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2. Abstract

In the Hudson Lab, which is focused on discovering new antibiotics, bacteria samples are

taken from the environment and cultured in large quantities. Then they are tested for antibiotic

resistance before they are sequenced and their secondary metabolite compounds are extracted.

This is both a lengthy and expensive process that becomes more and more difficult as the number

of samples one is working increases. This project assessed a different approach to rejuvenate

antibiotic development with antiSMASH. antiSMASH is an online tool created by collaborators

from many different institutions that uses profile Hidden Markov Models (pHMMs) to detect

gene clusters which produce secondary metabolites in bacteria. The antiSMASH tool has its own

repository of these “profiles” which are position specific information about an amino acid from a

protein encoding gene derived from multiple sequence alignments. Once a genome is entered

into antiSMASH, if these profile modules are detected and they are outputted to the user if a

certain metabolite/cluster is present. Many gene clusters are known to produce metabolites with

antimicrobial properties which the antiSMASH tool could potentially detect. Using this tool, the

goal was to identify a potential pipeline of antibiotic discovery that would be a great

improvement in time and reduce costs by using the tool as a screen of a possible viable candidate

for antibiotics. In this project 30 genomes were used and fed into antiSMASH. They were broken

down into positive and negative controls, known producers and unknown producers. We then

looked at the tools ability to screen for antibiotics in each of those data types.
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5. INTRODUCTION

Background & Relevance of this Project

The creation of a drug or any new form of medicine has long been known to be a long

term, difficult and costly process, that far more often than not ends in failure. To be exact,

approximately 90% of all drugs that have advanced to phase I clinical trials fail (Sun et al.,

2022). This statistic doesn't even include drugs that failed in pre-clinical trials. The estimated

time to develop a drug from start to finish is approximately 12 years at a cost of 2 billion dollars

(Mohs & Greig, 2017).

This is especially true for antibiotics. Along with the aforementioned problems,

antibiotics also face the compounded problems of rising inefficacy and a multi-decade long

discovery void which has gone on for the last 30 years. These factors made antibiotic

development risky due to the great costs and very little return. But what if there was an

alternative method to finding antibiotics that would drastically reduce costs and speed up

production time? This really isn’t a magic bullet but rather using all the tremendous

advancements made in genomics and sequencing technology to our advantage. Since the advent

of next generation sequencing technologies in the mid-2000s, there has been an explosion in

sequencing data which has led to various databases with genomic information (Muir et al.,

2016). And better yet this information is all freely available.

The use of this freely available data lies at the heart of this project. The antiSMASH

software tool was created specifically to utilize this data. antiSMASH is able to take users into

genomic sequence and find gene clusters that produce secondary metabolites (non-essential to
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cellular life) in bacteria (Medema et al., 2011). Many of these secondary metabolites are the

source of antibiotics.

I propose and examine the viability of the following workflow where antiSMASH is at

the beginning of the antibiotic discovery process. A lab or group of researchers have a bacterium

which they presume might produce antibiotics. They sequence its genome and use antiSMASH

for genome mining. If the results look favorable or provide interesting leads, that is when the true

experimentation and tests are done to prove that the bacterium has antibiotic-production

capabilities. This workflow has the potential to massively reduce the time, cost and effort of

discovering antibiotics as a lot of the guess work has been removed. Only targets with genomic

potential are chosen via antiSMASH, which would lead to a more efficient use of time and

resources.

Current crisis of antibiotic resistance

One of the most pressing challenges plaguing the scientific community is that of

antibiotic resistance. Antibiotic resistance describes bacterial pathogens that are multidrug

resistant and do not respond to therapeutic treatment in clinical settings (Akova, 2016). Any

bacteria can exhibit antimicrobial resistance (AMR) from a particular drug but still be

susceptible to others (Akova, 2016). The true danger and threat lie when these infection-causing

bacteria are resistant to many antibiotics and chemotherapeutic agents (Nikaido, 2009). These

bacteria are now often responsible for infections that are difficult to treat by conventional

antibiotics, if not outright untreatable (Frieri et al., 2017). Take for example the infamous case of

a 90-year-old Nevada woman who died in 2016 from a bacterial infection resistant to every
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available antibiotic in the US (Hudson, 2021). This development coupled with a sparse drying up

of antibiotic development documents a bleak picture for the future. Antibiotic resistance can be

observed in two ways, microbiologically or clinically (MacGowan & Macnaughton, 2017).

Microbiological resistance describes when a genetically determined resistance mechanism is

present in the bacteria genome (MacGowan & Macnaughton, 2017). This mechanism can be

acquired via other bacteria (i.e., horizontal gene transfer) or mutation. Antibiotic resistance can

be an intrinsic feature in some bacterial species. For example, take Gram-positive organisms

being resistant to colistin or Enterobacteriaceae to glycopeptides (MacGowan & Macnaughton,

2017)

Acquisition of resistance

Bacteria can acquire resistance in a few different ways, which all revolve around the

same concept. That is, the acquisition of gene(s) that encodes for a resistance mechanism. Here

are the three main ways as illustrated by Figure 1. 1) Conjugation describes the direct cell to cell

contact between two bacterial cells resulting in a plasmid transfer between a susceptible cell and

one that already has resistance genes (MacGowan & Macnaughton, 2017). 2) Transduction refers

to the transfer of bacterial DNA with resistant genes via bacteriophage. This occurs when a

bacteriophage infects a bacterium for replication. The viral DNA and host DNA with resistant

genes are then integrated into new phages created inside the host cell. Once those phages leave

the host cell, they now contain newly authored resistance genes (MacGowan & Macnaughton,

2017). 3) Transformation, which references the up-take of DNA with resistance from the

environment by the bacterial cell (MacGowan & Macnaughton, 2017).
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Figure 1. Ways Bacteria Acquire Resistance genes. Overview of the three ways bacterial cells

acquire resistance genes and become resistant to antibiotics. Conjugation is where a susceptible

bacterial cell comes into contact with another bacterial cell with a resistant gene. They share

DNA and the susceptible cell becomes resistant. Transformation is when bacteria take up DNA

with resistant genes from the environment and incorporate it into the genome. Transduction is

when a bacteriophage uses a bacterial host with resistant genes for replication and incorporates

their DNA with the bacterial cell. Once they leave, they serve as a vector and are able to pass

resistant genes to other cells. [Created with BioRender.com]
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Mechanisms of Resistance

There are a number of ways bacteria can be resistant and ward off the effects of

antibiotics. One way briefly described earlier was intrinsic resistance. In this case, bacteria are

able to resist and negate the action of an antibiotic simply based on their structural or functional

characteristics like the absence of a specific susceptible target of an antibiotic (Blair et al., 2015).

A great example of this is with the antibiotic daptomycin which is active against Gram-positive

bacteria but has no effect against Gram-negative bacteria. The reason for this comes down to the

difference in the cell membrane composition of these bacterial types. Gram-negative bacteria

have a lower proportion of anionic phospholipids in the cell membrane than Gram-positive

bacteria do. This diminishes the efficacy of daptomycin whose antimicrobial activity depends on

its Ca2+-mediated insertion into the cell membrane (Blair et al., 2015).

Additionally, there has been the identification of genes that are responsible for intrinsic

resistance in bacteria to different antibiotic classes most notably β-lactams, fluoroquinolones and

aminoglycosides (Blair et al., 2015). For example, molecular experiments performed by

researcher Anne Liu et al at the University of California Los Angeles identified close to o 4,000

single-gene knockouts that when performed increase Escherichia coli susceptibility to antibiotics

like rifampicin, triclosan, nitrofurantoin, aminoglycosides and some β-lactams (Liu et al., 2010).

Besides intrinsic resistance, bacteria can develop resistance to antibiotics through other

means. One way could be through target modification and change. This is when a molecular

target of a specific antibiotic undergoes changes that render the antibiotic ineffective. Often this

comes down to point mutations in select genes resulting in rise in resistance (Wright, 2011). An

example of this is with ciprofloxacin, a synthetic fluoroquinolone antibiotic that targets type IIA
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topoisomerases. A single mutation in target genes like gyrA, where a serine is changed to an

amino acid with a bulkier side-chain, often leads to fluoroquinolone resistance in those bacterial

cells (Wright, 2011).

Another way is through the bacterial cell’s ability to remove and eject antibiotic

molecules. This is accomplished by the efflux pump. An efflux pump are composed of cell

membrane transport proteins whose role is to rid the cell of toxic substances (including

antibiotics) and eject them into the environment (Webber & Piddock, 2003). While many efflux

pumps are narrow and allow for substrate specificity, there are some that are able to transport a

wide range of structurally dissimilar substrates and are known as multidrug resistance (MDR)

efflux pumps (Blair et al., 2015). While it’s been shown that almost all bacteria carry the genes to

code such a protein, the problem arises when they are overexpressed, as shown in Figure 2. This

overexpression is possibly due to a point mutation, which leads to high levels of resistance to

antibiotics (Blair et al., 2015).
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Figure 2. Efflux pump ejection of antibiotic particles. This Figure shows the effect that efflux

pump overexpression has on antibiotic resistance. The left side of the Figure shows a standard

cell with an efflux pump. Even though almost all bacterial cells have an efflux it’s normally not

enough to prevent antibiotic activity in the cell. On the right side of the cell, overexpression of

the efflux pump leads to a rapid removal of a large amount of the antibiotic molecules from the

cell. [Created with BioRender.com]

Lastly there is the mechanism of chemical or enzymatic modifications of the antibiotic.

This is thought to be the most effective tool that bacteria have in counteracting antimicrobials

(Wright, 2011). In processes related to this mechanism, the bacterial cell is able to directly

interfere and change the chemistry or structure of antibiotic products and render them ineffective.

This was first observed in the early 1940s when scientists took note of penicillin inactivating

β-lactamase activity which degraded and destroyed penicillin (De Pascale & Wright, 2010).

Another example of this mechanism is when the bacteria adds to chemical groups to vulnerable

sites on the antibiotic. This induces antibiotic resistance by preventing antibiotics from binding

to their target site/protein due steric hindrance (Blair et al., 2015).
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History and Discovery of antibiotics

Ever since their inception almost a century ago (Kingston, 2000), antibiotics have proven

as one of the most significant discoveries in modern medicine. For centuries prior to their

discovery and production, bacterial pestilence used to ravage humanity and human civilizations.

Each epoch of human history has been dominated by waves of infections such as syphilis,

typhoid fever, and tuberculosis (Mohr, 2016), but the discovery of antibiotics have leveled the

playing field and even changed the game in regard to human health and life span. Today,

antibiotics have a much wider range of use in a variety of different fields and industries. This is a

cause for concern for it is the rampant overuse of these drugs that is believed to be the cause of

the great increases in the number of bacteria that are resistant to antibiotic treatment. This has a

tremendous impact on all facets of modern society that regularly use and have been reliant on

antibiotics.

What makes antibiotic creation and technology so intriguing and revolutionary is that it

was one of the first instances where we were able to harness and genetically manipulate an

already existing organism and use the resulting product in humanity's favor. The term antibiotic

can be used to describe a molecule or a chemical substance created by one organism to inhibit

the growth and proliferation of a microorganism (Clardy et al., 2009). Antibiotics can be derived

from a number of different sources. One method through which antibiotics can be obtained is

through the natural processes of biosynthesis. As previously stated, antibiotics can arise as the

natural by-product of a biochemical pathway in certain bacterium or fungus. For example,

Penicillin, discovered in the 1940s by Alexander Flemming, arose from what was described as

“mold juice” (Alexander Fleming Discovery and Development of Penicillin - Landmark, n.d.).
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This juice was noted for its ability to kill and neutralize other harmful bacteria like

Streptococcus, and Meningococcus (Alexander Fleming Discovery and Development of

Penicillin - Landmark, n.d.). Flemming and others knew how remarkable this discovery was and

the importance of this mystery mold. Using a wide array of processes and assays like

fermentation, scientists were able to finally isolate pure penicillin for use and distribution

(Alexander Fleming Discovery and Development of Penicillin - Landmark, n.d.). This case of

antibiotic production is probably one of the most famous and well-known examples of how it can

be done, but technology and science has progressed a very long way since then and scientists and

pharmaceutical companies now have means to mass produce a continual supply of antibiotics.

Some means still have their basis in naturally occurring antibiotics while others are more

synthetic. Take for example ampicillin. While its main backbone and structure is derived from

natural produced/occurring penicillin, scientists were able to extrinsically alter its structure and

function by adding an amino group, a benzylpenicillin molecule, creating a new class of drug

with different levels of activity and effectiveness (Raynor, 1997).

How antibiotics are made

Remarkably, the basis of their creation and production has not changed much since

Flemming accidentally identified and produced penicillin. Albeit the process is a whole lot more

industrialized and scaled up. It all starts with finding and obtaining a desired organism that is

suspected to have antimicrobial properties. The organism must be isolated for researchers to be

able to generate pure cell cultures (How Antibiotics Are Made, n.d.). These cultures are grown

and harvested in environments suitable for thriving like an agar plate or suspension flasks
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containing food and other nutrients (How Antibiotics Are Made, n.d.). These cultures are then

transferred to containers called “Seed Tanks''. These containers are designed to provide the most

ideal conditions for microorganism growth [1]. Key ingredients like warm water, carbohydrate

rich foods like glucose or other sugars, alcohols, nitrogen sources along vital growth factors like

vitamins, amino acids are all needed to make these seed tanks a hotbed of activity and perfect for

harvesting bacteria (How Antibiotics Are Made, n.d.). The next step in the process of antibiotic

manufacturing is fermentation. Very similar to the seed tank, a fermentation tank is set up

containing growth media from the seed tank and provides much more room and area for growth.

Additionally, acids and bases are added regularly to regulate the pH which is vital at this stage

for growth. Here the bacteria can multiply and excrete their desired metabolite (How Antibiotics

Are Made, n.d.). After a few days the maximum amount of the metabolite will have been

produced. The metabolite is then purified and separated from the fermentation. The process

taken to purify is very specific to the properties and chemistry of the metabolite (How Antibiotics

Are Made, n.d.). Once purified the metabolite is then tested to see how it performs against

desired bacterial targets. If successful, it is packaged and shipped as a product, though before that

final step it must pass and go through rigorous quality control measures (How Antibiotics Are

Made, n.d.). This process, summarized by Figures 3 and 4, shows antibiotic development to be a

very intricate, expensive process which has contributed to research and development to be

stagnant and almost abandoned (Plackett, 2020). This situation is very alarming and is happening

at the worst possible time due to the rising rates of antibiotic resistance among our current drugs.

The United Nation approximates 700,000 people each year die of drug resistant infections, and

this could swell to a whopping 10 million people by 2050 (Plackett, 2020). Therefore, the main

goal of this project is to look at another possibility to aid and fast-track antibiotic development.
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There really has not been much in the way of circumventing this difficult process by leveraging

the high-throughput data now available thanks to whole-genome sequencing, metabolomics and

bioinformatics so far. By using antiSMASH, a web-based tool that allows for rapid genome-wide

identification and analysis of secondary metabolite biosynthesis gene clusters in bacterial

genomes, we looked to determine if researchers can determine whether a bacterial species has

antimicrobial properties just by examining its whole genome.
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Figure 3. Manufacturing process of antibiotics. First the desired organism is cultured and

suspended in a flask with required growing nutrients. This suspension is transferred to seed flask

to increase the and sustain growth before being placed in a fermentation tank where

microorganism growth explodes and produces desired metabolite. [ Taken from How Products

are made. Antibiotics.]
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Figure 4. Isolation and refining the metabolite product. This shows the process of isolating and

refining the metabolite product before packaging and shipping if deemed to be a successful

antibiotic product. Purification of the metabolite can be achieved by a number of different ways

i.e., ion-exchange or solvent extraction. Once isolated tests are performed to test efficacy. If

effective and pass quality assurance trials, it is a viable product ready to be shipped [Taken from

How Products are made. Antibiotics]
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Types of Antibiotics

Antibiotics can largely be broken down into at least 16 different types or classes (Yim et

al., 2006). What differentiates each of these classes are mainly their mechanism of action and

how they go about neutralizing a microbial threat (Alanis, 2005). Table 1 demonstrates this by

showing the classes and their main mechanism of action. Furthermore, the mechanisms of

antibiotics can be further classified into two larger categories depending on the effect they have

on pathogenic bacteria. Bacteria can be bactericidal or bacteriostatic. If an antibiotic is classified

as bactericidal, it is able to kill bacteria without the help of the host’s immune system (Static or

Cidal; Which Is Best? - Microbiology Nuts & Bolts, n.d.). If an antibiotic is classified as

bacteriostatic, it stops the pathogen from multiplying and allows for the host immune system to

kill the bacteria (Static or Cidal; Which Is Best? - Microbiology Nuts & Bolts, n.d.).

Additionally, there has also been the proliferation of synthetic biology in this domain.

This comes in the form of there being significant synthetic modifications in creation of some

antibiotic classes. For example, tetracycline and macrolide are now largely being produced with

fully synthetic platforms and completely in a laboratory setting (Mitcheltree et al., 2021). This

method of antibiotic production arose as a way to drastically increase the functionally and ability

of antibiotics. Scientists are faced with many challenges with the creation of natural or

semi-synthetic antibiotics due to the limitations and challenges linked to the rate of drug

discovery and the complexity of developing and modifying the chemical compounds found in

classes of antibiotics (Mitcheltree et al., 2021). By going through the synthetic route, scientists

look to alleviate these problems. This is because scientists would be able to keep structural
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changes and modifications that would be much more difficult to achieve by natural based

methods (Mitcheltree et al., 2021).

Table 1. Antibiotic classes and their mechanism of action (Yim et al., 2006).

Antibiotic classes Mechanism of action

penicillins, cephalosporins, carbapenems,

monobactams, daptomycin

Inhibition of cell wall synthesis

Tetracyclines, aminoglycosides, linezolid,

quinupristin-dalfopristin, ketolides,

macrolides, lincosamides

Inhibition of protein synthesis

Fluoroquinolones Inhibition of DNA synthesis

Rifampin Inhibition of RNA synthesis

Sulfonamides; trimethoprim Competitive inhibition of folic acid synthesis

Inhibition

Polymyxins Membrane disorganizing agents
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Advantage of computational methods

Due to rapid advancements in technology, computational methods are becoming more

and more necessary to solve important biological problems. The discovery of viable antibiotic

candidates could be one of those problems. This is the area that this project intends to investigate

in order to verify and offer an alternative way of tackling this problem by utilizing the advances

made in bioinformatics, statistics, etc. to aid in discovering new antibiotics. By utilizing genome

screening, we intend to speed up the discovery pipeline by pre-selecting promising candidates

from those results to then perform metabolite extraction. In essence, instead of starting the

antibiotic discovery pipeline from the organism level, we would start at the genomic level. One

of the things that makes this procedure feasible is the abundance and availability of data that we

benefit from today. Technologies like whole-genome sequencing are so cheaper than ever and

will continue to be affordable and available. Right now, there are databases with hundreds of

thousands of genome sequences of bacteria and organisms not well known or examined. This

approach also alleviates the need for the great investments or large amounts of time spent

looking for a viable organism and performing the research and development to create a viable

product as shown in Figure 3. Instead, we start with information and data that is abundant and

free to then harness the progress made in whole genome sequencing by using antiSMASH to find

gene clusters related to secondary metabolites in bacteria that have antibiotic properties.
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The Tool antiSMASH

he use of antiSMASH lies at the heart of this project. antiSMASH is an online based tool

that is able to detect and characterize biosynthetic loci of secondary metabolite compounds

(Medema et al., 2011). The first iteration of this tool was created in 2011 precisely to leverage

the advances made and diminished cost of genomic sequencing to detect gene clusters which far

outstrips the rate at which laboratory researchers are able to keep up and detect gene clusters

through experimental analysis (Medema et al., 2011). The tool works by first receiving a genome

sequence in the form of a file or accession number. The user then has the option to decide on a

number of features, downstream analysis and gene cluster types to specify in their search (Figure

5). The server then identifies gene clusters present. Then it aligns identified gene cluster regions

to other known gene clusters and shows what metabolites are related/linked to those clusters

(Figure 6). The NRPS (Nonribosomal peptides synthetases)/PKS (Polyketides ) are examples of

such gene clusters antiSMASH uses in alignment and holds particular interest to this project.

PKS are a class of naturally produced compounds that host a wide variety of

clinical/pharmaceutical properties such as anticancer and antibiotic activity (Gomes et al., 2013).

In a similar fashion, NRPS compounds are known for their prolific therapeutic/industrial usage

in the domains of antibiotics and immunosuppressant (Martínez-Núñez & López, 2016). The

NRPS/PKS are gene clusters synonymous with antimicrobial activity and antiSMASH servers

allow for automatic detection and annotation if present (Medema et al., 2011). The presence or

absence of these two clusters will play a key role in finding out whether a bacterial genome has

possible antibiotics capabilities.
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Continuing on in the pipeline, the server then presents all previously available secondary

metabolite gene analysis in one interactive view (Medema et al., 2011). At the core of

antiSMASH is the use of the HMMer3 tool. The HMMer3 tool uses profile Hidden Markov

Models (pHMM) to search for amino acid sequence translations of all the protein encoding genes

(Medema et al., 2011). pHMMs are tools that have long been used as a method of determining

homology (Johnson et al., 2010). They are a variant of Hidden Markov Models (HMM),

specifically related to biological sequences. They are probabilistic models that have been derived

from multiple sequence alignments, from which they are able to create a suitable scoring system

for detecting homologous sequences. They use position-specific information from alignments to

create a profile model in looking for homologous sequences (Johnson et al., 2010). The

antiSMASH server utilizes a number of pHMMs, from already existing to new ones created by

seed alignments (Medema et al., 2011). The overall pipeline for antiSMASH is as follows. A

genome sequence is uploaded to the server and then gene cluster identification is performed with

the use of pHMMs. Gene clusters are identified by locating clusters of signature gene pHMM

hits spaced with <10kb from each other. Flanking accessory genes to these gene clusters are

included as well. This is done by taking the last signature gene hit and extending it from 5kb -

20kb. This varies based on the type of the gene cluster. Then a slew of analyses can be performed

like chemical structure prediction, ClusterBlast, secondary metabolism Clusters of Orthologous

Groups (smCOG analysis) (Medema et al., 2011) (Figure 5).
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Figure 5. A picture of the antiSMASH server shell/user interface. Genomic data can be entered

in the form of a fasta file or accession number. Users can also curtail the strictness/specificity of

the search, more relaxed yielding more distant hits. Extra features for further analysis shown at

the bottom of the page.

Figure 6a. An example of the initial results from antiSMASH after a bacterial genome is

scanned. This is a summary of the gene clusters found and their secondary metabolites. The first
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section described as a genomic region lists the gene clusters detected and are able to be selected

for closer inspection. Below that, the tool summarizes the properties of each cluster. Type

indicates the type of metabolite it is predicted to produce. From & to describe location in the

genome, the most similar known cluster is the prediction of that secondary metabolite. Similarly

is the homology scoring of a queried cluster compared to a database cluster that produces

predicted metabolites.

Figure 6b. An example of a result query from an antiSMASH search. Very top regions of the

genome with identified clusters are shown. Below that is a gene map displaying the location of

the gene clusters, along with their type/function. Bottom half of the page shows results from the
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various analyses done by the server. Most relevant is MIBiG (Minimum Information about a

Biosynthetic Gene Cluster) comparison which shows other related homologous clusters and

metabolites they produce.

Figure 7. Adapted from antiSMASH: rapid identification, annotation and analysis of secondary

metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Figure gives an

outline of the antiSMASH analysis pipeline. Genetic data is given to the server, and gene clusters

are identified with pHMMs. Downstream analyses can be performed like: NRPS/PKS domain

analysis and annotation, chemical structure prediction, ClusterBlast gene cluster comparative

analysis, and smCOG secondary metabolism protein family analysis. The output is visualized in

an interactive web page
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Hidden Markov Models & Profile Hidden Markov Models

Hidden Markov Models (HMM) are named after Russian mathematician Andrey

Andreyevich Markov (Franzese & Iuliano, 2019). They are statistical models used to capture

information hidden from observable sequential symbols like a nucleotide sequence (Franzese &

Iuliano, 2019). In HMM, the system being modeled is assumed to be a Markov process where

the objective is to determine the hidden parameters from known parameters (Franzese & Iuliano,

2019). In bioinformatics, HMM are used to model biological sequences (Franzese & Iuliano,

2019). Profile HMMs are Markov models applied to protein families (Birney, 2001). They are

able to capture the evolutionary changes that have occurred in a set of related sequences by using

position-specific information about how conserved each amino acid based on a multiple

alignment (EMBL-EBI, n.d.).

These pHMMs work by first starting with a multiple sequence alignment (MSA). For

each alignment column or consensus column of a MSA, there is a corresponding “match state” in

the model. Each match state has 20 residue (amino acid) emission probabilities which model the

distribution of residues allowed in the column (Eddy, 1998). Along with this there’s also an

“insert” and “delete” state at each column to allow for insertion or deletion of one or more

consensus residues between one column and the next (Eddy, 1998). The probability of scoring

parameters in a pHMM are in the form of additive log-odds score created before alignment and

scoring of a query sequence (Eddy, 1998). If the probability of the match state transitioning to

another residue x is Px and the expected background frequency of x in the database is fx, then

the match state would be log(Px/fx) (Eddy, 1998).
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Biosynthetic Gene Clusters

Biosynthetic Gene Clusters, or simply gene clusters, are another key and important player

in this project. Gene clusters can be described as a grouping of genes that participate in the same

metabolic pathway (Rokas et al., 2020). These genes often reside next to each other on the same

chromosome, but this is not always the case. The primary goal of these gene clusters is to create

and synthesize secondary metabolites for the bacteria or fungi (Rokas et al., 2020). These

secondary metabolites, often called “natural products”, are compounds an organism produces

that are not needed for growth or the overall survival of the organism, but serve as important

tools for signaling interactions with the environment and protection against threats (Osbourn,

2010). These secondary metabolites are versatile and often hold significant pharmacological

value. Scientists have capitalized on their versatility and applied them in a variety of domains

like antibiotics, antitumor/anticancer agents, insecticides, immunosuppressants and herbicides

(Osbourn, 2010).
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6. METHODS

The main goal of this study is to determine whether the antiSMASH tool is an effective

resource in the development of antibiotics. Due to how cheap and available sequencing

technology is as well as the abundance of genomic data available, genome mining presents a real

opportunity to break the antibiotic discovery void. Figure 8 shows one example of a workflow

using antiSMASH. It shows the standard workflow of finding an antibiotic in the Hudson Lab

and how antiSMASH could disrupt and speed up this process. First is environment discovery

from which the bacterium is isolated. Tests are performed to check for resistance. Then

extraction is performed to get secondary metabolites of the bacteria from which antibiotic tests

are performed. If successful, these samples are sequenced and annotated. With antiSMASH, this

workflow would be fast tracked. After isolating the samples, the bacterial genomes would be

sequenced immediately and then passed into antiSMASH to perform cluster analysis to see if the

bacterial samples have the potential and capability to produce antibiotics.
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Figure 8. Antibiotic discovery workflow in Hudson Lab. An example of the standard workflow in

the Hudson Lab for discovering antibiotics. First, the bacterium is identified and retrieved from

the environment. The cells are isolated and tested whether or not they are susceptible to

antibiotics. The metabolites are extracted and then tested for antibiotic activity. If they show

signs of activity, the bacterial genome is sequenced and annotated. antiSMASH is proposed to

disrupt this process. By sequencing after isolation, researchers can perform annotation and

cluster analysis to see if secondary metabolites from the bacteria can potentially produce

antibiotics.

This project utilized antiSMASH as a screener of antibiotics by using the already existing

genomic data. First was the antiSMASH analysis of the positive controls from the Hudson Lab.

These five (5) positive controls are the genome sequences of bacteria that have proven to

produce antibiotics via the traditional workflow. These bacterial samples used were

Pseudomonas sp. RIT 623 (accession number SOZA00000000), Exiguobacterium sp RIT 594
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(accession number QPKF00000000), Acinetobacter sp RIT 592 (accession number

QPKU00000000), Exiguobacterium sp. RIT 452 (accession number QXJB00000000), and

Yimella sp. RIT 621 (accession number SEIP00000000). Negative controls used were in the form

of the reference genomes of the following bacterial species: Escherichia coli (accession number

NC_000913), Streptococcus pneumoniae (accession number NZ_CP020549), and Clostridium

perfringens (accession number NZ_CP075979). Two randomly generated DNA sequences,

called Genome_1 and Genome_2 were used as well. They were generated via The Sequence

Manipulation Suite (Stothard, 2000) DNA sequence generator.. Along with this we took the

genome sequence of Streptomyces rapamycinicus NRRL 5491 and shuffled its contents and

created a new genome “Shuffled_Genome.txt”. This was done via script in python used for the

file processing and then using file converter from “HIV Sequence Database” (Format

Conversion, n.d.) to convert text file generated from the script to fasta format to be used in

antiMSASH.These samples serve as examples of genomes that don’t have clusters that produce

antibiotics.

Next we used 19 samples for antiSMASH analysis. 9 of these samples were known

producers of antibiotics. These genomes were sourced from peer reviewed published scholarly

papers. The samples were: Streptomyces rapamycinicus NRRL 5491 (accession number:

CP085193), Streptomyces rapamycinicus SRMK07 (accession number: CP085309),

Streptomyces noursei ATCC 11455 (accession number: CP011533), Streptomyces venezuelae

ATCC 15439 (accession number: LN881739), Streptomyces filamentosus NRRL 15998

(accession number: ABYB00000000), Streptomyces griseus IFO 13350 (accession number:

AP009493), Streptomyces lincolnensis B48 (accession number: CP046024), Streptomyces
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ambofaciens ATCC 23877 (accession number: CP012382), Streptomyces atratus SCSIO ZH16

(accession number: CP027306).

The other 10 samples were randomly selected genomes of unknown characteristics. All

chosen bacteria will be sourced and verified using The Integrated Microbial Genomes &

Microbiomes (IMG/M) system. The IGM/M system is a public repository that houses publicly

available microbial genomes, fully annotated and detailed (Chen et al., 2021). The genomes

chosen were Ignavibacterium album JCM 16511 (accession number: CP003418), Streptomyces

sp. CLI2509 (accession number: CP021118), Streptomyces sp. WAC 01438 (accession number:

CP029601), Pseudomonas aeruginosa DSM 50071 (accession number: CP026680),

Streptomyces hawaiiensis NRRL 15010 (accession number: CP021978), Pseudomonas

aeruginosa DSM 50071 (accession number: CP012001), Streptomyces sp. S1D4-23 (accession

number: CP041613), Fischerella sp. NIES-3754 (accession number: AP017305), Streptomyces

lydicus WYEC 108 (accession number: CP029042) and Pseudomonas chlororaphis aurantiaca

464 (accession number: CP027742).

After being fed through antiSMASH each cluster of each genome was evaluated to see if

it holds antibiotic properties. The evaluation consisted of a screening of the secondary

metabolites produced to see if they were potential antimicrobials. This involved an analysis and

searching of literature of said secondary metabolites and their known properties and capabilities.

If found the genome was declared to be a potential candidate for antibiotics. Different analyses

were performed to assess the overall difference among the genome categories like comparing

average number of clusters, seeing the most abundant cluster types and metabolites, as well as

comparing the ratio of the number of clusters present versus the number clusters/metabolites had

antibiotic capabilities/potential.
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7. RESULTS

After each genome was fed through the antiMSASH server, key features were recorded

and stored in tabular form. This includes features such as Region, Type, distance/length of

cluster (From & To), Most Known Cluster and Similarity (%). Region describes the cluster and a

given area of the genome it is located in. To determine whether or not a specific cluster had

antibiotic potential, the compound given in “Most Known Cluster” was searched for in the

literature to indicate any evidence of antibiotic action or potential. If a connection was found that

compound would be highlighted in yellow and the organism would be declared a candidate for

being a potential antibiotic producer. This was represented in those species being bolded.

Positive Controls

Out of the 5 positive controls from the Hudson lab, antiSMASH gave back results

indicating that only 2 of the 5 could produce metabolites that had antibiotic potential. This is

shown in tables 2-6. These bacterial samples were the Acinetobacter sp. RIT 592 and

Pseudomonas sp. RIT 623. The metabolites with antibiotic connections/potential are Lankacidin

C (Cai et al., 2020), Pseudopyronine A/pseudopyronine B (Bouthillette et al., 2017), Rhizomide

A/rhizomide B/rhizomide C (Qi et al., 2021), Berninamycin K/berninamycin J/berninamycin

A/berninamycin B (Malcolmson et al., 2013), and Fengycin (Medeot et al., 2020). NRPS or PKS

related cluster types are the most abundant cluster types present in the positive controls. This is

followed by terpene and betalactone cluster types.
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Table 2. Pseudomonas sp. RIT623

Region Type From To Most similar known cluster Similarity (%)

2.1 NAGGN 42,676 57,575 - -

4.1 redox-cofactor 56,992 79,139 lankacidin C 13

6.1 PpyS-KS 186,487 197,805 pseudopyronine
A/pseudopyronine B

37

15.1 NRP-metallophoe, NRPS 51,137 107,419 Pf-5 pyoverdine 11

37.1 NRPS 1 37,589 MA026 12

47.1 NRP-metallophoe, NRPS 1 34,514 variobactin A/variobactin B 14

62.1 NRPS 1 14,591 Pf-5 pyoverdine 9

63.1 NRPS 1 14,095 putisolvin 63

64.1 NRPS 1 13,527 pyoverdine SMX-1 9

67.1 NRPS 1 9,413 vacidobactin A/vacidobactin B 11

68.1 NRPS 1 9,118 rhizomide A/rhizomide
B/rhizomide C

100

71.1 NRPS 1 8,037 rhizomide A/rhizomide
B/rhizomide C

100

Table 3. Yimella sp. RIT 621

Region Type From To Most similar known cluster Similarity (%)

2.1 NAPAA, terpene 195,227 244,323 carotenoid 33

2.2 butyrolactone 322,234 328,720 - -

12.1 LAP, thiopeptide 17,719 50,247 - -

Table 4. Exiguobacterium sp. RIT 452

Region Type From To Most similar known cluster Similarity (%)

1.1 terpene 69,899 90,726 carotenoid 33

1.2 NRPS-independent-siderop
hore

505,835 519,165 - -

4.1 terpene 160,337 181,161 - -
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Table 5. Acinetobacter sp. RIT 592

Region Type From To Most similar known cluster Similarity (%)

8.1 betalactone 82,636 104,201 - -

10.1 arylpolene 72,642 99,167 berninamycin K/berninamycin
J/berninamycin A/berninamycin

B

16

22.1 betalactone 22,834 51,933 fengycin 13

61.1 ranthipeptide 1 11,433 - -

402.1 cyclic-lactone-autoinducer 1 2,961 - -

657.1 cyclic-lactone-autoinducer 1 1,771 - -

Table 6. Exiguobacterium sp. RIT 594

Region Type From To Most similar known cluster Similarity (%)

1.1 terpene 156,066 176,513 - -

1.2 terpene 1,802,363 1,823,190 carotenoid 33
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Figure 9. A representation of the secondary metabolites produced by the positive controls data type.

Vast majority of clusters, 37.5%, produced no metabolites, as predicted by antiSMASH. Following that

was Pf-5 pyoverdine at 8.3%, carotenoid at 8.3% and rhizomide A/rhizomide B/rhizomide C, which

does demonstrate antibiotic activity (Qi et al., 2021) at 8.3%.
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Figure 10. The proportion of cluster types most abundant among the positive control data types.

NRPS cluster types represent the majority of the gene clusters in the positive controls at 34.6%,

followed by terpene cluster types at 15.4% and betalactone at 7.7%.
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Negative Controls

None of the 6 bacterial samples chosen for negative control showed any potential for

antibiotic activity. The reference genomes for Streptococcus pneumoniae, and Clostridium

perfringens produced results that showed clusters but no predicted metabolites for them (Tables

8 & 9). The E. coli reference genome showed 2 clusters producing metabolites but these had no

link to antibiotics or any antimicrobial properties (Table 7). The 2 randomly generated genomes

and the shuffled DNA sequence as well as the randomly shuffled sequence sample showed “no

results” from the antiSMASH Tool (Figure 8).

Table 7. E. Coli reference genome: NC_000913

Region Type From To Most similar known cluster Similarity

1 NRP-metallophore, NRPS 594,157 649,297 enterobactin 100%

2 thiopeptide 940,340 966,632 O-antigen 14%

Table 8. Streptococcus pneumoniae reference genome: NZ_CP020549

Region Type From To Most similar known cluster Similarity

1 T3PKS 1,616,501 1,657,673 -

Table 9. Clostridium perfringens reference genome: NZ_CP075979

Region Type From To Most similar known cluster Similarity

1 cyclic-lactone-autoinducer 1,088,282 1,099,897 -

2 cyclic-lactone-autoinducer 2,030,346 2,051,145 -

3 ranthipeptide 2,440,643 2,462,226 -
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Figure 11. A screenshot of the antiSMASH output generated by the 2 randomly generated DNA

sequences and the shuffled DNA sequence. The tool was unable to identify any clusters or

biological relevant data from the sequences.

Figure 12. This Figure shows the proportion of secondary metabolites produced by clusters of

the negative controls. The overwhelming majority of clusters produced no metabolites which is to
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be expected. This was followed by O-antigen and enterobactin, neither of which had antibiotic

properties.

Figure 13. Summary of cluster types present in negative control. This is a representation of the

cluster types detected by antiSMASH in the negative control data type.

Cyclic-lactone-autoinducer was the most abundant cluster type at 40%, followed by thiopeptide,

T3PKS, and ranthipeptide all at 20%.
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Known Producers

Among the samples of the known producers various different trends were observed. In

particular, analysis and breakdown of the cluster types present in each of these genomes. Figure

9 breaks down the spread of these cluster types. Overall the most dominant cluster types are

Terpene, T1PKS related and NRPS related clusters. These cluster types account for 56.2% of the

cluster types present. There was a far greater distribution in terms of the secondary metabolites

present among the samples. Figure 10 shows the spread and how much more various the number

of metabolites predicted were. Steffimycin D (Koyama et al., 2020) (present in Streptomyces

rapamycinicus NRRL 549, Streptomyces rapamycinicus SRMK07, Streptomyces filamentosus

NRRL 15998 and Streptomyces atratus SCSIO ZH16), Notonesomycin A (Sasaki et al., 1986)

(present in Streptomyces rapamycinicus NRRL 5491, Streptomyces rapamycinicus SRMK07, and

Streptomyces filamentosus NRRL 15998), Stenothricin (Liu et al., 2014) (present in Streptomyces

filamentosus NRRL 15998, Streptomyces lincolnensis B48, and Streptomyces atratus SCSIO

ZH16), Istamycin (Slattery et al. 2001) (present in Streptomyces venezuelae ATCC 15439,

Streptomyces griseus IFO 13350, and Streptomyces lincolnensis B48) and Lankacidin C (Cai et

al., 2020) (present in Streptomyces rapamycinicus NRRL 5491, Streptomyces rapamycinicus

SRMK07 and Streptomyces noursei ATCC 11455) were the most commonly predicted secondary

metabolites that could possess antimicrobial properties. In total they accounted for 30.8% of the

predicted secondary metabolites. These secondary metabolites along with being the most

abundant, also show evidence for antibiotic properties.
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Figure 14. Cluster types in the known producers. A graphical representation showing the

proportion of the various cluster types among the “known producers”. The graph was created

with a cutoff to only record the frequency of cluster types that appear greater than 2 times in the

data type. The largest common occurring cluster type is Terpene at 22.4.% followed by T1PKS,

14.9% and NRPS types at 10.9%.
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Figure 15. Secondary metabolites produced by known producers. A representation of the

proportion of secondary metabolites found in the known producers. The graph was created with

a cutoff to only record the frequency of secondary metabolites that appear greater than once in

the data type. Seffimycin D was the most common secondary metabolite of the known producers

with 9.5% of clusters producing it. This was followed by Lankacidn C, 7.1%, Istamycin, 7.1%

and Notonesomycin A at 7.1% as well.
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Table 10. Streptomyces rapamycinicus NRRL 5491

Region Type From To Most similar known cluster Similarity

1 T3PKS,NRPS,betalactone,
T1PKS

1 106,876 lobophorin A 36%

2 NRP-metallophore,NRPS 490,714 549,079 coelichelin 100%

3 butyrolactone 859,144 868,463 cyphomycin 9%

4 T1PKS 1,024,465 1,112,648 azalomycin F3a 100%

5 T1PKS 1,298,486 1,437,158 nigericin 66%

6 T1PKS 1,439,806 1,483,779 salinomycin 8%

7 T1PKS 1,585,031 1,663,130 efomycin K/efomycin L 95%

8 redox-cofactor 1,690,280 1,712,398 lankacidin C 13%

9 hserlactone 1,836,607 1,857,362 heronamide A/heronamide
B/heronamide C/heronamide

D/heronamide E/heronamide F

8%

10 butyrolactone 1,867,930 1,878,862 - -

11 NRPS,T1PKS 2,083,936 2,136,122 meilingmycin 4%

12 NRPS,T3PKS, other 2,194,053 2,294,639 feglymycin 84%

13 T1PKS, NRPS 2,376,523 2,596,226 thiazostatin/watasemycin
A/watasemycin

B/2-hydroxyphenylthiazoline
enantiopyochelin/isopyochelin

86%

14 lanthipeptide-class-i 2,599,171 2,623,572 steffimycin D 16%

15 lassopeptide 2,763,243 2,785,685 - -

16 terpene 2,825,088 2,847,488 hopene 76%

17 T2PKS 3,223,797 3,296,312 spore pigment 83%

18 T1PKS 3,440,208 3,501,621 notonesomycin A 10%

19 NRPS-independent-siderop
hore

3,744,643 3,755,156

20 NRPS-independent-siderop
hore

4,931,246 4,942,037 legonoxamine A/desferrioxamine
B/legonoxamine B

83%

21 T1PKS,NRPS 5,234,705 5,353,578 alchivemycin A/alchivemycin B 88%

22 terpene 6,279,853 6,301,507 TVA-YJ-2 9%

23 ladderane,arylpolyene,NRP
S

6,595,547 6,698,033 kitacinnamycin A/kitacinnamycin
B/kitacinnamycin
C/kitacinnamycin

54%
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D/kitacinnamycin
E/kitacinnamycin F

24 indole 6,995,321 7,016,463 5-isoprenylindole-3-carboxylate
β-D-glycosyl ester

61%

25 NRPS 7,233,050 7,275,286 ochronotic pigment 75%

26 ladderane,arylpolyene 7,325,972 7,367,065 cinnapeptin 50%

27 T1PKS 7,536,753 7,718,885 desulfoclethramycin/clethramycin 69%

28 terpene 8,222,414 8,242,984 - -

29 ectoine 8,900,244 8,910,648 ectoine 100%

30 NRPS-independent-siderop
hore,T1PKS

9,081,916 9,139,461 peucechelin 20%

31 terpene 9,152,238 9,168,506 aurachin C/aurachin D/aurachin
SS

20%

32 T1PKS 9,476,760 9,606,190 akaeolide 20%

33 T1PKS,nucleoside,NRPS 9,758,976 10,004,255 rapamycin 100%

34 terpene 10,130,161 10,149,631 2-methylisoborneol 100%

35 terpene 10,565,677 10,585,422 pristinol 100%

36 T1PKS,ladderane,arylpolye
ne

10,679,301 10,730,137 cinnapeptin 46%

37 NRPS,T1PKS 10,976,611 11,092,238 meridamycin 76%

38 T1PKS 11,099,441 11,181,894 hygrocin A/hygrocin B 93%

39 T1PKS,hglE-KS 11,336,115 11,459,137 hexacosalactone A 79%

40 NRPS 11,477,449 11,554,061 cyclofaulknamycin 8%

41 terpene 11,606,908 11,627,280 brasilicardin A 38%

42 terpene 11,765,022 11,785,930 clipibycyclene 4%

43 betalactone 11,969,269 11,998,132 Sch-47554/Sch-47555 7%

44 T1PKS 12,035,215 12,100,906 linearmycin A/linearmycin
B/linearmycin C/linearmycin C

37%

45 NRPS 12,222,724 12,274,150 desulfoclethramycin/clethramycin 4%

46 T1PKS 12,289,607 12,332,156 geldanamycin 39%
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Table 11. Streptomyces rapamycinicus SRMK07

Region Type From To Most similar known cluster Similarity

1 T1PKS 1 35,972 venturicidin D/venturicidin
E/venturicidin F/venturicidin A

28%

2 T1PKS 144,136 282,790 nigericin 66%

3 T1PKS 285,438 329,410 salinomycin 8%

4 T1PKS 430,662 508,760 efomycin K/efomycin L 95%

5 redox-cofactor 535,910 558,028 lankacidin C 13%

6 hserlactone 682,236 702,991 heronamide A/heronamide
B/heronamide C/heronamide

D/heronamide E/heronamide F

8%

7 butyrolactone 713,559 724,491 - -

8 NRPS,T1PKS 929,567 981,753 meilingmycin 4%

9 NRPS,T3PKS,other 1,039,683 1,137,114 feglymycin 84%

10 T1PKS,NRPS 1,218,996 1,438,690 rifamycin 15%

11 lanthipeptide-class-i 1,441,635 1,466,036 steffimycin D 16%

12 lassopeptide 1,605,708 1,628,150 - -

13 terpene 1,667,552 1,689,952 hopene 76%

14 T2PKS 2,066,256 2,138,771 spore pigment 83%

15 T1PKS 2,282,668 2,344,081 notonesomycin A 10%

16 NRPS-independent-sidero
phore

2,587,103 2,597,615 - -

17 NRPS-independent-sidero
phore

3,773,728 3,784,519 legonoxamine
A/desferrioxamine
B/legonoxamine B

83%

18 T1PKS,NRPS 4,077,188 4,178,506 alchivemycin A/alchivemycin B 88%

19 terpene 5,104,801 5,126,455 TVA-YJ-2 9%

20 ladderane,arylpolyene,NR
PS

5,420,493 5,522,978 kitacinnamycin
A/kitacinnamycin
B/kitacinnamycin
C/kitacinnamycin
D/kitacinnamycin

E/kitacinnamycin F

54%

21 indole 5,820,148 5,841,290 5-isoprenylindole-3-carboxylate
β-D-glycosyl ester

61%

22 NRPS 6,057,874 6,100,110 ochronotic pigment 75%
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23 ladderane,arylpolyene 6,149,892 6,192,275 cinnapeptin 50%

24 T1PKS 6,361,576 6,543,708 desulfoclethramycin/clethramyci
n

69%

25 terpene 7,047,234 7,067,804 - -

26 ectoine 7,725,059 7,735,463 ectoine 100%

27 NRPS-independent-sidero
phore,T1PKS

7,906,733 7,964,277 peucechelin 20%

28 terpene 7,977,054 7,993,322 aurachin C/aurachin D/aurachin
SS

20%

29 T1PKS 8,301,577 8,431,007 lydicamycin 28%

30 T1PKS,nucleoside,NRPS 8,583,793 8,830,075 rapamycin 100%

31 terpene 8,954,977 8,974,447 2-methylisoborneol 100%

32 terpene 9,390,245 9,411,345 pristinol 100%

Table 12. Streptomyces noursei ATCC 11455

Region Type From To Most similar known cluster Similarity

1 T3PKS,lassopeptide 86,199 139,067 A54145 5%

2 terpene 223,236 243,282 legonindolizidine A6 12%

3 T1PKS 350,589 409,828 simocyclinone D8 8%

4 terpene 584,233 603,773 - -

5 terpene 688,481 708,120 bombyxamycin
A/bombyxamycin B

3%

6 T1PKS 769,835 911,487 nystatin A1 100%

7 terpene 1,065,461 1,085,454 - -

8 redox-cofactor 1,211,303 1,233,379 lankacidin C 20%

9 butyrolactone 1,244,054 1,254,532 merochlorin A/merochlorin
B/deschloro-merochlorin
A/deschloro-merochlorin
B/isochloro-merochlorin
B/dichloro-merochlorin

B/merochlorin D/merochlorin C

4%

10 butyrolactone,NAPAA 1,488,958 1,524,741 galtamycin C/galtamycin D 16%

11 T1PKS 1,644,557 1,690,956 actinomycin D 10%

12 terpene 1,958,530 1,984,265 hopene 61%
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13 lassopeptide 2,157,118 2,178,457 echoside A/echoside
B/echoside C/echoside

D/echoside E

11%

14 T1PKS 2,214,299 2,292,209 lankamycin 53%

15 T3PKS 2,743,304 2,782,651 naringenin 100%

16 betalactone,NRPS 2,853,457 2,914,351 ulleungmycin 80%

17 NRPS-independent-sideroph
ore

2,922,576 2,935,753 synechobactin
C9/synechobactin
C11/synechobactin
13/synechobactin
14/synechobactin
16/synechobactin
A/synechobactin

B/synechobactin C

9%

18 CDPS 3,258,238 3,278,957 albonoursin 83%

19 NAPAA 3,889,567 3,923,700 - -

20 linaridin 4,361,283 4,382,173 legonaridin 66%

21 thiopeptide 4,401,731 4,438,354 radamycin/globimycin 94%

22 terpene 4,524,960 4,544,791 geosmin 100%

23 lanthipeptide-class-i 6,032,920 6,057,223 neomediomycin B 7%

24 T1PKS 6,511,872 6,553,402 collismycin A 18%

25 ectoine 6,984,258 6,994,662 ectoine 100%

26 NRPS-independent-sideroph
ore

7,075,833 7,087,638 desferrioxamine E 100%

27 lanthipeptide-class-i 7,331,458 7,356,001 -

28 T2PKS 7,849,563 7,922,078 spore pigment 83%

29 transAT-PKS 8,267,262 8,329,672 cycloheximide 50%

30 NRPS 8,386,871 8,446,854 WS9326B/WS9326A/WS9326G
/WS9326F

7%

31 terpene 8,911,916 8,931,024 neoabyssomicin/abyssomicin 6%

32 T1PKS,NRPS,T3PKS,terpen
e

9,018,969 9,100,074 canucin A/canucin B 42%

33 NRPS,lanthipeptide-class-iii 9,140,586 9,194,236 s56-p1 17%

34 T1PKS,terpene 9,247,044 9,361,469 tetramycin B 95%

35 lassopeptide,T3PKS 9,676,601 9,729,936 A54145 5%
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Table 13. Streptomyces venezuelae ATCC 15439

Region Type From To Most similar known cluster Similarity

1 terpene 261,244 280,090 - -

2 betalactone,NAPAA 674,746 710,001 ε-Poly-L-lysine 100%

3 T1PKS,NRPS 974,021 1,090,430 camporidine A/camporidine B 65%

4 lanthipeptide-class-iv,T1PKS
,NRPS

1,099,741 1,159,021 oxalomycin B 18%

5 lanthipeptide-class-ii,melani
n

1,166,022 1,188,871 melanin 28%

6 lanthipeptide-class-iii 1,467,557 1,490,088 - -

7 terpene 1,806,765 1,832,645 hopene 76%

8 T1PKS 2,028,496 2,072,836 formicamycins A-M 18%

9 butyrolactone 2,192,142 2,203,092 griseoviridin/fijimycin A 8%

10 NRPS-independent-sideroph
ore

2,543,752 2,556,327 synechobactin
C9/synechobactin
C11/synechobactin
13/synechobactin
14/synechobactin
16/synechobactin
A/synechobactin

B/synechobactin C

9%

11 other 2,927,421 2,968,527 stambomycin A/stambomycin
B/stambomycin

C/stambomycin D

16%

12 melanin 3,385,785 3,396,198 istamycin 8%

13 T1PKS 3,419,066 3,491,507 mycinamicin II 61%

14 cyanobactin 4,105,357 4,127,723 - -

15 NRPS 4,712,038 4,763,391 foxicin A/foxicin B/foxicin
C/foxicin

7%

16 thiopeptide,LAP 5,202,490 5,232,532 - -

17 NRPS-independent-sideroph
ore

5,737,842 5,749,626 desferrioxamin B 100%

18 lanthipeptide-class-i 6,173,061 6,198,323 - -

19 T2PKS,T1PKS 6,409,069 6,509,238 LL-D49194α1 (LLD) 18%
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20 CDPS 6,585,513 6,606,226 malacidin A/malacidin B 5%

21 indole 7,770,196 7,793,435 rebeccamycin 25%

22 T3PKS 7,864,814 7,904,164 alkylresorcinol 100%

23 lanthipeptide-class-iv,NRPS 7,910,366 7,951,627 venezuelin 100%

24 NRP-metallophore,NRPS 7,968,001 8,025,100 peucechelin 55%

25 T3PKS,terpene 8,246,101 8,298,735 geosmin 100%

26 T2PKS,terpene 8,320,823 8,393,323 spore pigment 83%

27 ectoine 8,414,418 8,424,837 ectoine 100%

28 terpene 8,476,458 8,497,729 ebelactone 5%

Table 14. Streptomyces filamentosus NRRL 15998

Region Type From To Most similar known cluster Similarity

1 NRPS 313,359 402,438 daptomycin 100%

2 nucleoside,T1PKS 542,942 609,136 ansaseomycin A/ansaseomycin
B

69%

3 terpene 750,819 769,736 steffimycin D 19%

4 NRPS 874,699 942,614 stenothricin 86%

5 ectoine 1,254,796 1,265,194 ectoine 100%

6 lanthipeptide-class-ii,lanthip
eptide-class-iii

2,311,100 2,341,376 notonesomycin A 3%

7 NRPS-independent-sideroph
ore

2,418,590 2,428,540 desferrioxamin B 100%

8 other,betalactone 3,538,559 3,579,389 FR-900098 90%

9 NRPS-independent-sideroph
ore

4,245,409 4,253,429 desferrioxamin B 60%

10 lassopeptide 4,281,297 4,302,977 keywimysin 100%

11 lanthipeptide-class-ii 4,435,763 4,459,002 SRO15-3108 100%

12 lanthipeptide-class-iii 5,211,350 5,233,099 SRO15-2212 71%

13 terpene 5,594,782 5,613,354 -

14 thioamide-NRP 5,623,838 5,683,186 BD-12 17%

15 NRPS-independent-sideroph
ore

6,039,454 6,054,198 schizokinen 20%
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16 T1PKS,transAT-PKS,oligosa
ccharide

6,090,668 6,194,339 auroramycin 79%

17 NRPS 6,206,856 6,270,735 arylomycin 100%

18 NRPS,T1PKS 6,379,148 6,428,716 collismycin A 70%

19 terpene 7,116,845 7,143,418 hopene 69%

20 NRPS,T1PKS 7,223,347 7,271,547 SGR PTMs/SGR PTM
Compound b/SGR PTM
Compound c/SGR PTM

Compound d

100%

21 T1PKS,NRPS 7,436,778 7,485,679 valinomycin/montanastatin 13%

22 melanin 7,520,011 7,530,493 melanin 100%

23 T3PKS 7,565,513 7,606,652 tetronasin 11%

24 NRPS,T1PKS 7,691,684 7,743,872 balhimycin 8%

Table 15. Streptomyces griseus IFO 13350

Region Type From To Most similar known cluster Similarity

1 terpene 48,328 70,469 isorenieratene 100%

2 lanthipeptide-class-iv 149,896 172,562 - -

3 T1PKS,NRPS 274,592 326,653 A-47934 8%

4 NRPS,T3PKS 464,992 570,745 CDA1b/CDA2a/CDA2b/CDA3a/
CDA3b/CDA4a/CDA4b

7%

5 melanin 604,068 611,793 istamycin 4%

6 NRPS,LAP,T1PKS,other 641,140 792,830 C-1027 36%

7 NRPS,T1PKS 937,762 985,289 SGR PTMs/SGR PTM
Compound b/SGR PTM
Compound c/SGR PTM

Compound d

100%

8 NRPS 1,040,889 1,086,995 nucleocidin 47%

9 terpene 1,127,348 1,153,611 hopene 69%

10 terpene 1,482,046 1,501,955 2-methylisoborneol 100%

11 linaridin 1,768,290 1,786,697 pentostatine/vidarabine 9%

12 NRPS-independent-sideropho
re

2,026,431 2,039,870 schizokinen 20%

13 terpene 2,452,552 2,470,816 - -
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14 lanthipeptide-class-iii 2,817,598 2,838,618 AmfS 100%

15 melanin 2,880,853 2,889,385 melanin 100%

16 T1PKS 2,908,041 2,950,375 leinamycin 5%

17 NRPS 3,029,854 3,093,422 atratumycin 13%

18 arylpolyene,ladderane,NRPS 3,756,885 3,841,258 kitacinnamycin
A/kitacinnamycin
B/kitacinnamycin
C/kitacinnamycin
D/kitacinnamycin

E/kitacinnamycin F

47%

19 betalactone 4,064,789 4,092,758 divergolide A/divergolide
B/divergolide C/divergolide D

6%

20 lanthipeptide-class-i 4,495,428 4,520,684 - -

21 melanin 4,960,832 4,971,221 grixazone A 61%

22 thiopeptide,LAP 5,142,038 5,174,689 - -

23 NRPS-independent-sideropho
re

5,573,822 5,585,600 desferrioxamin B 100%

24 lanthipeptide-class-iii,lanthipe
ptide-class-ii

5,637,061 5,668,604 - -

25 ectoine 6,603,626 6,614,024 ectoine 100%

26 amglyccycl 6,935,101 6,958,692 streptomycin 55%

27 terpene,T1PKS 7,080,060 7,191,361 griseochelin 100%

28 T1PKS 7,271,755 7,372,510 stambomycin A/stambomycin
B/stambomycin C/stambomycin

D

40%

29 linaridin,T1PKS 7,562,138 7,638,703 iminimycin A/iminimycin B 100%

30 T3PKS 7,888,518 7,929,636 naringenin 100%

31 NRP-metallophore,NRPS,tran
sAT-PKS,T1PKS

7,988,318 8,173,814 griseobactin 100%

32 terpene 8,196,619 8,236,630 carotenoid 100%

33 butyrolactone 8,268,444 8,279,388 coelimycin P1 8%

34 terpene 8,473,224 8,498,819 isorenieratene 100%
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Table 16. Streptomyces lincolnensis B48

Region Type From To Most similar known cluster Similarity

1 lanthipeptide-class-iii 116,680 138,939 A-500359 A/A-500359 B 8%

2 other 295,876 334,808 lincomycin 72%

3 melanin,terpene 549,413 569,762 melanin 57%

4 NRPS 831,827 889,060 cysteoamide 100%

5 NRP-metallophore,NRPS 1,552,138 1,607,148 coelibactin 72%

6 T3PKS 1,614,875 1,655,972 flaviolin/1,3,6,8-tetrahydroxynap
hthalene

100%

7 terpene 2,152,319 2,171,287 - -

8 NAPAA 2,236,592 2,269,281 ε-Poly-L-lysine 100%

9 ectoine 2,510,170 2,520,574 ectoine 100%

10 butyrolactone 3,074,186 3,084,076 A-factor 100%

11 melanin 3,675,352 3,685,828 istamycin 5%

12 NRPS-independent-sideroph
ore

3,783,837 3,794,804 desferrioxamin
B/desferrioxamine E

83%

13 amglyccycl,butyrolactone 3,977,664 4,004,708 pyralomicin 1a 18%

14 ladderane 4,764,701 4,805,870 colabomycin E 13%

15 terpene 6,642,058 6,662,143 albaflavenone 100%

16 lanthipeptide-class-v 6,869,451 6,911,522 pristinin A3 47%

17 NRPS,T1PKS 6,949,121 7,009,823 BD-12 17%

18 NRPS-independent-sideroph
ore

7,383,320 7,394,202 - -

19 phosphoglycolipid 7,541,735 7,570,490 teichomycin A1 83%

20 butyrolactone,terpene 7,814,584 7,839,498 γ-butyrolactone 100%

21 NAPAA 7,874,031 7,909,906 stenothricin 13%

22 NRPS-independent-sideroph
ore

8,074,348 8,087,135 - -

23 T2PKS 8,206,886 8,279,347 julichrome Q3-3/julichrome
Q3-5

35%

24 NRP-metallophore,NRPS 8,364,323 8,422,847 coelichelin 100%
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25 terpene 8,595,995 8,620,257 hopene 92%

26 T1PKS 8,658,353 8,706,443 desulfoclethramycin/clethramyci
n

30%

27 terpene 9,041,364 9,063,235 mycotrienin I 11%

28 lipolanthine,lanthipeptide-cla
ss-iii

9,184,524 9,227,192 informatipeptin 42%

29 NRPS-independent-sideroph
ore

9,251,035 9,265,733 peucechelin 25%

30 other 9,673,768 9,714,337 lincomycin 72%

31 lanthipeptide-class-iii 9,869,728 9,892,415 A-500359 A/A-500359 B 8%

Table 17. Streptomyces ambofaciens ATCC 23877

Region Type From To Most similar known cluster Similarity

1 T2PKS,butyrolactone 127,762 213,859 fluostatins M-Q 67%

2 terpene,T1PKS,NRPS 352,107 409,148 antimycin 100%

3 indole 706,084 727,211 5-dimethylallylindole-3-acetonitri
le

77%

4 terpene 784,459 815,058 isorenieratene 37%

5 ectoine 2,000,972 2,011,370 ectoine 100%

6 melanin 2,873,096 2,883,623 melanin 80%

7 NRPS-independent-sideroph
ore

2,980,926 2,991,871 desferrioxamin
B/desferrioxamine E

83%

8 butyrolactone 3,469,415 3,478,485 prejadomycin/rabelomycin/gaud
imycin C/gaudimycin

D/UWM6/gaudimycin A

4%

9 furan 4,172,601 4,193,614 methylenomycin A 9%

10 terpene 5,303,655 5,323,095 albaflavenone 100%

11 T2PKS 5,357,993 5,430,181 spore pigment 66%

12 NRPS-independent-sideroph
ore

5,867,788 5,878,156 - -

13 oligosaccharide,T1PKS,NRP
S

5,967,339 6,141,725 spiramycin 100%

14 terpene 6,259,807 6,280,958 geosmin 100%

15 NRPS-independent-sideroph
ore

6,452,952 6,466,082 grincamycin 8%

16 lanthipeptide-class-iii 6,817,278 6,839,887 SapB 100%
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17 terpene 6,901,409 6,927,295 hopene 92%

18 NRPS 7,197,949 7,240,502 netropsin 86%

19 terpene 7,277,164 7,296,598 - -

20 NRP-metallophore,NRPS 7,557,873 7,616,302 coelichelin 100%

21 terpene 7,630,675 7,650,381 isorenieratene 62%

22 T1PKS 7,666,256 7,834,600 stambomycin A/stambomycin
B/stambomycin C/stambomycin

D

100%

23 lanthipeptide-class-i,terpene 7,931,838 7,968,985 - -

24 T1PKS 8,007,437 8,054,819 alanylclavam/2-hydroxymethylcl
avam/2-formyloxymethylclavam/

clavam-2-carboxylate

18%

25 T2PKS,butyrolactone 8,089,907 8,176,435 fluostatins M-Q 72%

Table 18. Streptomyces atratus SCSIO ZH16

Region Type From To Most similar known cluster Similarity

1 NRPS 170,926 288,305 enduracidin 14%

2 NRPS-like,NRPS,PKS-like 376,516 460,291 bonnevillamide
D/bonnevillamide E

16%

3 T2PKS,terpene 690,553 763,068 spore pigment 83%

4 NAPAA 961,970 996,576 stenothricin 13%

5 phosphonate 1,070,024 1,085,463 - -

6 T1PKS,NRPS-like,NRPS,ind
ole,prodigiosin

1,133,399 1,261,249 ilamycin B1/ilamycin
B2/ilamycin C1/ilamycin

C2/ilamycin D/ilamycin E1

90%

7 terpene 1,750,130 1,770,154 steffimycin D 19%

8 ectoine 2,266,355 2,276,753 ectoine 100%

9 butyrolactone 2,769,017 2,780,069 coelimycin P1 8%

10 other,T1PKS 3,223,312 3,278,431 desulfoclethramycin/clethramyci
n

12%

11 NRPS-independent-siderop
hore

3,339,130 3,348,929 desferrioxamin B 100%

12 T3PKS 4,180,353 4,221,408 vazabitide A 17%

13 ladderane,arylpolyene,NRP
S,aminocoumarin

5,612,335 5,700,782 atratumycin 89%



59

14 NRPS-independent-siderop
hore

6,722,359 6,737,076 synechobactin
C9/synechobactin
C11/synechobactin
13/synechobactin
14/synechobactin
16/synechobactin
A/synechobactin

B/synechobactin C

9%

15 terpene 7,866,656 7,890,983 hopene 84%

16 RiPP-like 7,970,276 7,981,174 griselimycin 7%

17 NAPAA 8,018,199 8,052,332 - -

18 RiPP-like 8,079,112 8,089,909 tautomycin 6%

19 NRPS,T1PKS 8,247,955 8,366,892 montamide
A/capsimycin/clifednamide

A/frontalamide A/combamide A

55%

20 T1PKS,NRPS,terpene,hglE-
KS

8,423,092 8,627,676 bombyxamycin
A/bombyxamycin B

51%

21 terpene,NRPS-like 8,641,283 8,690,049 raimonol 90%

22 NRPS 8,772,080 8,834,071 bonnevillamide
D/bonnevillamide E

13%

23 NRPS,lanthipeptide-class-ii 8,942,762 9,015,218 omnipeptin 9%

24 T1PKS 9,248,753 9,295,067 sporolide A/sporolide B 8%

25 NRPS 9,352,426 9,470,470 cadaside A/cadaside B 28%

Unknown Samples

9 of 10 the randomly selected bacterial genomes were predicted to produce secondary

metabolites that had antibiotic properties or potential as indicated by the literature. The bacteria

sample known as Ignavibacterium album JCM 16511 (Table 19) was the odd one out. In this

genome antiSMASH only detected 3 clusters none of which 2 of which no product was predicted

and the other cluster produced a compound that doesn’t appear to have any evident antibiotic

properties. A large majority of the clusters, in fact the largest category predicted in these
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unknown producers, were clusters that produced no metabolites. They represent approximately

48.8% of all the predicted products in the unknown producers. This is shown in Figure 16. Other

represented secondary metabolites predicted in this set of genomes are Ectoine at 6.2%, Hopene

at 6.2%, ε-Poly-L-lysine at 5%, and Pf-5 pyoverdine at 5%. ε-Poly-L-lysine is a poly amino acid

that has shown antimicrobial activity as reported by Wang et al., 2021 and is a predicted

metabolite in Streptomyces hawaiiensis NRRL 15010, Streptomyces sp. S1D4-23, and

Streptomyces lydicus WYEC 108. The largest cluster type in the unknown producers was terpene

at 24.6% as shown in Figure 17. Like with the known antibiotic producing data set the other well

represented cluster types were NRPS and T1PKS related. They accounted for 20% of the cluster

types in unknown genome samples (Figure 17).
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Figure 16. Secondary metabolites produced by unknown producers. The proportion of the most

common metabolites found throughout the unknown producers dataset. The graph was created

with a cutoff to only record the frequency of secondary metabolites that appear greater than 2

times in the data type. Most of the clusters predicted “No metabolites” which was 48.8% of

them. Terpene was the next most commonly predicted metabolite at 6.2% was ectoine, followed
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by hopene at 2.8% as well. The most common metabolite predicted with antibiotic potential was

ε-Poly-L-lysine from 5.0% of clusters.

Figure 17. Cluster types in the unknown producers. Representation of the proportion of the

various cluster types present among the unknown producers. The graph was created with a cutoff

to only record the frequency of cluster types that appear greater than 2 times in the data type.

The largest cluster type was Terpene followed by NRPS and T1PKS cluster types.
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Table 19. Ignavibacterium album JCM 16511

Region Type From To Most similar known cluster Similarity

1 terpene 427,519 445,374 carotenoid 28%

2 terpene 2,194,131 2,215,821 -

3 T1PKS,NRPS 2,812,977 2,860,950
-

Table 20. Streptomyces sp. CLI2509

Region Type From To Most similar known cluster Similarity

1 terpene 52,576 75,394 isorenieratene 85%

2 melanin 152,162 162,575 istamycin 4%

3 NRP-metallophore,NRPS 318,360 378,300 coelibactin 100%

4 NRP-metallophore,NRPS 487,013 535,712 griseobactin 53%

5 hglE-KS,T1PKS 745,185 798,303 ambactin 25%

6 terpene 854,730 880,507 hopene 76%

7 NRPS,T3PKS 1,204,878 1,269,039 A50926 A/A50926 B 16%

8 NRPS-independent-siderop
hore

1,703,324 1,718,806 - -

9 terpene 2,274,493 2,293,228 julichrome Q3-3/julichrome
Q3-5

21%

10 NRPS,T1PKS 2,652,862 2,701,727 SGR PTMs/SGR PTM
Compound b/SGR PTM
Compound c/SGR PTM

Compound d

100%

11 butyrolactone 2,830,823 2,841,827 -

12 terpene 3,077,282 3,099,762 geosmin 100%

13 T1PKS,NRPS 4,729,166 4,802,657 sporolide A/sporolide B 51%

14 ladderane,NRPS 5,343,740 5,402,778 colibrimycin 21%

15 ectoine 5,952,685 5,963,083 ectoine 100%

16 lanthipeptide-class-iii 6,567,919 6,590,612 AmfS 100%
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Table 21. Streptomyces sp. WAC 01438

Region Type From To Most similar known cluster Similarity

1 NRPS 38,800 92,020 -

2 T3PKS,terpene,NRP-metall
ophore,NRPS

633,376 708,172 scabichelin 100%

3 NRPS,terpene 773,920 832,223 hopene 92%

4 other,T3PKS,NRPS-indepen
dent-siderophore

1,405,124 1,447,543 diazepinomicin 55%

5 terpene 1,589,879 1,610,470 geosmin 100%

6 NRP-metallophore,NRPS 1,915,130 1,978,569 coelibactin 100%

7 NRPS-independent-siderop
hore

2,074,386 2,085,388 -

8 terpene 2,557,359 2,578,219 atolypene A/atolypene B 29%

9 terpene 2,645,553 2,666,190 albaflavenone 100%

10 T1PKS,prodigiosin 3,636,105 3,677,686 marineosin A/marineosin B 95%

11 butyrolactone 4,034,784 4,045,773 coelimycin P1 8%

12 lanthipeptide-class-v 5,163,800 5,206,066 -

13 NRPS-independent-siderop
hore

5,254,731 5,266,503 FW0622 62%

14 T1PKS 5,365,010 5,454,165 neomediomycin B 53%

15 ectoine 6,412,946 6,423,344 ectoine 100%

16 T1PKS 7,187,752 7,284,681 bafilomycin B1 72%

17 T3PKS,NRPS,T2PKS 7,342,610 7,524,993 spore pigment 83%

18 melanin 7,583,908 7,594,279 melanin 42%

19 terpene 7,722,638 7,744,853 carotenoid 54%

20 terpene 7,806,444 7,827,415 cyslabdan 81%

Table 22. Pseudomonas aeruginosa F5677

Region Type From To Most similar known cluster Similarity

1 NRP-metallophore,NRPS,ph
enazine

757,035 817,928 pyochelin 85%

2 hserlactone 1,668,715 1,688,659 -

3 NAGGN 1,692,327 1,707,087 -
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4 NRPS 1,857,415 1,904,246 azetidomonamide
A/azetidomonamide B

100%

5 NRPS,NRP-metallophore 2,930,753 3,050,943 Pf-5 pyoverdine 25%

6 redox-cofactor 3,511,701 3,533,845 lankacidin C 13%

7 hserlactone 4,221,613 4,242,218 -

8 betalactone 4,354,966 4,383,167 thanamycin 27%

9 opine-like-metallophore 5,728,120 5,750,209 pseudopaline 100%

Table 23.Streptomyces hawaiiensis NRRL 15010

Region Type From To Most similar known cluster Similarity

1 NRPS,terpene 257,697 303,726 polyoxypeptin 10%

2 LAP 334,786 357,328 streptamidine 91%

3 NAPAA 396,042 429,217 ε-Poly-L-lysine 100%

4 melanin 591,712 601,681 melanin 57%

5 T1PKS 1,234,260 1,281,301 hedamycin 9%

6 terpene 1,283,753 1,303,874 A23187 10%

7 T3PKS 1,350,817 1,390,663 flaviolin/1,3,6,8-tetrahydroxynap
hthalene

100%

8 ectoine 2,097,817 2,108,215 ectoine 100%

9 terpene 2,828,484 2,847,948 streptozotocin 23%

10 NAPAA 3,057,802 3,092,795 stenothricin 13%

11 melanin 3,187,244 3,197,741 istamycin 4%

12 NRPS-independent-sideropho
re

3,287,256 3,298,017 desferrioxamin
B/desferrioxamine E

83%

13 phenazine 4,060,437 4,080,928 endophenazine
A/endophenazine B

44%

14 butyrolactone 4,441,748 4,452,782 lactonamycin 5%

15 NRPS 4,731,577 4,775,566 -

16 T2PKS 4,809,151 4,880,065 vazabitide A 26%

17 T2PKS 4,989,918 5,062,349 gilvocarcin V 88%

18 terpene 5,648,756 5,672,930 isorenieratene 100%

19 terpene 5,819,551 5,839,612 albaflavenone 100%
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20 NRPS-independent-sideropho
re

6,482,226 6,493,148 -

21 terpene 6,824,981 6,846,944 geosmin 100%

22 NRPS-independent-sideropho
re

7,080,485 7,093,618 -

23 ladderane,NRPS 7,148,027 7,211,204 acyldepsipeptide 1 73%

24 lanthipeptide-class-i 7,263,664 7,288,770 -

25 terpene 7,700,473 7,725,131 hopene 92%

26 NRP-metallophore,NRPS 7,810,531 7,868,857 coelichelin 100%

27 T1PKS 8,068,147 8,113,229 thiotetroamide 58%

28 T1PKS 8,118,850 8,166,394 -

29 lanthipeptide-class-iii 8,277,872 8,300,520 informatipeptin 85%

30 T3PKS 8,535,316 8,576,503 clipibycyclene 13%

31 terpene 8,595,930 8,617,258 ebelactone 5%

Table 24. Pseudomonas aeruginosa DSM 50071

Region Type From To Most similar known cluster Similarity

1 NRP-metallophore,NRPS,phe
nazine

725,806 786,485 pyochelin 92%

2 hserlactone 1,588,426 1,608,370 -

3 NAGGN 1,611,924 1,626,684 -

4 NRPS 1,736,397 1,783,244 azetidomonamide
A/azetidomonamide B

100%

5 NRPS,NRP-metallophore 2,738,840 2,870,816 Pf-5 pyoverdine 24%

6 NRPS 2,922,350 2,974,630 L-2-amino-4-methoxy-trans-3
-butenoic acid

100%

7 redox-cofactor 3,326,364 3,348,508 lankacidin C 13%

8 thiopeptide 3,393,173 3,426,176 oxalomycin B 6%

9 phenazine 3,428,356 3,449,368 pyocyanine 100%

10 hserlactone 3,941,080 3,961,691 -

11 betalactone 4,178,885 4,206,730 thanamycin 27%

12 opine-like-metallophore 5,462,538 5,484,627 pseudopaline 100%
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Table 25. Streptomyces sp. S1D4-23

Region Type From To Most similar known cluster Similarity

1 terpene 35,035 53,906 BE-14106 10%

2 butyrolactone 844,406 854,354 -

3 NRPS,betalactone 865,791 909,233 diisonitrile antibiotic SF2768 66%

4 lanthipeptide-class-ii,terpene 1,188,614 1,222,223 2-methylisoborneol 100%

5 NAPAA 1,324,600 1,358,505 stenothricin 13%

6 NRPS,nucleoside 1,711,450 1,763,634 detoxin P1/detoxin P2/detoxin
P3

75%

7 guanidinotides 1,825,247 1,848,778 -

8 melanin 1,955,172 1,965,564 melanin 57%

9 NAPAA 2,004,693 2,036,244 ε-Poly-L-lysine 100%

10 aminopolycarboxylic-acid 2,175,856 2,189,368 EDHA 88%

11 T1PKS 2,407,612 2,461,088 foxicin A/foxicin B/foxicin
C/foxicin

24%

12 T3PKS 2,688,325 2,729,389 flaviolin/1,3,6,8-tetrahydroxynap
hthalene

100%

13 NAPAA 3,319,993 3,352,156 ε-Poly-L-lysine 100%

14 ectoine 3,599,026 3,609,430 ectoine 100%

15 NRPS-independent-sideropho
re

4,972,385 4,983,185 desferrioxamin
B/desferrioxamine E

83%

16 T1PKS 5,022,707 5,064,844 armeniaspirol A/armeniaspirol
B/armeniaspirol C

13%

17 lassopeptide 5,603,813 5,626,381 siamycin I 100%

18 T2PKS,butyrolactone 6,289,965 6,360,977 prejadomycin/rabelomycin/gaud
imycin C/gaudimycin

D/UWM6/gaudimycin A

33%

19 terpene 7,776,087 7,795,720 albaflavenone 100%

20 NAPAA 7,871,485 7,907,312 stenothricin 13%

21 NRPS,arylpolyene,ladderane,
other

8,059,332 8,139,296 pepticinnamin E 100%

22 NRPS-independent-sideropho
re

8,566,980 8,581,212 synechobactin
C9/synechobactin
C11/synechobactin
13/synechobactin
14/synechobactin
16/synechobactin

9%
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A/synechobactin
B/synechobactin C

23 terpene 8,847,425 8,867,812 geosmin 100%

24 T1PKS,hglE-KS 9,032,711 9,082,042 hexacosalactone A 11%

25 NRPS-independent-sideropho
re

9,246,559 9,259,686 -

26 NRP-metallophore,NRPS 9,277,275 9,328,692 myxochelin B/myxochelin
N/myxochelin O/myxochelin

P/myxochelin Q/myxochelin A

25%

27 lanthipeptide-class-i 9,529,539 9,554,589 -

28 redox-cofactor 9,763,383 9,786,176 -

29 terpene 10,143,82
4

10,168,31
4

hopene 92%

30 indole,other,T2PKS 10,194,20
8

10,310,52
0

spore pigment 83%

31 lanthipeptide-class-iii 10,801,75
4

10,824,40
2

AmfS 80%

32 T1PKS 11,268,26
4

11,316,234 herboxidiene 42%

33 terpene 11,529,81
0

11,550,763 rustmicin 10%

34 butyrolactone 11,689,83
0

11,700,705 -

Table 26. Fischerella sp. NIES-3754

Region Type From To Most similar known cluster Similarity

1 lassopeptide 741,982 761,668 kijanimicin 4%

2 crocagin 1,208,591 1,238,046 O-antigen 14%

3 hglE-KS 1,754,440 1,806,495 -

4 lassopeptide 1,894,634 1,917,098 -

5 NRPS,T1PKS 2,080,593 2,171,143 hapalosin 40%

6 terpene 3,072,838 3,094,764 -

7 T1PKS,hglE-KS 3,854,249 3,905,107 heterocyst glycolipids 85%

8 terpene 4,330,127 4,350,116 -

9 terpene 4,660,992 4,681,924 -

10 lanthipeptide-class-v 4,820,221 4,862,587 -
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11 NRPS 4,972,017 5,013,663 puwainaphycin
A/puwainaphycin
B/puwainaphycin

C/puwainaphycin D

50%

12 hglE-KS,resorcinol 5,644,062 5,698,477 heterocyst glycolipids 57%

Table 27. Streptomyces lydicus WYEC 108

Region Type From To Most similar known cluster Similarity

1 nucleoside,NAPAA,butyrolact
one

17,169 68,999 ε-Poly-L-lysine 100%

2 lassopeptide 384,099 405,946 -

3 NRPS,LAP,thiopeptide,CDPS 430,915 498,640 muraymycin C1 23%

4 T1PKS,oligosaccharide,trans
AT-PKS

594,119 828,983 caniferolide A/caniferolide
B/caniferolide C/caniferolide D

61%

5 T3PKS,lanthipeptide-class-iii 863,875 906,994 SapB 100%

6 NAPAA 1,006,025 1,041,631 stenothricin 13%

7 T2PKS 1,118,464 1,190,979 spore pigment 83%

8 NRP-metallophore,NRPS,mel
anin,T1PKS

1,210,846 1,388,016 lydicamycin 96%

9 NRPS-independent-sideropho
re

1,527,062 1,539,513 peucechelin 25%

10 blactam 1,615,118 1,638,619 valclavam/(-)-2-(2-hydroxyethyl)
clavam

71%

11 NRPS-independent-sideropho
re

2,221,748 2,230,631 desferrioxamine E 100%

12 ectoine 2,319,228 2,329,644 ectoine 100%

13 T1PKS 3,279,881 3,324,607 cyclofaulknamycin 16%

14 lanthipeptide-class-iii 3,938,390 3,961,008 pentalenolactone 15%

15 lanthipeptide-class-i 4,039,967 4,062,984 -

16 terpene 4,520,042 4,537,633 -

17 terpene 4,956,617 4,978,225 salinomycin 6%

18 thioamitides,LAP,thiopeptide,
NRPS,lassopeptide

5,134,934 5,207,338 ulleungdin 100%

19 terpene 5,848,082 5,867,980 notonesomycin A 5%

20 NRPS-independent-sideropho
re

6,747,644 6,762,338 schizokinen 20%

21 butyrolactone 6,948,186 6,958,456 -
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22 butyrolactone 7,432,679 7,440,099 -

23 indole 7,469,816 7,491,138 CDA1b/CDA2a/CDA2b/CDA3a/
CDA3b/CDA4a/CDA4b

15%

24 terpene 7,808,551 7,834,001 hopene 69%

25 hglE-KS,T1PKS 7,953,819 8,005,747 hexacosalactone A 9%

26 aminopolycarboxylic-acid 8,104,695 8,118,145 EDHA 88%

27 lanthipeptide-class-i 8,163,025 8,187,573 -

28 butyrolactone 8,556,760 8,567,743 merochlorin A/merochlorin
B/deschloro-merochlorin
A/deschloro-merochlorin
B/isochloro-merochlorin
B/dichloro-merochlorin

B/merochlorin D/merochlorin C

4%

29 NRPS,other 8,632,920 8,687,263 antipain 100%

30 terpene 8,720,529 8,746,092 isorenieratene 100%

31 amglyccycl 8,945,434 8,969,380 streptomycin 55%

Table 28. Pseudomonas chlororaphis aurantiaca 464

Region Type From To Most similar known cluster Similarity

1 arylpolyene 510,505 554,125 APE Vf 45%

2 hserlactone 2,834,491 2,854,226 -

3 NRPS 3,250,875 3,298,199 JBIR-06 16%

4 other 3,574,128 3,615,210 pyrrolnitrin 100%

5 NRPS-independent-sideropho
re

3,628,660 3,647,629 schizokinen 20%

6 NRPS 4,050,259 4,118,608 MA026 12%

7 betalactone 4,475,345 4,498,594 fengycin 13%

8 NRP-metallophore,NRPS,res
orcinol,ranthipeptide

4,770,459 4,868,244 Pf-5 pyoverdine 33%

9 NRPS 4,911,687 4,964,703 Pf-5 pyoverdine 18%

10 NAGGN 5,096,081 5,110,917 -

11 hserlactone 5,790,162 5,808,414 -

12 hserlactone,phenazine 5,862,427 5,885,214 endophenazine
A/endophenazine B

38%

13 redox-cofactor 6,356,371 6,378,539 lankacidin C 13%
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Overall, another trend in the data observed can be seen in the number of clusters detected for

each category of bacteria as well as the number of that could potentially produce antimicrobial

compounds. Figures 13 and 14 show this. This category of known genomes in general has the

highest number of gene clusters detected with an average of 31 clusters detected. This was

followed by the unknown category with 18 clusters and then the positive control with 5 clusters.

The negative control showed the least amount of clusters detected with approximately 2 on

average across the category (Figure 13). This order was also reflected in the number of clusters

with antibiotic potential. The negative control had zero clusters detected with antibiotic potential,

but the “known producer” category had on average ~9 clusters per genome that had antibiotic

potential. Positive control had ~ 1.4 while the unknown producers had ~4.4. Additionally I

looked at the ratio or the proportion of the number of clusters with antibiotic potential to the

number of clusters detected in each genome (Figure 14). The category type with the highest ratio

was again “the known producers” with a ratio of 0.31 or ~31% of the clusters detected showing

some sort of antibiotic potential or activity as described in the literature. This was followed

closely by positive control with a ratio of 0.24 or ~ 24% and “unknown producers” with a ratio

of 0.27 or 27% of clusters detected showing potential for antibiotic activity. The negative control

genomes did not chart with 0% having antibiotic activity.
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Figure 18. Number of clusters detected for data type. A representation showing the number of

clusters detected for each category of bacteria as well as the number of those clusters that could

potentially produce antimicrobial compounds. Known genomes had the highest number of gene

clusters detected. Unknown category and then the positive control followed next respectively and

lastly negative control. This order was also reflected in the number of clusters with antibiotic

potential. The negative control had zero clusters detected with antibiotic potential. ** The values

in this figure are Non-Significant
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Figure 19. Ratio of the number of antibiotic clusters. This shows the ratio of the number of

clusters with antibiotic potential vs the number of clusters detected in each genome. The

category type with the highest ratio was again “the known producers”. This was followed closely

by positive control and “unknown producers”. The negative control genomes did not chart. **

The values in this figure are Non-Significant
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8. DISCUSSION

The results from antiSMASH showed interesting results starting with the positive control

group. antiSMASH detected secondary metabolites with antibacterial activity in only 2 of the 5

bacterial genomes as seen in the results section. This was surprising at first considering that all 5

bacterial samples used in the positive control were isolated, sequenced and proved to be

antibiotic producers from various assays done in the Hudson Lab. The genomes predicted to

have antibacterial activity was Pseudomonas sp. RIT 623 which as predicted to produce

Lankacidin C (Cai et al., 2020), Pseudopyronine A/pseudopyronine B (Bouthillette et al., 2017),

Rhizomide A/rhizomide B/rhizomide C (Qi et al., 2021) and Acinetobacter sp. RIT 592 which

was predicted to produce Berninamycin K/berninamycin J/berninamycin A/berninamycin B

(Malcolmson et al., 2013), and Fengycin (Medeot et al., 2020). These antiSMASH results of

Pseudomonas sp. RIT 623 and Acinetobacter sp. RIT 592 are both supported by disc-diffusion

inhibitory assays in Figure 22 (Steiner et al., 2020) as well as Figure 21 (Hudson, n.d.) which

show a zone of inhibition disc surrounding increasing volumes of each bacterial strain. It is

important to note that the compounds from Pseudomonas sp. RIT 623 and Acinetobacter sp. RIT

592 have not been isolated so it isn’t possible to verify antiSMASH in this scenario other than

that it detected secondary metabolites that have antimicrobial activity which does align with the

disc assays. Discrepancy arises when looking at the other samples in the positive control. Figures

20, 23 and 24 show disc assays of Yimella sp. RIT 621, Exiguobacterium sp. RIT 452, and

Exiguobacterium sp. RIT 594, respectively, demonstrating antibacterial activity. This could be

down to a few reasons. First could be that the compounds produced by Yimella sp. RIT 621

(Figure 20), Exiguobacterium sp. RIT 452 (Figure 23), and Exiguobacterium sp. RIT 594 (Figure
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24) could be novel and does not exist in the MIBiG database where antiSMASH searches for

cluster matches. Another reason could be that antiSMASH was not able to detect and accurately

characterize the clusters and the metabolites they produce due to a lack of comprehensive or up

to date moldues to access the wide/diverse make-up of these gene clusters.

Figure 20. Yimella sp. RIT 621 produces antibiotic activity against Escherichia coli ATCC

25922. (A) Disc-diffusion inhibitory assay with increasing volumes of a 683 mg/mL solution of

Yimella sp. RIT 621 spent TSB medium extract applied to disks 1-4: 10 μL (1), 20 μL (2), 30 μL

(3), 40 μL (4); 40 μL of methanol (5) and 10 μL of a 10 mg/mL solution of tetracycline (6) were

used as negative and positive control, respectively [Taken from Steiner et al., 2020]
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Figure 21. Disc diffusion assay of Acinetobacter sp. RIT 592 shows antibiotic activity against a

B. subtilis BGSC 168 medium. A) Temple, D) B. subtilis BGSC: 1) sterile un-inoculated LB

medium, 2) Methanol, 3) Tetracycline (10 mg/ml), 4) RIT 594, 5) RIT 594 stimulated by 20%

sterile filtered supernatant of RIT 592 6) RIT 594 stimulated by 20% sterile filtered

supernatant of E. coli ATCC 25922, 7) RIT 592 8) RIT 592 stimulated by 20% sterile filtered

supernatant of RIT 594, 9) RIT 594 stimulated by 20% sterile filtered supernatant of P.

aeruginosa ATCC 27853. [Figure taken from Hudson, n.d]
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Figure 22. (A-D) Disk diffusion assay of Pseudomonas sp. RIT 623. Against a) Bacillus subtilis

BGSC 168, b) Staphylococcus aureus ATCC 25923, c) Escherichia coli ATCC 25922, d)

Pseudomonas aeruginosa ATCC 27853. (1) Methanol, 20 μL; (2) Tetracycline, 20 μL (10

mg/mL); and (3) 10 μL, (4) 20 μL, (5) 40 μL, and (6) 60 μL of Pseudomonas sp. RIT 623 extract

dissolved in 100% methanol, respectively. [Taken from (Steiner et al., 2020)]
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Figure 23. Disk diffusion assay using ethyl acetate extract of spent medium of Exiguobacterium

sp. RIT 452 against Escherichia coli ATCC 25922. (1) Tetracycline, 20 µl (10 mg/ml); (2)

methanol, 20 µl; and (3, 4, 5, and 6) 25 µl, 10 µl, 20 µl, and 15 µl of RIT452 extract,

respectively. [Taken from (Parthasarathy et al., 2018)]

Figure 24. Disc diffusion assay of Acinetobacter sp. RIT 594 shows antibiotic activity against a

B. subtilis BGSC 168 medium. A) Temple, D) B. subtilis BGSC: 1) sterile un-inoculated LB

medium, 2) Methanol, 3) Tetracycline (10 mg/ml), 4) RIT 594, 5) RIT 594 stimulated by 20%

sterile filtered supernatant of RIT 592 6) RIT 594 stimulated by 20% sterile filtered

supernatant of E. coli ATCC 25922, 7) RIT 592 8) RIT 592 stimulated by 20% sterile filtered

supernatant of RIT 594, 9) RIT 594 stimulated by 20% sterile filtered supernatant of P.

aeruginosa ATCC 27853. [Figure taken from Hudson, n.d]
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The results from the negative control were more straightforward and what was expected.

None of the 6 samples used showed any clusters that had potential antimicrobial activity. In fact

a majority of the clusters detected were predicted to produce no metabolites as represented in

Figure 12. In fact, out of the 3 reference genomes used (Tables 7-9) only the E. coli reference

genome had predicted compounds, enterobactin, and O-antigen. This result would be anticipated

as these samples are the reference genomes of very common bacterial species that are not

generally known to produce antibiotics. The results for the other test cases for the negative

control were also consistent. The randomly generated genomes produced “no result found”

output (Figure 11) which indicates the tools ability to properly assess and detect real and viable

genetic content in sequence files. This is also the same for the shuffled sequence of the

Streptomyces rapamycinicus NRRL 5491 genome. The shuffle process as you would assume

would randomize and destroy the genetic contents contained within the file and the antiSMASH

tool was able to detect this and output a no result output as shown in Figure 11.

The resulting data from the known producers category was also fairly consistent with

what was expected. With the known producers, we already know what antibiotic compounds

they produce. We can easily verify the accuracy of antiSMASH and the secondary metabolites it

predicts. Please see Table 29 for breakdown of each known producer, their antibiotic and whether

that antibiotic was detected by antiSMASH.
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Table 29. Cross-checking of antiSMASH in known producers

Known Producing bacterial species Known antibiotic Predicted by antiSMASH?

Streptomyces rapamycinicus NRRL
5491

Rapamycin Yes

Streptomyces rapamycinicus
SRMK07

Rapamycin Yes

Streptomyces noursei ATCC 11455 Nystatin A1 Yes

Streptomyces venezuelae ATCC
15439

Methymycin and pikromycin No

Streptomyces filamentosus NRRL
15998

Napsamycin and
mureidomycin

No

Streptomyces griseus IFO 13350 Streptomycin Yes

Streptomyces lincolnensis B48 Lincomycin Yes

Streptomyces ambofaciens ATCC
23877

Spiramycin Yes

Streptomyces atratus SCSIO ZH16 Atratumycin Yes

Normally cross checking of antiSMASH tools would not be done when dealing with an

unknown or newly sequenced bacterial species but since the antibiotics of known producers are

already documented it is easier to see the performance of antiSMASH. Overall, the tool

performed fairly well. It was able to predict the known antibiotic produced in 7 of the 9 bacterial

genome sequences. The 2 species in which the predictions did not accurately predict their known

antibiotics were Streptomyces filamentosus NRRL 15998 and Streptomyces venezuelae ATCC

15439. While antiSMASH did predict other secondary metabolites with potential antibiotic

activity, this test shows that the tool can possibly miss or fail to predict some secondary

metabolites. In samples where there aren’t many antimicrobial compounds predicted by
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antiSMASH, not detecting one could be the difference between further experimentation and

finding a new antibiotic producer or a missed opportunity on a viable sample.

The analysis of randomly chosen unknown producers gives us a chance to simulate or

create a mock environment of where a lab would sequence an unknown bacterial sample then

feed it though antiSMASH for secondary metabolite screening and analysis. As stated in the

results section all but one of the selected genomes were predicted to have secondary metabolites

with antimicrobial activity. The lone genomic sample left out was Ignavibacterium album JCM

16511 (Table 19). This could be explained somewhat by the fact that the genera Ignavibacterium

are not known generally to be producers of antibiotics at least as compared to other bacterial

genera. Take for example the genera Streptomyces which is known to be a prolific producer of

antibiotics (Watve et al., 2001). All the Streptomyces genomes were predicted to produce

antimicrobial compounds with a minimum of at least 2 predicted in each genome and contain an

average of ~9.6 antimicrobial secondary metabolites. This could also be due to the fact as well

that Streptomyces have the largest number of clusters detected. This point is reflected in Figure

18 where it shows the average number of gene clusters detected and the average number of those

clusters which were predicted to produce antimicrobial compounds in each category type. In

general more clusters show more potential for antibiotic compounds. This could be good criteria

for a lab when evaluating the antimicrobial properties of an unknown genome sample as more

predicted antimicrobial secondary samples in a genome could lower the chance of a false

positive. Take for example Fischerella sp. NIES-3754 (Table 26) in the unknown samples.

antiSMASH did predict it would produce an antibiotic, kijanimicin (Nakayama et al., 1987), it

was the only one. If there were multiple, perhaps researchers would be more confident in this
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sample's antimicrobial potential. This was explored in Figure 19 which shows the proportion of

total clusters which were predicted to produce a secondary metabolite with antimicrobial

properties. The positive control and the known producers had a higher ratio of clusters detected

being antibiotic producing which supports the idea of more antimicrobial metabolites predicted

increases the odds that a specific sample is an antibiotic producer.

Another form of analysis was to look at the trends in cluster types and secondary

metabolites produced in each sample category. This would provide some insights into the

predominant characteristics of the metabolites that make up in each sample category. As stated in

the introduction, cluster types like NRPS and PKS are known to be producers of secondary

metabolites with a wide range of pharmacological properties including antibiotics. If researchers

were to perform gene cluster analysis and notice a trend in these cluster types being common it

could serve as an indicator that a sample produces antibiotics. In the positive control Figure 10

shows a summary of the most common cluster types. Since we know from Figures 20-24 that

these positive controls do have antimicrobial activity we would expect a larger proportion of the

cluster to be NRPS and PKS related. This turns out to be the case as Figure 10 shows that NRPS

cluster types in particular represent the largest share of gene clusters present from the positive

controls. This trend is reversed in the negative controls as shown in Figure 13, where NRPS

cluster types make up a smaller fraction of the cluster types and the largest share belongs to

Cyclic-lactone-autoinducer. This trend also continues in the known producers and unknown

producers. NRPS and PKS (T1PKS, T2PKS, and T3PKS) represent the largest portion of clusters

at 49.8% percent of clusters and in the unknown producers they represent 33.3%. NRPS and PKS

cluster types being the largest portion of genomes makes sense since both the sample categories
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were predicted to be composed almost entirely of antibiotic producers. It is important to note

though that NRPS and PKS presence doesn't directly translate to antibiotics, since there were

other clusters types that were predicted to produce antimicrobial compounds, but their value and

importance lie in their known ability to produce these compounds and the overwhelming

knowledge and literature to support the pharmacological properties. If a bacterial sample has a

large proportion or majority of their clusters being of NRPS or PKS types then one can assume

or infer that the organism has a lot of medicinal potential. But this assumption will have to be

supported with other information as discussed before.
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9. CONCLUSION

With the rates of antibiotic resistance increasing and antibiotic development very low, a

change is needed to ensure bacterial infections do not cause the pandemics and devastation as

they once did in the past. With the many new scientific and technological advances that have

been made throughout the years many are turning to computational and bioinformatics methods

to tackle these pressing problems. With its ability to detect gene clusters and secondary

metabolites of bacterial genome sequences, antiSMASH could aid in this area.

This project focused on using antiSMASH as a screening tool for antibiotics and

evaluated the platform as an aide in the detection to find antibiotics in-silico before confirmation

with wet-lab experimental approaches. This has the potential to save time and resources since it

would afford researchers to be more selective. Overall based on its performance and analysis

antiSMASH would be valuable to any lab or research focused on discovering antibiotics with a

few caveats. First seen in the positive control, the tool can miss secondary metabolites and not

detect those with antibiotic properties. This could be due to the novelty of the compound or it

simply not being in their database. This was shown to be the case as well when performing cross

checking with the known producers and perhaps this could be a point of improvement. With the

unknown samples is where we saw the potential value of antiSMASH in where it predicted

secondary metabolites with antibiotics properties in 9 of the 10 samples. Even though there is no

way to cross check with unknowns, looking at trends in the abundance of certain cluster types or

proportion of clusters predicted to produce antibiotics could give clues and reassurance as to

whether a bacterial isolate is a potential antibiotic producer.
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Appendix A: Code for shuffling genome

from Bio import SeqIO

from Bio.Seq import Seq

import random

for seq_record in SeqIO.parse("sequence-3.fasta", "fasta"):

temp_file = seq_record.seq

temp_file = str(temp_file)

new_file = ''.join(random.sample(temp_file,len(temp_file)))

file = open("Shuffled_genome.txt", "w")

file.write(new_file)

file.close()

#Fasta Conversion: "https://www.hiv.lanl.gov/content/sequence/FORMAT_CONVERSION/form.html"
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Appendix B: Code for graphs and Figures

import pandas as pd

from matplotlib import pyplot as plt

import numpy as np

Known_producers = pd.read_csv('Known Producers - Sheet1.csv')

print(Known_producers)

df = Known_producers.value_counts().rename_axis('unique_values').reset_index(name='counts')

print(df)

df["unique_values"]

df = df[df['counts'] > 2]

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=1.1, labeldistance=0.03,

radius=2.5)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(1.85, 2))

plt.show()

"_________________________________________________"

import pandas as pd

from matplotlib import pyplot as plt

import numpy as np

Known_producers_metabolites = pd.read_csv('Known Producers - Metabolites - Sheet1.csv')

print(Known_producers_metabolites)
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df =

Known_producers_metabolites.value_counts().rename_axis('unique_values').reset_index(name='

counts')

df

df["unique_values"]

df = df[df['counts'] > 1]

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=1.1, labeldistance=0.03,

radius=2.5)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(1.85, 2))

plt.show()

*** Positive Controls ***

import pandas as pd

from matplotlib import pyplot as plt

import numpy as np

Positive_Controls = pd.read_csv('Positive Controls.csv')

Positive_Controls

df = Positive_Controls.value_counts().rename_axis('unique_values').reset_index(name='counts')

df

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=1.05, labeldistance=0, radius=2.5)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(1.85, 2))

plt.show()

Positive_Metabolites = pd.read_csv('Positive Control - Cluster Types - Sheet1.csv')
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Positive_Metabolites

df = Positive_Metabolites.value_counts().rename_axis('unique_values').reset_index(name='counts')

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=1.05, labeldistance=0, radius=2.5)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(1.85, 2))

plt.show()

*** Negative Controls ***

import pandas as pd

from matplotlib import pyplot as plt

import numpy as np

Negative_Controls = pd.read_csv('Negative Controls.csv')

Negative_Controls

df = Negative_Controls.value_counts().rename_axis('unique_values').reset_index(name='counts')

df

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=1.1, labeldistance=3, radius=3.5)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(1.85, 2))

plt.rc('font', size=20)

plt.show()

Negative_Cluster = pd.read_csv('Negative Control - Cluster Types - Sheet1.csv')

Negative_Cluster

df = Negative_Cluster.value_counts().rename_axis('unique_values').reset_index(name='counts')

df

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=1.1, labeldistance=3, radius=3.5)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(1.85, 2))
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plt.rc('font', size=20)

plt.show()

*** Unknown Genomes ***

import pandas as pd

from matplotlib import pyplot as plt

import numpy as np

Unknown_Genomes = pd.read_csv('Unknown Genomes.csv')

Unknown_Genomes

df = Unknown_Genomes.value_counts().rename_axis('unique_values').reset_index(name='counts')

df

df = df[df['counts'] > 2]

plt.rcParams.update({'font.size': 23})

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=0.9, labeldistance=0.03, radius=10)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(4, 5))

plt.show()

Unknown_Genome_types = pd.read_csv("Unknwon Genomes - Cluster Types - Sheet1.csv")

df = Unknown_Genome_types.value_counts().rename_axis('unique_values').reset_index(name='counts')

df

df = df[df['counts'] > 2]

plt.rcParams.update({'font.size': 23})

plt.pie(df["counts"],autopct='%1.1f%%', startangle=90, pctdistance=0.9, labeldistance=0.03, radius=10)

plt.legend(labels=df["unique_values"], loc="upper left", bbox_to_anchor=(4, 5))

plt.show()



90



91

References

Adams, R. A., Leon, G., Miller, N. M., Reyes, S. P., Thantrong, C. H., Thokkadam, A. M.,

Lemma, A. S., Sivaloganathan, D. M., Wan, X., & Brynildsen, M. P. (2021). Rifamycin

antibiotics and the mechanisms of their failure. The Journal of Antibiotics, 74(11),

Article 11. https://doi.org/10.1038/s41429-021-00462-x

Akova, M. (2016). Epidemiology of antimicrobial resistance in bloodstream infections.

Virulence, 7(3), 252–266. https://doi.org/10.1080/21505594.2016.1159366

Alanis, A. J. (2005). Resistance to Antibiotics: Are We in the Post-Antibiotic Era? Archives

of Medical Research, 36(6), 697–705. https://doi.org/10.1016/j.arcmed.2005.06.009

Alexander Fleming Discovery and Development of Penicillin—Landmark. (n.d.). American

Chemical Society. Retrieved February 27, 2023, from

https://www.acs.org/education/whatischemistry/landmarks/flemingpenicillin.html

Anzai, Y., Saito, N., Tanaka, M., Kinoshita, K., Koyama, Y., & Kato, F. (2003). Organization

of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in

Micromonospora griseorubida. FEMS Microbiology Letters, 218(1), 135–141.

https://doi.org/10.1111/j.1574-6968.2003.tb11509.x

Arisetti, N., Fuchs, H. L. S., Coetzee, J., Orozco, M., Ruppelt, D., Bauer, A., Heimann, D.,

Kuhnert, E., Bhamidimarri, S. P., Bafna, J. A., Hinkelmann, B., Eckel, K., Sieber, S. A.,

Müller, P. P., Herrmann, J., Müller, R., Winterhalter, M., Steinem, C., & Brönstrup, M.

(2021). Total synthesis and mechanism of action of the antibiotic armeniaspirol A.

Chemical Science, 12(48), 16023–16034. https://doi.org/10.1039/D1SC04290D



92

Armstrong, H., Bording-Jorgensen, M., Chan, R., & Wine, E. (2019). Nigericin Promotes

NLRP3-Independent Bacterial Killing in Macrophages. Frontiers in Immunology, 10.

https://www.frontiersin.org/articles/10.3389/fimmu.2019.02296

Asano, T., & Adachi, Y. (2006). Effects of Griseoviridin and Viridogrisein against Swine

Dysentery in Experimental Infection by Using Mice and Pigs. Journal of Veterinary

Medical Science, 68(6), 555–560. https://doi.org/10.1292/jvms.68.555

Belousoff, M. J., Shapira, T., Bashan, A., Zimmerman, E., Rozenberg, H., Arakawa, K.,

Kinashi, H., & Yonath, A. (2011). Crystal structure of the synergistic antibiotic pair,

lankamycin and lankacidin, in complex with the large ribosomal subunit. Proceedings

of the National Academy of Sciences, 108(7), 2717–2722.

https://doi.org/10.1073/pnas.1019406108

Biosynthesis of the enediyne antitumor antibiotic C-1027 involves a new branching point in

chorismate metabolism | PNAS. (n.d.). Retrieved March 31, 2023, from

https://www.pnas.org/doi/full/10.1073/pnas.0708750105

Birney, E. (2001). Hidden Markov models in biological sequence analysis. IBM Journal of

Research and Development, 45(3.4), 449–454. https://doi.org/10.1147/rd.453.0449

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015).

Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1),

42–51. https://doi.org/10.1038/nrmicro3380

Boeck, L. D., Papiska, H. R., Wetzel, R. W., Mynderse, J. S., Fukuda, D. S., Mertz, F. P., &

Berry, D. M. (1990). A54145, A NEW LIPOPEPTIDE ANTIBIOTIC COMPLEX:

DISCOVERY, TAXONOMY, FERMENTATION AND HPLC. The Journal of

Antibiotics, 43(6), 587–593. https://doi.org/10.7164/antibiotics.43.587



93

Borghi, A., Coronelli, C., Faniuolo, L., Allievi, G., Pallanza, R., & Gallo, G. G. (1984).

Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. Sp. IV.

Separation and characterization of the components of teichomycin (teicoplanin). The

Journal of Antibiotics, 37(6), 615–620. https://doi.org/10.7164/antibiotics.37.615

Bouthillette, L. M., Darcey, C. A., Handy, T. E., Seaton, S. C., & Wolfe, A. L. (2017).

Isolation of the antibiotic pseudopyronine B and SAR evaluation of C3/C6 alkyl

analogs. Bioorganic & Medicinal Chemistry Letters, 27(12), 2762–2765.

https://doi.org/10.1016/j.bmcl.2017.04.067

Bowyer, J. E., LC. de los Santos, E., Styles, K. M., Fullwood, A., Corre, C., & Bates, D. G.

(2017). Modeling the architecture of the regulatory system controlling methylenomycin

production in Streptomyces coelicolor. Journal of Biological Engineering, 11(1), 30.

https://doi.org/10.1186/s13036-017-0071-6

Brautaset, T., Sekurova, O. N., Sletta, H., Ellingsen, T. E., Strøm, A. R., Valla, S., &

Zotchev, S. B. (2000). Biosynthesis of the polyene antifungal antibiotic nystatin in

Streptomyces noursei ATCC 11455: Analysis of the gene cluster and deduction of the

biosynthetic pathway. Chemistry & Biology, 7(6), 395–403.

https://doi.org/10.1016/S1074-5521(00)00120-4

Cai, L., Yao, Y., Yeon, S. K., & Seiple, I. B. (2020). Modular approaches to lankacidin

antibiotics. Journal of the American Chemical Society, 142(35), 15116–15126.

https://doi.org/10.1021/jacs.0c06648

Charan, R. D., Schlingmann, G., Janso, J., Bernan, V., Feng, X., & Carter, G. T. (2004).

Diazepinomicin, a New Antimicrobial Alkaloid from a Marine Micromonospora sp.

Journal of Natural Products, 67(8), 1431–1433. https://doi.org/10.1021/np040042r



94

Chen, I.-M. A., Chu, K., Palaniappan, K., Ratner, A., Huang, J., Huntemann, M., Hajek, P.,

Ritter, S., Varghese, N., Seshadri, R., Roux, S., Woyke, T., Eloe-Fadrosh, E. A.,

Ivanova, N. N., & Kyrpides, N. C. (2021). The IMG/M data management and analysis

system v.6.0: New tools and advanced capabilities. Nucleic Acids Research, 49(D1),

D751–D763. https://doi.org/10.1093/nar/gkaa939

Clardy, J., Fischbach, M. A., & Currie, C. R. (2009). The natural history of antibiotics.

Current Biology, 19(11), R437–R441. https://doi.org/10.1016/j.cub.2009.04.001

Cobongela, S. Z. Z., Makatini, M. M., Mdluli, P. S., & Sibuyi, N. R. S. (2022).

Acyldepsipeptide Analogues: A Future Generation Antibiotics for Tuberculosis

Treatment. Pharmaceutics, 14(9), 1956.

https://doi.org/10.3390/pharmaceutics14091956

Conly, J. M., & Johnston, B. L. (2005). Where are all the new antibiotics? The new

antibiotic paradox. Canadian Journal of Infectious Diseases and Medical Microbiology,

16, 159–160. https://doi.org/10.1155/2005/892058

De Pascale, G., & Wright, G. D. (2010). Antibiotic Resistance by Enzyme Inactivation:

From Mechanisms to Solutions. ChemBioChem, 11(10), 1325–1334.

https://doi.org/10.1002/cbic.201000067

Deboer, C., Meulman, P. A., Wnuk, R. J., & Peterson, D. H. (1970). GELDANAMYCIN, A

NEW ANTIBIOTIC. The Journal of Antibiotics, 23(9), 442–447.

https://doi.org/10.7164/antibiotics.23.442

Dong, L., Shen, Y., Hou, X.-F., Li, W.-J., & Tang, G.-L. (2019). Discovery of

Druggability-Improved Analogues by Investigation of the LL-D49194α1 Biosynthetic



95

Pathway. Organic Letters, 21(7), 2322–2325.

https://doi.org/10.1021/acs.orglett.9b00610

Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics (Oxford, England), 14(9),

755–763. https://doi.org/10.1093/bioinformatics/14.9.755

EMBL-EBI. (n.d.). What are profile hidden Markov models? | Pfam. Retrieved March 3,

2023, from

https://www.ebi.ac.uk/training/online/courses/pfam-creating-protein-families/what-are-

profile-hidden-markov-models-hmms/

Flatman, R. H., Howells, A. J., Heide, L., Fiedler, H.-P., & Maxwell, A. (2005).

Simocyclinone D8, an Inhibitor of DNA Gyrase with a Novel Mode of Action.

Antimicrobial Agents and Chemotherapy, 49(3), 1093–1100.

https://doi.org/10.1128/AAC.49.3.1093-1100.2005

Flatt, P. M., Wu, X., Perry, S., & Mahmud, T. (2013). Genetic Insights Into Pyralomicin

Biosynthesis in Nonomuraea spiralis IMC A-0156. Journal of Natural Products, 76(5),

939–946. https://doi.org/10.1021/np400159a

Format Conversion. (n.d.). Retrieved April 14, 2023, from

https://www.hiv.lanl.gov/content/sequence/FORMAT_CONVERSION/form.html

Franzese, M., & Iuliano, A. (2019). Hidden Markov Models. In S. Ranganathan, M.

Gribskov, K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and

Computational Biology (pp. 753–762). Academic Press.

https://doi.org/10.1016/B978-0-12-809633-8.20488-3



96

Fredenhagen, A., & Séquin, U. (1985). THE PHOTODEACTIVATION OF HEDAMYCIN,

AN ANTITUMOR ANTIBIOTIC OF THE PLURAMYCIN TYPE. The Journal of

Antibiotics, 38(2), 236–241. https://doi.org/10.7164/antibiotics.38.236

Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and

Public Health, 10(4), 369–378. https://doi.org/10.1016/j.jiph.2016.08.007

Fukumoto, A., Kim, Y.-P., Hanaki, H., Shiomi, K., Tomoda, H., & Ōmura, S. (2008).

Cyslabdan, a New Potentiator of Imipenem Activity against Methicillin-resistant

Staphylococcus aureus, Produced by Streptomyces sp. K04-0144. The Journal of

Antibiotics, 61(1), Article 1. https://doi.org/10.1038/ja.2008.102

Gomes, E. S., Schuch, V., & Lemos, E. G. de M. (2013). Biotechnology of polyketides: New

breath of life for the novel antibiotic genetic pathways discovery through

metagenomics. Brazilian Journal of Microbiology, 44, 1007–1034.

https://doi.org/10.1590/S1517-83822013000400002

Gonsior, M., Mühlenweg, A., Tietzmann, M., Rausch, S., Poch, A., & Süssmuth, R. D.

(2015). Biosynthesis of the Peptide Antibiotic Feglymycin by a Linear Nonribosomal

Peptide Synthetase Mechanism. ChemBioChem, 16(18), 2610–2614.

https://doi.org/10.1002/cbic.201500432

Goodsell, D. (n.d.). PDB101: Molecule of the Month: Actinomycin. RCSB: PDB-101.

Retrieved March 27, 2023, from http://pdb101.rcsb.org/motm/160

Grant, M. A., Baron, R. M., Macias, A. A., Layne, M. D., Perrella, M. A., & Rigby, A. C.

(2009). NETROPSIN IMPROVES SURVIVAL FROM ENDOTOXEMIA BY

DISRUPTING HMGA1-BINDING TO THE NOS2 PROMOTER. The Biochemical

Journal, 418(1), 103. https://doi.org/10.1042/BJ20081427



97

Greule, A., Marolt, M., Deubel, D., Peintner, I., Zhang, S., Jessen-Trefzer, C., De Ford, C.,

Burschel, S., Li, S.-M., Friedrich, T., Merfort, I., Lüdeke, S., Bisel, P., Müller, M.,

Paululat, T., & Bechthold, A. (2017). Wide Distribution of Foxicin Biosynthetic Gene

Clusters in Streptomyces Strains – An Unusual Secondary Metabolite with Various

Properties. Frontiers in Microbiology, 8.

https://www.frontiersin.org/articles/10.3389/fmicb.2017.00221

Hassan, H. M., & Fridovich, I. (1980). Mechanism of the antibiotic action pyocyanine.

Journal of Bacteriology, 141(1), 156–163.

Hayakawa, Y., Kanamaru, N., Shimazu, A., & Seto, H. (1991). LYDICAMYCIN, A NEW

ANTIBIOTIC OF A NOVEL SKELETAL TYPE I. TAXONOMY, FERMENTATION,

ISOLATION AND BIOLOGICAL ACTIVITY. The Journal of Antibiotics, 44(3),

282–287. https://doi.org/10.7164/antibiotics.44.282

He, J., Sundararajan, A., Devitt, N. P., Schilkey, F. D., Ramaraj, T., & Melançon, C. E.

(2016). Complete Genome Sequence of Streptomyces venezuelae ATCC 15439,

Producer of the Methymycin/Pikromycin Family of Macrolide Antibiotics, Using

PacBio Technology. Genome Announcements, 4(3), e00337-16.

https://doi.org/10.1128/genomeA.00337-16

Heidary, M., Khosravi, A. D., Khoshnood, S., Nasiri, M. J., Soleimani, S., & Goudarzi, M.

(2018). Daptomycin. Journal of Antimicrobial Chemotherapy, 73(1), 1–11.

https://doi.org/10.1093/jac/dkx349

Holzgrabe, U. (2015). New Griselimycins for Treatment of Tuberculosis. Chemistry &

Biology, 22(8), 981–982. https://doi.org/10.1016/j.chembiol.2015.08.002



98

Hover, B. M., Kim, S.-H., Katz, M., Charlop-Powers, Z., Owen, J. G., Ternei, M. A.,

Maniko, J., Estrela, A. B., Molina, H., Park, S., Perlin, D. S., & Brady, S. F. (2018).

Culture-independent discovery of the malacidins as calcium-dependent antibiotics with

activity against multidrug-resistant Gram-positive pathogens. Nature Microbiology,

3(4), Article 4. https://doi.org/10.1038/s41564-018-0110-1

How antibiotic is made—Material, history, used, processing, components, composition,

structure, procedure, steps. (n.d.). Retrieved February 28, 2023, from

http://www.madehow.com/Volume-4/Antibiotic.html

Huang, S., Liu, Y., Liu, W.-Q., Neubauer, P., & Li, J. (2021). The Nonribosomal Peptide

Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms, 9(4),

780. https://doi.org/10.3390/microorganisms9040780

Hudson, A. (n.d.). R15 Proposal 2021—592-594 strains.docx. Google Docs. Retrieved April

21, 2023, from

https://docs.google.com/document/u/0/d/1bY1JwR58LJIGag_VhBkeKFf08Ps0NEW8/e

dit?usp=gmail_attachment_preview&usp=embed_facebook

Igarashi, Y., Kim, Y., In, Y., Ishida, T., Kan, Y., Fujita, T., Iwashita, T., Tabata, H., Onaka,

H., & Furumai, T. (2010). Alchivemycin A, a Bioactive Polycyclic Polyketide with an

Unprecedented Skeleton from Streptomyces sp. Organic Letters, 12(15), 3402–3405.

https://doi.org/10.1021/ol1012982

Iscla, I., Wray, R., Wei, S., Posner, B., & Blount, P. (2014). Streptomycin potency is

dependent on MscL channel expression. Nature Communications, 5(1), Article 1.

https://doi.org/10.1038/ncomms5891



99

Ji, X., Dong, Y., Ling, C., Zhou, Z., Li, Q., & Ju, J. (2020). Elucidation of the Tailoring

Steps in Julichrome Biosynthesis by Marine Gastropod Mollusk-Associated

Streptomyces sampsonii SCSIO 054. Organic Letters, 22(17), 6927–6931.

https://doi.org/10.1021/acs.orglett.0c02469

Jiang, L., Wang, L., Zhang, J., Liu, H., Hong, B., Tan, H., & Niu, G. (2015). Identification of

novel mureidomycin analogues via rational activation of a cryptic gene cluster in

Streptomyces roseosporus NRRL 15998. Scientific Reports, 5(1), Article 1.

https://doi.org/10.1038/srep14111

Jo, H.-G., Adidjaja, J. J., Kim, D.-K., Park, B.-S., Lee, N., Cho, B.-K., Kim, H. U., & Oh,

M.-K. (2022). Comparative genomic analysis of Streptomyces rapamycinicus NRRL

5491 and its mutant overproducing rapamycin. Scientific Reports, 12(1), Article 1.

https://doi.org/10.1038/s41598-022-14199-6

Johnson, L. S., Eddy, S. R., & Portugaly, E. (2010). Hidden Markov model speed heuristic

and iterative HMM search procedure. BMC Bioinformatics, 11(1), 431.

https://doi.org/10.1186/1471-2105-11-431

Jørgensen, H., Degnes, K. F., Sletta, H., Fjærvik, E., Dikiy, A., Herfindal, L., Bruheim, P.,

Klinkenberg, G., Bredholt, H., Nygård, G., Døskeland, S. O., Ellingsen, T. E., &

Zotchev, S. B. (2009). Biosynthesis of Macrolactam BE-14106 Involves Two Distinct

PKS Systems and Amino Acid Processing Enzymes for Generation of the Aminoacyl

Starter Unit. Chemistry & Biology, 16(10), 1109–1121.

https://doi.org/10.1016/j.chembiol.2009.09.014

Kara, M., Asano, K., Kawamoto, I., Takiouchi, T., Katsumata, S., Takahashi, K.-I., &

Nakano, H. (1989). LEINAMYCIN, A NEW ANTITUMOR ANTIBIOTIC FROM



100

STREPTOMYCES; PRODUCING ORGANISM, FERMENTATION AND

ISOLATION. The Journal of Antibiotics, 42(12), 1768–1774.

https://doi.org/10.7164/antibiotics.42.1768

Kharel, M. K., Pahari, P., Lian, H., & Rohr, J. (2010). Enzymatic Total Synthesis of

Rabelomycin, an Angucycline Group Antibiotic. Organic Letters, 12(12), 2814–2817.

https://doi.org/10.1021/ol1009009

Kingston, W. (2000). Antibiotics, invention and innovation. Research Policy, 29(6),

679–710. https://doi.org/10.1016/S0048-7333(99)00045-1

Kodani, S., Sato, K., Hemmi, H., & Ohnish-Kameyama, M. (2014). Isolation and structural

determination of a new hydrophobic peptide venepeptide from Streptomyces

venezuelae. The Journal of Antibiotics, 67(12), Article 12.

https://doi.org/10.1038/ja.2014.81

Koyama, N., Shigeno, S., Kanamoto, A., & Tomoda, H. (2020). Steffimycin E, a new

anti-mycobacterial agent against Mycobacterium avium complex, produced by

Streptomyces sp. OPMA02852. The Journal of Antibiotics, 73(8), Article 8.

https://doi.org/10.1038/s41429-020-0290-9

Kunze, B., Höfle, G., & Reichenbach, H. (1987). THE AURACHINS, NEW QUINOLINE

ANTIBIOTICS FROM MYXOBACTERIA: PRODUCTION, PHYSICO-CHEMICAL

AND BIOLOGICAL PROPERTIES. The Journal of Antibiotics, 40(3), 258–265.

https://doi.org/10.7164/antibiotics.40.258

Kwun, M. J., & Hong, H.-J. (2014). Genome Sequence of Streptomyces toyocaensis NRRL

15009, Producer of the Glycopeptide Antibiotic A47934. Genome Announcements,

2(4), e00749-14. https://doi.org/10.1128/genomeA.00749-14



101

Lim, J., Chintalapudi, V., Gudmundsson, H. G., Tran, M., Bernasconi, A., Blanco, A., Song,

L., Challis, G. L., & Anderson, E. A. (2021). Synthesis of the C1–C27 Fragment of

Stambomycin D Validates Modular Polyketide Synthase-Based Stereochemical

Assignments. Organic Letters, 23(19), 7439–7444.

https://doi.org/10.1021/acs.orglett.1c02650

Lim, Y. H., Wong, F. T., Yeo, W. L., Ching, K. C., Lim, Y. W., Heng, E., Chen, S., Tsai,

D.-J., Lauderdale, T.-L., Shia, K.-S., Ho, Y. S., Hoon, S., Ang, E. L., Zhang, M. M., &

Zhao, H. (2018). Auroramycin: A Potent Antibiotic from Streptomyces roseosporus by

CRISPR-Cas9 Activation. Chembiochem: A European Journal of Chemical Biology.

https://doi.org/10.1002/cbic.201800266

Liu, A., Tran, L., Becket, E., Lee, K., Chinn, L., Park, E., Tran, K., & Miller, J. H. (2010).

Antibiotic Sensitivity Profiles Determined with an Escherichia coli Gene Knockout

Collection: Generating an Antibiotic Bar Code. Antimicrobial Agents and

Chemotherapy, 54(4), 1393–1403. https://doi.org/10.1128/AAC.00906-09

Liu, W.-T., Lamsa, A., Wong, W. R., Boudreau, P. D., Kersten, R., Peng, Y., Moree, W. J.,

Duggan, B. M., Moore, B. S., Gerwick, W. H., Linington, R. G., Pogliano, K., &

Dorrestein, P. C. (2014a). MS/MS-based networking and peptidogenomics guided

genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus. The

Journal of Antibiotics, 67(1), Article 1. https://doi.org/10.1038/ja.2013.99

Liu, W.-T., Lamsa, A., Wong, W. R., Boudreau, P. D., Kersten, R., Peng, Y., Moree, W. J.,

Duggan, B. M., Moore, B. S., Gerwick, W. H., Linington, R. G., Pogliano, K., &

Dorrestein, P. C. (2014b). MS/MS-based networking and peptidogenomics guided



102

genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus. The

Journal of Antibiotics, 67(1), Article 1. https://doi.org/10.1038/ja.2013.99

Ma, J., Huang, H., Xie, Y., Liu, Z., Zhao, J., Zhang, C., Jia, Y., Zhang, Y., Zhang, H., Zhang,

T., & Ju, J. (2017). Biosynthesis of ilamycins featuring unusual building blocks and

engineered production of enhanced anti-tuberculosis agents. Nature Communications,

8(1), Article 1. https://doi.org/10.1038/s41467-017-00419-5

MacGowan, A., & Macnaughton, E. (2017). Antibiotic resistance. Medicine, 45(10),

622–628. https://doi.org/10.1016/j.mpmed.2017.07.006

Malcolmson, S. J., Young, T. S., Ruby, J. G., Skewes-Cox, P., & Walsh, C. T. (2013). The

posttranslational modification cascade to the thiopeptide berninamycin generates linear

forms and altered macrocyclic scaffolds. Proceedings of the National Academy of

Sciences, 110(21), 8483–8488. https://doi.org/10.1073/pnas.1307111110

Mann, A., Nehra, K., Rana, J. S., & Dahiya, T. (2021). Antibiotic resistance in agriculture:

Perspectives on upcoming strategies to overcome upsurge in resistance. Current

Research in Microbial Sciences, 2, 100030.

https://doi.org/10.1016/j.crmicr.2021.100030

Marquis, R. E. (1965). Nature of the Bactericidal Action of Antimycin A for Bacillus

megaterium. Journal of Bacteriology, 89(6), 1453–1459.

https://doi.org/10.1128/jb.89.6.1453-1459.1965

Martínez-Núñez, M. A., & López, V. E. L. y. (2016). Nonribosomal peptides synthetases and

their applications in industry. Sustainable Chemical Processes, 4(1), 13.

https://doi.org/10.1186/s40508-016-0057-6



103

Matsumoto, N., Tsuchida, T., Nakamura, H., Sawa, R., Takahashi, Y., Naganawa, H.,

Iinuma, H., Sawa, T., Takeuchi, T., & Shiro, M. (1999). Lactonamycin, a new

antimicrobial antibiotic produced by Streptomyces rishiriensis MJ773-88K4. II.

Structure determination. The Journal of Antibiotics, 52(3), 276–280.

https://doi.org/10.7164/antibiotics.52.276

Mauvezin, C., & Neufeld, T. P. (2015). Bafilomycin A1 disrupts autophagic flux by

inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent

autophagosome-lysosome fusion. Autophagy, 11(8), 1437–1438.

https://doi.org/10.1080/15548627.2015.1066957

Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. A.,

Weber, T., Takano, E., & Breitling, R. (2011). antiSMASH: Rapid identification,

annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial

and fungal genome sequences. Nucleic Acids Research, 39(suppl_2), W339–W346.

https://doi.org/10.1093/nar/gkr466

Medeot, D. B., Fernandez, M., Morales, G. M., & Jofré, E. (2020). Fengycins From Bacillus

amyloliquefaciens MEP218 Exhibit Antibacterial Activity by Producing Alterations on

the Cell Surface of the Pathogens Xanthomonas axonopodis pv. Vesicatoria and

Pseudomonas aeruginosa PA01. Frontiers in Microbiology, 10.

https://www.frontiersin.org/articles/10.3389/fmicb.2019.03107

Mitcheltree, M. J., Pisipati, A., Syroegin, E. A., Silvestre, K. J., Klepacki, D., Mason, J. D.,

Terwilliger, D. W., Testolin, G., Pote, A. R., Wu, K. J. Y., Ladley, R. P., Chatman, K.,

Mankin, A. S., Polikanov, Y. S., & Myers, A. G. (2021). A synthetic antibiotic class



104

overcoming bacterial multidrug resistance. Nature, 599(7885), Article 7885.

https://doi.org/10.1038/s41586-021-04045-6

Mohr, K. I. (2016). History of Antibiotics Research. In M. Stadler & P. Dersch (Eds.), How

to Overcome the Antibiotic Crisis: Facts, Challenges, Technologies and Future

Perspectives (pp. 237–272). Springer International Publishing.

https://doi.org/10.1007/82_2016_499

Mohs, R. C., & Greig, N. H. (2017). Drug discovery and development: Role of basic

biological research. Alzheimer’s & Dementia : Translational Research & Clinical

Interventions, 3(4), 651. https://doi.org/10.1016/j.trci.2017.10.005

Montoya, J. G., Laessig, K., Fazeli, M. S., Siliman, G., Yoon, S. S., Drake-Shanahan, E.,

Zhu, C., Akbary, A., & McLeod, R. (2021). A fresh look at the role of spiramycin in

preventing a neglected disease: Meta-analyses of observational studies. European

Journal of Medical Research, 26(1), 143. https://doi.org/10.1186/s40001-021-00606-7

Muir, P., Li, S., Lou, S., Wang, D., Spakowicz, D. J., Salichos, L., Zhang, J., Weinstock, G.

M., Isaacs, F., Rozowsky, J., & Gerstein, M. (2016). The real cost of sequencing:

Scaling computation to keep pace with data generation. Genome Biology, 17(1), 53.

https://doi.org/10.1186/s13059-016-0917-0

Nakayama, H., Takatsu, T., Abe, Y., Shimazu, A., Furihata, K., Ikeda, K., Furihata, K., Seto,

H., & Ōtake, N. (1987). Rustmicin, a New Macrolide Antibiotic Active Against Wheat

Stem Rust Fungus. Agricultural and Biological Chemistry, 51(3), 853–859.

https://doi.org/10.1080/00021369.1987.10868081

Newbold, C. J., Wallace, R. J., Watt, N. D., & Richardson, A. J. (1988). Effect of the novel

ionophore tetronasin (ICI 139603) on ruminal microorganisms. Applied and



105

Environmental Microbiology, 54(2), 544–547.

https://doi.org/10.1128/aem.54.2.544-547.1988

Nikaido, H. (2009). Multidrug Resistance in Bacteria. Annual Review of Biochemistry, 78,

119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923

Ohnishi, Y., Ishikawa, J., Hara, H., Suzuki, H., Ikenoya, M., Ikeda, H., Yamashita, A.,

Hattori, M., & Horinouchi, S. (2008). Genome Sequence of the

Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350. Journal of

Bacteriology, 190(11), 4050–4060. https://doi.org/10.1128/JB.00204-08

Osbourn, A. (2010). Secondary metabolic gene clusters: Evolutionary toolkits for chemical

innovation. Trends in Genetics, 26(10), 449–457.

https://doi.org/10.1016/j.tig.2010.07.001

Pang, B., Liao, R., Tang, Z., Guo, S., Wu, Z., & Liu, W. (2021). Caerulomycin and

collismycin antibiotics share a trans-acting flavoprotein-dependent assembly line for

2,2’-bipyridine formation. Nature Communications, 12(1), Article 1.

https://doi.org/10.1038/s41467-021-23475-4

Parthasarathy, A., Wong, N. H., Cavanaugh, N. T., Steiner, K. K., Wengert, P. C., Savka, M.

A., & Hudson, A. O. (2018). Whole-Genome Sequencing and Annotation of

Exiguobacterium sp. RIT 452, an Antibiotic-Producing Strain Isolated from a Pond

Located on the Campus of the Rochester Institute of Technology. Microbiology

Resource Announcements, 7(17), e01341-18. https://doi.org/10.1128/MRA.01341-18

Plackett, B. (2020). Why big pharma has abandoned antibiotics. Nature, 586(7830),

S50–S52. https://doi.org/10.1038/d41586-020-02884-3



106

Pommerehne, K., Walisko, J., Ebersbach, A., & Krull, R. (2019). The antitumor antibiotic

rebeccamycin—Challenges and advanced approaches in production processes. Applied

Microbiology and Biotechnology, 103(9), 3627–3636.

https://doi.org/10.1007/s00253-019-09741-y

Qi, D., Zou, L., Zhou, D., Zhang, M., Wei, Y., Zhang, L., Xie, J., & Wang, W. (2021).

Identification and Antifungal Mechanism of a Novel Actinobacterium Streptomyces

huiliensis sp. Nov. Against Fusarium oxysporum f. Sp. Cubense Tropical Race 4 of

Banana. Frontiers in Microbiology, 12.

https://www.frontiersin.org/articles/10.3389/fmicb.2021.722661

Qin, Z., Munnoch, J. T., Devine, R., Holmes, N. A., Seipke, R. F., Wilkinson, K. A.,

Wilkinson, B., & Hutchings, M. I. (2017). Formicamycins, antibacterial polyketides

produced by Streptomyces formicae isolated from African Tetraponera plant-ants.

Chemical Science, 8(4), 3218–3227. https://doi.org/10.1039/C6SC04265A

Quaderer, R., Omura, S., Ikeda, H., & Cane, D. E. (2006). Pentalenolactone Biosynthesis.

Molecular Cloning and Assignment of Biochemical Function to PtlI, a Cytochrome

P450 of Streptomyces avermitilis. Journal of the American Chemical Society, 128(40),

13036–13037. https://doi.org/10.1021/ja0639214

Radics, L., Incze, M., Dornberger, K., & Thrum, H. (1982). Tetramycin B, a new polyene

macrolide antibiotic: The structure of tetramycins A and B as studied by high-field

NMR spectroscopy. Tetrahedron, 38(1), 183–189.

https://doi.org/10.1016/0040-4020(82)85064-3

Raynor, B. D. (1997). Penicillin and ampicillin. Primary Care Update for OB/GYNS, 4(4),

147–152. https://doi.org/10.1016/S1068-607X(97)00012-7



107

Reference. (n.d.). Retrieved May 11, 2023, from

https://www.bioinformatics.org/sms2/reference.html

Röhl, F., Rabenhorst, J., & Zähner, H. (1987). Biological properties and mode of action of

clavams. Archives of Microbiology, 147(4), 315–320.

https://doi.org/10.1007/BF00406126

Rokas, A., Mead, M. E., Steenwyk, J. L., Raja, H. A., & Oberlies, N. H. (2020).

Biosynthetic gene clusters and the evolution of fungal chemodiversity. Natural Product

Reports, 37(7), 868–878. https://doi.org/10.1039/C9NP00045C

Rothe, M. L., Li, J., Garibay, E., Moore, B. S., & McKinnie, S. M. K. (2019). Synthesis,

bioactivity, and enzymatic modification of antibacterial thiotetromycin derivatives.

Organic & Biomolecular Chemistry, 17(13), 3416–3423.

https://doi.org/10.1039/C8OB03109F

Sadaka, C., Ellsworth, E., Hansen, P. R., Ewin, R., Damborg, P., & Watts, J. L. (2018).

Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate

Biosynthesis. Molecules : A Journal of Synthetic Chemistry and Natural Product

Chemistry, 23(6), 1371. https://doi.org/10.3390/molecules23061371

Sakoulas, G., Nam, S.-J., Loesgen, S., Fenical, W., Jensen, P. R., Nizet, V., & Hensler, M.

(2012). Novel Bacterial Metabolite Merochlorin A Demonstrates in vitro Activity

against Multi-Drug Resistant Methicillin-Resistant Staphylococcus aureus. PLOS ONE,

7(1), e29439. https://doi.org/10.1371/journal.pone.0029439

Sasaki, T., Furihata, K., Shimazu, A., Seto, H., Iwata, M., Watanabe, T., & Otake, N. (1986).

A NOVEL MACROLIDE ANTIBIOTIC, NOTONESOMYCIN A. The Journal of

Antibiotics, 39(4), 502–509. https://doi.org/10.7164/antibiotics.39.502



108

Shi, P., Li, Y., Zhu, J., Shen, Y., & Wang, H. (2021). Targeted Discovery of the Polyene

Macrolide Hexacosalactone A from Streptomyces by Reporter-Guided Selection of

Fermentation Media. Journal of Natural Products, 84(7), 1924–1929.

https://doi.org/10.1021/acs.jnatprod.1c00144

Shin, Y.-H. (2019). Bombyxamycins A and B, Cytotoxic Macrocyclic Lactams from an

Intestinal Bacterium of the Silkworm Bombyx mori. Organic Letters, 21(6),

1804–1808. https://doi.org/10.1021/acs.orglett.9b00384

Slattery, M., Rajbhandari, I., & Wesson, K. (2001). Competition-mediated antibiotic

induction in the marine bacterium Streptomyces tenjimariensis. Microbial Ecology,

41(2), 90–96. https://doi.org/10.1007/s002480000084

Smith, P. A., & Romesberg, F. E. (2012). Mechanism of Action of the Arylomycin

Antibiotics and Effects of Signal Peptidase I Inhibition. Antimicrobial Agents and

Chemotherapy, 56(10), 5054–5060. https://doi.org/10.1128/AAC.00785-12

Son, S., Hong, Y.-S., Jang, M., Heo, K. T., Lee, B., Jang, J.-P., Kim, J.-W., Ryoo, I.-J., Kim,

W.-G., Ko, S.-K., Kim, B. Y., Jang, J.-H., & Ahn, J. S. (2017). Genomics-Driven

Discovery of Chlorinated Cyclic Hexapeptides Ulleungmycins A and B from a

Streptomyces Species. Journal of Natural Products, 80(11), 3025–3031.

https://doi.org/10.1021/acs.jnatprod.7b00660

Sr, N., Mv, P., S, C., Ek, V., Kr, D., J, B., Bn, G., & M, L. (1994). Balhimycin, a new

glycopeptide antibiotic produced by Amycolatopsis sp. Y-86,21022. Taxonomy,

production, isolation and biological activity. The Journal of Antibiotics, 47(3).

https://doi.org/10.7164/antibiotics.47.334



109

Static or cidal; which is best? - Microbiology Nuts & Bolts. (n.d.). Retrieved February 28,

2023, from

http://www.microbiologynutsandbolts.co.uk/the-bug-blog/static-or-cidal-which-is-best

Steiner, K. K., Parthasarathy, A., Wong, N. H., Cavanaugh, N. T., Chu, J., & Hudson, A. O.

(2020a). Isolation and whole-genome sequencing of Pseudomonas sp. RIT 623, a

slow-growing bacterium endowed with antibiotic properties. BMC Research Notes,

13(1), 370. https://doi.org/10.1186/s13104-020-05216-w

Steiner, K. K., Parthasarathy, A., Wong, N. H., Cavanaugh, N. T., Chu, J., & Hudson, A. O.

(2020b). Isolation and whole-genome sequencing of Pseudomonas sp. RIT 623, a

slow-growing bacterium endowed with antibiotic properties. BMC Research Notes,

13(1), 370. https://doi.org/10.1186/s13104-020-05216-w

Stubbendieck, R. M., Brock, D. J., Pellois, J.-P., Gill, J. J., & Straight, P. D. (2018).

Linearmycins are lytic membrane-targeting antibiotics. The Journal of Antibiotics,

71(3), Article 3. https://doi.org/10.1038/s41429-017-0005-z

Sun, C., Yang, Z., Zhang, C., Liu, Z., He, J., Liu, Q., Zhang, T., Ju, J., & Ma, J. (2019).

Genome Mining of Streptomyces atratus SCSIO ZH16: Discovery of Atratumycin and

Identification of Its Biosynthetic Gene Cluster. Organic Letters, 21(5), 1453–1457.

https://doi.org/10.1021/acs.orglett.9b00208

Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails

and how to improve it? Acta Pharmaceutica Sinica B, 12(7), 3049–3062.

https://doi.org/10.1016/j.apsb.2022.02.002

Sun, Y., Zhou, X., Tu, G., & Deng, Z. (2003). Identification of a gene cluster encoding

meilingmycin biosynthesis among multiple polyketide synthase contigs isolated from



110

Streptomyces nanchangensis NS3226. Archives of Microbiology, 180(2), 101–107.

https://doi.org/10.1007/s00203-003-0564-1

Terwilliger, D. W., & Trauner, D. (2018). Selective Synthesis of Divergolide I. Journal of

the American Chemical Society, 140(8), 2748–2751.

https://doi.org/10.1021/jacs.7b13092

Thibessard, A., Haas, D., Gerbaud, C., Aigle, B., Lautru, S., Pernodet, J.-L., & Leblond, P.

(2015). Complete genome sequence of Streptomyces ambofaciens ATCC 23877, the

spiramycin producer. Journal of Biotechnology, 214, 117–118.

https://doi.org/10.1016/j.jbiotec.2015.09.020

Tripathi, R. K., & Gottlieb, D. (1969). Mechanism of Action of the Antifungal Antibiotic

Pyrrolnitrin. Journal of Bacteriology, 100(1), 310–318.

https://doi.org/10.1128/jb.100.1.310-318.1969

van der Voort, M., Meijer, H., Schmidt, Y., Watrous, J., Dekkers, E., Mendes, R., Dorrestein,

P., Gross, H., & Raaijmakers, J. (2015). Genome mining and metabolic profiling of the

rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds.

Frontiers in Microbiology, 6.

https://www.frontiersin.org/articles/10.3389/fmicb.2015.00693

Wang, L., Zhang, C., Zhang, J., Rao, Z., Xu, X., Mao, Z., & Chen, X. (2021).

Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications.

Frontiers in Bioengineering and Biotechnology, 9.

https://www.frontiersin.org/articles/10.3389/fbioe.2021.748976

Wang, R., Kong, F., Wu, H., Hou, B., Kang, Y., Cao, Y., Duan, S., Ye, J., & Zhang, H.

(2020). Complete genome sequence of high-yield strain S. lincolnensis B48 and



111

identification of crucial mutations contributing to lincomycin overproduction. Synthetic

and Systems Biotechnology, 5(2), 37–48. https://doi.org/10.1016/j.synbio.2020.03.001

Watve, M. G., Tickoo, R., Jog, M. M., & Bhole, B. D. (2001). How many antibiotics are

produced by the genus Streptomyces? Archives of Microbiology, 176(5), 386–390.

https://doi.org/10.1007/s002030100345

Webber, M. A., & Piddock, L. J. V. (2003). The importance of efflux pumps in bacterial

antibiotic resistance. Journal of Antimicrobial Chemotherapy, 51(1), 9–11.

https://doi.org/10.1093/jac/dkg050

Wiegmann, D., Koppermann, S., Wirth, M., Niro, G., Leyerer, K., & Ducho, C. (2016).

Muraymycin nucleoside-peptide antibiotics: Uridine-derived natural products as lead

structures for the development of novel antibacterial agents. Beilstein Journal of

Organic Chemistry, 12, 769–795. https://doi.org/10.3762/bjoc.12.77

Wright, G. D. (2011). Molecular mechanisms of antibiotic resistance. Chemical

Communications, 47(14), 4055. https://doi.org/10.1039/c0cc05111j

Wu, C., Shang, Z., Lemetre, C., Ternei, M. A., & Brady, S. F. (2019). Cadasides,

calcium-dependent acidic lipopeptides from the soil metagenome that are active against

multidrug resistant bacteria. Journal of the American Chemical Society, 141(9),

3910–3919. https://doi.org/10.1021/jacs.8b12087

Wu, C., van Wezel, G. P., & Hae Choi, Y. (2015). Identification of novel endophenaside

antibiotics produced by Kitasatospora sp. MBT66. The Journal of Antibiotics, 68(7),

Article 7. https://doi.org/10.1038/ja.2015.14



112

Xu, L., Xu, X., Yuan, G., Wang, Y., Qu, Y., & Liu, E. (2018). Mechanism of Azalomycin F5a

against Methicillin-ResistantStaphylococcus aureus. BioMed Research International,

2018, e6942452. https://doi.org/10.1155/2018/6942452

Xu, Y., & Tan, D. S. (2019). Total Synthesis of the Bacterial Diisonitrile Chalkophore

SF2768. Organic Letters, 21(21), 8731–8735.

https://doi.org/10.1021/acs.orglett.9b03348

Yi, W., Newaz, A. W., Yong, K., Ma, M., Lian, X.-Y., & Zhang, Z. (2022). New Hygrocins

K–U and Streptophenylpropanamide A and Bioactive Compounds from the

Marine-Associated Streptomyces sp. ZZ1956. Antibiotics, 11(11), Article 11.

https://doi.org/10.3390/antibiotics11111455

Yim, G., Huimi Wang, H., & Davies, J. (2006). The truth about antibiotics. International

Journal of Medical Microbiology, 296(2), 163–170.

https://doi.org/10.1016/j.ijmm.2006.01.039

Yin, X., & Zabriskie, T. M. (2006). The enduracidin biosynthetic gene cluster from

Streptomyces fungicidicus. Microbiology, 152(10), 2969–2983.

https://doi.org/10.1099/mic.0.29043-0

Zabolotneva, A. A., Shatova, O. P., Sadova, A. A., Shestopalov, A. V., & Roumiantsev, S. A.

(2022). An Overview of Alkylresorcinols Biological Properties and Effects. Journal of

Nutrition and Metabolism, 2022, 4667607. https://doi.org/10.1155/2022/4667607

Zhao, Q., Wang, M., Xu, D., Zhang, Q., & Liu, W. (2015). Metabolic coupling of two

small-molecule thiols programs the biosynthesis of lincomycin A. Nature, 518(7537),

Article 7537. https://doi.org/10.1038/nature14137



113

Zheng, D., Ding, N., Jiang, Y., Zhang, J., Ma, J., Chen, X., Liu, J., Han, L., & Huang, X.

(2016). Albaflavenoid, a new tricyclic sesquiterpenoid from Streptomyces violascens.

The Journal of Antibiotics, 69(10), Article 10. https://doi.org/10.1038/ja.2016.12

Zhou, S., Wang, F., Wong, E. T., Fonkem, E., Hsieh, T.-C., Wu, J. M., & Wu, E. (2013).

Salinomycin: A Novel Anti-Cancer Agent with Known Anti-Coccidial Activities.

Current Medicinal Chemistry, 20(33), 4095.

https://doi.org/10.2174/15672050113109990199

Zhu, X. M., Hackl, S., Thaker, M. N., Kalan, L., Weber, C., Urgast, D. S., Krupp, E. M.,

Brewer, A., Vanner, S., Szawiola, A., Yim, G., Feldmann, J., Bechthold, A., Wright, G.

D., & Zechel, D. L. (2015). Biosynthesis of the Fluorinated Natural Product

Nucleocidin in Streptomyces calvus Is Dependent on the bldA-Specified

Leu-tRNAUUA Molecule. ChemBioChem, 16(17), 2498–2506.

https://doi.org/10.1002/cbic.201500402


	Antibiotics and Secondary Metabolites Analysis SHell (antiSMASH) as a tool to detect putative novel antibiotics
	Recommended Citation

	Untitled

