
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2023

Machine Learning Based Framework for Smart Contract Machine Learning Based Framework for Smart Contract

Vulnerability Detection in Ethereum Blockchain Vulnerability Detection in Ethereum Blockchain

Qusai Omar Mustafa Hasan
qoh3130@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hasan, Qusai Omar Mustafa, "Machine Learning Based Framework for Smart Contract Vulnerability
Detection in Ethereum Blockchain" (2023). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11469&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11469?utm_source=repository.rit.edu%2Ftheses%2F11469&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

MACHINE LEARNING BASED FRAMEWORK FOR SMART

CONTRACT VULNERABILITY DETECTION IN ETHEREUM

BLOCKCHAIN

By

Qusai Omar Mustafa Hasan

A Thesis Submitted

in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in

Computing Security

Supervised by

Dr. Wesam Almobaideen

Professor of Computing Security and Networking

Department of Electrical Engineering and Computing

Rochester Institute of Technology - Dubai Campus

United Arab Emirates

May 2023

RIT
Master of Science in

Computing Security

Thesis Approval

Machine Learning-Based Framework for Smart Contract Vulnerability

Detection in Ethereum Blockchain

Student Name: Qusai Omar Mustafa Hasan

--

Dr. Wesam Almobaideen _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Professor (Thesis Advisor)

Dept. of Electrical Engineering and Computing

--

Dr. Huda Saadeh _

Assistant Professor (Committee Member)

Dept. of Electrical Engineering and Computing

--

Dr. Kevser Akpinar _

Assistant Professor (Committee Member)

Dept. of Electrical Engineering and Computing

I

I

Abstract
Blockchain technology is a disruptive technology that revolutionized digital payments and

transactions of digital assets. Blockchain transactions operate using smart contracts which

are automated software code that facilitates transactions between parties without the need

for intermediary systems. Smart contracts have become an increasingly popular means of

conducting transactions and executing code in a decentralized manner. As it can be written

in various languages which have their flaws in terms of logic and vulnerabilities, also the

immutability and autonomy of smart contracts also make them vulnerable to various

security threats. Security for smart contracts is essential as exploiting bad logic or

vulnerabilities in the code can lead to financial losses of digital assets as well as

undermining the integrity of blockchain technology. As such, validating the security

posture of smart contracts is now essential. Several static tools which can detect specific

attacks on smart contracts exist. However, a comprehensive automated solution is not

available.

This thesis provides a comprehensive survey of the various attack detection techniques used

in smart contracts, including static analysis, dynamic analysis, and hybrid approaches. We

also discuss the advantages and limitations of each approach and provide a comparative

analysis of the existing tools used for the different types of smart contract analysis

techniques. Furthermore, we present a machine learning based approach for the detection

of attacks on smart contracts. We developed a tool that collects data from etherscan.io,

which was not previously available. After collecting the dataset, static detection tools were

used to test the data. The results of these tools were manually multi labeled and then fed

into machine learning algorithms. The purpose of this process is to improve the accuracy

of the dataset, and reduce the time cost of getting results.

Results shown for four ML models, namely Decision Tree, Perceptron, Support Vector

Machine (SVM), and Long Short-Term Memory (LSTM) are used for this research based

on final datasets and sub dataset and the best accuracy results for full dataset 85.7% using

SVM, Reentrancy dataset 97.7% using LSTM, Etherlock dataset 80.9% using LSTM,

integer overflow/underflow dataset 100% using SVM, Perceptron, and LSTM, Overall

LSTM was the highest algorithm in terms of accuracy but the lowest in terms of Time cost.

Keywords: Blockchain, Smart Contract, Machine Learning, Vulnerability, Detection

Tools.

II

Acknowledgment

Firstly, I would like to thank my supervisor, Dr. Wesam Almobaideen, for his invaluable

guidance, insights, and encouragement throughout the entire thesis writing process. His

wisdom and expertise have been instrumental in shaping the ideas and approach of this

study.

I am indebted to my family, whose unconditional love, support, and encouragement have

motivated me constantly. Their unwavering support has kept me focused and motivated

throughout my academic journey.

Furthermore, I would like to thank my friends, who have been a great source of emotional

support and inspiration. Their words of encouragement and advice have helped me to

overcome the various challenges I faced during the course of this research.

Finally, I would like to thank again Dr.Weasm Almobaideen for his invaluable feedback

and comments on earlier drafts of this thesis. His constructive criticism has helped me to

refine and improve my work.

Once again, thank you all for your valuable support and encouragement throughout my

academic journey.

III

Dedication

I dedicate this thesis to my parents, teachers, and my siblings, for their unwavering love,

support, and encouragement throughout my academic journey. Their guidance and belief

in me have been a constant source of inspiration, and I am grateful for their unwavering

presence in my life. This thesis is also dedicated to all those who have supported me in any

way, directly or indirectly, in pursuing my academic goals.

IV

Table of Contents
Abstract .. I

Acknowledgment .. II

Dedication .. III

List of Figures ..VI

Chapter 1: INTRODUCTION .. 8

1.1 BLOCKCHAIN OVERVIEW ... 8

1.1.1 CATEGORIES OF BLOCKCHAIN .. 9

1.1.2 BLOCKCHAIN PLATFORMS ... 9

1.2 SMART CONTRACT OVERVIEW ... 12

1.3 MACHINE LEARNING OVERVIEW .. 13

1.4 PROBLEM STATEMENT AND MOTIVATION .. 14

1.5 RESEARCH AIM AND OBJECTIVE .. 15

1.6 ORGANIZATION OF THE THESIS... 16

Chapter 2: BACKGROUND AND LITERATURE VIEW .. 17

2.1 SMART CONTRACT VULNERABILITY .. 17

2.1.1 MITIGATION OF VULNERABILITIES .. 24

2.2 SMART CONTRACT SOURCE CODE, BYTECODE, OPCODE 28

2.2.1 DETECTION METHODS USED FOR VULNERABILITY DETECTION ... 30

2.2.2 TOOLS USED FOR VULNERABILITY DETECTION 31

2.2.1 MACHINE LEARNING MODELS ... 38

2.2.2 MACHINE LEARNING VULNERABILITY DETECTION MODELS USING

OPCODE.. 42

Chapter 3: RESEARCH METHODOLOGY ... 46

3.1 METHODOLOGY ... 46

3.1.1 DATA COLLECTION ... 47

3.1.2 DATA PREPROCESSING ... 48

3.1.3 DETECTING SMART CONTRACTS VULNERABILITIES USING STATIC

TOOLS ... 48

3.1.4 MULTI-LABEL .. 49

3.1.5 INTERSECTION TECHNIQUE .. 52

Chapter 4: RESULTS AND DISCUSSION .. 55

V

4.1 EXPERIMENT.. 55

4.1.1 DATASET AND PARAMETER SETTINGS ... 56

4.1.2 EVALUATION INDICATORS ... 57

4.1.3 EXPERIMENTAL RESULTS AND OBSERVATION 59

Chapter 5: CONCLUSION AND FUTURE WORK... 66

5.1 FUTURE WORK. .. 67

References .. 68

Appendix A .. 79

VI

List of Figures

Figure 1: Smart Contract Blocks Details [28] .. 13

Figure 2: Summarized Methodology. ... 15

Figure 3: Arbitrary Memory Access sample vulnerability. .. 18

Figure 4: Assertion Failure Sample Vulnerability. ... 18

Figure 5: Block Dependency Sample Vulnerability. .. 19

Figure 6: Etherlock Sample Vulnerability. ... 20

Figure 7: Integer Overflow/Underflow Sample Vulnerability. .. 20

Figure 8: Reentrancy Sample Vulnerability. .. 22

Figure 9: Transaction Ordering Dependence (TOD) Sample Vulnerability. 23

Figure 10: Arbitrary Memory Access Mitigation Sample. ... 24

Figure 11: Assertion Failure Mitigation Sample. ... 24

Figure 12: Block Dependency Mitigation Sample. .. 25

Figure 13: Etherlock Mitigation Sample. ... 25

Figure 14: Integer Overflow/Underflow Mitigation Sample. ... 26

Figure 15: Reentracny Mitigation Sample. ... 27

Figure 16: TODAmount Mitigation Sample. .. 27

Figure 17: Solidity code, Solidity Bytecode, and Solidity Opcode. 29

Figure 18: Statistics of Detection Techniques. ... 37

Figure 19: Decision Tree Model ... 39

Figure 20: Neural Network ... 40

Figure 21: SVM Classifier .. 40

Figure 22: LTSM Classifier .. 41

Figure 23: Our Technique Methodology. ... 46

Figure 24: Numbers of Vulnerabilities in Dataset .. 51

Figure 25: Vulnerability Percentage of Each Category in Dataset. 52

Figure 26: Tools Intersections ... 53

Figure 27: Vulnerability Category Percentage ... 59

Figure 28: Perceptron Confusion Matrix .. 62

Figure 29: DT Confusion Matrix .. 62

Figure 30: SVM Confusion Matrix ... 63

Figure 31: LSTM Confusion Matrix ... 63

Figure 32: Comparing time taken by each Tool. .. 64

file:///C:/Users/user/Desktop/Spring/CSEC%20790%20MS%20Thesis/Qusai's%20Thesis%20.docx%23_Toc134876013
file:///C:/Users/user/Desktop/Spring/CSEC%20790%20MS%20Thesis/Qusai's%20Thesis%20.docx%23_Toc134876019
file:///C:/Users/user/Desktop/Spring/CSEC%20790%20MS%20Thesis/Qusai's%20Thesis%20.docx%23_Toc134876030
file:///C:/Users/user/Desktop/Spring/CSEC%20790%20MS%20Thesis/Qusai's%20Thesis%20.docx%23_Toc134876032
file:///C:/Users/user/Desktop/Spring/CSEC%20790%20MS%20Thesis/Qusai's%20Thesis%20.docx%23_Toc134876037
file:///C:/Users/user/Desktop/Spring/CSEC%20790%20MS%20Thesis/Qusai's%20Thesis%20.docx%23_Toc134876038

VII

List of Tables

Table 1: Blockchain Platforms Comparison ... 11

Table 2: The most commonly opcode assembly instructions. .. 30

Table 3: Literature Review Comparison Table ... 34

Table 4: Category of Vulnerability Tools that Can Detect ... 35

Table 5: Detection Methods of Each Tool. ... 36

Table 6: Dataset Categories. ... 49

Table 7: Integer Intersection Dataset Category... 54

Table 8: Reentrancy Intersection Dataset Category. ... 54

Table 9: Etherlock Dataset Category. ... 54

Table 10 Dataset Columns Description. .. 55

Table 11: Number of smart contracts in Full Dataset. .. 56

Table 12: Confusion Matrix .. 58

Table 13: Precision, recall, and F1-score of Dataset which includes all vulnerabilities... 60

Table 14: Accuracy and Time Cost... 60

Table 15: Total Time taken by each methodology ... 64

8

Chapter 1: INTRODUCTION

Blockchain technology, one of Bitcoin's underlying technologies, has received more

interest since Satoshi Nakamoto created the cryptocurrency in 2008 [1] [2] [3] [4]. The

scope of blockchain applications has now expanded from digital currency [5] to all facets

of life. Blockchain technology has already been proposed and deployed in numerous fields,

including finance [6], IoT [7], health insurance [8], and electronic voting [9].

The foundation of these applications is smart contracts, which are coded agreements that

enable individuals to comply with them without the need for trust [10]. Despite their

benefits, developers may inadvertently create vulnerabilities in smart contracts through

misinterpreting the code language, imperfect contract design, or carelessness. Such

weaknesses are sought out by hackers and can result in significant financial losses [11].

1.1 BLOCKCHAIN OVERVIEW

This section illustrates an overview of blockchain and smart contract technologies. It also

gives a categorization of blockchain technologies and then goes through different

blockchain platforms that can help with smart contract development.

A consensus algorithm is composed of rules that permit various nodes in a decentralized

network to come into an agreement about one truth. To guarantee agreement between all

nodes about their ledgers' states within a decentralized blockchain system without any

centralized authorities verifying its transactional data requires using an agreed-upon

consensus algorithm. Validating transactions’ accuracy to make sure they are free of errors

and fraudulent activities such as double spending or other kinds of cyberattacks on

blockchain networks, is ensured by a consensus algorithm. Various forms exist for

consensus algorithms including PoW (Proof of Work), POS (Proof of Stake) & DPoS

(Delegated Proof of Stakes) [12]. Each type comes with a unique set of merits and demerits.

Without consensus algorithms, as a key component of blockchain technology, it would be

impossible to maintain the security and integrity of decentralized networks [13].

9

1.1.1 CATEGORIES OF BLOCKCHAIN

The different categories of blockchain systems are identified, each with its governance and

structure as follows [14]:

• Public blockchain [15] anybody can participate in this category of blockchain

as the record is available as public. Moreover, parties can participate as

members of the consensus process. In this blockchain, Immutability is high, but

on the other hand, efficiency is low.

• Private blockchains [16] belong to a certain group, and only nodes from that

organization are permitted to participate in the consensus process. Private

blockchains are less immutable than public blockchains, but they are more

efficient.

• Consortium blockchain [17] is a hybrid of the preceding two systems in which

a pre-selected number of participants can join in the consensus process, even

though not all users are affiliated with the same enterprise. Immutability and

efficiency are similar to a private blockchain. A consortium blockchain is a

middle ground between shared distributed and centralized private blockchains

in terms of centralization. A permissioned blockchain is another name for this

type of blockchain.

1.1.2 BLOCKCHAIN PLATFORMS

In recent years, various platforms for developing blockchain systems have been established.

The following are some of the most well-known:

• Ethereum [18] Vitalik Buterin established a public, open-source blockchain

platform in 2013. A decentralized platform known as Ethereum operates

with its own digital currency called Ether. Smart contract creation and

development are both possible on this network. As a medium of exchange

within the Ethereum network and for paying transaction fees ether is

employed [19]. Execution of smart contracts on the Ethereum network

happens through a virtual machine known as Ethereum Virtual Machine

(EVM). Being sandboxed allows for the isolation of code running on this

runtime environment from other parts of the network. The EVM carries out

two crucial tasks: enforcing Ethereum network rules and executing smart

contract codes [20]. The focus of the Nakamoto consensus protocol utilized

by Bitcoin is mainly centered around value transfer, which poses its biggest

10

weakness. However, Ethereum surpasses this limitation through enabling

the development of decentralized applications. Moreover, Ethereum

presents the concept of gas fees that serve as payment for the computational

resources essential in performing smart contracts. By using ether, it will

prevent a well known vulnerability known as denial of service attacks and

helps to maintain network stability and security [21]

• Hyperledger Fabric [22] is a permissioned (private) blockchain platform

with a modular design, smart contracts, and customizable consensus and

membership services developed by IBM and Digital Asset. Hyperledger

Fabric differs from Ethereum in several ways, including the lack of a built-

in token and a lower amount of customization options.

• Corda [23] The R3 company created Corda blockchain technology. Corda

is a business-focused distributed ledger and smart contract platform that is

open-source. Corda is permissioned, and unlike Hyperledger Fabric, it does

not have a native currency, but it is more tailored, addressing the needs of

the financial industry.

• Quorum blockchain [24] a permissioned enterprise-grade distributed ledger

technology based on Ethereum, is characterized by its unique consensus

mechanism, called Istanbul BFT. The network also leverages privacy-

enhancing features such as private transactions, which enable the

confidential transfer of assets and shield the identities of the parties involved

from the public. In addition to this point regarding its support of smart

contracts it's important to mention that these are self-executing computer

programs aimed at automating business processes while enforcing rules and

regulations

11

Table 1: Blockchain Platforms Comparison

Category Ethereum
Hyperledger

Fabric
Corda Quorum

Industry
General

Purpose
Cross Industry

Financial

Services

Financial

Services

Mode of operation
Public

blockchain

Permissioned

blockchain

Permissioned

blockchain

Permissioned

blockchain

Consortium network support Limited Strong Strong Strong

Decentralization
Highly

decentralized

Less

decentralized

Less

decentralized

Moderately

decentralized

Consensus Protocols

Proof of

Work,

transitioning

to Proof of

Stake

Pluggable

(supports

multiple)

Pluggable

(supports

multiple)

Istanbul BFT

Transaction throughput

(TPS)

15-45 TPS

(varies)

Up to 20,000

TPS (varies)

Up to 200

TPS (varies)

Up to 100 TPS

(varies)

Smart Contract Support Full support

Limited (smart

contract-like

chaincode)

Limited

(smart

contract-like

flows)

Full support

Smart Contract Privacy

Limited

privacy

(transactions

are public)

Flexible

privacy options

(public,

private,

confidential)

Strong

privacy

features

(encrypted

transactions)

Flexible

privacy options

(public, private,

confidential)

Native Cryptocurrency Ether (ETH) None None

None (uses

Ether as a

placeholder)

12

1.2 SMART CONTRACT OVERVIEW

Smart contracts are electronic agreements or contracts that are self-executed based on a set

of pre-defined circumstances and rules using programming instruction codes and

computational infrastructure [25] [26] [27].

Smart contracts were initially proposed in 1994 by Nick Szabo and became widely

employed with the advent of Blockchain [25]. This is due to the following properties [25]

[27] [28].

• Absence of intermediaries: smart contract operations are carried out without the

involvement of a third party.

• Automation and accuracy: smart contracts are coded with specified instances and

performed automatically, removing the need for manual intervention and reducing

the possibility of human error.

• Reliability and Immutability: Blockchain technology's advanced crypto

methodology makes it hard to change or remove records, giving them a sense of

trustworthiness.

As demonstrated in Figure 1, a smart contract transition is triggered by predetermined

circumstances selected by individuals. The accompanying value is transferred as a

transaction to the blockchain's pool, where it will be processed and confirmed by the peer-

to-peer network members.

A blockchain chooses a set of transactions from the pool to be completed and validated by

the blockchain's participating peer-to-peer networked nodes, and once validated, it will be

added to the blockchain as a block that is linked to the previous one [25] [27].

13

Figure 1: Smart Contract Blocks Details [28]

Many platforms, such as Ethereum and Hyperledger fabrics, can be used to develop smart

contracts linked to business concerns; however, not all platforms, such as the Bitcoin

blockchain [26] [29], support smart contract implementations.

1.3 MACHINE LEARNING OVERVIEW

Machine learning (ML), which has grown relatively widespread in research, has been

applied to a broad variety of applications. Some examples of these applications include text

mining, the detection of spam, video recommendation, image categorization, and the

retrieval of multimedia information [30]. Deep learning, or DL for short, is one of various

machine learning techniques, and it's widely applied in these applications [31].

Recently, modern machine learning techniques have made it possible to accurately identify

cyberattacks and detect them in real-time and during post-incident investigation [32].

Notably, supervised and unsupervised machine learning techniques have been effectively

applied to support intrusion detection and prevention systems, as well as to find system

abuses and security breaches [33].

Anomaly-based intrusion detection systems employing ML methods are able to conform to

the typical operating status of a system, isolating and identifying anomalies as unusual

behavioral deviations. Due to their potential to detect zero-day attacks, i.e., assaults that

exploit unknown vulnerabilities, anomaly detection techniques are hence appealing [34].

14

1.4 PROBLEM STATEMENT AND MOTIVATION

Nowadays the security of smart contract code cannot be guaranteed due to the complexity

of the programming languages used to generate smart contracts [35]. This is now a serious

and widespread problem with smart contracts, since anyone has the ability to join public

Ethereum [36]. Furthermore, because smart contracts frequently manage massive amounts

of financial assets, they are a main target for cyberattacks [37]. Unlike conventional

programs, once smart contracts are in use, they cannot be changed to allow for the benefit

of being anti-tampering. This, nevertheless, creates a serious security risk [38].

To check the vulnerability of a smart contract in Ethereum, developers traditionally submit

their code for auditing which can take up to two weeks. In order to find any potential

security vulnerability in the smart code a team of professionals needs to conduct a manual

review. However, various tools for identifying the vulnerability of solidity smart contracts,

such as Securify [39] and MAIAN [40], have been developed for users and developers who

wish to inspect and assess the security of the smart contracts they are using or constructing.

The techniques employed by these tools when scanning for vulnerabilities may differ

considerably from one another [41]. While some tools depend on either static [42],

symbolic [43], or dynamic [44] analyses for their operations respectively. Others prefer to

merge two of these methods. The supported vulnerability types for these tools may vary as

well from one tool to another. The detection capabilities of various tools differ from one

tool to another [45]. For example, one tool can be better suited for pinpointing particular

vulnerability types such as reentrancy or overflow compared to another tool. Employing

multiple techniques is necessary for a complete examination of the code despite these tools

being useful in detecting initial security vulnerabilities.

The severity of this security risk has been demonstrated by numerous actual incidents. For

instance, 3.6 million Ether were stolen via a weakness known as DAO in the code of [46].

Before being used, contracts must be properly examined, made leak-proof, and made

sturdy.

15

1.5 RESEARCH AIM AND OBJECTIVE
The aim of this thesis is to detect vulnerabilities in smart contracts using a combination of

static analysis tools and machine learning techniques. The following figure gives an

overview of our methodology.

The following points highlight the contribution we have achieved in this thesis:

• Providing an overview of the existing techniques, tools, and methods for detecting

vulnerabilities in smart contracts by identifying and evaluating the various smart

counteract security tools available.

• Analyzing and summarizing the different detection tools used for smart contract

security analysis, based on their detection methods and supported vulnerability

types.

• Presenting machine learning solutions for detecting various vulnerability

categories, this reduces the time, and effort and increased the accuracy.

• Proposing and implementing an automated tool that can be used to collect smart

contracts, bytecode, and opcode from etherscan.io.

• Generating a dataset with seven different vulnerabilities that can be used to detect

vulnerabilities related to smart contracts and avoid the overhead and inefficiency of

static tools.

• Generating three sub-datasets for three different vulnerabilities, Etherlock, integer

overflow/underflow, and reentrancy from the main dataset by taking the

Download Smart

Contract

(Etherscan.io)

Detect

Vulnerabilities

(Static analysis)

Apply ML

Algorithms

Results Analysis &

Discussion

Figure 2: Summarized Methodology.

16

intersections between different static tools results. These datasets can be used to

detect specific vulnerability categories.

1.6 ORGANIZATION OF THE THESIS

The Thesis consists of five chapters and is organized as follows. The next chapter explains

and presents a comprehensive and detailed background and Literature review of smart

contract vulnerabilities, detection methods, and machine learning methods. In Chapter 3,

Research Methodology will be explained in details. Chapter 4 summarizes the significant

findings and results. Lastly, we conclude the Thesis and present the Future work in Chapter

5.

17

Chapter 2: BACKGROUND AND LITERATURE VIEW

2.1 SMART CONTRACT VULNERABILITY
Emerging today are numerous varieties of smart contract vulnerabilities. The causes of this

are closely related to the blockchain platform's functionality, developer code writing, and

contract design [46]. There are many reasons why smart contracts are vulnerable to security

attacks [47].

(1) Due to the complexity of the code required to create smart contracts, which can

lead to mistakes and errors.

(2) The second reason is that smart contracts operate in a decentralized and trustless

environment, which means that there is no central authority to oversee and regulate

the contracts.

(3) Smart contracts are often used to facilitate financial transactions and other valuable

exchanges, which makes them a main target for hackers looking to exploit any

weaknesses or vulnerabilities.

Therefore, detecting smart contracts vulnerabilities prior to deployment can increase the

security of smart contracts after deployment. Since smart contracts' code is manually

created, there is a strong likelihood that there may be mistakes or flaws that allow hackers

to exploit them.

In order to detect smart contract vulnerabilities, this thesis investigates the following

categories of vulnerabilities.

1. Arbitrary_Memory_Access:

Arbitrary Memory Access (AMA) [48] is a term used in Solidity to describe the capability

of accessing any place in memory without being subject to bounds checking or other

limitations. This indicates that an attacker might replace data in memory without

permission to edit. This could result in security vulnerabilities and the possibility of exploits

being used. For instance:

18

Figure 3: Arbitrary Memory Access sample vulnerability.

The function in this code gets information from one array and utilizes it to generate an

index for another array. The computation could, however, result in an out-of-bounds access

if the input data is designed in a specific way. An attacker could then use this access to read

or change memory beyond of the intended range [55].

2. Assertion_Failure:

Assertion_Failure in Solidity refers to a scenario in which an adversary purposefully brings

about an assertion failure in a smart contract in order to control its behavior to cause an

effect that is unanticipated. An assertion failure happens in Solidity, as indicated earlier

when a condition that is anticipated to be true is discovered to be untrue during the

execution of a contract. This may happen for several reasons such as having wrong inputs,

making inaccurate assumptions, or having logical problems in the contract code. If the

contract does not properly handle the assertion failure and does not revert its state, it may

continue to execute in an unexpected or insecure way. Consequently, an attacker might be

able to gain unauthorized access, modify contract data, or steal funds [49]. For instance:

Figure 4: Assertion Failure Sample Vulnerability.

In this code, the function utilizes an assertion to enforce the assumption that the input

argument x is higher than zero. However, the assertion will fail and the function will end

prematurely if an attacker supplies a value of x that is zero or negative [56].

3. Block_Dependency:

Block Dependency occurs when Ethereum smart contracts are unable to make direct calls

to the built-in functions included inside smart contracts to produce a random integer.

Because of this, programmers typically use the block parameters as the fundamental seeds

19

when implementing a random number generation function. Some examples of block

parameters include the block number (block.number), the block timestamp

(block.timestamp), the block hash (block.blockhash), and other related block parameters.

However, in a manner analogous to the dependency on the timestamp, attackers can

manipulate the block parameters in advance. This results in the generated random number

being predictable, which can be exploited by malicious attackers to produce random

numbers that are advantageous to the attackers themselves [50]. For instance:

Figure 5: Block Dependency Sample Vulnerability.

The function in this code verifies that the block number at the moment of execution is

greater than the block number at the beginning of the function. However, if a hacker delays

the function's execution by altering the blockchain, the block number may stay the same or

even go down, making the attack successful [57].

4. Etherlock:

The EtherLock vulnerability is a type of exploit that targets smart contracts on the Ethereum

blockchain. It involves the creation of a malicious contract that appears to mimic the

functionality of a legitimate contract, but with the added ability to freeze or lock up the

funds within it. The attacker can manipulate the transaction flow or the user interface to

force the victim to use the malicious contract instead of the legitimate one. Once the

victim's funds are inside the malicious contract the attacker can trigger a function within

the contract that freezes or locks up the funds. This can make the funds inaccessible to the

victim. One example of an EtherLock vulnerability is when a smart contract accepts Ether

payments but fails to include instructions for sending that Ether back out of the contract,

such as using the "send", "call", or "transfer" methods. If these instructions are not present

or are not accessible then the Ether received by the contract becomes stuck inside it

indefinitely [51]. For example:

20

Figure 6: Etherlock Sample Vulnerability.

In order to protect against reentrancy attacks, the method in this code employs a boolean

variable called locked. The lock mechanism will malfunction, though, and the attacker will

be able to run arbitrary code if they are able to call the function once more before the value

is reset to false [58].

5. Integer overflow/underflow:

There is a possibility of integer overflow or underflow attacks in Solidity smart contracts.

When a variable value is greater than or less than the range permitted by its data type, this

occurs. A variable will wrap around to 0 and begin counting from there, for instance, if its

value is raised to 256 although it can only store values between 0 and 255. Attackers who

purposefully input values that are larger or smaller than the permitted range can take

advantage of these flaws. Attackers can use this to cause the contract to behave in

unintended ways, such as transferring more funds than intended or executing unexpected

operations. To prevent these attacks, developers should carefully choose the appropriate

data types and check for boundary conditions when implementing mathematical operations.

Additionally, input validation and access control mechanisms can be used to prevent

malicious input values from being processed by the contract [52]. For instance:

Figure 7: Integer Overflow/Underflow Sample Vulnerability.

The function in the above code multiplies the input argument x by 2, which may result in

an overflow if x is close to the uint256's maximum value. The variable y will wrap around

21

to zero if the overflow happens, which could lead to the next check passing even though y

is actually smaller than x [59].

6. Reentrancy:

Reentrancy is another vulnerability that can occur in Solidity smart contracts. If a smart

contract is designed to do multiple things in response to one transaction, a reentrancy attack

can occur when a malicious attacker interrupts the process and enters the contract again

with new instructions before the current process is complete. This can cause unexpected

behaviors in the contract and potentially allow the attacker to exploit it to their advantage.

Attackers can exploit this vulnerability to repeatedly call certain functions, causing them to

execute multiple times and potentially steal funds from the contract. To prevent reentrancy

attacks, developers can use safeguards such as limiting the amount of gas available to

external calls or using the "check effects interaction" pattern to ensure that all state changes

are completed before any external calls are made. Proper testing and auditing of the contract

code can also help identify and address any potential reentrancy vulnerabilities [53]. For

instance:

22

Users may withdraw money from the SafeContract according to this code. The withdraw

function, which assumes that the contract won't call back into the function before it's

finished, sends the entire balance of the calling address to the caller.

But the AttackContract can take advantage of this weakness by repeatedly calling the

withdraw method before it has finished, then using the fallback function to enter the

withdraw procedure again and empty the contract's money [60].

Figure 8: Reentrancy Sample Vulnerability.

23

7. TODAmount (race condition):

Transaction Ordering Dependency (TOD) vulnerability is a critical security issue that can

occur in smart contracts written in Solidity, the programming language used for creating

Ethereum blockchain-based applications. The vulnerability arises when a contract's

behavior or outcome is dependent on the order in which transactions are processed by the

network. This means that an attacker can manipulate the order of transactions in their

favor, leading to unexpected results such as unauthorized transfers of funds or unintended

contract executions. The potential for financial loss and damage to reputation due to this

vulnerability highlights the importance of thoroughly testing and auditing smart contracts

before deployment to ensure the security of the underlying blockchain-based systems

[54]. For instance:

Figure 9: Transaction Ordering Dependence (TOD) Sample Vulnerability.

In this case, a user can remove a certain amount from their balance using the withdraw

function. The result of the withdraw function, however, could be impacted by other ongoing

transactions that change the balance or userBalances variables. The user's userBalances

value might be incorrect resulting in a failed withdrawal or allowing the user to withdraw

more money than they should, for instance, if another transaction deposits money into the

contract after the user has called the withdraw function but before the transaction is

executed [61].

24

2.1.1 MITIGATION OF VULNERABILITIES

Arbitrary Memory Access: By implementing sufficient array bounds checking and ensuring

that only trusted contracts have access to crucial data, this risk can be reduced.

Figure 10: Arbitrary Memory Access Mitigation Sample.

The updateData function in this code updates the matching element in the data array using

an index and a value parameter. Before enabling the update, the required statement verifies

that the index is inside boundaries [62].

Assertion Failure: By employing defensive programming strategies and double-checking

each assumption the code makes, this risk can be reduced.

Figure 11: Assertion Failure Mitigation Sample.

The safeFunction function in this code performs an operation on the x parameter. In order

to avoid assertion failures, the require statement verifies that x is greater than zero before

letting the operation to continue [63].

25

Block Dependency: To reduce this vulnerability, avoid relying on block data that can be

changed by miners.

Figure 12: Block Dependency Mitigation Sample.

The block.number parameter is used by the safeFunction function in this code to obtain the

current block number [64].

Etherlock: This vulnerability can be reduced by allowing users to withdraw money from a

contract using the withdraw pattern.

Figure 13: Etherlock Mitigation Sample.

Users can deposit Ether into the contract using the deposit function in this code, and they

can withdraw their money using the withdraw method. Before approving the withdrawal,

the required statement verifies that the user has a sufficient balance. The call statement then

sends the amount of interest to the user's address. The contract assures clients can always

withdraw their money by adopting this pattern, preventing Etherlocks [65].

26

Integer Overflow/Underflow: Use the SafeMath library when performing operations on

integers to limit the risk of an integer overflow or underflow.

Figure 14: Integer Overflow/Underflow Mitigation Sample.

The add function from the SafeMath library is used by the safeFunction function in this

code to add an x parameter to the value variable. These vulnerabilities are avoided by this

function, which checks for integer overflow and underflow and cancels the transaction if

necessary [66].

Reentrancy: By employing the "checks-effects-interactions" design pattern, which places

any state changes before any external calls, this vulnerability can be reduced.

27

Figure 15: Reentracny Mitigation Sample.

The withdraw function in this code enables customers to remove money from the contract.

By verifying that the function is not already being executed before allowing it to continue,

the nonReentrant modifier protects against reentrancy attacks. The locked variable is

employed to keep track of the function execution's current state. The contract guarantees

that external calls are made only after all state changes have been completed by employing

this pattern, eliminating reentrancy attacks [67].

TODAmount: This vulnerability can be reduced by monitoring the amount of Ethereum

transmitted with a transaction using the msg.value parameter and by utilizing proper rate-

limiting strategies to stop users from sending excessive amounts of Ethereum.

Figure 16: TODAmount Mitigation Sample.

28

In this code, the maxAmount limit is checked to ensure that the total amount of Ether in the

contract does not exceed it before the deposit function allows users to deposit Ether into

the contract. The contract uses this method to stop users from transferring excessive

amounts of Ether and triggering a TODAmount vulnerability [68].

2.2 SMART CONTRACT SOURCE CODE, BYTECODE, OPCODE
Similar to traditional software development, smart contract development employs a high-

level programming language. Contracts that are self-executing are referred to as smart

contracts. Currently, many platforms [69],[70], [71], and [72] facilitate the deployment of

smart contracts, each with its own contract development language. The majority of these

platforms, including the Ethereum blockchain platform, are developed using the Solidity

programming language. In addition to Solidity, other programming languages used to

develop smart contracts are Yul, JavaScript, c++, etc. [73].

Before the smart contract can be deployed on the EVM, the source code that was written

for the contract has to be compiled. Compilation of a program is the process of converting

source code for a program that was written in a high-level language into machine code so

that the program may be executed by a computer. In a smart contract, the binary code that

is utilized for execution is referred to as bytecode, or EVM code. The EVM completes the

execution of the contract by compiling the bytecode into the correct opcode [74].

Creating an Application Binary Interface (ABI) as well as building a Ethereum smart

contract becomes achievable by making use of a compiler [75]. and this ABI is essential

for parsing out function selectors and implementing contract functions. The process

requires compiling source code into bytecode first followed by interpretation it into opcode

is shown in Figure 17.

29

Figure 17: Solidity code, Solidity Bytecode, and Solidity Opcode.

Solidity is a high-level programming language that is used to build smart contracts on the

Ethereum blockchain. An example of Solidity Source code can be found in Figure 17 - A.

These contracts have the terms of the agreement between two parties encoded straight into

lines of code. When the Solidity source code is created, it has to be compiled into bytecode

as shown in Figure 17 - B, which is a low-level representation of the code that can be run

by the Ethereum Virtual Machine.

The EVM does not immediately execute the bytecode; rather, it interprets the bytecode into

opcode instructions as shown in Figure 17 - C before continuing with the execution.

Opcode is a low-level language that is utilized by the EVM to execute the instructions that

are contained in the bytecode. Opcode is an abbreviation for "Operation Code." The EVM

starts by reading each opcode from the bytecode, carrying out the operation that

corresponds to it, and then moving on to the next opcode in the sequence until it reaches

the end of the bytecode.

Ethereum Virtual Machine (EVM) is empowered with more than 100 distinct sets of opcode

assembly operation instructions including arithmetic functions such as, add/subtract,

comparison expressions such as, greater/equal/less than, bitwise functions AND/OR/XOR,

cryptographic functionality (hash/encrypting etc.). Along with handy stack manipulation

functionalities and Table 2 summarized below highlights all the commonly utilized

Ethereum opcode assembly instruction. The EVM uses the instruction table located at [76].

to map bytecode consisting of a series of hexadecimal numbers like 60 60 52 40 with its

opcode hexadecimal value, an example, “40” maps to “MSTORE, etc..

30

Table 2: The most commonly opcode assembly instructions.

INSTRUCTIONS DEFINITION

PUSH

This instruction adds value to the stack. A different byte length of

the value being pushed corresponds to each of the 16 PUSH

possibilities.

POP The item at the top of the stack is removed by this instruction.

ADD and SUB
The top two items of the stack are added to and subtracted from

using these instructions, respectively.

MUL and DIV
The top two items in the stack are multiplied and divided by these

instructions, respectively.

SLOAD and

SSTORE
These instructions, in turn, read and write data to storage.

JUMP and

JUMPI

These instructions either unconditionally or conditionally jump to

a new position in the bytecode depending on the item at the top of

the stack.

CALL and

RETURN

These instructions are put to use, respectively, to invoke external

contracts and receive data from a contract.

SELFDESTRUCT
The current contract is terminated, and any remaining ether is sent

to the specified address.

These are only a few of the EVM instructions that are used most frequently. There are

numerous additional features, and developers who deal with Ethereum smart contracts

should have an in-depth understanding of the EVM and its command set.

In this thesis we have chosen to examine the opcode level to identify vulnerabilities in

smart contracts for three reasons. First, the source code is written by humans and contains

function names that can be altered, which can make it difficult to identify the relevant

functions and their influence on the detection results. Moreover, the source code frequently

contains annotations and vacant lines, making it difficult to authentically represent the

code's characteristics. Second, bytecode is not legible by humans and lacks syntax structure

and sequence information, making it difficult to analyze its functions. Lastly, opcodes are

derived from more than 100 EVM operation instructions, which accurately reflect the

contract's inner logic and enhance the model's reliability.

2.2.1 DETECTION METHODS USED FOR VULNERABILITY DETECTION

There are four different detection techniques for smart contracts code as follows:

Static analysis is a method that can be used for examining Solidity smart contracts without

executing them. This approach entails inspecting the smart contract's Solidity source code

for possible vulnerabilities and ensuring compliance with coding standards. Static analysis

31

is very beneficial for finding code faults that might lead to vulnerabilities in Solidity smart

contracts, such as integer overflow/underflow and reentrancy problems [77].

Symbolic execution is a testing approach that can also be used for Solidity smart contracts

to examine the code to find all potential execution pathways. Symbolic execution represents

inputs to the smart contract with symbolic values, enabling the tester to explore all potential

routes of execution without actually running the code. Symbolic execution may help

uncover sophisticated vulnerabilities in Solidity smart contracts, such as control flow and

data flow concerns [78].

Fuzzing analysis is a method that can be used for testing Solidity smart contracts that

involve creating random or semi-random inputs and analyzing the contract's behavior.

Fuzzing can help as a technique for detecting vulnerabilities in Solidity smart contracts that

are caused by unexpected or malicious inputs, such as buffer overflows and DOS attacks

[79].

To evaluate Solidity smart contracts against unknown possible vulnerabilities, machine

learning methods may be utilized. Machine learning may be used to detect patterns in

Solidity source code or bytecode that indicate vulnerabilities such as code repetition or

control flow concerns [80].

2.2.2 TOOLS USED FOR VULNERABILITY DETECTION

In this section, we explore the most relevant smart contract vulnerability tools that have

been proposed in the literature.

1) Oyente [81]

Oyente is a symbolic execution based static analysis tool that can be used without using

high-level languages like Solidity on EVM bytecode. It makes it possible to find flaws like

TOD, predictable random numbers (timestamp dependent), reentrancy, and exception-

handling errors. Additionally, it supports the majority of EVM opcodes. However, Oyente

finds it challenging to infer the development intent simply from the EVM bytecode due to

the absence of context information such as variable types and the repetition of the same

bytecode by many function calls. As a result, Oyente is not capable of checking for

concerns with fairness and accuracy such as integer overflow.

2) Securify [82]

32

Securify is a scalable and lightweight security verifier for Ethereum smart contracts. It

establishes compliance patterns and compares the contract to these patterns to find

weaknesses. Additionally, it offers the discovery of flaws like TOD, missing argument

validation, unchecked write and transfer permissions, frozen tokens, and exception

handling mistakes. Version 2.0 of Securify has recently been released and it supports an

improved smart contract language and more detection techniques.

3) Mythril [83]

Mythril uses symbolic techniques [83]. Mythril initializes the contract account's state after

decompiling the EVM bytecode and uses numerous transactions to explore the contract's

state space. When an undesirable circumstance is discovered. Mythril determines the

necessary transactions to get to a vulnerability state when one is found to confirm the

vulnerability's existence.

4) teEther [84]

The focus of the analysis tool teEther [84], which uses symbolic execution and result

validation to analyze Ethereum EVM contracts, focuses on identifying permission

verification missing, i.e. unrestricted call. There are four steps in the teEther contract

analysis process: firstly, by creating a Centrifuge token for a contract. The next step is

looking in the contract for crucial instructions, such as DELEGATECALL,

SELFDESTRUCT, and/or SSTORE, and other state-changing instructions. Investigating

routes to these instructions is the third phase. The fourth stage consists of resolving the

limits imposed by using different approaches in order to locate the weaknesses.

5) MAIAN [85]

MAIAN [85] is a tool based on symbolic execution and results in validation to analyze

Ethereum EVM contracts. It checks the execution pathways as it symbolically executes

smart contracts. By assaulting contracts using actual transactions. MAIAN facilitates the

identification of security flaws including suicidal contracts and frozen tokens.

6) ContractFuzzer [86]

A fuzzer called ContractFuzzer is used to find vulnerabilities in Ethereum EVM contracts

[86]. Online fuzzing and offline instrumentation make up the two components of

ContractFuzzer. The offline instrumentation phase involves instrumenting the EVM code

33

so that the fuzzing phase may see the contract's execution. ContractFuzzer can extract

information about ABI functions, and analyze the contract bytecode, which enables the tool

to produce legitimate fuzzing inputs. The program chooses at random from among the

smart contracts it has crawled on Ethereum for fuzzy processing. Then it provides the

discovery of vulnerabilities like exception handling errors, reentrancy, … etc.

7) Slither [87]:

Slither [87] is a Python-based open-source static analysis framework that was created in

2018. It analyzes solidity code as input. It employs the SlithIR intermediate representation.

To find vulnerabilities, Slither uses dataflow analysis and tracking methodologies. It may

be used to discover automated vulnerabilities, detect automated optimization and analyze

code. This tool's open-source version supports finding various issues such as re-entrancy,

ether lock, and timestamp.

8) Conkas [88]:

Conkas is a tool used to detect vulnerabilities in Solidity contracts by identifying potential

security issues such as re-entrancy, integer overflow, and other common vulnerabilities is

done through analysing the byte code or solidity code of the smart contract. By using both

dynamic and static analysis methods. It is possible to use Conkas as either an independent

tool or integrate it within an existing development pipeline. Smart contract developers can

find and eliminate potential issues more easily with an easy to understand report format

that presents the analysis results [88].

9) The ConFuzzius [89]

ConFuzzius [89] is a tool that uses a combination of static and dynamic analysis approaches

to effectively traverse the state space of smart contracts and uncover vulnerabilities like

reentrancy, integer overflow/underflow, and other common flaws. The program uses data

dependence analysis to discover potential vulnerability channels via the contract and

prioritizes testing those paths first. The hybrid technique combines coverage-guided

fuzzing with symbolic execution to improve testing efficiency and efficacy.

The authors created a dataset and published it in [90]. A DL methodology called BLSTM-

ATT is used to precisely discover reentrancy issues. Their work is restricted to detecting

specific attacks based on a reentrancy vulnerability and for an old version of smart

contracts.

34

Most of the tools discussed above are not using machine learning, as these tools are based

on static analysis which may not be able to detect vulnerabilities with high accuracy.

In [90] they have conducted machine learning algorithms on solidity version 0.4.X which

is currently an old version as solidity has reached version 0.8.X. Therefore, the code syntax

is different and consequently, there is a need to have a new dataset that represents the state-

of-the-art smart contracts code.

Table 3: Literature Review Comparison Table

Tool

Detection Level

Year

Published

Last

Update

Platform

Used

Availability

on GitHub

Link of

GitHub

Solidity

Source

Code

Bytecode

ContractFuzzer 🗸 - 2018 2020 Python 🗸

https://github.c

om/gongbell/C

ontractFuzzer

[91]

Slither 🗸 🗸 2018 2023 Python 🗸

https://github.c

om/crytic/slithe

r [92]

Conkas 🗸 🗸 2021 2022 Rust 🗸

https://github.c

om/nveloso/con

kas [93]

Confuzzius 🗸 🗸 2020 2022 Python 🗸

https://github.c

om/christoftorr

es/ConFuzzius

[94]

MAIAN 🗸 🗸 2018 2021 Java 🗸

https://github.c

om/ivicanikolic

sg/MAIAN

[95]

teEther 🗸 - 2018 2021 Solidity 🗸

https://github.c

om/nescio007/t

eether [96]

Mythril 🗸 - 2017 2023 Python 🗸

https://github.c

om/ConsenSys/

mythril [97]

Oyente 🗸 - 2016 2020 Python 🗸

https://github.c

om/enzymefina

nce/oyente [98]

Securify 🗸 - 2018 2021 Java 🗸

https://github.c

om/eth-

sri/securify2

[99]

Table 3 shows that every tool listed is intended to verify Solidity code for weaknesses at

the source code level. At the bytecode level, however, only four out of the 9 listed tools are

capable of detecting vulnerabilities. The majority of the tools mentioned in Table 3 were

introduced in 2018, see year published column, but they have received frequent updates for

https://github.com/gongbell/ContractFuzzer
https://github.com/gongbell/ContractFuzzer
https://github.com/gongbell/ContractFuzzer
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/nveloso/conkas
https://github.com/nveloso/conkas
https://github.com/nveloso/conkas
https://github.com/christoftorres/ConFuzzius
https://github.com/christoftorres/ConFuzzius
https://github.com/christoftorres/ConFuzzius
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ivicanikolicsg/MAIAN
https://github.com/nescio007/teether
https://github.com/nescio007/teether
https://github.com/nescio007/teether
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/enzymefinance/oyente
https://github.com/enzymefinance/oyente
https://github.com/enzymefinance/oyente
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2

35

better performance and capabilities which is worth mentioning. A closer look reveals that

a large number of these tools were updated not too long ago as illustrated by the last update

column. All the tools are available on GitHub and freely accessible. Four different

programming languages, Python, Rus, Java, and Solidity, have been used to create the

platforms that support vulnerability detection. Among these programming languages

Python was the most widely used.

Table 4: Category of Vulnerability Tools that Can Detect

Tools

A
rb

it
ra

ry
_
M

em
o
ry

_
A

cc
es

s

A
ss

er
ti

o
n

_
F

a
il

u
re

B
lo

ck
_
D

ep
en

d
en

cy

E
th

er
lo

ck

In
te

g
er

o
v
er

fl
o
w

/u
n

d
er

fl
o
w

R
ee

n
tr

a
n

cy

T
O

D
A

m
o
u

n
t

ContractFuzzer
- - - - 🗸 🗸 -

Slither
- - - 🗸 🗸 🗸 🗸

Conkas
- - - - 🗸 🗸 -

Confuzzius
🗸 🗸 🗸 - 🗸 - 🗸

MAIAN
- - - 🗸 - 🗸 -

teEther
- - - - 🗸 🗸 🗸

Mythril
- - - - 🗸 🗸 🗸

Oyente
- - - - - 🗸 🗸

Securify
- - - - 🗸 🗸 🗸

In [90]
- - - - - 🗸 -

After analyzing Table 4, it is evident that four out of the eight vulnerabilities are being

aimed for detection by almost all the tools being considered. These vulnerabilities comprise

Time-Dependent Access Control (TOD attack), Reentrancy, and Integer Over/Underflow.

The unanimous agreement among the tools on the identification of these four vulnerabilities

indicates that they are extremely crucial concerns in Solidity programming that necessitate

vigilant consideration from developers.

36

On the other hand, there are four attacks that are only detected by one or two tools, implying

that they may be relatively uncommon or difficult to detect. These vulnerabilities are

Arbitrary Memory Access, Assertion Failure, Block Dependency, and Etherlock. It is worth

noting that just because these vulnerabilities are only detected by a limited number of tools,

it does not mean they are less important or less risky than the more commonly detected

vulnerabilities. In fact, these less frequently detected vulnerabilities may be even more

dangerous precisely because they are less well-known and less likely to be protected

against. As such, a recommendation can be given that encourages researchers to conduct

more detailed research that studies the risk of these least commonly detected vulnerabilities

using different tools and techniques.

Table 5: Detection Methods of Each Tool.

Tools

Detection Method

Static Symbolic execution Fuzzing ML

ContractFuzzer
- - 🗸 -

Slither
🗸 🗸 -

Conkas
🗸 - -

Confuzzius
🗸 - 🗸 -

MAIAN
🗸 - -

teEther
- - 🗸 -

Mythril
- 🗸 - -

Oyente
🗸 - - -

Securify
🗸 - - -

In [90]
- - - 🗸

37

Figure 18: Statistics of Detection Techniques.

Upon careful examination of Table 4 and Figure 18, it becomes evident that machine

learning algorithms have been applied only to the detection of one attack category -

reentrancy. While this may represent an important step forward in the use of machine

learning for vulnerability detection, it also highlights the vast potential of such a tool for

future research in this area.

Given that there are numerous vulnerability categories that Solidity code may be

susceptible to, there is ample scope for machine learning algorithms to be applied to detect

vulnerabilities beyond reentrancy. By leveraging the power of artificial intelligence and

data-driven analysis, it may be possible to develop more accurate and efficient methods for

identifying and mitigating a wider range of vulnerabilities in Solidity code.

Consequently, the fact that machine learning algorithms have been successfully applied to

detecting reentrancy represents a powerful motivation for future work in this area. By

continuing to explore the potential of machine learning in the context of Solidity

vulnerability detection, researchers and developers may be able to unlock even greater

potential for securing smart contracts and other decentralized applications.

In Table 5 and Figure 18 we can notice that only one tool is using symbolic execution

technique and one tool uses a machine learning technique and the rest are either fuzzy or

static. This encourages future research focusing on detecting more vulnerable categories

using symbolic and/or machine learning.

50%

8%

34%

8%

Detection Methods Percentage

Static Symbolic execution Fuzzing ML

38

2.2.1 MACHINE LEARNING MODELS

Machine Learning (ML) algorithms can improve and learn over time by analyzing

substantial amounts of data, observing patterns and trends, and employing the findings to

predict outcomes or make decisions. Adapting ML behavior based on received data is

possible because of their learning experience. ML algorithms are classified into three

primary categories, supervised learning, unsupervised learning, and reinforcement

learning. Each category has its own distinct merits and demerits. The usage of machine

learning algorithms can be found in different applications such as detecting malware [100],

image recognition [101], blockchain [102], …etc. We will introduce four commonly used

machine learning algorithms: Decision Tree (DT), Neural Network (NN), Support Vector

Machines (SVM), and Long Short Term Memory (LSTM).

1. Decision Tree:

A decision tree is constructed by adding nodes for each feature in the pre-processed dataset,

with the characteristic deemed to be the most significant being placed at the tree's root. It

functions properly for both continuous and categorical output variables for each feature.

This procedure is repeated until the final (leaf) node, which contains the DT's predictions

or outcomes, is reached. Figure 19 shows a prototype decision tree model. The point that

has a light green color indicates where the root node is, and the red dots indicate where the

leaf nodes are. There is a decision to be made at every fork in the road [103]. The decision

Tree Algorithm is a popular machine learning algorithm that is used for both classification

and regression tasks. One of the classes within the Decision Tree Algorithm is the Decision

Tree Classifier, which is used specifically for classification tasks.

To use the Decision Tree Classifier, you first need to train the algorithm using training data.

This is done by calling the "fit" method of the Decision Tree Classifier class and passing

in the training data as an argument. The "fit" method then creates a decision tree based on

the training data, where each node of the tree represents a decision based on a specific

feature or attribute of the data. The tree is constructed by recursively partitioning the data

into subsets based on the selected features until a stopping criterion is met.

39

Once the tree has been constructed, the Decision Tree Classifier can be used to predict the

class labels of new, unseen data points. This is done by traversing the decision tree from

the root node to a leaf node based on the values of the features of the new data point. The

leaf node reached by this traversal represents the predicted class label for the new data point

[104].

2. Neural Network:

A neural network is a type of machine learning algorithm that is modeled after the structure

and function of the human brain. It consists of a series of interconnected nodes or "neurons"

that process and transmit information.

One of the simplest neural network architectures is the Perceptron, which consists of a

single layer of neurons that take in input features and produce output values. The Perceptron

is commonly used for binary classification tasks, where the goal is to predict whether a

given input belongs to one of two classes.

While the Perceptron can be effective for simple classification tasks, it has some

limitations. For example, it can only learn linear decision boundaries, which can limit its

performance on more complex tasks. To address this limitation, neural networks with

hidden layers are used.

A hidden layer is a layer of neurons between the input and output layers of a neural network.

Each neuron in the hidden layer receives inputs from the neurons in the previous layer and

produces outputs that are fed into the neurons in the next layer. By adding hidden layers,

Figure 19: Decision Tree Model Figure 19: Decision Tree Model

40

neural networks can learn more complex patterns in the data and produce more accurate

predictions. [103].

Figure 20: Neural Network

3. Support Vector Machine (SVM):

The Support Vector Machine, or SVM, is a method of supervised machine learning that

may be used for regression, classification, and the identification of outliers. It provides a

high level of accuracy where the numerous continuous, unconditional, and discrete

variables can be handled, outperforming other classifiers like logistic regression and DT.

Finding the marginal hyperplane with the highest margin that can be used for the

classification of input data that has been pre-processed is the main goal of support vector

machines [105]. As can be seen in Figure 21, it picks the Support Vector margin that has

the highest probability of being correct within the dataset that is provided.

Figure 21: SVM Classifier

41

4. LSTM:

Long Short-Term Memory (LSTM) is a form of recurrent neural network (RNN) that is

extensively employed in machine learning for modeling and predicting sequences.

Traditional RNNs have difficulty preserving long-term dependencies in sequential data due

to the vanishing gradient problem; LSTMs are designed to surmount this limitation. LSTMs

employ a memory cell that enables them to retain and retrieve information over extended

periods, thereby allowing them to model intricate temporal patterns [106].

The memory cell is accompanied by three gates in an LSTM architecture: the input gate,

neglect gate, and output gate. These gates permit the LSTM to selectively store or discard

information in the memory cell, thereby enhancing the model's capacity to learn and

remember meaningful long-term dependencies. The input gate regulates the passage of new

input into the memory cell, the neglect gate controls the removal of information from the

cell, and the output gate controls the quantity of information that is output from the cell

[106].

LSTMs have proven highly effective in a variety of applications, including speech

recognition, machine translation, sentiment analysis, and time-series forecasting. They are

a popular choice for applications such as natural language processing, financial forecasting,

and weather forecasting because they are particularly well-suited to tasks where long-term

dependencies are crucial for accurate predictions [106].

Figure 22: LTSM Classifier

42

2.2.2 MACHINE LEARNING VULNERABILITY DETECTION

MODELS USING OPCODE

Detecting malware and vulnerabilities is crucial for maintaining the security of computer

systems and networks. However, traditional approaches to malware detection and

vulnerability analysis are often time-consuming and resource-intensive [107].

Machine learning has emerged as a promising approach to addressing these challenges,

particularly when it comes to detecting malware and vulnerabilities at the opcode level. By

analyzing the opcode sequences of executable files, machine learning algorithms can

identify patterns and behaviors that are indicative of malware or vulnerability exploitation

[108].

One advantage of using machine learning for malware and vulnerability detection is that it

can quickly analyze large amounts of data and identify potential threats in real-time. In

addition, machine learning can adapt to new types of malware and vulnerabilities, making

it a more robust and scalable approach to security [107]. We will introduce four research

papers that use NN, SVM, Decision Tree, and LSTM on different technologies to detect

malwares based on the opcode level.

1. Neural Network (NN):

In [109], the Perceptron is trained on opcode features extracted from malware samples,

which represent the low-level instructions executed by a program. The results of the

experiment show that the Perceptron achieves good accuracy in detecting malware using

opcode features, with an accuracy rate of around 90%. However, the performance of the

Perceptron is inferior to that of the proposed hybrid attention network, which achieves an

accuracy rate of over 98%.

The authors suggest that the Perceptron can serve as a baseline method for malware

detection using opcode features, especially in scenarios where the dataset is small or the

computational resources are limited. The study also highlights the potential of machine

learning algorithms, including the Perceptron, for effective detection of malware.

43

2. SVM

In [110] the effectiveness of the SVM algorithm in detecting malware using opcode trigram

sequences is evaluated in detail. Support Vector Machine (SVM) is a popular machine

learning algorithm that is commonly used in binary classification tasks, including malware

detection. SVM works by finding an optimal hyperplane that separates the data points into

two classes, in this case, malware and benign files. In this study, the authors extract opcode

trigram sequences from malware samples, which represent a sequence of three opcode

instructions, and use them as input features for the SVM model.

To evaluate the effectiveness of the proposed approach, the authors conducted experiments

on two publicly available datasets, namely, the Malimg dataset and the Microsoft Malware

Classification Challenge (MS-Malware) dataset. The results show that the SVM algorithm

achieves high accuracy in detecting malware using opcode trigram sequences, with an

accuracy rate of around 99%. The precision, recall, and F1-score metrics are also reported

to be high, indicating the effectiveness of the SVM approach in detecting malware.

The authors also compared the performance of the SVM algorithm with that of other

machine learning algorithms, such as Naive Bayes, Random Forest, and Multilayer

Perceptron. The results show that the SVM algorithm outperforms these algorithms in

terms of accuracy and F1-score metrics which highlight its effectiveness in detecting

malware using opcode trigram sequences.

The study also highlights the importance of feature selection in malware detection. By

using opcode trigram sequences as input features, the SVM algorithm is able to effectively

distinguish between malware and benign files.

3. Decision Tree

In [111] the authors conduct an in-depth evaluation of the effectiveness of decision tree

algorithms in detecting metamorphic malware using opcode frequency rates. The study

focuses on metamorphic malware, which is a type of malware that can change its code to

avoid detection by traditional signature-based antivirus systems. To detect such malware,

the authors extract opcode frequency rates from the malware samples, which represent the

relative frequency of each opcode instruction, and use them as input features for the

decision tree algorithm.

44

In the context of malware detection, the decision tree algorithm can effectively distinguish

between malicious and benign files by identifying the most discriminative features that

distinguish them. To evaluate the effectiveness of the proposed approach, the authors

conducted experiments on a publicly available dataset, namely, the VXHeaven dataset. The

results show that the decision tree algorithm achieves high accuracy in detecting

metamorphic malware using opcode frequency rates, with an accuracy rate of around 99%.

The precision, recall, and F1-score metrics are also reported to be high, indicating the

effectiveness of the decision tree approach in detecting metamorphic malware.

The study also compared the performance of the decision tree algorithm with that of other

machine learning algorithms, such as Naive Bayes, K-Nearest Neighbors, and Random

Forest. The results show that the decision tree algorithm outperforms these algorithms in

terms of accuracy and F1-score metrics, highlighting its effectiveness in detecting

metamorphic malware using opcode frequency rates.

The authors also conducted experiments to evaluate the impact of feature selection on the

performance of the decision tree algorithm. The results show that the decision tree

algorithm can achieve high accuracy in detecting metamorphic malware using a small

subset of the most informative features, which can significantly reduce the computational

cost of the detection process.

4. LSTM

In [100] the authors propose a novel approach for malware detection using LSTM neural

networks. The study focuses on the use of opcode sequences as input features for the LSTM

network. Opcode sequences are a representation of the instructions executed by a program

and are commonly used in the field of malware detection to analyze the behavior of

malware. In the context of malware detection, the LSTM network can be used to capture

the patterns and relationships in the opcode sequences and classify malware samples

accordingly.

To evaluate the effectiveness of the proposed approach, the authors conduct experiments

on a publicly available dataset, namely, the Malimg dataset. The dataset contains a large

number of malware samples, each labeled with the corresponding malware category.

The results of the experiment show that the LSTM-based approach achieves high accuracy

in detecting malware using opcode sequences as input features, with an accuracy rate of

45

over 98%. The precision, recall, and F1-score metrics are also reported to be high,

indicating the effectiveness of the LSTM approach in detecting malware.

The performance of the LSTM based technique is also contrasted with those of other

machine learning algorithms, including SVM and Random Forest. The results show that

the LSTM based approach outperforms these algorithms in terms of accuracy and F1-score

metrics, highlighting its effectiveness in detecting malware using opcode sequences.

The length of the opcode sequences and the number of LSTM layers are two other variables

that the authors test to see how they affect the performance of the LSTM based approach.

The results show that the LSTM based approach is robust to variations in the length of the

opcode sequences and can achieve high accuracy with a small number of LSTM layers.

46

Chapter 3: RESEARCH METHODOLOGY

3.1 METHODOLOGY

The objective of this thesis is to develop a technique that can automatically and more

precisely identify multiple vulnerabilities in smart contracts, overview of this technique is

shown in Figure. The intention is to overcome the limitations of conventional approaches

to detecting vulnerabilities in smart contracts, which suffer from drawbacks such as

inadequate detection capabilities, limited automation, and slow detection speeds as shown

in Figure 32 [40].

In this thesis a framework for detecting vulnerabilities with multiple labels is proposed

which consists of five parts:

1. Collecting Solidity smart contracts, their bytecode, and opcode.

2. Running solidity static detection tools to get vulnerabilities categories

3. Multi-labelling the dataset based on the results of step 2.

4. Opcode pre-processing to convert the opcode into opcode EVM hexadecimal

representation.

5. Run ML vulnerability detection models on the dataset.

The first step in data pre-processing is to use the Ethereum website to convert the smart

contract bytecode into opcodes. This is followed by converting the opcodes into opcode

EVM hexadecimal values for input to the Machine learning detection tool.

Figure 23: Our Technique Methodology.

47

The dataset has been labeled manually by entering the value either “0” or “1” for each

vulnerability category based on the static tools results. This results in having a multi label

category that can be used by machine learning algorithms for training and testing. We have

used in our study four different machine and deep learning techniques (Decision Tree,

Perceptron, SVM, and LTSM). We delve into the details of these five steps as follows.

3.1.1 DATA COLLECTION

Researchers and developers who need access to a large collection of smart contracts for

analysis and experimentation face a challenge due to the limited availability of open source

Solidity code.

In our case, we discovered that the available resources for accumulating Solidity code were

insufficient to meet our requirements for a diverse and exhaustive collection of contracts.

As a result, we decided to create our own Solidity code collection utility. Our tool is used

to extract contracts “Solidity, bytecode, and opcode” from the official platform of Ethereum

“ethersscan.io”, by using a combination of web crawling libraries in Python.

The creation of our own tool enabled us to collect a large and diverse set of contracts for

analysis. This in turn allowed us to acquire a deeper understanding of the behavior of smart

contracts on the Ethereum network. By using this tool, we were able to surmount the

limitations of existing resources and contribute to the research community by providing an

exhaustive dataset of Solidity code for analysis and experimentation. The Pseudo Code of

collecting solidity code be found in Appendix A.

On the other hand, we aimed to extract the relevant opcode and bytecode for each Solidity

contract once we had gathered a huge and diversified collection of Solidity smart contracts.

This was a critical stage in our investigation since the opcode and bytecode contain critical

information about the contract's internal workings, including its functionality and any

existing flaws. We used etherscan.io again to derive the opcode and bytecode of collected

smart contracts.

We utilized the opcode for each contract as input data for our vulnerability detection

algorithm after obtaining them. By examining the opcode, our model was able to discover

possible vulnerabilities in the contracts, such as reentrancy, integer underflow, … etc.

Collecting opcode was an important step in our investigation of smart contract

vulnerabilities, allowing us to create a thorough and effective vulnerability detection

48

model. The Pseudo Code of collecting bytecode and Opcode code be found in Appendix

A.

3.1.2 DATA PREPROCESSING

After we have extracted the opcode from the Solidity contracts, we need to convert the

opcode instructions into a machine readable format. This involved converting each opcode

instruction into its corresponding hexadecimal value, which could be read and processed

by our vulnerability detection model.

To achieve this, we developed a custom script that maps each opcode instruction into its

corresponding hexadecimal value. This script allowed us to easily convert the opcode

instructions into a machine readable format, which we could then use as input data for our

vulnerability detection model.

By converting the opcode instructions to their hexadecimal values, we were able to

accurately represent the inner logic of the Solidity contracts in a machine-readable format.

This allows our model to analyze the contracts and identify potential vulnerabilities. This

step was crucial in our analysis, as it enabled us to process the opcode instructions in a

standardized and efficient manner and improve the accuracy and effectiveness of our

vulnerability detection model. The Pseudo Code of converting Opcode to Opcode

Hexadecimal Values can be found in Appendix A.

3.1.3 DETECTING SMART CONTRACTS VULNERABILITIES

USING STATIC TOOLS

Once we had collected a diverse set of Solidity smart contracts and extracted their

corresponding opcode and bytecode, we used static analysis tools to detect potential

vulnerabilities in the contracts.

We used a variety of static analysis tools such as, Slither [87], Confuzzion [89], MAIAN

[85], Conkas [88], and Securify [82], where these tools are available on GitHub as publicly

available open source tools [92], [94], [95], [93], and [99], respectively. These tools

enabled us to identify a wide range of potential vulnerabilities, including reentrancy attacks,

integer overflows, and other common smart contract vulnerabilities.

By using static analysis tools, we were able to identify potential vulnerabilities in a large

number of contracts, and gain insights into the most common types of vulnerabilities and

their prevalence in real-world contracts. This information was valuable to conduct the multi

labeling process in the next step.

49

3.1.4 MULTI-LABEL

Table 6 displays the definition of smart contract multi-label classification, which involves

categorizing smart contracts into multiple categories or labels based on static detection

tools results, as follow:

Table 6: Dataset Categories.

FinalDatasetAll.csv

Vulnerability Types Category

A
rb

it
ra

ry
_M

em
o

ry
_A

cc
es

s

A
ss

er
ti

o
n

_F
ai

lu
re

B
lo

ck
_D

ep
en

d
en

cy

et
h

er
lo

ck

in
te

g
er

o
v

er
fl

o
w

/u
n

d
er

fl
o

w

re
en

tr
an

cy

T
O

D
A

m
o

u
n

t

C
at

eg
o

ry

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0

1 1 0 0 1 0 0 1 1 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 1 1 0 0 0 0 0 1 1 0 0 0

0 1 0 0 1 0 0 0 1 0 0 1 0 0

0 1 0 1 1 0 0 0 1 0 1 1 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 1 1 0 0

1 0 0 0 1 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 1 0 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0

1 0 1 0 1 0 0 1 0 1 0 1 0 0

0 0 1 0 1 0 0 0 0 1 0 1 0 0

0 0 1 0 1 1 0 0 0 1 0 1 1 0

1 1 0 0 1 1 0 1 1 0 0 1 1 0

1 0 1 0 0 0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 1

50

FinalDatasetAll.csv

Vulnerability Types Category

A
rb

it
ra

ry
_M

em
o

ry
_A

cc
es

s

A
ss

er
ti

o
n

_F
ai

lu
re

B
lo

ck
_D

ep
en

d
en

cy

et
h

er
lo

ck

in
te

g
er

o
v

er
fl

o
w

/u
n

d
er

fl
o

w

re
en

tr
an

cy

T
O

D
A

m
o

u
n

t

C
at

eg
o

ry

0 0 0 1 1 1 0 0 0 0 1 1 1 0

0 1 0 0 1 0 1 0 1 0 0 1 0 1

0 0 1 0 0 0 1 0 0 1 0 0 0 1

1 0 0 0 0 0 1 1 0 0 0 0 0 1

0 1 1 0 1 0 0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 0 1 0 0 1 1 0

0 0 1 1 1 0 0 0 0 1 1 1 0 0

0 1 0 1 0 0 0 0 1 0 1 0 0 0

There are seven labels that correlate to a contract, and the value of each label is either 0 or

1. When the value is 0, it indicates that the contract does not have a particular vulnerability,

and when the value is 1, it indicates that the contract does have a weakness of that sort. The

vulnerability labels are different from one another. For instance, the label of the contract X

is Lablex = [0 1 0 1 0 0 0], which indicates that the contract x has an Assertion_Failure and

an Etherlock vulnerability.

We collected a total of 2194 verified smart contracts from the Etherscan.io website and

manually added labels to all contracts based on the detection results given by Slither,

Confuzzion, MAIAN, Conkas, and Securify static detection tools. The detection capacity

of the model outlined in this thesis extends to identifying a total of seven distinct

vulnerability varieties including: Arbitrary_Memory_Access, Assertion_Failure,

Block_Dependency, etherlock, integer overflow/underflow, reentrancy, and TODAmount

as shown in Figure 24.

51

Figure 24: Numbers of Vulnerabilities in Dataset

Number of Vulnerabilites of each Category in
Dataset

Arbitrary_Memory_Access 20

Assertion_Failure 31

Block_Dependency 89

etherlock 532

integer
overflow/underflow

123

reentrancy 19

TODAmount 10

No Vulnerability 1370

20 31 89

532

123
19 10

1370

0

200

400

600

800

1000

1200

1400

1600

Numbers of Non/Vulnerabilities in Dataset

52

Figure 25: Vulnerability Percentage of Each Category in Dataset.

As an observation, we can see in Figure 24 and Figure 25 that 62% of our smart contract

dataset is not vulnerable. The most detected vulnerability is “etherlock” with 24%, the

second and third highest detected vulnerabilities categories are Integer overflow/underflow

and Block_Dependency with 6% and 4% respectively. The rest of the attacks have almost

a 1% detection ratio each.

3.1.5 INTERSECTION TECHNIQUE

During our analysis of the literature, we discovered that the accuracy of current

vulnerability detection methods for Solidity contracts varied greatly, with some tools

producing significant false positive rates and others failing to identify known issues [87]

[88].

We used an intersection-based technique to increase the accuracy of our machine learning

vulnerability detection model by only evaluating vulnerabilities reported by several tools.

Through using this technique, we were able to decrease the risk of false positives and raise

the overall accuracy of our model. Moreover, we were able to discover a broader variety of

possible vulnerabilities in Solidity contracts.

This method also allowed us to learn about the most frequent types of vulnerabilities and

their prevalence in real-world contracts, which helped us better understand the security

concerns connected with these smart contracts.

53

In Figure 26 we can see the intersections between different smart contract static detection

tools for identifying specific types of vulnerabilities. Specifically, we can see that we have

taken the intersection between Slither and Maian to decrease false positives and negatives

of the Etherlock vulnerability, and we have taken the intersection between Slither and

Conkas to decrease false positives and negatives of the Reentrancy vulnerability.

Additionally, we have taken the intersection between Confuzzius and Conkas to decrease

false positives and negatives of the Integer Overflow/Underflow vulnerability.

These intersections represent the overlap between the results of different smart contract

static detection tools for identifying vulnerabilities. By taking the intersection of multiple

tools, we can reduce the number of false positives and negatives, which improves the

accuracy and reliability of our vulnerability detection.

By using multiple smart contract static tools and taking the intersection of their results, we

can improve the effectiveness of our vulnerability detection and reduce the risk of

successful attacks. This approach is particularly useful for identifying complex and hard-

to-detect vulnerabilities, which are increasingly common in today's threat landscape.

Since we found three different intersections between four tools, We have generated three

sub-datasets as shown in Table 7, Table 8, and Table 9 from our main dataset, namely

integerconcat.csv, reentrancyconcat.csv, and etherlockconcat.csv. these three datasets were

generated by taking the intersection of the results based on static tools. The main reason

for this approach is to increase the accuracy and reduce false positive rates, which can

improve the effectiveness of our research methodology. Moreover, this approach allows us

A.

Slither

B.

Maian

A.

Slither

B.

Conkas

A.

confuz
zius

B.

Conkas

A

B C

Figure 26: Tools Intersections

54

to identify if any specific vulnerabilities category resulting from static tools may require

enhancement in terms of false positives.

Table 7: Integer Intersection Dataset Category.

IntegerConcat.csv

integer overflow/underflow Category

If Exist 1 0

Not Exist 0 0

Table 8: Reentrancy Intersection Dataset Category.

reentracncyconcat.csv

Reentrancy Category

If Exist 1 0

Not Exist 0 0

Table 9: Etherlock Dataset Category.

etherlockconcat.csv

etherlockconcat Category

If Exist 1 0

Not Exist 0 0

55

Chapter 4: RESULTS AND DISCUSSION

In this section, we will cover the various parameters used in the experimental methodology.

Including the dataset used, parameter settings, and evaluation indicators. We will also

present the experimental results and observations, providing a comprehensive and objective

assessment of the research findings.

4.1 EXPERIMENT

The dataset consists of four columns, the first column is the smart contract address which

the user can use to verify the existence of the smart contract on the etherscan.io website.

The second column is the contract name, and the most two important columns in our

experiment are the third and fourth which are opcode and the category of the vulnerabilities

where these columns are used as machine learning inputs for detection.

Table 10 Dataset Columns Description.

Column Name Column Description

ADDRESS

This column contains the smart contract address as per

published in Etherscan.io. This column is not used as input or

output in our experiment, it is only there for verification of the

existence of smart contract on Etherscan.io

CONTRACTNAME

This column contains the contract name as shown on the

Etherscan.io website. This column is not used as input or

output, just to match the contract address with the name, and

to know exactly what is this contract about, ex: if the contract

name is “AMAZON” this will give an indication that the smart

contract is about items related to amazon.

OPCODE

This column is used as input for the machine learning based

detection process, and it contains the hexadecimal opcode

value of the smart contract.

CATEGORY
This column presents the vulnerability categories for each

smart contract.

56

4.1.1 DATASET AND PARAMETER SETTINGS

Our dataset was collected from the Ethereum official website, as it acquires validated smart

contract codes to create a trustworthy experimental dataset. We added the multi label

vectors to each smart contract manually, based on results conducted using static detection

techniques.

Out of 2747 smart contracts that we have collected as CSV files and after the revision

process, we found that there are 543 duplicated smart contracts and 10 contracts without an

opcode. After we removed both duplicated and missing opcode smart contracts, 2194

remained in the dataset. Table 11 shows the number of contracts in the final dataset that

include each vulnerability.

Table 11: Number of smart contracts in Full Dataset.

Vulnerability Category Number of Vulnerability

No Vulnerabilities 1370

Arbitrary_Memory_Acces 20

Assertion_Failure 31

Block_Dependency 89

Etherlock 532

Integer overflow/underflow 123

Reentrancy 19

TODAmount 10

Total Number 2194

57

The experiments were run on a powerful server to handle the load of the huge number of

smart contracts. The specifications of the device are as follows:

• CPU:

o Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz 2.29 GHz

o 16 Cores

o 32 Logical Processors

• Memory:

o 128 GB

• OS:

o Windows 10 Enterprise 64-bit

o Ubuntu 22.04

• Software used:

o Anaconda (Jupyter)

o Python version: 3.9.12

o Ubuntu Terminal

o Tools cloned from GitHub.

We have used four different machine learning algorithms namely Decision Tree, Support

Vector Machine, NN, and LSTM. The parameters setting for those algorithms were as

follows, 80% of the data was used for training, while the remaining 20% was used for

testing, based on a random distribution. More detailed settings for LSTM are as follows,

the epochs and batch size were set to 50, and 63 respectively. The dataset is tested against

each of the four algorithms. Moreover, the characteristics including accuracy, F1 score,

precision, and recall were used to compare and evaluate them.

4.1.2 EVALUATION INDICATORS

Measures like accuracy, precision, recall, confusion matrix, and F-1 score are frequently

used to gauge how effective machine learning is [112].

• Accuracy is the percentage of accurate predictions over all samples or possible

predictions.

 Accuracy =TP + TN/TP + TN + FP + FN

• Precision is calculated as the ratio of true positives to both true and false positives.

Precision =TP/TP + FP

58

• Recall score is a metric used to assess a model's performance by determining the

percentage of true positives that were accurately detected. It is as follows:

Recall=TP/TP + FN

• The F-1 score is the harmonic mean of precision and recall.

 F1=2*precision*recall/precision + recall

• Confusion Matrix is a table that demonstrates which values the model beliefs to be

associated with various classes, allowing one to visualize the model’s performance as

shown in Table 12. With the rows representing the projected classes and the columns

reflecting the actual classes, it has a size of N×N [112].

Multilabel classification was performed in the experiments of this thesis. The number of

samples where both the predicted value and true value are negative is represented by TN

(True Negative) in these experiments. The number of samples where the predicted value

is negative and the true value is positive is represented by FN (False Negative). The

predicted value, TP (True Positive), represents the number of samples where all true values

are positive classes. The number of samples where predicted values are positive classes

and the true values are negative classes is represented by FP (False Positive).

Table 12: Confusion Matrix

 Predicated

Actual
One Zero

One TP FN

Zero FP TN

59

4.1.3 EXPERIMENTAL RESULTS AND OBSERVATION

After calculating the number of smart contracts that belongs to each vulnerability, we

figured out that the most common vulnerability in our dataset is etherlock with a ratio of

65% of the total number of vulnerabilities. Furthermore, integer overflow/underflow and

block dependency are 15% and 11% respectively. The rest of the vulnerabilities are less

than or equal to 4% as shown in Figure 27.

Figure 27: Vulnerability Category Percentage

60

Table 13: Precision, recall, and F1-score of Dataset which includes all vulnerabilities

Model
Indicator

(%)
FullDataset

Reentrancy

Dataset

Etherlock

Dataset

Integer overflow/underflow

Dataset

SVM

Precision 0.85 0.97 0.95 1.00

Recall 0.98 0.95 0.76 1.00

F1-score 0.91 0.96 0.84 1.00

DT

Precision 0.83 0.94 0.93 0.93

Recall 0.87 0.85 0.74 0.75

F1-score 0.85 0.89 0.82 0.83

NN

Precision 0.85 0.94 0.77 1.00

Recall 0.90 0.85 0.71 1.00

F1-score 0.87 0.89 0.74 1.00

LSTM

Precision 0.82 0.98 0.94 1.00

Recall 0.92 0.96 0.76 1.00

F1-score 0.87 0.97 0.84 1.00

Table 14: Accuracy and Time Cost

Model Indicator FullDataset
Reentrancy

Dataset

Etherlock

Dataset

Integer

overflow/underflow

Dataset

SVM
Accuracy 85.7 95.4 80.7 100.0

Time Cost 15.54 S 0.03 S 0.21 S 0.15 S

DT
Accuracy 75.7 84.2 75.0 75.0

Time Cost 8.44 S 0.11 S 0.08 S 0.04 S

NN
Accuracy 80.1 84.3 66.6 100.0

Time Cost 5.26 S 0.10 S 0.15 S 0.04 S

LSTM
Accuracy 82.10 97.7 80.9 100.0

Time Cost 240.78 S 14. 86 S 0.111 S 12.39 S

61

We noticed that using one static analysis tool to analyze a Solidity smart contract and then

feeding the output of one tool into a machine learning algorithm means that we are tied to

the efficiency of the static analysis tool. However, by feeding the output of multiple tools

into a machine learning algorithm, we can potentially identify patterns and correlations in

the results that may not be immediately apparent from an individual tool output.

Consequently, more accurate results can be achieved. While each tool may have its own

strengths and limitations, by using multiple tools and comparing their results, we can

leverage their strengths and minimize their weaknesses. Also, this will reduce the number

of false positives.

We have created a sub-dataset for Etherlock vulnerability as the accuracy results of this

vulnerability in the static tools used are 69% for MAIAN specifically for Etherlock [40].

On the other hand, slither has 89% for all four vulnerabilities it detects. The authors of

Slither tools did not mention the details for each vulnerability [87]. The intersection of

results from these two tools results in having an accuracy of 80.7% in our machine learning

detection technique. Having a sub-dataset helps researchers and companies who are

targeting a specific vulnerability.

We had overfitting in our dataset specifically in the DT algorithm, and this is due to having

a high number of specific records for some categories such as Etherlock and No

vulnerability, compared with a few numbers of records for other categories such as

Arbitrary_Memory_Access, Assertion_Failure, and Block_Dependency. We have solved

overfitting for the reentrancy attack as we generated a sub-dataset that includes the

intersection of two tools that can detect it. However, other attack categories are only

detectable by only one tool which is Confuzzius. this limitation represents a challenge for

solving the overfitting problem for these categories of attacks.

In Table 13, that both integer overflow and reentrancy sub datasets have high numbers in

terms of recall, precision, and F1-score results. However, the etherlock dataset has low

ratios of the evaluation indicators and this is due to false postives of static tools inherent

deficiency. This can be targeted as future research to investigate the performance issues

with Maian and Slither tools for etherlock vulnerability. On the other hand, we need to take

into consideration that these tools jointly allows for higher ratio accuracy rates, i.e. 90%

for other different vulnerability categories, using the LSTM algorithm.

The accuracy results of the four algorithms in the main dataset, as shown in Table 14 are

almost in average of 84%. This is due to the fact that the static tools used have a false

62

positive and false negative rate. This means they sometimes identified vulnerabilities that

were not actual vulnerabilities, or missed vulnerabilities that were present.

Figure 28: Perceptron Confusion Matrix

Figure 29: DT Confusion Matrix

63

Figure 30: SVM Confusion Matrix

Figure 31: LSTM Confusion Matrix

In the confusion matrix, as shown in Figure 28, Figure 29, Figure 30, and Figure 31,

Show the Confusion Matrix, LSTM has fewer False Positive than other algorithms, which

indicates a good prediction methodology although it has a bit more False-Negative than

others. SVM also achieved the best rate in terms of False Negative as it achieved a 0 rate.

However, in terms of False Positive it has a higher rate than LSTM. On the other hand,

NN and Decision Tree have almost the same results.

64

Figure 32: Comparing time taken by each Tool.

Table 15: Total Time taken by each methodology

Tool Name
Time Taken Per 500

Contracts

Total Time Taken for full

dataset (2194) SC

Maian 74:30:30 * 4.338 322:37:16

Securify 5:30:44 *4.338 23:52:5

Slither 2:23:24 * 4.338 10:20:55

Confuzziuz 2:00:00 * 4.338 08:39:36

Conkas 0:30:00 * 4.338 02:09:54

LSTM - 00:04:01

SVM - 00:00:15

DT - 00:00:08

NN Perceptron - 00:00:05

Before running the smart contract on static tools, we have divided the dataset into almost

four sub-dataset, so we do have in each dataset around 500 smart contracts. This allows us

to overcome the challenge that we had when we ran the whole big dataset without reducing

its size via division. The problem is related to the fact that the virtual machine was not able

to handle the dataset as a whole and the machine was always forced to crash. Therefore the

results in Figure 31 are the time taken for static tools to get results of around 500 smart

65

contracts. However, Figure 31 also includes our machine learning algorithms where we

run all smart contracts “2194”.

As shown in Figure 31, all machine learning Time Execution “Time Cost” Compared to

static tools have a much lower time cost. This is because they can analyze large amounts

of data in a relatively short amount of time and make predictions based on given data. Static

tools, on the other hand, are typically limited to processing a fixed set of rules or criteria,

and they may not be able to adapt to changing data patterns.

Another reason why machine learning is faster than static tools is its ability to handle

complex data sets. They can identify patterns in the data that may be difficult or impossible

for static tools to detect. This makes them particularly useful for applications such as image

recognition, speech recognition, and natural language processing.

Machine learning algorithms have transformed the way we analyze data and have provided

faster and more accurate results compared to traditional static tools. As data sets continue

to grow in size and complexity, the use of machine learning algorithms will become

increasingly important for businesses and organizations that want to gain insights from their

data in a timely and cost effective manner.

66

Chapter 5: CONCLUSION AND FUTURE WORK

Smart contracts are self executing contracts that are programmed to automatically execute

when certain predefined conditions are met. They are integral to the functioning of

blockchain systems. Since blockchain is decentralized and immutable, smart contracts

cannot be changed or modified after deployment. Therefore, there is a need to check the

smart contract by analyzing it specifically at the opcode level, where the developers can

understand the functions and logic of the code and identify potential vulnerabilities and

implement measures to prevent them.

A comprehensive survey of attack detection techniques used in smart contracts is provided,

which includes static analysis, dynamic analysis, and hybrid approaches. Additionally, we

analyzed the benefits and drawbacks of each method and conducted a comparative

evaluation of the current instruments employed for various smart contract analysis

methods. In addition, our approach for detecting attacks on smart contracts is based on

machine learning. A tool was developed to collect data from etherscan.io, which was

previously unavailable. Static detection tools were used to test the data after collecting the

dataset. The machine learning algorithms were fed with manually multi-labeled results

from these tools. To enhance the precision of the dataset, this process serves its purpose.

The use of machine learning algorithms such as SVM, LSTM, DT, and NN has shown

significant results in detecting vulnerabilities in smart contracts in our detecting framework.

These algorithms have been able to accurately identify vulnerabilities in smart contracts,

resulting in high recall, precision, and F1-score results. However, it is important to note

that false positives can still occur, which can lead to a decrease in the recall, precision, and

F1-score results as the in Etherlock sub dataset.

Results shown for four ML models, namely Decision Tree, Perceptron, Support Vector

Machine (SVM), and Long Short-Term Memory (LSTM) are used for this research based

on final datasets and sub dataset and the best accuracy results for full dataset 85.7% using

SVM, Reentrancy dataset 97.7% using LSTM, Etherlock dataset 80.9% using LSTM,

integer overflow/underflow dataset 100% using SVM, Perceptron, and LSTM.

67

In terms of time cost, SVM, DT, and NN took less than 15 seconds to get the results of the

main dataset,however, LSTM requires longer training times due to its complexity as it took

4 minutes. Thus, the choice of algorithm should consider both accuracy and time cost.

LSTM was the highest algorithm in terms of accuracy but the lowest in terms of Time cost.

5.1 FUTURE WORK.
The following should be the focus of future research:

● Increasing the number of records in the generated datasets.

● Designing and implementing more efficient vulnerability detection tools for better

accuracy results.

● Adding more vulnerability categories.

68

References

[1] A. Urquhart, “The inefficiency of Bitcoin,” Econ Lett, vol. 148, pp. 80–82,

Nov. 2016, doi: 10.1016/j.econlet.2016.09.019.

[2] S. Makridakis and K. Christodoulou, “Blockchain: Current challenges and

future prospects/applications,” Future Internet, vol. 11, no. 12. MDPI AG,

Dec. 01, 2019. doi: 10.3390/FI11120258.

[3] A. Hackethal, T. Hanspal, D. M. Lammer, and K. Rink, “The Characteristics

and Portfolio Behavior of Bitcoin Investors: Evidence from Indirect

Cryptocurrency Investments,” Rev Financ, vol. 26, no. 4, pp. 855–898, Jul.

2022, doi: 10.1093/rof/rfab034.

[4] J. Carrick, “Bitcoin as a Complement to Emerging Market Currencies,”

Emerging Markets Finance and Trade, vol. 52, no. 10, pp. 2321–2334, Oct. 2016,

doi: 10.1080/1540496X.2016.1193002.

[5] D. Jain, “Emerging Blockchain Technology in Commercial Enterprise to

Ensure Electronic Revolution: Challenges and Improvement.” [Online].

Available: www.pbr.co.in

[6] E. A. Boakye, H. Zhao, and B. N. K. Ahia, “Emerging research on

blockchain technology in finance; a conveyed evidence of bibliometric-

based evaluations,” Journal of High Technology Management Research, vol. 33,

no. 2, Nov. 2022, doi: 10.1016/j.hitech.2022.100437.

[7] M. Qatawneh, W. Almobaideen, and O. AbuAlghanam, “Challenges of

Blockchain Technology in Context Internet of Things: A Survey,” Int J

Comput Appl, vol. 175, no. 16, pp. 13–20, Sep. 2020, doi:

10.5120/ijca2020920660.

[8] B. Alhasan, M. Qatawneh, and W. Almobaideen, “Blockchain Technology

for Preventing Counterfeit in Health Insurance,” in 2021 International

Conference on Information Technology, ICIT 2021 - Proceedings, Institute of

Electrical and Electronics Engineers Inc., Jul. 2021, pp. 935–941. doi:

10.1109/ICIT52682.2021.9491664.

[9] A. Benabdallah, A. Audras, L. Coudert, N. El Madhoun, and M. Badra,

“Analysis of Blockchain Solutions for E-Voting: A Systematic Literature

Review,” IEEE Access, vol. 10, pp. 70746–70759, 2022, doi:

10.1109/ACCESS.2022.3187688.

69

[10] P. Sharma, R. Jindal, and M. D. Borah, “A review of smart contract-based

platforms, applications, and challenges,” Cluster Comput, vol. 26, no. 1, pp.

395–421, Feb. 2023, doi: 10.1007/s10586-021-03491-1.

[11] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Y. Wang, “Blockchain-

Enabled Smart Contracts: Architecture, Applications, and Future Trends,”

IEEE Trans Syst Man Cybern Syst, vol. 49, no. 11, pp. 2266–2277, Nov. 2019,

doi: 10.1109/TSMC.2019.2895123.

[12] S. M. Skh Saad and R. Z. Raja Mohd Radzi, “Comparative Review of the

Blockchain Consensus Algorithm Between Proof of Stake (POS) and

Delegated Proof of Stake (DPOS),” International Journal of Innovative

Computing, vol. 10, no. 2, Nov. 2020, doi: 10.11113/ijic.v10n2.272.

[13] A. K. Yadav, K. Singh, A. H. Amin, L. Almutairi, T. R. Alsenani, and A.

Ahmadian, “A comparative study on consensus mechanism with security

threats and future scopes: Blockchain,” Comput Commun, vol. 201, pp. 102–

115, Mar. 2023, doi: 10.1016/j.comcom.2023.01.018.

[14] M. S. Hossan, M. L. Khatun, S. Rahman, S. Reno, and M. Ahmed, “Securing

Ride-Sharing Service Using IPFS and Hyperledger Based on Private

Blockchain,” in 24th International Conference on Computer and Information

Technology, ICCIT 2021, Institute of Electrical and Electronics Engineers Inc.,

2021. doi: 10.1109/ICCIT54785.2021.9689814.

[15] R. Belen-Saglam, E. Altuncu, Y. Lu, and S. Li, “A systematic literature

review of the tension between the GDPR and public blockchain systems,”

Blockchain: Research and Applications, p. 100129, Jan. 2023, doi:

10.1016/j.bcra.2023.100129.

[16] S. Odeh, A. Samara, R. Rizqallah, and L. Shaheen, “Digital Identity Using

Hyperledger Fabric as a Private Blockchain-Based System,” in Lecture Notes

in Networks and Systems, Springer Science and Business Media Deutschland

GmbH, 2023, pp. 153–161. doi: 10.1007/978-3-031-21229-1_15.

[17] K. Qian, Y. Liu, X. He, M. Du, S. Zhang, and K. Wang, “HPCchain: A

Consortium Blockchain System based on CPU-FPGA Hybrid PUF for

Industrial Internet of Things,” IEEE Trans Industr Inform, 2023, doi:

10.1109/TII.2023.3244339.

[18] Institute of Electrical and Electronics Engineers, Probing artificial intelligence

techniques and research in IoT (PATRIOT) 5th International Conference on

Science, Technology, Engineering & Mathematics : IEEE ICONSTEM ’19 : 15th

70

March 2019, venue: Placement Seminar Hall, Jeppiaar Engineering College,

Chennai.

[19] M. Yano, C. Dai, K. Masuda, and Y. Kishimoto, “Economics, Law, and

Institutions in Asia Pacific Blockchain and Crypt Currency Building a High

Quality Marketplace for Crypt Data.” [Online]. Available:

http://www.springer.com/series/13451

[20] V. Dhillon, D. Metcalf, and M. Hooper, “Unpacking Ethereum,” in

Blockchain Enabled Applications, Apress, 2021, pp. 37–72. doi: 10.1007/978-1-

4842-6534-5_4.

[21] R. Dennis and J. P. Disso, “An analysis into the scalability of bitcoin and

ethereum,” in Advances in Intelligent Systems and Computing, Springer

Verlag, 2019, pp. 619–627. doi: 10.1007/978-981-13-1165-9_57.

[22] Institute of Electrical and Electronics Engineers, 2020 IEEE International

Conference on Communications : proceedings : Dublin, Ireland, 7-11 June 2020.

[23] C. Saraf and S. Sabadra, “Blockchain platforms: A compendium,” in 2018

IEEE International Conference on Innovative Research and Development, ICIRD

2018, Institute of Electrical and Electronics Engineers Inc., Jun. 2018, pp. 1–

6. doi: 10.1109/ICIRD.2018.8376323.

[24] G. A. F. Rebello, G. F. Camilo, L. C. B. Guimaraes, L. A. C. De Souza, and

O. C. M. B. Duarte, “Security and Performance Analysis of Quorum-based

Blockchain Consensus Protocols,” in 2022 6th Cyber Security in Networking

Conference, CSNet 2022, Institute of Electrical and Electronics Engineers Inc.,

2022. doi: 10.1109/CSNet56116.2022.9955597.

[25] IEEE Computer Society, Institute of Electrical and Electronics Engineers., P.

IEEE/ACM International Conference on Cyber, IEEE/ACM International

Conference on Green Computing and Communications (16th : 2020 :

Online), IOT (Conference) (13th : 2020 : Online), and IEEE International

Conference on Smart Data (6th : 2020 : Online), IEEE Congress on

Cybermatics ; 2020 IEEE International Conferences on Internet of Things

(iThings) ; IEEE Green Computing and Communications (GreenCom) ; IEEE

Cyber, Physical and Social Computing (CPSCom) ; IEEE Smart Data

(SmartData) : Cybermatics 2020, iThings 2020, GreenCom 2020, CPSCom 2020,

SmartData 2020 : proceedings : Rhodes Island, Greece, 2-6 November 2020.

[26] M. Suvitha and R. Subha, “A Survey on Smart Contract Platforms and

Features,” in 2021 7th International Conference on Advanced Computing and

Communication Systems, ICACCS 2021, Institute of Electrical and Electronics

71

Engineers Inc., Mar. 2021, pp. 1536–1539. doi:

10.1109/ICACCS51430.2021.9441970.

[27] T. M. Hewa, Y. Hu, M. Liyanage, S. S. Kanhare, and M. Ylianttila, “Survey

on Blockchain-Based Smart Contracts: Technical Aspects and Future

Research,” IEEE Access, vol. 9. Institute of Electrical and Electronics

Engineers Inc., pp. 87643–87662, 2021. doi: 10.1109/ACCESS.2021.3068178.

[28] L. M. Palma, M. A. G. Vigil, F. L. Pereira, and J. E. Martina, “Blockchain

and smart contracts for higher education registry in Brazil,” in International

Journal of Network Management, John Wiley and Sons Ltd, May 2019. doi:

10.1002/nem.2061.

[29] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, “Recent Advances in

Smart Contracts: A Technical Overview and State of the Art,” IEEE Access,

vol. 8, pp. 117782–117801, 2020, doi: 10.1109/ACCESS.2020.3005020.

[30] I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and

Research Directions,” SN Computer Science, vol. 2, no. 3. Springer, May 01,

2021. doi: 10.1007/s42979-021-00592-x.

[31] L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures,

challenges, applications, future directions,” J Big Data, vol. 8, no. 1, Dec.

2021, doi: 10.1186/s40537-021-00444-8.

[32] R. Montasari, F. Carroll, S. Macdonald, H. Jahankhani, A. Hosseinian-Far,

and A. Daneshkhah, “Application of Artificial Intelligence and Machine

Learning in Producing Actionable Cyber Threat Intelligence,” in Advanced

Sciences and Technologies for Security Applications, Springer, 2021, pp. 47–64.

doi: 10.1007/978-3-030-60425-7_3.

[33] E. E. Abdallah, W. Eleisah, and A. F. Otoom, “Intrusion Detection Systems

using Supervised Machine Learning Techniques: A survey,” in Procedia

Computer Science, Elsevier B.V., 2022, pp. 205–212. doi:

10.1016/j.procs.2022.03.029.

[34] E. Tufan, C. Tezcan, and C. Acartürk, “Anomaly-based intrusion detection

by machine learning: A case study on probing attacks to an institutional

network,” IEEE Access, vol. 9, pp. 50078–50092, 2021, doi:

10.1109/ACCESS.2021.3068961.

[35] Institute of Electrical and Electronics Engineers, 2020 IEEE Symposium on

Computers and Communications (ISCC).

72

[36] B. Hu et al., “A comprehensive survey on smart contract construction and

execution: paradigms, tools, and systems,” Patterns, vol. 2, no. 2. Cell Press,

Feb. 12, 2021. doi: 10.1016/j.patter.2020.100179.

[37] R. F. Ibrahim, Q. Abu Al-Haija, and A. Ahmad, “DDoS Attack Prevention

for Internet of Thing Devices Using Ethereum Blockchain Technology,”

Sensors, vol. 22, no. 18, Sep. 2022, doi: 10.3390/s22186806.

[38] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract security: A

software lifecycle perspective,” IEEE Access, vol. 7. Institute of Electrical

and Electronics Engineers Inc., pp. 150184–150202, 2019. doi:

10.1109/ACCESS.2019.2946988.

[39] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,

“Securify: Practical Security Analysis of Smart Contracts,” Jun. 2018,

[Online]. Available: http://arxiv.org/abs/1806.01143

[40] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The

Greedy, Prodigal, and Suicidal Contracts at Scale,” Feb. 2018, [Online].

Available: http://arxiv.org/abs/1802.06038

[41] W. Zhang, V. Ganesh, S. Banescu, L. Pasos, and S. Stewart, “MPro:

Combining Static and Symbolic Analysis for Scalable Testing of Smart

Contract.”

[42] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis

tools? evaluating smart contract static analysis tools using bug injection,” in

ISSTA 2020 - Proceedings of the 29th ACM SIGSOFT International Symposium

on Software Testing and Analysis, Association for Computing Machinery, Inc,

Jul. 2020, pp. 415–427. doi: 10.1145/3395363.3397385.

[43] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, “Learning

to fuzz from symbolic execution with application to smart contracts,” in

Proceedings of the ACM Conference on Computer and Communications Security,

Association for Computing Machinery, Nov. 2019, pp. 531–548. doi:

10.1145/3319535.3363230.

[44] N. F. Samreen and M. H. Alalfi, “SmartScan: An approach to detect Denial

of Service Vulnerability in Ethereum Smart Contracts,” in Proceedings - 2021

IEEE/ACM 4th International Workshop on Emerging Trends in Software

Engineering for Blockchain, WETSEB 2021, Institute of Electrical and

Electronics Engineers Inc., May 2021, pp. 17–26. doi:

10.1109/WETSEB52558.2021.00010.

73

[45] M. Maffei and M. Ryan, Eds., Principles of Security and Trust, vol. 10204. in

Lecture Notes in Computer Science, vol. 10204. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-54455-6.

[46] L. Duan, Y. Sun, K. Zhang, and Y. Ding, “Multiple-Layer Security Threats

on the Ethereum Blockchain and Their Countermeasures,” Security and

Communication Networks, vol. 2022, 2022, doi: 10.1155/2022/5307697.

[47] T. Chen et al., “SODA: A Generic Online Detection Framework for Smart

Contracts,” Internet Society, Feb. 2020. doi: 10.14722/ndss.2020.24449.

[48] “https://swcregistry.io/docs/SWC-124” , available online last accessed

5/5/2023.

[49] Y. Wang et al., “Formal Specification and Verification of Smart Contracts

for Azure Blockchain,” Dec. 2018, [Online]. Available:

http://arxiv.org/abs/1812.08829

[50] P. Praitheeshan, L. Pan, J. Yu, J. Liu, and R. Doss, “Security Analysis

Methods on Ethereum Smart Contract Vulnerabilities: A Survey,” Aug.

2019, [Online]. Available: http://arxiv.org/abs/1908.08605

[51] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The

Greedy, Prodigal, and Suicidal Contracts at Scale,” Feb. 2018, [Online].

Available: http://arxiv.org/abs/1802.06038

[52] “https://redfoxsec.com/blog/integer-overflow-in-smart-contract/” ,

available online last accessed 5/5/2023.

[53] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-Contract Static

Analysis for Detecting Practical Reentrancy Vulnerabilities in Smart

Contracts,” in Proceedings - 2020 35th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2020, Institute of Electrical and

Electronics Engineers Inc., Sep. 2020, pp. 1029–1040. doi:

10.1145/3324884.3416553.

[54] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M.

Vechev, “Securify: Practical security analysis of smart contracts,” in

Proceedings of the ACM Conference on Computer and Communications Security,

Association for Computing Machinery, Oct. 2018, pp. 67–82. doi:

10.1145/3243734.3243780.

[55] “https://swcregistry.io/docs/SWC-124#description” , available online last

accessed 5/5/2023.

74

[56] “https://swcregistry.io/docs/SWC-110#description” , available online last

accessed 5/5/2023.

[57] “https://swcregistry.io/docs/SWC-116#description” , available online last

accessed 5/5/2023.

[58] “https://swcregistry.io/docs/SWC-132#description” , available online last

accessed 5/5/2023.

[59] “https://swcregistry.io/docs/SWC-101#description” , available online last

accessed 5/5/2023.

[60] “https://swcregistry.io/docs/SWC-107#description” , available online last

accessed 5/5/2023.

[61] “https://swcregistry.io/docs/SWC-114#description” , available online last

accessed 5/5/2023.

[62] “https://swcregistry.io/docs/SWC-124#remediation” , available online last

accessed 5/5/2023.

[63] “https://swcregistry.io/docs/SWC-110#remediation” , available online last

accessed 5/5/2023.

[64] “https://swcregistry.io/docs/SWC-116#remediation” , available online last

accessed 5/5/2023.

[65] “https://swcregistry.io/docs/SWC-132#remediation” , available online last

accessed 5/5/2023.

[66] “https://swcregistry.io/docs/SWC-101#remediation” , available online last

accessed 5/5/2023.

[67] “https://swcregistry.io/docs/SWC-107#remediation” , available online last

accessed 5/5/2023.

[68] “https://swcregistry.io/docs/SWC-114#remediation” , available online last

accessed 5/5/2023.

[69] “https://www.avax.network/”, available online last accessed 5/5/2023.

[70] “https://moonbeam.network/”, available online last accessed 5/5/2023.

[71] “https://polygon.technology/”, available online last accessed 5/5/2023.

[72] “https://remix.ethereum.org/”, available online last accessed 5/5/2023.

[73] “https://blog.logrocket.com/smart-contract-programming-languages/”.

75

[74] S. Bistarelli, G. Mazzante, M. Micheletti, L. Mostarda, D. Sestili, and F.

Tiezzi, “Ethereum smart contracts: Analysis and statistics of their source

code and opcodes,” Internet of Things (Netherlands), vol. 11, Sep. 2020, doi:

10.1016/j.iot.2020.100198.

[75] M. Suiche, “Porosity: A Decompiler For Blockchain-Based Smart Contracts

Bytecode,” 2017.

[76] “https://ethereum.org/en/developers/docs/evm/opcodes/” , available online

last accessed 5/5/2023.

[77] A. Ghaleb and K. Pattabiraman, “How effective are smart contract analysis

tools? evaluating smart contract static analysis tools using bug injection,” in

ISSTA 2020 - Proceedings of the 29th ACM SIGSOFT International Symposium

on Software Testing and Analysis, Association for Computing Machinery, Inc,

Jul. 2020, pp. 415–427. doi: 10.1145/3395363.3397385.

[78] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev, “Learning

to fuzz from symbolic execution with application to smart contracts,” in

Proceedings of the ACM Conference on Computer and Communications Security,

Association for Computing Machinery, Nov. 2019, pp. 531–548. doi:

10.1145/3319535.3363230.

[79] N. F. Samreen and M. H. Alalfi, “SmartScan: An approach to detect Denial

of Service Vulnerability in Ethereum Smart Contracts,” in Proceedings - 2021

IEEE/ACM 4th International Workshop on Emerging Trends in Software

Engineering for Blockchain, WETSEB 2021, Institute of Electrical and

Electronics Engineers Inc., May 2021, pp. 17–26. doi:

10.1109/WETSEB52558.2021.00010.

[80] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards

Automated Reentrancy Detection for Smart Contracts Based on Sequential

Models,” IEEE Access, vol. 8, pp. 19685–19695, 2020, doi:

10.1109/ACCESS.2020.2969429.

[81] L. Luu, D. H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the ACM Conference on Computer and

Communications Security, Association for Computing Machinery, Oct. 2016,

pp. 254–269. doi: 10.1145/2976749.2978309.

[82] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev,

“Securify: Practical Security Analysis of Smart Contracts,” Jun. 2018,

[Online]. Available: http://arxiv.org/abs/1806.01143

76

[83] “https://github.com/ConsenSys/mythril”, available online last accessed

5/5/2023.

[84] J. Krupp and C. Rossow, Open access to the Proceedings of the 27th USENIX

Security Symposium is sponsored by USENIX. teether: Gnawing at Ethereum to

Automatically Exploit Smart Contracts TEETHER: Gnawing at Ethereum to

Automatically Exploit Smart Contracts. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity18/presentation/krupp

[85] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The

Greedy, Prodigal, and Suicidal Contracts at Scale,” Feb. 2018, [Online].

Available: http://arxiv.org/abs/1802.06038

[86] B. Jiang, Y. Liu, and W. K. Chan, “ContractFuzzer: Fuzzing smart contracts

for vulnerability detection,” in ASE 2018 - Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, Association for

Computing Machinery, Inc, Sep. 2018, pp. 259–269. doi:

10.1145/3238147.3238177.

[87] J. Feist, G. Grieco, and A. Groce, “Slither: A Static Analysis Framework For

Smart Contracts,” Aug. 2019, doi: 10.1109/WETSEB.2019.00008.

[88] N. Veloso and I. Superior Técnico, “Conkas: A Modular and Static Analysis

Tool for Ethereum Bytecode,” 2021. [Online]. Available:

https://github.com/OpenZeppelin/openzeppelin-con

[89] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “ConFuzzius: A data

dependency-aware hybrid fuzzer for smart contracts,” in Proceedings - 2021

IEEE European Symposium on Security and Privacy, Euro S and P 2021,

Institute of Electrical and Electronics Engineers Inc., Sep. 2021, pp. 103–119.

doi: 10.1109/EuroSP51992.2021.00018.

[90] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards

Automated Reentrancy Detection for Smart Contracts Based on Sequential

Models,” IEEE Access, vol. 8, pp. 19685–19695, 2020, doi:

10.1109/ACCESS.2020.2969429.

[91] “https://github.com/gongbell/ContractFuzzer ”, available online last access

5/5/2023.

[92] “https://github.com/crytic/slither”, available online last accessed 5/5/2023.

[93] “https://github.com/nveloso/conkas”, available online last accessed

5/5/2023.

77

[94] “https://github.com/christoftorres/ConFuzzius”, available online last

accessed 5/5/2023.

[95] “https://github.com/ivicanikolicsg/MAIAN”, available online last accessed

5/5/2023.

[96] “https://github.com/nescio007/teether”, available online last accessed

5/5/2023.

[97] “https://github.com/ConsenSys/mythril”, available online last accessed

5/5/2023.

[98] “https://github.com/enzymefinance/oyente”, available online last accessed

5/5/2023.

[99] “https://github.com/eth-sri/securify2”, available online last accessed

5/5/2023.

[100] J. Kang, S. Jang, S. Li, Y. S. Jeong, and Y. Sung, “Long short-term memory-

based Malware classification method for information security,” Computers

and Electrical Engineering, vol. 77, pp. 366–375, Jul. 2019, doi:

10.1016/j.compeleceng.2019.06.014.

[101] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image

recognition for autonomous driving,” IATSS Research, vol. 43, no. 4.

Elsevier B.V., pp. 244–252, Dec. 01, 2019. doi: 10.1016/j.iatssr.2019.11.008.

[102] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Blockchain and Machine

Learning for Communications and Networking Systems,” IEEE

Communications Surveys and Tutorials, vol. 22, no. 2, pp. 1392–1431, Apr.

2020, doi: 10.1109/COMST.2020.2975911.

[103] A. V Joshi, “Machine Learning and Artii cial Intelligence.”

[104] F. E. B. Otero, A. A. Freitas, and C. G. Johnson, “Inducing decision trees

with an ant colony optimization algorithm,” Applied Soft Computing Journal,

vol. 12, no. 11, pp. 3615–3626, Nov. 2012, doi: 10.1016/j.asoc.2012.05.028.

[105] C. AVCI, M. BUDAK, N. YAĞMUR, and F. BALÇIK, “Comparison

Between Random Forest and Support Vector Machine Algorithms for

LULC Classification,” International Journal of Engineering and Geosciences,

Nov. 2021, doi: 10.26833/ijeg.987605.

[106] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and

Long Short-Term Memory (LSTM) network,” Physica D, vol. 404, Mar. 2020,

doi: 10.1016/j.physd.2019.132306.

78

[107] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S.

Venkatraman, “Robust Intelligent Malware Detection Using Deep

Learning,” IEEE Access, vol. 7, pp. 46717–46738, 2019, doi:

10.1109/ACCESS.2019.2906934.

[108] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A Survey of

Android Malware Detection with Deep Neural Models,” ACM Computing

Surveys, vol. 53, no. 6. Association for Computing Machinery, Feb. 01, 2021.

doi: 10.1145/3417978.

[109] X. Yang, D. Yang, and Y. Li, “A Hybrid Attention Network for Malware

Detection Based on Multi-Feature Aligned and Fusion,” Electronics

(Switzerland), vol. 12, no. 3, Feb. 2023, doi: 10.3390/electronics12030713.

[110] A. I. Elkhawas and N. Abdelbaki, “Malware Detection using Opcode

Trigram Sequence with SVM; Malware Detection using Opcode Trigram

Sequence with SVM,” 2018.

[111] M. Fazlali, P. Khodamoradi, F. Mardukhi, M. Nosrati, and M. M. Dehshibi,

“Metamorphic malware detection using opcode frequency rate and

decision tree,” International Journal of Information Security and Privacy, vol.

10, no. 3, pp. 67–86, Jul. 2016, doi: 10.4018/IJISP.2016070105.

[112] “Performance Measures for Machine Learning.

https://www.javatpoint.com/performance-metrics-in-machine-learning”

79

Appendix A
Pseudo Code below describes how we collect Solidity Code.

Start Chrome

SET driver TO webdriver.Chrome()

SET count TO 0 #To check the progress of retriveing smartcontract.

with open("contractaddresses.txt") as readContractAddress: #read smart contract addresses

from contractaddresses.txt

 WHILE True:

 SET line TO readContractAddress.readline()

 IF not line:

 break

 count += 1

 OUTPUT("The Number of Solidity are "+ str(count) + " "+line)

 lline=line.strip("\n") # to remove the \n from the address as everytime it read the

address it shows after it \n.

 # Open the webpage

 driver.get("https://etherscan.io/address/"+line+"#code")

 time.sleep(2) # 2 seconds to load the webpage

 SET html TO driver.page_source

 #write solidity address IF smartcontract have multi solidity file

 IF "File 1 of" IN html:

 OUTPUT("The address Contains Mutiple Sol files")

 with open("MultiSolidity.txt", 'a') as un:

 un.write(line)

 ELSE:

 SET buttton TO driver.find_element(By.ID, "panel-sourcecode") ##To view all

code by pressing on Full Screen

80

 buttton.click()

 SET FindSolidityText TO driver.find_element(By.ID, "editor") #To find the text

area of the code

 SET code TO FindSolidityText.text #To get the text code

 #save solidity output IN .sol format

 soloutput="C:\\Users\\user\\Desktop\\solidity\\solidity"+str(lline)+".sol"

 with open(soloutput, 'w', encoding='utf-8') as writesoliditycode:

 writesoliditycode.write(code)

Pseudo Code below describes how we collect Bytecode and Opcode.

Start Chrome

SET driver TO webdriver.Chrome()

SET count TO 0 #To check the progress of retriveing smartcontract.

countexcel= 0 #To determine the cell of CSV file.

with open("contractaddresses.txt") as readContractAddress: #read smart contract addresses

from contractaddresses.txt

 WHILE True:

 count += 1

 countexcel += 1

 SET line TO readContractAddress.readline()

 IF not line:

 break

 lline=line.strip("\n") # to remove the \n from the address as everytime it read the

address it shows after it \n.

 # Open the webpage

 driver.get("https://etherscan.io/address/"+line+"#code")

 time.sleep(15) # 15 seconds to load the webpage

81

 SET elembytecode TO driver.find_element(By.ID, "verifiedbytecode2") # To find

the verifiedbytecode2 element

 SET textbytecode TO elembytecode.text #to extract the text (bytecode) from the

verifiedbytecode2 #note: text is a method IN driver

 OUTPUT("Contract No. "+ str(count) +": Retrieving SmartContract " + lline) # to

OUTPUT contract number and each address.

 #save bytecode output IN .bytecode format

bytecodeoutput="C:\\Users\\user\\Desktop\\bytecode\\bytecode"+str(lline)+".bytecode"

 with open(bytecodeoutput, 'w') as writebytecode:

 writebytecode.write(textbytecode)

 """

 #To Create list of bytecode files names.

 string_to_check="bytecode"+str(lline)+".bytecode"

 with open("name.txt", "r") as file:

 SET lines TO file.readlines()

 IF string_to_check not IN lines:

 with open("name.txt", "a") as file:

 file.write(string_to_check + "\n")

 """

 # Wait FOR the opcodes to be loaded

 time.sleep(5)

 # Click the "Switch To Opcodes View" button

 SET button TO driver.find_element(By.ID, "btnConvert3")

 button.click()

82

 # Retrieve the verifiedbytecode2 element

 SET elem TO driver.find_element(By.ID, "verifiedbytecode2")

 SET textopcodestring TO elem.text #to extract the text (opcode) from the

verifiedbytecode2 #note: text is a method IN driver

 #save opcodestring output IN .txt format

opcodeoutputstring="C:\\Users\\user\\Desktop\\opcodestring\\opcodestring"+str(lline)+".t

xt"

 with open(opcodeoutputstring, 'w') as writeOpcodeOutputString:

 writeOpcodeOutputString.write(textopcodestring)

Pseudo Code below describes how to convert Opcode to Opcode Hexadecimal Values.

 #change opcodestring fromat into opcodehexadecimal format

 with open(opcodeoutputstring, "r") as ReadOpcodeOutputString:

 SET wordlist TO [r.split()[0] FOR r IN ReadOpcodeOutputString]

 # define list

 SET i TO 0

 WHILE i < len(wordlist):

 IF wordlist[i] EQUALS 'STOP':

 SET wordlist[i] TO '00'

 IF wordlist[i] EQUALS 'ADD':

 SET wordlist[i] TO '01'

 IF wordlist[i] EQUALS 'MUL':

 SET wordlist[i] TO '02'

 IF wordlist[i] EQUALS 'SUB':

 SET wordlist[i] TO '03'

 IF wordlist[i] EQUALS 'DIV':

 SET wordlist[i] TO '04'

 IF wordlist[i] EQUALS 'SDIV':

 SET wordlist[i] TO '05'

 IF wordlist[i] EQUALS 'MOD':

 SET wordlist[i] TO '06'

83

 IF wordlist[i] EQUALS 'SMOD':

 SET wordlist[i] TO '07'

 IF wordlist[i] EQUALS 'ADDMOD':

 SET wordlist[i] TO '08'

 IF wordlist[i] EQUALS 'MULMOD':

 SET wordlist[i] TO '09'

 IF wordlist[i] EQUALS 'EXP':

 SET wordlist[i] TO '0A'

 IF wordlist[i] EQUALS 'SIGNEXTEND':

 SET wordlist[i] TO '0B'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO '0C-0F'

 IF wordlist[i] EQUALS 'LT':

 SET wordlist[i] TO '10'

 IF wordlist[i] EQUALS 'GT':

 SET wordlist[i] TO '11'

 IF wordlist[i] EQUALS 'SLT':

 SET wordlist[i] TO '12'

 IF wordlist[i] EQUALS 'SGT':

 SET wordlist[i] TO '13'

 IF wordlist[i] EQUALS 'EQ':

 SET wordlist[i] TO '14'

 IF wordlist[i] EQUALS 'ISZERO':

 SET wordlist[i] TO '15'

 IF wordlist[i] EQUALS 'AND':

 SET wordlist[i] TO '16'

 IF wordlist[i] EQUALS 'OR':

 SET wordlist[i] TO '17'

 IF wordlist[i] EQUALS 'XOR':

 SET wordlist[i] TO '18'

 IF wordlist[i] EQUALS 'NOT':

 SET wordlist[i] TO '19'

 IF wordlist[i] EQUALS 'BYTE':

 SET wordlist[i] TO '1A'

84

 IF wordlist[i] EQUALS 'SHL':

 SET wordlist[i] TO '1B'

 IF wordlist[i] EQUALS 'SHR':

 SET wordlist[i] TO '1C'

 IF wordlist[i] EQUALS 'SHR':

 SET wordlist[i] TO '1D'

 IF wordlist[i] EQUALS 'SHR':

 SET wordlist[i] TO '1E-1F'

 IF wordlist[i] EQUALS 'KECCAK256':

 SET wordlist[i] TO '20'

 IF wordlist[i] EQUALS 'SHA3':

 SET wordlist[i] TO '20'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO '21-2F'

 IF wordlist[i] EQUALS 'ADDRESS':

 SET wordlist[i] TO '30'

 IF wordlist[i] EQUALS 'BALANCE':

 SET wordlist[i] TO '31'

 IF wordlist[i] EQUALS 'ORIGIN':

 SET wordlist[i] TO '32'

 IF wordlist[i] EQUALS 'CALLER':

 SET wordlist[i] TO '33'

 IF wordlist[i] EQUALS 'CALLVALUE':

 SET wordlist[i] TO '34'

 IF wordlist[i] EQUALS 'CALLDATALOAD':

 SET wordlist[i] TO '35'

 IF wordlist[i] EQUALS 'CALLDATASIZE':

 SET wordlist[i] TO '36'

 IF wordlist[i] EQUALS 'CALLDATACOPY':

 SET wordlist[i] TO '37'

 IF wordlist[i] EQUALS 'CODESIZE':

 SET wordlist[i] TO '38'

 IF wordlist[i] EQUALS 'CODECOPY':

 SET wordlist[i] TO '39'

85

 IF wordlist[i] EQUALS 'GASPRICE':

 SET wordlist[i] TO '3A'

 IF wordlist[i] EQUALS 'EXTCODESIZE':

 SET wordlist[i] TO '3B'

 IF wordlist[i] EQUALS 'EXTCODECOPY':

 SET wordlist[i] TO '3C'

 IF wordlist[i] EQUALS 'RETURNDATASIZE':

 SET wordlist[i] TO '3D'

 IF wordlist[i] EQUALS 'RETURNDATACOPY':

 SET wordlist[i] TO '3E'

 IF wordlist[i] EQUALS 'EXTCODEHASH':

 SET wordlist[i] TO '3F'

 IF wordlist[i] EQUALS 'BLOCKHASH':

 SET wordlist[i] TO '40'

 IF wordlist[i] EQUALS 'COINBASE':

 SET wordlist[i] TO '41'

 IF wordlist[i] EQUALS 'TIMESTAMP':

 SET wordlist[i] TO '42'

 IF wordlist[i] EQUALS 'NUMBER':

 SET wordlist[i] TO '43'

 IF wordlist[i] EQUALS 'PREVRANDAO':

 SET wordlist[i] TO '44'

 IF wordlist[i] EQUALS 'GASLIMIT':

 SET wordlist[i] TO '45'

 IF wordlist[i] EQUALS 'CHAINID':

 SET wordlist[i] TO '46'

 IF wordlist[i] EQUALS 'SELFBALANCE':

 SET wordlist[i] TO '47'

 IF wordlist[i] EQUALS 'BASEFEE':

 SET wordlist[i] TO '48'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO '49-4F'

 IF wordlist[i] EQUALS 'POP':

 SET wordlist[i] TO '50'

86

 IF wordlist[i] EQUALS 'MLOAD':

 SET wordlist[i] TO '51'

 IF wordlist[i] EQUALS 'MSTORE':

 SET wordlist[i] TO '52'

 IF wordlist[i] EQUALS 'MSTORE8':

 SET wordlist[i] TO '53'

 IF wordlist[i] EQUALS 'SLOAD':

 SET wordlist[i] TO '54'

 IF wordlist[i] EQUALS 'SSTORE':

 SET wordlist[i] TO '55'

 IF wordlist[i] EQUALS 'JUMP':

 SET wordlist[i] TO '56'

 IF wordlist[i] EQUALS 'JUMPI':

 SET wordlist[i] TO '57'

 IF wordlist[i] EQUALS 'PC':

 SET wordlist[i] TO '58'

 IF wordlist[i] EQUALS 'MSIZE':

 SET wordlist[i] TO '59'

 IF wordlist[i] EQUALS 'GAS':

 SET wordlist[i] TO '5A'

 IF wordlist[i] EQUALS 'JUMPDEST':

 SET wordlist[i] TO '5B'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO '5C-5F'

 IF wordlist[i] EQUALS 'PUSH1':

 SET wordlist[i] TO '60'

 IF wordlist[i] EQUALS 'PUSH2':

 SET wordlist[i] TO '61'

 IF wordlist[i] EQUALS 'PUSH3':

 SET wordlist[i] TO '62'

 IF wordlist[i] EQUALS 'PUSH4':

 SET wordlist[i] TO '63'

 IF wordlist[i] EQUALS 'PUSH5':

 SET wordlist[i] TO '64'

87

 IF wordlist[i] EQUALS 'PUSH6':

 SET wordlist[i] TO '65'

 IF wordlist[i] EQUALS 'PUSH7':

 SET wordlist[i] TO '66'

 IF wordlist[i] EQUALS 'PUSH8':

 SET wordlist[i] TO '67'

 IF wordlist[i] EQUALS 'PUSH9':

 SET wordlist[i] TO '68'

 IF wordlist[i] EQUALS 'PUSH10':

 SET wordlist[i] TO '69'

 IF wordlist[i] EQUALS 'PUSH11':

 SET wordlist[i] TO '6A'

 IF wordlist[i] EQUALS 'PUSH12':

 SET wordlist[i] TO '6B'

 IF wordlist[i] EQUALS 'PUSH13':

 SET wordlist[i] TO '6C'

 IF wordlist[i] EQUALS 'PUSH14':

 SET wordlist[i] TO '6D'

 IF wordlist[i] EQUALS 'PUSH15':

 SET wordlist[i] TO '6E'

 IF wordlist[i] EQUALS 'PUSH16':

 SET wordlist[i] TO '6F'

 IF wordlist[i] EQUALS 'PUSH17':

 SET wordlist[i] TO '70'

 IF wordlist[i] EQUALS 'PUSH18':

 SET wordlist[i] TO '71'

 IF wordlist[i] EQUALS 'PUSH19':

 SET wordlist[i] TO '72'

 IF wordlist[i] EQUALS 'PUSH20':

 SET wordlist[i] TO '73'

 IF wordlist[i] EQUALS 'PUSH21':

 SET wordlist[i] TO '74'

 IF wordlist[i] EQUALS 'PUSH22':

 SET wordlist[i] TO '75'

88

 IF wordlist[i] EQUALS 'PUSH23':

 SET wordlist[i] TO '76'

 IF wordlist[i] EQUALS 'PUSH24':

 SET wordlist[i] TO '77'

 IF wordlist[i] EQUALS 'PUSH25':

 SET wordlist[i] TO '78'

 IF wordlist[i] EQUALS 'PUSH26':

 SET wordlist[i] TO '79'

 IF wordlist[i] EQUALS 'PUSH27':

 SET wordlist[i] TO '7A'

 IF wordlist[i] EQUALS 'PUSH28':

 SET wordlist[i] TO '7B'

 IF wordlist[i] EQUALS 'PUSH29':

 SET wordlist[i] TO '7C'

 IF wordlist[i] EQUALS 'PUSH30':

 SET wordlist[i] TO '7D'

 IF wordlist[i] EQUALS 'PUSH31':

 SET wordlist[i] TO '7E'

 IF wordlist[i] EQUALS 'PUSH32':

 SET wordlist[i] TO '7F'

 IF wordlist[i] EQUALS 'DUP1':

 SET wordlist[i] TO '80'

 IF wordlist[i] EQUALS 'DUP2':

 SET wordlist[i] TO '81'

 IF wordlist[i] EQUALS 'DUP3':

 SET wordlist[i] TO '82'

 IF wordlist[i] EQUALS 'DUP4':

 SET wordlist[i] TO '83'

 IF wordlist[i] EQUALS 'DUP5':

 SET wordlist[i] TO '84'

 IF wordlist[i] EQUALS 'DUP6':

 SET wordlist[i] TO '85'

 IF wordlist[i] EQUALS 'DUP7':

 SET wordlist[i] TO '86'

89

 IF wordlist[i] EQUALS 'DUP8':

 SET wordlist[i] TO '87'

 IF wordlist[i] EQUALS 'DUP9':

 SET wordlist[i] TO '88'

 IF wordlist[i] EQUALS 'DUP10':

 SET wordlist[i] TO '89'

 IF wordlist[i] EQUALS 'DUP11':

 SET wordlist[i] TO '8A'

 IF wordlist[i] EQUALS 'DUP12':

 SET wordlist[i] TO '8B'

 IF wordlist[i] EQUALS 'DUP13':

 SET wordlist[i] TO '8C'

 IF wordlist[i] EQUALS 'DUP14':

 SET wordlist[i] TO '8D'

 IF wordlist[i] EQUALS 'DUP15':

 SET wordlist[i] TO '8E'

 IF wordlist[i] EQUALS 'DUP16':

 SET wordlist[i] TO '8F'

 IF wordlist[i] EQUALS 'SWAP1':

 SET wordlist[i] TO '90'

 IF wordlist[i] EQUALS 'SWAP2':

 SET wordlist[i] TO '91'

 IF wordlist[i] EQUALS 'SWAP3':

 SET wordlist[i] TO '92'

 IF wordlist[i] EQUALS 'SWAP4':

 SET wordlist[i] TO '93'

 IF wordlist[i] EQUALS 'SWAP5':

 SET wordlist[i] TO '94'

 IF wordlist[i] EQUALS 'SWAP6':

 SET wordlist[i] TO '95'

 IF wordlist[i] EQUALS 'SWAP7':

 SET wordlist[i] TO '96'

 IF wordlist[i] EQUALS 'SWAP8':

 SET wordlist[i] TO '97'

90

 IF wordlist[i] EQUALS 'SWAP9':

 SET wordlist[i] TO '98'

 IF wordlist[i] EQUALS 'SWAP10':

 SET wordlist[i] TO '99'

 IF wordlist[i] EQUALS 'SWAP11':

 SET wordlist[i] TO '9A'

 IF wordlist[i] EQUALS 'SWAP12':

 SET wordlist[i] TO '9B'

 IF wordlist[i] EQUALS 'SWAP13':

 SET wordlist[i] TO '9C'

 IF wordlist[i] EQUALS 'SWAP14':

 SET wordlist[i] TO '9D'

 IF wordlist[i] EQUALS 'SWAP15':

 SET wordlist[i] TO '9E'

 IF wordlist[i] EQUALS 'SWAP16':

 SET wordlist[i] TO '9F'

 IF wordlist[i] EQUALS 'LOG0':

 SET wordlist[i] TO 'A0'

 IF wordlist[i] EQUALS 'LOG1':

 SET wordlist[i] TO 'A1'

 IF wordlist[i] EQUALS 'LOG2':

 SET wordlist[i] TO 'A2'

 IF wordlist[i] EQUALS 'LOG3':

 SET wordlist[i] TO 'A3'

 IF wordlist[i] EQUALS 'LOG4':

 SET wordlist[i] TO 'A4'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO 'A5-EF'

 IF wordlist[i] EQUALS 'CREATE':

 SET wordlist[i] TO 'F0'

 IF wordlist[i] EQUALS 'CALL':

 SET wordlist[i] TO 'F1'

 IF wordlist[i] EQUALS 'CALLCODE':

 SET wordlist[i] TO 'F2'

91

 IF wordlist[i] EQUALS 'RETURN':

 SET wordlist[i] TO 'F3'

 IF wordlist[i] EQUALS 'DELEGATECALL':

 SET wordlist[i] TO 'F4'

 IF wordlist[i] EQUALS 'CREATE2':

 SET wordlist[i] TO 'F5'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO 'F6-F9'

 IF wordlist[i] EQUALS 'STATICCALL':

 SET wordlist[i] TO 'FA'

 IF wordlist[i] EQUALS 'invalid':

 SET wordlist[i] TO 'FB-FC'

 IF wordlist[i] EQUALS 'REVERT':

 SET wordlist[i] TO 'FD'

 IF wordlist[i] EQUALS 'INVALID':

 SET wordlist[i] TO 'FE'

 IF wordlist[i] EQUALS 'SELFDESTRUCT':

 SET wordlist[i] TO 'FF'

 IF "Unknown" IN wordlist[i]:

 SET wordlist[i] TO wordlist[i][1:3]

 i += 1

 #save opcodehexadecimal output IN .txt format

 opcodeoutputhexa="C:\\Users\\user\\Desktop\\opcodehex\\opcodehex"+str(lline)+".txt"

 with open(opcodeoutputhexa, 'w') as WriteOpcodeOutputHexa:

 WriteOpcodeOutputHexa.write(' '.join([''.join(l2) FOR l2 IN wordlist]))

Inserting the opcode results in CSV File

 # Open the text file and read the data

 with open(opcodeoutputhexa, 'r') as ReadOpcodeOutputHexa:

 SET Read_Hexa_Opcode TO ReadOpcodeOutputHexa.read()

 # Open the CSV file IN read mode

 with open('Final_Dataset.csv', 'r') as csv_file:

 SET reader TO csv.reader(csv_file)

92

 # read the data

 SET data TO [row FOR row IN reader]

 # update the data

 SET data[countexcel][2] TO Read_Hexa_Opcode

 # Open the CSV file IN write mode

 with open('Final_Dataset.csv', 'w', newline='') as csv_file:

 SET writer TO csv.writer(csv_file)

 # write the updated data

 writer.writerows(data)

	Machine Learning Based Framework for Smart Contract Vulnerability Detection in Ethereum Blockchain
	Recommended Citation

	tmp.1684765413.pdf.4JEao

