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Abstract

Deep Neural Networks have rapidly developed over the last few years, demon-

strating state-of-the-art performances on various machine learning tasks such as

image classification, natural language processing, and speech recognition. De-

spite their remarkable performance, deep neural networks are often criticized

for their need for more interpretability, which makes it difficult to comprehend

their decision-making process and get insights into their workings. Explainable

AI has emerged as an important area of study that aims to overcome this issue

by providing understandable explanations for deep neural network predictions.

In this thesis, we focus on one of the explainability methods called Integrated

Gradients (IG) and propose a contour-based analysis method for assessing the

faithfulness of the IG algorithm.

Our experiments on the IG algorithm showcase that it is an effective tech-

nique for generating attributions for deep neural networks. We found that the

IG algorithm effectively generated attributions consistent with human intuition,

highlighting relevant regions of the input images. However, there are still sig-

nificant issues with the performance and interpretability of IG. For example,

choosing the correct baselines for computing IG attributions is still important.

The baseline in this context refers to the lack of features, which is used as a

starting point to get the attributions. To address this issue, we assessed the

performance of the IG algorithm by using multiple random baselines and aggre-

gating the resulting attributions using mean and median techniques to obtain

the final attribution.

To evaluate the aggregated attributions, we propose a contour-based analy-

sis method. This method provides an important continuous patch of aggregated

IG attribution’s top 10% values. The continuous patch of important features al-

lows us a more intuitive interpretation of IG’s performance. We use the Captum

library to implement the IG algorithm and experiment with multiple random

baselines to compare the attributions generated by the IG algorithm. Our results

demonstrate that the contour-based analysis method can be used to evaluate
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the performance of the IG algorithm for different baselines and can be applied

to other attribution algorithms as well. Our findings suggest that the IG algo-

rithm can identify the most critical elements of an image, and the contour-based

approach can extract more localized and detailed information.

Our research sheds light on the effectiveness of the multiple random baselines

on the Integrated Gradients (IG) algorithm. It provides valuable insights into its

performance when generating attributions for deep neural networks with differ-

ent baselines. We also identify several limitations of our study, such as focusing

on a single model architecture and data type and using a perturbation-based

method to create random baselines. Future work can address these limitations

by evaluating the performance of IG on other types of models and data using

different ways to create the baselines.
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1 Introduction

Machine learning models have become very popular in recent years due to their

accurate insights into the data and automation of complex tasks. For example,

machine learning models in healthcare performed better than humans in detect-

ing diseases such as skin cancer [1]. In finance, machine learning models have

been used to detect credit card fraud by analyzing large amounts of data [2].

Even with many applications of machine learning models, often, these mod-

els are difficult to interpret, making it challenging for humans to understand

how machine learning models make predictions. In domains such as healthcare,

finance, or autonomous driving, this lack of interpretability can be a critical

problem because the consequences of model errors can be severe. For example,

interpretability is crucial in the healthcare industry to ensure that model deci-

sions are consistent with medical knowledge and ethics [3]. To identify potential

biases and stop unfair behaviors, it is crucial in finance to understand the rea-

soning behind a model’s predictions [4]. Similarly, interpretability is required

in autonomous driving to ensure that the model’s choices comply with safety

standards and laws [5].

Figure 1: XAI concepts [6]
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As a result of these challenges, a new area of research called Explainable

Artificial Intelligence (XAI) has emerged [7]. XAI is a rapidly growing field of

research that aims to develop methods for creating more transparent and inter-

pretable machine learning models [8]. The growing interest in XAI has resulted

in the development of several techniques, such as local explanation methods,

global explanation methods, and feature visualizations, for providing insights

into how machine learning models make decisions [7]. Figure 1 demonstrates

the core concepts of how XAI works.

Post-hoc explainability methods are popular for understanding black box

models [9]. Figure 2 illustrates the overview of Post-hoc explainability methods.

Figure 2: Overview of Post-hoc Explainability methods

This study aims to systematically evaluate Integrated Gradient (IG), a pop-

ular post-hoc explainability method, and propose potential improvements.

Integrated Gradient(IG) is an XAI technique that attributes the prediction

for deep neural networks to its inputs [10]. IG computes the attribution of

each input feature to the output, considering the output gradient concerning

the input along a path from a baseline to the input [10].

Nevertheless, there are still significant challenges with the performance and

interpretability of IG [11]. One of the significant problems is choosing which

baseline to use to compute attributions, which can considerably impact the at-
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tributions [10]. The baseline here refers absence of the feature, which is used

to get the attribution by accumulating gradients on the images interpolated be-

tween the baseline and input image [12]. Another challenge is the faithfulness of

IG, which refers to the degree to which the attributions reflect the actual con-

tribution of each feature to the output. Low faithfulness can lead to misleading

explanations, making it difficult for humans to understand how the model makes

its decisions [13].

Our research aims to improve the understanding of Machine Learning mod-

els by making IG attributions more robust. This research analyzes and evalu-

ates the impact of using multiple random baselines for the Integrated Gradient

method. Additionally, we propose the Contour Analysis method used to evalu-

ate our IG explanations.

1.1 Research Questions

RQ1: How does the choice of baseline impact the performance of IG?

RQ2: How can we analyze the faithfulness of IG to identify potential issues

with the explanations provided?

RQ3: How does the Contour Analysis method affect the IG attributions?

1.2 Motivation

The motivation for this research arises from the growing concerns about the lack

of transparency and interpretability in Machine Learning models, particularly in

high-stakes applications such as medical diagnosis and autonomous driving [14].

The proposed research will contribute to the ongoing development of XAI

by conducting a thorough analysis of the performance and interpretability of

IG. This research will build on P. Sturmfels and S. Lundberg’s [12] work, which

proposed several ways to choose the baseline for IG.

Additionally, this research paper has broader implications for the ethical and

governance issues surrounding the development and deployment of AI systems.
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The lack of transparency and interpretability in machine learning models has

raised concerns about their potential to perpetuate biases and discrimination, as

noted by Floridi et al. [15]. By improving the interpretability and transparency

of machine learning models; our research has the potential to address these

concerns and contribute to the development of more reliable and responsible AI

systems.

1.3 Scope

This study aims to thoroughly analyze the Integrated Gradients algorithm for

interpreting deep neural networks. The analysis will focus on the performance

and interpretability of the algorithm using different baselines. Also, we proposed

the Contour Analysis method, which is used to extract continuous patch of

important features using the IG attributions.

The research is limited to image classification tasks. We used Captum Li-

brary [16] for IG experimentations and Quantus Library [17] to evaluate expla-

nations quantitatively. The study evaluates the performance of IG using various

baselines and aggregation methods based on mean and median. The research

proposed a new contour analysis method to assess the IG algorithm’s faithful-

ness, which involves selecting the top 10% of the attribution values and drawing

a contour around them. The resultant patch from the Contour Analysis method

is fed into a ResNet-50 [18] model to assess the faithfulness of the IG algorithm

for different baselines.

The proposed research builds upon the foundation laid by previous re-

searchers who have explored the performance and interpretability of the In-

tegrated Gradient (IG) algorithm. Sundararajan et al. [10] introduced the IG

algorithm as a method for explainable AI. Adebayo et al. [11] proposed san-

ity checks for saliency maps, including IG, to accurately reflect the model’s

decision-making process. The proposed research extends this work by analyzing

the performance of IG using different baselines and proposing a new method for

contour analysis to assess the faithfulness of the IG algorithm.
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2 Literature Review and Related Work

In this section, we go over the relevant literature in our domain and work related

to the work done in this thesis.

2.1 Overview of Explainable AI

Explainable Artificial Intelligence (XAI) is a subfield of machine learning that fo-

cuses on developing algorithms and techniques that provide human-understandable

explanations for the outputs generated by machine learning models. The im-

portance of XAI has been recognized in various industries, such as healthcare,

finance, and autonomous driving, where the consequences of model errors can

be severe [8].

Explainability and Interpretability: The terms interpretability and ex-

plainability are often used interchangeably in research. Doshi-Valez and Kim

define interpretability as the ability to explain or to present in understandable

terms to a human [19]. Miller defines it as the degree to which a human can

understand the cause of a decision [20]. On the other hand, explainability is

associated with the internal logic and mechanics inside a machine learning sys-

tem [21]. Having more explainability in the model, we can deeply understand

the procedures while the model trains or makes decisions. Achieving high perfor-

mance with interpretable models can be difficult, where complex deep learning

models outperform simpler models [22].

2.2 Importance of Explainable AI

This section discusses the importance of XAI in various applications and how

it can benefit us in different ways.
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Figure 3: Importance of Explainable AI in Decision-Making

1. To Ensure Transparency: Explainable AI helps us to understand how the

model makes decisions and to ensure transparency in the decision-making

process ( [7], [23]).

2. To Build Trust: Understanding how AI systems arrive at a decision can

help build trust between the user and the system [8].

3. To Reduce Bias: By understanding the features driving the decision-making

process, we can identify and remove any potential biases that may be

present [24].

4. To Comply with Regulations: Some industries, such as healthcare and

finance, require transparency and accountability in the decision-making

process [25].
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5. To Improve Model Accuracy: By understanding which features are most

important to the model’s decision, we can identify areas for improvement

and fine-tune the model to improve accuracy ( [7], [26]).

2.3 Classification of Post-hoc explanations methods

The classification is based on four categories of problems, and the explanation

methods are classified according to the problem they can solve [27]. Post-hoc

explanations methods can be classified into the following categories [22]:

(a) The granularity of explanations (local vs. global) [23]:

According to W James Murdoch, there are two types of explanation meth-

ods: local and global. Global explanations offer a comprehensive under-

standing of the model’s behavior over multiple instances by identifying

the most crucial features in making decisions, enabling the assessment of

biases and strengths, and guiding improvements [22]. On the other hand,

local explanations explain the model’s decision-making process for a par-

ticular instance by identifying input features that significantly contribute

to the model output. [22].

(b) Supported model(Model agnostic vs. model specific) [23]:

Another crucial distinction is between model-specific and model-agnostic

explanation methods[ [28], [27], [29], [30], [31]]. Model-agnostic explana-

tion methods can be applied to any machine-learning model regardless of

its architecture. Examples of model-agnostic methods include LIME [32],

SHAP [33], and Integrated Gradients [10].

On the other hand, model-specific explanation methods are designed to

work with a specific type of model architecture, and their interpretability

may depend on the model’s specific structure. Examples of model-specific

methods include GradCAM [34], Guided Backpropagation [35], and Oc-

clusion Sensitivity [36].
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(c) Type of explanation(feature attribution, rules, and counterfac-

tuals) [23]:

The type of explanation can be divided into three parts. First, the feature

attribution method assigns a relevance score to each feature to determine

its importance in the model’s prediction[6]. Feature attribution-based

explanation methods are popular post-hoc explanation techniques due to

their ability to identify crucial features responsible for a model prediction

[6]. Some examples of feature attribution-based explanation methods are

LIME [32], SHAP [33], Integrated Gradients [10], and DeepLIFT [37].

Rule-based explanations are commonly used for tabular data and provide

a decision rule of the form x → y, where x represents conditions on input

features. Y represents the model prediction [22]. ANCHOR is an example

of a rule-based explanation method that uses a game-theoretic approach

to identify the smallest subset of input features that can determine the

model prediction [38] Counterfactual-based explanations: This type of

explanation method tries to find the closest instance of opposite prediction

where the difference in feature distribution of the two samples provides

explanations for the model prediction [22]. Counterfactual explanations

are valuable in cases where the model prediction does not align with the

user’s expectation. Providing an alternative scenario that would have led

to a different prediction is necessary. One of the popular counterfactual

methods is the ”What-If Tool” [39], which allows users to explore different

scenarios and understand how the model behaves under various conditions.

2.4 Integrated Gradient

Integrated Gradient is a commonly used method for explaining deep neural

networks and other differentiable models [25]. Integrated Gradient is based on

two axioms: Sensitivity and Implementation invariance [40].
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2.4.1 Definitions

Axiom Sensitivity: An attribution method satisfies Sensitivity. If there is a

difference in one feature between every input and baseline with different pre-

dictions, then the differing feature should be given a non-zero attribution [41].

Simply put, non-zero attributions are given to every input and baseline that

differ in one feature but have different predictions [25].

Axiom Implementation invariance: refers to the principle that if two models are

functionally equivalent or behave identically, their attributions should also be

identical [25].

The sensitivity axiom in IG uses a baseline [25]. A baseline can be defined

as the absence of a feature in an input [41]. Another baseline definition can be

“input from the input space that produces a neutral prediction” [41].

2.4.2 Intuition behind Integrated Gradient

Figure 4: Pixel x Importance Analysis using Simple Gradients and Integrated

Gradients [42]

Left: Gradients saturate over F(x); we can see that the model’s gradient for

pixel x is positive between 0.0 to 0.8; however, pixel x plays a crucial role in

driving the model toward a predicted probability of 80%. Does it make sense

that a pixel x’s importance is minor or discontinuous? [42]
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Right: The IG method aims to accumulate the local gradients of pixel x and

measure its significance as a score for how much it contributes or subtracts to

the model’s overall output class probability [42].

2.4.3 How is Integrated Gradient calculated?

In the IG definition [10], function F : Rn → [0, 1] represents the deep network,

an input x ∈ Rn, and a baseline x′ ∈ Rn. We consider the straight-line path

from baseline to the input x and accumulate the gradients along that path. The

Integrated Gradient along the ith dimension is defined as:

IntegratedGradientsi(x) ::= (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi
dα (1)

Computing a definite integral numerically and computationally expensive may

not always be possible. Therefore, implementation involves computing the fol-

lowing approximation:

IntegratedGradsapproxi (x) ::= (xi − x′
i)×

m∑
k=1

∂F (x′ + k
m × (x− x′))

∂xi
× 1

m
(2)

Where m is the number of steps in the Riemann sum approximation of the

integral.

Figure 5 represents the five steps interpolated images along a linear path between

a black baseline image and the example ”Traffic Signal” image. Figure 6 shows

the results of the IG.

Figure 5: Visualisation of interpolated images along a linear path
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Figure 6: Visualisation of IG attributions on Traffic Signal image

2.5 Prior studies on IG baselines and their challenges

Integrated gradients use a baseline input to model the absence of a feature.

Choosing an appropriate baseline is crucial. It is common practice to set the

baseline input as a vector of all zeros, but the best choice for representing the

absence of a feature is still a matter of debate [12]. For example, using a black

image as a baseline may not accurately highlight the important features if the

image contains black pixels. The IG does not account for the color used as a

baseline input, leading to potential blindness to certain features. Several studies

have been proposed for choosing the baseline for the IG method.

(a) The maximum distance baseline: Take a baseline with the farthest

image L1 distance from the input image [12]. The problem with the max-

imum distance baseline lies in its inability to represent missingness effec-

tively, as it retains information regarding the input image.

(b) The blurred baseline: Fong and Vedaldi’s [43] proposed using the
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blurred baseline image to represent the absence of information. This ap-

proach is appealing as it provides a very intuitive representation of missing

information in images. A potential limitation of the blurred baseline is its

tendency to emphasize high-frequency information, potentially reducing

the importance of pixels similar to their neighbors. This is due to the

baseline’s use of a weighted average of a pixel and its surrounding neigh-

bors, leading to the unequal weighting of similar and dissimilar pixels [37].

(c) The Uniform Baseline: creating a baseline by randomly sampling an

image from the range of valid pixels using a uniform distribution [43].

(d) The Gaussian Baseline: Smilkov et al. [14] proposed using the Gaussian

distribution on the input image to create the baseline.

A uniform random image used as a baseline can suffer from the same blind-

ness issue as a constant image. This is because some baseline pixels might be

too close in value to their corresponding input pixels and not be highlighted as

important, leading to artifacts in the resulting saliency map [37]. One solution

to this issue is to average the results over multiple different baselines, as sug-

gested in previous works ( [39], [44], [45]). We can obtain a more robust saliency

map by drawing multiple samples from the same distribution and averaging the

importance scores [37].

The proposed research builds on this related work by conducting a thorough

analysis of the performance and interpretability of IG, focusing on evaluating

the impact of different baselines on the performance of IG.
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3 Proposed Approach and Evaluation Criteria

3.1 Proposed Approach

The proposed approach involves a series of steps to evaluate the Integrated

Gradients (IG) algorithm’s performance and interpretability. Firstly, we col-

lected and pre-processed the images. Then, we computed the IG attributions

for multiple baselines to evaluate the IG attributions. Next, we aggregated the

IG attributions based on mean and median and assessed their impact on the

model’s performance.

Figure 7: Overview of proposed approach

We utilized the Contour Analysis method to identify the significant contin-

uous patch of attributions, which enabled us to visualize and extract the most

relevant features contributing to the model’s prediction. Finally, we used this

patch as input to evaluate the model’s prediction accuracy, providing a visual

explanation of the model’s decision-making process. Following are the detailed

steps of our proposed approach.

3.1.1 Data Collection and Preparation

Data collection and preparation are integral to Machine Learning. This section

describes our data collection and preparation process, which includes getting
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and normalizing the input images for our analysis.

Dataset: We collected image data from the ImageNet database [46], a widely

used dataset for image classification tasks. The ImageNet dataset contains over

14 million images classified into 1000 categories. We selected a subset of the

ImageNet dataset for our experiments, consisting of images in the Traffic Light

category [46]. We chose this category because it contains diverse traffic images,

allowing us to test our algorithm’s robustness across different car types.

Deep Learning Model: We used the ResNet-50 model [47], a deep convolu-

tional neural network pre-trained on the ImageNet dataset. This model has

achieved state-of-the-art performance on various computer vision tasks, includ-

ing image classification [47]. To prepare our data, we first collected images

from the ImageNet dataset [46]. We then preprocessed each image by resizing

it to 224x224 pixels and normalizing the pixel values using the same mean and

standard deviation values used to train the ResNet-50 model. The preprocess-

ing of the images ensures that the input images are in the same format as the

ResNet-50 model.

Next, we selected a set of target classes from the ImageNet dataset and

manually verified that each image in our dataset belonged to one of these target

classes. We also ensured that the target class labels were consistent with those in

the ImageNet dataset. Our data collection and preparation process was designed

to ensure that our experiments were conducted on a well-curated dataset that

is representative of the types of images that the ResNet-50 model was trained

on while also ensuring that our target classes are consistent with the ImageNet

dataset.

3.1.2 Experimentation using Captum Library

To analyze the Integrated Gradients algorithm and compare it with other base-

lines, we used the Captum library [16] for experimentation. Captum provides

a suite of attribution algorithms that can be used to explain the predictions

of a machine-learning model. In our study, we used the Integrated Gradients
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algorithm provided by Captum to compute the attribution scores of the input

features for a given target output class.

First, we preprocessed the input images using the preprocess input function

provided by the Keras module [48]. This function scales the image’s pixel values

to be in the range of [-1, 1] and applies mean subtraction.

Then we used the ResNet-50 model [47] of Keras Library [48] as our machine

learning model. ResNet-50 is a deep convolutional neural network architecture

effective for image classification tasks. We used the pre-trained ResNet-50 model

in the Keras module, which has been trained on the ImageNet dataset.

We used the load img and img to array functions provided by Keras utility

functions to load the input image and convert it to a NumPy array. We then

used the predict fn function to obtain the predicted class label and probability

for the input image using the ResNet-50 model.

To compute the attribution scores of the input features, we used the Integrat-

edGradients class provided by the Captum library. We passed the preprocessed

input image and the target output class as input to the attribute method of the

IntegratedGradients class, which computed the attribution scores of the input

features using the Integrated Gradients algorithm.

We used the get random baseline function to generate random baselines.

We used the attribute method of the IntegratedGradients class to compute the

attribution scores for each baseline and aggregated the results using either the

mean or median method. We also used the get important features function to

extract the most important features of the input image based on the attribution

scores. Finally, we saved the attribution maps and important features as images

in a specified directory.

The experimentation using the Captum library allowed us to analyze the

performance of the Integrated Gradients algorithm and compare it with other

baselines. It also gave us visualizations of the attribution maps and important

features, which helped us interpret the results.
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3.1.3 Contour Analysis Approach

IG attributions are pixel-wise, making evaluating the faithfulness of the model’s

predictions based on the attributions challenging. For example, suppose we get

the ResNet-50 models prediction on the IG attributions. In that case, we will

not get the correct results because of the pixelated attributions, as shown in

Figure 8.

Figure 8: Pixelated IG attributions

We proposed the Contour Analysis method to address the challenge of ob-

taining a continuous patch of Integrated Gradients attribution values. The

algorithm is as follows:
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Algorithm 1 Contour Analysis Algorithm

1: Input the integrated gradients attribution, input image, and threshold value.

2: Apply a morphological opening operation to the binary mask to remove

small noise and fill gaps between regions.

3: Apply a morphological dilation to the binary mask to merge nearby regions.

4: Find all contours and combine all the contours to get the outer points

5: Find the convex hull of all the contours

6: Draw the convex hull on the mask of the input image and extract the patch

from the input image

3.1.4 Using patch as the text input

Using a patch as a test input involves selecting a region of an image and evalu-

ating the model’s prediction accuracy based on that region. This approach can

be useful for evaluating the faithfulness of a model( [49], [50]).

Algorithm 2 Evaluate the prediction accuracy using a patch

1: Select a region of interest in an input image.

2: Extract the selected region as a patch using the Contour analysis.

3: Feed the patch as input to the deep learning model and obtain the predicted

class label and probability using the predict fn function.

4: By evaluating prediction accuracy using patches, one can gain insights into

the model’s faithfulness.

5: Using patches as test inputs can be useful for evaluating the performance

and interpretability of deep learning-based computer vision models.
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3.2 Evaluation Methodologies

Our evaluation is comprised of two methods. First, we proposed our Contour

Analysis method to evaluate the faithfulness of the explanations for different

baselines. Second, we evaluated the explanations on Functionally grounded

quantitative analysis.

3.2.1 Using the Contour Analysis method

The contour analysis method’s evaluation criteria were developed to identify

important continuous patches of the input image using the proposed contour

analysis method and evaluate the prediction accuracy for different baselines.

Our assumption: This approach is based on the assumption that the impor-

tant features of the input image that are relevant to the model’s prediction are

likely to be captured by the IG attributions and can be identified using the

contour analysis method.

Why: The assumption that important features of the input image can be identi-

fied using the contour analysis method is also supported by the work of Hooker

et al. [51] and Adebayo et al. [11]. They demonstrated that the IG attribu-

tions could help identify important regions of an image relevant to the model’s

prediction.

The three steps involved in the evaluation criteria using the contour analysis

method are:

(a) Identify the important continuous patch of the input image using our

proposed Contour Analysis method.

(b) Get the prediction for important patches using the ResNet-50 model.

(c) Compare the prediction accuracy for different numbers of baselines.

Step 1 involves applying the contour analysis method to the IG attributions to

identify the important continuous patch of the input image. Step 2 involves

obtaining the model’s prediction for the identified important patches, and Step

3 involves comparing the prediction accuracy for different numbers of baselines.
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One limitation of this approach is that it assumes that the important features

of the input image relevant to the model’s prediction are likely to be captured by

the IG attributions, which may only sometimes be the case. Additionally, the

contour analysis method may only accurately identify the most relevant regions

of the input image, as it relies on a set of image processing operations that may

only sometimes be optimal for a given attribution.

3.2.2 Using Quantitative Analysis

The XAI metrics most often belong to the categories shown in figure 9, which

can further be classified into subcategories [17].

Figure 9: Main categories of Quantitative Analysis for Attributions Evaluation.

Following are the metrics we used to evaluate our explanations:

(a) Max-Sensitivity: uses Monte Carlo sampling to approximate the change

in explanation when a slight perturbation is introduced to the input [42].

A lower max-sensitivity indicates a better or more stable explanation

method.

(b) Faithfulness: quantifies the extent to which explanations align with the

predictive behavior of the model. Specifically, it assesses whether more

27



important features, as determined by an attribution method, play a more

significant role in the model’s outcomes. This is achieved by computing

the correlation between probability drops and attribution scores on various

points [32].

(c) Monotonicity: measures the attribution faithfulness by analyzing if adding

important features incrementally improves the model’s performance [52].

A monotonic increase in performance as more features are added indi-

cates that the explanation method has successfully captured the relevant

features. [22]

(d) Relative output stability: measures the stability of an explanation

with respect to changes in the output logits of the model [53] [22]. A

lower value is considered to be a stable explanation.

(e) Complexity: measures the degree to which a few features are used to

explain a model’s prediction [42].

(f) Continuity by Local Lipschitz Estimate: tests the consistency be-

tween adjacent examples’ explanations. This metric assesses how well

the explanation method maintains consistency in its attribution scores for

similar inputs [2] [53].

(g) Model parameter randomization: Computes robustness of an expla-

nation method by measuring the difference in feature attributions when

the model parameters are randomly modified. This difference is calcu-

lated as the correlation between the original feature attribution and the

new attribution[11].
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4 Experimental Evaluation and Results

This section includes our experimentation with the Integrated Gradient and the

Contour Analysis method. We investigated the performance of the IG algorithm

using different baselines and compared them to the results obtained with the

Contour Analysis method.

4.1 Analysis of the Integrated Gradient Algorithm

For the selected sample image dataset, we analyzed the performance of the IG

algorithm by applying it to the ResNet-50 model. The Figure shows the input

image and its corresponding IG attribution. From the Figure, we can conclude

that the IG algorithm highlighted the relevant pixels of the input images.

(a) Example 1

(b) Example 2

Figure 10: IG attributions for two input images using a single baseline

Next, for a given input image, we compared computed the IG attributions

maps for multiple random baselines. We have run the experiments for 5, 10,

20, 50, and 100 baselines for each input image. The Figure shows the example

of one input image for different baselines. We can observe that IG produces

slightly different attribution maps with different baselines.

Figure 11 shows the values of the top 10 IG attribution values for a single

baseline and ten random baselines.

Left: This plot shows the top 10 IG attributions that ran on a single baseline.

Right: This plot shows the top 10 values of IG attributions which ran on ten
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(a) Left: For single baseline (b) Right: For baseline 10

Figure 11: Comparison of Top 10 IG attributions values for 1 Baseline and 10

Baseline

random baselines.

4.2 Comparison of IG using Different Baselines

We compared the attribution maps generated with Mean and Median aggrega-

tion methods to analyze the IG performance with different baselines. Figure

12 compares mean and median aggregation methods on IG attributions for a

fifty-random baseline. Attribution maps for Mean and Median visually look

similar; however, the attribution scores differ. We have used the faithfulness

metric using the Contour Detection algorithm to evaluate the attributions for

Mean and Median methods.

(a) Input image 1 (b) Input image 2

Figure 12: Mean Aggregation of attributions for 50 baselines

30



(a) Input image 1 (b) Input image 2

Figure 13: Median Aggregation of attributions for 50 baselines

4.3 Analysis of the Contour Method

We used the Contour algorithm to find the important features using IG at-

tribution. The Figure shows the contour generated by the method using IG

attributions. Once we have the contour, we map the contour to the input image

and extract the important features from the image. We evaluated the model

predictions of the generated continuous patch from the top 10% of the IG at-

tributions. We evaluated different images with different numbers of random

baselines. By doing so, we are evaluating the faithfulness of the attribution

generated by IG.

Our findings indicate that both the IG algorithm and the Contour Analysis

approach can successfully identify the most important elements of an image.

At the same time, they each have particular strengths and weaknesses. The

contour approach can extract more localized and detailed information, while

the IG algorithm can highlight more important sections of an image and is

more noise-resistant.

4.4 Evaluating important features of attributions

The tables represent the experimental results of evaluating the important fea-

tures of attributions of IG using the contours method. The evaluation is per-

formed by different baselines used in attribution calculation and types of aggre-
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(a) Input image (b) IG attribution (c) Contour Analysis

Figure 14: Continuous patch of Input Image using IG attribution

gation methods used(mean and median).

Table 1: Evaluating Important Features of Attributions for Mean Aggregation

No. of baselines Aggregation Method Model Prediction Contour Prediction Contour Prediction Label

1 NA 0.999079347 0.95627075 traffic light

5 mean 0.999079347 0.97275734 traffic light

10 mean 0.999079347 0.9898733 traffic light

20 mean 0.999079347 0.97275734 traffic light

50 mean 0.999079347 0.97275734 traffic light

Table 1 reports the results of mean-based aggregation. It can be observed

that the prediction accuracy for a single baseline is lower than that of using

multiple baselines.

Table 2: Evaluating Important Features of Attributions for Median Aggregation

No. of baselines Aggregation Method Model Prediction Contour Prediction Contour Prediction Label

1 NA 0.999079347 0.95627075 traffic light

5 median 0.999079347 0.9535067 traffic light

10 median 0.999079347 0.97275734 traffic light

20 median 0.999079347 0.97275734 traffic light

50 median 0.999079347 0.97275734 traffic light

Table 2 reports the results of median-based aggregation. Similarly, a single

baseline’s prediction accuracy is lower than multiple baselines.

Comparing the two aggregation methods, mean-based aggregation outper-

forms median-based aggregation regarding prediction accuracy.
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4.5 Evaluation using Quantitative metrics

We computed the performance of different baselines for quantitative evaluations

and summarized the results in a table. In Table 3, the symbol ↑ indicates

larger values are better for that metric; similarly, ↓ indicates smaller values

are better. Table 3 shows that the multiple baselines outperformed the single

baseline almost for all the metrics.

Table 3: Quantitative analysis of IG attributions.

No of baseline Max Sensitivity ↑ Relative Output Stability ↓ Local Lipschitz Estimate ↓ Avg Sensitivity ↓ Sparseness ↑ Complexity ↓ Faithfulness Estimate ↑ Model Parameter Randomisation ↓

1 0.029677952 10.2584109 0.360847613 0.02960295 0.58879829 10.2111315 -0.0112714 0.30925385

5 0.030191214 9.44674807 0.379447938 0.03005376 0.58849138 10.2113134 -0.0094008 0.30886812

10 0.028830782 8.944581107 0.372391622 0.02838973 0.58850471 10.2093682 -0.008943 0.316598

20 0.02802491 11.96360426 0.384525647 0.02848902 0.58924746 10.2092548 -0.0201291 0.31950475

50 0.027492214 9.433153571 0.357073711 0.02756846 0.58934905 10.2090589 -0.0090146 0.31962904
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5 Discussion, Analysis, and Conclusion

RQ1 showed that multiple random baselines yielded more robust explanations

than the single random baseline. The choice of the baseline can significantly

impact the performance of IG. For RQ2, we proposed the Contour Analysis

method to extract the continuous patch of the input image using IG attribu-

tions. Since IG attributions are computed at the pixel level, the Contour Anal-

ysis method helped us to extract a continuous and meaningful patch from the

attribution map. RQ3, the Contour Analysis method does not directly impact

the IG attributions; however, it helped us evaluate them.

5.1 Limitations and Future Work

While our research has provided important insights into the performance and

limitations of the Integrated Gradients algorithm for explaining the predictions

of deep neural networks, some limitations still need to be addressed in future

work.

One limitation of our study is that we only tested the IG algorithm on

the ResNet-50 architecture, which may limit generalizability to other models.

While we evaluated IG using multiple random baselines, evaluating it using

other baselines, such as uniform or Gaussian baselines, would be useful.

Additionally, our study only evaluated the performance of the IG algorithm

using the Captum library. While the Captum library is a powerful and flexible

tool for evaluating the interpretability of deep neural networks, other libraries

and tools are available for this purpose. It would be useful to evaluate the

performance of IG using these other libraries and tools.

In future work, we plan to address these limitations by evaluating the per-

formance of IG on other types of models and data, using different baselines, and

using other libraries and tools. Creating methods to determine the number of

baselines needed for reliable results accurately. Additionally, we plan to explore

the use of IG for explaining the predictions of deep neural networks in appli-

cations such as medical diagnosis or fraud detection, where interpretability is

34



critical for gaining trust and acceptance from end-users.

Finally, our Contour Analysis algorithm can be used in any Computer Vision

domain where the identification of continuous regions in data is needed. For

example, In medical imaging, it can be used to identify and isolate regions of

interest, such as tumors or lesions.

5.2 Conclusion

In this study, we analyzed the Integrated Gradients algorithm and proposed a

contour-based analysis method for evaluating the faithfulness of the IG algo-

rithm concerning different baselines. We used the Captum library to implement

the IG algorithm and experimented with multiple random baselines to compare

the attributions generated by the IG algorithm.We utilized the Quantus library

to evaluate the quantitative metrics of our explanations.

Our results showed that mean-based aggregation outperforms median-based

aggregation regarding prediction accuracy. Our findings indicated that using

multiple baselines in attribution calculation and evaluation can improve the

model’s faithfulness and outperform the single baseline in various quantitative

metrics.

Our proposed contour-based analysis method provided a visual representa-

tion of the important features highlighted by the IG algorithm, allowing for a

more intuitive interpretation of the algorithm’s performance. This method can

be used to evaluate the faithfulness of the IG algorithm for different baselines

and can be applied to other attribution algorithms as well.

Overall, our study contributes to understanding the IG algorithm and pro-

vides insights into its performance for different baselines. The proposed contour-

based analysis method can also be used to evaluate the performance of other

attribution algorithms. This method can be extended to incorporate user feed-

back and generate personalized explanations based on the user’s preferences.
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B Appendix B: Additional Experimental Results

B.1 Additional experimental patches using Contour Anal-

ysis method

We proposed a novel method called the Contour analysis method for extract-

ing the important features of integrated gradient attributions. Our approach

provides the benefit of extracting continuous patches utilizing the outer points

of the values. This method can be applied in a broad range of domains that

require similar feature extraction techniques. Following are some additional

experimental patches using our proposed method.

Various strategies have been experimented with to extract the patches based

on boundaries. Figure 15 a is an input image we used for Contour Analysis

Method. Figure 15 b uses the bounding rectangle of the new binary mask

obtained from the convex hull to extract the patch. The top-left corner coordi-

nates, width, and height define the bounding rectangle. This method provides

a rectangular patch encompassing the important features. In Figure 15 c, the

patch is extracted, and a line is drawn using polylines, which provides a more

precise boundary for the important features. Figure 15 d shows the variation

of using a convex hull, a geometric algorithm that can compute the smallest

convex polygon that encloses a set of points [54].
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(a) Input Image (b) Using Rectangle

(c) Using Polylines

(d) Using a convex hull

Figure 15: Additional patches of Contour Analysis Method for the given input

image
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