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Abstract 
Blockchain technology is a disruptive technology that revolutionized digital payments and 

transactions of digital assets. Blockchain transactions operate using smart contracts which 

are automated software code that facilitates transactions between parties without the need 

for intermediary systems. Smart contracts have become an increasingly popular means of 

conducting transactions and executing code in a decentralized manner. As it can be written 

in various languages which have their flaws in terms of logic and vulnerabilities, also the 

immutability and autonomy of smart contracts also make them vulnerable to various 

security threats. Security for smart contracts is essential as exploiting bad logic or 

vulnerabilities in the code can lead to financial losses of digital assets as well as 

undermining the integrity of blockchain technology. As such, validating the security 

posture of smart contracts is now essential. Several static tools which can detect specific 

attacks on smart contracts exist. However, a comprehensive automated solution is not 

available. 

This thesis provides a comprehensive survey of the various attack detection techniques used 

in smart contracts, including static analysis, dynamic analysis, and hybrid approaches. We 

also discuss the advantages and limitations of each approach and provide a comparative 

analysis of the existing tools used for the different types of smart contract analysis 

techniques. Furthermore, we present a machine learning based approach for the detection 

of attacks on smart contracts. We developed a tool that collects data from etherscan.io, 

which was not previously available. After collecting the dataset, static detection tools were 

used to test the data. The results of these tools were manually multi labeled and then fed 

into machine learning algorithms. The purpose of this process is to improve the accuracy 

of the dataset, and reduce the time cost of getting results. 

Results shown for four ML models, namely Decision Tree, Perceptron, Support Vector 

Machine (SVM), and Long Short-Term Memory (LSTM) are used for this research based 

on final datasets and sub dataset and the best accuracy results for full dataset 85.7% using 

SVM, Reentrancy dataset 97.7% using LSTM, Etherlock dataset 80.9% using LSTM, 

integer overflow/underflow dataset 100% using SVM, Perceptron, and LSTM, Overall 

LSTM was the highest algorithm in terms of accuracy but the lowest in terms of Time cost. 

Keywords: Blockchain, Smart Contract, Machine Learning, Vulnerability, Detection 

Tools. 
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Chapter 1: INTRODUCTION 

 

Blockchain technology, one of Bitcoin's underlying technologies, has received more 

interest since Satoshi Nakamoto created the cryptocurrency in 2008 [1] [2] [3] [4]. The 

scope of blockchain applications has now expanded from digital currency [5] to all facets 

of life. Blockchain technology has already been proposed and deployed in numerous fields, 

including finance [6], IoT [7], health insurance [8], and electronic voting [9]. 

The foundation of these applications is smart contracts, which are coded agreements that 

enable individuals to comply with them without the need for trust [10]. Despite their 

benefits, developers may inadvertently create vulnerabilities in smart contracts through 

misinterpreting the code language, imperfect contract design, or carelessness. Such 

weaknesses are sought out by hackers and can result in significant financial losses [11].  

1.1 BLOCKCHAIN OVERVIEW 

 

This section illustrates an overview of blockchain and smart contract technologies. It also 

gives a categorization of blockchain technologies and then goes through different 

blockchain platforms that can help with smart contract development. 

A consensus algorithm is composed of rules that permit various nodes in a decentralized 

network to come into an agreement about one truth. To guarantee agreement between all 

nodes about their ledgers' states within a decentralized blockchain system without any 

centralized authorities verifying its transactional data requires using an agreed-upon 

consensus algorithm. Validating transactions’ accuracy to make sure they are free of errors 

and fraudulent activities such as double spending or other kinds of cyberattacks on 

blockchain networks, is ensured by a consensus algorithm. Various forms exist for 

consensus algorithms including PoW (Proof of Work), POS (Proof of Stake) & DPoS 

(Delegated Proof of Stakes) [12]. Each type comes with a unique set of merits and demerits. 

Without consensus algorithms, as a key component of blockchain technology, it would be 

impossible to maintain the security and integrity of decentralized networks [13]. 
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1.1.1 CATEGORIES OF BLOCKCHAIN 

The different categories of blockchain systems are identified, each with its governance and 

structure as follows [14]: 

• Public blockchain [15] anybody can participate in this category of blockchain 

as the record is available as public. Moreover, parties can participate as 

members of the consensus process. In this blockchain, Immutability is high, but 

on the other hand, efficiency is low. 

• Private blockchains [16] belong to a certain group, and only nodes from that 

organization are permitted to participate in the consensus process. Private 

blockchains are less immutable than public blockchains, but they are more 

efficient. 

• Consortium blockchain [17] is a hybrid of the preceding two systems in which 

a pre-selected number of participants can join in the consensus process, even 

though not all users are affiliated with the same enterprise. Immutability and 

efficiency are similar to a private blockchain. A consortium blockchain is a 

middle ground between shared distributed and centralized private blockchains 

in terms of centralization. A permissioned blockchain is another name for this 

type of blockchain. 

1.1.2 BLOCKCHAIN PLATFORMS 

In recent years, various platforms for developing blockchain systems have been established. 

The following are some of the most well-known: 

• Ethereum [18] Vitalik Buterin established a public, open-source blockchain 

platform in 2013. A decentralized platform known as Ethereum operates 

with its own digital currency called Ether. Smart contract creation and 

development are both possible on this network. As a medium of exchange 

within the Ethereum network and for paying transaction fees ether is 

employed [19]. Execution of smart contracts on the Ethereum network 

happens through a virtual machine known as Ethereum Virtual Machine 

(EVM). Being sandboxed allows for the isolation of code running on this 

runtime environment from other parts of the network. The EVM carries out 

two crucial tasks: enforcing Ethereum network rules and executing smart 

contract codes [20]. The focus of the Nakamoto consensus protocol utilized 

by Bitcoin is mainly centered around value transfer, which poses its biggest 
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weakness. However, Ethereum surpasses this limitation through enabling 

the development of decentralized applications. Moreover, Ethereum 

presents the concept of gas fees that serve as payment for the computational 

resources essential in performing smart contracts. By using ether, it will 

prevent a well known vulnerability known as denial of service attacks and 

helps to maintain network stability and security [21] 

• Hyperledger Fabric [22] is a permissioned (private) blockchain platform 

with a modular design, smart contracts, and customizable consensus and 

membership services developed by IBM and Digital Asset. Hyperledger 

Fabric differs from Ethereum in several ways, including the lack of a built-

in token and a lower amount of customization options.  

• Corda [23] The R3 company created Corda blockchain technology. Corda 

is a business-focused distributed ledger and smart contract platform that is 

open-source. Corda is permissioned, and unlike Hyperledger Fabric, it does 

not have a native currency, but it is more tailored, addressing the needs of 

the financial industry. 

• Quorum blockchain [24] a permissioned enterprise-grade distributed ledger 

technology based on Ethereum, is characterized by its unique consensus 

mechanism, called Istanbul BFT. The network also leverages privacy-

enhancing features such as private transactions, which enable the 

confidential transfer of assets and shield the identities of the parties involved 

from the public. In addition to this point regarding its support of smart 

contracts it's important to mention that these are self-executing computer 

programs aimed at automating business processes while enforcing rules and 

regulations 
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Table 1: Blockchain Platforms Comparison 

Category Ethereum 
Hyperledger 

Fabric 
Corda Quorum 

Industry 
General 

Purpose 
Cross Industry 

Financial 

Services 

Financial 

Services 

Mode of operation 
Public 

blockchain 

Permissioned 

blockchain 

Permissioned 

blockchain 

Permissioned 

blockchain 

Consortium network support Limited Strong Strong Strong 

Decentralization 
Highly 

decentralized 

Less 

decentralized 

Less 

decentralized 

Moderately 

decentralized 

Consensus Protocols 

Proof of 

Work, 

transitioning 

to Proof of 

Stake 

Pluggable 

(supports 

multiple) 

Pluggable 

(supports 

multiple) 

Istanbul BFT 

Transaction throughput 

(TPS) 

15-45 TPS 

(varies) 

Up to 20,000 

TPS (varies) 

Up to 200 

TPS (varies) 

Up to 100 TPS 

(varies) 

Smart Contract Support Full support 

Limited (smart 

contract-like 

chaincode)  

Limited 

(smart 

contract-like 

flows) 

Full support 

Smart Contract Privacy 

Limited 

privacy 

(transactions 

are public) 

Flexible 

privacy options 

(public, 

private, 

confidential) 

Strong 

privacy 

features 

(encrypted 

transactions) 

Flexible 

privacy options 

(public, private, 

confidential) 

Native Cryptocurrency Ether (ETH) None None 

None (uses 

Ether as a 

placeholder) 
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1.2 SMART CONTRACT OVERVIEW 

 

Smart contracts are electronic agreements or contracts that are self-executed based on a set 

of pre-defined circumstances and rules using programming instruction codes and 

computational infrastructure [25] [26] [27]. 

Smart contracts were initially proposed in 1994 by Nick Szabo and became widely 

employed with the advent of Blockchain [25]. This is due to the following properties [25] 

[27] [28]. 

• Absence of intermediaries: smart contract operations are carried out without the 

involvement of a third party. 

• Automation and accuracy: smart contracts are coded with specified instances and 

performed automatically, removing the need for manual intervention and reducing 

the possibility of human error. 

• Reliability and Immutability: Blockchain technology's advanced crypto 

methodology makes it hard to change or remove records, giving them a sense of 

trustworthiness. 

As demonstrated in Figure 1, a smart contract transition is triggered by predetermined 

circumstances selected by individuals. The accompanying value is transferred as a 

transaction to the blockchain's pool, where it will be processed and confirmed by the peer-

to-peer network members. 

A blockchain chooses a set of transactions from the pool to be completed and validated by 

the blockchain's participating peer-to-peer networked nodes, and once validated, it will be 

added to the blockchain as a block that is linked to the previous one [25] [27]. 
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Figure 1: Smart Contract Blocks Details [28] 

 

Many platforms, such as Ethereum and Hyperledger fabrics, can be used to develop smart 

contracts linked to business concerns; however, not all platforms, such as the Bitcoin 

blockchain [26] [29], support smart contract implementations. 

 

1.3 MACHINE LEARNING OVERVIEW 

 

Machine learning (ML), which has grown relatively widespread in research, has been 

applied to a broad variety of applications. Some examples of these applications include text 

mining, the detection of spam, video recommendation, image categorization, and the 

retrieval of multimedia information [30]. Deep learning, or DL for short, is one of various 

machine learning techniques, and it's widely applied in these applications [31]. 

Recently, modern machine learning techniques have made it possible to accurately identify 

cyberattacks and detect them in real-time and during post-incident investigation [32]. 

Notably, supervised and unsupervised machine learning techniques have been effectively 

applied to support intrusion detection and prevention systems, as well as to find system 

abuses and security breaches [33]. 

Anomaly-based intrusion detection systems employing ML methods are able to conform to 

the typical operating status of a system, isolating and identifying anomalies as unusual 

behavioral deviations. Due to their potential to detect zero-day attacks, i.e., assaults that 

exploit unknown vulnerabilities, anomaly detection techniques are hence appealing [34]. 
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1.4 PROBLEM STATEMENT AND MOTIVATION 

 

Nowadays the security of smart contract code cannot be guaranteed due to the complexity 

of the programming languages used to generate smart contracts [35]. This is now a serious 

and widespread problem with smart contracts, since anyone has the ability to join public 

Ethereum [36]. Furthermore, because smart contracts frequently manage massive amounts 

of financial assets, they are a main target for cyberattacks [37]. Unlike conventional 

programs, once smart contracts are in use, they cannot be changed to allow for the benefit 

of being anti-tampering. This, nevertheless, creates a serious security risk [38]. 

To check the vulnerability of a smart contract in Ethereum, developers traditionally submit 

their code for auditing which can take up to two weeks. In order to find any potential 

security vulnerability in the smart code a team of professionals needs to conduct a manual 

review. However, various tools for identifying the vulnerability of solidity smart contracts, 

such as Securify [39] and MAIAN [40], have been developed for users and developers who 

wish to inspect and assess the security of the smart contracts they are using or constructing. 

The techniques employed by these tools when scanning for vulnerabilities may differ 

considerably from one another [41]. While some tools depend on either static [42], 

symbolic [43], or dynamic [44] analyses for their operations respectively. Others prefer to 

merge two of these methods. The supported vulnerability types for these tools may vary as 

well from one tool to another. The detection capabilities of various tools differ from one 

tool to another [45]. For example, one tool can be better suited for pinpointing particular 

vulnerability types such as reentrancy or overflow compared to another tool. Employing 

multiple techniques is necessary for a complete examination of the code despite these tools 

being useful in detecting initial security vulnerabilities.  

The severity of this security risk has been demonstrated by numerous actual incidents. For 

instance, 3.6 million Ether were stolen via a weakness known as DAO in the code of [46]. 

Before being used, contracts must be properly examined, made leak-proof, and made 

sturdy. 
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1.5 RESEARCH AIM AND OBJECTIVE 
The aim of this thesis is to detect vulnerabilities in smart contracts using a combination of 

static analysis tools and machine learning techniques. The following figure gives an 

overview of our methodology. 

 

The following points highlight the contribution we have achieved in this thesis: 

• Providing an overview of the existing techniques, tools, and methods for detecting 

vulnerabilities in smart contracts by identifying and evaluating the various smart 

counteract security tools available.  

• Analyzing and summarizing the different detection tools used for smart contract 

security analysis, based on their detection methods and supported vulnerability 

types. 

• Presenting machine learning solutions for detecting various vulnerability 

categories, this reduces the time, and effort and increased the accuracy. 

• Proposing and implementing an automated tool that can be used to collect smart 

contracts, bytecode, and opcode from etherscan.io. 

• Generating a dataset with seven different vulnerabilities that can be used to detect 

vulnerabilities related to smart contracts and avoid the overhead and inefficiency of 

static tools. 

• Generating three sub-datasets for three different vulnerabilities, Etherlock, integer 

overflow/underflow, and reentrancy from the main dataset by taking the 

Download Smart 

Contract 

(Etherscan.io) 

Detect 

Vulnerabilities 

(Static analysis) 

Apply ML 

Algorithms 

Results Analysis & 

Discussion 

Figure 2: Summarized Methodology. 
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intersections between different static tools results. These datasets can be used to 

detect specific vulnerability categories. 

1.6 ORGANIZATION OF THE THESIS 

  

The Thesis consists of five chapters and is organized as follows. The next chapter explains 

and presents a comprehensive and detailed background and Literature review of smart 

contract vulnerabilities, detection methods, and machine learning methods. In Chapter 3, 

Research Methodology will be explained in details. Chapter 4 summarizes the significant 

findings and results. Lastly, we conclude the Thesis and present the Future work in Chapter 

5. 
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Chapter 2: BACKGROUND AND LITERATURE VIEW 
 

2.1 SMART CONTRACT VULNERABILITY 
Emerging today are numerous varieties of smart contract vulnerabilities. The causes of this 

are closely related to the blockchain platform's functionality, developer code writing, and 

contract design [46]. There are many reasons why smart contracts are vulnerable to security 

attacks [47].  

(1) Due to the complexity of the code required to create smart contracts, which can 

lead to mistakes and errors.  

(2) The second reason is that smart contracts operate in a decentralized and trustless 

environment, which means that there is no central authority to oversee and regulate 

the contracts.  

(3) Smart contracts are often used to facilitate financial transactions and other valuable 

exchanges, which makes them a main target for hackers looking to exploit any 

weaknesses or vulnerabilities. 

Therefore, detecting smart contracts vulnerabilities prior to deployment can increase the 

security of smart contracts after deployment. Since smart contracts' code is manually 

created, there is a strong likelihood that there may be mistakes or flaws that allow hackers 

to exploit them.  

In order to detect smart contract vulnerabilities, this thesis investigates the following 

categories of vulnerabilities. 

1. Arbitrary_Memory_Access:  

Arbitrary Memory Access (AMA) [48] is a term used in Solidity to describe the capability 

of accessing any place in memory without being subject to bounds checking or other 

limitations. This indicates that an attacker might replace data in memory without 

permission to edit. This could result in security vulnerabilities and the possibility of exploits 

being used. For instance: 
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Figure 3: Arbitrary Memory Access sample vulnerability. 

The function in this code gets information from one array and utilizes it to generate an 

index for another array. The computation could, however, result in an out-of-bounds access 

if the input data is designed in a specific way. An attacker could then use this access to read 

or change memory beyond of the intended range [55]. 

2. Assertion_Failure:  

Assertion_Failure in Solidity refers to a scenario in which an adversary purposefully brings 

about an assertion failure in a smart contract in order to control its behavior to cause an 

effect that is unanticipated. An assertion failure happens in Solidity, as indicated earlier 

when a condition that is anticipated to be true is discovered to be untrue during the 

execution of a contract. This may happen for several reasons such as having wrong inputs, 

making inaccurate assumptions, or having logical problems in the contract code. If the 

contract does not properly handle the assertion failure and does not revert its state, it may 

continue to execute in an unexpected or insecure way. Consequently, an attacker might be 

able to gain unauthorized access, modify contract data, or steal funds [49]. For instance: 

 

Figure 4: Assertion Failure Sample Vulnerability. 

In this code, the function utilizes an assertion to enforce the assumption that the input 

argument x is higher than zero. However, the assertion will fail and the function will end 

prematurely if an attacker supplies a value of x that is zero or negative [56]. 

3. Block_Dependency:  

Block Dependency occurs when Ethereum smart contracts are unable to make direct calls 

to the built-in functions included inside smart contracts to produce a random integer. 

Because of this, programmers typically use the block parameters as the fundamental seeds 
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when implementing a random number generation function. Some examples of block 

parameters include the block number (block.number), the block timestamp 

(block.timestamp), the block hash (block.blockhash), and other related block parameters. 

However, in a manner analogous to the dependency on the timestamp, attackers can 

manipulate the block parameters in advance. This results in the generated random number 

being predictable, which can be exploited by malicious attackers to produce random 

numbers that are advantageous to the attackers themselves [50]. For instance: 

 

Figure 5: Block Dependency Sample Vulnerability. 

The function in this code verifies that the block number at the moment of execution is 

greater than the block number at the beginning of the function. However, if a hacker delays 

the function's execution by altering the blockchain, the block number may stay the same or 

even go down, making the attack successful [57]. 

4. Etherlock:  

The EtherLock vulnerability is a type of exploit that targets smart contracts on the Ethereum 

blockchain. It involves the creation of a malicious contract that appears to mimic the 

functionality of a legitimate contract, but with the added ability to freeze or lock up the 

funds within it. The attacker can manipulate the transaction flow or the user interface to 

force the victim to use the malicious contract instead of the legitimate one. Once the 

victim's funds are inside the malicious contract the attacker can trigger a function within 

the contract that freezes or locks up the funds. This can make the funds inaccessible to the 

victim. One example of an EtherLock vulnerability is when a smart contract accepts Ether 

payments but fails to include instructions for sending that Ether back out of the contract, 

such as using the "send", "call", or "transfer" methods. If these instructions are not present 

or are not accessible then the Ether received by the contract becomes stuck inside it 

indefinitely [51]. For example: 
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Figure 6: Etherlock Sample Vulnerability. 

In order to protect against reentrancy attacks, the method in this code employs a boolean 

variable called locked. The lock mechanism will malfunction, though, and the attacker will 

be able to run arbitrary code if they are able to call the function once more before the value 

is reset to false [58]. 

5. Integer overflow/underflow:  

There is a possibility of integer overflow or underflow attacks in Solidity smart contracts. 

When a variable value is greater than or less than the range permitted by its data type, this 

occurs. A variable will wrap around to 0 and begin counting from there, for instance, if its 

value is raised to 256 although it can only store values between 0 and 255. Attackers who 

purposefully input values that are larger or smaller than the permitted range can take 

advantage of these flaws. Attackers can use this to cause the contract to behave in 

unintended ways, such as transferring more funds than intended or executing unexpected 

operations. To prevent these attacks, developers should carefully choose the appropriate 

data types and check for boundary conditions when implementing mathematical operations. 

Additionally, input validation and access control mechanisms can be used to prevent 

malicious input values from being processed by the contract [52]. For instance: 

 

Figure 7: Integer Overflow/Underflow Sample Vulnerability. 

The function in the above code multiplies the input argument x by 2, which may result in 

an overflow if x is close to the uint256's maximum value. The variable y will wrap around 
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to zero if the overflow happens, which could lead to the next check passing even though y 

is actually smaller than x [59]. 

6. Reentrancy: 

Reentrancy is another vulnerability that can occur in Solidity smart contracts. If a smart 

contract is designed to do multiple things in response to one transaction, a reentrancy attack 

can occur when a malicious attacker interrupts the process and enters the contract again 

with new instructions before the current process is complete. This can cause unexpected 

behaviors in the contract and potentially allow the attacker to exploit it to their advantage. 

Attackers can exploit this vulnerability to repeatedly call certain functions, causing them to 

execute multiple times and potentially steal funds from the contract. To prevent reentrancy 

attacks, developers can use safeguards such as limiting the amount of gas available to 

external calls or using the "check effects interaction" pattern to ensure that all state changes 

are completed before any external calls are made. Proper testing and auditing of the contract 

code can also help identify and address any potential reentrancy vulnerabilities [53]. For 

instance: 
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Users may withdraw money from the SafeContract according to this code. The withdraw 

function, which assumes that the contract won't call back into the function before it's 

finished, sends the entire balance of the calling address to the caller. 

But the AttackContract can take advantage of this weakness by repeatedly calling the 

withdraw method before it has finished, then using the fallback function to enter the 

withdraw procedure again and empty the contract's money [60]. 

 

 

Figure 8: Reentrancy Sample Vulnerability. 
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7. TODAmount (race condition): 

Transaction Ordering Dependency (TOD) vulnerability is a critical security issue that can 

occur in smart contracts written in Solidity, the programming language used for creating 

Ethereum blockchain-based applications. The vulnerability arises when a contract's 

behavior or outcome is dependent on the order in which transactions are processed by the 

network. This means that an attacker can manipulate the order of transactions in their 

favor, leading to unexpected results such as unauthorized transfers of funds or unintended 

contract executions. The potential for financial loss and damage to reputation due to this 

vulnerability highlights the importance of thoroughly testing and auditing smart contracts 

before deployment to ensure the security of the underlying blockchain-based systems 

[54]. For instance: 

 

Figure 9: Transaction Ordering Dependence (TOD) Sample Vulnerability. 

In this case, a user can remove a certain amount from their balance using the withdraw 

function. The result of the withdraw function, however, could be impacted by other ongoing 

transactions that change the balance or userBalances variables. The user's userBalances 

value might be incorrect resulting in a failed withdrawal or allowing the user to withdraw 

more money than they should, for instance, if another transaction deposits money into the 

contract after the user has called the withdraw function but before the transaction is 

executed [61]. 
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2.1.1 MITIGATION OF VULNERABILITIES 

Arbitrary Memory Access: By implementing sufficient array bounds checking and ensuring 

that only trusted contracts have access to crucial data, this risk can be reduced. 

 

Figure 10: Arbitrary Memory Access Mitigation Sample. 

The updateData function in this code updates the matching element in the data array using 

an index and a value parameter. Before enabling the update, the required statement verifies 

that the index is inside boundaries [62]. 

 

Assertion Failure: By employing defensive programming strategies and double-checking 

each assumption the code makes, this risk can be reduced. 

 

Figure 11: Assertion Failure Mitigation Sample. 

The safeFunction function in this code performs an operation on the x parameter. In order 

to avoid assertion failures, the require statement verifies that x is greater than zero before 

letting the operation to continue [63]. 
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Block Dependency: To reduce this vulnerability, avoid relying on block data that can be 

changed by miners. 

 

Figure 12: Block Dependency Mitigation Sample. 

The block.number parameter is used by the safeFunction function in this code to obtain the 

current block number [64].  

 

Etherlock: This vulnerability can be reduced by allowing users to withdraw money from a 

contract using the withdraw pattern. 

 

Figure 13: Etherlock Mitigation Sample. 

Users can deposit Ether into the contract using the deposit function in this code, and they 

can withdraw their money using the withdraw method. Before approving the withdrawal, 

the required statement verifies that the user has a sufficient balance. The call statement then 

sends the amount of interest to the user's address. The contract assures clients can always 

withdraw their money by adopting this pattern, preventing Etherlocks [65]. 
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Integer Overflow/Underflow: Use the SafeMath library when performing operations on 

integers to limit the risk of an integer overflow or underflow. 

 

Figure 14: Integer Overflow/Underflow Mitigation Sample. 

The add function from the SafeMath library is used by the safeFunction function in this 

code to add an x parameter to the value variable. These vulnerabilities are avoided by this 

function, which checks for integer overflow and underflow and cancels the transaction if 

necessary [66]. 

 

Reentrancy: By employing the "checks-effects-interactions" design pattern, which places 

any state changes before any external calls, this vulnerability can be reduced. 
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Figure 15: Reentracny Mitigation Sample. 

The withdraw function in this code enables customers to remove money from the contract. 

By verifying that the function is not already being executed before allowing it to continue, 

the nonReentrant modifier protects against reentrancy attacks. The locked variable is 

employed to keep track of the function execution's current state. The contract guarantees 

that external calls are made only after all state changes have been completed by employing 

this pattern, eliminating reentrancy attacks [67]. 

 

TODAmount: This vulnerability can be reduced by monitoring the amount of Ethereum 

transmitted with a transaction using the msg.value parameter and by utilizing proper rate-

limiting strategies to stop users from sending excessive amounts of Ethereum.  

 

Figure 16: TODAmount Mitigation Sample. 
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In this code, the maxAmount limit is checked to ensure that the total amount of Ether in the 

contract does not exceed it before the deposit function allows users to deposit Ether into 

the contract. The contract uses this method to stop users from transferring excessive 

amounts of Ether and triggering a TODAmount vulnerability [68]. 

 

2.2 SMART CONTRACT SOURCE CODE, BYTECODE, OPCODE 
Similar to traditional software development, smart contract development employs a high-

level programming language. Contracts that are self-executing are referred to as smart 

contracts. Currently, many platforms [69],[70], [71], and [72] facilitate the deployment of 

smart contracts, each with its own contract development language. The majority of these 

platforms, including the Ethereum blockchain platform, are developed using the Solidity 

programming language. In addition to Solidity, other programming languages used to 

develop smart contracts are Yul, JavaScript, c++, etc. [73].  

Before the smart contract can be deployed on the EVM, the source code that was written 

for the contract has to be compiled. Compilation of a program is the process of converting 

source code for a program that was written in a high-level language into machine code so 

that the program may be executed by a computer. In a smart contract, the binary code that 

is utilized for execution is referred to as bytecode, or EVM code. The EVM completes the 

execution of the contract by compiling the bytecode into the correct opcode [74]. 

Creating an Application Binary Interface (ABI) as well as building a Ethereum smart 

contract becomes achievable by making use of a compiler [75]. and this ABI is essential 

for parsing out function selectors and implementing contract functions. The process 

requires compiling source code into bytecode first followed by interpretation it into opcode 

is shown in Figure 17. 
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Figure 17: Solidity code, Solidity Bytecode, and Solidity Opcode. 

Solidity is a high-level programming language that is used to build smart contracts on the 

Ethereum blockchain. An example of Solidity Source code can be found in Figure 17 - A. 

These contracts have the terms of the agreement between two parties encoded straight into 

lines of code. When the Solidity source code is created, it has to be compiled into bytecode 

as shown in Figure 17 - B, which is a low-level representation of the code that can be run 

by the Ethereum Virtual Machine. 

The EVM does not immediately execute the bytecode; rather, it interprets the bytecode into 

opcode instructions as shown in Figure 17 - C before continuing with the execution. 

Opcode is a low-level language that is utilized by the EVM to execute the instructions that 

are contained in the bytecode. Opcode is an abbreviation for "Operation Code." The EVM 

starts by reading each opcode from the bytecode, carrying out the operation that 

corresponds to it, and then moving on to the next opcode in the sequence until it reaches 

the end of the bytecode. 

Ethereum Virtual Machine (EVM) is empowered with more than 100 distinct sets of opcode 

assembly operation instructions including arithmetic functions such as, add/subtract, 

comparison expressions such as, greater/equal/less than, bitwise functions AND/OR/XOR, 

cryptographic functionality (hash/encrypting etc.). Along with handy stack manipulation 

functionalities and Table 2 summarized below highlights all the commonly utilized 

Ethereum opcode assembly instruction.  The EVM uses the instruction table located at [76].  

to map bytecode consisting of a series of hexadecimal numbers like 60 60 52 40 with its 

opcode hexadecimal value, an example, “40” maps to “MSTORE, etc.. 
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Table 2: The most commonly opcode assembly instructions. 

INSTRUCTIONS DEFINITION 

PUSH 

This instruction adds value to the stack. A different byte length of 

the value being pushed corresponds to each of the 16 PUSH 

possibilities. 

POP The item at the top of the stack is removed by this instruction. 

ADD and SUB 
The top two items of the stack are added to and subtracted from 

using these instructions, respectively. 

MUL and DIV 
The top two items in the stack are multiplied and divided by these 

instructions, respectively. 

SLOAD and 

SSTORE 
These instructions, in turn, read and write data to storage. 

JUMP and 

JUMPI 

These instructions either unconditionally or conditionally jump to 

a new position in the bytecode depending on the item at the top of 

the stack. 

CALL and 

RETURN 

These instructions are put to use, respectively, to invoke external 

contracts and receive data from a contract. 

SELFDESTRUCT 
The current contract is terminated, and any remaining ether is sent 

to the specified address. 

 

These are only a few of the EVM instructions that are used most frequently. There are 

numerous additional features, and developers who deal with Ethereum smart contracts 

should have an in-depth understanding of the EVM and its command set. 

In this thesis we have chosen to examine the opcode level to identify vulnerabilities in 

smart contracts for three reasons. First, the source code is written by humans and contains 

function names that can be altered, which can make it difficult to identify the relevant 

functions and their influence on the detection results. Moreover, the source code frequently 

contains annotations and vacant lines, making it difficult to authentically represent the 

code's characteristics. Second, bytecode is not legible by humans and lacks syntax structure 

and sequence information, making it difficult to analyze its functions. Lastly, opcodes are 

derived from more than 100 EVM operation instructions, which accurately reflect the 

contract's inner logic and enhance the model's reliability. 

2.2.1 DETECTION METHODS USED FOR VULNERABILITY DETECTION 

There are four different detection techniques for smart contracts code as follows: 

Static analysis is a method that can be used for examining Solidity smart contracts without 

executing them. This approach entails inspecting the smart contract's Solidity source code 

for possible vulnerabilities and ensuring compliance with coding standards. Static analysis 
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is very beneficial for finding code faults that might lead to vulnerabilities in Solidity smart 

contracts, such as integer overflow/underflow and reentrancy problems [77]. 

Symbolic execution is a testing approach that can also be used for Solidity smart contracts 

to examine the code to find all potential execution pathways. Symbolic execution represents 

inputs to the smart contract with symbolic values, enabling the tester to explore all potential 

routes of execution without actually running the code. Symbolic execution may help 

uncover sophisticated vulnerabilities in Solidity smart contracts, such as control flow and 

data flow concerns [78]. 

Fuzzing analysis is a method that can be used for testing Solidity smart contracts that 

involve creating random or semi-random inputs and analyzing the contract's behavior. 

Fuzzing can help as a technique for detecting vulnerabilities in Solidity smart contracts that 

are caused by unexpected or malicious inputs, such as buffer overflows and DOS attacks 

[79]. 

To evaluate Solidity smart contracts against unknown possible vulnerabilities, machine 

learning methods may be utilized. Machine learning may be used to detect patterns in 

Solidity source code or bytecode that indicate vulnerabilities such as code repetition or 

control flow concerns [80]. 

2.2.2 TOOLS USED FOR VULNERABILITY DETECTION 

In this section, we explore the most relevant smart contract vulnerability tools that have 

been proposed in the literature. 

1) Oyente [81] 

Oyente is a symbolic execution based static analysis tool that can be used without using 

high-level languages like Solidity on EVM bytecode. It makes it possible to find flaws like 

TOD, predictable random numbers (timestamp dependent), reentrancy, and exception-

handling errors. Additionally, it supports the majority of EVM opcodes. However, Oyente 

finds it challenging to infer the development intent simply from the EVM bytecode due to 

the absence of context information such as variable types and the repetition of the same 

bytecode by many function calls. As a result, Oyente is not capable of checking for 

concerns with fairness and accuracy such as integer overflow. 

2) Securify [82] 



32 

 

Securify is a scalable and lightweight security verifier for Ethereum smart contracts. It 

establishes compliance patterns and compares the contract to these patterns to find 

weaknesses. Additionally, it offers the discovery of flaws like TOD, missing argument 

validation, unchecked write and transfer permissions, frozen tokens, and exception 

handling mistakes. Version 2.0 of Securify has recently been released and it supports an 

improved smart contract language and more detection techniques. 

3) Mythril [83] 

Mythril uses symbolic techniques [83]. Mythril initializes the contract account's state after 

decompiling the EVM bytecode and uses numerous transactions to explore the contract's 

state space. When an undesirable circumstance is discovered. Mythril determines the 

necessary transactions to get to a vulnerability state when one is found to confirm the 

vulnerability's existence. 

4) teEther [84] 

The focus of the analysis tool teEther [84], which uses symbolic execution and result 

validation to analyze Ethereum EVM contracts, focuses on identifying permission 

verification missing, i.e. unrestricted call. There are four steps in the teEther contract 

analysis process: firstly, by creating a Centrifuge token for a contract. The next step is 

looking in the contract for crucial instructions, such as DELEGATECALL, 

SELFDESTRUCT, and/or SSTORE, and other state-changing instructions. Investigating 

routes to these instructions is the third phase. The fourth stage consists of resolving the 

limits imposed by using different approaches in order to locate the weaknesses. 

5) MAIAN [85] 

MAIAN [85] is a tool based on symbolic execution and results in validation to analyze 

Ethereum EVM contracts. It checks the execution pathways as it symbolically executes 

smart contracts. By assaulting contracts using actual transactions. MAIAN facilitates the 

identification of security flaws including suicidal contracts and frozen tokens. 

6) ContractFuzzer [86] 

A fuzzer called ContractFuzzer is used to find vulnerabilities in Ethereum EVM contracts 

[86]. Online fuzzing and offline instrumentation make up the two components of 

ContractFuzzer. The offline instrumentation phase involves instrumenting the EVM code 
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so that the fuzzing phase may see the contract's execution. ContractFuzzer can extract 

information about ABI functions, and analyze the contract bytecode, which enables the tool 

to produce legitimate fuzzing inputs. The program chooses at random from among the 

smart contracts it has crawled on Ethereum for fuzzy processing. Then it provides the 

discovery of vulnerabilities like exception handling errors, reentrancy, … etc. 

7) Slither [87]:  

Slither [87] is a Python-based open-source static analysis framework that was created in 

2018. It analyzes solidity code as input. It employs the SlithIR intermediate representation. 

To find vulnerabilities, Slither uses dataflow analysis and tracking methodologies. It may 

be used to discover automated vulnerabilities, detect automated optimization and analyze 

code. This tool's open-source version supports finding various issues such as re-entrancy, 

ether lock, and timestamp. 

8) Conkas [88]:  

Conkas is a tool used to detect vulnerabilities in Solidity contracts by identifying potential 

security issues such as re-entrancy, integer overflow, and other common vulnerabilities is 

done through analysing the byte code or solidity code of the smart contract. By using both 

dynamic and static analysis methods. It is possible to use Conkas as either an independent 

tool or integrate it within an existing development pipeline.  Smart contract developers can 

find and eliminate potential issues more easily with an easy to understand report format 

that presents the analysis results [88]. 

9) The ConFuzzius [89] 

ConFuzzius [89] is a tool that uses a combination of static and dynamic analysis approaches 

to effectively traverse the state space of smart contracts and uncover vulnerabilities like 

reentrancy, integer overflow/underflow, and other common flaws. The program uses data 

dependence analysis to discover potential vulnerability channels via the contract and 

prioritizes testing those paths first. The hybrid technique combines coverage-guided 

fuzzing with symbolic execution to improve testing efficiency and efficacy. 

The authors created a dataset and published it in [90]. A DL methodology called BLSTM-

ATT is used to precisely discover reentrancy issues. Their work is restricted to detecting 

specific attacks based on a reentrancy vulnerability and for an old version of smart 

contracts. 
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Most of the tools discussed above are not using machine learning, as these tools are based 

on static analysis which may not be able to detect vulnerabilities with high accuracy.    

In [90] they have conducted machine learning algorithms on solidity version 0.4.X which 

is currently an old version as solidity has reached version 0.8.X. Therefore, the code syntax 

is different and consequently, there is a need to have a new dataset that represents the state-

of-the-art smart contracts code.  

Table 3: Literature Review Comparison Table 

Tool 

Detection Level 

Year 

Published 

Last 

Update 

Platform 

Used 

Availability 

on GitHub 

Link of 

GitHub 

Solidity 

Source 

Code 

Bytecode 

ContractFuzzer 🗸 - 2018 2020 Python 🗸 

https://github.c

om/gongbell/C

ontractFuzzer 

[91]   

Slither 🗸 🗸 2018 2023 Python 🗸 

https://github.c

om/crytic/slithe

r [92] 

Conkas 🗸 🗸 2021 2022 Rust 🗸 

https://github.c

om/nveloso/con

kas [93] 

Confuzzius 🗸 🗸 2020 2022 Python 🗸 

https://github.c

om/christoftorr

es/ConFuzzius 

[94] 

MAIAN 🗸 🗸 2018 2021 Java 🗸 

https://github.c

om/ivicanikolic

sg/MAIAN 

[95] 

teEther 🗸 - 2018 2021 Solidity 🗸 

https://github.c

om/nescio007/t

eether [96] 

Mythril 🗸 - 2017 2023 Python 🗸 

https://github.c

om/ConsenSys/

mythril [97] 

Oyente 🗸 - 2016 2020 Python 🗸 

https://github.c

om/enzymefina

nce/oyente [98] 

Securify 🗸 - 2018 2021 Java 🗸 

https://github.c

om/eth-

sri/securify2 

[99] 

 

Table 3 shows that every tool listed is intended to verify Solidity code for weaknesses at 

the source code level. At the bytecode level, however, only four out of the 9 listed tools are 

capable of detecting vulnerabilities. The majority of the tools mentioned in Table 3 were 

introduced in 2018, see year published column, but they have received frequent updates for 

https://github.com/gongbell/ContractFuzzer
https://github.com/gongbell/ContractFuzzer
https://github.com/gongbell/ContractFuzzer
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/crytic/slither
https://github.com/nveloso/conkas
https://github.com/nveloso/conkas
https://github.com/nveloso/conkas
https://github.com/christoftorres/ConFuzzius
https://github.com/christoftorres/ConFuzzius
https://github.com/christoftorres/ConFuzzius
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ivicanikolicsg/MAIAN
https://github.com/ivicanikolicsg/MAIAN
https://github.com/nescio007/teether
https://github.com/nescio007/teether
https://github.com/nescio007/teether
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/enzymefinance/oyente
https://github.com/enzymefinance/oyente
https://github.com/enzymefinance/oyente
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2
https://github.com/eth-sri/securify2
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better performance and capabilities which is worth mentioning. A closer look reveals that 

a large number of these tools were updated not too long ago as illustrated by the last update 

column. All the tools are available on GitHub and freely accessible. Four different 

programming languages, Python, Rus, Java, and Solidity, have been used to create the 

platforms that support vulnerability detection. Among these programming languages 

Python was the most widely used. 

Table 4: Category of Vulnerability Tools that Can Detect  

Tools 
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ContractFuzzer 
- - - - 🗸 🗸 - 

Slither 
- - - 🗸 🗸 🗸 🗸 

Conkas 
- - - - 🗸 🗸 - 

Confuzzius 
🗸 🗸 🗸 - 🗸 - 🗸 

MAIAN 
- - - 🗸 - 🗸 - 

teEther 
- - - - 🗸 🗸 🗸 

Mythril 
- - - - 🗸 🗸 🗸 

Oyente 
- - - - - 🗸 🗸 

Securify 
- - - - 🗸 🗸 🗸 

In [90] 
- - - - - 🗸 - 

 

After analyzing Table 4, it is evident that four out of the eight vulnerabilities are being 

aimed for detection by almost all the tools being considered. These vulnerabilities comprise 

Time-Dependent Access Control (TOD attack), Reentrancy, and Integer Over/Underflow. 

The unanimous agreement among the tools on the identification of these four vulnerabilities 

indicates that they are extremely crucial concerns in Solidity programming that necessitate 

vigilant consideration from developers. 
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On the other hand, there are four attacks that are only detected by one or two tools, implying 

that they may be relatively uncommon or difficult to detect. These vulnerabilities are 

Arbitrary Memory Access, Assertion Failure, Block Dependency, and Etherlock. It is worth 

noting that just because these vulnerabilities are only detected by a limited number of tools, 

it does not mean they are less important or less risky than the more commonly detected 

vulnerabilities. In fact, these less frequently detected vulnerabilities may be even more 

dangerous precisely because they are less well-known and less likely to be protected 

against. As such, a recommendation can be given that encourages researchers to conduct 

more detailed research that studies the risk of these least commonly detected vulnerabilities 

using different tools and techniques.  

Table 5: Detection Methods of Each Tool. 

 

Tools 

Detection Method 

Static Symbolic execution Fuzzing ML 

ContractFuzzer 
- - 🗸 - 

Slither 
🗸  🗸 - 

Conkas 
🗸 -  - 

Confuzzius 
🗸 - 🗸 - 

MAIAN 
🗸 -  - 

teEther 
- - 🗸 - 

Mythril 
- 🗸 - - 

Oyente 
🗸 - - - 

Securify 
🗸 - - - 

In [90] 
- - - 🗸 
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Figure 18: Statistics of Detection Techniques. 

Upon careful examination of Table 4 and Figure 18, it becomes evident that machine 

learning algorithms have been applied only to the detection of one attack category - 

reentrancy. While this may represent an important step forward in the use of machine 

learning for vulnerability detection, it also highlights the vast potential of such a tool for 

future research in this area. 

Given that there are numerous vulnerability categories that Solidity code may be 

susceptible to, there is ample scope for machine learning algorithms to be applied to detect 

vulnerabilities beyond reentrancy. By leveraging the power of artificial intelligence and 

data-driven analysis, it may be possible to develop more accurate and efficient methods for 

identifying and mitigating a wider range of vulnerabilities in Solidity code. 

Consequently, the fact that machine learning algorithms have been successfully applied to 

detecting reentrancy represents a powerful motivation for future work in this area. By 

continuing to explore the potential of machine learning in the context of Solidity 

vulnerability detection, researchers and developers may be able to unlock even greater 

potential for securing smart contracts and other decentralized applications.  

In Table 5 and Figure 18 we can notice that only one tool is using symbolic execution 

technique and one tool uses a machine learning technique and the rest are either fuzzy or 

static. This encourages future research focusing on detecting more vulnerable categories 

using symbolic and/or machine learning. 

50%

8%

34%

8%

Detection Methods Percentage

Static Symbolic execution Fuzzing ML
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2.2.1 MACHINE LEARNING MODELS 

Machine Learning (ML) algorithms can improve and learn over time by analyzing 

substantial amounts of data, observing patterns and trends, and employing the findings to 

predict outcomes or make decisions. Adapting ML behavior based on received data is 

possible because of their learning experience. ML algorithms are classified into three 

primary categories, supervised learning, unsupervised learning, and reinforcement 

learning. Each category has its own distinct merits and demerits. The usage of machine 

learning algorithms can be found in different applications such as detecting malware [100], 

image recognition [101], blockchain [102], …etc. We will introduce four commonly used 

machine learning algorithms: Decision Tree (DT), Neural Network (NN), Support Vector 

Machines (SVM), and Long Short Term Memory (LSTM). 

1. Decision Tree: 

A decision tree is constructed by adding nodes for each feature in the pre-processed dataset, 

with the characteristic deemed to be the most significant being placed at the tree's root. It 

functions properly for both continuous and categorical output variables for each feature. 

This procedure is repeated until the final (leaf) node, which contains the DT's predictions 

or outcomes, is reached. Figure 19 shows a prototype decision tree model. The point that 

has a light green color indicates where the root node is, and the red dots indicate where the 

leaf nodes are. There is a decision to be made at every fork in the road [103]. The decision 

Tree Algorithm is a popular machine learning algorithm that is used for both classification 

and regression tasks. One of the classes within the Decision Tree Algorithm is the Decision 

Tree Classifier, which is used specifically for classification tasks. 

To use the Decision Tree Classifier, you first need to train the algorithm using training data. 

This is done by calling the "fit" method of the Decision Tree Classifier class and passing 

in the training data as an argument. The "fit" method then creates a decision tree based on 

the training data, where each node of the tree represents a decision based on a specific 

feature or attribute of the data. The tree is constructed by recursively partitioning the data 

into subsets based on the selected features until a stopping criterion is met. 
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Once the tree has been constructed, the Decision Tree Classifier can be used to predict the 

class labels of new, unseen data points. This is done by traversing the decision tree from 

the root node to a leaf node based on the values of the features of the new data point. The 

leaf node reached by this traversal represents the predicted class label for the new data point 

[104]. 

2. Neural Network: 

A neural network is a type of machine learning algorithm that is modeled after the structure 

and function of the human brain. It consists of a series of interconnected nodes or "neurons" 

that process and transmit information. 

One of the simplest neural network architectures is the Perceptron, which consists of a 

single layer of neurons that take in input features and produce output values. The Perceptron 

is commonly used for binary classification tasks, where the goal is to predict whether a 

given input belongs to one of two classes. 

While the Perceptron can be effective for simple classification tasks, it has some 

limitations. For example, it can only learn linear decision boundaries, which can limit its 

performance on more complex tasks. To address this limitation, neural networks with 

hidden layers are used. 

A hidden layer is a layer of neurons between the input and output layers of a neural network. 

Each neuron in the hidden layer receives inputs from the neurons in the previous layer and 

produces outputs that are fed into the neurons in the next layer. By adding hidden layers, 

Figure 19: Decision Tree Model Figure 19: Decision Tree Model 



40 

 

neural networks can learn more complex patterns in the data and produce more accurate 

predictions. [103]. 

 

Figure 20: Neural Network 

3. Support Vector Machine (SVM): 

The Support Vector Machine, or SVM, is a method of supervised machine learning that 

may be used for regression, classification, and the identification of outliers. It provides a 

high level of accuracy where the numerous continuous, unconditional, and discrete 

variables can be handled, outperforming other classifiers like logistic regression and DT. 

Finding the marginal hyperplane with the highest margin that can be used for the 

classification of input data that has been pre-processed is the main goal of support vector 

machines [105]. As can be seen in Figure 21, it picks the Support Vector margin that has 

the highest probability of being correct within the dataset that is provided. 

Figure 21: SVM Classifier 
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4. LSTM: 

Long Short-Term Memory (LSTM) is a form of recurrent neural network (RNN) that is 

extensively employed in machine learning for modeling and predicting sequences. 

Traditional RNNs have difficulty preserving long-term dependencies in sequential data due 

to the vanishing gradient problem; LSTMs are designed to surmount this limitation. LSTMs 

employ a memory cell that enables them to retain and retrieve information over extended 

periods, thereby allowing them to model intricate temporal patterns [106]. 

The memory cell is accompanied by three gates in an LSTM architecture: the input gate, 

neglect gate, and output gate. These gates permit the LSTM to selectively store or discard 

information in the memory cell, thereby enhancing the model's capacity to learn and 

remember meaningful long-term dependencies. The input gate regulates the passage of new 

input into the memory cell, the neglect gate controls the removal of information from the 

cell, and the output gate controls the quantity of information that is output from the cell 

[106]. 

LSTMs have proven highly effective in a variety of applications, including speech 

recognition, machine translation, sentiment analysis, and time-series forecasting. They are 

a popular choice for applications such as natural language processing, financial forecasting, 

and weather forecasting because they are particularly well-suited to tasks where long-term 

dependencies are crucial for accurate predictions [106]. 

 

Figure 22: LTSM Classifier 
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2.2.2 MACHINE LEARNING VULNERABILITY DETECTION 

MODELS USING OPCODE 

 

Detecting malware and vulnerabilities is crucial for maintaining the security of computer 

systems and networks. However, traditional approaches to malware detection and 

vulnerability analysis are often time-consuming and resource-intensive [107]. 

Machine learning has emerged as a promising approach to addressing these challenges, 

particularly when it comes to detecting malware and vulnerabilities at the opcode level. By 

analyzing the opcode sequences of executable files, machine learning algorithms can 

identify patterns and behaviors that are indicative of malware or vulnerability exploitation 

[108]. 

One advantage of using machine learning for malware and vulnerability detection is that it 

can quickly analyze large amounts of data and identify potential threats in real-time. In 

addition, machine learning can adapt to new types of malware and vulnerabilities, making 

it a more robust and scalable approach to security [107]. We will introduce four research 

papers that use NN, SVM, Decision Tree, and LSTM on different technologies to detect 

malwares based on the opcode level. 

1. Neural Network (NN): 

In [109], the Perceptron is trained on opcode features extracted from malware samples, 

which represent the low-level instructions executed by a program. The results of the 

experiment show that the Perceptron achieves good accuracy in detecting malware using 

opcode features, with an accuracy rate of around 90%. However, the performance of the 

Perceptron is inferior to that of the proposed hybrid attention network, which achieves an 

accuracy rate of over 98%. 

The authors suggest that the Perceptron can serve as a baseline method for malware 

detection using opcode features, especially in scenarios where the dataset is small or the 

computational resources are limited. The study also highlights the potential of machine 

learning algorithms, including the Perceptron, for effective detection of malware. 
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2. SVM 

In [110] the effectiveness of the SVM algorithm in detecting malware using opcode trigram 

sequences is evaluated in detail. Support Vector Machine (SVM) is a popular machine 

learning algorithm that is commonly used in binary classification tasks, including malware 

detection. SVM works by finding an optimal hyperplane that separates the data points into 

two classes, in this case, malware and benign files. In this study, the authors extract opcode 

trigram sequences from malware samples, which represent a sequence of three opcode 

instructions, and use them as input features for the SVM model. 

To evaluate the effectiveness of the proposed approach, the authors conducted experiments 

on two publicly available datasets, namely, the Malimg dataset and the Microsoft Malware 

Classification Challenge (MS-Malware) dataset. The results show that the SVM algorithm 

achieves high accuracy in detecting malware using opcode trigram sequences, with an 

accuracy rate of around 99%. The precision, recall, and F1-score metrics are also reported 

to be high, indicating the effectiveness of the SVM approach in detecting malware. 

The authors also compared the performance of the SVM algorithm with that of other 

machine learning algorithms, such as Naive Bayes, Random Forest, and Multilayer 

Perceptron. The results show that the SVM algorithm outperforms these algorithms in 

terms of accuracy and F1-score metrics which highlight its effectiveness in detecting 

malware using opcode trigram sequences. 

The study also highlights the importance of feature selection in malware detection. By 

using opcode trigram sequences as input features, the SVM algorithm is able to effectively 

distinguish between malware and benign files. 

3. Decision Tree 

In [111] the authors conduct an in-depth evaluation of the effectiveness of decision tree 

algorithms in detecting metamorphic malware using opcode frequency rates. The study 

focuses on metamorphic malware, which is a type of malware that can change its code to 

avoid detection by traditional signature-based antivirus systems. To detect such malware, 

the authors extract opcode frequency rates from the malware samples, which represent the 

relative frequency of each opcode instruction, and use them as input features for the 

decision tree algorithm. 
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In the context of malware detection, the decision tree algorithm can effectively distinguish 

between malicious and benign files by identifying the most discriminative features that 

distinguish them. To evaluate the effectiveness of the proposed approach, the authors 

conducted experiments on a publicly available dataset, namely, the VXHeaven dataset. The 

results show that the decision tree algorithm achieves high accuracy in detecting 

metamorphic malware using opcode frequency rates, with an accuracy rate of around 99%. 

The precision, recall, and F1-score metrics are also reported to be high, indicating the 

effectiveness of the decision tree approach in detecting metamorphic malware. 

The study also compared the performance of the decision tree algorithm with that of other 

machine learning algorithms, such as Naive Bayes, K-Nearest Neighbors, and Random 

Forest. The results show that the decision tree algorithm outperforms these algorithms in 

terms of accuracy and F1-score metrics, highlighting its effectiveness in detecting 

metamorphic malware using opcode frequency rates. 

The authors also conducted experiments to evaluate the impact of feature selection on the 

performance of the decision tree algorithm. The results show that the decision tree 

algorithm can achieve high accuracy in detecting metamorphic malware using a small 

subset of the most informative features, which can significantly reduce the computational 

cost of the detection process. 

4. LSTM 

In [100] the authors propose a novel approach for malware detection using LSTM neural 

networks. The study focuses on the use of opcode sequences as input features for the LSTM 

network. Opcode sequences are a representation of the instructions executed by a program 

and are commonly used in the field of malware detection to analyze the behavior of 

malware. In the context of malware detection, the LSTM network can be used to capture 

the patterns and relationships in the opcode sequences and classify malware samples 

accordingly. 

To evaluate the effectiveness of the proposed approach, the authors conduct experiments 

on a publicly available dataset, namely, the Malimg dataset. The dataset contains a large 

number of malware samples, each labeled with the corresponding malware category. 

The results of the experiment show that the LSTM-based approach achieves high accuracy 

in detecting malware using opcode sequences as input features, with an accuracy rate of 
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over 98%. The precision, recall, and F1-score metrics are also reported to be high, 

indicating the effectiveness of the LSTM approach in detecting malware. 

The performance of the LSTM based technique is also contrasted with those of other 

machine learning algorithms, including SVM and Random Forest. The results show that 

the LSTM based approach outperforms these algorithms in terms of accuracy and F1-score 

metrics, highlighting its effectiveness in detecting malware using opcode sequences. 

The length of the opcode sequences and the number of LSTM layers are two other variables 

that the authors test to see how they affect the performance of the LSTM based approach. 

The results show that the LSTM based approach is robust to variations in the length of the 

opcode sequences and can achieve high accuracy with a small number of LSTM layers. 
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Chapter 3: RESEARCH METHODOLOGY 

 

3.1 METHODOLOGY 

 

The objective of this thesis is to develop a technique that can automatically and more 

precisely identify multiple vulnerabilities in smart contracts, overview of this technique is 

shown in Figure. The intention is to overcome the limitations of conventional approaches 

to detecting vulnerabilities in smart contracts, which suffer from drawbacks such as 

inadequate detection capabilities, limited automation, and slow detection speeds as shown 

in Figure 32 [40].  

In this thesis a framework for detecting vulnerabilities with multiple labels is proposed 

which consists of five parts: 

1. Collecting Solidity smart contracts, their bytecode, and opcode. 

2. Running solidity static detection tools to get vulnerabilities categories 

3. Multi-labelling the dataset based on the results of step 2. 

4. Opcode pre-processing to convert the opcode into opcode EVM hexadecimal 

representation. 

5. Run ML vulnerability detection models on the dataset. 

The first step in data pre-processing is to use the Ethereum website to convert the smart 

contract bytecode into opcodes. This is followed by converting the opcodes into opcode 

EVM hexadecimal values for input to the Machine learning detection tool.  

 

Figure 23: Our Technique Methodology. 
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The dataset has been labeled manually by entering the value either “0” or “1” for each 

vulnerability category based on the static tools results. This results in having a multi label 

category that can be used by machine learning algorithms for training and testing. We have 

used in our study four different machine and deep learning techniques (Decision Tree, 

Perceptron, SVM, and LTSM). We delve into the details of these five steps as follows. 

3.1.1 DATA COLLECTION 

Researchers and developers who need access to a large collection of smart contracts for 

analysis and experimentation face a challenge due to the limited availability of open source 

Solidity code. 

In our case, we discovered that the available resources for accumulating Solidity code were 

insufficient to meet our requirements for a diverse and exhaustive collection of contracts. 

As a result, we decided to create our own Solidity code collection utility. Our tool is used 

to extract contracts “Solidity, bytecode, and opcode” from the official platform of Ethereum 

“ethersscan.io”, by using a combination of web crawling libraries in Python. 

The creation of our own tool enabled us to collect a large and diverse set of contracts for 

analysis. This in turn allowed us to acquire a deeper understanding of the behavior of smart 

contracts on the Ethereum network. By using this tool, we were able to surmount the 

limitations of existing resources and contribute to the research community by providing an 

exhaustive dataset of Solidity code for analysis and experimentation. The Pseudo Code of 

collecting solidity code be found in Appendix A. 

On the other hand, we aimed to extract the relevant opcode and bytecode for each Solidity 

contract once we had gathered a huge and diversified collection of Solidity smart contracts. 

This was a critical stage in our investigation since the opcode and bytecode contain critical 

information about the contract's internal workings, including its functionality and any 

existing flaws. We used etherscan.io again to derive the opcode and bytecode of collected 

smart contracts.  

We utilized the opcode for each contract as input data for our vulnerability detection 

algorithm after obtaining them. By examining the opcode, our model was able to discover 

possible vulnerabilities in the contracts, such as reentrancy, integer underflow, … etc. 

Collecting opcode was an important step in our investigation of smart contract 

vulnerabilities, allowing us to create a thorough and effective vulnerability detection 
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model. The Pseudo Code of collecting bytecode and Opcode code be found in Appendix 

A. 

3.1.2 DATA PREPROCESSING 

After we have extracted the opcode from the Solidity contracts, we need to convert the 

opcode instructions into a machine readable format. This involved converting each opcode 

instruction into its corresponding hexadecimal value, which could be read and processed 

by our vulnerability detection model. 

To achieve this, we developed a custom script that maps each opcode instruction into its 

corresponding hexadecimal value. This script allowed us to easily convert the opcode 

instructions into a machine readable format, which we could then use as input data for our 

vulnerability detection model. 

By converting the opcode instructions to their hexadecimal values, we were able to 

accurately represent the inner logic of the Solidity contracts in a machine-readable format. 

This allows our model to analyze the contracts and identify potential vulnerabilities. This 

step was crucial in our analysis, as it enabled us to process the opcode instructions in a 

standardized and efficient manner and improve the accuracy and effectiveness of our 

vulnerability detection model. The Pseudo Code of converting Opcode to Opcode 

Hexadecimal Values can be found in Appendix A. 

3.1.3 DETECTING SMART CONTRACTS VULNERABILITIES 

USING STATIC TOOLS 

Once we had collected a diverse set of Solidity smart contracts and extracted their 

corresponding opcode and bytecode, we used static analysis tools to detect potential 

vulnerabilities in the contracts. 

We used a variety of static analysis tools such as, Slither [87], Confuzzion [89], MAIAN 

[85], Conkas [88], and Securify [82], where these tools are available on GitHub as publicly 

available open source tools [92], [94], [95], [93], and [99], respectively. These tools 

enabled us to identify a wide range of potential vulnerabilities, including reentrancy attacks, 

integer overflows, and other common smart contract vulnerabilities. 

By using static analysis tools, we were able to identify potential vulnerabilities in a large 

number of contracts, and gain insights into the most common types of vulnerabilities and 

their prevalence in real-world contracts. This information was valuable to conduct the multi 

labeling process in the next step.  
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3.1.4 MULTI-LABEL 

Table 6 displays the definition of smart contract multi-label classification, which involves 

categorizing smart contracts into multiple categories or labels based on static detection 

tools results, as follow: 

Table 6: Dataset Categories. 
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0 0 0 1 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 1 0 0 

1 1 0 0 1 0 0 1 1 0 0 1 0 0 

1 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 1 0 0 0 0 

0 0 1 1 0 0 0 0 0 1 1 0 0 0 

0 1 0 0 1 0 0 0 1 0 0 1 0 0 

0 1 0 1 1 0 0 0 1 0 1 1 0 0 

0 1 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 1 1 0 0 

1 0 0 0 1 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 1 

0 0 0 0 1 1 0 0 0 0 0 1 1 0 

0 0 0 1 0 1 0 0 0 0 1 0 1 0 

0 0 0 0 0 1 0 0 0 0 0 0 1 0 

1 0 1 0 1 0 0 1 0 1 0 1 0 0 

0 0 1 0 1 0 0 0 0 1 0 1 0 0 

0 0 1 0 1 1 0 0 0 1 0 1 1 0 

1 1 0 0 1 1 0 1 1 0 0 1 1 0 

1 0 1 0 0 0 0 1 0 1 0 0 0 0 

0 0 0 1 0 0 1 0 0 0 1 0 0 1 
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0 0 1 1 1 0 0 0 0 1 1 1 0 0 
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There are seven labels that correlate to a contract, and the value of each label is either 0 or 

1. When the value is 0, it indicates that the contract does not have a particular vulnerability, 

and when the value is 1, it indicates that the contract does have a weakness of that sort. The 

vulnerability labels are different from one another. For instance, the label of the contract X 

is Lablex = [0 1 0 1 0 0 0], which indicates that the contract x has an Assertion_Failure and 

an Etherlock vulnerability. 

We collected a total of 2194 verified smart contracts from the Etherscan.io website and 

manually added labels to all contracts based on the detection results given by Slither, 

Confuzzion, MAIAN, Conkas, and Securify static detection tools. The detection capacity 

of the model outlined in this thesis extends to identifying a total of seven distinct 

vulnerability varieties including: Arbitrary_Memory_Access, Assertion_Failure, 

Block_Dependency, etherlock, integer overflow/underflow, reentrancy, and TODAmount 

as shown in Figure 24. 
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Figure 24: Numbers of Vulnerabilities in Dataset 

Number of Vulnerabilites of each Category in
Dataset

Arbitrary_Memory_Access 20

Assertion_Failure 31

Block_Dependency 89
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Figure 25: Vulnerability Percentage of Each Category in Dataset. 

As an observation, we can see in Figure 24 and Figure 25 that 62% of our smart contract 

dataset is not vulnerable. The most detected vulnerability is “etherlock” with 24%, the 

second and third highest detected vulnerabilities categories are Integer overflow/underflow 

and Block_Dependency with 6% and 4% respectively. The rest of the attacks have almost 

a 1% detection ratio each. 

3.1.5 INTERSECTION TECHNIQUE 

 

During our analysis of the literature, we discovered that the accuracy of current 

vulnerability detection methods for Solidity contracts varied greatly, with some tools 

producing significant false positive rates and others failing to identify known issues [87] 

[88]. 

We used an intersection-based technique to increase the accuracy of our machine learning 

vulnerability detection model by only evaluating vulnerabilities reported by several tools. 

Through using this technique, we were able to decrease the risk of false positives and raise 

the overall accuracy of our model. Moreover, we were able to discover a broader variety of 

possible vulnerabilities in Solidity contracts.  

This method also allowed us to learn about the most frequent types of vulnerabilities and 

their prevalence in real-world contracts, which helped us better understand the security 

concerns connected with these smart contracts. 
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In Figure 26 we can see the intersections between different smart contract static detection 

tools for identifying specific types of vulnerabilities. Specifically, we can see that we have 

taken the intersection between Slither and Maian to decrease false positives and negatives 

of the Etherlock vulnerability, and we have taken the intersection between Slither and 

Conkas to decrease false positives and negatives of the Reentrancy vulnerability. 

Additionally, we have taken the intersection between Confuzzius and Conkas to decrease 

false positives and negatives of the Integer Overflow/Underflow vulnerability. 

These intersections represent the overlap between the results of different smart contract 

static detection tools for identifying vulnerabilities. By taking the intersection of multiple 

tools, we can reduce the number of false positives and negatives, which improves the 

accuracy and reliability of our vulnerability detection. 

By using multiple smart contract static tools and taking the intersection of their results, we 

can improve the effectiveness of our vulnerability detection and reduce the risk of 

successful attacks. This approach is particularly useful for identifying complex and hard-

to-detect vulnerabilities, which are increasingly common in today's threat landscape. 

Since we found three different intersections between four tools, We have generated three 

sub-datasets as shown in Table 7, Table 8, and Table 9 from our main dataset, namely 

integerconcat.csv, reentrancyconcat.csv, and etherlockconcat.csv. these three datasets were 

generated by taking the intersection of the results based on static tools. The main reason 

for this approach is to increase the accuracy and reduce false positive rates, which can 

improve the effectiveness of our research methodology. Moreover, this approach allows us 
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Figure 26:  Tools Intersections 
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to identify if any specific vulnerabilities category resulting from static tools may require 

enhancement in terms of false positives. 

Table 7: Integer Intersection Dataset Category. 

IntegerConcat.csv 

integer overflow/underflow Category 

If Exist 1 0 

Not Exist 0 0 

 

Table 8: Reentrancy Intersection Dataset Category. 

reentracncyconcat.csv 

Reentrancy Category 

If Exist 1 0 

Not Exist 0 0 

 

Table 9: Etherlock Dataset Category. 

etherlockconcat.csv 

etherlockconcat Category 

If Exist 1 0 

Not Exist 0 0 
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Chapter 4: RESULTS AND DISCUSSION 

 

In this section, we will cover the various parameters used in the experimental methodology. 

Including the dataset used, parameter settings, and evaluation indicators. We will also 

present the experimental results and observations, providing a comprehensive and objective 

assessment of the research findings. 

4.1 EXPERIMENT 

 

The dataset consists of four columns, the first column is the smart contract address which 

the user can use to verify the existence of the smart contract on the etherscan.io website. 

The second column is the contract name, and the most two important columns in our 

experiment are the third and fourth which are opcode and the category of the vulnerabilities 

where these columns are used as machine learning inputs for detection. 

Table 10 Dataset Columns Description. 

Column Name Column Description 

ADDRESS 

This column contains the smart contract address as per 

published in Etherscan.io. This column is not used as input or 

output in our experiment, it is only there for verification of the 

existence of smart contract on Etherscan.io 

CONTRACTNAME 

This column contains the contract name as shown on the 

Etherscan.io website. This column is not used as input or 

output, just to match the contract address with the name, and 

to know exactly what is this contract about, ex: if the contract 

name is “AMAZON” this will give an indication that the smart 

contract is about items related to amazon. 

OPCODE 

This column is used as input for the machine learning based 

detection process, and it contains the hexadecimal opcode 

value of the smart contract. 

CATEGORY 
This column presents the vulnerability categories for each 

smart contract.  
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4.1.1 DATASET AND PARAMETER SETTINGS 

 

Our dataset was collected from the Ethereum official website, as it acquires validated smart 

contract codes to create a trustworthy experimental dataset. We added the multi label 

vectors to each smart contract manually, based on results conducted using static detection 

techniques. 

Out of 2747 smart contracts that we have collected as CSV files and after the revision 

process, we found that there are 543 duplicated smart contracts and 10 contracts without an 

opcode. After we removed both duplicated and missing opcode smart contracts, 2194 

remained in the dataset. Table 11 shows the number of contracts in the final dataset that 

include each vulnerability. 

Table 11: Number of smart contracts in Full Dataset. 

Vulnerability Category Number of Vulnerability 

No Vulnerabilities 1370 

Arbitrary_Memory_Acces 20 

Assertion_Failure 31 

Block_Dependency 89 

Etherlock 532 

Integer overflow/underflow 123 

Reentrancy 19 

TODAmount 10 

Total Number 2194 
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The experiments were run on a powerful server to handle the load of the huge number of 

smart contracts. The specifications of the device are as follows: 

• CPU: 

o Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz   2.29 GHz 

o 16 Cores 

o 32 Logical Processors 

• Memory:  

o 128 GB  

• OS:  

o Windows 10 Enterprise 64-bit  

o Ubuntu 22.04 

• Software used:  

o Anaconda (Jupyter)  

o Python version:  3.9.12 

o Ubuntu Terminal 

o Tools cloned from GitHub. 

 

We have used four different machine learning algorithms namely Decision Tree, Support 

Vector Machine, NN, and LSTM. The parameters setting for those algorithms were as 

follows, 80% of the data was used for training, while the remaining 20% was used for 

testing, based on a random distribution. More detailed settings for LSTM are as follows, 

the epochs and batch size were set to 50, and 63 respectively. The dataset is tested against 

each of the four algorithms. Moreover, the characteristics including accuracy, F1 score, 

precision, and recall were used to compare and evaluate them. 

4.1.2 EVALUATION INDICATORS 

Measures like accuracy, precision, recall, confusion matrix, and F-1 score are frequently 

used to gauge how effective machine learning is [112]. 

• Accuracy is the percentage of accurate predictions over all samples or possible 

predictions.  

     Accuracy =TP + TN/TP + TN + FP + FN 

• Precision is calculated as the ratio of true positives to both true and false positives. 

Precision =TP/TP + FP 
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• Recall score is a metric used to assess a model's performance by determining the 

percentage of true positives that were accurately detected. It is as follows:  

Recall=TP/TP + FN 

• The F-1 score is the harmonic mean of precision and recall.  

      F1=2*precision*recall/precision + recall 

• Confusion Matrix is a table that demonstrates which values the model beliefs to be 

associated with various classes, allowing one to visualize the model’s performance as 

shown in Table 12. With the rows representing the projected classes and the columns 

reflecting the actual classes, it has a size of N×N [112]. 

Multilabel classification was performed in the experiments of this thesis. The number of 

samples where both the predicted value and true value are negative is represented by TN 

(True Negative) in these experiments.   The number of samples where the predicted value 

is negative and the true value is positive is represented by FN (False Negative).   The 

predicted value, TP (True Positive), represents the number of samples where all true values 

are positive classes.   The number of samples where predicted values are positive classes 

and the true values are negative classes is represented by FP (False Positive). 

Table 12: Confusion Matrix 

                               Predicated  

Actual 
One Zero 

One TP FN 

Zero FP TN 
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4.1.3 EXPERIMENTAL RESULTS AND OBSERVATION 

 

After calculating the number of smart contracts that belongs to each vulnerability, we 

figured out that the most common vulnerability in our dataset is etherlock with a ratio of 

65% of the total number of vulnerabilities. Furthermore, integer overflow/underflow and 

block dependency are 15% and 11% respectively. The rest of the vulnerabilities are less 

than or equal to 4% as shown in Figure 27. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Vulnerability Category Percentage 
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Table 13: Precision, recall, and F1-score of Dataset which includes all vulnerabilities 

Model 
Indicator 

(%) 
FullDataset 

Reentrancy 

Dataset 

Etherlock 

Dataset 

Integer overflow/underflow 

Dataset 

SVM 

Precision 0.85 0.97 0.95 1.00 

Recall 0.98 0.95 0.76 1.00 

F1-score 0.91 0.96 0.84 1.00 

DT 

Precision 0.83 0.94 0.93 0.93 

Recall 0.87 0.85 0.74 0.75 

F1-score 0.85 0.89 0.82 0.83 

NN 

Precision 0.85 0.94 0.77 1.00 

Recall 0.90 0.85 0.71 1.00 

F1-score 0.87 0.89 0.74 1.00 

LSTM 

Precision 0.82 0.98 0.94 1.00 

Recall 0.92 0.96 0.76 1.00 

F1-score 0.87 0.97 0.84 1.00 

 

Table 14: Accuracy and Time Cost 

Model Indicator FullDataset 
Reentrancy 

Dataset 

Etherlock 

Dataset 

Integer 

overflow/underflow 

Dataset 

SVM 
Accuracy 85.7 95.4 80.7 100.0 

Time Cost 15.54 S 0.03 S 0.21 S 0.15 S 

DT 
Accuracy 75.7 84.2 75.0 75.0 

Time Cost 8.44 S 0.11 S 0.08 S 0.04 S 

NN 
Accuracy 80.1 84.3 66.6 100.0 

Time Cost 5.26 S 0.10 S 0.15 S 0.04 S 

LSTM 
Accuracy 82.10 97.7 80.9 100.0 

Time Cost 240.78 S 14. 86 S 0.111 S 12.39 S 
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We noticed that using one static analysis tool to analyze a Solidity smart contract and then 

feeding the output of one tool into a machine learning algorithm means that we are tied to 

the efficiency of the static analysis tool. However, by feeding the output of multiple tools 

into a machine learning algorithm, we can potentially identify patterns and correlations in 

the results that may not be immediately apparent from an individual tool output. 

Consequently, more accurate results can be achieved. While each tool may have its own 

strengths and limitations, by using multiple tools and comparing their results, we can 

leverage their strengths and minimize their weaknesses. Also, this will reduce the number 

of false positives. 

We have created a sub-dataset for Etherlock vulnerability as the accuracy results of this 

vulnerability in the static tools used are 69% for MAIAN specifically for Etherlock [40]. 

On the other hand, slither has 89% for all four vulnerabilities it detects. The authors of 

Slither tools did not mention the details for each vulnerability [87]. The intersection of 

results from these two tools results in having an accuracy of 80.7% in our machine learning 

detection technique. Having a sub-dataset helps researchers and companies who are 

targeting a specific vulnerability. 

We had overfitting in our dataset specifically in the DT algorithm, and this is due to having 

a high number of specific records for some categories such as Etherlock and No 

vulnerability, compared with a few numbers of records for other categories such as 

Arbitrary_Memory_Access, Assertion_Failure, and Block_Dependency. We have solved 

overfitting for the reentrancy attack as we generated a sub-dataset that includes the 

intersection of two tools that can detect it. However, other attack categories are only 

detectable by only one tool which is Confuzzius. this limitation represents a challenge for 

solving the overfitting problem for these categories of attacks. 

In Table 13, that both integer overflow and reentrancy sub datasets have high numbers in 

terms of recall, precision, and F1-score results. However, the etherlock dataset has low 

ratios of the evaluation indicators and this is due to false postives of static tools inherent 

deficiency. This can be targeted as future research to investigate the performance issues 

with Maian and Slither tools for etherlock vulnerability. On the other hand, we need to take 

into consideration that these tools jointly allows for higher ratio accuracy rates, i.e. 90% 

for other different vulnerability categories, using the LSTM algorithm. 

The accuracy results of the four algorithms in the main dataset, as shown in Table 14 are 

almost in average of 84%. This is due to the fact that the static tools used have a false 
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positive and false negative rate. This means they sometimes identified vulnerabilities that 

were not actual vulnerabilities, or missed vulnerabilities that were present. 

 

 

Figure 28: Perceptron Confusion Matrix 

 

 

Figure 29: DT Confusion Matrix 
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Figure 30: SVM Confusion Matrix 

 

Figure 31: LSTM Confusion Matrix 

In the confusion matrix, as shown in Figure 28, Figure 29, Figure 30, and Figure 31, 

Show the Confusion Matrix, LSTM has fewer False Positive than other algorithms, which 

indicates a good prediction methodology although it has a bit more False-Negative than 

others. SVM also achieved the best rate in terms of False Negative as it achieved a 0 rate. 

However,  in terms of False Positive it has a higher rate than LSTM. On the other hand, 

NN and Decision Tree have almost the same results. 
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Figure 32: Comparing time taken by each Tool. 

 

Table 15: Total Time taken by each methodology 

Tool Name 
Time Taken Per 500 

Contracts 

Total Time Taken for full 

dataset (2194) SC 

Maian 74:30:30 * 4.338 322:37:16 

Securify 5:30:44 *4.338 23:52:5 

Slither 2:23:24 * 4.338 10:20:55 

Confuzziuz 2:00:00 * 4.338 08:39:36 

Conkas 0:30:00 * 4.338 02:09:54 

LSTM - 00:04:01 

SVM - 00:00:15 

DT - 00:00:08 

NN Perceptron - 00:00:05 

 

Before running the smart contract on static tools, we have divided the dataset into almost 

four sub-dataset, so we do have in each dataset around 500 smart contracts. This allows us 

to overcome the challenge that we had when we ran the whole big dataset without reducing 

its size via division. The problem is related to the fact that the virtual machine was not able 

to handle the dataset as a whole and the machine was always forced to crash. Therefore the 

results in Figure 31 are the time taken for static tools to get results of around 500 smart 
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contracts. However, Figure 31 also includes our machine learning algorithms where we 

run all smart contracts “2194”.  

As shown in Figure 31, all machine learning Time Execution “Time Cost” Compared to 

static tools have a much lower time cost. This is because they can analyze large amounts 

of data in a relatively short amount of time and make predictions based on given data. Static 

tools, on the other hand, are typically limited to processing a fixed set of rules or criteria, 

and they may not be able to adapt to changing data patterns. 

Another reason why machine learning is faster than static tools is its ability to handle 

complex data sets. They can identify patterns in the data that may be difficult or impossible 

for static tools to detect. This makes them particularly useful for applications such as image 

recognition, speech recognition, and natural language processing. 

Machine learning algorithms have transformed the way we analyze data and have provided 

faster and more accurate results compared to traditional static tools. As data sets continue 

to grow in size and complexity, the use of machine learning algorithms will become 

increasingly important for businesses and organizations that want to gain insights from their 

data in a timely and cost effective manner. 

 

 

 

 

 

 

 

 

 

 

 



66 

 

Chapter 5: CONCLUSION AND FUTURE WORK 
 

Smart contracts are self executing contracts that are programmed to automatically execute 

when certain predefined conditions are met. They are integral to the functioning of 

blockchain systems. Since blockchain is decentralized and immutable, smart contracts 

cannot be changed or modified after deployment. Therefore, there is a need to check the 

smart contract by analyzing it specifically at the opcode level, where the developers can 

understand the functions and logic of the code and identify potential vulnerabilities and 

implement measures to prevent them. 

A comprehensive survey of attack detection techniques used in smart contracts is provided, 

which includes static analysis, dynamic analysis, and hybrid approaches.   Additionally, we 

analyzed the benefits and drawbacks of each method and conducted a comparative 

evaluation of the current instruments employed for various smart contract analysis 

methods.   In addition, our approach for detecting attacks on smart contracts is based on 

machine learning.   A tool was developed to collect data from etherscan.io, which was 

previously unavailable.   Static detection tools were used to test the data after collecting the 

dataset.   The machine learning algorithms were fed with manually multi-labeled results 

from these tools.   To enhance the precision of the dataset, this process serves its purpose. 

The use of machine learning algorithms such as SVM, LSTM, DT, and NN has shown 

significant results in detecting vulnerabilities in smart contracts in our detecting framework. 

These algorithms have been able to accurately identify vulnerabilities in smart contracts, 

resulting in high recall, precision, and F1-score results. However, it is important to note 

that false positives can still occur, which can lead to a decrease in the recall, precision, and 

F1-score results as the in Etherlock sub dataset.  

Results shown for four ML models, namely Decision Tree, Perceptron, Support Vector 

Machine (SVM), and Long Short-Term Memory (LSTM) are used for this research based 

on final datasets and sub dataset and the best accuracy results for full dataset 85.7% using 

SVM, Reentrancy dataset 97.7% using LSTM, Etherlock dataset 80.9% using LSTM, 

integer overflow/underflow dataset 100% using SVM, Perceptron, and LSTM. 
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In terms of time cost,  SVM, DT, and NN took less than 15 seconds to get the results of the 

main dataset,however, LSTM requires longer training times due to its complexity as it took 

4 minutes. Thus, the choice of algorithm should consider both accuracy and time cost. 

LSTM was the highest algorithm in terms of accuracy but the lowest in terms of Time cost. 

 

 

5.1 FUTURE WORK. 
The following should be the focus of future research: 

● Increasing the number of records in the generated datasets. 

● Designing and implementing more efficient vulnerability detection tools for better 

accuracy results. 

● Adding more vulnerability categories. 
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Appendix A 
Pseudo Code below describes how we collect Solidity Code. 

# Start Chrome 

SET driver TO webdriver.Chrome() 

 

SET count TO 0   #To check the progress of retriveing smartcontract. 

with open("contractaddresses.txt") as readContractAddress: #read smart contract addresses 

from contractaddresses.txt 

 

    WHILE True: 

        SET line TO readContractAddress.readline() 

        IF not line: 

            break 

        count += 1 

        OUTPUT("The Number of Solidity are "+ str(count) + " "+line) 

        lline=line.strip("\n") # to remove the \n from the address as everytime it read the 

address it shows after it \n. 

 

 

        # Open the webpage 

        driver.get("https://etherscan.io/address/"+line+"#code") 

        time.sleep(2) # 2 seconds to load the webpage 

        SET html TO driver.page_source 

 

        #write solidity address IF smartcontract have multi solidity file 

        IF "File 1 of" IN html: 

            OUTPUT("The address Contains Mutiple Sol files") 

            with open("MultiSolidity.txt", 'a') as un: 

                un.write(line) 

 

        ELSE:          

            SET buttton TO driver.find_element(By.ID, "panel-sourcecode")  ##To view all 

code by pressing on Full Screen 
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            buttton.click() 

            SET FindSolidityText TO driver.find_element(By.ID, "editor") #To find the text 

area of the code 

            SET code TO FindSolidityText.text #To get the text code 

     

            #save solidity output IN .sol format 

            soloutput="C:\\Users\\user\\Desktop\\solidity\\solidity"+str(lline)+".sol" 

            with open(soloutput, 'w', encoding='utf-8') as writesoliditycode: 

                writesoliditycode.write(code) 

 

Pseudo Code below describes how we collect Bytecode and Opcode. 

# Start Chrome 

 

SET driver TO webdriver.Chrome() 

SET count TO 0   #To check the progress of retriveing smartcontract. 

countexcel= 0   #To determine the cell of CSV file. 

 

with open("contractaddresses.txt") as readContractAddress: #read smart contract addresses 

from contractaddresses.txt 

    WHILE True: 

        count += 1 

        countexcel += 1 

        SET line TO readContractAddress.readline() 

      

        IF not line: 

            break 

 

        lline=line.strip("\n") # to remove the \n from the address as everytime it read the 

address it shows after it \n. 

 

        # Open the webpage 

        driver.get("https://etherscan.io/address/"+line+"#code") 

        time.sleep(15) # 15 seconds to load the webpage 
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        SET elembytecode TO driver.find_element(By.ID, "verifiedbytecode2")  # To find 

the verifiedbytecode2 element 

        SET textbytecode TO elembytecode.text #to extract the text (bytecode) from the 

verifiedbytecode2 #note: text is a method IN driver 

 

        

        OUTPUT("Contract No. "+ str(count) +": Retrieving SmartContract " + lline)  # to 

OUTPUT contract number and each address. 

 

         

        #save bytecode output IN .bytecode format 

        

bytecodeoutput="C:\\Users\\user\\Desktop\\bytecode\\bytecode"+str(lline)+".bytecode"     

        with open(bytecodeoutput, 'w') as writebytecode: 

            writebytecode.write(textbytecode) 

 

        """ 

        #To Create list of bytecode files names.  

        string_to_check="bytecode"+str(lline)+".bytecode" 

        with open("name.txt", "r") as file: 

            SET lines TO file.readlines() 

            IF string_to_check not IN lines: 

                with open("name.txt", "a") as file: 

                    file.write(string_to_check + "\n") 

        """ 

 

        # Wait FOR the opcodes to be loaded 

        time.sleep(5) 

 

        # Click the "Switch To Opcodes View" button 

        SET button TO driver.find_element(By.ID, "btnConvert3")  

        button.click() 
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        # Retrieve the verifiedbytecode2 element 

        SET elem TO driver.find_element(By.ID, "verifiedbytecode2") 

        SET textopcodestring TO elem.text #to extract the text (opcode) from the 

verifiedbytecode2 #note: text is a method IN driver 

         

        #save opcodestring output IN .txt format 

        

opcodeoutputstring="C:\\Users\\user\\Desktop\\opcodestring\\opcodestring"+str(lline)+".t

xt" 

        with open(opcodeoutputstring, 'w') as writeOpcodeOutputString: 

            writeOpcodeOutputString.write(textopcodestring) 

Pseudo Code below describes how to convert Opcode to Opcode Hexadecimal Values. 

             #change opcodestring fromat into opcodehexadecimal format 

        with open(opcodeoutputstring, "r") as ReadOpcodeOutputString: 

            SET wordlist TO [r.split()[0] FOR r IN ReadOpcodeOutputString] 

 

            # define list 

            SET i TO 0 

            WHILE i < len(wordlist):      

                IF wordlist[i] EQUALS 'STOP': 

                    SET wordlist[i] TO '00' 

                IF wordlist[i] EQUALS 'ADD': 

                    SET wordlist[i] TO '01' 

                IF wordlist[i] EQUALS 'MUL': 

                    SET wordlist[i] TO '02' 

                IF wordlist[i] EQUALS 'SUB': 

                    SET wordlist[i] TO '03' 

                IF wordlist[i] EQUALS 'DIV': 

                    SET wordlist[i] TO '04' 

                IF wordlist[i] EQUALS 'SDIV': 

                    SET wordlist[i] TO '05' 

                IF wordlist[i] EQUALS 'MOD': 

                    SET wordlist[i] TO '06' 



83 

 

                IF wordlist[i] EQUALS 'SMOD': 

                    SET wordlist[i] TO '07' 

                IF wordlist[i] EQUALS 'ADDMOD': 

                    SET wordlist[i] TO '08'              

                IF wordlist[i] EQUALS 'MULMOD': 

                    SET wordlist[i] TO '09' 

                IF wordlist[i] EQUALS 'EXP': 

                    SET wordlist[i] TO '0A' 

                IF wordlist[i] EQUALS 'SIGNEXTEND': 

                    SET wordlist[i] TO '0B' 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO '0C-0F' 

                IF wordlist[i] EQUALS 'LT': 

                    SET wordlist[i] TO '10' 

                IF wordlist[i] EQUALS 'GT': 

                    SET wordlist[i] TO '11' 

                IF wordlist[i] EQUALS 'SLT': 

                    SET wordlist[i] TO '12'  

                IF wordlist[i] EQUALS 'SGT': 

                    SET wordlist[i] TO '13'  

                IF wordlist[i] EQUALS 'EQ': 

                    SET wordlist[i] TO '14'  

                IF wordlist[i] EQUALS 'ISZERO': 

                    SET wordlist[i] TO '15'  

                IF wordlist[i] EQUALS 'AND': 

                    SET wordlist[i] TO '16' 

                IF wordlist[i] EQUALS 'OR': 

                    SET wordlist[i] TO '17'  

                IF wordlist[i] EQUALS 'XOR': 

                    SET wordlist[i] TO '18'  

                IF wordlist[i] EQUALS 'NOT': 

                    SET wordlist[i] TO '19'  

                IF wordlist[i] EQUALS 'BYTE': 

                    SET wordlist[i] TO '1A'  
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                IF wordlist[i] EQUALS 'SHL': 

                    SET wordlist[i] TO '1B'  

                IF wordlist[i] EQUALS 'SHR': 

                    SET wordlist[i] TO '1C'  

                IF wordlist[i] EQUALS 'SHR': 

                    SET wordlist[i] TO '1D' 

                IF wordlist[i] EQUALS 'SHR': 

                    SET wordlist[i] TO '1E-1F'  

                IF wordlist[i] EQUALS 'KECCAK256': 

                    SET wordlist[i] TO '20'  

                IF wordlist[i] EQUALS 'SHA3': 

                    SET wordlist[i] TO '20'                 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO '21-2F' 

                IF wordlist[i] EQUALS 'ADDRESS': 

                    SET wordlist[i] TO '30' 

                IF wordlist[i] EQUALS 'BALANCE': 

                    SET wordlist[i] TO '31'  

                IF wordlist[i] EQUALS 'ORIGIN': 

                    SET wordlist[i] TO '32' 

                IF wordlist[i] EQUALS 'CALLER': 

                    SET wordlist[i] TO '33' 

                IF wordlist[i] EQUALS 'CALLVALUE': 

                    SET wordlist[i] TO '34' 

                IF wordlist[i] EQUALS 'CALLDATALOAD': 

                    SET wordlist[i] TO '35' 

                IF wordlist[i] EQUALS 'CALLDATASIZE': 

                    SET wordlist[i] TO '36' 

                IF wordlist[i] EQUALS 'CALLDATACOPY': 

                    SET wordlist[i] TO '37' 

                IF wordlist[i] EQUALS 'CODESIZE': 

                    SET wordlist[i] TO '38' 

                IF wordlist[i] EQUALS 'CODECOPY': 

                    SET wordlist[i] TO '39' 
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                IF wordlist[i] EQUALS 'GASPRICE': 

                    SET wordlist[i] TO '3A' 

                IF wordlist[i] EQUALS 'EXTCODESIZE': 

                    SET wordlist[i] TO '3B' 

                IF wordlist[i] EQUALS 'EXTCODECOPY': 

                    SET wordlist[i] TO '3C' 

                IF wordlist[i] EQUALS 'RETURNDATASIZE': 

                    SET wordlist[i] TO '3D' 

                IF wordlist[i] EQUALS 'RETURNDATACOPY': 

                    SET wordlist[i] TO '3E'               

                IF wordlist[i] EQUALS 'EXTCODEHASH': 

                    SET wordlist[i] TO '3F' 

                IF wordlist[i] EQUALS 'BLOCKHASH': 

                    SET wordlist[i] TO '40' 

                IF wordlist[i] EQUALS 'COINBASE': 

                    SET wordlist[i] TO '41' 

                IF wordlist[i] EQUALS 'TIMESTAMP': 

                    SET wordlist[i] TO '42' 

                IF wordlist[i] EQUALS 'NUMBER': 

                    SET wordlist[i] TO '43' 

                IF wordlist[i] EQUALS 'PREVRANDAO': 

                    SET wordlist[i] TO '44' 

                IF wordlist[i] EQUALS 'GASLIMIT': 

                    SET wordlist[i] TO '45' 

                IF wordlist[i] EQUALS 'CHAINID': 

                    SET wordlist[i] TO '46' 

                IF wordlist[i] EQUALS 'SELFBALANCE': 

                    SET wordlist[i] TO '47' 

                IF wordlist[i] EQUALS 'BASEFEE': 

                    SET wordlist[i] TO '48' 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO '49-4F' 

                IF wordlist[i] EQUALS 'POP': 

                    SET wordlist[i] TO '50' 
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                IF wordlist[i] EQUALS 'MLOAD': 

                    SET wordlist[i] TO '51' 

                IF wordlist[i] EQUALS 'MSTORE': 

                    SET wordlist[i] TO '52' 

                IF wordlist[i] EQUALS 'MSTORE8': 

                    SET wordlist[i] TO '53' 

                IF wordlist[i] EQUALS 'SLOAD': 

                    SET wordlist[i] TO '54'  

                IF wordlist[i] EQUALS 'SSTORE': 

                    SET wordlist[i] TO '55' 

                IF wordlist[i] EQUALS 'JUMP': 

                    SET wordlist[i] TO '56' 

                IF wordlist[i] EQUALS 'JUMPI': 

                    SET wordlist[i] TO '57' 

                IF wordlist[i] EQUALS 'PC': 

                    SET wordlist[i] TO '58' 

                IF wordlist[i] EQUALS 'MSIZE': 

                    SET wordlist[i] TO '59' 

                IF wordlist[i] EQUALS 'GAS': 

                    SET wordlist[i] TO '5A' 

                IF wordlist[i] EQUALS 'JUMPDEST': 

                    SET wordlist[i] TO '5B' 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO '5C-5F' 

                IF wordlist[i] EQUALS 'PUSH1': 

                    SET wordlist[i] TO '60' 

                IF wordlist[i] EQUALS 'PUSH2': 

                    SET wordlist[i] TO '61' 

                IF wordlist[i] EQUALS 'PUSH3': 

                    SET wordlist[i] TO '62' 

                IF wordlist[i] EQUALS 'PUSH4': 

                    SET wordlist[i] TO '63' 

                IF wordlist[i] EQUALS 'PUSH5': 

                    SET wordlist[i] TO '64' 
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                IF wordlist[i] EQUALS 'PUSH6': 

                    SET wordlist[i] TO '65' 

                IF wordlist[i] EQUALS 'PUSH7': 

                    SET wordlist[i] TO '66' 

                IF wordlist[i] EQUALS 'PUSH8': 

                    SET wordlist[i] TO '67' 

                IF wordlist[i] EQUALS 'PUSH9': 

                    SET wordlist[i] TO '68' 

                IF wordlist[i] EQUALS 'PUSH10': 

                    SET wordlist[i] TO '69' 

                IF wordlist[i] EQUALS 'PUSH11': 

                    SET wordlist[i] TO '6A' 

                IF wordlist[i] EQUALS 'PUSH12': 

                    SET wordlist[i] TO '6B' 

                IF wordlist[i] EQUALS 'PUSH13': 

                    SET wordlist[i] TO '6C'               

                IF wordlist[i] EQUALS 'PUSH14': 

                    SET wordlist[i] TO '6D' 

                IF wordlist[i] EQUALS 'PUSH15': 

                    SET wordlist[i] TO '6E' 

                IF wordlist[i] EQUALS 'PUSH16': 

                    SET wordlist[i] TO '6F' 

                IF wordlist[i] EQUALS 'PUSH17': 

                    SET wordlist[i] TO '70'  

                IF wordlist[i] EQUALS 'PUSH18': 

                    SET wordlist[i] TO '71'  

                IF wordlist[i] EQUALS 'PUSH19': 

                    SET wordlist[i] TO '72'  

                IF wordlist[i] EQUALS 'PUSH20': 

                    SET wordlist[i] TO '73'  

                IF wordlist[i] EQUALS 'PUSH21': 

                    SET wordlist[i] TO '74'  

                IF wordlist[i] EQUALS 'PUSH22': 

                    SET wordlist[i] TO '75'  
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                IF wordlist[i] EQUALS 'PUSH23': 

                    SET wordlist[i] TO '76'  

                IF wordlist[i] EQUALS 'PUSH24': 

                    SET wordlist[i] TO '77'  

                IF wordlist[i] EQUALS 'PUSH25': 

                    SET wordlist[i] TO '78'  

                IF wordlist[i] EQUALS 'PUSH26': 

                    SET wordlist[i] TO '79'  

                IF wordlist[i] EQUALS 'PUSH27': 

                    SET wordlist[i] TO '7A'  

                IF wordlist[i] EQUALS 'PUSH28': 

                    SET wordlist[i] TO '7B'  

                IF wordlist[i] EQUALS 'PUSH29': 

                    SET wordlist[i] TO '7C'  

                IF wordlist[i] EQUALS 'PUSH30': 

                    SET wordlist[i] TO '7D'  

                IF wordlist[i] EQUALS 'PUSH31': 

                    SET wordlist[i] TO '7E'  

                IF wordlist[i] EQUALS 'PUSH32': 

                    SET wordlist[i] TO '7F'  

                IF wordlist[i] EQUALS 'DUP1': 

                    SET wordlist[i] TO '80' 

                IF wordlist[i] EQUALS 'DUP2': 

                    SET wordlist[i] TO '81' 

                IF wordlist[i] EQUALS 'DUP3': 

                    SET wordlist[i] TO '82' 

                IF wordlist[i] EQUALS 'DUP4': 

                    SET wordlist[i] TO '83' 

                IF wordlist[i] EQUALS 'DUP5': 

                    SET wordlist[i] TO '84' 

                IF wordlist[i] EQUALS 'DUP6': 

                    SET wordlist[i] TO '85' 

                IF wordlist[i] EQUALS 'DUP7': 

                    SET wordlist[i] TO '86' 
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                IF wordlist[i] EQUALS 'DUP8': 

                    SET wordlist[i] TO '87' 

                IF wordlist[i] EQUALS 'DUP9': 

                    SET wordlist[i] TO '88' 

                IF wordlist[i] EQUALS 'DUP10': 

                    SET wordlist[i] TO '89' 

                IF wordlist[i] EQUALS 'DUP11': 

                    SET wordlist[i] TO '8A' 

                IF wordlist[i] EQUALS 'DUP12': 

                    SET wordlist[i] TO '8B' 

                IF wordlist[i] EQUALS 'DUP13': 

                    SET wordlist[i] TO '8C' 

                IF wordlist[i] EQUALS 'DUP14': 

                    SET wordlist[i] TO '8D' 

                IF wordlist[i] EQUALS 'DUP15': 

                    SET wordlist[i] TO '8E' 

                IF wordlist[i] EQUALS 'DUP16': 

                    SET wordlist[i] TO '8F' 

                IF wordlist[i] EQUALS 'SWAP1': 

                    SET wordlist[i] TO '90' 

                IF wordlist[i] EQUALS 'SWAP2': 

                    SET wordlist[i] TO '91' 

                IF wordlist[i] EQUALS 'SWAP3': 

                    SET wordlist[i] TO '92' 

                IF wordlist[i] EQUALS 'SWAP4': 

                    SET wordlist[i] TO '93' 

                IF wordlist[i] EQUALS 'SWAP5': 

                    SET wordlist[i] TO '94' 

                IF wordlist[i] EQUALS 'SWAP6': 

                    SET wordlist[i] TO '95' 

                IF wordlist[i] EQUALS 'SWAP7': 

                    SET wordlist[i] TO '96' 

                IF wordlist[i] EQUALS 'SWAP8': 

                    SET wordlist[i] TO '97' 
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                IF wordlist[i] EQUALS 'SWAP9': 

                    SET wordlist[i] TO '98' 

                IF wordlist[i] EQUALS 'SWAP10': 

                    SET wordlist[i] TO '99' 

                IF wordlist[i] EQUALS 'SWAP11': 

                    SET wordlist[i] TO '9A' 

                IF wordlist[i] EQUALS 'SWAP12': 

                    SET wordlist[i] TO '9B' 

                IF wordlist[i] EQUALS 'SWAP13': 

                    SET wordlist[i] TO '9C' 

                IF wordlist[i] EQUALS 'SWAP14': 

                    SET wordlist[i] TO '9D' 

                IF wordlist[i] EQUALS 'SWAP15': 

                    SET wordlist[i] TO '9E' 

                IF wordlist[i] EQUALS 'SWAP16': 

                    SET wordlist[i] TO '9F' 

                IF wordlist[i] EQUALS 'LOG0': 

                    SET wordlist[i] TO 'A0' 

                IF wordlist[i] EQUALS 'LOG1': 

                    SET wordlist[i] TO 'A1' 

                IF wordlist[i] EQUALS 'LOG2': 

                    SET wordlist[i] TO 'A2' 

                IF wordlist[i] EQUALS 'LOG3': 

                    SET wordlist[i] TO 'A3' 

                IF wordlist[i] EQUALS 'LOG4': 

                    SET wordlist[i] TO 'A4' 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO 'A5-EF' 

                IF wordlist[i] EQUALS 'CREATE': 

                    SET wordlist[i] TO 'F0' 

                IF wordlist[i] EQUALS 'CALL': 

                    SET wordlist[i] TO 'F1' 

                IF wordlist[i] EQUALS 'CALLCODE': 

                    SET wordlist[i] TO 'F2' 
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                IF wordlist[i] EQUALS 'RETURN': 

                    SET wordlist[i] TO 'F3' 

                IF wordlist[i] EQUALS 'DELEGATECALL': 

                    SET wordlist[i] TO 'F4' 

                IF wordlist[i] EQUALS 'CREATE2': 

                    SET wordlist[i] TO 'F5' 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO 'F6-F9' 

                IF wordlist[i] EQUALS 'STATICCALL': 

                    SET wordlist[i] TO 'FA' 

                IF wordlist[i] EQUALS 'invalid': 

                    SET wordlist[i] TO 'FB-FC' 

                IF wordlist[i] EQUALS 'REVERT': 

                    SET wordlist[i] TO 'FD' 

                IF wordlist[i] EQUALS 'INVALID': 

                    SET wordlist[i] TO 'FE' 

                IF wordlist[i] EQUALS 'SELFDESTRUCT': 

                    SET wordlist[i] TO 'FF' 

                IF "Unknown" IN wordlist[i]: 

                    SET wordlist[i] TO wordlist[i][1:3]                                                                                                                                                                                                                                                           

                i += 1 

 

        #save opcodehexadecimal output IN .txt format   

    opcodeoutputhexa="C:\\Users\\user\\Desktop\\opcodehex\\opcodehex"+str(lline)+".txt" 

        with open(opcodeoutputhexa, 'w') as WriteOpcodeOutputHexa: 

            WriteOpcodeOutputHexa.write(' '.join([''.join(l2) FOR l2 IN wordlist])) 

 

Inserting the opcode results in CSV File 

        # Open the text file and read the data 

        with open(opcodeoutputhexa, 'r') as ReadOpcodeOutputHexa: 

            SET Read_Hexa_Opcode TO ReadOpcodeOutputHexa.read() 

 

        # Open the CSV file IN read mode 

        with open('Final_Dataset.csv', 'r') as csv_file: 

            SET reader TO csv.reader(csv_file) 
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            # read the data 

            SET data TO [row FOR row IN reader] 

 

        # update the data 

        SET data[countexcel][2] TO Read_Hexa_Opcode 

 

        # Open the CSV file IN write mode 

        with open('Final_Dataset.csv', 'w', newline='') as csv_file: 

            SET writer TO csv.writer(csv_file) 

 

            # write the updated data 

            writer.writerows(data) 
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