cryptol. ePrint Arch.,
2019:985, 2019.

[97] Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[98] Elaine Shi. Streamlined blockchains: A simple and elegant approach (a tutorial and survey).
In International Conference on the Theory and Application of Cryptology and Information
Security, pages 3–17. Springer, 2019.

[99] Victor Shoup. Practical threshold signatures. In EUROCRYPT 2000, volume 1807, pages
207–220. Springer, 2000.

[100] Nibesh Shrestha, Ittai Abraham, Ling Ren, and Kartik Nayak. On the Optimality of Opti-
mistic Responsiveness. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pages 839–857, 2020.

[101] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. Synchronous distributed
key generation without broadcasts. Cryptology ePrint Archive, 2021.

[102] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan Gueta,
and Srinivas Devadas. Towards scalable threshold cryptosystems. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 877–893. IEEE, 2020.

[103] Georgios Tsimos, Julian Loss, and Charalampos Papamanthou. Gossiping for communication-
efficient broadcast. In Advances in Cryptology–CRYPTO 2022: 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Pro-
ceedings, Part III, pages 439–469. Springer, 2022.

[104] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hot-
stuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, pages 347–356, 2019.

163

	Efficient Synchronous Byzantine Consensus
	Recommended Citation

	Introduction
	Overview of Contributions

	Background
	Byzantine Broadcast and Byzantine Agreement
	Byzantine Fault Tolerant State Machine Replication
	Multi-valued Validated Byzantine Agreement
	Parallel Broadcast
	Primitives

	On the Optimality of Optimistic responsiveness
	Introduction
	Model and Definitions
	A Lower Bound on the Latency of Optimistic Responsiveness
	Optimal Optimistic Responsiveness with 2-synchronous Latency
	Steady State Protocol
	View-change Protocol
	Safety and Liveness

	Optimal Optimistic Responsiveness with -synchronous Latency
	Protocol
	View Change Protocol
	Safety and Liveness

	Optimistic Responsiveness with Optimistically Responsive View-Change
	Steady State Protocol
	View-change Protocol
	Safety and Liveness

	Evaluation
	Implementation Details and Methodology
	Basic Performance
	Scalability and Comparison with Prior Work

	Related Work

	Efficient State Machine Replication without Threshold Signatures
	Introduction
	Model and Preliminaries
	Primitives

	BFT SMR Protocol
	Protocol Details
	Safety and Liveness

	Related Work

	Efficient Optimistically Responsive State Machine Replication without Threshold Signatures
	Introduction
	Model and Definitions
	Primitives

	Optimistically Responsive State Machine Replication
	Protocol Details
	Safety and Liveness

	Related Work

	Synchronous Distributed Key Generation without Broadcasts
	Introduction
	Key Technical Ideas and Results

	Related Work
	Related Works in Distributed Key Generation Literature
	Related Works in Byzantine Agreement Literature

	Model and Preliminaries
	Definitions
	Primitives

	Secure DKG with Two Broadcast Rounds
	Security Analysis

	Communication Optimal Weak Gradecast
	Security Analysis

	Recoverable Set of Shares
	Security Analysis

	Oblivious Leader Election
	Security Analysis

	Multi-Valued Validated Byzantine Agreement
	Security Analysis

	Distributed Key Generation
	DKG with O(n3) communication and expected O(1) rounds
	DKG with worst-case O(n3) communication and O(t) rounds

	A Lower Bound on the Communication Complexity of Weak Gradecast

	Communication and Round Efficient Parallel Broadcast Protocols
	Introduction
	Key Technical Ideas and Results

	Model and Preliminaries
	Definitions
	Primitives

	Gradecast with Multiple Grades
	Security Analysis

	Graded Parallel Broadcast
	Security Analysis

	Multi-valued Validated Byzantine Agreement
	Protocol Details
	Security Analysis

	Parallel Broadcast
	Security Analysis

	Related Work
	Related Works in Parallel Broadcast Literature
	Related Works in MVBA Literature

	Conclusion and Future Work
	Bibliography

