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Abstract 

Chillers are one of the most sophisticated and most important equipment in cooling plants. 

Due to its complexity and importance, a cost effective and accurate control technique is a 

necessity to ensure system reliability and longevity. As the chiller contains multiple inputs 

and outputs, two advanced multivariable control techniques were selected to control the 

chillers cooling capacity, exit chilled liquid temperature of the evaporator as well as to reject 

disturbances. The advanced techniques covered in this framework are the Linear Quadratic 

Integral (LQI) and Model Predictive Control (MPC). Both were successfully applied to the 

chiller’s model for multiple testing cases and simulations. Then the results were compared to 

the industry standard control technique, the PID. Successful use of Genetic Algorithm (a 

machine learning method) is also presented in this thesis as a method for tunning the 

controller weights. It was deduced from the simulation test results that the LQI and MPC 

outperformed the traditional PID controllers in terms of energy efficiency and transient 

response. An energy savings of around 10% to 20% is seen on the compressor’s electric power, 

lower overshoot/undershoot for most outputs and faster settling time. Also, the MPC 

controller had the ability to incorporate input constraints into the problem formulation and 

use quadratic programming to find a solution to the constraint optimization problem. 
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Chapter 1 Introduction 

 

1.1 Background 

A District Cooling Plant (DCP) is a centralized approach in distributing chilled water to 

Heating, Ventilation and Air Conditioning (HVAC) equipment such as an Air Handling Unit 

(AHU) and a Fan Coil Unit (FCU) in medium to large residential, commercial, educational, 

medical and industrial buildings/facilities for the purpose of cooling and dehumidification 

[1][2]. Figure 1-1 depicts a typical DCP building and its piping or distribution system to each 

respective building [1]. Thus, it is a replacement of the traditional decentralized approach of 

having all the equipment installed within each building; or in other words, each building 

produces its own chilled water for its respective equipment. 

 

 

Figure 1-1: District Cooling System Network [1] 

 

Albeit the high initial cost of constructing a DCP, the long run benefits can be viewed from 

different angles, including, but not limited to economic, environmental and performance 

benefits. [1][2]. The economic benefits for the investor and operator include having a smaller 

number of personnel for operation for their other equipment, more free space which can be 
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utilized for other purposes, lower electricity consumption, insurance and liability benefits, 

the cost of equipment maintenance will be less, lower electrical and mechanical costs during 

construction (i.e. chillers and other equipment are in a centralized location inside the DCP) 

[1][2]. 

A DCP uses fewer chillers – to cool a certain district - whose rating is higher and more 

efficient (i.e. higher cooling output produced per electrical input) compared to smaller units 

installed within each consumers’ building [1][2]. Moreover, many DCPs utilize Thermal 

Energy Storage (TES) tanks that can be used to supply chilled water to the load during high 

demand hours, power failure or to shed off the load from the chiller(s) during the day when 

the electricity cost is higher (i.e. charging the TES tank(s) during night when electricity cost 

is lower and discharging the tank(s) during the day when the cost of electricity is higher) 

[1][2]. Thus, the environmental and performance gains of a centralized approach for cooling 

is higher due to higher overall efficiency of equipment, lower electricity consumption, reduced 

carbon emission and redundancy [1][2]. 

1.2 District Cooling System Loops 

The main components of a District Cooling System are presented in Figure 1-2, these 

components are sub-divided into three loops, namely, chilled water loop, condenser water 

loop and the air system loop [3]. The main components of a District Cooling System include: 

1. Chillers 

2. Cooling Towers  

3. Condenser Water Pumps (CWP) 

4. Chilled Water Pumps. These are split into two parts: Primary Chilled Water Pump 

(PCHWP) and Secondary Chilled Water Pumps (SCHWP). 

5. Auxiliary Equipment such as valves, make-up pumps, chemical dosing system, 

expansion tanks, chilled/condenser water filtration system, air separators and 

expansion tanks. 

6. Loads in the form of HVAC Equipment such as AHUs and FCUs. 

Other main component that may be included in a district cooling system depending on design 

criteria - is a Thermal Energy Storage (TES) Tank [1][3]. 
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Figure 1-2: Water-Cooled HVAC System Schematic [3] 

1.2.1 Loop 1: Air System 

The load side or the air system represented by loop 1, consists of the buildings (or loads) the 

DCP is producing and distributing chilled water to. The chilled water produced by the DCP 

will be utilized by the HVAC equipment installed inside the buildings – such as the AHU and 

the FCU - to produce and distribute cold air - through the process of heat extraction - to the 

building’s areas or rooms. The warmer chilled water or chilled water return – which is the 

result of the heat transfer process - flows back from the load side to loop 2, and more 

specifically, to the chiller’s evaporator [3]. The total cooling capacity required for these 

buildings is the deciding factor of the overall cooling capacity of the DCP; the load required 

for cooling the areas and rooms inside a DCP must be considered as well. The load required 

can be estimated through charts that list down the unit-area cooling-load values for various 

building types, including, but not limited to hospitals, shopping malls and apartments in 

various building types [1].  
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1.2.2 Loop 2: Chilled Water System 

Located inside the DCP, the chilled water system, or loop 2, is responsible for producing 

chilled water to the loads. The main component of this loop is the chiller, which is comprised 

of an evaporator, a condenser and a compressor. As the chilled water return line is received 

from the load side through the underground (or aboveground) piping system, the chilled 

water return enters the chiller’s evaporator. The heat in the chilled water return line is 

extracted and transferred through a refrigerant from the evaporator to the condenser via the 

compressor [3]. Hence, producing chilled water supply at the evaporator’s output.  

The pump, shown in Figure 1-2, can be split into 2 pumps, namely, a Primary Chilled Water 

Pump (PCHWP) and a Secondary Chilled Water Pump (SCHWP). The former will transfer 

the chilled water return from the loads to the evaporator at a predetermined flow and 

pressure, whereas the latter transfers the chilled water supply from the evaporator to the 

loads [1][2][3][4]. The Primary and Secondary Chilled Water Pumps are designed in several 

configurations, and the pumps may be constant or variable speed pumps [1][2]. In some 

designs, where the network is not large, SCHWP is omitted inside the DCP, and instead, 

these pumps will be located inside the consumer’s building [2]. Otherwise, a primary-

secondary pumping system is utilized, that is, when the length of network is long [1]. 

Depending on the design of the DCP, loop 2 may be configured to include a TES tank that is 

charged by the evaporator’s output (i.e. chilled water supply) and discharges the stored 

chilled water to the loads [1][2][3].  

1.2.3 Loop 3: Condenser Water System 

The third and final loop is the condenser water system loop (located inside the DPC). This 

loop has no physical connection with the chilled water system loop (loop 2). However, the 

condenser water and chilled water loops are linked together through chiller’s compressor, 

whose is to transfer the heat generated by the loads from the evaporator circuit to the 

condenser circuit [3]. The heat collected by the condenser - in the form of warm water - is 

then transferred to a cooling tower that dissipates the heat to the air. Through another heat 

transfer process within the cooling tower, cooler condenser water is transferred back to the 

condenser to repeat the same process of heat collection and dissipation [3]. Moreover, a 

Condenser Water Pump (CWP) pumps the cooler condenser water from the cooling tower to 

the condenser as illustrated in Figure 1-2 [3]. 
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1.3 Temperature Design Basis 

The first and most important variable in the design of DC System is temperature. Due to its 

importance, temperature takes place in all DC System loops as reflected in Figure 1-2, and 

as within the chiller in the refrigeration loop. The latter will be discussed in more detail in 

the Chiller subsection.  

The concept of temperature difference or differential, denoted as ∆T, between the CHW 

supply and CHW return lines is the key factor of the system’s overall design, including, but 

not limited to, the pumping energy, pipe sizing and pipe insulation [2]. Since, the optimal 

goal of any DCS design is to minimize the cost of production whilst maintaining the design 

specification, it is highly favorable to the have the temperature differential to be high, usually 

about 9-12 0C [1][2][3]. However, there is a constraint of the maximum allowable temperature 

differential to avoid other implication in performance such as the ability to maintain the 

humidification requirements. Thus, a typical industry standard values of the CHW supply 

and return temperatures are 4.4 0C and 13.3 0C, respectively [1].  

1.4 Major Components of a District Cooling Plant 

1.4.1 Chiller 

The chiller is the heart of any cooling system. The chiller produces chilled water through the 

process of refrigeration, which is derived from the Second Law of Thermodynamics. The 

second law provides insights into the behavior of heat transfer as the heat flows from hot to 

cold regions due to temperature differences and the inherent drive of nature to equalize 

temperature disparities. The refrigeration process or cycle in a chiller can be accomplished 

either through the vapor compression cycle or through absorption cycle. Thus, there are two 

types of chiller technologies, namely, compression type and absorption type chillers [3].  

Under each type, a chiller is classified based on the type of compressor or absorption stage 

[1]. Table 1-1 1illustrates the chiller technology and tabulates the Coefficient of Performance 

(COP) for each chiller. COP is a dimensionless coefficient that indicates the efficiency of the 

chiller. The higher the COP, the more cooling a chiller can produce per electrical kW. Since 

the Centrifugal compression type chiller has the highest COP for large capacity chillers, it is 

the most utilized chiller in DCPs [1]. The following discussion will primarily focus on the 

centrifugal compression type chiller, although many of the general concepts would still be 

applicable to other types of chillers listed in Table 1-1 [1]. 
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Table 1-1: Chiller Technology [1] 

 Compression Chillers Absorption Chillers 

Parameter Reciprocating Screw Centrifugal One-Stage Two-Stage 

Primary Energy Electric Motor 
Electric 

Motor 

Electric 

Motor 
Hot Water 

Steam or 

fire 

COP 

(
𝑹𝒆𝒎𝒐𝒗𝒆𝒅 𝑯𝒆𝒂𝒕 (𝑾)

𝑰𝒏𝒑𝒖𝒕 𝑾𝒐𝒓𝒌 (𝑾)
) 

4-6 4-6 >7.0 0.6-0.76 1.2 

 

Chillers can also be classified based on the process used to reject the condenser heat. The two 

processes for rejecting the condenser heat are air-cooled and water-cooled chillers [1]. Air 

cooled chillers are of smaller capacity in comparison to water cooled chillers. An air -cooled 

chiller has a capacity of  slightly more than 450 tons or 16,000 kW. Whereas the capacity 

water-cooled chillers may go as high as 10,000 tons or 35,170 kW when fitted in series counter 

flow orientation [1]. In terms of the expected life span of air-cooled and water-cooled chillers 

is 15 and 25 years, respectively. Air-cooled chillers are packaged units, meaning that the 

chiller’s controls, compressor, evaporator and air-cooled condenser are mounted on the same 

skid [1]. On the contrary, water-cooled chillers reject the heat from the condenser circuit 

through water. The warm water carried from the condenser circuit may be diffused in 

different ways, the most common and efficient way is through cooling towers [1]. In the gulf 

region, DCPs utilize water-cooled chillers instead of air-cooled chillers due to their higher 

cooling capacity, overall efficiency (lower electrical cost per produced cooling tonnage) and 

the overall expected life span. 

The three main circuits within a chiller are the refrigeration, condenser water and chilled 

water circuits. All three circuits are physically separated from one another. In other words, 

the chilled water does not get mixed with the condenser water, and the condenser water does 

not get mixed with the refrigerant. However, the refrigeration circuit will be the common link 

since it collects the hot water from the chilled water return line and dumps in the condenser. 

The refrigeration or vapor compression cycle is demonstrated through four steps, from which, 

a certain refrigerant changes its physical state from liquid to vapor in alternating manner. 

This is achieved through changes in pressure and temperature [3]. Figure 1-3 depicts the 

stages of the vapor compression or refrigeration cycle [3]. 
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Figure 1-3: Components of a Vapor Compression Refrigeration System [3] 

 

1. Stage 1: Compression. 

 In this stage, the compressor – such as the centrifugal type – absorbs and compresses 

the low-pressure and low-temperature refrigerant vapor (saturated vapor state) from 

the evaporator. Consequently, the process of compression produces a high-pressure 

and high temperature superheated vapor at its output [3]. 

2. Stage 2: Condensation.  

In the condensation stage, the output of stage 1 is cooled down by the cooler water 

that enters the chiller’s condenser from the cooling tower. The water leaving the 

condenser to the cooling tower plays the role of a “heat sink”. The result would be a 

high-pressure and medium temperature refrigerant at the saturated liquid state [3]. 

3. Stage 3: Expansion 

In the third stage, the high-pressure and medium temperature refrigerant at the 

saturated liquid state undergoes a pressure and temperature drop as it flow through 

the expansion valve. Hence, the output of the expansion valve is a low-pressure and 

low temperature refrigerant. A state from which the refrigerant becomes a mixture 

of liquid and vapor [3]. 
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4. Stage 4: Evaporation 

In the final stage of the cycle, evaporation occurs in the refrigerant when the low-

pressure and low-temperature refrigerant absorbs the heat from the chilled water 

return line. The refrigeration or vapor compression cycle then repeats [3]. 

1.4.2 Cooling Tower 

The water flowing through and out of the chiller’s condenser as depicted in Figure 1-2 goes 

into a cooling tower. A typical cooling tower used along with a water-cooled chiller is shown 

in Figure 1-4. As discussed under the chiller subsection, the refrigerant collects the heat from 

the evaporator circuit and transfers it to the condenser, and then uses the condenser water 

as a media to dispose the heat. The process of disposing the heat to air is accomplished 

through a cooling tower, once the heat is disposed to air, a cooler condenser water flows back 

to the chiller’s condenser and the process repeats [1][3]. 

A typical cooling tower is composed of the following components as depicted in Figure 1-4 [3]: 

• Inlet Louvers. Located in the lower portion of a cooling tower, they permit the ambient 

cool air to enter the cooling tower to work in rejecting the heat and to stops the water 

from exiting the cooling tower [3]. 

• Fan. The fan – located on the cooling tower - is driven through an induction motor and 

coupled together using a gear box or belt. Typically, in a DCP, the fan is controlled via 

a variable frequency drive. Which increases the energy savings and adds to the overall 

efficiency of the system [3]. 
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Figure 1-4: Cooling Tower [3] 

 

• Hot Water Distribution. The warm water from the chiller’s condenser circuit enters 

the cooling tower and is sprayed through nozzles down to the fill packaging as 

illustrated in Figure 1-4 [3]. 

• Fill. The fill packaging is made of thin slices from which the heat exchanging process 

in a cooling tower occurs within it [3]. In other words, as the fan is continuously 

exerting force on the positive z-axis, the fill packaging receives the warm condenser 

water from the chiller directed on the negative z-axis. The cooler air – from the 

atmosphere – enters the cooling tower and flows to the fill packaging in the positive 

z-axis. The result of this heat exchanging process is cooler condenser water flowing in 

the negative z-axis down to the cold-water basin [3].  

• Basin. The cold-water basin located at the bottom of the cooling tower receives the 

cooled condenser water from the fill packaging. The cooled condenser water or the 

condenser water supply will then flow back from the basin to the chiller as depicted 

in Figure 1-4 [3].  

1.4.3 Condenser Water Pump 

The role of the Condenser Water Pump (CWP) as depicted in loop 3 in Figure 1-2 is to receive 

the cooler condenser water from the cooling tower outlet and pump it to the chiller’s 

condenser water inlet at a pre-defined flow and pressure. Thereby, the CWP circulates 

condenser water between the chiller’s condenser and the cooling tower [3]. The total required 
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flow rate for the CWP is determined based on the total heat rejection (cooling system load + 

heat of compression) and the condenser water temperature range [3]. A CWP is mostly of the 

centrifugal type, and it is driven by an electric induction motor. The speed of the CWP may 

be constant or varied, each has its advantages and disadvantages [1]. Irrespective of the 

CWPs arrangement and their connection to the chiller, variable-speed CWPs offer greater 

energy savings at part-load, low starting current and possible increase in the chiller’s 

performance [1]. Thus, making them more attractive in modern DCP designs. 

1.4.4 Chilled Water Pumps 

Like the condenser water pump, the primary and secondary chilled water pumps are 

mainly centrifugal and are driven by an electric induction motor [3]. Moreover, these 

pumps are installed in a system to have constant or variable flow. The flow rate of 

the primary chilled water pump is determined by the cooling load and chilled water 

temperature differential [3]. The pressure or the head required is then calculated 

based on the summation of pressure drops in the piping system - due to friction - and 

through the chiller’s evaporator, cooling coils and the loop’s valves [3]. 

The Secondary Chilled Water Pump (SCHWP) - located at the outlet of the evaporator 

–transfers the chilled water at around 4.4 0C to the loads [4]. Hence, forming the 

primary-secondary pumping or the primary-secondary-tertiary pumping system; the 

latter includes smaller pumps at the consumer side to make-up for the pressure drop 

in the network [1]. The pump’s speed is controlled through a variable frequency (or 

speed) drive that modulates the speed of the motor as per the cooling load 

requirements [1].  

1.5 Capacity Control of Water-Cooled Centrifugal Chillers 

Controlling the cooling capacity (represented in kW, tons of refrigeration or BTU/h) of a 

water-cooled centrifugal chiller is basically varying the volumetric flow rate of the refrigerant 

that is passing from the evaporator to the condenser [3]. The flow rate of a centrifugal 

compressor and subsequently the cooling capacity is a function of the condensation pressure 

(or lift) and refrigerant flowrate [5]. That is, a change in either or both variables affect the 

chiller’s cooling capacity. Moreover, the load requirement is a function of the chilled water 
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flow rate, temperature differential and a constant coefficient [5]. Thus, a reduction in the 

chilled water return temperature or flow rate is an indication of load reduction, or vice versa.  

 

Figure 1-5: Centrifugal Chiller, Courtesy of Trane [6] 

 

In constant speed chillers, the refrigerant flow (or the cooling capacity) is varied using Inlet 

Guide Vanes (IGV) as illustrated in Figure 1-5 [3][6]. The IGV is placed on the compressor’s 

input to restrict or allow the flow of refrigerant to move from the evaporator to the 

compressor. Consequently, the cooling capacity of the chiller is controlled. Furthermore, this 

method yields to high efficiencies around chiller’s design points (i.e., at high load 

requirements) where the IGV is fully open [7]. However, at low load requirements, the IGV 

position is almost closed to permit less refrigerant flow. Consequently, this yield to low levels 

of efficiency and the chance of surge is high [7]. A surge is an unwanted phenomenon where 

the pressure rises or lift in a chiller exceeds a predesigned value [5]. If the surge persists for 

long periods of time, it yields to high current consumption and may cause the chiller to trip, 

produces noise from the chiller and damages the compressor [3].  

Another known method to vary the cooling capacity of a chiller is to use a Hot Gas By-Pass 

(HGBP) [3][5]. However, this method yields to low performance and high electricity input per 

cooling output (i.e., kW/ton) at part-load [5]. This is due to the constant refrigerant flow rate, 

and the machine unloads only through by-passing the gas going from the evaporator to the 

condenser back to the evaporator as shown in Figure 1-6 [5]. 
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Figure 1-6: Hot Gas By-Pass [5] 

The most recent approach to control the cooling capacity of a chiller is by varying the speed 

of the compressor’s motor through a Variable Frequency Drive (VFD) [3]. Other common 

names of a VFD include Variable Speed Drive (VSD) and Adjustable Frequency Drive (AFD). 

A VFD can be mounted on the chiller module – as depicted in Figure 1-5 - or it can be provided 

as a stand-alone panel for large motor rating. Speed control in a centrifugal chiller increase 

the efficiency of a chiller at part-load and lower condenser water inlet temperature [7]. Thus, 

providing energy savings up to 30% [8]. However, an IGV control is more efficient at full load 

at any condenser water inlet temperature [7]. On the other side, VFD drive, or speed control 

efficiency drops at high loads and high lift conditions (high condenser water temperature) 

due to drive losses introduced by the VFD [5][6]. Therefore, capacity control of a centrifugal 

chiller is applied through a combination of VFD and IGV control to ensure maximum overall 

efficiency at various operating conditions [7]. Figure 1-5 depicts a Trane centrifugal chiller 

with both IGV (located at the inlet of the compressor) and built-in VFD (or AFD).  

1.6 Thesis Objective 

The aim of this thesis is to investigate two advanced multivariable control techniques and 

compare them with an array of PID controllers. Linear Quadratic Integral (LQI) and Model 

Predictive Control (MPC) methods are chosen due to their versatile characteristics, wide use 

in the industry and effectiveness to tackle multi-input-multi-output (MIMO) system 

seamlessly such as a chiller. Furthermore, the MPC will be implemented with direct 

feedthrough and tuned common and widely using technique, namely, Genetic Algorithm. 
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1.7 Research Contributions 

The contributions in this work include the following: 

1. Adopted a published multi-input-multi-output (MIMO) model of a vapor compression 

liquid chiller and used its linearized state-space published data to develop several 

controllers. The controllers’ performance was evaluated based on their ability to track 

a set of setpoints whilst regulating other outputs simultaneously and to reject 

measured input disturbance.  

2. The number of outputs of the chiller model was altered and the inputs were classified 

into two categories (i.e. control or disturbance input) to suit the control problem. 

3. Designed a Proportional-Integral-Derivative (PID) controllers fitted in a multi-input-

multi-output environment. 

4. Designed a discrete-time Linear Quadratic Integral (LQI) and tuned its output and 

input weights to achieve the design objectives. 

5. Designed a discrete-time Model Predictive Controller (MPC) with a nonzero direct 

feed through term. The model’s input constraints (or saturations) were integrated into 

the cost function. The weights of the MPC controller’s cost function were tuned using 

Genetic Algorithms to meet the design requirements. 

6. The LQI and MPC controllers showed various improvements in terms of overshoot, 

steady-state error, settling time and lower input power requirements with respect to 

the PID controller.  

1.8 Thesis Organization 

Literature review of the various modeling and control techniques of chillers and/or vapor 

compression systems (VCS) are presented in Chapter 2. The dynamic model of the chiller in 

state-space is demonstrated in Chapter 3. The control problem and PID control of the chiller 

are provided in Chapter 4. Chapter 5 shows the design and implementation of LQI control on 

the chiller. The derivation of the MPC with direct feedthrough, its weight tuning using 

Genetic Algorithms (GA) and its implementation on the chiller are detailed in Chapter 7. In 

Chapter 8, the performance of the three controllers was analyzed and discussed. 
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Chapter 2 Literature Review 

 

This chapter discusses the modeling and control techniques previously done on liquid chillers 

or vapor compression systems (VCS). The modeling techniques presented are divided into 

three categories, namely, white-box, black box and grey-box models. Each of the three 

modeling techniques exhibit the below properties [9]: 

• Linear or nonlinear. 

• Static or dynamic. 

• Explicit or implicit. 

• Discrete or continuous time. 

• Deterministic or probabilistic. 

• Deductive, inductive or floating. 

In white-box modeling, the system is modeled using physics-based mathematical 

formulations (such as differential equations) through the fundamental laws such as mass 

balance, heat transfer and momentum equations. On the contrary, black-box models are 

derived through input-output relations with little or without having any prior knowledge of 

how the system works. These models are often referred to as data-driven or empirical, since 

they require system real or manufacturer’s performance data to derive the input-output 

relations using artificial intelligence or mathematical algorithms. As the name suggests, 

Grey-box modeling, or hybrid modeling, is a blend of white-box and black-box techniques. In 

this approach, the system is initially modeled using physics-based formulations. However, 

model parameters or coefficients of these equations are computed through input-output 

relationships of measured data [9]. A VCS model can be classified as white-box, black-box or 

grey-box. However this classification may vary based on the interpretation of the data.  

Control system design has been progressively improved and optimized to enhance 

performance and reduce the cost of operations of HVAC systems and in other industries. 

Currently, the control methods can be categorized under the following categories: classical 
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control, hard control, soft control. hybrid control and other techniques [10]. Each of the 

following categories includes subcategories as depicted in Table 2-1 [10]. For instance, 

classical control includes ON-OFF and PID controls. The latter PID control is the most 

dominant control technique in the industry due to its simplicity, and it’s the most used 

benchmark for scientific comparison with newer or modern control techniques such as 

optimal control, robust control, model predictive control and data-driven control. 

Table 2-1: Some of HVAC Control Methods [10] 

Classical 

Control 
Hard Control Soft Control Hybrid Control 

Other 

Techniques 

ON/OFF 
Gain 

Scheduling PID 

Fuzzy Logic 

Control 
Adaptive Fuzzy 

Direct 

Feedback 

Linear Control 

PID 
Nonlinear 

Control 

Neural 

Network 

Control 

Adaptive Neuro 

Pulse 

Modulation 

Adaptive 

Control 

 
Optimal 

Control 
 Neuro Fuzzy 

Pattern 

Recognition 

Adaptive 

Control 

 Robust Control  Fuzzy PID Preview Control 

 

Model 

Predictive 

Control 

  

Two Parameter 

Switching 

Control 

    

Reinforcement 

Learning 

Control 
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2.1 Modeling Techniques of Vapor Compression Systems 

2.1.1 White-Box Modeling (Physical) 

White-box or physics-based models of vapor compression systems can be static (or steady-

state) or dynamic (transient). In static or steady-state modeling, the parameters are constant 

and do not vary in time. Thus, the behavior of the system from the initial point of time before 

applying the change to the final steady-state value is not captured. On the other hand, 

dynamic or transient modeling captures this behavior and the system’s parameters vary with 

time. Since the thermal inertia of the compressor and expansion valve are much smaller – or 

even negligible – in comparison to the heat exchangers (condenser and evaporator) in VCS, 

many researchers tend to model the compressor and expansion valve in steady-state. 

Otherwise, compressors are modeled using Turbomachinery theory and other related 

physics-based equations.  

The heat exchangers white-box models typically fall under three categories, namely, finite 

volume (FV), moving boundary (MB) and lumped-parameter [11]. In finite-volume, the heat 

exchanger is discretized into a finite number of independent – fixed length - control volumes. 

This modeling approach is known for its accuracy in dynamic (transient) and steady-state 

simulations. However, the order of the system is high, execution speed is slow and applying 

control laws on this formulation is challenging [11,12]. MB also adopts the discretization of 

the heat exchanger, but the number of control volumes is dependent on the number of 

refrigerant phases and the length of each volume varies based on the duration of each phase. 

The MB formulation is known for its computational speed, accuracy and relatively lower 

order of equations as opposed to the FV approach [11,12]. Figures 2-1 and 2-2 illustrate the 

discretization of a shell-and-tube heat exchanger for FV and MB analysis [12]. Lumped-

parameters results in fewer number of equations compared to MB and FV formulations as it 

simplifies the heat exchanger further. For instance, a two-phase exchanger, such as the 

evaporator, and a three-phase exchanger, such as the condenser, are both modeled as a single 

lumped system. By doing so, this approach might neglect some important dynamics that 

occurs during phase change or within phases [11]. However, this approach is the easiest when 

it comes to controller design due to the fewer and lower order systems as well as the 

computational speed.  
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Figure 2-1: Discretization of the shell-and-tube heat exchangers for the finite-volume 

formulations [12] 

 

Figure 2-2: Discretization of the shell-and-tube heat exchangers for the moving boundary 

formulations [12] 

 

Bendapudi et al. [13] modeled a 90 Ton centrifugal chiller running using a R134a refrigerant 

through finite-volume analysis. The compressor is single-stage, constant speed and with 

variable inlet guide vanes (IGV). Due to the fast response of the compressor, it has been 

modeled as quasi steady-state formulation. A simplified model was adopted that considers 

only the thermal inertia of the sensing element of the thermostatic expansion valve (TXV). 

The FV formulation of the evaporator and condenser yielded non-linear equations that were 

then discretized and linearized. The results of the study when comparted to a test setup 

proved to be accurate by yielding an error of less than 10% during start-up and 27 load-

change transients; the load-changes were achieved by varying the setpoint chilled water 

supply temperature and return water temperatures. 

In a later work, Bendapudi et al. [12] modeled a shell-and-tube heat exchanger using both 

finite-volume and moving boundary formulations. The compressor and TXV models were 

identical to [13]. The modeling (or simulation) results were validated against a 300 kW water-

cooled centrifugal chiller test stand running on R134a refrigerant. The study has concluded 

that FV formulation is more robust during start-up and all load change transients compared 

to MB. The MB method was stable during load-change transients, but not at start-up 
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(compressor and TXV models hindered the calculation process during start-up). However, the 

speed of execution of MB was three times as fast as FV while maintaining identical accuracies 

during steady-state and at load-change transients. 

Lei and Zaheeruddin [14] developed a lumped-parameter dynamic model of a water-cooled 

chiller. The developed model was able to simulate the chiller’s performance under both 

transient and steady-state conditions. As with other white-box modeling techniques, a 

modular modeling approach was adopted to model a 10.5 kW water-cooled chiller running on 

R22 refrigerant with shell-and-tube heat exchangers, variable speed compressor and 

thermostatic expansion valve (TEV). A dynamic lumped-parameter approach using mass and 

energy balance principles was adopted to model the heat exchangers. For the condenser, only 

the condensation section was accounted for. However, the evaporator’s refrigerant dynamics 

was completely captured (i.e. the two-phase and superheated vapor regions) in the modeling 

process because the refrigerant temperatures have a high impact on the system output. Thus, 

the evaporator model had six control volumes in total, three for each section. The control 

volumes are the refrigerant inside and outside the tubes, tube walls and the water inside and 

outside the tubes. A steady-state compressor model developed considering that the set speed 

is reached instantly and the effect of the compressor’s shell on the performance of the system 

has been omitted. Finally, the TEV has been modeled as a first order dynamic equation whose 

output is the refrigerant flowrate at the discharge side of the TEV, whose opening angle is 

governed by the degree of superheated vapor temperature in the suction. The model’s 

performance was validated through computer simulation in transient and steady-state 

conditions. In both cases, two subcases were studied, namely, the change in compressor’s 

speed and the change in the TEV opening angle. The simulation yielded “that there exists a 

minimal feasible valve position at a given operation frequency for water chiller to work within 

a safe operation mode to avoid water freeze up in the secondary system”. Moreover, the 

transient response showed that the refrigerant mass flow rate and pressure reaches steady 

state faster the water temperature. As this study was done only on computer simulation, the 

overall system’s accuracy was not validated experimentally. 

Li et al. [15] presented a dynamic model of a water-cooled centrifugal chiller developed in 

Modelica software. The shell-and-tube heat exchangers were modeled using finite volume 

(FV) method. The TEV was modeled as a first-order equation whose output is the refrigerant 

mass flow rate that depends on the opening angle of the TEV. Unlike most papers, the 
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variable speed centrifugal compressor was modeled based on turbomachinery theory (i.e. 

compressor’s physical and dynamic properties). Furthermore, compressor losses were 

accounted for in the mode. The developed model considered two ways for capacity control, 

namely, inlet guide vanes (IGV) and compressor’s speed. Both approaches will operate 

together to meet the capacity set point or requirement. The model’s dynamic and steady-state 

performance was simulated in Modelica considering an R134a refrigerant. The system’s 

response was triggered by changing the IGV angle and the input torque. The system’s 

predicted outputs include isentropic efficiency of the compressor, mass flow rate of the 

refrigerant at compressor inlet, refrigerant (superheat and subcooling) and chilled-water 

temperatures.  

Llopis et al. [16] developed a dynamic lumped parameter model of a shell-and-tube condenser 

operating in a vapor compression refrigeration plant. The model was formulated using mass, 

heat transfer and energy principles. Furthermore, the formulation considered the effect of 

metal control volumes (shell-and-tube), heat transfer to the environment liquid receiver and 

all three states or phase changes the condenser undergoes as depicted in Figure 2-3. The 

model was validated using measured data of an experimental vapor compression plant with 

a variable speed open-type compressor running on HCFC-22 refrigerant and with shell-and-

tube heat exchangers. Model validation was done in steady-state and transient conditions. 

The steady-state output response deviation was within ±5%. The transient response was 

triggered by changes in compressor speed, secondary fluid inlet temperature and refrigerant 

mass flow rate; the results matched well with the measured data.  

 

Figure 2-3: Block diagram of a condenser [16] 

 

Koury et al. [17] presented two models to simulate the steady-state and transient behavior 

of a variable speed water-water type refrigeration system. Distributed (i.e. FV) method was 

used to model the heat exchangers. In each control volume, mass, energy and momentum 
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balances physical laws were applied to formulate the time-dependent partial differential 

equations. The other two sub-models, compressor and expansion valve, were modeled in 

steady-state due to their small inertia compared to the heat exchangers. Simulations - to 

validate the model - were done using two types of refrigerants, R12 and R134a. The VCS 

understudy was made up of a variable speed compressor, shell-and-tube heat exchangers and 

a manual expansion valve. Furthermore, secondary medium in the condenser and evaporator 

were water and a water-ethylene glycol mixture, respectively. Simulations and tests were 

done under two different cases to investigate the possibility to control the refrigeration 

system and the degree of superheating in the evaporator outlet. In the first case, system 

performance is studied during start-up of the compressor. Asides from numerical 

simulations, a comparison was made between the simulation values against experimental 

values - from another study/paper – in terms of the system’s COP when the system undergoes 

a step increase in compressor speed.  Results showed that the steady-state results were close 

between the two. In the second case, the response of the system was studied due a change in 

compressor speed and expansion valve opening angle while the system is under steady state. 

The transient results at terminal value predicted well when compared to steady state.  

2.1.2 Black-Box Modeling (Data-Driven) 

To reiterate, black-box or data-driven modeling requires little or no knowledge of the system. 

Black-box models can be accomplished with numerous techniques including, but not limited 

to data mining or artificial intelligence algorithms, fuzzy logic and statistical techniques. 

Figure 2-4 illustrate several of these techniques - and their subcategories – commonly used 

in HVAC systems (not limited to chillers or vapor compression systems) [18]. As the focus is 

to present common literature on VCS, and more specifically chillers, papers on the modeling 

of liquid chillers will be presented. 
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Figure 2-4: Data-driven Models in HVAC Systems [18] 

Bechtler et al. [19] developed a data-driven approach to dynamic modeling of vapor 

compression liquid chillers using artificial neural networks (ANN). The ANN topology or type 

adopted was the generalized radial basis function (GRBF) with series-parallel identification 

structure as shown in Figure 2-5. The model inputs included the easily measured chiller data; 

and these were the chilled water outlet temperature, cooling tower inlet temperature and 

evaporator capacity. Similarly, three outputs were considered, which are the COP, 

compressor work and evaporator inlet temperature. As this model falls under Multi-Input-

Multi-Output (MIMO) modeling, three ANN networks are created to map the three inputs 

with the three outputs. Each sub-network consisted of three inputs and one output. The 

model was trained and tested against the data of two installed chillers in the University of 

Auckland. Chiller A has a capacity of 650 kW, and it was equipped with a single-screw 

compressor and ran on R22 refrigerant. On the other hand, chiller B was 300 kW, but had a 

twin-screw compressor and ran on R134a. The model was trained and evaluated under two 

modes of operation. In the first mode, transient fluctuations in terms of a change in part-load 

operating capacity under normal operating conditions were examined. In the second mode, 

the start-up process of the chiller was modeled. Measured versus predicted results agreed; 

for instance, the RMS error of the COP - in both cases - was 0.3 and the RMS error of the 
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compressor work was less than or equal to 2.5 kW. Furthermore, it was observed that with 

more training data and lower sampling time, a better transient model can be attained against 

steep transient changes. The outcome of this study can lead to the use of this chiller model 

for control system design and fault detection in chillers. 

 

Figure 2-5: Series-parallel Identification Structure [19] 

 

Navarro-Esbrı´ et al. [20] presented a black-box steady-state model of a vapor compression 

liquid chiller with a variable speed compressor. A radial basis function (RBF) neural network 

(NN) was opted to model the VCS with low-cost data input requirement – consisting of inputs 

that are usually available for measurement - and without extensive training set. The model 

had four inputs and three outputs; the inputs were carefully selected such as they provide 

the most information on the system. For instance, the chilled water and condenser 

temperatures as well as the compressor speed provide an insight into mass flow rate and the 

compressor’s performance, whereas the refrigerant evaporator outlet temperature describe 

the degree of superheating and the overall behavior of the VCS. The four inputs of the 

systems are the chilled water inlet temperature, condensing water temperature inlet, 

refrigerant evaporator outlet temperature and compressor speed. The NN outputs are the 

cooling capacity, electrical power consumption and the chilled water outlet temperature. 

Training and testing data sets were obtained from an experimental chiller setup running on 

R22 refrigerant in the primary loop, and the secondary fluid running in the condenser and 

evaporator were water and mixture of water and propylene glycol, respectively. The chiller 

components included shell-and-tube heat exchangers, single-stage reciprocating open-type 

compressor and a TEV. The RBF NN model was trained and tested at eight different steady-

state conditions; in each condition, 500 measurements were used, and the measurements 

were split between training and testing sets. The output results generalized well with actual 
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measurements. For instance, the model’s accuracy when predicting the chilled water output 

was within ±0.2 K, and the accuracy of the power consumption was ±5% of actual 

measurements. The positive results in accurately modeling the VCS can be further developed 

and used for fault detection and energy optimization of VCS. 

Romero et al. [21] presented and compared four control-oriented linear statistical black-box 

models to predict the dynamic response of chilled water temperature in VCS liquid chillers 

with variable speed compressors. The first step in modeling was to select the input variables 

that provide the most information on the evaporator outlet water temperature as well as they 

must be easily measurable. The selected inputs variables are chilled water inlet temperature 

and compressor speed. The former is selected as the control input and the latter is selected 

as the disturbance input Secondly, the model is presented through the linear discrete-time 

formulization describe by 

y(t) = G(z) u(t) + H(z) e(t) (2-1) 

where y(t) is the output (chilled water temperature), u(t) are the inputs, e(t) is input noise 

(considered as external white noise) t is real time, z is discrete-time shift operator and lastly, 

G(z) and H(z) are discrete-time transfer function representing the unperturbed plant and 

perturbations, respectively. At different structures and configurations, four statistical models 

were considered as depicted in Figure 2-6. The proposed models are AutoRegressive 

eXogenous (ARX), AutoRegressive Moving Average eXogenous (AMX), Output Error model 

(OE), BoxeJenkins model (BJ). To validate the dynamic response for all models, four different 

experiments were executed on an experimental chiller setup under different operating 

conditions by varying the compressor speed. The efficiency, measured as the percentage of 

output variations is illustrated in Table 2-2. It can be seen that the BJ outperforms all other 

methods in three out of the four operating conditions. Thus, making it the most suitable 

model for chilled water outlet temperature control design. Moreover, Figure 2-7 compares the 

predicted values for all models against the measured values for validation experiment 3 (540-

520 RPM). Therefore, the most suitable method for chilled water  
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Figure 2-6: ARX, AMX, OE and BJ Model Architectures [21] 

Table 2-2: Performance Comparison of the Models Under Different Experiments [21] 

Validation 

Experiment 
ARX AMX OE BJ 

1 [480-460 RPM] 69.88 71.17 68.65 69.92 

2 [520-500 RPM] 63.72 70.15 71.38 73.79 

3 [540-520 RPM] 65.40 68.11 65.77 68.64 

4 [560-540 RPM] 52.85 62.59 66.31 76.32 

 

 

Figure 2-7: Predicted vs Actual Dynamic Response of Chilled Water Output using four 

methods [21] 
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Tudoroiu et al. [22] presented an adaptive neuro-fuzzy black-box model of a centrifugal chiller 

to model its nonlinear dynamics for the objective of using the model for future controller 

design. The chiller model understudy ran on a R134a refrigerant, with variable speed 

centrifugal compressor and shell-and-tube heat exchanger [23]. Furthermore, the two 

examined outputs were the chilled water supply temperature and the refrigerant liquid level. 

The proposed adaptive neuro-fuzzy inference system (ANFIS) architecture is a hybrid 

technique combining artificial neural networks and fuzzy logic. Furthermore, the ANFIS 

model was simulated and compared to two other model simulations of a physics-based and 

ARX models. The former is a white-box model in which the heat exchangers are modeled 

using MB formulation [23], and the latter is a linear black-box method. Unlike the ANFIS 

than can model MIMO system, there were two SISO ARX models for the chiller, one for each 

output. Hence, the system or the two loops were decoupled. Despite the ease of use and 

quicker simulation time of the ARX model, the ANFIS is a more suitable approach to model 

systems with high non-linear dynamics and when a higher accuracy is desirable. Finally, the 

ANFIS modeling approach can be extended to other applications as well as deploying it in a 

closed-loop structure for controller design. 

2.1.3 Grey-Box Modeling (Hybrid) 

Grey-box or hybrid models combine both white-box and black-box principles in the modeling 

process. For instance, the heat exchangers’ fundamental formulations are laid using white-

box principles such as the moving boundary, lumped-parameter or other formulation, but the 

coefficients or unknown parameters are determined empirically through experiments or 

measured data using black-box regression methods such as least-squares. 

Browne and Bansal [24] developed a steady-state model of a vapor-compression centrifugal 

liquid chillers using physics-based formulation and empirical equations. The model was 

designed based on the following inputs: 

• Geometric data of the chiller such as the heat exchangers and compressor dimensions. 

• Temperature and flow rate of the evaporator liquid supply to the network/end-user. 

• Temperature and flow rate of the condenser liquid return from the cooling tower. 



26 

 

The compressor was modeled using steady-state process using physical laws and geometrical 

data of the compressor. Furthermore, the compressor was hermitic, open-type, constant 

speed centrifugal compressor and with IGV capacity control. The flooded shell-and-tube type 

heat exchangers on the other hand were modeled using physical laws and heat transfer 

coefficients and solved using the effectiveness-NTU (i.e. NTU–ε) methodology. Superheating 

and subcooling of the refrigerant in the vapor compression cycle has been accounted for in 

the model. The expansion valve output enthalpy was computed using the energy balance 

equation and efficiency assumptions within the motor and mass flow through the expansion 

valve. The model was designed with the following outputs: 

• Condenser and evaporator capacities. 

• Coefficient of Performance (COP). 

• Electrical work/power of the compressor. 

• Mass flow rate and refrigerant states. 

The model was simulated and validated against measured data of three operational chillers 

at the University of Auckland. The chiller was simulated at part-load and full load conditions 

considering a fixed condenser liquid return temperature. In most of the operating conditions, 

the simulation results were within ±10% of the actual measured data. 

In later work, Browne and Bansal [25] developed a lumped-parameter model for a screw 

compressor packaged liquid chillers with modulating and on/off control. The model had 

several differences with respect to the model developed in [24] such as the ability to predict 

the dynamic or transient response during start-up, shutdown and fluctuating part-loads. The 

heat exchangers are modeled using thermal capacitance approach – which is a fully lumped-

parameter approach – that uses physical laws and heat transfer coefficients. However, one 

drawback of the thermal or a lumped-parameter approach is the inability to model the 

refrigerant’s phase changed within the heat exchangers. Furthermore, empirical relations 

were applied on the evaporator’s tube wall mass on one of the studied chiller in order to 

predict its startup process. On the other hand, the screw compressor model was developed 

through regression models (i.e. black-box or empirical) instead of physical modeling and is 

also considered as a steady-state process. Overall, six dynamic variables have been 

considered in the modeling process and the model’s outputs include compressor’s electrical 

power, coefficient of performance (COP), water temperatures and the refrigerant states. The 
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model was validated against two experimental – in situ – chillers, and the output prediction 

was within ±10 of the actual measured values for most operating conditions. 

Wang et al. [26] developed a mechanistic model of a centrifugal chillers to study its dynamics. 

The compressor was modeled through the momentum, energy and mass equations as well as 

the equations of impeller velocity component relations. Furthermore, losses such as 

hydrodynamic, mechanical and electrical losses were considered in the modeling process. The 

heat exchangers were modeled using the classical heat exchanger efficiency method. The 

chiller dynamics were simulated considering lumped thermal storages at the inlet and outlets 

of each heat exchanger as first-order differential equations. A pre-processor was used for 

parameter identification of the modeled chiller using limited chiller full-load and part-load 

performance data. These parameters to be identified using the pre-processer included the 

compressor impeller geometric parameters, constants used for hydrodynamic losses of the 

compressor, chiller power consumption and the heat exchangers overall heat transfer 

coefficients. Two experimental cases were considered to validate the model’s performance. In 

the first case, more than 200 full-load and part-load operating points from the manufacturer’s 

data were used to validate the single-stage 2806 kW water-cooled chiller running on HCFC 

refrigerant. Results obtained were satisfactory, and it was concluded that the accuracy of the 

model increases as the parameters to be identified by the pre-processor are less. In the second 

case, data from site measurements from the central chilling system of a 46-storey office 

building were used. The plant consisted of five two-stage, indirect seawater-cooled centrifugal 

chillers running on R12 refrigerant. Just as case 1, both part-load and full-load capacities 

were simulated and the accuracy of the model, in general, was within ±10%. The chiller model 

was then integrated into the full system to evaluate its performance once again. The 

simulation results matched well with the measured data in terms of power consumption and 

inlet and outlet temperatures of the condenser and evaporator. 

Beitelmal et al. al. [27] developed a steady-state model of a centralized cooling system. Both 

the chiller and the cooling tower have been modeled in the study. Furthermore, the model 

solves the mass and energy equations and uses minimal number of inputs that are usually 

available. The inputs considered are the ambient conditions, condenser and chilled water 

flow rates, degree of superheat and sub-cool of the refrigerant, full load design conditions of 

the chiller and the cooling tower air flow rate. The model output includes the coefficient of 

performance (COP) and compressor power. The compressor’s power ratio was determined 
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empirically - through least squares method - as a function of the cooling load and key 

temperatures such as the condenser and evaporator supply and return temperatures, heat 

load in the evaporator. Moreover, pressure drops across both heat exchangers were accounted 

for when computing the compressor’s power. The model of the chiller and cooling towers were 

validated against manufacturer’s data and compared with the experimental data of two 

water-cooled chillers feeding Hewlett-Packard campus. The first chiller was a 2286 kW and 

with a constant speed compressor. On the other hand, the second chiller is 2110 kW and with 

a variable-speed compressor. The predicted results of the model agreed with the measured 

data with an average deviation of 5% and maximum deviation of 18%. The study revealed 

that the COP of the constant speed chiller increases as the load increases and peaks at full 

load. In contrast, the variable-speed chiller performance peaks at part load between 40% to 

80% depending on the heat load and the condenser water temperature. 

Yao et al. al. [28] captured the dynamics of a liquid vapor compression chiller through a state-

space model. The considered liquid chiller model had a variable speed compressor, runs on 

R134a refrigerant and with oil as the secondary medium in the plate type condenser and 

evaporator. In the proposed model, the heat exchangers were modeled using the lumped-

parameter approach and the heat exchanger coefficients were determined empirically 

through experimental data. The compressor was modeled in steady state. With the 

assumption that the mass flow rate of the refrigerant is constant throughout the cycle, the 

expansion valve model was neglected. The developed dynamic differential equations were 

linearized using first order Taylor series and represented in state-space. The model had 5 

inputs, 8 states and 7 output variables. The inputs are the inlet coolant temperature and flow 

rate of the condenser, the inlet chilled liquid temperature and flow rate of evaporator and 

refrigerant flow rate. The state variables were all considered as the temperatures of the 

condensation and evaporation of the refrigerant, outlet coolant of the condenser, chilled liquid 

of the evaporator, shell wall of the condenser and evaporator. Some of the state variables 

were also used as output variables, the 7 output variables are the outlet coolant temperature 

and flow rate of the condenser, outlet chilled liquid temperature and flow rate of the 

evaporator, compressor electric work, cooling capacity and the coefficient of performance 

(COP). The relationship between the input, state and output variables are illustrated in 

Figure 2-8. The developed state-space model has been validated against a series of 3 

experiments at different initial conditions, and the average accuracy of the predicted outputs 
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are less than 10%. The model was then simulated under three different simulation cases, 

each having three subcases to study the transient behavior of the system. 

 

Figure 2-8: State-space chiller model directed graph [28] 

 

In later work, Yao et al. [29] developed a state-space dynamic model of a vapor compression 

refrigeration system based on moving-boundary formulation. The model was more 

sophisticated in comparison with [28] as it gained more insight into the internal parameters 

of the system. The heat exchangers (i.e. condenser and evaporator) were modeled using the 

moving boundary technique by dividing the condenser and evaporator to three and two 

control volumes, respectively. For each control volume, physical laws (mass, heat and energy 

balance) using the lumped parameter approach were applied on each region. Moreover, heat 

transfer coefficients were determined through empirical relations from experiments. On the 

other hand, steady-state models were adopted for the compressor and electronic expansion 

valve (EEV). The equations of each model were then linearized and represented in state-

space format. The input-output relationship between the four sub-model or module are as 

depicted in the block diagram in Figure 2-9.  
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Figure 2-9: Block diagram for the dynamic simulation of refrigeration system [29] 

 

The model was validated through an experimental setup running on R134a refrigerant and 

oil as the secondary medium in the heat exchangers. Moreover, a variable speed scroll 

compressor, electronic expansion valve and plate-fin heat exchangers were used. The 

proposed model was validated against three set of testing conditions, namely, a step change 

on the EEV degree of opening, step change in the evaporator’s heat load (return temperature 

of the oil) and ramp change of inlet of the condenser (return coolant oil). For each test type, 

multiple experiments were conducted with modifications in operating conditions. The input-

output relations between the modules/sub-models along with the overall’s system output 

were examined; and in most cases, the error was less than 10%. Advantages of state-space 

with MB formulation included the representation (which is a very useful tool in describing 

MIMO systems), control system design, simulates faster (linearized system and modeled 

using the MB method) and gaining an insight into the transient behavior of the refrigerant 

states. 

Liu et al. [30] presented an optimal chiller sequencing control in an office building 

considering chiller maximum cooling capacity. In the study, both the chiller and the cooling 

tower were modeled together to compute the maximum cooling capacity per chiller. In the 

study, the cooling tower was modeled using the effective-NTU method. On the other hand, 

Gordon-Ng (GN) models were adopted to model the screw compressor chiller. The Gordon-Ng 

models falls under the category of grey or semi-empirical models as the fundamental equation 

to determine the chiller’s COP is governed by regression coefficients that are determined by 

measured or manufacturer’s data. The GN fundamental model is a function of chilled water 

supply and condenser water return temperatures, COP and the chiller’s cooling load  

and is given in Equation 2-2 as 
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where a1, a2 and a3 are the unknown coefficients to be determined through regression 

techniques. The power consumption per chiller can then be determined using the COP and 

the chiller’s cooling load. Both constant variable and variable speed compressors were 

modeled. The model was then deployed to develop an algorithm for the optimal chiller 

sequencing – to maximize the COP - under different cases and conditions. 

Huang et al. [31] developed a novel approach of feature-recognition based modeling of liquid 

chillers to predict the chiller’s capacity under different working conditions. The model used 

physical based formulation such as fluid mechanics, heat transfer and thermodynamics to 

lay the fundamental equations for each main components, namely, condenser, evaporator, 

compressor and the throttle valve. Then chiller measured experimental data were utilized to 

compute the lumped model characteristics parameter. A total of 15 characteristics were 

computed using Least-squares. For heat exchangers, heat transfer equations were 

formulated for each phase. In other words, three and two heat equations were developed for 

the condenser (i.e. subcooled, two-phase and overheat regions) and evaporator (two-phase 

and overheat regions), respectively. Both the compressor and the throttle valve were modeled 

using steady-state equations. An experimental water-cooled chiller setup running on R22 

refrigerant was built. The setup had a variable-speed compressor, a plate type heat 

exchanger and an expansion type throttling device. A series of four experiments were 

conducted to evaluate the performance of the model under different conditions. In each 

working condition, the flow rate or temperature of the chilled water or condenser water per 

circuits were varied. The model predicted the refrigerating capacity and the COP successfully 

with a maximum deviation of 10%. 

2.2 Control Techniques of Vapor Compression Systems  

In this section, the control techniques of vapor compression systems will be presented. Due 

to the limited literature on control system design for liquid chillers, control techniques 

applied to VCS are also presented as the dynamics and operation are similar. Perhaps the 

major difference would be the secondary medium passing in the condenser and/or evaporator. 

That is, instead of liquid passing through the evaporator, condenser or both, the secondary 

medium would be air. For example, direct expansion air conditioning unit which has air as 
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the secondary medium. The most common control techniques applied on VCS include PID, 

Optimal Control, Robust Control and Model Predictive Control. Other newly emerging 

techniques that fall under the umbrella of machine learning or hybrid control are also 

presented. These include genetic algorithms, neural networks, neuro-fuzzy or neuro PID 

controllers. This section is divided into three subsections. Subsection 1 covers classical control 

techniques such as ON/OFF and PID, section 2 covers hard control techniques such as 

Optimal, Robust and Model Predictive Control and lastly, subsection 3 includes soft and 

hybrid control techniques. 

In some research, the controller type is not specified, however, the feedback loop is configured 

to improve the system performance at a given criterion. For instance, Jia and Reddy [32] 

proposed a model-based feed forward controller scheme to improve the accuracy of chilled 

water temperature. In their study, the capacity control of the centrifugal chiller was achieved 

using inlet guide vanes. The traditional feedback temperature readings of chilled water will 

adjust the IGV position. However, in the proposed scheme, feedback control is replaced with 

feedforward control. The first step to achieve this was done by developing a physics-based 

model of the evaporator that describes the dynamic relationship between outlet and inlet 

chilled water temperatures. The physics-based model was described by partial differential 

equations with initial and boundary conditions that is solved analytically. Secondly, using 

transient data of a 1580 kW actual chiller, the unknown parameters of the physics-based 

model was determined. The model was then validated against actual data before applying 

the new control scheme. Finally, computer simulations were done to test the proposed 

feedforward control scheme and compare it with the existing feedback control scheme. It was 

found that the new proposed scheme improved the accuracy of chilled water supply by 28% 

on the given understudy chiller model. 

2.2.1 Classical Control 

The most classical form of control is ON-OFF control, Jian and Zaheeruddin [33] investigated 

sub-optimal ON-OFF switching control strategies for chilled water cooling (CWC) systems 

with storage. First, a dynamic mathematical model of the system based on modular 

component models of the compressor, condenser, evaporator, expansion valve, evaporative 

cooler and thermal energy storage tank was done using physics-based equations such as 

energy balance. Empirical correlations of refrigerant properties were determined through 

data. The response of the open-loop model was validated through a series of tests by varying 
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the cooling load requirements and the compressor’s speed. As the response of the system was 

validated, the final step was to design an algorithm and 24-hour profiles for ON-OFF control. 

Using a reduced-order model, ON-OFF control strategies were developed using a heuristic 

method. The 24 hours ON-OFF control profiles were simulated on the full-order model of a 

15.8 kW CWC system. Moreover, it was concluded that the proposed ON-OFF control method 

is optimal when the chiller load varies with time, multiple applications of unconstrained 

optimal ON-Off control can provide adequate control over the chilled water supply 

temperature given minor fine tuning and the maximum chilled water supply temperatures 

difference between full-order and reduced order was less than or equal to 0.3 °C for short 

time load configurations and daily load profiles. Thus, this simple technique was proven to 

be effective for chilled water supply temperature control on CWC systems. 

Tudoroiu et al. [23] applied several PI control strategies on linear and non-linear ARMAX 

models of water-cooled centrifugal chillers. In their study, the chiller was mathematically 

modeled using physical principles such as moving boundary conditions. The developed 

nonlinear differential equations were then linearized, discretized and represented in state-

space. Two inputs and two outputs were considered. The control inputs are the compressor 

speed and the expansion valve opening angle. Hence, the system under study falls under 

MIMO systems. On the other hand, the outputs were the chilled water temperature supply 

and the refrigerant liquid level in the condenser. The open-loop simulations of the MIMO 

system determined that the model can be decoupled due to the weak link between the two 

outputs. Thus, the system can be converted to a Single-Input-Single-Output (SISO) system. 

The simulation results of the SISO model were used to build two ARMAX SISO models of the 

chiller, one for the evaporator and the other for the condenser. A new Proportional Integral 

Plus (PIP) controller was applied on the ARMAX SISO models to test its performance against 

traditional PI controllers applied on both the MIMO systems and the ARMAX SISO models. 

It was concluded after various testing scenarios – such as applying disturbances on the 

cooling load and noise in feedback sensors – that the proposed PIP outperforms the 

traditional the PI controllers and exhibit better reference trajectory tracking, robustness, 

convergency and percent overshoot. 

2.2.2 Hard Control 

He et al. [34] investigated the use of a Linear-Quadratic Gaussian (LQG) with Integral MIMO 

controller on a residential direct expansion air conditioner. Using a linearized low-lower (5th 
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order) lumped parameter model, an LQG controller has been designed on a two input and 

two output MIMO model. The model inputs included the compressor speed and expansion 

valve opening angle. The first input regulates the output air temperature (first output), 

whereas the second input controls the degree of superheat in the system. Moreover, an LQG 

controller deploys a Kalman filter to estimate unmeasured state variables using measured 

variables. Due to the nonlinear dynamics of any VCS at different operating conditions, a gain 

scheduling approach has been taken to adjust the controller gains based on the current 

operating conditions as depicted in Figure 2-10. The proposed LQG MIMO controller 

performance was evaluated analytically – through computer simulation – and experimentally 

against a traditional SISO controller. The performance of the proposed controller was 

evaluated based on its ability to reject disturbance, track a reference trajectory and its 

stability robustness when a model error is present It was concluded that the LQQ with 

Integral MIMO outperforms traditional SISO control. Since the decoupling of the loops was 

not weak. Thus, the performance of a SISO controller would be compromised. 

 

Figure 2-10: Control System Block Diagram with Gain Scheduling [34] 

 

Leducq et al. [35] implemented a non-linear predictive controller on a water-water chiller to 

optimize multiple variable such as energy efficiency and refrigerating capacity at a reference 

set-point temperature. The proposed controller was implemented on a reduced-order (7th 

order) non-linear distributed plant model. In contrast to most controller designs of VCS which 

control each component in a VCS separately, a global control is investigated. The overall 

general block diagram of the proposed controller is depicted in Figure 2-11. The controller 

design cost function was based on the weighted sum of partial criterions and constraints. A 

total of four weighted quadratic cost were considered, and their weights were computed 

empirically. The first partial cost function penalized the difference between the actual and 

predicted refrigeration capacity, the second cost function minimized the coefficient of 
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performance, the third minimized the rapid input changes in the control signal and the fourth 

ensured that the controlled or secondary variables upper and lower constraint bounds are 

not violated. The proposed was validated on a small scale 4 kW experimental chiller with 

variable speed compressor. Two different experimental cases were investigated, namely, 

chiller partial and global optimization. The global predictive controller regulated multiple 

inputs such as the compressor speed and condenser flow rated; and a PID control is used to 

control the expansion valve opening angle Furthermore, the cost function and the controlled 

inputs for both were not the same. For instance, chiller global control considered constraints 

and it had an additional control parameter to be regulated. That is, the evaporator flow rate 

(in partial optimization, this was considered as a perturbation input rather than a control 

input). Experimental results presented an increase of 8% to 20% in terms of COP. 

Furthermore, the predictive controller design was implemented at an industrial level on 

three different dairy chiller plants. The optimal predictive controller was deployed as a 

supervisory controller to determine the steady-state optimal settings for the local controllers 

to follow; and an 8% performance increase was reported.  

 

Figure 2-11: Block diagram of the non-linear predictive control system 

 

Schurtet al. [36] presented a model-based MIMO LQG controller to assess the controlling 

envelope of liquid vapor compression systems. A modular approach was adopted to model 

each component of the VCS. For each sub-model, dynamic mathematical models were derived 

using physics-based principles such as the mass and energy conversion principles with 

moving boundary formulation for heat exchangers. The models’ coefficients were computed 

empirically using experimental data. The experimental data were gathered by setting up a 

VCS running on HFC134a refrigerant, hermetic variable-speed reciprocating type 

compressor, tube-in-tube heat exchangers with water and brine as the secondary mediums 
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in the condenser and evaporator, respectively. Furthermore, the mathematical model was 

validated using the experimental setup. The ordinary differential equations of each sub-

model were linearized using Taylor expansion series, discretized – with sample speed of 2 

seconds - and represented in state-space form. The state-space representation had six state 

variables (i.e. evaporating and condensing pressure, evaporator and condenser boundary 

positions and the enthalpies at the outlet of the evaporator and condenser), two control input 

variables (i.e. compressor speed and expansion valve opening angle), two perturbation inputs 

(i.e. secondary coolant flow rates at the condenser and evaporator) and two outputs variables 

(i.e. superheating degree and outlet secondary coolant in the evaporator). The designed LQG 

controller is designed according to the separation principle. That is, it is a combination of a 

Linear Quadratic Regulator and optimal state estimator. In addition, an integrator was used 

along with LQG controller. The unmeasured state variables were computed using the 

Kalman Filter and they included the condenser and evaporator boundary positions. The 

controller’s performance was assessed using the experimental setup through three 

performance criterions, namely, reference tracking, disturbance rejection and assessment of 

the controlling envelope. In the latter and the main criterion, the maximum and minimum 

controlled states and controllable thermal loads states were determined by applying step 

changes on the reference signal and varying the evaporator flow rate, respectively. 

Wallace et al. [37] investigated the use of a linear offset-free model predictive controller (OF-

MPC) for regulating a vapor compression cycle (VCC). The VCC linear model – running on 

R134a refrigerant - was developed using system identification using data from first principles 

model. The VCC model was interfaced with a building simulation, EnergyPlus, to form a non-

linear model. The design objectives of the controller were to regulate the supply air 

temperature of a zone, ensure that the refrigerant temperature leaving the evaporator is 

superheat vapor and to operate within energy efficient ranges whenever possible. The control 

inputs of the VCC were the compressor speed and the expansion valve opening angle. Since 

the overall plant model is nonlinear and the proposed controller was linear, model-mismatch 

can cause the closed-loop system performance to perform poorly. To overcome this issue, a 

model predictive controller with ‘offset-free’ feature was selected to eliminate the steady-state 

discrepancy. Furthermore, the proposed controller included an Lueberger observer and 

accounted for disturbances through an augmented model. The overall block diagram of the 

proposed closed-loop system containing the plant model, EnergyPlus model and OF-MPC is 
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depicted in Figure 2-12. The proposed controller was compared to PI controller, and the 

results showed trajectory tracking and energy efficiency improvements. 

 

Figure 2-12: Block diagram of the closed-loop system [37] 

 

Jaine and Alleyne. [38] investigated the use of exergy-based (also known as availability) 

model predictive control on a VCS that undergoes frequent load changes such as in 

refrigerated transport applications. A modular modeling approach was adopted to model each 

component of the VCS. The heat exchangers were modeled using the lumped parameter MB 

formulation, while a quasi-steady approach was used to model the compressor and expansion 

valve. The VCS nonlinear model was validated experimentally in earlier work. The 

experimental setup had a rated cooling capacity of 1 kW running on R134a, and it consisted 

of a variable-speed semi-hermetic reciprocating compressor, EEV, condenser, evaporator and 

a variable-speed heat exchangers fan. For each sub-model of the VCS, the rate of exergy 

destruction was derived from the nonlinear mathematic equations and summed all together 

to form an overall system exergy destruction rate that will then be used as the minimization 

metric in controller design. A linear MPC – considering a receding horizon - was adopted to 

reduce the overall system complexity. Hence, the nonlinear dynamic equations and the total 

exergy destruction rate were linearized, discretized and represented in state-space form. 

Furthermore, the length of the prediction horizon and the control horizon were both chosen 

to be the same (i.e. 15 samples with a sampling time of 1 second). The objective function was 

formulated as the sum of performance and efficiency objective functions with a weighting 

parameter to prioritize one over the other. Furthermore, the performance function considered 

the L2 norm between the difference in the required and the VCS output cooling capacity. 

Constraints were introduced as both linear and nonlinear on the input and state variable. 

They included, but not limited to having nonzero superheat and nonzero subcooling at the 

outlets of the evaporator and the condenser, respectively. The performance of the proposed 
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second law (exergy based) MPC was validated through computer simulation and compared 

with first law MPC. On average the COP of the first law MPC was higher by 3.95%, 

nevertheless. The exergetic efficiency in the second law MPC was greater than the first law 

MPC by more than 40%. In other words, despite the higher COP in the proposed controller, 

the energy used in the system was more efficient as in the system runs with fewer 

irreversibilities such as refrigerant flow friction and heat transfer losses. 

Alfaya et al. [39] performed controllability analysis and investigated the use of H∞ controller 

on one-stage refrigeration system. A simplified linear sub-model for each component in the 

VCS was formulated. Heat exchangers were dynamically modeled using the MB formulation. 

On the contrary, statistical models were adopted for the compressor, expansion valve and the 

thermal behavior of secondary fluxes. Two controlled inputs and two outputs were considered 

for the overall system model. Control inputs were the compressor speed and expansion valve 

opening angle. The two controlled variable - or outputs – were the superheating degree of the 

refrigerant and the secondary flux temperature at the evaporator’s outlet. Controllability 

analysis was done on the simplified linear model to investigate the closed-loop limitations of 

the system. Despite the results showing a stable system, a transmission zero on the right 

half plane (RHP) imposes performance limitations and constraints. Eight modes of operation 

were setup based on the refrigerant enthalpy conditions at the inlet and outlet of the 

evaporator and condenser. One of which was the nominal operating point, whilst the others 

are considered as structured uncertainties. Given the outcome of the controllability study of 

the system as well multiple operating points, a multivariable H∞ robust controller based on 

the S/KS/T Mixed Sensitivity Problem was selected. A secondary objective - asides from 

controlling the two output variables – was to maximize the system’s COP while meeting the 

cooling load requirements. Computer simulations were carried out to assess the performance 

of the proposed H∞ controller under the nominal and nonnominal operating points in terms 

of reference tracking, disturbance rejection and coupling measurements. The results of the 

proposed controller were compared with a MPC and a decentralized PID controller. It was 

concluded that the proposed controller outperforms the other two. 

Yin and Li [40] presented multiple reduced-order vapor compression cycle (VCC) models 

using the Proper Orthogonal Decomposition (POD) and investigated the use of a 

multivariable MPC on the optimized low-order model. First, a full-order model of a VCC air 

conditioning unit was derived from sub-models of each component in the VCC. The heat 
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exchangers were modeled using the lumped parameter MB formulation, whereas the 

variable-speed compressor and expansion valve were modeled as static components. The full-

order model was linearized, discretized and represented in state-space form. Furthermore, 

Using the POD approach, the 12th order (or full-order) model was reduced into 2nd, 3rd and 4th 

order models upon analyzing and considering the most influential variables that affect the 

system performance. The full-order model analysis revealed that the most significant 

variables for controller design are the evaporator pressure and the superheat of the 

evaporator. An experimental setup was used to evaluate the accuracy of each reduced order 

model. The MPC controller was designed on the 2nd and 3rd reduced-order models, since the 

4th order model was still complicated for controller design. For the 2nd order model, evaporator 

pressure and superheat are the controlled outputs, whereas the compressor speed and 

expansion valve opening angle. The 3rd order model included an additional output depicted 

by the condenser pressure and an additional input in the form of air mass flow rate through 

the condenser. Moreover, Upper and lower bound constraints were applied on the inputs and 

outputs of the system. The objective function of the controller was formulated for the reduced 

order models to compute the most suitable control signal within a finite-horizon. The 

performance of the proposed MPC controller on the 2nd and 3rd order models were assessed 

experimentally in terms of trajectory tracking and disturbance rejection; and the results 

indicated an improved response for both, especially for the 3rd order system that tracked the 

reference signal faster and was more robust against disturbances. 

Prášek et al. [41] studied the use of range control MPC in vapor compression cycles. 

Component based modeling of a heat pump VCC was done, and a complete model was formed 

through physical relations between these components. The heat exchangers were modeled 

using the MB method, whereas static models were adopted for the compressor and expansion 

valve. The 4-way valve – that are used in heat pumps to reverse the direction of flow – was 

omitted in the model. Furthermore, the secondary flux in the evaporator and condenser are 

air and water, respectively. The 12th order non-linear model with two controlled variables 

(CV), three manipulated variables (MV) and three disturbance input variables were 

linearized using Taylor series around a setpoint, discretized and represented in state-space 

form. The system model was augmented with a disturbance model to have an offset free MPC 

design. The disturbances include both real and modeling errors; and an observer was 

designed to estimate these disturbances in addition to unmeasured states. A low-order model 
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was derived in order to reduce the computation time of the MPC controller since the main 

objective is to embed this controller in a microcontroller unit. In addition, blocking (MV and 

CV) sets, and range control is proposed to further reduce the computational time and 

complexity. The range control is when the reference output or controlled variable set-point is 

replaced with a set-range (also known as funnel). The set-range or funnel was designed such 

as the closed-loop performance is robust. Simulation and experiments on a commercial small 

scale heat pump system with nominal heating power of 17 kW was done to validate the 

performance of the controller. The criterion used to validate the controller’s performance was 

set-range reference tracking and disturbance rejection. It was noted that the proposed control 

algorithm had a smoother control waveform. Thus, increasing the lifetime expectancy of the 

VCC components. In addition, the COP of the proposed controller was compared a high-end 

commercial solution. The results showed that the proposed controller yielded a better 

reference tracking performance and a higher COP. 

2.2.3 Soft and Hybrid Controls 

Ming. [42] presented an integrated model, performed uncertainty analysis and developed a 

hybrid-based control algorithm to optimize the performance of a two- zone variable air 

volume (VAV) and water-cooled vapor compression chiller. A modular physics-based 

approach was considered to model the VAV and the water-cooled chiller. Then through 

physical relations between the modules of the VAV and the chiller, an interface was done. 

The VAV model comprised of a variable-speed fan operated by a DC motor, cooling and 

dehumidifying coils, zone-model and an air flow model. The chiller model contained a 

compressor, condenser, evaporator and an expansion valve. Furthermore, MB formulation 

was selected to model the chiller’s heat exchangers. To analyze uncertain parameters of the 

model’s such as the chilled-water mass flow rate and inlet water to the condenser, an 

extended transformation approach was opted to identify these uncertainties. The uncertain 

parameters were considered as fuzzy variables with triangular membership function. In 

addition, a transformation approach was also used to perform sensitivity analysis on control 

variables to assess the system’s coupling effects. Similar to uncertain parameters, the control 

inputs were treated as fuzzy variables. A neural network supervisory controller and local 

controllers were fitted to find the most optimal operating points for the chilled water supply 

temperature, discharge air temperature and air handling unit fan static pressure such that 

the indoor environment is maintained with the least chiller and fan energy consumption at 
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full-load and part-load conditions. The three-layer feed forward neural network was trained 

in unsupervised mode to determine the most optimal operating points in the form of control 

inputs. Moreover, neural network weights were update on-line and penalties were imposed 

when constraints were violated. Five local or low-level proportional integral (PI) controller 

were used - in each loop – to track optimal and zone air temperature set-points. The weights 

of the PI controllers were not fixed but were updated on-line using Lyapunov stability 

analysis. Hence, they were “adaptive on-line PI controllers”. The simulation experiments 

concluded that on average, the energy efficiency is increased by 10% and 19% under full-load 

and part-load conditions, respectively. 

To improve a central chiller plant’s efficiency, Ma and Wang. [43] proposed an optimal 

strategy to model and control the chiller plant. The chiller plant understudy is feeding 

multiple superhigh rise tower, the plant included six centrifugal chillers, rated at 7230 kW. 

Apart from the chiller, the plant included cooling towers, condenser, primary and secondary 

water pumps, air handling units and heat exchangers. Simplified linear models for each 

equipment were formulated, and the parameters of these models were identified and updated 

online using the recursive least squares (RLS) estimation technique with exponential 

forgetting. Furthermore, a supervisory controller based on Genetic Algorithm (GA) was 

developed to compute the optimized operating setpoints for each equipment. Figures 2-13 

and 2-14 illustrate the overall block diagram of the proposed GA controller optimization 

process and the overall block diagram of the prediction model with a GA trial computation. 

The proposed models and control algorithm were tested through computer simulation and 

compared with a reference strategy that adopted traditional or conventional settings. One 

zone was considered to analyze the system’s performance, and up to 2.5% of energy savings 

(in terms of electric kilo Watt hours) per day were observed under three test cases, spring, 

mid-summer and sunny-summer season loads. 
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Figure 2-13: Overall GA Optimization Controller Process [43] 

 

Figure 2-14: Overall Block diagram of the Prediction System with GA Trial Computations 

[43] 

 

Ursu et al. [44] implemented a Fuzzy Supervised Neuro Control (FSNC) on an HVAC system. 

The system model was formulated using physics-based relations to model an HVAC system 

serving a thermal space. Two controllers were designed to synthesize the HVAC system, both 

of which will be working in parallel. The optimization problem is to minimize the energy 

consumption whilst achieving thermal comfort of an HVAC system depicted by a variable-

air-volume-system (VAV). The neuro-fuzzy controllers were implemented together, and their 

duties were clearly identified. The neuro-controller – that was designed as a single 

neuron/neuro – generated the control inputs in the form of volumetric flow rate of air and the 

flow rate of chilled or heated water. On the contrary, the fuzzy logic - Mamdani type - 

controller was fitted as supervisory controller to counteract in case the neural network 

controller saturates.  

Al-Badri and Al-Hassani [45] investigated three control types and three control techniques 

to maximize the COP of a chiller. The system’s outputs were the evaporators’ degree of 

superheat (DS) and chilled-water outlet temperature. The compressor in the chiller was 

operated by a variable-speed type DC motor, and the expansion valve was electronically 



43 

 

operated (also referred to as EEV). Furthermore, a R410a refrigerant was used in the system. 

The three investigated control types were single control loop (SCL) with adaptive EEV 

opening, two-control loops (TCL) with adaptive and constant DS settings (DS7). In the single 

control loop, the mutual coupling or physical relationship between the compressor speed and 

EEV opening angle were taken into consideration, and a single controller is used. On the 

contrary, the TCL method deploys two controllers, one for the EEV angle and the other for 

the compressor speed. Hence, the evaporator output water temperature and DS are 

controlled separately. Moreover, three control techniques were designed on each of the 

proposed control methods. A proportional fuzzy (PF) controller was proposed, and its 

performance was experimentally compared with PI and PID controllers. Experimental 

results revealed that not only the control technique is the pivot factor, but the control system 

architecture. In other words, irrespective of the controller type, the SCL experienced the 

highest COP when compared to TCL and D7S. In addition, experimental findings supported 

showed that the performance of the PF controller in the SCL configuration achieved the 

highest average COP as illustrated in Figure 2-15.  

 

Figure 2-15: Average COP according to the control method [45] 
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Chapter 3 Dynamic Modeling of Single-stage Liquid Chiller 

 

As discussed in chapter 1, the dynamic model of a liquid chiller includes several inputs and 

outputs  as well as three dependent circuits. In this chapter, the developed dynamic model of 

a vapor compression liquid chiller by Yao et al. [28,46] will be presented along with the open-

loop responses. The published linearized model’s data -represented in state-space -will be 

used to design the controllers as shown in the subsequent chapters. However, selected 

number of outputs were chosen from the model, and the inputs were categorized based on 

their type. There are two types of controlled inputs, the first type can be labeled as “direct” 

controlled inputs whereas the second type can be labeled as “indirect” controlled inputs. In 

the direct controlled inputs, the compressor’s speed, IGV and/or the expansion valve opening 

angle are adjusted to achieve the reference output. On the other hand, the indirect controlled 

inputs are the outputs of the other surrounding equipment to the chiller’s secondary circuits 

of the condenser and the evaporator. These include the condenser inlet temperature and the 

inlet flow rates of the evaporator and condenser (applicable to variable primary and variable 

compressor configurations). The flow rates of the evaporator and condenser secondary circuit 

liquid are varied using the primary and condenser pumps, whereas the entering condenser’s 

coolant liquid temperature is varied using the cooling tower. Disturbance input includes the 

return temperature of the evaporator’s chilled liquid. 

3.1 Model Formulation 

3.1.1 Working Principles of Vapor Compression Cycle in Liquid Chillers 

A typical single-stage liquid chiller – including the main components (i.e. evaporator, 

condenser, compressor and expansion valve) – and the Pressure-Enthalpy plot are depicted 

in Figures 3-1 and 3-2. As stated in chapter 1, the main circuit of any VCS is the refrigerant 

circuit, and there are secondary circuits liquid circuits in the condenser and evaporator. The 

medium or fluid in the secondary circuits is usually water, but it can also be oil or a mixture 

of water and other substance(s). 
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In the refrigerant circuit, the heat from the load (i.e. HVAC equipment such as a fan coil unit 

of an air handling unit) is exchanged in the evaporator. In other words, the liquid heat load 

enters the evaporator’s secondary circuit, and the heat is absorbed by the low pressure and 

temperature two-phase (liquid vapor) refrigerant, and the secondary liquid fluid passing 

through the evaporator will leave the chiller back to the load at preset lower temperature. 

The refrigerant leaves the evaporator and enters the compressor in the gaseous or 

superheated vapor represented as ‘state 1’ in Figure 3-1. The refrigerant leaves the 

compressor in ‘state 2’ also as vapor, but at a higher pressure as shown in Figure 3-2 and a 

higher temperature.  

The heat in the superheated vapor represented in ‘state 2’ entering the condenser is rejected 

through the secondary fluid passing through the condenser. The refrigerant leaves the 

condenser as high-pressure subcooled liquid and represented as ‘state 3’ in Figures 3-1 and 

3-2. Furthermore, the temperature of the secondary fluid leaving the condenser is decreased 

using the cooling tower. Hence, unlike the evaporator, the condenser exhibits three phase 

changes in the following order: superheated vapor, two-phase and subcooled liquid. Finally, 

the expansion valve decreases the pressure of the refrigerant before entering the evaporator 

as represented in ‘state 4’ in Figures 3-1 and 3-2.  

 

Figure 3-1: Block-diagram of a single-

stage vapor compression liquid chiller 

[28] 

 

 
Figure 3-2: Pressure-enthalpy plot of a 

single-stage vapor compression system 

[28] 
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3.1.2 Modeling Approach and Assumptions 

The heat exchangers are modeled using the lumped parameter approach, compressor as a 

static component and the expansion valve model is neglected (the dynamics is considered to 

vary linearly without any external input/control on the expansion valve opening angle). 

Furthermore, the fundamental equations of the heat exchangers and compressors are 

developed by Yao et al. [28,46] are based on the following assumptions and considerations: 

1. The transition from ‘state 1’ to ‘state 2’ or the compression process is isentropic. That 

is, entropy at ‘state 1’ is equal to ‘state 2’. 

2. The transition from ‘state ‘3’ to state ‘4’ or the expansion process is isenthalpic. That 

is, enthalpy at ‘state 3’ is equal to ‘state 4’. 

3. Friction in the refrigerant circuit is neglected. 

4. The compressor model is static, and its working performance remained the same 

during the open-loop response simulation. 

5. Temperature of the secondary fluid passing through the condenser and evaporator 

circuits change linearly from the input and the output. 

6. Condenser and evaporator shell wall temperatures variables are described by lumped 

parameters. 

7. The temperature of the refrigerant at the outlets of the condenser (sub-cooled liquid 

state) and evaporator (superheated vapor) are considered to be constant and equal to 

the initial conditions during the open-loop simulations. 

8. A heat conduction oil is used as the secondary fluid in the heat exchangers. Within a 

temperature bound of -40 °C to +60 °C, the density and kinematics viscosity of the 

heat conduction oil is a constant value of 1084 kg/m³ and 6.5 x 10-6 m2/s, respectively. 

9. The cooling capacity of the chiller can be adjusted using the compressor rotational 

speed through a variable frequency drive (or other means). 

10. The chiller uses R134a as the working refrigerant. 

3.1.3 Fundamental Equations 

According to the principle of energy and mass conservation, the equations governing the 

refrigerant, secondary liquid and the heat exchanger’s shell are developed through first-order 

non-linear differential equations. Note that that for all equations, ‘t’ depicts temperature in 

degree Celsius and ‘τ’ is the time in seconds. 
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Condenser Equations 

The energy equation of the refrigerant passing through the condenser is given by [28,46] as  

ccrMcr

dtc

dτ
=Grm(hr,2-hr,3)+acoAco(tcg-tc) (3-1) 

where ccr and Mcr are the specific heat and mass of the refrigerant in the condenser, tc and tcg 

are the condensing and condenser shell wall temperatures, Grm is the refrigerant mass flow 

rate, hr,2 and hr,3 are the enthalpies of the refrigerant at states 2 and 3, aco and Aco are the 

coefficient of convection heat transfer and the area between the condenser and refrigerant. 

The mass flow rate of the coolant liquid in the condenser is given by [28,46] as 

Gcw,E=Gcw,L=Gcw (3-2) 

where the subscript of the mass flow rate, ‘G’, refers to the entering and leaving coolant of 

condenser (secondary fluid)  

The energy equation for the coolant liquid passing through the condenser is given by [28,46] 

as  

1

2
ccwMcw

d(tcw,L+tcw,E)

dτ
=ccwGcw,E(tcw,E-tcw,L)+acwAcw (tcg-

tcw,E+tcw,L

2
) (3-3) 

where ccw and Mcw are the specific heat and mass of the condenser’s coolant, tcw,L and tcw,E are 

the coolant liquid temperature in the outlet and inlet, acw and Acw are the coefficient of 

convection heat transfer and the area of the condenser’s secondary fluid. 

The energy equation for shell of the condenser is given by [28,46] as  

ccgMcg

dtcg

dτ
=acoAco(tc-tcg)+acwAcw (

tcw,E+tcw,L

2
-tcg) (3-4) 

where ccg and Mcg are the specific heat and mass of the condenser’s shell wall. 

Evaporator Equations 

The same equations applied previously on the condenser apply on the evaporator. The energy 

equation for the refrigerant is given by [28,46] as 

cerMer

dtk

dτ
=Grm(hr,3-hr,1)+aeoAeo(teg-tk) (3-5) 

where cer and Mer are the are the specific heat and mass of the refrigerant in evaporator, tk 

and teg are the evaporating and evaporator shell wall temperatures, hr,1 and hr,3 are the 
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enthalpies of the refrigerant at states 1 and 3, aeo and Aeo are the coefficient of convection 

heat transfer and the area between the evaporator and refrigerant.  

The mass equation of the chilled liquid is given by [28,46] as 

Gew,L=Gew,E=Gew (3-6) 

where the subscript of the mass flow rate, ‘G’, refers to the entering and leaving chilled liquid. 

The energy equation for chilled liquid passing through the evaporator is given by [28,46] as 

1

2
cewMew

d(tew,L+tew,E)

dτ
=cewGew,E(tew,E-tew,L)+aewAew (teg-

tew,E+tew,L

2
) (3-7) 

where cew and Mew are the are the specific heat and mass of the  chilled liquid in evaporator, 

tew,L and tew,E are the leaving and entering temperatures of the chilled liquid liquid, aew and 

Aew are the coefficient of convection heat transfer and the area of the chilled liquid liquid in 

the evaporator.  

The energy equation for the evaporator’s shell is given by [28,46] as 

cegMeg

dteg

dτ
=aeoAeo(tk-teg)+aewAew (

tew,E+tew,L

2
-teg) (3-8) 

where ceg and Meg are the specific heat and mass of the evaporator’s shell wall. 

Power Consumption and Cooling Capacity Equations 

As mentioned earlier, the process from state ‘3’ to ‘state 4’ is considered as isenthalpic. 

Therefore, the energy equation in the expansion process is given by [28,46] as 

hr,3=hr,4 (3-9) 

where the subscript of the enthalpy, ‘h’, refers to the refrigerant’s enthalpy at state ‘3’ and at 

state ‘4’. 

The electric power consumed by the compressor is given by equation 3-10 [28,46], and is a 

function of several variables such as the mass flow rate, compressor efficiency, evaporating 

temperature, evaporating and condensing pressures and adiabatic compression process 

index. 

Ncom=
Grm

η
com

RrT1

ks-1
[(

p
c

p
k

)

ks-1

ks

-1] =
Grm

η
com

Rr(tk+∆te,shr+273.15)

ks-1
[(

fp(tc)

fp(tk)
)

ks-1

ks

-1] =GrmfNcom
(tk,tc) (3-10) 
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The chiller’s cooling capacity is given by equation 3-11 [28,46], and it is represented as the 

product of the refrigerant flow rate with the energy difference between states ‘1’ and ‘4’ (i.e. 

the enthalpy different across the evaporator’s outlet and inlet), or as the product of the 

refrigerant flow rate with the difference between a enthalpy function of the evaporating 

temperature and an enthalpy function of the condensing temperature. 

Q
c
=Grm(hr,1-hr,4)=Grm(fh(tk)-fh(tc))=GrmfQc

(tk,tc) (3-11) 

The coefficient of performance or COP is a performance evaluation metric of the chiller. The 

COP of the chiller is represented as the quotient of the chiller’s cooling capacity with the 

compressor’s input power and is given by equation 3-12 [28,46]. Moreover, the higher the 

COP, the more efficient the chiller. In other words, as the COP increases, it indicates that 

the chiller can provide more cooling at a lower electric power consumption. 

COP=
Q

c

Ncom

=
fQc

(tk,tc)

fNcom
(tk,tc)

=fCOP(tk,tc) (3-12) 

 

3.1.4 Key Parameters Determination 

Equations 3-1 through 3-12 lay the foundation of the chiller model. Nevertheless, there are 

unknown coefficients or empirical constants that need to be computed through experimental 

data [28,46].  

The equations to compute these coefficients as described by [28,46] are presented in this 

subsection. They include used to compute the refrigerant’s enthalpy at different key states, 

heat transfer coefficients (U values) and the adiabatic compression index.  

Enthalpy Calculation of the Refrigerant 

The refrigerant physical state changes across different states as mentioned earlier. For 

instance, the refrigerant is in the form of superheated vapor at the evaporator’s outlet (state 

‘1’) and compressor’s outlet (state ‘2’). On the other hand, the refrigerant is ideally subcooled 

liquid at the condenser’s outlet (state ‘3’) and evaporator’s outlet (state ‘4’). Furthermore, the 

enthalpy of the refrigerant at these key states (‘1’ through ‘4’) are presented through semi-

empirical equations.  
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At the gaseous state, the refrigerant’s enthalpy in terms of pressure and temperature are 

given by Equation 3-13 [28,46]; and the refrigerant’s pressure at the gaseous state is given 

by Equation 3-14 [28,46]. 

hvapor=h0+ (pr,gvr,g-RrTr,g) +∑
cnTr,g

n

n

4

n=1

+c5 ln Tr,g -

c6

Tr,g

+ ∑
An

(n-1)(vr,g-b)
n-1

+e-K1Tr,g/Tcc(1+K1Tr,g/Tcc)×∑
Cn

(n-1)(vr,g-b)
n-1

5

n=2

5

n=2

 

 

 

(3-13) 

pr,g=
RrTr,g

vr,g-b
+∑

An+BnTr,g+Cne-K1Tr,g/Tcc

(vr,g-b)
n

5

n=2

 (3-14) 

The saturated vapor (or gas) pressure of refrigerant is computed as [28,46]   

ln pr,bg=A+
B

Tr,bg

+CTr,bg+DTr,bg
2

+
E(F-Tr,bg)

Tr,bg

ln(F-Tr,bg)+G ln Tr,bg (3-15) 

The temperature of the gaseous refrigerant, Tr,g, and saturated gas refrigerant, Tr,bg, at states 

‘1’ and ‘2’, correspond to the evaporating, Tk, and condensing, Tc temperatures, respectively. 

At the liquid state, the enthalpy of the sub-cooled liquid refrigerant (states ‘3’ and ‘4’) is given 

by Equation 3-16. 

hr,l∆t=hr,bl-
pr,bl − patm

qr

 (3-16) 

where the heat of vaporization, qr, is given by the Claussius-Clapegron equation. 

qr=Tr,q(vr,bl-vr,bg)pr,q [-
B

Tr,q
2

+C+2DTr,q-
EF

Tr,q
2

× ln(F-Tr,q)-

EF

Tr,q

x
1

F-Tr,q

+E×
1

F-Tr,q

+
G

Tr,q

] 

(3-17) 

The enthalpy of the saturated liquid refrigerant is given by equation 3-18. Furthermore, the 

density of the saturated liquid refrigerant is given by equation 3-19. 

hr,bl=hr,bg-qr 

 
(3-18) 

ρ
r,bl

=ρ
cc

+∑ Dn(1-Tr,bl/Tcc)
n
3

6

n=1

 (3-19) 
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To summarize, the gaseous enthalpies at states ‘1’ and ‘2’ are computed using equations 3-13 

and 3-14. Furthermore, the gaseous pressures at states ‘1’ and ‘2’ corresponding to saturated 

evaporating and saturated condensing pressures, respectively, are computed from equation 

3-15. Considering an isenthalpic process between states ‘3’ and ‘4’ as given in equation 3-9, 

the sub-cooled liquid refrigerant enthalpies at states ‘3’ and ‘4’ are the equal; and the equation 

to compute the enthalpy at this state is given by equations 3-14, 3-16, 3-17, 3-18 and 3-19. 

Moreover, the enthalpy at these states only depends on the condensing temperature, Tc. 

The unknown constants/coefficients from equations 3-13 through 3-19 are A, B, C, D, E, F, 

G, K1, b, c1~c6, A2~A5, B2~B5, C2~C5 and D1~D6. These coefficients are determined through 

refrigerant property software.  

Heat Transfer Coefficients 

The four coefficients of convection heat transfer considered in this chiller model are: 

1. Condensation heat transfer coefficient between the condenser and refrigerant (aco). 

2. Boiling heat transfer coefficient between the evaporator and refrigerant (aeo). 

3. Convection heat transfer coefficient between the coolant liquid and condenser (acw). 

4. Convection heat transfer coefficient between the chilled liquid and evaporator (aew). 

The above coefficients are determined through the Equations 3-20 through 3-23 [28,46]; and 

the constants C1, C2, C3, n1, n2, n3 are determined through experimental data. 

aco=C1(tc-tcg)
n1 

 
(3-20) 

aeo=C2(teg-tk)
n2 

 
(3-21) 

Nud=C3Red
n3=

acwdci

λw

=C3 (
ucwdci

vw

)

n3

 

 

(3-22) 

Nud=C3Red
n3=

aewdei

λw

=C3 (
uewdei

vw

)

n3

 (3-23) 

Furthermore, Equations 3-20 through 3-23 are formulated to compute these coefficients and 

constants using Equations 3-24 through 3-26 [28,46]. 

Grm(h2-h3)=acoAco(tc-tcg)=C1Aco(tc-tcg)
n1+1

 

 
(3-24) 

Grm(h4-h1)=aeoAeo(teg-tk)=C2Aeo(teg-tk)
n2+1

 

 
(3-25) 
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ccwGcw(tcw,L-tcw,E)=acwAcw [tcg-
(tcw,L+tcw,E)

2
] =Acw

C3λw

dci

[tcg-
(tcw,L+tcw,E)

2
] Red

n3 (3-26) 

where the measured data include the refrigerant and secondary fluid mass flow rates (Grm, 

Gcw, Gew) secondary fluid temperatures at the inlet and outlet of the condenser and evaporator 

(tcw,E, tcw,L, tew,E, tew,L) and the shell wall temperatures of the condenser and evaporator (tcg, 

teg).  

Equations 3-24 through 3-26 are further re-arranged and presented by Equations 3-27 

through 3-29 [28,46]. 

ln[Grm(h2-h3)] = ln(C1Aco)+(n1+1) ln(tc-tcg) 

 
(3-27) 

ln[Grm(h4-h1)]= ln(C2Aeo)+(n2+1) ln(teg-tk) 

 
(3-28) 

ln[ccwGcw(tcw,L-tcw,E)]= ln [Acw

C3λw

dci

[tcg-
(tcw,L+tcw,E)

2
]] +n3 ln Red (3-29) 

Adiabatic Compression process index (ks) 

The adiabatic compression process index of the gaseous refrigerant is given by  

ks=
Z

Zp-
RrZT

2

cr,p

=
Z

(Z-p(
∂Z
∂p

)
T

) -

Rr (Z+T (
∂Z
∂T

)
p
)

2

cr,p

 

(3-30) 

where Z is the compressibility factor, the subscript ‘p’ and ‘T” correspond to the isobaric and 

isothermal processes respectively.  

3.2 State-Space Representation 

The differential equations presented earlier are non-linear. To represent these equations in 

a linear state-space representation as shown in Equation 3-31 in its compact form as well as 

the block diagram description in Figure 3-3, these equations must be linearized first. Prior 

to linearization, the selection of the state variables, inputs and outputs must be determined. 

The variables are classified into two groups, fundamental and lumped. The fundamental 

variables will classify as state variables, inputs and outputs. The lumped variables such as 

the heat transfer coefficients, enthalpy and pressures will be embedded (implicit) within 

these fundamental variables [28,46].  
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{
ẋ(t)=Ax(t)+Bu(t)

y(t)=Cx(t)+Du(t)
 (3-31) 

 

Figure 3-3: State-space Representation Block Diagram 

Considering a disturbance input, w, to the system as shown in Figure 3-4, the state-space 

Equation in 3.31 will, thus, be given in Equation 3-32.  

 

Figure 3-4: State-space Representation with Disturbance Input Block Diagram 

{
ẋ(t)=Ax(t)+Bu(t)+Fw(t)

y(t)=Cx(t)+Du(t)
 (3-32) 

A total of six state variables, in the form of temperatures of the system, are considered as 

given in equation 3-32 in vector notion. The selected state variables will represent the 

dynamic operations of the chiller. The chosen state variables are the condensing temperature, 

leaving condenser coolant liquid temperature, shell wall temperature of the condenser, 

evaporating temperature, leaving evaporator chilled liquid temperature and shell wall 

temperature of the evaporator. The system state variables are given in 3-33 as 
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state variables= ∆xchiller=[∆tc,∆tcw,L,∆tcg,∆tk,∆tew,L,∆teg]
T
 (3-33) 

The same inputs as considered by Yao et al. [28][46] are considered. However, the inputs in 

this thesis will be divided into controlled and disturbance inputs. The controlled inputs are 

the condenser entering coolant liquid temperatures and flow rate, evaporator entering chilled 

liquid flow rate and the refrigerant flow rate (which is manipulated by varying the 

compressor’s rotational speed). Note that only the latter input is direct or within the chiller 

model, and the other controlled inputs are indirect or external. That is, controlled through 

other equipment of the DCP such as cooling towers and pumps. The considered measured 

disturbance input to the system is the temperature of the evaporator’s entering chilled liquid, 

because we can measure this temperature through sensors, but we don’t have a control on its 

value. Moreover, as this value increases, the load to the system increases since more heat is 

rejected from the customer load. The controlled input vector and the measured disturbance 

input vector are given in 3-34 and 3-35, respectively.  

controlled inputs= ∆uchiller=[∆tcw,E,∆Gcw,E,∆Gew,E,∆Grm]
T
 

 
(3-34) 

disturbance input= ∆wchiller=[∆tew,E]
T
 (3-35) 

The outputs are the leaving condenser coolant liquid temperature and flow rates, leaving 

evaporator chilled liquid temperature and flow rates, power consumption by the compressor, 

cooling capacity and the COP. Yao et al. [28,46] has also considered the condenser coolant 

and evaporator chilled liquids flow rates in the outputs. However, these will be omitted as 

they are already considered as outputs. The outputs are represented in vector notion in 3-36. 

controlled variables (outputs)= ∆y
chiller

=[∆tcw,L,∆tew,L,∆Wcom,∆Q
C
,∆COP]

T
  

 
(3-36) 

The ∆ symbol shown inequations 3-33 through 3-36 depict the ‘difference’ between the initial 

conditions and final values after the system exhibits a change input. 

The linearization process begins by considering the fundamental variable, θ, to be the sum of 

the initial value, θo, and small increment ∆θ as shown in 3-37. 

θ=θo+∆θ (3-37) 

Using first-order Taylor series expansion as given by Equation 3-38, Equations 3-1 through 

3-12 will be linearized, and the results are depicted in Equations 3-39 to 3-49. 
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σ=σo+ (
∂σ

∂θ'
)

o

∆θ' (3-38) 

 

Tcr

d∆tc

dτ
=Xcr,1∆tc+Xcr,2∆tcg+Xcr,3∆Grm 

where,  

Tcr=(ccrMcr)o 

Xcr,1= [(
∂hr,2

∂tc

)
o

- (
∂hr,3

∂tc

)
o

] (Grm)o+Aco(tcg-tc)o
(
∂aco

∂tc

)
o

-(acoAco)o 

Xcr,2=Aco(tcg-tc)o
(

∂aco

∂tcg

)
o

+(acoAco)o 

Xcr,3=(hr,2-hr,3)o
 

 

(3-39) 

Tcw

d∆tcw,L

dτ
=Xcw,1∆tcw,L+Xcw,2∆tcg+Xcw,3∆tcw,E+Xcw,4∆Gcw,E+ξ

∆tcw,L
 

where, 

Tcw=
cwMcw

2
 

Xcw,1=-cw(Gcw,E)
o
-
Acw

2
(acw)o 

Xcw,2=Acw(acw)o 

Xcw,3=cw(Gcw,E)
o
-
Acw

2
(acw)o 

Xcw,4=cw(tcw,E-tcw,L)
o
+Acw (tcg-

tcw,E+tcw,L

2
)

o
(

∂acw

∂Gcw,E

)
o

 

ξ
∆tcw,L

=-
1

2
cwMcw

∂∆tcw,E

∂τ
 

 

(3-40) 

Tcg

d∆tcg

dτ
=Xcg,1∆tc+Xcg,2∆tcw,L+Xcg,3∆tcg+Xcg,4∆tcw,E+Xcg,5∆Gcw,E 

where, 

Tcg=ccgMcg 

Xcg,1=Aco(tc-tcg)o
(
∂aco

∂tc

)
o

+(acoAco)o 

Xcg,2=Xcg,4=
Acw

2
(acw)o 

Xcg,3=Aco(tc-tcg)o
(

∂aco

∂tcg

)
o

-(acwAcw+a
co

Aco)o
 

Xcg,5=-Acw (tcg-
tcw,E+tcw,L

2
)

o
(

∂acw

∂Gcw,E

)
o

 

 

(3-41) 

Ter

d∆tk

dτ
=Xer,1∆tk+Xer,2∆teg+Xer,3∆Grm 

(3-42) 
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where, 

Ter=(cerMer)o 

Xer,1=-(
∂hr,1

∂tk

)
o

(Grm)o+Aeo(teg-tk)o
(
∂aeo

∂tk

)
o

-(aeoAeo)o 

Xer,2=Aeo(teg-tk)o
(

∂aeo

∂teg

)
o

-(aeoAeo)o 

Xer,3=(hr,4-hr,1)o
 

 

Tew

d∆tew,L

dτ
=Xew,1∆tew,L+Xew,2∆teg+Xew,3∆tew,E+Xew,4∆Gew,E+ξ

∆tew,L
 

where, 

Tew=
cwMew

2
 

Xew,1=-cw(Gew,E)
o
-
Aew

2
(aew)o 

Xew,2=Aew(aew)o 

Xew,3=cwρ
w(Gew,E)

o
-
Aew

2
(aew)o 

Xew,4=cw(tew,E-tew,L)
o
+Aew (teg-

tew,E+tew,L

2
)

o
(

∂aew

∂Gew,E

)
o

 

ξ
∆tew,L

=-
1

2
cwMew

∂∆tew,E

∂τ
 

 

(3-43) 

Teg

d∆teg

dτ
=Xeg,1∆tk+Xeg,2∆tew,L+Xeg,3∆teg+Xeg,4∆tew,E+Xeg,5∆Gew,E 

where, 

Teg=cegMeg 

Xeg,1=Aeo(tk-teg)o
(
∂aeo

∂tk

)
o

+(aeoAeo)o 

Xeg,2=Xeg,4=
Aew

2
(aew)o 

Xeg,3=Aeo(tk-teg)o
(

∂aeo

∂teg

)
o

-(aewAew+a
eo

Aeo)o
 

Xeg,5=-Aew (teg-
tew,E+tew,L

2
)

o
(

∂aew

∂Gew,E

)
o

 

 

(3-44) 

∆Gcw,L=∆Gcw,E=∆Gcw 

 

(3-45) 

∆Gew,L=∆Gew,E=∆Gew 

 

(3-46) 

∆Ncom=XEW,1∆tc+XEW,2∆tk+XEW,3∆Grm 

where, 

(3-47) 
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XEW,1=(Grm)o (
∂fNcom

(tk,tc)

∂tc

)
o

 

XEW,2=(Grm)o (
∂fNcom

(tk,tc)

∂tk

)
o

 

XEW,3=(fNcom
(tk,tc))

o
 

 

∆Q
c
=XQ,1∆tc+XQ,2∆tk+XQ,3∆Grm 

where, 

XQ,1=(Grm)o (
∂fQc

(tk,tc)

∂tc

)
o

 

XQ,2=(Grm)o (
∂fQc

(tk,tc)

∂tk

)
o

 

XQ,3= (fQc
(tk,tc))

o

 

 

(3-48) 

∆COP=XCOP,1∆tc+XCOP,2∆tk 

where, 

XCOP,1= [
∂fCOP(tk,tc)

∂tc

]
o

 

XCOP,2= [
∂fCOP(tk,tc)

∂tk

]
o

 

(3-49) 

Equations 3-39 through 3-49 are all linear, and hence, they can be arranged in matrix format 

in the following state-space arrangement.  

∆ẋchiller=Achiller∆xchiller+Bchiller∆uchiller+ξ 

 
(3-50) 

∆y
chiller

=Cchiller∆xchiller+Dchilleruchiller (3-51) 

The variable, ξ, given by equation 3-52 can be removed from equation 3-50 through 

mathematical manipulation as illustrated in equation 3-53.  

ξ= [0,ξ
∆tcw,L

,0,0,ξ
∆tew,L

,0]
T

 (3-52) 

∆Xchiller=∆xchiller+Achiller
-1

ξ
chiller

 (3-53) 

Finally, the state-space representation of the liquid chiller is as given by equations 3-54 and 

3.55 in compact form. 
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∆X ̇dotchiller=Achiller∆Xchiller+Bchiller∆uchiller 

 
(3-54) 

∆y
chiller

=Cchiller∆Xchiller+Dchilleruchiller-CchillerAchiller
-1

ξ
chiller

 (3-55) 

In matrix form, the state matrices A, B, C , D and F of the liquid chiller are as depicted below. 

Achiller=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
Xcr,1

Tcr

0
Xcr,2

Tcr

0 0 0

0
Xcw,1

Tcw

Xcw,2

Tcw

0 0 0

Xcg,1

Tcg

Xcg,2

Tcg

Xcg,3

Tcg

0 0 0

Xer,4

Ter

0 0
Xer,1

Ter

0
Xer,2

Ter

0 0 0 0
Xew,1

Tew

Xew,2

Tew

0 0 0
Xeg,1

Teg

Xeg,2

Teg

Xeg,3

Teg ]
 
 
 
 
 
 
 
 
 
 
 
 
 

; 

 

Bchiller=

[
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0

Xcr,3

Tcr

Xcw,3

Tcw

Xcw,4

Tcw

0 0

Xcg,4

Tcg

Xcg,5

Tcg

0 0

0 0 0
Xer,3

Ter

0 0
Xew,4

Tew

0

0 0
Xeg,5

Teg

0
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fchiller=

[
 
 
 
 
 
 
 

0

0
0

0
Xew,3

Tew

Xeg,4

Teg ]
 
 
 
 
 
 
 

; 

Cchiller=

[
 
 
 
 
 

0 1 0 0 0 0
0 0 0 0 1 0

XEW,1 0 0 XEW,2 0 0

XQ,1 0 0 XQ,2 0 0

XCOP,1 0 0 XCOP,2 0 0]
 
 
 
 
 

; Dchiller=

[
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 XEW,3

0 0 0 XQ,3

0 0 0 0 ]
 
 
 
 

; 
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3.3 Simulation Results of the Open-Loop Model 

The experimental cases presented by Yao et al. [28][46] as tabulated in Tables 3-1, 3-2, 3-3 

and 3-4, the total number of simulation cases are 10, and they are divided into 4 main cases. 

Furthermore, there are three subcases under cases 2, 3 and 4. The open-loop response is 

simulated given a change on a single input and its effect on each output. Case 1 and two other 

cases (not shown in this report) were simulated and validated experimentally by Yao et al. 

[28][46] as mentioned earlier in Chapter 2. Furthermore, a unique A, B, C, D, and F 

coefficient matrices are derived at different initial conditions. 

Table 3-1: Initial Conditions of Case 1 [28][46] 

Initial Conditions Unit Case 1 

Evaporating temperature (tk)0 °C 14.5 

Entering chilled liquid temperature of evaporator (tew,E)0 °C 24.8 

Leaving chilled liquid temperature of evaporator (tew,L)0 °C 19.5 

Shell wall temperature of evaporator (teg)o °C 22.5 

Chilled liquid flow rate of evaporator (Gew)o kgs-1 1.45 

Condensing temperature (tc)0 °C 36.3 

Entering coolant liquid temperature of condenser (tcw,E)0 °C 29.5 

Leaving coolant liquid temperature of condenser (tcw,L)0 °C 37.2 

Coolant liquid flow rate of condenser (Gcw)o kgs-1 1.16 

Shell wall temperature of condenser (tcg)o °C 33.9 

Compressor inlet temperature (tcom,E)0 °C 24.1 

Compressor exhaust temperature (tcom,L)0 °C 58.1 

Refrigerant flow rate (Grm)0 kgs-1 0.116 

Table 3-2: Initial Conditions of Case 2 and its Subcases [28][46] 
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Initial Conditions Unit Case 2a Case 2b Case 2c 

Inlet chilled liquid temperature of evaporator (tew,E)0 °C 24.6 29.3 36.2 

Compressor inlet temperature (tcom,E)0 °C 24.1 28.2 34.5 

Compressor exhaust temperature (tcom,L)0 °C 56.1 61.5 67.8 

Evaporating temperature (tk)0 °C 16.3 

Chilled liquid flow rate of evaporator (Gew)o kgs-1 1.45 

Condensing temperature (tc)0 °C 36.7 

Inlet chilled liquid temperature of condenser (tcw,E)0 °C 29.3 

Coolant flow rate of condenser (Gcw)o kgs-1 1.16 

Refrigerant flow rate (Grm)0 kgs-1 0.13 

 

Table 3-3: Initial Conditions of Case 3 and its Subcases [28][46] 

Initial Conditions Unit Case 3a Case 3b Case 3c 

Inlet chilled liquid temperature of condenser (tcw,E)0 °C 29.6 40.7 49.7 

Compressor inlet temperature (tcom,E)0 °C 51.5 57.5 59.7 

Compressor exhaust temperature (tcom,L)0 °C 37.1 49.5 55.2 

Condensing temperature (tc)0 °C 37.1 49.5 55.2 

Evaporating temperature (tk)0 °C 18.8 

Chilled liquid flow rate of evaporator (Gew)o kgs-1 1.45 

Inlet chilled liquid temperature of evaporator 

(tew,E)0 
°C 24.1 

Coolant flow rate of condenser (Gcw)o kgs-1 1.16 

Refrigerant flow rate (Grm)0 kgs-1 0.13 

 

Table 3-4: Initial Conditions of Case 4 and its Subcases [28][46] 
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Initial Conditions Unit Case 4a Case 4b Case 4c 

Refrigerant flow rate (Grm)0 kgs-1 0.176 0.199 0.238 

Evaporating temperature (tk)0 °C 15.1 

Inlet chilled liquid temperature of evaporator 

(tew,E)0 

°C 
24.7 

Chilled liquid flow rate of evaporator (Gew)o kgs-1 2.14 

Condensing temperature (tc)0 °C 41.2 

Inlet chilled liquid temperature of condenser (tcw,E)0 °C 33.4 

Coolant flow rate of condenser (Gcw)o kgs-1 2.14 

Compressor inlet temperature (tcom,E)0 °C 23.7 

Compressor exhaust temperature (tcom,L)0 °C 71.3 

 

3.3.1 Open-loop Response of Case 1 

By manipulating one input variable at a time by applying a step change with values as 

tabulated in Table 3.5, the open-loop response for each output variable is closely examined 

and the transient simulations for case 1 are illustrated in Figures 3-5 to 3-11. Note that the 

results of cases 2, 3 and 4 are not shown due to the high number of plots. 

Table 3-5: Applied Changes on Input Value of the Open-loop System 

Input Name Unit Applied Change 

Inlet Coolant Temperature of Condenser (∆tcw,E) °C Step, +1.0 

Coolant Flow Rate of Condenser (∆Gcw) kgs-1 Step, +0.1 

Inlet Chilled liquid Temperature of Evaporator (∆tew,E) °C Step, +1.0 

Chilled liquid Flow Rate of Evaporator (∆Gew) kgs-1 Step, +0.1 

Refrigerant Flow Rate (∆Grm)  kgs-1 Step, +0.01 
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Figure 3-5: Output Responses of Exit Coolant Temperature of Condenser at Different 

Inputs 

 

Figure 3-6: Output Responses of Exit Chilled liquid Temperature of Evaporator at 

Different Inputs 
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Figure 3-7: Output Responses of Compressor Electric Power, Chiller Cooling Capacity and 

COP due to Step Increase of Inlet Coolant Temperature of Condenser 

 

Figure 3-8: Output Responses of Compressor Electric Power, Chiller Cooling Capacity and 

COP due to Step Increase of Coolant Flow Rate of Condenser 
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Figure 3-9: Output Responses of Compressor Electric Power, Chiller Cooling Capacity 

and COP due to Step Increase of Inlet Chilled liquid Temperature of Evaporator 

 

Figure 3-10: Output Responses of Compressor Electric Power, Chiller Cooling Capacity 

and COP due to Step Increase of Chilled liquid Flow Rate of Evaporator 
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Figure 3-11: Output Responses of Compressor Electric Power, Chiller Cooling Capacity 

and COP due to Step Increase of the Refrigerant Flow Rate 

 

As seen from Figure 3-5, the outlet coolant temperature of the condenser can be increase by 

increasing the inlet coolant temperature and the refrigerant mass flow rate, whereas 

increasing the condenser coolant mass flow rate will decrease the outlet coolant temperature. 

Furthermore, it also shown that evaporator circuit’s mass flow rate and inlet temperature of 

the chilled liquid liquids have no effect on the coolant temperature of the condenser.  

As illustrated in Figure 3-6, the evaporator’s chilled liquid temperature at the outlet exhibits 

an acute increase in temperature when the inlet chilled liquid temperature and mass flow 

rate of the evaporator increases. However, the temperature drops considerably as the 

refrigerant flow rate increases. Similar to the effect of the evaporator variables on the 

condenser chilled liquid temperatures, the same can also be seen as shown in Figure 3-6. 

Nevertheless, the evaporator – unlike the condenser – shows as small change in temperature 

when condenser parameters are increased. 

The performance parameters of the chiller, namely, the compressor’s electric work/power, 

chiller’s cooling capacity and the COP plots against every input to the chiller are shown in 

Figures 3-7 to 3-11. As shown in Figure 3-7, the chiller experiences a marginal increase in 

the compressor power and marginal decay in the cooling capacity as the condenser liquid 
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increases. The increase in the inlet temperature of the condenser causes the temperature 

overall temperature in the condenser to increase. Therefore, the pressure of the compressor 

at its outlet increases, and subsequently, the compressor’s power increases, and the cooling 

capacity reduces [28,46]. On the contrary, it can be entailed from Figure 3-8 that as the flow 

rate of the condenser increases, the ability of the chiller to reject more heat increases and the 

compressor’s outlet pressure decreases. Thus, the cooling capacity increases whilst the 

compressor’s power decreases.  

On the evaporator’s side, an increase in the chilled liquid temperature or mass flow rate as 

shown in Figures 3-9 and 3-10, respectively causes a slight increase in the order of 10 W to 

100 W of cooling. As the increase of cooling was caused by external equipment, the 

compressor’s suction temperature and pressure increased [28,46]. Hence, the compressor’s 

power decreases. Figure 3-11 shows that as the refrigerant mass flow rate increases, the 

chiller’s cooling capacity and the compressor power both increase.  

To reiterate, the compressor’s electric power marginally increases or decreases on all applied 

inputs except when the refrigerant flow rate is varied. This is in line with the fact stated 

earlier that the only direct input to this chiller model is the refrigerant flow rate, which is 

proportional to the compressor rotational speed. Since all other indirect or disturbance inputs 

are associated with other equipment such as the cooling tower, pumps and client load. 

Moreover, it is seen that as the inlet chilled liquid temperature of the evaporator, the cooling 

capacity decreases. On the contrary, increasing all other inputs to the chiller increases the 

cooling capacity of the chiller.  

Stability Analysis 

The outputs of all plots demonstrate the same behavior. That is, once the input is applied to 

the chiller, the output increases/decreases – with minimal overshoot, if any - until a steady-

state value is reached. The system’s stability can also be analyzed by computing the 

eigenvalues of the A-matrix and plotting the result in the pole-zero map as shown in Figure 

3-12. It is seen that all system eigenvalues for matrix A of Case 1 are real and negative. Thus, 

the system is proven to be stable with minimal or no overshoot. Using the open-loop chiller 

model – without the COP output -presented in this chapter, several automatic control 

techniques will be applied to the system including PID, LQI and MPC. 
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Figure 3-12: Pole-Zero Map of Case 1 illustrating that all the eigenvalues of the open-loop 

chiller model are negative and real 
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Chapter 4 Liquid Chiller Control using PID Controllers 

 

This chapter begins by introducing the detailed methodology of the control problem including. 

but not limited to simulation cases and the evaluation criterion. Then, the closed-loop control 

using PID controllers are applied to the MIMO liquid chiller model developed in Chapter 3. 

Finally, the simulation results of the closed-loop system using PID controllers are presented. 

4.1 The Control Problem  

To recap, the liquid chiller model presented in chapter 3 was derived by Yao et al. [28,46] 

from nonlinear equations, and then linearized and presented in state-space formulation. 

Furthermore, the model has 4 control inputs, 5 outputs (7 as published by Yao et al.), 6 state 

variables and 1 disturbance input. However, the COP output will be omitted from the model. 

Thus, the model will have 4 control inputs, 5 outputs, 6 state variables. Since the model is 

nonlinear, there exists N number of models based on the current initial conditions of the 

system. By applying linear control techniques on the linearized liquid chiller model, the use 

of adaptive control techniques - such as gain-scheduling - is mandatory. In this research, 

three control techniques are applied to the linearized model of Case 1 (model parameters of 

Table 3-1) as the same can be easily generalized to the other cases (or initial conditions). The 

linearized state-space model data for these cases were published by Yao et al. [28,46] to 

design the controllers. The control design techniques described herein are Proportional-

Integral-Derivative (PID) control, Linear Quadratic Integral (LQI) control and Model 

Predictive Control (MPC). 

The performance of the controller is evaluated based on its ability to track a defined 

trajectories and to reject input disturbance to the system. Further details on the methodology 

of trajectory tracking and disturbance rejection simulations are presented in Sections 4.1.1 

and 4.1.2, respectively. Note that the input disturbance to the system in this model is 

measured, and the same holds true in the industry as the entering evaporator liquid 

temperature to the evaporator is measured using temperature transmitter. In real life cooling 
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plant, the compressor, cooling tower and pumps all have performance limitation in terms of 

flow rate or temperature. Thus, saturation (lower and upper limits) is applied on the 

controlled inputs. The saturation values are tabulated in Table 4-1. 

Table 4-1: Saturations of the Control Input Signals 

Input Name Unit Saturation Limit 

Inlet Coolant Temperature of Condenser (∆tcw,E) °C  ±1.0 

Coolant Flow Rate of Condenser (∆Gcw) kgs-1 ±0.5 

Chilled liquid Flow Rate of Evaporator (∆Gew) kgs-1 ±0.7 

Refrigerant Flow Rate (∆Grm)  kgs-1  ±0.07 

 

4.1.1 Trajectory Tracking 

The trajectory tracking performance was tested under two simulation conditions. The first 

simulation case is to test the controller performance to track the change in cooling capacity 

of the system. In this case, the leaving chilled liquid temperature from the chiller is to be 

maintained at 0 °C. On the contrary to first simulation test, the cooling capacity to be 

maintained at 0 W while the leaving evaporator liquid temperature is tracked. For both tests, 

the other output reference setpoints (i.e. leaving condenser coolant temperature and 

compressor electric power) are varied to achieve the desired cooling capacity requirement. 

Therefore, the leaving condenser coolant temperature and compressor’s electric power are set 

points variables that are adjusted by the plant’s operator, while the other two outputs are set 

points that are decided by the cooling load. Furthermore, the input disturbance, entering 

evaporator liquid temperature, for both tests are set to 0 °C. The tracking performance test 

values for both tests are illustrated in Table 4-2 and Table 4-3. It can be observed that there 

exist two power values in Table 4-2, which are highly dependent on the controller 

performance and the ability to minimize the refrigerant flow rate, which is directly related 

to the compressor’s electrical power. Further details on this will be discussed in Chapters 7. 
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Table 4-2: Reference Values for Testing the Trajectory Tracking Performance of the 

Controller due a to Step Change in the Cooling Capacity 

∆tcw,L_REF 

(°C)  

∆tew,L_REF 

(°C) 

∆Wcom_REF 

(W) 

∆Qc_REF 

(W) 

∆tew,E_DIST 

(°C) 

±1 0 ±100/±70 ±100 0 

±1.2 0 ±130/±100 ±200 0 

±1.4 0 ±160/±130 ±300 0 

±1.4 0 ±190/±150 ±400 0 

±1.2 0 ±160/±140 ±400 0 

±1.25 0 ±200/±180 ±600 0 

±1.25 0 ±220/±205 ±800 0 

±1.35 0 ±260/±248 ±1000 0 

±1.45 0 ±310/±290 ±1200 0 

±1.5 0 ±350/±330 ±1400 0 

±1.5 0 ±380/±365 ±1600 0 

±1.5 0 ±410/±400 ±1800 0 

±1.5 0 ±445/±435 ±2000 0 

±1.6 0 ±570/±530 ±2500 0 

±1.6 0 ±655/±620 ±3000 0 

±1.55 0 ±670/±620 ±3000 0 
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Table 4-3: Reference Values for Testing the Trajectory Tracking Performance of the 

Controller due a to Step Change in the Exit Chilled liquid Temperature of the Evaporator 

∆tcw,L_REF 

(°C) 

∆tew,L_REF 

(°C) 

∆Wcom_REF 

(W) 

∆Qc_REF 

(W) 

∆tew,E_DIST 

(°C) 

±0.05 ±0.5 ±42/0 0 0 

±0.1 ±1 ±22/±8 0 0 

±0.15 ±1.5 ∓18/∓15 0 0 

±0.2 ±2 ∓18/∓20 0 0 

±0.2 ±2.5 ∓33/∓30 0 0 

 

4.1.2 Disturbance Rejection  

The controller performance was also tested on its ability to reject measured input disturbance 

in the form of entering evaporator liquid temperature. This temperature varies based on the 

load. As the load decreases, the probability of having a lower entering temperature is higher. 

Thus, it is of utter importance to mitigate the “Low Delta-T” phenomena as it can cause 

operational issues to the chiller, and subsequently the cooling plant. Considering the same 

principles adopted earlier, the leaving condenser liquid temperature and the compressor’s 

electric power are varied by the operator, whilst the cooling capacity and the leaving 

evaporator liquid temperature are set to 0 °C. The simulation values are given in Table 4-4. 

Table 4-4: Reference Values for Testing the Disturbance Rejection of the Controller due a to 

Step Change in the Entering Chilled liquid Temperature of the Evaporator 

∆tcw,L_REF 

(°C) 

∆tew,L_REF 

(°C) 

∆Wcom_REF 

(W) 

∆Qc_REF 

(W) 

∆tew,E_DIST 

(°C) 

0 0 ∓30/∓15 0 ±0.5 

±0.33/±0.1 0 ∓35 0 ±1 

±0.43/±0.2 0 ∓60 0 ±1.5 

±0.3/±0.2 0 ∓100/∓93 0 ±2 

±0.3/±0.25 0 ∓140/∓120 0 ±2.5 
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4.2 PID Control of Liquid Chiller  

Invented in the early 1900s – by Nicholas Minorsky - and first deployed in the industry for 

automatic steering of ships in 1922 [47], proportional-plus-integral-plus-derivative, or simply 

PID are the most used feedback control technique in the industry. Despite the emergence of 

many advanced control techniques, PID controllers are still dominates the market due to its 

simplicity and ease of use. The output of a PID  controller (i.e. control input) in continuous-

time is given by 

u(t)= Kp+Ki ∫ e(t) dt +Kd

de(t)

dt
 (4-1) 

where e(t) is the error signal (i.e. difference between the desired and actual output) and Kp, 

Ki, and Kd are the scalar gain terms associated with proportional, integral and derivative 

controls, respectively.  

The block diagram of a control system with one output, one input and a PID controller is 

depicted in Figure 4-1 [47]. Notice that the plant and controllers are represented as transfer 

function. Furthermore, the PID or three-mode controller has three parameters summed 

parameters, one for each mode. Thus, the transfer function at the summation point of the 

PID controller is given by 

 

Figure 4-1: PID controller block diagram of a SISO system 

 

Gc(s)=Kp+
Ki

s
+Kds=

Kps+Ki+Kds2

s
=

Kd (s2+
Kp

Kd
s+

Ki

Kd
)

s
 

(4-2) 
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The controller parameters as shown in Equation 3-1 do not have to be all present. For 

instance, if the derivative term is set to zero, then it would just be a PI controller. 

Furthermore, each element in the PID controller has its own advantages and disadvantages. 

For example, the proportional term reduces the rise time and has a decent contribution to 

reduce steady-state error, but in return, it increases the overshoot and may not significantly 

affect the settling time. To overcome such challenges, the use of the integral term along with 

the proportional term would drastically improve the steady-state error, but overshoot may 

increase and decrease the settling time. Along with the PI terms, the addition of the 

derivative term reduces the overshoot and the settling time. 

An array of PID controllers will be applied to the model developed in chapter 3 in a 

centralized manner. However, two pre-requisites need to be done to the model. First, the 

chiller model represented in continuous-time state-space needs to be converted to a transfer 

function representation. As the model includes 4 inputs and 4 outputs, the number of transfer 

functions would be 16. The second step is to extend the SISO feedback control system shown 

in Figure 4-1 to a MIMO system by adding PID controllers whose quantities are equivalent 

to the product of the number of inputs and outputs. Furthermore, the controllers would be 

divided into 4 zones, which is equivalent to the number of outputs. So, in each zone, 4 

controllers would be there. Figure 4-2 shows the block diagram of PID control of the liquid 

chiller model. 

The transfer functions and controllers shown in Figure 4-2 can be truncated by first obtaining 

the expression of the loop transfer functions as shown in Equation 4-3. The expression of the 

closed-loop system to compute the required input is as shown in Equation 4-4. Finally, 

plugging expression 4-4 in to 4-3 yields equation 4-5. Finally, expression 4-5 can be described 

by equation 4-6. The i and j terms in equation 4-6 correspond to the output and input, 

respectively.  

[

Y1

Y2

Y3

Y4

]=

[
 
 
 
G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44]
 
 
 

[

U1

U2

U3

U4

] 

 

(4-3) 

[

U1

U2

U3

U4

]=

[
 
 
 
GC11 GC12 GC13 GC14

GC21 GC22 GC23 GC24

GC31 GC32 GC33 GC34

GC41 GC42 GC43 GC44]
 
 
 

[

R1-Y1

R2-Y2

R3-Y3

R4-Y4

] (4-4) 
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Y3

Y4

] =
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G11 G12 G13 G14

G21 G22 G23 G24
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[
 
 
 
GC11 GC12 GC13 GC14

GC21 GC22 GC23 GC24

GC31 GC32 GC33 GC34

GC41 GC42 GC43 GC44]
 
 
 

[

R1-Y1

R2-Y2

R3-Y3

R4-Y4

] 

 

(4-5) 

Y=GijGCij(R-Y)=GijU 

where i and j are the indices of the input and output, respectively. 

 

(4-6) 

 
Figure 4-2: Decentralized PID control for a model with 4 inputs and 4 outputs 
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4.3 Implementation and Simulation Results of the PID Controller 

The PID controllers are shown in Figure 4-2 and Equation 4-5 have been modeled using 

Simulink as shown in Figure 4-3. Two methods were tested to tune the PID controllers fitted 

in a MIMO environment. The first method, which was motivated by [48], the controllers were 

divided in to two types, diagonal and off-diagonal controllers. The relative gain array (RGA) 

was used to establish the dependence of one input with one output. Then the diagonal 

controllers would be tuned normally considering that output with one input. Then using 

algebraic closed-loop solution, the off-diagonal controllers gains were computed such as to 

eliminate the interference between other inputs and other outputs. In other words, the 

system is to be decoupled and the output input relationship is only determined by the 

diagonal controllers. The method proposed by [48] was implemented on a two-input-two-

output (TITO) process. Extending the same to the four-input-four-output model did not prove 

to be successful, since the RGA on the chiller model yielded heavy interference between the 

variables. 

The first method was not successful due to the heavy interactions between the system’s 

inputs and outputs. Hence, we could not decouple the system and assign one input to just one 

output. Another method was adopted, which is motivated from the open-loop system results 

and the centralized configuration of the PID control closed-loop. As per Equations 4-4 and 4-

5, each controller is labelled based on the output and input. Thus, in the tuning process of 

each controller, the system is assumed to be decoupled. Once all 16 PID controllers were 

tuned, they were all oriented in a centralized manner as per Figure 4-2. In Simulink, the 

system was modeled as illustrated in Figure 4-3. Note that some of these controllers had zero 

gains such as the input did not affect the output. For instance, varying the evaporator’s flow 

had no effect on the outlet temperature of the condenser coolant. 

Saturation blocks and anti-windup technique was used to ensure that the input does not 

exceed the allowable input limits as specified in Table 4-4. The simulation was done for 100 

seconds and considering a fixed step time of 0.0001. The step time was chosen to be very low 

due to the simulation errors encountered when using higher step times as there were 

discontinuities in the system. 
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Figure 4-3: Decentralized PID control implementation on Simulink 

After an exhaustive analysis and simulations of all controllers combined. It was found that 

some controllers have no effect on the system’s output. On the contrary, the system become 

unstable when all controllers are present. Hence, the nondominant controllers were removed; 

and the Simulink closed-loop model as illustrated in Figure4-2 reduces to the block diagram 

shown in Figure 4-4. Finally, the general form as shown in Equations 4-3 to 4-5 are now 

represented in terms of actual chiller input variables, output variables and the remaining 

controllers are as given in Equations 4-6 through 4-8. Note that the same set of controllers 

will be used for both trajectory tracking and disturbance rejection. 
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Figure 4-4: Decentralized Closed-loop System with only Dominant Controllers 

4.3.1 Trajectory Tracking – Cooling Load 

The first trajectory tracking test was done when the chiller was subjected to a change in the 

cooling load. The step change in the cooling load values is as reflected in Table 4-2. 

Furthermore, the required reference signals for the exit coolant temperature of the condenser 

and the chiller’s output electric power have been changed to meet the change in the cooling 

load, whereas the reference exit chilled liquid temperature of evaporator remained at zero. 

In other words, the PID controllers need to reach the required cooling load whilst maintaining 

the exit chilled liquid temperature at zero (i.e. regulation). 

The output response of the closed-loop system using PID controllers due to a step change on 

the cooling load by 600 W, 1200 W and 3000 W are shown on Figures 4-5, 4-6 and 4-7, 

respectively. Similarly, the applied control inputs to achieve the desired set points whilst 

regulating are illustrated in Figures 4-8, 4-9 and 4-10. It can be noted that the PID controllers 

reach the desired setpoint in less than 50 seconds and with a low overshoot on the evaporator 

exit temperature and compressor’s work. However, the overshoot on the cooling load is very 

high. Furthermore, there are some oscillations in the system, especially on the input.  
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Figure 4-5: Output responses due to a step change in cooling load by 600 W 

 

 

Figure 4-6: Output responses due to a step change in cooling load by 1200 W 
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Figure 4-7: Output responses due to a step change in cooling load by 3000 W 

 

 

Figure 4-8: Applied control inputs signals due to a step change in cooling load by 600 W 
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Figure 4-9: Applied control inputs signals due to a step change in cooling load by 1200 W 

 

 

Figure 4-10: Applied control inputs signals due to a step change in cooling Load by 3000 W 
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4.3.2 Trajectory Tracking – Leaving Chilled liquid Temperature 

The same procedures applied earlier in Section 4.2.2. as applied this time to the leaving 

chilled liquid of the evaporator by changing its setpoint whilst maintaining the cooling load 

at its initial state. The output response of the closed-loop system due to a step change in the 

leaving chilled liquid temperature of evaporator by 1 °C and 2 °C are depicted in Figures 4-

11 and 4-12, respectively. The control inputs are presented in Figures 4-13 and 4-14. High 

overshoot is noticed in the cooling capacity and oscillatory behavior in the compressor power. 

Furthermore, the exit chilled liquid temperature of the evaporator exhibited oscillatory 

behavior for a few cycles before eventually converging to the desired value. 

 

Figure 4-11: Output responses due to a step change in exit chilled liquid temperature of the 

evaporator by 1 °C 
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Figure 4-12: Output responses due to a step change in exit chilled liquid temperature of the 

evaporator by 2 °C 

 

 

Figure 4-13: Control signals due to a step change in exit chilled liquid temperature of the 

evaporator by 1 °C 
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Figure 4-14: Control signals due to a step change in exit chilled liquid temperature of the 

evaporator by 2 °C 

 

4.3.3 Disturbance Rejection – Entering Chilled liquid Temperature 

The disturbance rejection performance was accomplished in a similar fashion as the 

trajectory tracking. In this test, the chiller model was subjected to a change in the entering 

chilled liquid of evaporator temperature, and the controller’s main goal is to keep the cooling 

load and the leaving evaporating temperature unchanged (i.e. zero). for the selected 

disturbance values as shown in Table 4-4 are presented in this section. The output response 

of the closed-loop system due to a step change in the entering chilled liquid temperature of 

evaporator by 0.5 °C and 2.5 °C are depicted in Figures 4-15 and 4-16, respectively. The 

applied control inputs to regulate the system is for the same conditions are as illustrated in 

Figures 4-17 and 4-18, respectively.  Despite reaching steady state, the output contained high 

overshoot and severe oscillations. 
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Figure 4-15: Output responses due a step change in inlet chilled liquid temperature of 

evaporator by 0.5 °C 

 

 

Figure 4-16: Output responses due a step change in inlet chilled liquid temperature of 

evaporator by 2.5 °C 
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Figure 4-17: Control signals due to a step change in inlet chilled liquid temperature of 

evaporator by 0.5 °C 

 

 

Figure 4-18: Control signals due to a step change in inlet chilled liquid temperature of 

evaporator by 2.5 °C 
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Chapter 5 Linear Quadratic Integral Control of Liquid Chiller 

 

This chapter applies a multivariable optimal control technique to the liquid chiller, namely, 

Linear Quadratic Integral Control (LQI). The chapter begins with the formulation of the 

control problem as a continuous time linear time invariant (LTI) system. Then, the LQI 

control will be applied on the system in discrete time rather than continuous time since it 

would be more practical. The closed-loop responses are presented at the end of this chapter 

for both trajectory tracking and disturbance rejection. 

5.1 The Solution to the Linear Quadratic Regulator 

The Linear Quadratic Integral Control (LQI) is an extension of the Linear Quadratic 

Regulator (LQR). Both of which are multivariable optimal control techniques that can be 

applied to continuous and discrete time systems, and they share the same structure of state 

feedback controllers. The formulation of the LQR will be introduced first, then the extension 

to LQI controller will be carried out.  

A linear quadratic controller is a multivariable controller that computes the optimal control 

signal by minimizing a cost function [49]. Given an infinite-time continuous-time LTI state-

space system (Equation 5-1), the cost function, J, of a general optimal control system to 

regulate the plant’s states is given by Equation 5-2 as [49] 

x(t)̇ =Ax(t)+Bu(t) (5-1) 

J=
1

2
∫ [x

T
(t)Qx(t)+uT(t)Ru(t)] dt

∞

0

 (5-2) 

where, x(t) is an nth order state vector; u(t) is an rth order control vector; A and B are the state 

and control matrices of orders nxn and rxr; Q is a weighting matrix with an order nxn, 

symmetric, positive semidefinite matrix; R is weighting matrix with an order of rxr, 

symmetric positive definite matrix. 

The optimal control signal, u*(t), solution to the problem in Equation 5-2 is given by 
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u*(t)=-R
-1

B
T
P̅x*(t) (5-3) 

where, P̅, is a nxn positive definite and symmetric costate matrix, is the solution of the 

nonlinear, matrix algebraic Riccati equation (ARE) given by 

P̅A+A
T
P̅-P̅BR

-1
B

T
P̅+Q=0 (5-4) 

and the closed-loop controller gain matrix, K, is then given by 

K=R
-1

B
T
P̅ (5-5) 

The block diagram representation of an LQR controller is depicted in Figure 5-1 [49].  

 

Figure 5-1: Block diagram representation of an LQR controller [49] 

 

5.2 Linear Quadratic Integral Problem Formulation 

The state regulation controller as explained in Section 5-1 can be extended for tracking the 

output of a state-space LTI model given by Equation 5-6. The disturbance term, w, will be 

neglected during the formulation process. To reduce or even eliminate the steady-state errors 

to zero, an integrator is added to the system. Hence, the controller is called a Linear 

Quadratic Integral (LQI) controller. Furthermore, by adding an integrator to the closed-loop 

system, the order of the system will be increased. Thus, the closed-loop system state matrix, 

ACL, will have an order of the sum of the number of states and the number of outputs. In the 

liquid chiller case, the closed-loop state matrix has an order of 10x10. The block diagram 

representation of an LQI controller is shown in Figure 5-2. 

{
ẋ(t)=Ax(t)+Bu(t)+Fw(t)

y(t)=Cx(t)+Du(t)
 (5-6) 
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Figure 5-2: Block diagram representation of an LQI controller 

The error signal is given by 

e(t)=r(t)-y(t) (5-7) 

where r(t) is the reference signal and y(t) is the actual output.  

The integral of the error signal, represented by xi is given by 

xi(t)= ∫ [(r(t)-y(t)]dt (5-8) 

The state and output equations from Figure 5-2 are given by 

ẋ(t)=Ax(t)+Bu(t) (5-9) 

ẋi(t)=e(t)=r(t)-y(t) (5-10) 

y(t)=Cx(t)+Du(t) (5-11) 

The control signal which is the summation of the nominal states (state feedback) and the 

integral states (integral of the error signal) are given by [47][50] 

u(t)=Kixi-Kx(t) (5-12) 

where Ki are the controller gains of the integral states and K are the feedback gains of the 

open-loop states. Note that the feedback gain matrix, K, represent ‘proportional and 

derivative’ gains [50]. 
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The state-space representation of the closed-loop system with an LQI controller is 

ż(t)= [
ẋ(t)

ẋi(t)
]= [

A 0

-C 0
] [

x(t)

xi(t)
]+ [

B

-D
] u(t)+ [

0nxn

Inxn
] r(t) (5-13) 

y=[C 0] [
x(t)

xi(t)
]+Du(t) (5-14) 

where 0nxn and Inxn are the zero and identity matrices of suitable size. 

Substituting Equation 5-12 into Equations 5-13 and 5-14 to get 

ż(t)= [
ẋ(t)

ẋi(t)
]= [

A-BK BKi

-C+DK -DKi
] [

x(t)

xi(t)
]+ [

0nxn

Inxn
] r(t) (5-15) 

y=[C-DK DKi] [
x(t)

xi(t)
] (5-16) 

The cost function of the closed-loop LQI controller is given then by 

J= ∫ [z
T
(t)Qz(t)+uT(t)Ru(t)] dt

∞

0

 (5-17) 

The solution to obtain the optimal signal, u*(t), is obtained by solving Equation 5-17 using 

the algebraic Riccati equation (ARE) in a similar manner as described in Section 5.1. 

5.3 Implementation and Simulation Results of the LQI Controller 

To obtain a more realistic controller, the LQI has been implemented in discrete time. The 

sampling time considered is 0.1 seconds. The controller’s gains were computed using 

MATLAB built-in function, LQI, and the simulations were done on Simulink for all the listed 

simulations in Tables 4-2, 4-3 and 4-4. The block diagram representation of the closed-loop 

system is depicted in Figure 5-2. The detailed block diagram of the chiller model sub-block is 

as shown in Figure 5-3. 

As the chiller model has 4 inputs, 4 outputs and 6 states, the weighting input matrix, R, has 

an order of 4x4. On the other hand, the size of output weighting matrix, Q, is 10x10. The 

weights of the Q and R matrices are shown in Table 5-1. As the value of the weighing element 

in matrix R increases, it will be more expensive to apply this control input. Thus, the 

controller will be more conservative on this input, and it will prioritize inputs with lower cost. 

Similarly, a higher value of an element in matrix Q indicates a higher penalty on this state 

or output. Thus, the controller will exert more or effort in reducing the errors on this state or 

output.  
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In total, the closed-loop chiller model had 40 gains arranged as 4x10 matrix. The number of 

rows is equivalent to the number of inputs, whereas the number of columns is the summation 

of the number of states and number of outputs. 

 

Figure 5-3: Simulink implementation of the LQI controller on the chiller model 

 

 

Figure 5-4: Implementation of the open-loop chiller model subblock in discrete time 

 

The same simulation tests were also applied to the chiller model controlled by an LQI 

controller. Unlike the PID controller, the LQI controller was able to adjust the variable 

reference setpoints, namely, the condenser entering temperature and the compressor’s 

power. Thus, reducing the overall power consumption and reducing the cost. The output and 

input signal responses for the tracking and disturbance cases are subsequently presented in 

the next subsections.  
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Table 5-1: Weights of Q and R Matrices of the LQI controller 

Weights Value Affected Variable 

q1 10 State tc 

q2 1 State tcw,L 

q3 10 State tcg 

q4 0.1 State tk 

q5 1 State tew,L 

q6 10 State teg 

q7 10 Time error of output tcw,L 

q8 5 Time error of output tew,L 

q9 0.001 Time error of output Wcom 

q10 1 Time error of ouput Qc 

r1 100 Input tcw,E 

r2 1,000 Input Gcw 

r3 1,000 Input Gew 

r4 1,000 Input Grm 

 

5.3.1 Trajectory Tracking – Cooling Load 

The output responses of the using an LQI controller due to a step change on the cooling load 

by 600 W, 1200 W and 3000 W are shown on Figures 5-5, 5-6 and 5-7, respectively. Similarly, 

the applied control inputs to achieve the desired set points whilst regulating are illustrated 

in Figures 5-8, 5-9 and 5-10.  

It is observed that the overshoot on the cooling load is zero; and the overshoot and oscillations 

on other outputs are kept at minimum, which proves the controller efficiency. Furthermore, 

all the control input signals are smooth and free of sharp or very rapid changes. The integral 

action ensured that the steady state errors are minimized, if not eliminated. Also, the settling 

time for all outputs was less than 80 seconds. 



92 

 

 

Figure 5-5: Output responses due to a step change in cooling load by 600 W 

 

Figure 5-6: Output response due to a step change in cooling load by 1200 W 
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Figure 5-7: Output responses due to a step change in cooling load by 3000 W 

 

 

Figure 5-8: Control signals due to a step change in cooling load by 600 W 
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Figure 5-9: Control signals due to a step change in cooling load by 1200 W 

 

 

Figure 5-10: Control signals due to a step change in cooling load by 3000 W 
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5.3.2 Trajectory Tracking – Leaving Chilled liquid Temperature 

The output response of the closed-loop system due to a step change in the leaving chilled 

liquid temperature of evaporator by 1 °C and 2 °C are depicted in Figures 5-11 and 5-12, 

respectively. On the other hand, the optimal control trajectory to meet the new set-points are 

illustrated in Figures 5-13 and 5-14, respectively. 

A major observation for this test was the slow response in terms of the exit coolant 

temperature of condenser, compressor electric power and cooling load that the settling time 

is large (more than 70 seconds). Also, there were minor steady-state error when the new 

setpoint temperature of the exit chilled liquid of the evaporator was set at 1 °C. On the 

positive side, an excellent output response was achieved in terms of tracking the new setpoint 

temperature of the evaporator’s chilled liquid, since the output response showed 0% 

overshoot, no steady-state error and a settling time of less than 40 seconds. As with the 

previous tracking test, the control effort in transient response was smooth and free of sharp 

oscillation. 

 

Figure 5-11: Output responses due to a step change in exit chilled liquid temperature of 

evaporator by 1 °C 
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Figure 5-12: Output response due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 

 

 

Figure 5-13: Control signals due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 
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Figure 5-14: Control signals due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 

 

5.3.3 Disturbance Rejection – Entering Chilled liquid Temperature 

The LQI controller was evaluated on its ability to reject disturbances in the form of a step 

change in the entering chilled liquid temperature of the evaporator for the values outlined in 

Table 4-4. The output response due to a step change in the entering chilled liquid 

temperature of evaporator by 0.5 °C and 2.5 °C are shown in Figures 5-15 and 5-16, 

respectively. The applied control inputs to regulate the system is for the same conditions are 

as illustrated in Figures 5-17 and 5-18, respectively. 

The controller performance in rejecting disturbance was fast with minimal overshoot, 

oscillations and no steady-state error. Furthermore, the settling time was decent, and the 

control effort exerted was smooth and within the constraint limits. Hence, the LQI controller 

was proven to be efficient in terms of rejecting the entering chilled liquid temperature of 

evaporator from values ranging from -0.5 °C to +2.5 °C. 
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Figure 5-15: Output response due to a step change in inlet chilled liquid temperature of 

evaporator by 0.5 °C 

 

 

Figure 5-16: Output response due to a step change in inlet chilled liquid temperature of 

evaporator by 1 °C 
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Figure 5-17: Control signals due to a step change in inlet chilled liquid temperature of 

evaporator by 0.5 °C 

 

 

Figure 5-18: Control signals due to a step change in inlet chilled liquid temperature of 

evaporator by 1 °C 
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Chapter 6 Model Predictive Control of Liquid Chiller and 

Controller Tuning using Genetic Algorithms 

 

In this chapter, the last control technique applied on the chiller model is examined. First, the 

fundamentals of Model Predictive Control (MPC) are introduced. Then, a detailed derivation 

of the MPC for a MIMO system with direct feedthrough is presented. Due to the difficulty in 

tuning the controller’s weights, a machine learning approach, namely, Genetic Algorithm is 

deployed to perform this task. The MATLAB implementation of MPC along with GA is 

discussed as well as the simulation results in terms of trajectory tracking and disturbance 

rejection are illustrated.  

6.1 Fundamentals of Model Predictive Control (MPC) 

Model Predictive Control (MPC) is an optimal multivariable feedback control technique that 

opts to compute the most optimal control trajectory to meet the required reference setpoint 

using model output prediction and iterative computation of the control trajectory as 

illustrated in Figure 6-1 [51][52]. The optimization is done for each time horizon window as 

shown in Figure 6-1. The MPC can be applied to both continuous and discrete-time systems. 

However, it is more natural for this type of control technique to be used in discrete-time 

models. Both LQR (including its derivatives such as LQT, LQG and LQI) and MPC are 

optimal controllers that share several similarities such as a quadratic cost function, can be 

applied to multivariable systems represented through a state-space model and can be applied 

in both continuous and discrete times. Albeit sharing common features, an LQR controller 

solves the control problem or computes the optimal control signal using a fixed window, 

whereas MPC uses a moving time horizon [51]. In other words, when a long prediction 

horizon is considered, an LQR can be thought of as an offline controller – as it uses one fixed 

control horizon – while MPC is an online controller that iteratively computes the optimal 

control trajectory on each window. Another critical salient feature that an MPC controller 

possesses lies in its ability to handle soft and hard constraints. 
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Figure 6-1: Illustration of the MPC control operation [52] 

 

Just as with LQR, there are many variations to the MPC controller including, but not limited 

to, robust MPC, stochastic MPC, distributed MPC, adaptive MPC and hybrid MPC [52]. 

Irrespective of the MPC type, the parameters or inputs to design the controller are as outlined 

below [51]: 

1. Plant model: MPC can be designed with a transfer function or a state-space model in 

either continuous or discrete time. However, the dominant model type is discrete-time 

state-space model (SISO or MIMO).  

2. Moving horizon window, Tp: the time-dependent window in which optimization or 

controller computation takes place. It is measured from an arbitrary time ti to ti+Tp. 

The length of the moving horizon window is assigned by the designer and remains 

fixed during simulation. 

3. Prediction horizon, Np: determines the prediction window of the plant’s model. It is an 

important parameter that contributes to the controller’s performance. This parameter 

is varied in the tuning process of the controller. However, it should be large enough to 

cover the full transient response. The length of the prediction horizon window, Np, is 

equal to the length of the moving horizon window. 

4. Receding horizon control: the optimal control trajectory computed in the moving 

horizon window applied to the first sample of the control signal. Hence, the rest of the 

trajectory gets omitted. 
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5. Control Horizon, Nc: a parameter defined by the designer as to what extent the future 

control trajectory is predicted. The value of the control horizon is less than or equal to 

the value of the prediction horizon. 

6. Cost function, J: the optimal control trajectory is evaluated based on a pre-defined 

cost function (or object function). A common cost function for MPC control is the 

quadratic cost function. When constraints are integrated into the cost function, 

quadratic programming is used to compute the optimal control signal. 

6.2 Solution to Model Predictive Control with Direct Feedthrough 

6.2.1 Augmented State-space Model Formulation 

To align with standard practice, the MPC derivation will be done on a discrete time (DT) 

state-space model. However, the model derived in Chapter 3 includes a direct feedthrough 

term (D≠0). In other words, one or more inputs have a direct impact on one or more outputs 

without passing through the states (i.e. the states or the internal model is bypassed). Most 

literature including MATLAB Model Predictive Control toolbox consider that there is no 

direct feedthrough in the model. Therefore, the MPC equations need to be reformulated by 

considering the direct feedthrough affect. 

The MPC controller will have an embedded integrator [51], which is adopted to ensure that 

the steady-state errors are eliminated. However, the model presented in [51] considered that 

there is no direct feedthrough (i.e. D=0) term. A reformulation of the state-space based MPC 

model with an embedded integrator and with direct feedthrough developed by [53] will be 

presented in this section and subsequent sections in detail. First, the state-space model given 

in Equation 3-32 is discretized at a suitable sampling time, Ts, and given by 

{
xP(ki+1)=APxP(ki)+BPu(ki)+FPw(ki)

y(k)=CPxP(ki)+DPu(ki)
 (6-1) 

where xP ∈ ℝnx1
 is the state vector, u ∈ ℝmx1 is the control input vector, w ∈ ℝrx1 is the measured 

disturbance input vector, y ∈ ℝqx1 is the output vector, AP ∈ ℝnxn is the states matrix in discrete 

time, BP ∈ ℝnxm is the control input matrix in DT, FP ∈ ℝnxr is the measured disturbance matrix 

in DT, CP ∈ ℝqxn is the output matrix in DT and DP ∈ ℝqxm is the feedthrough matrix in DT. 
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The difference equations for the states, control inputs and the measured disturbances are 

given by 

∆xP(ki+1)=xP(ki+1)-xP(ki) (6-2) 

∆xP(ki)=xP(ki)-xP(ki-1) (6-3) 

∆u(ki)=u(ki)-u(ki-1) (6-4) 

∆w(ki)=w(ki)-w(ki-1) (6-5) 

The difference of state-space equation is given as 

∆xP(ki+1)=AP∆x
P
(ki)+BP∆u(ki)+FP∆w(ki) (6-6) 

 

The predicted output is described by 

y(ki+1)=CPAP∆x
P
(ki)+CPB

P
∆u(ki)+CPFP∆w(ki)+DP∆u(ki+1)+y(ki) (6-7) 

 

Let the closed-loop augmented state vector be 

x(ki)=[∆xP(ki)
T y(ki)

T]
T
 (6-8) 

 

The augmented state-space model is then represented as 

[
∆xP(ki+1)

y(ki+1)
]= [

AP Om
T

CPAP Iqq

] [
∆xP(ki)

y(ki)
] + [

BP

CPBP
]∆u(ki)+ [Om

T

DP

] ∆u(ki+1)+ [
FP

CPFP
]∆w(ki) (6-9) 

y(ki)=[Om Iqq] [
∆xP(ki)

y(ki)
] (6-10) 

where,  

xCL(k)= [
∆xP(ki)

y(ki)
]  

ACL= [
AP Om

T

CPAP Iqq

]  

BCL= [
BP

CPBP
]  

FCL= [
FP

CPFP
]  

CCL=[Om Iqq]  

DCL= [Om
T

DP

]  

Om∈R
mx1

is the zero matrix and Iqq∈R
qxq

is the identity matrix  



104 

 

For simplicity, the subscript, CL, will be dropped from the augmented closed-loop model 

variables as defined above when presenting the remaining equations.  

6.2.2 Prediction of Controlled Inputs, States and Output Variables 

In the following derivations, the disturbance term will be ignored. Now, given the control 

horizon, Nc, the expression for the future incremental control trajectory for a multi-input 

model is described by 

∆U=[∆u(ki)
T

∆u(ki+1)
T

⋯ ∆u(ki+Nc-1)
T]

T
 (6-11) 

 

The state variables prediction, on the other hand, depends on the prediction horizon, Np, or 

the length of the optimization window. The predicted state variables are expressed as 

x(ki+1|ki)=Ax(ki)+B∆u(ki)+D∆u(ki+1) (6-12) 

x(ki+2|ki)=Ax(ki+1)+B∆u(ki+1)+D∆u(ki+2) 

=A
2
x(ki)+AB∆u(ki)+(AD+B)∆u(ki+1)+D∆u(ki+2) 

 

(6-13) 

x(ki+3|ki)=Ax(ki+2)+B∆u(ki+2)+D∆u(ki+3) 

=A
3
x(ki)+A

2
B∆u(ki)+(A

2
D+AB)∆u(ki+1)+(AD+B)∆u(ki+2)+D∆u(ki+3) 

 

(6-14) 

⋮  

x(ki+NP|ki)=A
NPx(ki)+A

NP-1
B∆u(ki)+ (A

NP-1
D+A

NP-2
B)∆u(ki+1)+ 

(A
NP-2

D+A
NP-3

B)∆u(ki+2)+ (A
NP-3

D+A
NP-4

B)∆u(ki+3)+…+ (A
NP-(NP-1)

D+A
NP-NP)∆u(ki+NP-1)+D∆u(ki+NP) 

(6-15) 

 

The future predicted output is derived using the predicted state Equations 6-12 through 6-

15 to obtain the following 

y(ki+1|ki)=Cx(ki+1|ki)=CAx(ki)+CB∆u(ki)+CD∆u(ki+1) 
 

(6-12) 

y(ki+2|ki)=Cx(ki+2|ki)=CAx(ki+1)+CB∆u(ki+1)+CD∆u(ki+2) 

=CA
2
x(ki)+CAB∆u(ki)+(CAD+CB)∆u(ki+1)+CD∆u(ki+2) 

 

(6-13) 

y(ki+3|ki)=Cx(ki+3|ki)=CAx(ki+2)+CB∆u(ki+2)+CD∆u(ki+3) 

=CA
3
x(ki)+CA

2
B∆u(ki)+(CA

2
D+CAB)∆u(ki+1)+(CAD+CB)∆u(ki+2) 

+CD∆u(ki+3) 

 

(6-14) 

⋮  

 (6-15) 
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          y(ki+NP|ki)=Cx(ki+NP|ki) 

                         =CA
NPx(ki)+CA

NP-1
B∆u(ki)+ (CA

NP-1
D+CA

NP-2
B)∆u(ki+1) 

                          + (CA
NP-2

D+CA
NP-3

B) ∆u(ki+2)+ (CA
NP-3

D+CA
NP-4

B)∆u(ki+3)+… 

                          + (CA
NP-(NP-1)

D+CA
NP-NP)∆u(ki+NP-1)+CD∆u(ki+NP) 

 

The output for a MIMO system is expressed in matrix form as 

Y=[y(ki+1|ki)
T

y(ki+2|ki)
T

y(ki+3|ki)
T

⋯ y(ki+NP|ki)
T]

T
 (6-16) 

The solution to Equation 6-16 is represented in a compact matrix form in terms of the current 

state variables, the future incremental control trajectory and two gain matrices that depend 

on the augmented state-space gain matrices (i.e. A, B, C and D), prediction horizon and 

control horizon. Thus, the output equation is given as 

Y=Fx(ki)+Ф∆U (6-17) 

where  

F=

[
 
 
 
 

CA

CA
2

CA
3

⋮

CA
NP]

 
 
 
 

 ; 

 

Ф=

[
 
 
 
 

CB CD 0 … 0
CAB CAD+CB CD … 0

CA
2
B CA

2
D+CAB CAD+CB … 0

⋮ ⋮ ⋮ … ⋮

CA
NPB CA

NP-1
D+CA

NP-2
B CA

NP-2
D+CA

NP-3
B … CAD+CA

0
B]

 
 
 
 

 

 

 

It can be observed that the matrix, Ф, includes a feedthrough gain matrix, D. Thus, the MPC 

has now been reformulated to includes in its computation or prediction the direct-

feedthrough matrix as opposed to previous formulation which neglected in the derivation the 

direct feedthrough term. 

6.2.3 Optimization 

Having derived the predicted output in Equation 6-17, the final step is to compute the 

incremental control trajectory, ∆U. First, the solution is presented for the unconstrained case. 

Then, it the solution will be extended for the constrained case. In both cases, a cost function 

needs to be defined. A standard cost function for a model predictive controller is the quadratic 

cost function given by 
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J=(Rs-Y)T(Rs-Y)+∆U
T
R̅∆U (6-18) 

where Rs ∈ ℝNpxq is a column vector containing all the reference or setpoint signals 

information, and R̅ ∈ ℝmNcxmNc is a diagonal matrix containing the weights applied on the 

control inputs. The weights (or tuning parameters) is adjusted by the designer to achieve the 

desired closed-loop system performance. The number of weights is equal to the number of the 

system’s control inputs. 

Using Equation 6-17, Equation 6-18 is expanded as 

J=(Rs-Fx(ki))
T
(Rs-Fx(ki))-2∆U

T
Ф

T(Rs-Fx(ki))+∆U
T
(Ф

T
Ф+R̅)∆U 

 

(6-19) 

In the unconstrained case, the solution for the optimal control trajectory is given as a closed 

form solution by minimizing J. This is achieved by taking the first derivative of J with respect 

to ∆U, equate the first derivate to zero and solve for ∆U as given in the steps below 

∂J

∂∆U
=-2Ф

T(Rs-Fx(ki))+2(∅T∅+R̅)∆U 
(6-20) 

-2Ф
T(Rs-Fx(ki))+2(Ф

T
Ф+R̅)∆U=0 (6-21) 

∆U=(Ф
T
Ф+R̅)

-1

∅T(Rs-Fx(ki)) 
(6-22) 

In the constrained case, a closed form solution as given in Equation 6-22 is not plausible. 

Instead, a suitable iterative optimization method is used. This is due to the incorporation of 

the input and/or output constraints to the cost function defined earlier. Furthermore, there 

are two types of input constraints, constraints on the amplitude and constraints on the 

incremental variation [51]. Thus, the optimization problem is redefined as 

min J =(Rs-Fx(ki))
T
(Rs-Fx(ki))-2∆U

T
Ф

T(Rs-Fx(ki))+∆U
T
(Ф

T
Ф+R̅)∆U 

Subject to: 

[

M1

M2

M3

] ∆U≤ [

N1

N2

N3

] 

(6-23) 

where,  

M1= [
-C2

C2
] ; N1= [

-U
min

+C1u(ki-1)

U
max

-C1u(ki-1)
] ; 
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C1=

[
 
 
 
 
I
I

I
⋮
I]
 
 
 
 

; C2=

[
 
 
 
 
I 0 0 … 0

I I 0 … 0
I I I … 0

⋮ ⋮ ⋮ ⋮ ⋮
I I I … I]

 
 
 
 

 

M2= [
-I

I
] ; N2= [-∆U

min

∆U
max ] 

 

M3= [
-Ф

Ф
] ; N3= [

-Y
min

+Fx(ki)

Y
max

-Fx(ki)
] 

 

The size of each element in Equation 6-23 depends on several factors such as the number of 

constraints, control horizon and the constraint window. The constraint window sets the 

extinct of optimization. In other words, shall the control trajectory be optimized for just the 

next sample or more. Also, the matrix Ф𝑇Ф + 𝑅̅ is called the Hessian matrix and is assumed 

to be positive definite [51]. 

Given that the cost function is quadratic and with linear inequalities constraints, the solution 

to Equation 6-23 is obtained numerically using Quadratic Programming (QP). Some of the 

common QP methods are Active-Set, Interior-Point and Hildreth Quadratic Programming 

Procedure. To apply of these methods, Equation 6-23 needs to be arranged in the standard 

form described by 

min J =
1

2
xTHx+xTf 

Subject to: 

[

M1

M2

M3

] ∆U≤ [

N1

N2

N3

] 

(6-24) 

where,  

H=2(Ф
T
Ф+R̅); 

f=-2Ф
T(Rs-Fx(ki)) 

 

 

6.2.4 Block Diagram Representation of the Model Predictive Control System 

The model predictive control scheme can be represented in block-diagram as illustrated in 

Figure 6-2. It is evident from the block diagram representation that structure is identical 

nature to LQI or state-feedback with output feedback integrator. However, the difference is 

that the value of the state and output feedback gains vary. Applying receding horizon control 
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to the output trajectory computed in Equation 6-22, the first sample is only considered and 

the equation becomes 

∆U=[Im Om … Om](Ф
T
Ф+R̅)

-1

(∅TRs
̅̅̅̅ r(ki)-∅

TFx(ki)) 
(6-25) 

where the size of the ones and zeros matrix is m x Nc, Rs
̅̅̅̅   ∈ ℝqNpxq is a ones matrix and r(ki) 

is the reference signal column vector. 

Equation 6.25 can be represented in terms of the state feedback gain, Kx, and the output 

feedback gain, Ky, yielding 

∆U=Kyr(ki)-Kxx(ki)) (6-26) 

where,  

Ky=first element of {(Ф
T
Ф+R̅)

-1

∅TRs
̅̅̅̅ }; 

 

Kx=first column of {(Ф
T
Ф+R̅)

-1

∅TF} 
 

 

 

Figure 6-2: Block diagram of discrete-time predictive control system with direct feedthrough 

and measured input disturbance 
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6.3 Model Predictive Controller Weight Tuning using Genetic Algorithm 

Genetic Algorithms (GA) is considered as one of the oldest stochastic parameter optimization 

or machine learning tools [54]. This makes this GA one of the available methods to controllers’ 

tunning. Motivated by the example given by S. L. Brunton et al. [54] to tune a PID controller 

weights and V. Ramasamy et al. [55] to utilize GA with iterative decision trees to tune the 

weights of an MPC for an industrial cement kiln process, GA will be used to tune the weights 

of the control inputs of the MPC controller developed earlier. 

As the name suggests, genetic algorithm is developed based on natural selection [55]. It uses 

the concept of natural selection in an iterative manner to find a nearly global optimal 

solution. The iterative approach of the GA is illustrated in Figure 6-3 and as described in the 

steps below [54][55]: 

1.  Population Initialization: this is a user defined value and in simple terms, it is the 

pool of solvers or individuals. The number of populations is fixed across the iteration 

process. For instance, for a population of 10 individuals and maximum of 5 

generations (i.e. iterations), then in each generation, 10 individuals are present. 

Furthermore, a higher population size has a higher probability of achieving a nearly 

optimal solution, but at the expense of computational power. 

2. Cost function and probability of selection: an individual will randomly have a weight 

value assigned to it as a binary number. The optimization problem will be solved based 

on these weights and a suitable cost function is used to evaluate the performance of 

the individual. The individuals with the highest cost function have a higher 

probability to qualify to the next generation that is governed by a set of natural 

selection rules or genetic operations as given below: 

a. Replication: an induvial replicates itself and advances to the next generation 

without undergoing any genetic operation that alters its weights. In other 

words, the set of weights in the first generation proceeds to the next generation 

to compete with different individuals than the previous generation. The 

individual that gets to be replicated has one of the lowest cost function values 

(i.e. highest probability) or has performance (i.e. elitism). Figure 6-4 depicts 

this operation. 
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b. Crossover: in the genetic operation, two individuals are selected and part of 

their binary representation or code gets swapped. Figure 6-4 depicts this 

operation. 

c. Mutation: in this operation, part of the individual’s binary code is altered to a 

new random value. This process enhances diversity by exploring different set 

of weights as well as averts the optimizer of pointing or exploring single 

direction that are less optimal (i.e. local minimum) or even poor Figure 6-4 

depicts this operation. 

3. Number of Generation: the optimizer terminates its heuristic search operation once it 

reaches the maximum number of generations defined by the user or the set of 

individuals in that generation converge. 

  

 

Figure 6-3: Flow chart of the Genetic algorithm optimization process [55] 
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Figure 6-4: Illustration of the various steps performed by GA [54] 

 

6.4 Implementation and Simulation Results of the MPC Controller 

The discrete-time model predictive controller presented earlier was implemented using 

MATLAB by creating several functions. The considered sampling time, Ts, was 0.1 seconds. 

This was the optimal sampling time as going with a larger sampling time will impact the 

performance of the system, and having smaller sampling time increased the computational 

complexity of the system. For instance, a dedicated function to compute the gain matrices of 

Equation 6-17. Furthermore, only two linear nonequality constraints were imposed on the 

system, namely, constraints on the amplitude of the control signal and the rate of change of 

the control signal. Hence, no constraints were added to the output as it may deteriorate the 

controller’s performance. Moreover, constraints on the rate of change of the control signal is 

taken as one third of the constraints on the amplitude rate of change. 

The steps to compute the optimal control signal is as given below: 

1. Convert the continuous time state-space model to discrete-time state space model. 

2. Define NP and NC. 

3. Load the weights of the model predictive controller (tuned through GA and stored) 

and select the set of weights corresponding to the application (i.e. reference tracking 

or rejection). 

4. Compute the gain matrices, F and Ф. 

5. Define the constraint optimization window and represent the constraints in their 

standard form (Equation 6-22). 



112 

 

6. Load the reference and input disturbance signal vectors. 

7. Initialize x(0) and u(-1) to zero. 

8. Let the predicted y(k) = y(k-1). 

9. Compute ∆U assuming there are no constraints on the system (Equation 6-23). 

10. If the any of the elements in ∆U violates the constraints, then solve the optimization 

problem using QP (Equation 6-24). 

11. Compute the predicted states and outputs. 

12. Repeat steps 9 through 11 until the end of the simulation. 

The weights of the controller were initially tuned randomly. However, this approach was 

deemed not effective as instability at certain gain values were noticed. Thus, GA was used to 

tune the 4 controller weights. After a series of trial-and-error, it was deduced that the 

required population size is 50 and the maximum number of generations is 25. Another 

hyperparameter considered as was the minimum and maximum allowable weights value. 

These limits were derived from the trial-and-error manual tuning process in which the 

unstable or poor performance regions were defined. The tuning process took 13 hours to 

complete, and the weighing vectors were stored. The training of the controller for tracking 

purposes was done for a single tracking reference setpoint. The considered value is a change 

in the cooling load by 1200 W. Likewise, for disturbance rejection, the chosen training value 

was when the system was subjected to a measured input disturbance in the form of a step 

change in the inlet evaporating liquid by +2.5 °C. 

The performance of the GA to find the nearly optimal controller weights is depicted in Figure 

6-5. It is evident that in the beginning, most of the results had high cost as indicated in 

yellow, and as the algorithm advances, the GA evolves until it converges as depicted in dark 

blue in the last generation. Note that the number of generations needed is 17 until the 

algorithm converges. Furthermore, the log J correspond to the logarithmic value of the cost 

function value at the end of the 100 seconds optimization window. Also, the training process 

of the controller  
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Figure 6-5: Performance of the GA on liquid chiller tuning as the generations evolve 

 

The final set of parameters for the model predictive controller to control the liquid chiller 

model are given in Table 6-1. The same settling time used earlier for an LQI controller was 

used here. Also, reducing the settling beyond 0.1 seconds increased the computational power. 

Three other parameters also associated with the computation power are the prediction 

horizon, NP, control horizon, NC and the constraint optimization window, CDW. The 

prediction horizon was selected as to cover as much as possible the transient phase of the 

system. A value of 400 was selected as it complied with the prediction requirements as well 

as not increasing the computation power. The control horizon is usually a fraction of the 

prediction horizon, typically this value is between 10% and 20%. However, this range did not 

yield satisfactory results as compared to 30% (i.e. 120). The constraint optimization window 

term was used to set up the constraint matrix that was later solved using QP. After several 

trials, an optimization on the current time instant was sufficient instead of optimizing across 

the full control horizon.  

The GA tuned the last 4 variables in Table 6-1 pertaining to the applied weights on the 

control signals. A higher input weight yields to a higher cost on that input, which means that 

the applied control effort is more limited. Using these parameters along with the iterative 

procedure defined above, the performance of the controller will be subject to the same tests 

done earlier on the PID and LQI controllers. The performance results in terms of trajectory 

tracking and disturbance rejection will be presented in the next subsections. 
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Table 6-1: Tuning Parameters and Weights of the MPC Controller 

Parameter Refence Tracking Disturbance Rejection Affected Variable(s) 

Ts 0.1 seconds Overall system 

NP 400 samples Overall system 

Nc 120 samples Overall system 

CDW 1 sample Overall system 

rw1 3.0374x103 3.2824x103 Input tcw,E 

rw2 1.3783x105 1.4497x105 Input Gcw 

rw3 3.0897x105 3.0151x104 Input Gew 

rw4 9.6895x108 9.5841x109 Input Grm 

 

6.41 Trajectory Tracking – Cooling Load 

The output responses of the closed-loop system using an MPC controller due to a step change 

on the cooling load by 600 W, 1200 W and 3000 W are shown on Figures 6-6, 6-7 and 6-8, 

respectively. The applied control inputs to achieve the desired setpoints whilst regulating the 

entering chilled liquid temperature are illustrated in Figures 6-9, 6-10 and 6-11.  

The overshoot in the cooling load was higher at low load conditions, but as load increased the 

overshoot decreased. This could be due to the interactions between the control inputs and 

outputs as most of them are dependent. On the other hand, the cooling load exhibited lower 

overshoot at low load conditions as opposed to when the load is higher. The exit coolant of 

condenser had a steady overshoot of around 0.2 °C to 0.5 °C, while the overshoot of the 

compressor power was very minimal at low loads and zero at high loads. The settling time 

for all outputs was less than 50 seconds and the steady state was almost zero. The control 

signals for all simulations were smooth with the exception of the inlet coolant temperature 

of the condenser, in which a sharp one oscillation was observed albeit introducing a rate of 

change input constraint. 
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Figure 6-6: Output responses due to a step change in cooling load by 600 W 

 

 

Figure 6-7: Output responses due to a step change in cooling load by 1200 W 
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Figure 6-8: Output responses due to a step change in cooling load by 3000 W 

 

 

Figure 6-9: Control signals due to a step change in cooling load by 600 W 
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Figure 6-10: Control signals due to a step change in cooling load by 1200 W 

 

 

Figure 6-11: Control signals due to a step change in cooling load by 3000 W 
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6.4.2 Trajectory Tracking – Leaving Chilled liquid Temperature 

The output responses of the closed-loop system due to a step change in the leaving chilled 

liquid temperature of evaporator by 1 °C and 2 °C are depicted in Figures 6-12 and 6-13, 

respectively. On the other hand, the optimal control trajectory to meet the new set-points are 

illustrated in Figures 6-14 and 6-15, respectively. 

Aligning with the results of Section 6.3.2, the exit coolant temperature of condenser 

converged very slowly. It also exhibited some oscillations and small to moderate overshoots. 

On the other hand, the exit chilled liquid temperature of the evaporator had zero overshoot 

in favor of a moderate settling time. The compressor’s electric power and cooling load 

converged very quickly, but the overshoot was moderate and sharp. Control inputs were 

smooth and without sharp oscillations, except for the inlet coolant temperature of the 

condenser. Moreover, the refrigerant flow rate had a very small change in amplitude (less 

than 0.01 kg/s). This deduces that when the load remained the same whilst a change of the 

evaporator exit carrier temperature is required, the ancillary equipment to the chiller (i.e. 

cooling tower, condenser and evaporator pumps) are sufficient, and the compressor 

involvement is minimal. 

 

Figure 6-12: Output response due to a step change in exit chilled liquid temperature of 

evaporator by 1 °C 
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Figure 6-13: Output response due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 
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Figure 6-14: Control signals due to a step change in exit chilled liquid temperature of 

evaporator by 1 °C 

 

 

Figure 6-15: Control signals due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 
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6.4.3 Disturbance Rejection – Entering Chilled liquid Temperature 

To further enhance the system performance, an adaptive strategy is adopted. In the 

disturbance rejection test, a different set of controller input weights were considered as 

shown in Table 6-1. The output response due to a step change in the entering chilled liquid 

temperature of evaporator by 0.5 °C and 2.5 °C are shown in Figures 6-16 and 6-17, 

respectively. The applied control inputs to regulate the system is for the same conditions are 

as illustrated in Figures 6-18 and 6-19, respectively. 

The controller’s performance in rejecting disturbance was fast with minimal overshoot of less 

than 10% for most outputs. However, two cycle oscillations for all outputs. Furthermore, 

steady-state error was zero for all outputs. As the case with trajectory tracking, inlet coolant 

temperature of the condenser had an oscillatory behavior. Similar effects were notice on the 

coolant flow rate of the condenser as well. The flow rate of the refrigerant did not change for 

the applied disturbance input values. Thus, the same conclusion made earlier in Section 6.4.2 

holds true for this test.  

 

Figure 6-16: Output response due to a step change in entering chilled liquid temperature of 

evaporator by 0.5 °C 

 



122 

 

 

Figure 6-17: Output response due to a step change in entering chilled liquid temperature of 

evaporator by 2.5 °C 

 

Figure 6-18: Control signals due to a step change in entering chilled liquid temperature of 

evaporator by 0.5 °C 
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Figure 6-19: Control signals due to a step change in entering chilled liquid temperature of 

evaporator by 2.5 °C 

 

 

 

Chapter 7 Analysis and Performance Comparison between the 

Control Approaches 

 

The output responses of the three control techniques presented in the previous chapters 

compared and analyzed in this Chapter in terms of trajectory tracking and disturbance 

rejection. Two cases are considered for trajectory tracking, namely, a step change in the 

cooling load and a step change in the exit chilled liquid temperature of the evaporator. 

Moreover, in the first test trajectory tracking test, the exit chilled liquid temperature shall 

be regulated to its nominal value (i.e. zero), and the same holds true in the second test.  

In the disturbance performance test, controller performance is evaluates based on its ability 

to reject a measured input disturbance in the form of a step change in the entering chilled 

liquid temperature of the evaporator. Furthermore, the remaining two outputs, namely, the 
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exit coolant temperature of the condenser and the compressor’s electric power are user 

adjustable or variable reference values that vary based on the change in the main reference 

outputs. The test values used for the performance tests are given in Tables 4-2, 4-3 and 4-4. 

7.1 Trajectory Tracking – Cooling Load 

The first trajectory tracking test was done when the chiller was subjected to a change in the 

cooling load. Five values that represent the full testing spectrum from minimum to maximum 

were selected from Table 4-2 for performance comparison between the controllers. The output 

response of the closed-loop system using PID, LQI and MPC controllers due to a step change 

on the cooling load - at t = 10 seconds) - by 200 W, 600 W, 1200 W, 2000 Wand 3000 W are 

shown in Figures 7-1, 7-2, 7-3, 7-4 and 7-5. Likewise, the control input signals waveforms are 

depicted in Figures 7-6, 7-7, 7-8, 7-9 and 7-10. 

Beginning with the change in cooling load, the LQI controller response was perfect with zero 

overshoot, instant settling time and zero steady-state error for all the cooling loads. MPC 

responses had a high overshoot of 50% at low capacities, but the overshoot percentage 

decreased a lot at higher capacities to reach around less than 5%. Furthermore, the MPC 

controller settling time was fast and it exhibited fewer oscillations (less than 3) and had zero 

steady-state error. The PID controllers had high overshoots, good settling time and zero 

stead-state error. 

The PID controllers produced the best results in terms of regulating the exit chilled liquid 

temperature of the condenser back to its initial state. LQI had a good response in general 

with small overshoots/undershoots (less than |±0.1| °C, yet it had the highest settling time 

of around 50 seconds. On the other hand, MPC controller overshoot/undershoot was 

considerable high when compared to the other two controllers of around |±0.3| °C, but had 

a slightly smaller settling time than the LQI controller at higher capacities. For all 

controllers, zero-steady state error was attained. 

The other two variable reference outputs were manipulated such as to have the lowest exit 

coolant temperature of the condenser and less compressor power consumption. The PID 

performance became unstable beyond the values shown on Table 4-2 and output response 

figures. Hence, it can be concluded that the LQI and MPC controllers yielded the lower energy 

consumption. In terms of overshoot/undershoot and settling time, LQI and MPC had very 

similar performances overall with minimal or no overshoot/undershoot, but MPC had a better 
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transient speed as it converged faster, especially for the compressor’s electric power. The PID 

controller, on the other hand, had high and multiple overshoot/undershoot cycles before 

reaching steady state. 

The control signals shown in Figures 7-6, 7-7, 7-8, 7-9 and 7-10 show that the LQI controller 

had the lowest oscillations and was far away from the dashed saturation lines. The MPC 

controller had decent control signals for all inputs except the inlet coolant temperature of the 

condenser. As there were sharp single cycle oscillation that reached the saturation point. PID 

controller applied control inputs had the highest frequency of decaying oscillations, but with 

lower amplitude than the MPC controller.  

 

Figure 7-1: Output responses due to step change in cooling load by 200 W 
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Figure 7-2: Output responses due to step change in cooling load by 600 W 

 

Figure 7-3: Output responses due to step change in cooling load by 1200 W 
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Figure 7-4: Output responses due to step change in cooling load by 2000 W 

 

Figure 7-5: Output responses due to step change in cooling load by 3000 W 
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Figure 7-6: Control signals due to step change in cooling load by 200 W 

 

 

Figure 7-7: Control signals due to step change in cooling load by 600 W 
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Figure 7-8: Control signals due to step change in cooling load by 1200 W 

 

Figure 7-9: Control signals due to step change in cooling load by 2000 W 
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Figure 7-10: Control signals due to step change in cooling load by 3000 W 

7.2 Trajectory Tracking – Leaving Chilled liquid Temperature 

In this test, two values were selected from Table 4-3 for performance comparison between the 

controllers. The output response of the closed-loop system using PID, LQI and MPC 

controllers due to a step change on the exit chilled liquid temperature of the evaporator - at 

t = 10 seconds) - by 1 °C and 2 °C are shown in Figures 7-11 and 7-12. The control input 

signals waveforms are given in Figures 7-13 and 7-14. 

The output response to reach the desired new set-point temperature of the leaving 

evaporating liquid was accompanied with one or more oscillations when PID controllers were 

used. Yet, the PID controller had the fastest settling time (irrespective of the constant 

oscillations at 2 °C). On the other hand, the LQI and MPC controllers had an overdamped 

response (i.e. 0% overshoot/undershoot). MPC were slowest among the other two controllers 

with a settling time of around 50 seconds. All controllers achieved zero tracking error at the 

end of the 100 seconds simulation window. 

As with the previous test, the LQI regulated the cooling load with almost zero 

overshoot/undershoot and very fast settling time. MPC quickly regulated the cooling capacity 

but at the expense of an undershoot of less than 100 W at 2 °C exit evaporating temperature, 
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which is a small value. PID controller however, experienced several oscillations with high 

impulse shape overshoots before reaching steady state. Overall, all controllers regulated the 

cooling capacity with zero steady state error and settling time of less than 30 seconds. 

As with the previous test, better overall energy expenditure was noticed when using an LQI 

and MPC controllers as opposed to PID. Furthermore, multiple high amplitude decaying 

oscillations were noticed when using PID controllers. In contrast, LQI and MPC controllers 

reached steady state at low frequency and low amplitude overshoots/undershoots. 

In terms of control signals, sever and sharp oscillations were noticed in the evaporator’s flow 

when using PID. Furthermore, oscillations were also noticed on the inlet coolant temperature 

of condenser when using PID controllers. On the contrary, less oscillations and more natural 

waveforms for all control inputs were observed when using LQI and MPC controllers. For all 

controllers, the refrigerant flow rate was kept at minimum; and this explains the low power 

consumption to achieve the new desired exit evaporating chilled liquid temperature.  

 

Figure 7-11: Output responses due to a step change in exit chilled liquid temperature of 

evaporator by 1 °C 
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Figure 7-12: Output responses due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 

 

Figure 7-13: Control  signals due to a step change in exit chilled liquid temperature of 

evaporator by 1 °C 
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Figure 7-14: Control  signals due to a step change in exit chilled liquid temperature of 

evaporator by 2 °C 

7.3 Disturbance Rejection – Entering Chilled liquid of Evaporator 

As the chiller undergoes measured input disturbance, the effectiveness of the controllers to 

reject the entering chilled liquid of the evaporator change in temperature was examined. Two 

input disturbance values from Table 4-4 were select to demonstrate the controllers’ 

performance entering chilled liquid temperature of the evaporator for the values outlined in 

Table 4-4. The output response of the LQI controller due to a step change in the entering 

chilled liquid temperature of evaporator by 0.5 °C and 2.5 °C are shown in Figures 7-15 and 

7-16, respectively. The applied control inputs to regulate the system is for the same conditions 

are as illustrated in Figures 7-17 and 7-18, respectively. 

For the two outputs that need to be regulated, namely, exit chilled liquid temperature of the 

evaporator and the cooling capacity, the PID controller had the best response in regulating 

the output in terms of overshoot and settling time for the former. However, the PID was the 

least effective controller to regulate the cooling capacity since high amplitude overshoot were 

noticed at 2.5 °C and sharp oscillations at 0.5 °C. LQI had the least overshoot/undershoot 

and with quick response time. MPC controller was the slowest of the three controllers to 

reach steady state and the highest overshoot/undershoot among the three. Despite the high 
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relative overshoot/undershoot in the MPC, these values are very small in comparison to the 

actual cooling capacity the chiller can reach. 

All three controllers demonstrated similar transient behavior to meet the new setpoints on 

the exit coolant temperature of the condenser and compressor’s electric power. However, LQI 

and MPC have again demonstrated their ability to minimize the energy expenditure by 

having lower setpoints for these two outputs. 

To reject the applied input disturbance, all controllers relied on using three out of the four 

inputs. Hence, there were minor, if any, requirement to adjust the refrigerant flow rate of the 

condenser, and the system relied on changing the inlet temperature of the condenser’s coolant 

using the cooling tower and increasing the flow rate of the evaporator’s and condenser fluid 

to reject the input disturbance. 

 

Figure 7-15: Output responses due to a step change in entering chilled liquid temperature of 

evaporator by 0.5 °C 
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Figure 7-16: Output responses due to a step change in entering chilled liquid temperature of 

evaporator by 2.5 °C 

 

Figure 7-17: Control signals due to a step change in entering chilled liquid temperature of 

evaporator by 0.5 °C 
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Figure 7-18: Control signals due to a step change in entering chilled liquid temperature of 

evaporator by 2.5 °C  
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Chapter 8 Conclusions and Future Work 

 

In the framework of this thesis, the control of a vapor compression liquid chiller was 

examined. The chiller model was formulated by Yao et al. [28,46] using lumped parameter 

formulation and the coefficients were computed empirically. Hence, it is classified as a grey-

box model. The model’s published data in state-space representation were used for controller 

design. The number of outputs from the original model were modified and the outputs were 

classified based on their type. Thus, the model used to design the controller included four 

inputs (condenser coolant liquid entering temperature and flow rate, entering chiller 

temperature and refrigerant mass flow rate), four outputs (leaving condenser coolant and 

evaporator chilled liquid temperatures, compressor power and cooling capacity) and six states 

(condensing and evaporating temperatures, leaving condenser coolant and evaporator chilled 

liquid temperatures and shell wall temperatures of the condenser and evaporator) 

Given that the chiller model is MIMO, two optimal multivariable control techniques were 

chosen to synthesize the system. The results were compared with PID control. The first 

control technique is the linear quadratic integral control (LQI). This control technique is an 

extension of the linear quadratic regulator (LQR). The second applied technique is the model 

predictive control (MPC). To tune the weights of the MPC controller, genetic algorithms (GA) 

were used to find a nearly global optimal controller weights. 

The control performance was examined under three different tests, namely, a change in the 

chiller cooling load, a change in the exit chilled liquid temperature and a change in the 

entering chilled liquid temperature. The first two tests fall under the category of reference 

tracking and the latter is classified under disturbance rejection. The other two outputs of the 

system were adjusted such as to achieve the best overall system performance. Although a 

change in the leaving chilled liquid temperature is not frequent as chiller is designed to 

operate at a fixed supply and return chilled liquid temperature setpoints, some cooling plant 

operators increase this leaving temperature in winter (low load season) as another means of 

capacity control to reduce the number of operational chillers and cut costs.  
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LQI yielded the best results in general, whilst MPC came in second. Many issues were 

encountered with PID controllers, such as tunning the system, algebraic discontinuities and 

instability due to the interference between the controllers. Furthermore, the LQI and MPC 

controller were able to lower the power consumption of the system by 10% to 20%. Although 

LQI controller performed better, the MPC controller introduced many features the LQI 

controller lacked, such as the incorporation of input amplitude and input rate of change 

constraints. Also, the MPC is more suited for industrial applications as the optimization is 

done online rather than offline. Putting the difference aside, both LQI and MPC controller 

proved to be very efficient in reference tracking, regulation and disturbance rejection. 

For future work, a more sophisticated chiller model with more states shall be investigated. 

In addition, integrating the chiller model along with the ancillary equipment such as the 

cooling tower and pumps would give more resolution to the controller performance. With this 

configuration and all the equipment working with each other, the need for a supervisory and 

local controller is inevitable. Therefore, machine learning approaches such as neural 

networks and neuro-fuzzy would be a good approach to have as a supervisory controller, 

whilst multivariable control techniques can be deployed as local controllers. As for the 

presented controllers, the addition of unmeasured noise to the system can be investigated. 

Also, the use of a different cost function (other than the quadratic cost function) for the MPC 

controller or a different variation of MPC controllers - such as distributed model predictive 

control, adaptive model predictive control, economic MPC - could yield better overall results.  
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