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The waves of the sea, the little ripples on the shore, the sweeping curve of the

sandy bay between the headlands, the outline of the hills, the shape of the clouds,

all these are so many riddles of form, so many problems of morphology, and all of

them the physicist can more or less easily read and adequately solve: solving them

by reference to their antecedent phenomena, in the material system of mechanical

forces to which they belong, and to which we interpret them as being due. They

have also doubtless, their immanent teleological significance; but it is on another

plane of thought from the physicist’s that we contemplate their intrinsic harmony*

and perfection, and “see that they are good.”

D’Arcy Wentworth Thompson in On Growth and Form

Homo liber nulla de re minus quam de morte cogitat; et ejus sapientia non mor-

tis sed vitae meditatio est.

Benedictus de Spinoza in Ethics, Pt IV, Prop. 67.

(There is nothing over which a free man ponders less than death; his wisdom is, to

meditate not on death but on life.)

Erwin Schrödinger in What is life?

The mathematicians are well acquainted with the difference between pure science,

which has to do only with ideas, and the application of its laws to the use of life, in

which they are constrained to submit to the imperfections of matter and the influ-

ence of accident.

Dr Johnson in the fourteenth Rambler



Abstract

This dissertation uses statistical physics based mathematical models to investigate

and predict the emergent properties of biological systems in both healthy and dis-

eased states. Three projects are presented, each exploring a different aspect of bio-

logical systems.

The first project focuses on modeling cartilage-like tissue systems as a double net-

work consisting of two interconnected networks. By using rigidity percolation theory,

we study the tunable mechanics and fracture resistance of such biological tissues in

healthy and degraded states. Our findings show that the secondary network density

can be tuned to facilitate stress relaxation, leading to robust tissue properties when

the primary network density is just above its rigidity percolation threshold. However,

when the primary network is very dense, the double network becomes stiff and brit-

tle. In the second project, we develop active double network models to investigate

the interplay of actin-microtubule interactions and actomyosin dynamics in the cy-

toskeleton, an active network of proteins in cells. Our study reveals that the rigidity

of the composite depends on the interplay between myosin-dependent crosslinking

and contraction and the proximity of the actin or microtubule networks to the rigid-

ity percolation threshold. The third project employs a viral quasispecies dynamics

model to investigate the effectiveness of antiviral strategies that target different as-

pects of the lifecycle of cold or flu-like viruses, including COVID-19. Our results

demonstrate that antivirals targeting fecundity and reproduction rates decrease the

viral load linearly and via a power law, respectively. However, antivirals targeting



the infection rate cause a non-monotonic change in the viral load, initially increasing

and then decreasing as the infection rate is decreased, particularly for individuals

with low immunity.

In summary, the findings of these projects underscore the importance of under-

standing the underlying mechanisms behind the properties of biological cells and tis-

sues. They also provide insights into the development of tunable, resilient, and adap-

tive biomaterials and the effectiveness of different antiviral strategies for COVID-19

and similar viral diseases.



Chapter 1

Introduction

1.1 Motivation

This dissertation aims to understand the mechanisms of tissues, cells, and viruses,

not only in their healthy stages but also in their unhealthy or disease states, using

statistical mechanics and mathematical modeling. Statistical mechanics is a broad

field that uses probabilistic and statistical approaches to understand the emergent

properties of meso- and macroscopic systems made of large collections of entities

[45, 46]. Generally, a traditional statistical mechanics course covers a basic under-

standing of thermodynamics, ensemble theory, ideal gases, and phase transitions

[68]. To understand and model the living world, Robbert Dijkgraaf, a theoretical

physicist, stated in his article To Solve the Biggest Mystery in Physics, Join Two

Kinds of Law [22] that we need to combine reductionism, a way of seeing in terms

of elementary blocks, with emergence, complex laws arising from interactions among

11



1.2 Outline 12

individual components. Biophysics applies the principles of physics to biological sys-

tems at the molecular, cellular, tissue, and organism scales.

In other words, just as thermodynamic laws emerge from the interactions among

molecules, we may understand the working rules of biological systems by studying

the mechanistic principles and interactions at play in biological systems. Emergent

behavior can be defined as a collective phenomenon of working pieces, such as atoms

in our work, fibers, and viruses. For example, we can understand the emergent and

organizational structures of ant colonies when they float together and use that in-

formation to create a material that is buoyant, flexible, breathable, and waterproof

[26]. Nigel Goldenfeld applied not only “biology to physics” but also “physics to bi-

ology” [12]. He provides an example of the collective behavior of bacteria and virus

populations acting as condensed matter systems.

1.2 Outline

Our first project aims to model tissues, like cartilage, to understand both healthy and

deteriorated stages. The second project models the collective restructuring feature

of actin-microtubules with motors. The third project works on the infected state of

the cell and compares the effectiveness of antiviral strategies in a viral life cycle -

which is another emergent behavior of a quasispecies under therapeutics.
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Composite fiber networks are ubiquitous in biological systems and synthetic ma-

terials with tunable and robust mechanical properties. For example, the cytoskele-

ton, the scaffolding that gives eukaryotic cells mechanical integrity and shape, is

a self-organized composite network of protein filaments, including actin and micro-

tubules [76]. The distinct rigidity of actin and microtubules enables cells to exhibit

complex stress responses and architectures essential for a wide range of functions

[24, 69, 79, 80]. Another prominent example of composite biopolymer networks is

the extracellular matrix of musculoskeletal tissues like articular cartilage which is

primarily made of networks of stiff collagen fibers which are responsible for resist-

ing tension and a secondary network of brush-like proteoglycans and hyaluronic acid

which interacts which reinforces the collagen network, and also helps to resist com-

pression [101].

Finally, several synthetic double network hydrogels have recently emerged as ex-

traordinarily robust materials with considerable toughness and fracture resistance

compared to conventional single network hydrogels. For instance, the PAMPS-

PAAm double network hydrogel, which consists of interacting networks of poly(2-

acrylamide-2-methyl-propane sulfonic acid) and polyacrylamide, has a tearing en-

ergy ∼ 4400J/m2, which is several hundred to a thousand times that of single net-

work PAAm and PAMPS hydrogels[35, 66]. The exceptional mechanical response

of these double network systems derives from the synergistic interplay between two

networks with very different single-filament and collective properties. Therefore, in

chapter 2, we study the mechanics and dynamics of biopolymer network in tissues
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with the aim of not only in the form of healthy and diseased cartilage and but also

in the design principle of single versus double Network system described below.

The rigidity of stiff networks made of a single type of fiber or biopolymer, hence-

forth called single networks (SN), has been vigorously investigated in the past two

decades, uncovering mechanical phase transitions, distinct mechanical regimes, and

novel non-linear mechanical properties [6, 17, 30, 36, 39, 43, 61, 75, 82, 99]. More

recently, studies of the fracture mechanics of such networks have demonstrated that

low network connectivity and system-wide distribution of damage can provide pro-

tective mechanisms against failure [8, 104]. The mechanics and fracture of composite

networks and materials, on the other hand, are only beginning to be explored theo-

retically, spanning systems such as composites materials made of rod-like inclusions

in an SN [16, 18], composite networks [7], and continuum models of double network

hydrogels [35]. The mechanical structure-function properties of Double Networks

(DNs) [63, 88] are less well understood, and there remain many open questions as to

the mechanisms by which DNs achieve such remarkable mechanical performance. In

particular, it is unknown how much the second network can affect the rigidity per-

colation threshold for the combined DN system, an important parameter for setting

the stiffness. Nor is it known to what degree the second network can tune the strain

necessary for network failure (extensibility), the maximum stress reached (strength),

and the energy density of mechanical deformation until failure (toughness) under ex-

tension, all of which are important for determining the workable range of strains and

stresses over which the system maintains its integrity. Addressing these questions
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will help guide the rational design of biomimetic soft materials with tunable mechan-

ics and provide insights into the rigidity and fracture-resistance of load-bearing such

as cartilage [89, 95].

The cytoskeleton is a composite scaffold made of networks of different types of

biopolymers, primarily actin filaments and microtubules, and motor proteins. Its

mechanical response depends on the concentrations of these biopolymers. Motivated

by this, we study a model that combines two structure-function frameworks: a double

network (DN) made of a network of stiff filaments (microtubules) interacting with a

network of flexible filaments (actin), and rigidity percolation theory. The contractil-

ity produced by motor proteins are also incorporated in the model. In chapter 3, we

presented the results of our simulations of the actin-microtubule network with motor

proteins. Specifically, we focused on how the mechanical response of the network

changes with varying concentrations of the biopolymers and motor proteins. We also

examined the role of the motor proteins in regulating the contractility of the network.

This work in chapter 4 builds on previous works [42, 55] of quasi-species dynamics

models that elucidate the life cycle of viruses, and that emphasize the need for the

study of therapeutics and their effects on the virus population. These works show

the existence of a phase shift between different viral strategies. In light of the cur-

rent Covid-19 pandemic, interest in the genetic variability of the virus and its role

in developing antivirals and vaccines has been rising. Here, we present our study

of the role of therapeutics in three critical phases of the viral life cycle: infection,
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reproduction process, and fecundity. We found an interesting linear relation of the

viral load as a function of fecundity and a power law with the reproductive rate of

the virus. In contrast, the number of viruses in the cell changes in an unexpected

way with a change in the infection rate of the virus. Using this simplified model of

the virus and its evolution and mutation, we highlight the possible effectiveness of

therapeutics based on the part of the life cycle being influenced.

We have three chapters [Chapter 2,3,4] for the studies of 1) Mechanics and frac-

ture properties of double networks in tissues such as cartilage, 2) Mechanics and

contractility of double networks in cytoskeletal networks such actin-microtubule net-

work driven by motor proteins, and 3) The response of a virus population to anti-viral

therapeutics that target various stages of the viral life cycle.



Chapter 2

Mechanics of Biopolymer Network

in Tissues

2.1 Double Network System in Cartilage

This chapter is about the microscopic modeling of articular cartilage with the aim of

understanding it in terms of healthy and diseased tissues. The load-bearing capability

of musculoskeletal tissues such as articular cartilage mainly arises from a network-

like extracellular matrix made of collagen fibers and proteoglycans [29, 48, 62, 67].

Articular cartilage tissue undergoes several million loading cycles over our lifetimes,

and healthy cartilage tissue can bear upto ten times our body weight without frac-

turing despite limited regenerative capacity. Its remarkable mechanical properties

are yet to me matched by synthetic materials, and its difficult to replace it.

However, in the case of cartilage damage due to traumatic injury or diseases such

17



2.2 Rigidity Percolation Theory 18

osteoarthritis, the extracellular collagen and aggrecan networks inside the tissue can

be degraded due to mechanical stresses or biochemical processes. Especially near

the surface where the collagen network is sparse, a small change in the cartilage

composition can alter its mechanical properties in a considerable manner which can

lead to a reduced modulus and eventually to the tissue failure.

Here, we study the mechanical properties of articular cartilage by combining two

structure-function frameworks, (i) a DN made of two interacting disordered networks

with very distinct fiber mechanics and (ii) rigidity percolation theory to construct

a Rigidly Percolating Double Network model. First, we explain rigidity percolation

theory and our rigidly percoalting double network (RPDN). Second, we explain the

results in terms of moduli and stresses, followed by the discussion on the varying

two parameters - the ratios of the two stretching stiffness constants, and the bond

occupation probability of the stiff network.

2.2 Rigidity Percolation Theory

Rigidity percolation theory models a biopolymer network as a disordered network of

fibers consisting of flexible, sparsely connected regions and stiff, densely connected

regions [6, 17, 19, 25, 84]. When the network is dilute and consists primarily of

sparsely connected regions, it does not offer any resistance to shear deformations

and has zero shear modulus. In contrast, when densely connected regions span the
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network, the network has a finite shear modulus. As we tune the density of the fibers

in the network from low to high, we cross a threshold in its ability to resist mechan-

ical deformations. In essence, the theory describes the mechanical transition from

non-rigid to rigid as a function of the probability of bond presence. This mechanical

phase transition is called a rigidity percolation transition and the probability of bond

occupation at which it occurs is known as the rigidity percolation threshold.

Figure 2.1: The network plot to show the rigidity percolation theory and this kagome
lattice figure is published in Biophysical Journal [84].

The rigidly percolating double network model is made of a stiff primary network

interacting with a flexible secondary network (Fig. 2.2(a)). In the stiff network, it

costs energy to both stretch and bend fibers, while for the flexible network it only

costs energy to stretch fibers. We study the shear response and crack propagation

in this DN and show that the interplay of the mechanically distinct networks facili-

tates tunable mechanics and enhanced fracture resistance of the DN. Each of the two

networks in the DN is modeled as a disordered kagome network and is constructed

following the protocol described in Simulation Details. The bonds in the two net-
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Figure 2.2: Panel (a) represents a schematic of a zoomed-in portion of the DN, and
(b) the different contributions to its deformation energy. The black and blue fibers
belong to the the stiff and flexible networks respectively. Panels (c) and (d) show
representative DNs (with p1 = 0.62, p2 = 0.6) for our studies of shear response and
crack propagation respectively.
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works are randomly removed according to two different probabilities, 1− p1 for the

stiff network, and 1− p2 for the flexible network, where 0 < p1, p2 < 1 are the bond

occupation probabilities. A series of collinear bonds connected end to end constitute

a fiber in each network. The stretching modulus of the fibers in the stiff and flexible

networks are α1 and α2, respectively, where α1 > α2, and the bending modulus of

the fibers in the stiff network is κ1. The two networks interact with each other via

Hookean springs with spring constant α3 between the midpoints of the corresponding

bonds in the networks; for this interaction to be non-zero the corresponding bonds

must be present in both networks. See Figure 2.2 (b) for illustration of the properties

of the bonds in the networks. Unless otherwise noted, we have used the following

biologically relevant parameters in the results presented: α2/α1 = 0.1, κ/α1 = .004

[84], and α3 = α1 + α2 chosen to be the effective spring constant of two springs α1

and α2 in parallel. Simulations for smaller values of α3 yielded qualitatively similar

results and the percolation thresholds were unchanged. The details of changing pa-

rameters are included in Discussion session the chapter.

2.3 Model of Rigidly Percolating Double Network

(RPDN)

The rigidly percolating double network model is made of two disordered networks,

a stiff network and a flexible network, interacting with each other. Each network is

constructed by following the protocol described in [84] where we lay down infinitely
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long fibers in two dimensions in a Kagome lattice-based network, i.e. we start with

a fully ordered lattice. To create a broad distribution of filament lengths, bonds

are removed uniformly and in an uncorrelated manner from each network with a

given probability: 0 < p1 < 1 for the stiff network and 0 < p2 < 1 for the flexible

network. The bond occupation probabilities p1 and p2 can be tuned independently

of each other. Within each network, when two fibers cross, we assume a crosslink

such that the two crossing fibers can rotate freely but cannot slide relative to each

other. Stretching energy of a network is calculated by computing the energy cost

stretching or compression of individual bonds and then summing over all the bonds

present in the network. Bending energy of a network is calculated by computing the

energy of bending of pairs of bonds sharing a node which make a 180 degree angle

in the initially undeformed network, and then summing over contributions from all

such pairs of bonds present.

The total energy cost of deforming this double network is given by:

E1 =
α1

2

∑
<ij>

p1,ij(rij − rij0)
2

+
κ1
2

∑
<îjk=π>

p1,ij p1,jk ∆θ2ijk

E2 =
α2

2

∑
<ij>

p2,ij(sij − sij0)
2

E3 =
α3

2

∑
p1,ij p2,ij(x1 − x2)

2, (2.1)

where E1 is the deformation energy of the stiff network, E2 is the deformation energy
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of the flexible network, and E3 is the deformation energy of the bonds connecting

the two networks which are modeled as Hookean springs as mentioned earlier. In

E1, the first term corresponds to the energy cost of fiber stretching, and the second

term to fiber bending [84]. In E2, we have a similar contribution for fiber stretching,

but there is no energy cost of fiber bending. The indices i, j, k refer to sites (nodes)

in each lattice based network, such that pij is 1 when a bond between those lattice

sites is present, 0 if a bond is not present. The quantities rij and sij refer to the vec-

tor lengths between lattice sites i and j for the deformed stiff and flexible networks

respectively, while rij0 and sij0 are the corresponding quantities for the initial unde-

formed networks. The angles ∆θijk correspond to the change in the angles between

initially collinear bond pairs ij and jk for the deformed and undeformed network

respectively.

2.4 Simulation Details

Each network in our double network model consists of 10619 nodes and 21000 bonds

when all bonds are present, not counting the connections between the two networks.

The system size was chosen to be large enough so that the normalized shear modulus

G/G0 (where G0 is the network shear modulus when the bond occupation probabil-

ities are both 1) changed minimally with system size, but at the same time not so

large that simulations become computationally prohibitive for very floppy networks.

The rest length of bonds in each network is 1, i.e. this length scale is used to non-

dimensionalize all lengths in the system. Similarly, all rigidities are expressed relative
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to the stretching modulus α1. In our simulations, we assume a scaled bending to

stretching elasticity ratio κ/α1 = 0.004 for the fibers in the stiff network [84]. We

assume the ratio of the stretching elasticity of fibers in the flexible network to that

of the stiff network to be α2/α1 = 0.1. The scaled interaction strength between the

two networks α3/α1 is varied across the range ∼ 0.001 − 1, We used fixed bound-

aries at the top and bottom and apply deformations via these boundaries, and free

boundaries on the sides. Upon application of the shear or extensional deformations,

we obtain the equilibrium state of the deformed networks by minimizing the total

deformation energy of the double network. The numerical method we used here is

a multi-dimensional conjugate gradient (Polak-Ribiere) method [77]. Data are aver-

aged over five simulations unless otherwise indicated.

For the shear response studies (Fig. 2.2(c)), the protocol is as followed. External

deformations are applied along the top and bottom boundaries and free boundary

conditions are used for the left and right sides of the network. Our simulations of

the single network follow the same process, except the deformation energy consists

only of contribution from the stiff primary network, since p2 = 0. To obtain the lin-

ear mechanical response, we apply a shear strain of 5% at the boundaries, minimize

the deformation energy using a multi-dimensional conjugate gradient minimization

(Polak-Ribiere) method [77] and calculate the shear modulus [84].

We show the variation of the rigidity percolation threshold of a single network

(SN) and four DNs by plotting the shear modulus versus bond occupation probabil-
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ity of the stiff network p1 (Fig 2.3). The shear moduli G are normalized by their

respective values G0 for fully occupied networks. The four DNs correspond to the

four different values of the bond occupation probability p2 = 0.2, 0.4, 0.6, 0.8 of the

flexible network. We find that the SN has a percolation threshold p1,c ∼ 0.6 in agree-

ment with previous results [59], while the DNs have a lower p1,c, which decreases

with increasing p2, reaching p1,c ∼ 0.35 at p2 = 0.8. This is a noteworthy result. On

its own, a single stiff Kagome-lattice based fiber network, whose deformation energy

consists of stretching and bending energies, has a percolation threshold ∼ 0.6 [59],

and a single flexible network with only stretching deformation energy and based on

such a lattice has a percolation threshold ∼ 1. However, when they form a double

network, the resulting additional constraints due to their interaction lead to a lower,

tunable percolation threshold. These constraints also allow the normalized shear

rigidity of the DNs to be larger than that of the SN at the same value of p1, and this

rigidity can be tuned by varying p2. This result illustrates a mechanism for how the

onset of rigidity for biological and synthetic double networks can be drastically modu-

lated through very small changes in filament concentration in the secondary network.

For the crack propagation studies (Fig. 2.2(d)), we create a notch 20 times the

bond rest length (∼ 1/5 times the system length) at the center of the top boundary

following the protocol in Ref.[86], and study how the size of the notch increases as

we apply larger and larger tensile strains along the left and right boundaries of the

network.
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The strains are applied quasi-statically in small increments of 1% up to 70%, and

after each application, the total energy is minimized to generate the new equilibrium

configuration of the deformed DN. We have made the following assumptions regard-

ing breaking and elastic buckling of fibers: When a bond is stretched above a certain

threshold, it will break, and when it is compressed above a certain threshold, it will

buckle. Bonds in the stiff network break at 120% of their rest length and buckle

at 95% of their rest length. Bonds in the flexible network break at 200% of their

rest length, but do not buckle. Broken or buckled bonds will no longer contribute to

the deformation energy or rigidity of the network. Fiber breaking is an irreversible

process, but buckled fibers in our model can “unbuckle“ when the extra compression

is removed.

2.5 Calculation

2.5.1 Modulus and Stress

To demonstrate how the fracture mechanics changes with the stiff network’s prox-

imity to its rigidity percolation threshold, we present results for simulations of the

DN close to (p1 = 0.62) and away from (p1 = 0.80) the rigidity threshold (Fig. 2.4).

The values of p1 were chosen, so that the DN has a finite rigidity, irrespective of p2.

We also found, for example, that when p1 was set to 0.55, the DN had zero shear

rigidity and exhibited no stresses when p2 was 0, 0.2, or 0.4. We find that both

the Young’s modulus (Fig. 2.4(a) and (b)) as well as the stress (Fig. 2.4(c) and
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Figure 2.3: The normalized shear modulus (G/G0) shown as a function of p1 for an
SN (black circles) and four DNs (remaining data). The values of p2 are shown in
the legend. The dashed lines provide guide to the eye for the rigidity percolation
transitions. The data is averaged over five runs and the standard deviations are
indicated by errorbars.
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Figure 2.4: Figures (a-b) show the normalized Young’s modulus Y/Y0 and (c-d)
show the stresses σ developed in the SN (black circles) and DN (remaining data) as
a function of the uniaxial tensile strain γ applied at the boundaries. Figure (a) and
(c) corresponds to p1 = 0.62, and figure (b) and (d) to p1 = 0.80; p2 is as shown
in the legend in these figures. Figures (e), (f), and (g) show the peak stress (σp),
and the strain at peak stress (γ(σp)), and the toughness (τ) as a function for p2 for
the data shown in (c) and (d). The stress is expressed in units of α1 × ρ, where ρ
is network concentration in total fiber length per volume for the stiff network, and
the toughness, which is the total area under the stress-strain curves shown in (c)
and (d), has the same unit. The data is averaged over five runs and the standard
deviations are indicated by errorbars.
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(d)) developed in the network initially increase with strain and reach a maximum

as previously floppy regions become stretched and align to resist deformation. Once

the fibers in the network start to experience strains larger than their stretching (or

elastic buckling) thresholds, however, they break (or buckle), causing the network

to soften. Remarkably, we find that when the stiff network is close to its rigidity

threshold, the normalized Young’s modulus, the maximum or peak stress, and the

strain at maximum stress (onset of failure), can be shifted dramatically by the flexible

network. This tunability arises because the sparsely populated stiff network allows

the DN to undergo non-affine rearrangements [17, 36, 39], leading to large variations

in rigidity. The mechanics can be further varied using the coupling between the two

networks in the DN. This is explained in the discussion session.

We quantify these trends by comparing the peak stress σp, strain at maximum

stress γ(σ = σp), and the fracture toughness τ versus p2 for both DNs in Fig 2.4.

Here we have used the total area under the stress-strain curve as a measure of the

network’s fracture toughness. We find that the peak stress increases with p2 for both

DNs due to the additional constraints introduced by the secondary, flexible network.

The strain at maximum stress decreases with p2 when the stiff network is close to

the percolation threshold and remains nearly constant when the stiff network is far

from the percolation threshold. Thus, the additional constraints introduced by the

secondary network play a much greater role in restricting deformation when the stiff

network is near the rigidity percolation threshold. Finally, we find that while the net-

work toughness increases for both cases, the increase is greater for the network near
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the rigidity percolation threshold. This result is somewhat surprising. The measure

of toughness used here is typically proportional to the product of the peak stress

and strain at the onset of failure where the material fails abruptly. Here, while this

product remains nearly constant for the p1 = 0.62 data as p2 in varied, the measured

area under the stress-strain curve increases with p2. This is because as the network

fails gradually, the decrease in stress is far less abrupt than in typical materials, and

the network toughness is substantially increased.

2.6 Results

These results highlight an important and novel mechanism in shear and fracture

mechanics of DN polymer systems: a secondary flexible network can be used to

dramatically tune the mechanics of a composite DN when the primary stiff network

is just above the rigidity percolation threshold. In this regime, decreasing p2 allows

internal stresses to relax through non-affine deformations and enables the DN to

remain intact until larger strains, while increasing p2 leads to larger mechanical

reinforcement from the secondary network. The results show how the DN can be

modulated to either be extensible, breaking gradually, as is the case for low p2 or be

stronger, breaking in a more brittle fashion, as is the case for high p2. In contrast,

far above the rigidity threshold, the primary stiff network is far too dense and rigid

to allow any non-affine network restructuring or rearrangement of the DN by varying

the density of the secondary flexible network; the DN is brittle, and breaks before
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stresses can be dissipated. The low p2 limit is particularly important in biological

tissues such as articular cartilage when it is undergoing osteoarthritis, where the

proximity of the stiff (collagen) network to the rigidity percolation threshold varies

as a function of tissue depth and the reinforcing flexible network is increasingly

removed as the disease progresses [32, 84, 101].

To illustrate the above-mentioned mechanism visually, we present stills from sim-

ulations of crack propagation in DNs with p1 = 0.62 and 0.80 as a function of the

applied tensile strain γ and p2 (Fig. 2.5). We find that when the stiff network is

far above the rigidity threshold (p1 = 0.80, Fig. 2.5(a)), the DN ruptures abruptly

at γ ∼ 0.2 for all p2 values, though the crack morphology is more uniform at higher

p2. In contrast, when the stiff network is close to the rigidity threshold (p1 = 0.62,
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Figure 2.5: Deformation and fracture of the SN (p2 = 0) and the DN (p2 ̸= 0) as
a function of increasing p2 (x-axis) and applied strain (y-axis). The value of p1 is
set to 0.80 in (a) and to 0.62 in (b), i.e. the stiff network is just above the rigidity
percolation threshold in (a) and far above this threshold in (b). Both the SN and
DN were subjected to uniaxial strains applied at the boundary and the strain was
increased in steps of 1%.

Fig. 2.5(b)), we observed a wider range of responses. For p2 = 0, 0.2, and 0.4

the networks are extensible, initially developing microcracks that are distributed

throughout. With increasing strain, these microcracks grow and the network de-

creases its rigidity while maintaining a percolated structure. For p2 = 0.6 and 0.8

the networks are more brittle, rupturing less homogeneously and maintaining their

rigidity up until the point of failure.
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2.7 Discussion

2.7.1 Varying the inter-network interaction of the two net-

works

Previously, we set the elastic interaction between the two networks α3/α1 = 1.1,

with the assumption that one could think of α3 as an effective spring. Here we relax

this assumption and discuss results for α3/α1 ∼ 0.001-1. We find that varying α3/α1

does not affect the main conclusion of our paper namely that: the secondary flexible

network modulates the mechanics of the composite DN far more effectively when the

primary stiff network is near its rigidity threshold. However, α3/α1 can be used to

tune the micromechanics of the network.

In Figures 2.6 and 2.7 we present data for α3/α1 = 0.01. These figures show that

normalized Young’s modulus and strain at maximum stress show significant varia-

tion with p2, when p1 is 0.62 but not when it is 0.80, as shown before. In addition,

the rigidity percolation threshold on the DN remains the same. In Figure 2.8 , we

present the variation of the normalized shear modulus with p1 for different values

of p2 for two cases; when α3/α1 = 0.01 and when it is 0.001. The rigidity percola-

tion thresholds for a given p2 does not depend on α3/α1. This is expected because

the percolation threshold is set by the balance between the degrees of freedom and

constraints in the system. Finally, varying the coupling between the networks does

impact the values of the Young’s modulus, the maximum stress, and the strain at

maximum stress as seen in Fig. 2.9 . A weaker coupling (smaller α3) allows for more
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non-affine deformations of the DN and thus leads to a decrease in its Young’s modu-

lus (rigidity), maximum stress (strength) and an increase in the strain at maximum

stress (extensibility). These results show that in addition to the axial rigidities of

the filaments in the two networks α1 and α2, the coupling strength α3 can modulate

deformations and relaxation of the network. Note, however, that the bonds corre-

sponding to α3 are present only if the corresponding bonds in the two networks, are

both present, i.e., there is no independent source of disorder in the coupling between

the networks. Therefore, changing α3 can only change the shape of the modulus

versus bond occupation probability curves and not the rigidity percolation threshold

of the composite network for small deformations of the DN when there is no breaking

or buckling of bonds.

2.7.2 Varying the ratio of filament stretching stiffness of the

two networks

For large deformations that result in breaking and buckling of bonds, we found that

changing α2/α1 will change the shape of the modulus versus strain and stress versus

strain curves, and consequently, the values of maximum or peak stress, and the strain

at maximum stress, but the qualitative trends remain unchanged. To illustrate this,

in Fig.2.10, we show results from simulations where we set the above-mentioned ratio

to 0.2 instead of 0.1. Further, we ran these simulations for p1 = 0.7 in addition to for

p1 = 0.62 and p1 = 0.8. In Fig.2.10, panels (a), (b), and (c) show the modulus as a

function of applied strain, and panels (d), (e), and (f) show the stress as a function
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Figure 2.6: The normalized Young’s modulus (Y/Y0) shown as a function of the
applied tensile strain, γ, for the bond occupation probability of the stiff network p1
= 0.62 (left figure) and p1 = 0.8 (right figure). The flexible network has a bond
occupation probability, p2 as shown in the legend. The parameters are α2/α1 = 0.1,
κ/α1 = 0.004, and α3/α1 = 0.01.

of applied strain, where the open symbols correspond to a ratio α2/α1 of 0.1 and

the closed symbols to 0.2. Note that while changing the value of α2/α1 led to small

quantitative changes (larger rigidities and load-bearing capability for α2/α1 = 0.2),

it did not change the qualitative trends reported before. To further crosscheck this,

we also examine the peak or maximum stress the DN can withstand before it starts

to soften and the strain at maximum stress. We show these results in Fig.2.11. As

expected, we found that the peak stresses are larger when α2/α1 = 0.2 than when

α2/α1 = 0.1, but the qualitative trends remain the same. Similarly, the qualitative

trends for the strain at maximum stress also remain the same, although there are

small quantitative changes.
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Figure 2.7: The stress σ shown as a function of the applied tensile strain, γ, for the
bond occupation probability of the stiff network p1 = 0.62 (left figure) and p1 = 0.8
(right figure). The flexible network has a bond occupation probability, p2 as shown
in the legend. The parameters are α2/α1 = 0.1, κ/α1 = 0.004, and α3/α1 = 0.01

2.7.3 Varying the bond occupation probability of the stiff

network

We first show data for values of p1 close to the rigidity percolation threshold of the

primary network (pc ∼ 0.58 in our simulations) with p2 set to 0. In Fig.2.12 below,

we show the data, averaged over five runs, for the normalized shear modulus, G/G0

as a function of for the two extreme cases: p2 = 0 and p2 = 1. Note that while for

both p2 = 0 in Fig.2.12 (a) and p2 = 1 Fig.12 (b), G/G0 first increases very slowly

(when |p1 − pc| is 0.001 or less), then more rapidly, the increase spans many more

decades for p2 = 0. This is also clearly seen in difference in the logarithms of the

normalized shear modulus for p2 = 1 and p2 = 0, shown in Fig.2.12 (c), as a function

of |p1 − pc|. As expected very close to a phase transition, this difference is large

when |p1 − pc|= 10(−4) (and over 5 orders of magnitude difference in the normalized
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shear modulus), and then decreases steadily as we move away from pc; when we reach

|p1−pc|= 10(−1) the two normalized moduli difference only by an order of magnitude.

These trends are corroborated data for the corresponding data for the peak stress

for large deformations leading to fracture shown in Fig.2.13.

Next, we show data for four different values of p1, 0.62; 0.63; 0.7; 0.8, from near

pc to far away from pc. We show the variation in dG/dp2 as a function of p2 in Fig.

15, the normalized Young’s modulus vs. strain in Fig.2.15 (a-d), stress vs strain in

Fig.2.16 (a-d), peak stress vs p2 in Fig.2.17 (a), and strain at maximum stress vs p2 in

Fig.2.17 (b). In all these figures. we observe large variations in the DN’s properties

for p1 = 0.62 and 0.63, and these variations are attenuated as p1 is increased, with

rather small variations for p1 = 0.8. These results show again that the tunability of

network mechanics and fracture properties is most striking when the primary net-

work is near its rigidity percolation threshold.

2.7.4 Understanding Tunability and Crack Propagation

In sum, we find that the rigidity percolation threshold for the stiff network can be

varied, even significantly lowered by changing the flexible network’s concentration.

Second, the flexible network can modulate the mechanics of the DN (strength, ex-

tensibility, and toughness) far more efficiently when the stiff network is just above

its rigidity percolation threshold. Third, the DN can further be tuned to either be

more extensible for low concentrations of the flexible network, breaking gradually, or
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Figure 2.8: The normalized shear modulus (G/G0) shown as a function of the occu-
pation probability,p1, of the stiff network for two different α3/α1, 0.01 (left figure)
and α3/α1, 0.001 (right figure). The flexible network has a bond occupation prob-
ability, p2 as shown in the legend. The parameters are α2/α1 = 0.1, κ/α1 = 0.004,
and α3/α1 = 0.01.

Figure 2.9: The normalized Young’s modulus, Y/Y0, and stress, σ, as functions of
the uniaxial tensile strain γ applied at the boundaries. In this figure, p1 = 0.62 and
p1 = 0.60, and α3/α1 has values as shown in the legend.
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Figure 2.10: The normalized Young’s modulus, Y/Y0, and stress, σ, as functions of
the uniaxial tensile strain γ applied at the boundaries, for three different values of
p1. The ratio α2/α1 has values as shown in the legend.
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Figure 2.11: The peak stress and strain at maximum stress as functions of bond
occupation probability of the flexible network p2. Panels (a) and (b) show the peak
stress when α2/α1 - 0.1 and 0.2, respectively, while Figures (c) and (d) show the
respective strain at maximum stress. The data represent three values of p1 shown in
the legend.
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Figure 2.12: Figure shows the normalized shear modulus (G/G0) as a function of
the deviation from the bond occupation probability p1 from the rigidity percolation
threshold pc( 0.58) for p2 = 0, for the two extreme cases of p2 = 0 in (a) and p2 =
1 in (b). In figure (c), we show the difference in the logarithm of the normalized
modulus values for the occupation probabilities shown in (a) and (b).

Figure 2.13: Figure shows the peak stress as a function of |p1 − pc|, where (pc 0.58)
for the two extreme cases of p2 = 0 in (a) and p2 = 1 in (b). In figure (c), we show the
difference in the logarithm of the peak stress values for the occupation probabilities
shown in (a) and (b).
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Figure 2.14: Figure shows the derivative of normalized shear modulus G/G0 as a
function of the bond occupation probability p2, for different values of p1 (shown in
legend).

be stronger, breaking in a more brittle fashion for high concentrations of the flexible

network. Our results show how structure and composition can be tuned to resist

cracks. Importantly, this ability to tune the failure characteristics could have nu-

merous important applications. For example, our simulations suggest that it may be

possible to construct DNs with varying compositions to guide the trajectory or even

stall cracks propagating through the material. We speculate, given the similarity

of some of the crack morphologies in our simulations (e.g., p2 = 0.6, γ = 0.35 in

Fig. 2.5b) to the experimentally observed fracture of articular cartilage tissue (see

for example Figure 4 in [86]) it is possible that cartilaginous tissues may already be

employing such mechanisms. The similar crack propagation is found in some exper-

imental data of articular cartilage [83, 87].



2.7 Discussion 43

Figure 2.15: Panels (a-d) shows the normalized Young’s modulus Y/Y0 of the SN
(black circles) and DN (remaining data) as a function of the uniaxial tensile strain
γ which is applied at the top boundaries, with p1 set to 0.62 (a), 0.63 (b), 0.7 (c),
and 0.8 (d).
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Figure 2.16: Panels (a-d) shows the stress σ developed in the SN (black circles) and
DN (remaining data) as a function of the uniaxial tensile strain γ which is applied
at the top boundaries, with p1 set to 0.62 (a), 0.63 (b),0.7 (c), and 0.8 (d).
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Figure 2.17: Panels (a) and (b) respectively show the maximum or peak stress σp
and strain at this maximum stress plotted against the bond occupation probability
of flexible network p2

Over the last decade, double network systems have become technologically im-

portant because they have enhanced toughness, delayed gel fracture, and controllable

peeling behaviors. Our results illustrate a mechanism that allows for controlling how

much the secondary network can do to attenuate or relax stresses in the primary

network, and can inform the choice of materials and microstructural parameters for

the rational design of biomimetic soft composite materials with desired properties. In

our case, our result could help in inventing a substitute and synthetic material for a

healthy cartilage. In sum, if we would like to achieve the tunable and crack resistant

material, the first network should be just above rigidity percolation threshold and

the second network should be moderately dense. This choice will allow the double

network to bear mechanical stresses but still allow low energy non-affine rearrange-

ments of the network. Note that very sparse stiff (collagen) network would resemble

the tissue collapse in the event of the loss of second network (proteoglycan) and the
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disorganization of collagen during the early osteoarthritis [101].

2.8 Hysteresis Simulations

Biological systems efficiently maximize robustness with tunability and self-healing

properties. Here we examine if the Rigidly Percolating Double Network (RPDN)

framework that allows for breaking and buckling of bonds under large stresses shows

hysteresis, i.e. difference in the strain-strain relationships during loading and un-

loading. We study this in two samples of double networks– with or without a notch.

The simulations are done similar to the earlier studies described in this chapter.

The bending-to-stretching elasticity ratio is κ/α1 = 0.004 for all fibers in the stiff

network, and the ratio of the stretching elasticity of fibers in the second network to

the first network is 0.1. The scaled interaction term is the smallest at 0.001, and

we apply the deformation quasi-statically with a step of 1 percent. To simulate the

hysteresis loop in the RPDN model, we added an additional step. For each pair of

p1 and p2, we find the maximum or peak strain and run the simulations up to 10

percent of the maximum strain to simulate the hysteresis loop.

The main idea of simulating the hysteresis loops for our RPDN model is to find

out whether the deformation in the double network system is reversible or not. Before

going into details of the simulated hysteresis loops, we want to repeat the simulations

we did in the previous session. Figs. 2.18 and 2.19 are replications of the previously
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Figure 2.18: Figures show the stresses in the DN system without a notch (first
column) and with a notch (second column) as a function of Applied Tensile Strain.
Panels (a), (c), and (e) respectively shows the stress vs. strain for p1 = 0.65, 0.7,
and 0.8 without a notch. Figures (b), (d) and (e) have similar plots for the system
with a notch.
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Figure 2.19: (a) On the left y-axis using blue color, figures in the DN system without
a notch (first column) and with a notch (second column) while on the right y-axis
using red color, maximum stress is plotted. Panels (a), (c), and (e) respectively
show the strain at the maximum stress as a function of p2 for p1 = 0.65, 0.7, and 0.8
without a notch. Figures (b), (d) and (f) have similar plots for the system with a
notch.
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Figure 2.20: Figures show the stresses in the DN system without a notch (first
column) and with a notch (second column) as a function of applied tensile strain.
Panels (a), (c), and (e) respectively shows the stress vs. strain for p1 = 0.65, 0.7,
and 0.8 without a notch. Figures (b), (d) and (f) have similar plots for the system
with a notch.
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Figure 2.21: Figures show the areas under loading and unloading curves in the DN
system without a notch (first column) and with a notch (second column) as a function
of p2. Panels (a), (c), and (e) respectively shows the stress vs. strain for p1 = 0.65,
0.7, and 0.8 without a notch. Figures (b), (d) and (f) have similar plots for the
system with a notch.
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Figure 2.22: Figures show the network plots of loading curves (first column) and
unloading curves (second column) in the DN system without a notch at the peak
stress. Panels (a), (c), and (e) respectively shows the stress vs. strain for p1 = 0.65,
0.7, and 0.8 without a notch. Figures (b), (d) and (f) have similar plots for the
system with a notch.
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Figure 2.23: Figures show the network plots of loading curves (first column) and
unloading curves (second column) in the DN system with a notch at the peak
stress. Panels (a), (c), and (e) respectively shows the stress vs. strain for p1 = 0.65,
0.7, and 0.8 with a notch.
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simulated results for the check of the running program. Fig. 2.18 shows the stress

developed in the system with or without the notch. Moreover, Fig. 2.18 highlights

the trade-off between the strain at the maximum stress and peak stress. Here, we

chose different p1 such as 0.65, 0.7, and 0.8 to simulate the stiff network near the

rigidity percolation threshold, far from it and very far from it.

The simulations of the hysteresis loops with the RPDN model begin with Figs.

2.20 and 2.21. Fig. 2.20 shows that after stretching the double network system up to

a strain of 10% of the peak stress, the deformation is irreversible and creates perma-

nent damage in the material. In our model, we allow the bonds to break and buckle,

and these mechanisms create hysteresis loops in all combinations of p1 and p2. The

areas under the curve of the loading and unloading hysteresis curves are important

to understand the toughness of the material before and after deformation. In Fig.

2.21, all the panels show an increase in the loading curves’ areas, while it is difficult

to conclude the areas under the curve of the unloading process.

Lastly, we plotted the network configurations in Figs. 2.22 and 2.23. The results

show that at the same stress, which is the maximum, the network configuration pairs

(a) and (b), as well as (c) and (d), are different. In both Figs. 2.22 and 2.23, the

panels [e and f] produce a similar figure. This is due to the fact that in these figures,

p1 and p2 are high, and as a result, the system is very rigid. In other cases, the

damage in the double network is irreversible. Therefore, the network configurations

at the same strain in the loading and unloading curves are not the same.
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Chapter 3

Mechanics of Biopolymer Network

in Cells

3.1 Cytoskeleton Network

The cytoskeleton is a critical component of the cell. It is responsible for cell shape,

cell mechanics, and integrity, and plays an essential role in cell processes such as cell

motility and mechanosensing. To perform those tasks, cytoskeleton needs tunability

as well as mechanical memory brought by the interactions between actin and micro-

tubule networks. Experimentalists often use in-vitro reconstructions of cytoskeletal

networks to study its properties. The work described in this chapter is motivated by

such experiments in the Lab of our collaborator Dr. Rae M. Robertson-Anderson and

others. In the experiments, microtubules are coupled to 3D acto-myosin networks to

obtain actomyosin as an active matter. The experimentalists have shown that using

55
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multi-spectral imaging and time-resolved differential dynamic microscopy and spa-

tial image autocorrelation, the ballistic constraction is observed with enough flexible

component and motor density. However, a fraction of microtubules is required to

have a substained and controlled dynamics. Even though the mathematical model

we build does not differentiate the presence or absence of crosslinkers, we shed the

light on how the increase concentrations of actin and myosin II motors induced con-

tractility in the double network system. The results are published here [53].

3.2 Model and Method of RPDN (motors)

3.2.1 Motor-Contracted Rigidly Percolating Double Network

Model

As mentioned in the previous chapter, rigidity percolation theory has been immensely

successful in predicting the mechanical properties and phase transitions in single-

component cytoskeletal and extracellular matrix networks as a function of filament

concentrations. This theory models biopolymer networks as two interconnected net-

works of disordered fibers and provides a framework for connecting network rigidity

to structure and composition. Here we combine rigidity percolation theory with an

active double network model made of a stiff microtubule network and an active semi-

flexible actomyosin network. This active rigidly percolating double-network (RPDN)

is constructed as follows. Starting with two networks, each based on a fully occu-

pied kagome lattice such that at each crosslink there are no more than two crossing

fibers, we dilute the networks by uniformly and randomly removing bonds from the
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networks according to two different probabilities (Fig. S3). We remove bonds from

the stiff microtubule network with probability 1− p1 and from the semiflexible actin

network with probability 1 − p2, where 0 < p1, p2 < 1, and a contiguous series of

colinear bonds constitute a fiber. The stretching moduli of the fibers in the stiff and

semiflexible networks are α1 and α2 respectively, and the bending moduli are κ1 and

κ2 respectively. The two networks interact via weak Hookean springs with spring con-

stant α3, which connect the midpoints of bonds (x1, x2) and are only present when

corresponding bonds are present in both networks. The energy cost of deforming

this double network is given by:

E1 =
α1

2

∑
<ij>

p1,ij(rij − rij0)
2

+
κ1
2

∑
<îjk=π>

p1,ij p1,jk ∆θ2ijk

E2 =
α2

2

∑
<ij>

p2,ij(sij − ρsij0)
2

+
κ2
2

∑
<îjk=π>

p2,ij p2,jk ∆β2
ijk

E3 =
α3

2

∑
p1,ij p2,ij(x1 − x2)

2, (3.1)

where E1 is the deformation energy of the stiff network, E2 is the deformation

energy of the semiflexible network, and E3 is the deformation energy of the bonds

connecting the two networks. In E1 and E2, the first term corresponds to the energy

cost of fiber stretching, and the second term to fiber bending [84].

In the above expression, the indices i, j, k refer to sites (nodes) in each lattice-
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based network, such that pij is 1 when a bond between those lattice sites is present

and 0 if a bond is not present. The quantities rij and sij refer to the vector lengths

between lattice sites i and j for the deformed stiff and flexible networks respectively,

while rij0 and sij0 are the corresponding quantities for the initial undeformed net-

works. Active contractility is incorporated into the semiflexible network by setting

the rest length of the bonds in this network to be ρsij0, where ρ is a function of

myosin concentration as described later in this document and is 1 for a purely actin

network and less than 1 for an actomyosin network [5]. The angles ∆θijk in the rigid

network and ∆βijk in the semiflexible network correspond to the change in angles

between initially collinear bond pairs ij and jk for the deformed and undeformed

network, respectively. Simulations of the above active RPDN model determined the

linear response under 0.005 percent shear. We adopt a shear protocol where external

deformations are applied along the top and bottom boundaries and free boundary

conditions are used for the left and right sides of the network. For each set of param-

eters, active double networks containing ∼ 2 × 105 nodes were randomly generated

with given fractions of bonds 1 − p1 and 1 − p2 missing. The total deformation en-

ergy was minimized for the applied macroscopic shear and the shear modulus was

calculated as a function of the bond occupation probabilities p1 and p2. The values

of p1 and p2 were obtained from experimental molar concentrations of tubulin and

actin respectively, and the contraction parameter ρ was obtained using the ratio of

experimental myosin and actin concentrations as described in the next section.
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3.3 Calculation

To calculate stretching moduli and bending moduli, we use persistence lengths of

20 m and 1 mm, and diameters of 10 nm and 50 nm, for the actin filaments and

microtubules respectively. By defining persistence length lp as lp = κ
kBT

, where κ

is the bending stiffness of the bond, kB is the Boltzmann constant and T is the

temperature, the bending modulus is given by the relation κ ∝ lp. For slender rods,

the stretching modulus is given by α ∝ lp
R2 , where R is the cross-sectional radius of

the rod [50]. From these two relationships, we can calculate the stretching moduli α1

and α2, and the bending moduli κ1 and κ2, of the fibers in the stiff and semiflexible

networks respectively. In our simulations, all moduli are scaled by, and expressed in

terms of, α1. To introduce contraction to the actomyosin network, we assign different

values of ρ, or the amount the rest length of each bond is reduced due of myosin-

induced contractility2, to networks with different myosin concentrations. We use the

Fermi estimate ρ = 1− [myosin]
[actin]

, such that in the absence of myosin, the network does

not undergo any contraction.

3.3.1 Bond Occupation Probability

Assuming a mesh size of 4.29× 10(−7) which is 0.429 µm for the actin network,

p =
l20[f ]NA

λf
√
3

This relation between the actin and microtubules filament concentrations and the

bond occupation probabilities in the semiflexible and stiff networks is calculated and
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shown in the Supplementary Information of [53]. Similar calculations for collagen

and aggrecan concentrations can be done for the previous chapter using this formula.

p2 ≈ (4.29× 10−7)2 × 5.8× 10−3 × 6.022× 1023

1
2.7×10(−9)×

√
3

(3.2)

≈ 1 (3.3)

For the microtubule network, the mesh size is assumed to be 7.33× 10(−7) which is

0.733 µm,

p1 ≈ (7.33× 10−7)2 × 5.8× 10−3 × 6.022× 1023

13
12

× 10(−9)×
√
3

(3.4)

≈ 1 (3.5)

The actin concentrations were changing as 0.25,0.5 and 0.75 percentage of 5.8µM.

Therefore, p2 are 0.25, 0.5 and 0.75. Meanwhile, the microtubule bond occupation

probabilites are 0.75, 0.5 and 0.25.

3.3.2 Stretching and Bending Rigidity

The current calculation is based on the underlying assumptions on the parameters:

• The persistence length of actin is lp,actin ≈ 20 µm

• The persistence length of microtubule is lp,MT ≈ 1 mm

• The diameter of actin filament is dactin ≈ 10 nm

• The diameter of microtubule filament is dactin ≈ 50 nm
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Here we are finding the ratio of the bending modulus of microtubule over the stretch-

ing modulus of microtubule :

κMT

αMT

≈ lp,MT

lp,MT/a2MT

≈ a2MT

≈ (
aMT

ηMT

)2

≈ (
25× (10)−9

7.33× (10)−7
)2

≈ 1.2× (10)−3

For the ratio of the bending modulus of actin over the stretching modulus of

microtubule :

κactin
αMT

≈ (lp,actin)

(
lp,MT

a2MT
)

≈ (
lp,actin
lp,MT

)(
a2MT

η2actin
)

≈ (
20× (10)−6

1× (10)−3
)(

25× (10)−9

4.29× (10)−7
)2

≈ 6.8× (10)−6

For the ratio of the stretching modulus of actin over the stretching modulus of
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microtubule :

αactin

αMT

≈
(
lp,actin
a2actin

)

(
lp,MT

a2MT
)

≈ (
lp,actin
lp,MT

)(
a2MT

a2actin
)

≈ (
20× (10)−6

1× (10)−3
)(
25

5
)2

≈ 0.5

These are all the parameter values used in our simulations.

3.3.3 Contractility

Lastly, we found the contractility parameter ρ as below.

ρ = (1− [Myosin]
[Actin]

) Myosin (µM) Actin (µM) [Myosin]
[Actin]

0.92 0.12 1.45 0.08

0.83 0.24 1.45 0.17

0.67 0.48 1.45 0.33

0.96 0.12 2.9 0.04

0.92 0.24 2.9 0.08

0.83 0.48 2.9 0.17

0.97 0.12 4.35 0.03

0.94 0.24 4.35 0.06

0.89 0.48 4.35 0.11
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3.4 Results

Our collaborators create an actin-microtubule network with myosin II motor proteins,

image it by using multi-spectral confocal microscopy and utilized differential dynamic

microscopy (DDM) and spatial image autocorrelation (SIA) to find the quantitative

qualities for the active system. Even though the system is a spatiotemporally varying

active composite, we analyze the steady state behavior using our RPDN simulations

with motors. Using results from the simulations of active biopolymer double net-

work, we find some correlations between measured restructuring dynamics and the

mechanical properties of the quasi-static system from the model.

As mentioned in the introduction of this chapter, we change the molar actin

fraction ϕA with the combined concentration of actin and tubulin as a constant in

order to find the fraction of actin required to have a controlled dynamics. Moreover,

we change the molar myosin concentration cM from 0.12-0.48 µM and observe the

dynamics of the network over the long period from approximately 45 minutes to

several hours. Even though the protein concentrations used in the experiments are

less than those present in cells, our parameter space is explored and improved [27,

54, 79] over various trial and error runs in the previous in vitro studies of actomyosin

and actin-microtubule network as a potential system for tunability and resilience.

First, we showed the experimental and simulated double network of actin and

microtubule with motor induced contractility in Figure 3.1. Increasing molar actin

fraction ϕA and myosin concentration cM generally exhibits in larger degree of con-

traction and restructuring in both of the results of experiments and simulations. We

calculated the shear (elastic) modulus G′ in simulation units using the expression



3.5 Discussion 64

G′ = 2ϵ
γ2 , where ϵ is the minimized energy per unit corresponds to 210 kPa. We use

this conversion to obtain the values of G′ presented in Figure 3.2. Since our simu-

lations assume physical crosslinking in the microtubule and actin networks (absent

in experiments), we believe that our simulations overestimate the true value of the

modulus.

3.5 Discussion

The combined results of experiments and simulations have provided an analysis of the

dynamics, structure, and mechanics of the myosin-driven actin-microtubule system

with respect to the concentration of each protein, shedding light on the possibility of

inventing a cytoskeleton composite that allows for tunable and resilient active materi-

als. Our results are novel as previous studies have focused on crosslinked actomyosin

as a soft matter system, whereas we show that coupling microtubules to actomyosin

systems provides a phase space with desirable emergent and useful properties for

cytoskeleton-inspired synthesis in comparison with other single-substrate systems.

Our comprehensive phase map provides the general design principles of active and

adaptable double network materials with some form of contractility for robust ac-

tomyosin contraction. These rules can be applicable in wound healing, filtration,

and soft robotics. Importantly, our work demonstrates that different dynamical and

structural properties arise by changing the relative concentrations of actin, tubulin,

and myosin inside the cell. The phase map summarizes that more contractility can

be achieved in the composite by increasing myosin and actin while the rigidity is
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brought by adding more connectivity and microtubules.

To mimic the behavior of the cell, composites with more filaments and different

microtubule lengths, crosslinkers, and microtubule-associated kinesin motors can be

studied in future work. From a modeling perspective, this model simplifies that the

crosslinking of both networks is permanent and does not incorporate time evolution,

viscous dissipation, or filament bundling.
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Figure 3.1: Varying the composition of active cytoskeleton composites (A) 256 x
128 pixel (212 x 106 µm) two-color confocal microscopy images show how the actin
filaments (magenta) and microtubules (green) are restructuring and rearranging with
myosin II motor activity. Each panel, left images are taken at the beginning of the
experiment and the right images after. The order of the panels are arranged by
increasing molar fraction of actin ϕA from top to bottom colored in red and myosin
concentration cM in blue from left to right. The box color match the color coding in
the elastic modulus figure. (B) A simulated double network with motors deform for
different concentrations of myosin and actin. The size of the simulation box is 88 x
73 µm.
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Figure 3.2: Model of an active double-network with molar actin fraction ϕA = 0.5.
Actin filaments are shown in magenta and microtubules are shown in green.

Figure 3.3: Elastic modulus G’ of an active double networks with the parameters ϕA

and
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Chapter 4

Biophysics of Viral Life Cycle and

the response to therapeutics

4.1 Viral Life Cycle

In the evolution of viruses, especially in error-prone RNA viruses, the interplay of

mutation, replication, and other selection processes lead to populations of viruses,

known as viral quasispecies, with similar sequences but a distribution of genomes

[44]. Statistical mechanics of viral quasispecies provides a framework to understand

how a virus survives the immune clearance system and provides insights into the pop-

ulation biology of viruses. In addition, studying quasispecies dynamics can suggest

approaches for developing antivirals because the viruses can be considered “moving

targets” when replicating [70]. In this work, we use this framework to systematically

study the impact of different anti-viral therapeutic strategies that target different

69
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Figure 4.1: Application of therapeutics at different stages of the viral life
cycle. A simplified schematic showing the life cycle of a virus and anti-viral thera-
peutics targeting different stages of the cycle. We modeled the actions of the ther-
apeutics as lowering of the infection rate, fecundity, and reproduction rate, and
calculated the virus population in the bloodstream and inside cells.

aspects of the life-cycle of respiratory viruses such as influenza, cold viruses and par-

ticularly SARS-CoV-2. We build on previous studies [42, 55] that model the viral life

cycle as three main discrete stages of infection, immune clearance and replication,

and investigate the aftermath of administering antivirals at a specific time after first

infection, that selectively reduce the infection rate, the replication rate, or the fecun-

dity of the virus, where we define fecundity as the maximum number of new viruses

that can be produced from each progenitor virus. Although we are investigating a

general rule for a broad class of viruses, the results provide useful insights on which

part of the viral cycle to focus on to produce the most effective antiviral therapeutics.

Antivirals work by disrupting specific aspects of the viral life-cycle and can be
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generally categorized based on their strategy [28]. Inhibitors of viral RNA polymerase

or RNA transcriptases may be able to reduce the reproduction rate or fecundity of

viruses [91]. Therapeutics can also interrupt viral protein synthesis by inhibiting viral

proteases, which is an essential step in viral assembly and replication [96]. Proposed

and existing therapeutics include CRISPR-Case-based Gene Therapy [41], defective

viral genomes (DVGs) [102], monoclonal antibodies and other protease inhibiting

antivirals [49, 52, 57, 64, 90, 93]. Other antivirals may restrict the entry of viral

protein into the nucleus thereby reducing the reproduction of viruses [37]. Alterna-

tively, other viral entry inhibitors may restrict viral entry into the cell by preventing

membrane fusion or endocytosis [96], [92], [47]. These types of antivirals may be

able to change the probability of cellular infection. Note that the above-mentioned

types of antivirals are not necessarily proven effective for Covid-19 patients. Here

we consider examples of different types of antivirals affecting fecundity, reproduction

and infection rates, as shown in Figure 4.1.

There have been numerous modeling efforts focused on understanding and in-

corporating different facets of viral infection in the context of therapeutics, and we

summarize some key classes of them here. Early models centered around within-

host viral kinetics (VKs) and studied the time evolution of uninfected and infected

cells with virions [10, 31]. These models were initially used in studying HIV-1 in-

fections [72] and were later extended to other viruses. Moreover, PK/VK models

incorporating pharmacokinetics (PK) dynamics have been developed to study an-

tiviral effectiveness [56, 65, 98], such as in the study of alisporivir interferon-free

treatment in hepatitis C virus infected patients [33]. Similar models are also being
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used in studying Covid-19 disease dynamics [14, 38, 71]. In addition to the mech-

anistic approaches mentioned above, more data-driven methods for learning about

SARS-CoV-2 variant binding strengths are being carried out through simulations

[11]. Lastly, for Model Informed Drug Development (MIDD), some other modeling

efforts [13, 20] involve using Quantitative System Pharmacology principles (QSP).

In our model, we consider an iterative procedure, shown in Figure 4.1, in which a

virus first attempts to infect a cell from an environment composed of a distribution

of viral types. We discuss more about this distribution, a quasi-species distribution,

below. If the virus is successful in infecting the cell, it is next exposed to the host

immune system. Any surviving viruses then have a probability of reproducing with

a fixed fecundity, with each viral offspring given a random mutation in one codon.

These new viruses then escape into the environment, and go on to try to infect other

cells.

In our model system, the cells are all identical, with a protein receptor “lock”

50 codons (AA) long. Each codon takes a value from A-Z, with a fixed pattern

for the cells of a 50-character sequence. The viruses, on the other hand, have a

“key” receptor-binding protein that is 100 codons long, again with each taking the

26 possible values A-Z, but for the viruses the values are variable, allowing 26100

different possible viruses. In modeling the infection process, we conceptually mimic

the binding process whereby a virus attaches to a cell as the virus aligning its “key”

with the cell’s “lock”, sliding its 100 codons along the lock and testing at each

alignment how many codon matches there are. The alignment with the greatest

number of matches of virus to cell has a number of matches we term the “match
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number” for that virus, and, in our model, is the identifier for that virus. Because

of the differing sequence lengths of codon regions between virus and cell, the match

number can range from 0 to 50, giving 51 different values.

As the viruses enter from the environment and begin engaging in the infection

process, they hop from cell to cell, at each trying to infect. If a cell is already full,

the virus cannot infect and must hop to the next one. If after trying all cells the

virus cannot infect, it is considered to have left the active region of the host. The

probability of a virus entering a cell on a given hop, if the cell is not full, is em, where

em = exp (−(50−m)
T

). Here m is the match number for the virus attempting to infect,

and T is a parameter we term cell permissivity, a measure of how easily a virus with

fixed match number can replicate. For low permissivity, the match numbers need to

be near 50 to infect, while for high permissivity, a broad range of viruses are able

to infect. The net result of the hopping and probabalistic infection of N successive

viruses from the environment, with the fixed number of cells gradually filling up as

the later viruses try to infect, is an updated infection probability of the cells, and a

new distribution of viral match numbers within the cells, that we term ψI(m). This

is expressed in a recursive formula which is described in the (Details) sessions.

The second stage or the energy barrier to overcome for the virus after infection

is the immune response, Ξm. It is modeled as a sigmoid, which will generate a high

immune response for any virus with more than a few matches, Ξm = A

1+exp (
−(m−ν)

2
)
.

The immunity parameter A is varied between 0 and 1, while the onset parameter

ν has been suggested to be set to 6, as a typical epitope length [1]. Therefore, Ξm

will approach 1 when m is toward the midpoint of the unit interval, and A is 1. The
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cell occupancy distribution after the immune response is calculated using the above-

mentioned sigmoid function, ψΞ(m) = ψI(m)(1 − Ξm). While infection increased

the number of viruses in the cells, the immune response decreases the number of

viruses in the cells, and again changes the distribution of m in the cells. Note that

infection and immune response induce opposing pressures on a virus, one for higher

match number to infect, but then needing low match number to escape the immune

process.

The final stage is the reproduction stage, where the viruses in the cells have a

probability based on their match number to reproduce and mutate. We take the

probability to reproduce to be em. Then the viruses left in the cells can be expressed

as ψR(m) = ψΞ(m)(1 − em). Conversely, the probability of the virus producing

an offspring successfully is ψF (m) = emψ
Ξ(m). We set the fecundity to be f0 = 20,

and for each viral offspring, exactly one of the 100 codons is randomly changed.

This mutation can result in the virus having a new match number which is either

one greater than before, one less than before, or unchanged. These probabilities are

different for every m (more likely to increase for small m, more likely to decrease for

larger m), and the net we express as a mutation matrix is applied to each probability

vector ψF (m). This new cohort of reproduced viruses then composes the viral envi-

ronment for the next iteration. The number of viruses in the environment for each

m is cfψF (m), where c is the number of cells and f is the fecundity. Each iteration

is taken to be one-time step. Iterations are repeated until a steady state is achieved.

By varying immune strength A and cell permissivity T over a full range, a phase

diagram can be obtained.
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We use this framework discussed above to examine three strategies for anti-viral

therapeutics: reduction of infective ability, reproductive ability, and fecundity. To re-

duce the reproduction rate and fecundity, we multiply the previously defined ψF (m)

and f by scaling prefactors R and F respectively, with R and F ranging from 1 (no

therapeutic) to zero. To reduce the infection rate, we multiply the part of the infec-

tion process that has to do with the ability to enter the cell by a scaling prefactor

I ranging between 1 and 0. Details of how this is implemented are in the Supple-

mentary Information. Every simulation starts at time t = 0 with the parameters I,

R, and F set to unity, and then at the point t = 10 one or the other of the three

anti-viral parameters is set to a value less than one and kept fixed at this value,

indicating the continuous dosing of a therapeutic. The simulation is continued until

a steady state is reached, in which either the virus is extinct (successful therapeutic)

or a steady state nonzero level of virus remains. We vary the reduction parameters I,

R, and F over a range of values between 0 and 1, and we choose four characteristic

points on the phase diagram (sets of parameters A and T ) to have a sampling of

hosts with both low and high immunity, and low and higher cell permissivity.

The full phase space of the model discussed in this work has three main phases

of infection type: acute, opportunistic, and chronic [55]. Here we focus on the

acute phase representing respiratory diseases including flu, SARS, and in particular

COVID-like diseases. Within this phase, we sample from four different locations

as shown in Figure 4.2(c). The corresponding four sets of permissivity (T ) and

immunity (A) used are (T = 0.5, A = 0.2), (T = 0.5, A = 0.5), (T = 0.5, A = 8) and

(T = 12.9, A = 0.5). We choose three locations at the same permissivity of T = 0.5
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which is in the middle of the phase. The last point we choose is at the permissivity

of T = 12.9 and immunity of A = 0.5.

4.2 Results

4.2.1 Targeting Fecundity

First, we discuss the effect of lowering fecundity through therapeutics as shown in

Fig. 4.2. The viral population in the bloodstream, also called the viral load, decreases

linearly with the decrease in fecundity, f0 − f , in all cases studied (Fig. 4.2a). The

viral population in the cells is initially much smaller than in the bloodstream and

stays almost steadily constant as the fecundity is reduced; however, it goes to zero

(extinct virus) at the same level of therapeutic as that for the viral population in the

bloodstream ((Fig. 4.2b). The viral population both in the bloodstream and inside

cells is the smallest for the case where the immunity is highest and the permissivity is

lowest (A = 0.8, T = 0.5), and it reaches zero for a smaller reduction in fecundity for

this case, compared to all other cases. For a fixed permissivity (T = 0.5), the viral

populations increase with decreasing immunity, A, as expected. For fixed immunity

(A = 0.5), the dependence on permissivity, T , does not show a clear, monotonic

trend (See Supplementary Information). We also calculated the order parameter,

defined as the normalized sample mean of the environmental (blood stream) match

number distribution, in the parameter space of immunity and permissivity for high

(f = 20) and low (f = 9) fecundity. We find that the region of parameter space

over which the virus goes extinct grows as the fecundity is reduced as shown in Figs.
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Figure 4.2: Relationship between virus populations and the change in fe-
cundity f . (a) Virus population in the bloodstream and (b) virus population inside
cells at steady state as a function of the change in fecundity, f0 − f following the
application of the antiviral. (c) Heat map of the order parameter showing distinct
regions for acute, chronic and opportunistic phases, similar to [55]. The four rectan-
gular boxes in red, black, blue and cyan show the four cases studied in this paper,
which focus only on the acute phase (yellow in (c)). Figure (d) shows the heat map
of the order parameter for a control sample where no antiviral is used and figure
(e) for the case where the antiviral is administered; both heat maps have the same
color-scale. The region of parameter space with where the virus has gone extinct is
shown in black in the heat map.

4.2d and 4.2e. However, those specific regions of phase space for the parameters we

discussed above do not show a significant change in order parameter.

4.2.2 Targeting Reproduction Rate

To understand the impact of antivirals which lower the probability of reproduction

of viruses, we changed the reproduction rate of the system, R, after 10 time steps.

At the default value of R = 1, i.e., before the anti-viral is administered, the case with

the lowest A and the lower T generates the largest viral load in the environment. As

with fecundity, we observed a reduction in the viral population in the bloodstream

as we decrease the reproduction rate, R, for all cases (Fig. 4.3a), while the viral

population in cells initially stays constant as R is decreased but drops to zero at the

same time as the viral population in the bloodstream (Fig. 4.3b). The decrease in
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Figure 4.3: Relationship between virus populations and the change in re-
production rate R. (a) The virus population in the bloodstream and (b) in the
cell at steady state as a function of the change in the reproductive rate, R0 − R.
(c) The heat map of the order parameter shows an increase in the area of extinction
when the viral reproduction rate is reduced. Extinct viruses are marked with a black
color on the heat map. All heat maps have the same color scale.

the viral population in the bloodstream, however, follows a non-linear relationship

with R0 −R, in contrast to decreasing fecundity (Fig. 4.3a). This non-linear scaling

is the most noticeable for the case of A = 0.2 and T = 0.5, when viruses have the

least resistance from these pressures. The order parameter heatmap for the reduced

reproduction rates show an increase in the extinction region as in case of reducing

fecundity (Fig. 4.3c).

4.2.3 Targeting Infection Rate

We investigate the impact of antivirals which target the rate of infection by imple-

menting a reduction in the infection rate at time t = 10 in our simulations. The

resulting impact was unexpected and different from the antivirals that had targeted

fecundity and reproduction rate. Specifically, the viral population in the blood-

stream changes non-monotonically as we decrease the infection rate, first increasing
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Figure 4.4: Relationship between virus populations and the change in In-
fection Rate I. (a) The virus population in the bloodstream and (b) in the cell
at steady state versus the reproductive rate I changed to after the tenth time step.
The antiviral reducing infection rate shows significantly different trends in all cases.
(c),(d), and (e) Phase diagrams with various levels of therapeutic. Extinction re-
gions are marked with a black color on the heat map. The chosen infection rate is
indicated on each heat map.

and reaching a maximum which can be quite prominent, and then decreasing and

finally going to zero i.e. going extinct, as shown in Fig. 4.4a. We conjecture that

this initial increase takes place because even though a decrease in infection rate leads

to fewer viruses in cells, these viruses now face less competition and are able to re-

produce and evade the immune system, leading to a higher rate of reproduction,

effectively leading to an initial increase in the viral load. This initial increase in the

viral load is largest for the case of the lowest immunity A = 0.2. The change in the

viral population inside cells follows qualitatively similar trends in this case as with

the reduction in fecundity and reproduction rate (Fig. 4.4b). For both viral popula-

tions in the bloodstream and in cells, for higher immunity, viral extinction requires

smaller reductions in infection rate (Fig. 4.4a and 4.4b). This is also observed in

the heat map of the ordered parameter, for the cases I = 0.1050, I = 0.0235, and

I = 0.0052 shown in Fig. 4.4 c,4.4 d, and 4.4 e).
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Viral quasispecies dynamics for different anti-viral strategies

We show a comprehensive analysis of the impact of the therapeutics in terms of the

evolution of the viral population, match number, and the quasi-species distribution

in Fig 4.5. For antivirals that reduce the fecundity and reproduction rate, for the

case of high immunity, the viral load drops to a value close to zero after the antiviral

is administered and remains there (Fig. 4.5a and 4.5e), while for the case of low

immunity although the viral load drops right after the antiviral is used, it does

not go to zero, and reaches a non-extinct steady state (Fig. 4.5b and 4.5f). No

clear mutations in the quasispecies distribution are observed (Fig. 4.5c, 4.5d, 4.5g,

4.5h). Our results for the time dependence of viral load for fixed values of infection-

reducing therapeutic chosen at two characteristic values in the rise and fall show that

the viral load increases quite quickly after the therapeutic is implemented for high

immunity(Fig. 4.5i), but show an extended rise over time for the lower immunity

(Fig. 4.5j and 4.5n). The only time this trend is reversed and we see a decrease is

for the case that combines high immunity (A = 0.8) with low permissivity (T = 0.5)

and low infection rate (I = 0.00524) (Fig. 4.5m). A possible explanation for the

rise in viral load with implementation of infection-lowering therapeutic is suggested

by the studies of quasi-species distribution as a function of time, showing a set of

mutations, most prominently seen in Figures 4.5l and 4.5p, to higher match number.

These mutations allow the virus to reproduce more. Although the mutations do not

appear particularly large, the em function governing reproduction is an exponential

function of the deviation of the viral match number from m = 50. As a result, we

see the virus population increasing. We provide more details.
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Finally, we examined how the viral population in the bloodstream and in cells

changed over time in response to antiviral therapeutics that lowered the fecundity,

the reproduction rate, and the infection rate, for the cases of high and low immunity.

In Fig 4.6, F = 0.05, R = 0.01 and I = 0.0015 are selected to show how the virus

population in both bloodstream and cells approach extinction. As seen in the figures

in the first column (Figs. 4.6a, 4.6c, 4.6e), with the high immunity A = 0.8, the viral

load reduces abruptly; therapeutics and high immunity work together to eliminate

viruses. However, with the low immunity A = 0.2, as shown in the figures in the

second column (Figs. 4.6b, 4.6d, 4.6f), viruses stay inside the cells for dozens of

our time units, which depending on the virus can correspond to days or even weeks,

before the viral population approaches a tiny number, if it does. As shown for the

therapeutic affecting infection, even at a reduction of the ability to enter a cell to

0.1 percent of its full value, the virus does not go extinct, and in fact rises with time

up to its steady state value. In the SI we show the reduction of infection to 0.00524

still does not clear the virus for the low-immunity case. The time delay of viral

extinction in the bloodstream and inside cells might provide valuable contributions

to discussion about the long-term nature of illness.

4.3 Discussion

We investigate the efficacy of antivirals in terms of their ability to reduce the fe-

cundity, the reproduction rate and the infection rate of viruses by implementing the

change in the respective parameters after a certain number of iterations, representing
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Figure 4.5: The virus population and the probability of matches for given
permissivity and immunity for antivirals targeting the fecundity, repro-
duction rate, and infection rate Figures (a)-(d) show the impact of varying the
fecundity (lowering it to f = 9), figures (e)-(h) the results of varying the reproduc-
tion rate (lowering it to R = 0.4), and figures (i)-(p) show the results of varying the
infection rate (lowering it to I = 0.10500 for (i)-(l), and to I = 0.00524 for Fig. (m)-
(p)). The virus population in the bloodstream (viral load, blue) and average match
number (order parameter, red) are shown in Figs (a),(b),(e),(f),(i),(j), (m), and (n),
and the quasispecies distributions before and after the therapeutic is administered
are shown in Figs. (c), (d), (g), (h), (k),(l)(o),(p); data shown in green correspond
to times prior to application of therapeutics, and data shown in black represent the
effect of adding therapeutics. The permissivity is kept fixed in all cases at T = 0.5.
Figs (a),(c),(i),(k),(e),(g),(m),(o) show results at a high value of immunity A = 0.8,
while Figs. (b),(d),(j),(l), (f),(h),(n),(p) show results at a low value of immunity
A = 0.2. Note that no clear mutations in the quasispecies distribution are observed
for the cases of lowering fecundity or reproduction rate, however for antivirals that
lower the infection rate, mutations in the quasi-species distribution are observed with
a shift to higher match numbers enabling higher reproduction rate, particularly for
lower immunity.
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a time delay from first infection to feeling sick enough to seek medical intervention.

As expected, an antiviral that leads to a fewer number of offspring per virus, i.e. a

smaller fecundity, leads to a decrease in the viral load. This effect is monotonic, and

the number of viruses at a given time is a linear function of the change in fecundity;

this is a desired behavior because it allows to predict the impact of the antiviral

with consistency, including to infer the data in the regions parameter space we do

not show in the manuscript. For the therapeutics reducing the reproduction rates

of the viruses, once again the viral load decreases smoothly monotonically with the

decrease in the reproduction rate, but this decrease is linear only for the case of high

immunity and low permissitivity (A = 0.8, T = 0.5). An example of an antiviral that

reduces the reproduction rate is Paxlovid [2], which combines, nirmatrelvir, a pro-

tease inhibitor which interferes the reproduction process, and ritonavir, which makes

sure nirmatrelvir is not metabolized away easily [1]. The success of this antiviral in

preventing progression of the disease and reducing hospitalization agrees with our

results on the effectiveness of antiviral strategies that target the reproduction rate

of viruses.

The impact of antivirals that lower the ability to infect was intriguing and some-

what counterintuitive. We saw that the viral load changed non-monotonically with

the decrease in infection rate, initially increasing, reaching a maximum, and then

decreasing. We conjecture this initial increase to be due to less competition faced by

the viruses already successful in infecting the cell, their unrestricted reproduction,

and potential mutations; the latter is suggested by the shift to increased match num-

ber of the quasi-specicies distribution when the therapeutic is administered. These
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effects combine leading to an accumulation of viruses in cells, with the viruses repro-

ducing until all the cells are empty and devoid of viruses, which critically depends

on the level of immunity. There are examples of antivirals with a similar strategy,

which despite their reported ability to reduce the infection rate of a wide range of

viruses, were found to be not be very effective in mitigating Covid -19 in patients

[9]. This is likely because, as our results highlighted, reducing the infection rate is

not effective in reducing the overall viral load if the viruses continue to replicate, and

potentially mutate.

One question left is what defines and quantifies the illness or symptoms of the

viral infection. If the viral load is reduced in the bloodstream but most cells are

still filled with viruses, there is a possibility that the patient may still suffer from

the symptoms of the viral infection. For Covid-19, many patients report the long

haul struggle with the symptoms such as trouble breathing, muscle aches and chronic

fatigue [60]. Despite the fact that hypotheses for the causes of “long COVID” range

from blood clots [78, 100] to immune abnormalities [15], some research suggests that

antivirals would be a solution to eliminate the reservoir of viruses inside cells [51].

Our model also shows the slow approach of the viruses inside the cells to extinction

under therapeutics. The extinction rate depends on the strength of the applied

therapeutics and also very much on the immune strength.

Individuals in our model with high immunity not only get well, but get well

rapidly after a therapeutic is administered (See Fig. 4.6 a,c and e). For individuals

in our model with a weak immune response, as shown in Fig. 4.6 b and d, reducing

the fecundity and reproduction rate to a very small number, which is equivalent to
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administering a strong therapeutic, brings the virus population in the bloodstream

within a few iterations to extinction. However, there is a much longer time scale

to clearing the virus from the cells for those with low immunity, extending to 20-30

iterations (approx. 20-60 days). Also, as Fig. 4.6 f shows, for some therapeutics,

even a strong dose for those with low immune response fails to clear the virus from

either blood stream or cells. In summary, those with weaker immunity not only don’t

always get their virus cleared if the therapeutic is not strong enough, but also, most

tellingly, have a very long time scale to the removal of virus from their cells. Since

it is viruses in cells that activates the immunity, our results may give insights to the

causes of both exaggerated immune response.

4.3.1 Simulation Details

The simulations are performed on Rochester Institute of Technology’s Hight Per-

formance Computing (HPC) cluster, named SPORC (Scheduled Processing On Re-

search Computing). With the help SLURM manager and the capacity of the cluster,

each task for each simulation of permissivity T and immunity A combination is run

efficiently. The system size is defined by maximally 2000 number of viruses attempt-

ing to infect 100 empty cells for 400 iterations. The convergence is shown by reaching

the steady state values in the number of viruses in the environment.

4.3.2 Mathematical model (Details)

We explain the details of the viral life cycle models we used in the previous session.

There are three different stages of a viral life cycle we simulated - infection, immune
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Figure 4.6: Time-dependent comparison of virus population in bloodstream
vs inside cells at extinction. The virus population in the bloodstream plotted in
blue (right y-axis) and inside cells plotted in green (left y-axis). Permissivity T =
0.5 in all cases. Immunity A = 0.8 for the left columns (a), (c), (e) and Immunity A
= 0.2 for the right columns (b), (d), (f)
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clearance and reproduction. We calculate the probability distribution of viral quasi-

species in each stage with or without the applied therapeutics.

The probability distribution of match numbers in the cells after infection by a

quasi-species distribution of viruses is calculated as follows. In our model the virus

quasispecies distribution infects via viruses emerging from the blood stream, and

attempting to infect cells, hopping across cells, trying to infect one cell at a time.

At each cell, there are two constraints: the first is related to the cell permissivity,

represented by em(infect), and second to whether the cell is already infected and

occupied and this is represented by the sum over all m of the quasispecies present

in the cell prior to virus k arriving, or
∑

m′ ψI
k−1(m

′) . Both of these quantities

are between 0 and 1, representing probabilities. The probability that the virus will

find the cell empty enough to enter is then 1 −
∑

m′ ψI
k−1(m

′), and the combined

probability to infect a cell in a single attempt is the product of the two, em(infect)(1−∑
m′ ψI

k−1(m
′)).

The probability of the virus encountering all c cells and infecting at most one cell

is expressed as one minus the probability of encountering all c cells and not infecting

any one of them, or [1 − [1 − em(infect)(1 −
∑

m′ ψI
k−1(m

′))]c]. We average over all

cells and the full viral quasispecies distribution. The net distribution in the cells

after the kth virus has tried to infect is then the distribution after the encounter with

the (k − 1)th virus plus the new infection attempt from virus k. This distribution is

shown in the following equation:

ψI
k(m) =

Pm

c
[1− [1− em(infect)(1−

∑
m′

ψI
k−1(m

′))]c] + ψI
k−1(m)
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This process repeats until all N viruses have tried to infect, so that the final ψI(m) =

ψI
N(m). The process starts with ψI

k=0(m) = ψR(m), the viruses remaining in the cells

after the previous iteration (previous time step), and the first virus is represented by

k = 1.

This process assumes an integer number of viruses N , but the results of the

previous iteration (reproduction and mutation process) yield a real number. To

obtain an integer number of viruses we interpolate to the nearest integer and define

this as N.

4.3.3 Administering Anti-viral Therapeutics

For viral fecundity and reproduction, there is only one parameter affecting the proba-

bility of viral success (in our model), and we multiply the respective probability prior

to administering the antiviral by a prefactor representing dosage of the therapeutic,

F and R. For therapeutics affecting infection, of the two factors that impact viral

infection in our model, cell permissivity and cell occupancy, only cell permissivity

is modified. Therefore, we do not multiply the entire infective addition of each kth

virus by the inhibition of the therapeutic I, but rather just that part involved in

cell permissivity, em = exp(−(50−m)
T

). We write em(infect) in the equation for infection

above, to show where it appears. The equations representing the application of the

therapeutics for each of the three strategies considered in this paper are shown below.
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em(infect) = I em

em(repro) = R em

ftherapeutic = F f

N = F cf
∑
m

ψF (m)

Here I, R, and F are all between 1 (no therapeutic) and 0. The last equation

shows how the number of viruses, N , in the bloodstream for the next iteration is

obtained, where f is the fecundity. Note that N above is the expectation value of the

number of viruses, and hence a real number. This is rounded to the nearest integer

for the infection process, where k must run from 1 to N .

4.3.4 Meaning of extinction and time in the model

Here we are going to elaborate the definition of extinction values and time. In

our model, we assumed that the virus is extinct when the virus population in the

bloodstream reduces to a number less than 0.1. Regarding time in the paper, one

time unit means one viral life cycle calculation. In a real life scenario, this could

be between half-a-day and a day, depending on the specific viral type [55] Below we

show the evolution viral population with time in the bloodstream and inside cells for

the three antiviral strategies discussed in the paper.
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4.3.5 Targeting Fecundity (Details)

Figure 4.7: Virus Population in the bloodstream and inside cells for f=9. The
therapeutics applied reduces fecundity to 9 after 10th iteration. Top row corresponds
to low immunity and bottom row to high immunity.
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Figure 4.8: Virus Population in the bloodstream and inside cells. The therapeutics
applied reduces fecundity to 2 after 10th iteration. Top row corresponds to low
immunity and bottom row to high immunity..

4.3.6 Targeting Reproduction Rate (Details)

Figure 4.9: Virus Population in the bloodstream and inside cells. The therapeutics
applied reduces reproduction rate R to 0.4 after 10th iteration. Top row corresponds
to low immunity and bottom row to high immunity.
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4.3.7 Targeting Infection Rate (Details)

Figure 4.10: Virus Population in the bloodstream and inside cells. The therapeutics
applied reduces infection rate I to 0.105 after 10th iteration. Top row corresponds
to low immunity and bottom row to high immunity.

Figure 4.11: Virus Population in the bloodstream and inside cells. The therapeutics
applied reduces infection rate I to 0.00524 after 10th iteration. Top row corresponds
to low immunity and bottom row to high immunity.



Chapter 5

Conclusion

5.1 Conclusion

In his book What is life?, Schrodinger argued that the functioning of an organism is

dependent on precise physical laws [81]. Understanding these laws in the complex and

dynamic environment of biological systems has been a major challenge for humanity.

However, this pursuit is critical for understanding the rules of life and harnessing

them for developing materials that might benefit humanity and our planet, and for

discovering potential treatments for various diseases. As a small step towards this, we

applied the principles of statistical physics to model three biological systems: cells,

tissues, and viruses. In the first project, we demonstrated how a double-network

filamentous system can achieve tunable mechanics and fracture resistance. In the

second project, we explained how rigidity and contractility emerge in a reconstituted

active cytoskeletal composite. Finally, we analyzed the effectiveness of antivirals that
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disrupt three different stages of the viral lifecycle - fecundity, reproduction rate, and

infection rate - to gain insight into the comparative efficacy of these drugs.

Our work shows how statistical physics based models can be used to understand

the mechanistic rules and principles that underlie collective properties of complex

biological systems. By developing microscopic models of cells, tissues, and viruses,

we were able to gain insights into their emergent behavior under conditions of health

and disease. Our findings could have implications in the design of new therapeutics

and materials for a range of biological applications. As we continue to explore the

physical laws governing biological systems, we move closer to unraveling the mysteries

of life and its intricate workings.



Chapter 6

Future Work

6.1 FutureWork I - Viscoelasticity of RPDNModel

We note here that we can include and explore additional tuning parameters such as

non-linear elasticity, viscous dissipation, structural correlations, network hierarchy,

network polarization or bond polydispersity in one or both of the networks of the

double network. The results presented are important in understanding how biolog-

ical tissues work and also highlight the design principles for the synthetic material,

which is tunable and resists cracks. Therefore, this flexibility in resulting material

properties and ease of implementation not only explains the health and diseased ar-

ticular cartilage tissue but also makes double networks a very attractive platform for

the fabrication of mechanically tunable artificial tissue constructs. Among all these

possible future steps, we would like to understand more about the role of viscous

forces in the viscoelastic gel-like cartilage tissue.
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Tissues like articular cartilage are known for their water content and viscoelastic-

ity. Viscoelastic materials show not only the elastic behavior of solids but also the

viscous behavior of fluid. Tissue-scale viscoelasticity is vital in both healthy and

diseased biological systems, given the example of tissue folding and wound healing.

In healthy tissue, especially during the early stage of embryonic development, they

maintain their mechanical integrity in a short time scale while changing shape due to

the viscous dissipation in a long term [73]. For example, rigidity percolation theory

and the phase transition in zebrafish embryonic tissue are researched using the cell

connectivity network [74]. Moreover, vertex, Voronoi, and cellular Potts models have

been used to explain rheological transitions in tissues [4, 34, 40, 94]. Our model of

Rigidly Percolating Double Network (RPDN) with Langevin Dynamics brings new

and interesting insights to the existing mathematical models of tissues, in terms of

time-varying viscous dissipation dynamics.

This work centers around the mechanics and dynamics of tissues in both healthy

and diseased stages using the framework called Rigidly Percolating Double Network

(RPDN). In the past and in literature, there are different studies and reports on

how the OA disease changed the viscoelastic behavior of the cartilage [21]. In other

words, understanding how the change in collagen or aggrecan results in the tempo-

ral change in viscosity is important. Moreover, the degraded tissue is found to be

responding differently to large-strain shear [58].
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6.2 Future Work II - Wound Healing Mechanism

in Stentor Modeling

Stentor coeruleus is best known for its many properties, including its regenerative

and wound healing properties [85]. Found in the water of the pond as a trumpet-

shaped ciliated single-cellular organism, it is also recognized for its reorganized and

coordinated movements [97]. Among all these amazing biological capabilities of

Stentor, wound healing is the most researched topic of Stentor. Some research points

out that large-scale mechanical behaviors are vital in wound repair [103]. And other

genomic studies suggest that the microtubule cytoskeleton is an important piece in

the process of patching over a wound in Stentor [3]. Extending our RPDN framework,

our lab is planning to study the modeling aspects of the regenerative property of

Stentor.

6.3 Future Work III - Living Biotic-Abiotic Ma-

terials with Temporally Programmable Actu-

ation

Our lab recently had an opportunity to join the research work on biotic-abiotic

materials with the aim of creating motion and force combining biological cells with

a 3D printed synthethic hydrogel. The resulting next-generation material will act as

a gap-closing microactuator timed by a biomolecular circuitry [23]. In this project,
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our dynamic actin-myosin-micotubule system can give some estimates on the force

being generated at the boundary of the synthetic hydrogel and the active biopolymer

living system.

In the above work we were only able to access the final contracted states of the the

actin-myosin-microtubule system. In future work we will study the approach to these

states by investigating the active Langevin dynamics of this system as shown below.

In the future, this will also allow us to study the full spatiotemporal properties of

the system and compare the results of the simulation with DDM and SIA analysis

done on the experimental data. The preliminary results are shown in Figs. 6.3, 6.2.

γ
dx

dt
= −dE(x)

dx
+ χ

γ
dy

dt
= −dE(y)

dy
+ χ

Using an explicit Euler algorithm,

x(t+∆t) = x(t) +
D

kBT
f(x(t))∆t+

√
2D∆t ξx

y(t+∆t) = y(t) +
D

kBT
f(y(t))∆t+

√
2D∆t ξy

Non-dimensionalizing the equation,

x̃(t̃+∆t̃) = x̃(t̃) + f(x̃(t̃))∆t̃+ α
√
2∆t̃ ξx
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Figure 6.1: The time progression of the contractility produced inside actin-
microtubule networks when ϕA = 0.75 and cM = 0.48.

ỹ(t̃+∆t̃) = ỹ(t̃) + f(ỹ(t̃))∆t̃+ α
√

2∆t̃ ξy
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Figure 6.2: Model of an active double-network with molar actin fraction ϕA = 0.75.
Time evolution results is reaching the similar steady state as the previous results.

6.4 Future Work IV - Virus Modeling

Current virus modeling can be improved in some different ways. First of all, the

administration of the antiviral once in the simulation can be changed into multiple

doses of the antiviral. Moreover, we can also simulate the combined effect of antivi-

rals, for example, in addition to a comparative analysis of three different types of

antivirals, we can simulate the combination therapy of three types of antivirals. Last

but not least, we could incorporate a better modeling of the immunity.
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Glossary
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Glossary

contraction parameter is a parameter for actomyosin network, which leads to

increasingly reduced rest lengths with an increase in myosin concentration.

58

extensibility or the strain corresponding to the peak stress is the maximum amount

of deformation that the material can undergo before it fractures. It is a critical

parameter because it determines the maximum amount of deformation that

the material can withstand before failing. 14, 34, 37

fecundity is the maximum number of offspring per viral infection per iteration. 16,

70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 88, 89, 90, 91, 94

infection rate is the rate at which a cell is infected by a virus. 16, 70, 71, 75, 78,

79, 80, 81, 82, 83, 84, 92, 94

match number is the number of matches between cell and virus genetic sequences.

72, 73, 74, 76, 80, 82, 83, 87
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peak stress determines the maximum load or stress that the material can withstand

before it deforms. 28, 29, 30, 34, 35, 37, 40, 41, 45, 51, 52, 53

reproduction rate is the rate of reproduction of a virus 75, 77, 78, 79, 80, 81, 82,

83, 84, 91, 94

toughness is a measure of a material’s ability to absorb energy without fracturing.

It is calculated as the area under the stress-strain curve because it represents

the work done on the material as it is deformed or elongated by the applied

load. 13, 14, 28, 29, 30, 37, 45, 53
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