
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-10-2023

Efficiently Annotating Source Code Identifiers Using a Scalable Efficiently Annotating Source Code Identifiers Using a Scalable

Part of Speech Tagger Part of Speech Tagger

Gavin Burris
gb9951@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Burris, Gavin, "Efficiently Annotating Source Code Identifiers Using a Scalable Part of Speech Tagger"
(2023). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11471&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11471?utm_source=repository.rit.edu%2Ftheses%2F11471&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Efficiently Annotating Source Code Identifiers Using a
Scalable Part of Speech Tagger

by

Gavin Burris

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, NY

May 10, 2023

Committee Approval:

__
Dr. J Scott Hawker Date
SE Graduate Program Director

__
Dr. Mohamed Wiem Mkaouer Date
Assistant Professor

__
Dr. Christian D. Newman Date
Assistant Professor

Abstract

This thesis details the process in which a part-of-speech tagger is developed

in order to determine grammar patterns in source code identifiers. These

grammar patterns are used to aid in the proper naming of identifiers in order

to improve reader comprehension. This tagger is a continuation of an effort of

a previous Ensemble Tagger [62], but with a focus on increasing the tagging

rate while maintaining the accuracy, in order to make the tagger scalable.

The Scalable Tagger will be trained on open source data sets, with a machine

learning model and training features that are chosen to best suit the needs for

accuracy and tagging rate. The results of the experiment will be contrasted

with the results of the Ensemble Tagger to determine the Scalable Tagger’s

efficacy.

ii

I would like to dedicate this thesis to my family for their encouragement and

support throughout my academic career.

iii

Contents

1 Introduction 1

2 Research Objective 3

2.1 Motivation and Contribution 3

2.2 Research Questions . 4

3 Related Work 5

3.1 Part-of-Speech Taggers . 5

3.2 Part-of-speech-based Analysis of Identifiers 6

4 Grammar Pattern Definitions 8

4.1 Annotating Words in Identifiers 10

5 Methodology 11

5.1 5-fold test set . 14

5.2 Quality Model Measurements 14

5.3 Choosing a machine learning approach 15

5.4 Features . 15

iv

CONTENTS v

5.4.1 Existing Features . 16

5.4.2 New Features . 17

5.4.3 Removed and Failed Features 18

5.4.4 Feature Testing . 19

5.5 Tagger Scalability Timing . 21

6 Analysis & Discussion 22

6.1 Tagger Accuracy . 22

6.1.1 5-fold Test Results . 24

6.1.2 Unseen Test Set Results 26

6.2 Tagger Scalability . 27

7 Threats to Validity 30

8 Conclusion 32

List of Tables

4.1 Part-of-Speech Categories to be Used by POS Tagger 9

5.1 Distribution of Annotations in Training and Test Sets 12

5.2 Systems used to create training (unbolded) and unseen test

(bolded) sets . 13

5.3 F1 weighted importances for best features 20

5.4 Balanced accuracy importances for best features 20

5.5 Accuracy importances for best features 20

6.1 Benchmark Tagger quality measurement metrics for each anno-

tation category . 23

6.2 Benchmark Tagger’s average quality measurement metrics . . . 23

6.3 Scalable Tagger quality measurement metrics for each annota-

tion category . 25

6.4 Scalable Tagger’s average quality measurement metrics 25

vi

Chapter 1

Introduction

The ability of a software engineer to comprehend code that others have writ-

ten is an integral part of the software engineering process [62]. In fact, it is

estimated that developers spend more time reading and comprehending code

than actually writing the code itself. A developer’s increased comprehension,

while reading other’s code, can lead to a decrease in time spent reading code,

a reduction in developer stress, and better overall code development [62]. One

of the primary ways that code is understood is through identifiers, which com-

promise approximately 70 percent of characters found in code [62]. Improving

the comprehension of these identifiers can therefore have the aforementioned

desired positive effects.

One way to begin addressing the problem of source code comprehension

is to understand how identifiers are connected with program behavior. This

can be accomplished by using a part-of-speech tagger [62] . A part-of-speech

tagger is a natural language processing technique in which words in a sentence

1

CHAPTER 1. INTRODUCTION 2

are annotated based on their linguistic role and how they interact with sur-

rounding words. Part-of-speech tags can be used to partially understand how

an identifier conveys program behavior [64]. The majority of part-of-speech

taggers deal with the annotation and tagging of conventional text, however,

the tagger addressing the problem of code comprehension needs to tag source

code identifiers. This issue has been faced before as although part-of-speech

tagging is the most popular method for natural language semantics, it has been

widely inaccurate and therefore been deemed untrustworthy. [62]

Prior researchers have attempted to solve this issue by creating an ensem-

ble part-of-speech tagger for tagging identifiers in source code [62]. The tagger

was an ensemble of SWUM, POSSE, and Stanford taggers and used the de-

cision tree and random forest machine learning techniques in order to achieve

significant results [62] . The goal of this thesis is to create a part-of-speech

tagger that maintains or improves on the state-of-the-art accuracy [62] while

significantly improving the tagging rate.

The rest of this thesis is organized as follows: Chapter 2 details the moti-

vations behind the creation of the scalable part-of-speech tagger, and lists the

research questions that this study sets out to answer. Chapter 3 is the related

work that is relevant to key concepts in the thesis. Chapter 4 details grammar

pattern definitions and gives context to the part-of-speech annotation. Chap-

ter 5 details the methodology behind the Scalable Tagger’s creation. Chapter

6 presents the evaluation of the Scalable Tagger and gives answers to the re-

search questions. Chapter 7 goes into potential threats to the validity of the

thesis. Lastly, Chapter 8 summarizes everything in the conclusion.

Chapter 2

Research Objective

2.1 Motivation and Contribution

The research in this thesis, as stated in Chapter 1, builds upon the research

of an ensemble part-of-speech tagger [62] . The Ensemble Tagger achieved

an accuracy rate of 75% for tagging identifiers and an 86% accuracy rate for

tagging at the word level, which is an increase of 17% from the closest individual

tagger which it’s composed of [62]. Despite its apparent success, the Ensemble

Tagger has a major ineptitude: it can only identify one identifier per second.

This flaw significantly limits its capability to scale to large source code bases

as at this rate tagging one million identifiers could take longer than 12 days.

This thesis has two main goals: (1) The creation of a scalable part-of-speech

tagger that can tag identifiers in source code with at least the same accuracy

as the state-of-the-art Ensemble Tagger, and (2) the Scalable Tagger must

significantly improve its tagging rate relative to the state-of-the-art Ensemble

3

CHAPTER 2. RESEARCH OBJECTIVE 4

Tagger. In the long run, this will help support program comprehension research

and tools. In particualr it will support further research into grammar patterns

which are critical to understanding the naming structures that developers use

in code [64].

2.2 Research Questions

• RQ1: What is the accuracy of this approach compared to the

state of the art Ensemble Tagger?

This research question seeks to determine whether increasing the tagging

rate is detrimental to the Scalable Tagger’s overall accuracy in annotating

source code identifiers. We base the success of the Scalable Tagger on

whether it acheives an equal or greater accuracy metrics.

• RQ2: How scalable is this approach compared to the state of

the art Ensemble Tagger?

This research question seeks to determine the increased tagging rate of

the developed scalable part-of-speech tagger compared to the state-of-

the-art, Ensemble Tagger. The increase in the tagging rate of the Scal-

able Tagger will determine its scalability, especially in contrast to the

Ensemble Tagger’s inability to scale, which was its major deficiency [62].

Chapter 3

Related Work

Many studies addressed challenged to software maintenance in general [1,2,3,4,

5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,38,39,40,41,42,43,44,45,46,48,49,51,52,53,54,55,56,57,58,59,

60,61,65,66,68,69,70,71,72,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,

90,91,94], and program comprehension in particular. Part-of-speech tagging is

a commonly used method to analyze code in order to understand underlying

relationships amongst identifiers. This has inspired numerous studies to be

performed and papers to be written about this topic.

3.1 Part-of-Speech Taggers

Newman et al. [62] created an ensemble part-of-speech tagger for annotating

identifiers in source code. The tagger comprised the SWUM, POSSE, and

Stanford models, and achieved a 75% success rate at tagging identifiers and an

5

CHAPTER 3. RELATED WORK 6

86% rate tagging at the word level [62] . This tagger is used as a reference in

this paper as this study is meant to address its slow tagging rate.

Yitagesu et al. [95] developed a part-of-speech tagger for security vulnera-

bility descriptions. That study set out to create a tagger that could tag SVDs

much more accurately than a word-level part-of-speech tagger. Through the

use of a neural network, the tagger was able to achieve a 93% accuracy for

tagging SVDs.

Gupta et al. [47] developed a part-of-speech tagger that also specializes

in tagging source code identifiers. This tagger uses POSSE (POS tagger for

Software Engineering) to achieve an 11-20% increase in accuracy over other

traditional taggers used for the same purpose.

Toutanova et al. [92] developed a part-of-speech tagger which optimizes for

maximum entropy in the text by enriching tagging information sources. This

tagger improved the accuracy of tagging individual words by using additional

context provided by outside information.

Partachi et al. [67] researched Software Engineers’ usage of mixed natural

language and source code in their communications and developed a part-of-

speech tagger, called POSIT to solve the problems of language identification

and token tagging amongst this mixed text. The tagger could tag code tokens

with their part-of-speech with an accuracy of 85.6%.

3.2 Part-of-speech-based Analysis of Identifiers

Newman et al. [63] describe the categorization of source code identifiers rather

than their common place connotations. This study categorized source code

CHAPTER 3. RELATED WORK 7

identifiers by their type, behavior, context, use, and meaning to provide a

more descriptive definition to the identifier. This study saw a high correlation

between the identifiers underlying meaning and the meaning of the words that

comprised it.

Caprile et al. [37] research the intrinsic value in identifier names and how

restructuring identifiers can improve their meaningfulness. The study was

able to replace words in identifiers with little meaning with other words that

retained the same connotation, but expressed a more significant meaning to

the reader.

Peruma et al. [73] researched the importance of names of test methods and

how proper use of grammar patterns can assist developers in better understand-

ing test methods over time. The study confirmed the usefulness of grammar

patterns in the understanding of test method names, and in understanding

how they relate to code behavior.

Høst et al. [50] extracted rules for naming methods in order to point out

"naming bugs" in code. An automatic suggestion of more suitable names was

studied and presented to have a high correlation between the name given to a

method and the method’s underlying functionality.

Wu et al. [93] created a process for identifying non-descriptive test method

names in JUnit tests to increase the comprehension of the purpose of the test

method to the reader. This was done by providing information on how the

test method name can be improved with a 95% accuracy rate in determining

which method names needed to be improved.

Chapter 4

Grammar Pattern Definitions

By definition, the usage of a part-of-speech tagger involves the annotation of

words with their parts of speech in grammar in a given context. This tagging of

identifiers in code then results in the formation of a grammar pattern. A gram-

mar pattern is the sequence of part-of-speech tags assigned to words within an

identifier. For example, an identifier called “GetDogData” would start with the

tagging of individual words (Get, Dog, and Data), and result in a grammar

pattern of verb noun-adjunct noun. This grammar pattern can then be used

to classify identifiers that share the same grammar patterns. This then can be

used to correlate identifiers that have different meanings and connotations but

share similarities in their program behavior.

8

CHAPTER 4. GRAMMAR PATTERN DEFINITIONS 9

Table 4.1: Part-of-Speech Categories to be Used by POS Tagger

Abbreviation Expanded Form Examples

N noun Disneyland, shoe, faucet, mother

DT determiner the, this, that, these, those, which

CJ conjunction and, for, nor, but, or, yet, so

P preposition behind, in front of, at, under, above

NPL noun plural Streets, cities, cars, people, lists

NM

noun modifier

(adjectives,

noun-adjuncts

red, cold, hot, scary, beautiful, small

V Verb Run, jump, spin

VM
Verb modifier

(adverb)
Very, loudly, seriously, impatiently

PR pronoun she, he, her, him, it, we, they, them

D digit 1, 2, 10, 4.12, 0xAF

PRE preamble Gimp, GLEW, GL, G, p, m, b

CHAPTER 4. GRAMMAR PATTERN DEFINITIONS 10

4.1 Annotating Words in Identifiers

As identifiers are broken down to have their comprised vocabulary annotated,

it is important to label and categorize these annotations. The categories used

in the part-of-speech tagger are all included in Table I. These categories are

the most common parts of speech that are recognizable from common English

grammar parts of speech. However, there are two categories in Table I that

are uncommon and need to be addressed, preambles and noun modifiers. In

the context of code identifiers, and in this thesis, a preamble is an abbreviation

that occurs at the beginning of an identifier to provide metadata, name-space

an identifier, or highlight the identifier’s type without changing the reader’s

understanding of the identifier. For example, the preamble p_ gives context

that the identifier is being used as a pointer. Noun modifiers are defined in

this thesis as an adjective or a noun that is being used as an adjective, called

a noun-adjunct. An example of a noun-adjunct can be seen in the identifier

"GetDogData" as the noun Dog is being used to describe the noun Data,

making the word Dog a noun-adjunct in this identifier.

Chapter 5

Methodology

In order to evaluate the effectiveness of the Scalable Tagger created in this

thesis against the Ensemble Tagger, both taggers will be trained on the same

data-set. The process and means of sourcing the data-set used for training

the Ensemble Tagger are not included in this thesis, but can be found in the

paper on the Ensemble Tagger [62] if desired. The data-set is comprised of

1,335 manually annotated identifiers to label their part-of-speech, which were

sourced from 20 different software systems. The sourcing of this data is broken

down and shown in Table 5.1. The data-set was then broken down into a

training set and test set in order to validate the results of the Scalable Tagger

across different data sets. The test set was comprised of the identifiers from 5

of the software systems and the remaining 15 comprised the training set, from

which more identifiers were extracted in order to maintain the 1,335 identifier

basis.

In order to reduce over-fitting, 5-fold validation is used on the training

11

CHAPTER 5. METHODOLOGY 12

Table 5.1: Distribution of Annotations in Training and Test Sets

Annotation Training Set Unseen Test Set

CJ 11 1

D 20 7

DT 13 5

N 1149 322

NM 1520 415

NPL 220 78

P 91 32

PRE 83 33

V 330 81

VM 12 3

Total 3449 977

data. The training data sourced from 15 software systems is split into 5 smaller

train-test sets, or folds, which will be referred to as the "5-fold test set". The

test set comprised of identifiers that are removed from the training process is

referred to as the "unseen test set". The distribution of the annotations from

the identifiers into the training set and unseen test set can be seen in Table

5.2.

CHAPTER 5. METHODOLOGY 13

Table 5.2: Systems used to create training (unbolded) and unseen test

(bolded) sets

Name Size (kloc) Age (years) Language(s)

junit4 30 19 Java

mockito 46 9+ Java

okhttp 54 6 Java

antlr4 92 27 Java/C/C++/C#

openFrameworks 130 14 C/C++

jenkins 156 8 Java

irrlicht 250 13 C/C++

kdevelop 260 19 C/C++

ogre 370 14 C/C++

quantlib 370 19 C/C++

coreNLP 582 6 Java

swift 601 5 C++/C

calligra 660 19 C/C++

gimp 777 23 C/C++

telegram 912 6 Java/C/C++

opencv 1000 19 C/C++

elasticsearch 1300 9 Java

bullet3 1300 10+ C/C++/C#

blender 1600 21 C/C++

grpc 1800 5 C++/C/C#

CHAPTER 5. METHODOLOGY 14

5.1 5-fold test set

Another form of validation of the Scalable Tagger is through 5-fold validation.

During the training of the model, the training data comprised of 1,335 iden-

tifiers from 15 software systems are split into 5 smaller folds. This allows for

a split amongst the folds for a percentage to be used as training data while

the remaining is used as testing data to validate the trained model. After the

data is split into the 5 folds, 70% is used as training data, and the remaining

30% is used as testing data. This is repeated 5 times until all of the sets have

been used for testing. This is an application of k-fold cross-validation sets in

which the value of k has been set to 5. This is appropriate with choices from

researchers who often use k values of 5 or 10, from which 5 is used considering

the size of our data-set and the distribution of the annotations. Each testing

round is accompanied by the collection of metrics to evaluate the effectiveness

of the model, which is described in the next section.

5.2 Quality Model Measurements

The quality of the Scalable Tagger is measured using common metrics for

categorization problems. The metrics used are Accuracy, Precision, Recall, and

F1 Score. Another metric used is the balanced accuracy of the 5-fold testing

which is the average of each average accuracy for each annotation category

(i.e., N, NM, CJ, etc.). This allows for each part-of-speech annotation to be

equally represented, which helps with unbalanced data-sets by giving more

weight to underrepresented annotations.

CHAPTER 5. METHODOLOGY 15

5.3 Choosing a machine learning approach

The Scalable Tagger uses a machine learning model in order to annotate iden-

tifiers with a part-of-speech. The model must be trained to follow a primary

machine learning approach from which the following were evaluated for use:

Random Forest, Decision Tree, XGBoost, Logistic Regression, Support Vector

Classification, and K-Nearest Neighbors. From these Random Forest and De-

cision Tree were selected to be used as the primary approaches due to their

out-performance of the other approaches in terms of the quality model met-

rics. The building of the models requires a training and testing set, which

is from a splitting of the training data in which 70% is used as the training

data and 30% is used as the testing data. Through further analysis of the

performance of the Random Forest and Decision Tree approaches the Decision

Tree approach was determined to be the better approach. Throughout the

formation of the Scalable Tagger Random Forest would reach a stagnation to

how well it performed, while Decision Tree continued to improve, eventually

surpassing the performance of Random Forest. Random Forest is also a much

slower approach than Decision Tree which is counterproductive to the goal of

creating a scalable part-of-speech tagger.

5.4 Features

Machine learning algorithms must be trained on a set of features in order to

derive patterns and predict outputs from given inputs. The basis for features

used for the Scalable Tagger is based on relevant features used for the Ensemble

CHAPTER 5. METHODOLOGY 16

Tagger. The relevancy of features is determined by how they impact the quality

model measurements detailed in Chapter 5.2. New features were developed

in order to improve these quality measurements, thus improving the Scalable

Tagger. Certain features did not end up being used either due to their negative

impact to the Scalable Tagger. The testing of the features is detailed further

in Chapter 5.4.4.

5.4.1 Existing Features

The Scalable Tagger uses the finding of the Ensemble Tagger as a basis of the

features used for training. These existing features are those from the Ensemble

Tagger continuing to be used due to their continued relevance. They are as

follows:

1. Normalized position: We normalized the position metric described above

such that the first word in the identifier is in position 1, all middle words

are in position 2, and the last word is in position 3. For example, given

an identifier: GetXMLReaderHandler, Get is in position 1, XML is in

position 2, Reader is in position 2 and Handler is in position 3. The

reason for this feature is to mitigate the sometimes-negative effect of

very long identifiers.

2. Identifier size: The length, in words, of the identifier of which the word

was originally part.

CHAPTER 5. METHODOLOGY 17

5.4.2 New Features

The training of the model focused on creating new features in order to better

the Scalable Tagger’s quality measurement metrics. Each new feature provides

new insight into understanding key similarities and differences between part-

of-speech categories. The new features are as follows:

1. Word Embeddings: Word vectorization is applied to each word to ana-

lyze the similarities and differences between them as they relate to other

words. Word vectorization is the process of converting words in text into

numerical arrays, in order for their use in training the model. Gensim,

a popular natural language processing library, is used to provide a pre-

trained model of a plethora of word vectors. Since this feature is an array

of numbers, each index in the array is used as a separate feature that

comprises the whole. The length of the array depends on the Gensim

model used, which is "fasttext-wiki-news-subwords-300" making there

be 300 Word Embedding features.

2. Last letter: The ASCII value of the last letter of the word. This provides

better contrast between nouns and noun plurals as the difference usually

occurs with noun plurals ending in the letter "S". For example the

difference between "Dog" being a noun and "Dogs" being a noun plural,

in which the last letter of the word being the key differentiator.

3. Digit: Determines whether the word is a digit or not. Is set to a value of

0 if the word is a digit or a 1 if the word is not.

4. Word Length: The length of the word. This can be used to differentiate

CHAPTER 5. METHODOLOGY 18

preambles, prepositions and digits which are typically shorter in length

from nouns, noun plurals and verbs which are typically longer.

5.4.3 Removed and Failed Features

The Scalable Tagger detailed in this thesis used the features of the Ensemble

Tagger as a basis for its starting features. This also means that certain fea-

tures were removed due to their lack of relevance. The SWUM, POSSE, and

Stanford annotation features were three part-of-speech taggers that were used

to comprise the ensemble nature of the Ensemble Tagger. These features are

the source of the slow tagging rate experienced by the Ensemble Tagger, which

is the grounds for their removal. The Word, Data Type, Position, and Context

features were also removed as they had a negligible effect on the Scalable Tag-

ger’s quality measurement metrics, which is further explained in Chapter 5.4.4.

More information on these discarded features can be found in the Ensemble

Tagger paper [62].

Other features were attempted to increase the quality measurement metrics

besides those mentioned in Chapter 5.4.2, but they did not result in improve-

ments. Further attempts at the use of word vectors were made through cosine

correlation between word vectors. These cosine similarities were flawed in their

over-fitting to given data, and when corrected presented no statistical improve-

ments. Other features tried involved determining if a word was a commonly

used conjunction or determiner. These part-of-speech categories are comprised

of limited sets, however, this approach was unfruitful. These features were not

useful in the end, but the process of finding statistically beneficial features

CHAPTER 5. METHODOLOGY 19

involves an arduous period of trial and error.

5.4.4 Feature Testing

Further testing was used to analyze the features to ensure which features were

statistically significant to the quality measurement metrics detailed in Chapter

5.2. The analysis of the features involved two techniques: Drop-column feature

importance and permutation importance. Drop-column feature importance is

the training of the model on every possible subset of the available features,

which can allow for the best possible subset to be determined. Permutation

importance involves first training the model. Then each feature is randomly

shuffled out, and the resulting importance is measured from the difference in

the quality measurement metrics. This then gives a value to the importance of

each feature, and whether it should be used. Each feature was run using these

techniques to value their importance, from which the features stated in Chap-

ters 5.4.1 and 5.4.2 were all validated. Testing using permutation importance

was can be shown on these validated features in Tables 5.3, 5.4, and 5.5, which

detail the importance of the features relating to F1 measure, balanced accu-

racy, and accuracy. The key exception is that of Word Length, which can be

shown with no importance in all of these categories. Unlike the other features

that have shown no importance, Word Length did have noticeable effects on

the quality model measurements when removed. It should be noted, that these

techniques do not represent non-linear relationships between features and the

target outcome and do not always reflect the true importance of a feature, as

can be seen in the instance of the Word Length feature.

CHAPTER 5. METHODOLOGY 20

Table 5.3: F1 weighted importances for best features

Feature Set F1 Weighted Importances Average

Normalized Position 0.36 0.37 0.36 0.35 0.36 0.36

Last Letter 0.09 0.09 0.09 0.09 0.09 0.09

Identifier Size 0.03 0.03 0.03 0.03 0.03 0.03

Digit 0.01 0.01 0.01 0.01 0.01 0.01

Word Length 0.00 0.00 0.00 0.00 0.00 0.00

Word Embeddings 0.54 0.54 0.55 0.54 0.54 0.54

Table 5.4: Balanced accuracy importances for best features

Feature Set Balanced Accuracy Importances Average

Normalized Position 0.34 0.35 0.31 0.31 0.30 0.32

Last Letter 0.12 0.13 0.12 0.14 0.14 0.13

Identifier Size 0.02 0.03 0.02 0.02 0.02 0.02

Digit 0.08 0.08 0.08 0.08 0.08 0.08

Word Length 0.00 0.00 0.00 0.00 0.00 0.00

Word Embeddings 1.33 1.38 1.38 1.29 1.34 1.34

Table 5.5: Accuracy importances for best features

Feature Set Accuracy Importances Average

Normalized Position 0.37 0.36 0.37 0.36 0.35 0.36

Last Letter 0.08 0.08 0.08 0.08 0.08 0.08

Identifier Size 0.03 0.03 0.03 0.03 0.03 0.03

Digit 0.01 0.01 0.01 0.01 0.01 0.01

Word Length 0.00 0.00 0.00 0.00 0.00 0.00

Word Embeddings 0.53 0.51 0.51 0.49 0.51 0.51

CHAPTER 5. METHODOLOGY 21

5.5 Tagger Scalability Timing

The essential flaw of the previous state-of-the-art part-of-speech tagger for

source code identifiers, the Ensemble Tagger, was its inability to scale. The

Scalable Tagger will be made scalable through the removal of the ensemble na-

ture while attempting to maintain the accuracy and other quality measurement

metrics set by the Ensemble Tagger.

The tagging rate for the Scalable Tagger will be determined by timing how

long the Scalable Tagger takes to tag the unseen test set. This allows for

the evaluation of the Scalable Tagger’s tagging rate on a set of data that was

not used in training. The tagging rate will therefore be calculated using the

following equation:

Tagging Rate =
of words tagged

Total tagging time
(5.1)

The unseen test set is comprised of 977 words from 384 identifiers, causing the

tagging rate of the unseen test set to be:

Tagging Rate =
977 words

Total tagging time
(5.2)

The tagging rate has units of part-of-speech annotation, or tag, per second

(tag/sec). One thing to mention is that the time it takes for the new features

created for the Scalable Tagger was not applied to the time it takes for tagging.

It is assumed that the features have been applied to the data set before the

tagging is initiated.

Chapter 6

Analysis & Discussion

6.1 Tagger Accuracy

RQ1: What is the accuracy of this approach compared to the state-of-the-art

Ensemble Tagger?

The evaluation of the Scalable Tagger’s accuracy is determined in two ways.

The first method by using the 5-fold cross validation, which uses a set of 1,335

manually-annotated identifiers. This allows for the evaluation of the model

during its training. The second method is by running the trained model on

the unseen test set of 384 identifiers. This provides an unbiased set of identi-

fiers to provide assurance of the model’s accuracy and that it isn’t over-fitting

on the training data.

22

CHAPTER 6. ANALYSIS & DISCUSSION 23

Table 6.1: Benchmark Tagger quality measurement metrics for each annotation

category

Annotation Precision Recall F1-Score Support

CJ 0.00 0.00 0.00 2

D 0.89 1.00 0.94 8

DT 0.00 0.00 0.00 4

N 0.75 0.85 0.80 333

NM 0.83 0.94 0.88 509

NPL 0.20 0.05 0.08 77

P 0.00 0.00 0.00 24

PRE 0.00 0.00 0.00 31

V 0.57 0.55 0.56 76

VM 0.00 0.00 0.00 1

Table 6.2: Benchmark Tagger’s average quality measurement metrics

Metric Average

Accuracy 0.77

Balanced Accuracy 0.34

Weighted F1 Score 0.72

Weighted Precision 0.69

Weighted Recall 0.77

CHAPTER 6. ANALYSIS & DISCUSSION 24

6.1.1 5-fold Test Results

The first run of the Scalable Tagger, before any improvements were made,

involved using a stripped down version of the original Ensemble Tagger [62],

excluding the SWUM, POSSE, and Stanford annotations which were the cause

of the Ensemble Tagger’s detrimental slow tagging rate. This established a

benchmark for improvement upon which the Scalable Tagger’s improved re-

sults are compared. The Benchmark Tagger is shown in Tables 6.1 and 6.2.

The evaluation of the Scalable Tagger is run using the Decision Tree machine

learning approach as detailed in Chapter 5. The results from this evaluation

can be seen in Tables 6.3 and 6.4. Both tables, 6.2 and 6.4, give the averaged

results of the 5-fold evaluations which are the tagger’s quality measurement

metrics, which include the tagger’s accuracy, balanced accuracy, weighted F1

score, weighted precision, and weighted recall. Tables 6.1 and 6.3 detail the

precision, recall, and F1 score measured for each annotation category, which

characterize the tagger’s effectiveness across each category.

The Benchmark Tagger can be seen to have many inadequacies, as shown

in Tables 6.1 and 6.2. The accuracy of the Benchmark Tagger, at 77%, is

lower than that of the state-of-the-art Ensemble Tagger, at 86%. This needs

to be improved upon in order to meet the set standards. The balanced ac-

curacy, however, of the Benchmark is very low at 34%, as compared to the

Ensemble’s balanced accuracy of 55%, indicating that many categories are

being mis-annotated by the Benchmark Tagger. This can be clearly seen as

5 of the 10 annotation categories are not tagged accurately at all, with 0%

measurements for precision, recall, and F1 score. This contrast between ac-

CHAPTER 6. ANALYSIS & DISCUSSION 25

Table 6.3: Scalable Tagger quality measurement metrics for each annotation

category

Annotation Precision Recall F1-Score Support

CJ 1.00 1.00 1.00 2

D 1.00 0.88 0.93 8

DT 0.80 1.00 0.89 4

N 0.92 0.86 0.89 333

NM 0.87 0.94 0.90 509

NPL 0.89 0.82 0.85 77

P 0.80 0.83 0.82 24

PRE 0.89 0.52 0.65 31

V 0.68 0.63 0.65 76

VM 0.00 0.00 0.00 1

Table 6.4: Scalable Tagger’s average quality measurement metrics

Metric Average

Accuracy 0.87

Balanced Accuracy 0.75

Weighted F1 Score 0.87

Weighted Precision 0.87

Weighted Recall 0.87

CHAPTER 6. ANALYSIS & DISCUSSION 26

curacy and balanced accuracy is due to the heavy support of nouns(N) and

noun modifiers(NM), which are more accurately tagged than other annotation

categories.

The Scalable Tagger improves on the inadequacies of the Benchmark Tag-

ger in order to surpass the accuracy of the Ensemble Tagger, as can be seen in

Tables 6.3 and 6.4. There are enhancements in every annotation category, ex-

cept for that of VM, which can be attributed to its low support. The accuracy

of the Scalable Tagger, at 87%, increased 10% from the Benchmark Tagger, as

well as 1% from that of the Ensemble Tagger [62]. The biggest improvement is

the Scalable Tagger’s balance accuracy, at 75% is a 41% improvement over the

Benchmark Tagger, and a 20% improvement over the Ensemble Tagger. This

is due to the focus on addressing the tagging failures of the conjunction(CJ),

determinant(DT), noun plural(NPL), preposition(P), and preamble(PRE) an-

notation categories which allows for more accurate tagging on a wider variety

of identifiers that aren’t comprised of the more common noun and noun mod-

ifiers.

6.1.2 Unseen Test Set Results

The unseen test set is an unbiased test set used to validate the trained model

on data that hasn’t been used to train it. The model was run on the unseen

test set, resulting in the accuracy evaluations shown in Table 6.5. This result

validates the finding from the 5-fold test validation as the accuracy of the

Scalable Tagger remains congruent in both testing methods across most of

the annotations, except for conjunctions which has a low sample size. The

CHAPTER 6. ANALYSIS & DISCUSSION 27

Annotation Number Correct Number Incorrect Accuracy

CJ 0 1 0.0%

D 7 0 100.0%

DT 4 1 80.0%

N 280 42 87.0%

NM 400 15 96.4%

NPL 69 9 88.5%

P 28 4 87.5%

PRE 22 11 66.7%

V 59 22 72.8%

VM 1 2 33.3%

Total 870 107 89.0%

testing of the unseen test set resulted in a greater accuracy of 89%, which is

2% greater than that of the 5-fold validation. This demonstrates a very low

chance of over-fitting in the model, and that the Scalable Tagger’s improved

accuracy holds true.

6.2 Tagger Scalability

RQ2: How scalable is this approach compared to the state-of-the-art Ensemble

Tagger?

The lack of scalability of the Ensemble Tagger is a major limitation. This

limits its ability to perform tagging on large scale code bases, as users would

CHAPTER 6. ANALYSIS & DISCUSSION 28

like to use a tool that is timely and effective. The lack of scalability is due to

its slow tagging rate of approximately 1 part-of-speech annotation per second.

At this rate, the tagging of one million words from a large scale repository with

a very large amount of source code identifiers would take 12 days.The Scalable

Tagger attempts to have its tagging rate be swift in order to correct for this

limitation.

The scalability, through means of the tagging rate, has been evaluated by

measuring the amount of time the Scalable Tagger takes to tag all the identifiers

in the unseen test set. The time that the Scalable Tagger took to annotate all

977 words from 384 identifiers is 3.984 seconds. The Scalable Tagger’s tagging

rate can then be calculated by using Equation 5.2 using the newly measured

time:

Tagging Rate =
977 words

3.984 seconds
(6.1)

This computes to a tagging rate of approximately 245 tags per second. This

rate is 245 times faster than that of the Ensemble Tagger, which clearly

improves upon its slow tagging rate. This allows for a much more Scalable

Tagger, as in the aforementioned example of a large repository with one million

words to be tagged, the Scalable Tagger would only take approximately 1.2

hours to tag every word. This is a great improvement from the 12 days that

the Ensemble Tagger would take to achieve the same task.

It is also important to mention that this feat would not be as important

without the achievements evaluated in Chapter 6.1. The ability for the Scalable

Tagger to be much faster in its tagging rate, thus being scalable would not be

as useful if the Scalable Tagger’s accuracy, balanced accuracy, precision, recall,

CHAPTER 6. ANALYSIS & DISCUSSION 29

and F1-score suffered as a consequence.

Chapter 7

Threats to Validity

This thesis sources its datasets from those used by the Ensemble Tagger.

Therefore, one concern is that the collection of 1,335 identifiers could have

been improperly annotated by the authors of the ensemble tagging paper [62],

leading to imperfections in the data. This was validated by the cross-validation

amongst annotators for all grammar patterns, and by having the data sets pub-

licly available allowing for corrections from outside sources.

Another concern is the confidence we have that the features selected in

the training of the model have a true cause-and-effect relationship with the

evaluation of the Scalable Tagger’s accuracy and other quality measurement

metrics and that the positive evaluation of these measurements are not caused

by other external factors. The use of drop-column and permutation impor-

tances validated that the features were directly affecting these measurements,

as they were tested through 5-fold cross-validation. Outside external factors

were mitigated by keeping the same training and testing sets for the Scalable

30

CHAPTER 7. THREATS TO VALIDITY 31

Tagger as the Ensemble Tagger.

Over-fitting is another threat that must be acknowledged. In order to en-

sure that the Scalable Tagger is not only valid on the data used to train it,

the Scalable Tagger went through the testing method of 5-fold cross-validation,

which used train-test folds to ensure that each sample of training data was also

used to test the Scalable Tagger. This was compounded by the use of an exter-

nal testing set, unseen to the Scalable Tagger during training. The validation

that both of these testing methods proved to have positive evaluations on the

Scalable Tagger’s quality measurement metrics indicates that over-fitting has

been properly mitigated.

Many machine learning approaches, including Random Forest, Decision

Tree, XGBoost, Logistic Regression, Support Vector Classification, and K-

Nearest Neighbors, were considered for this model along with numerous fea-

tures to train them. This resulted in the usage of a model implementing the

Decision Tree approach and the features discussed in Chapter 5. These were

then evaluated using the metrics of accuracy, balanced accuracy, recall, preci-

sion, and F1-score. This resulted in a new state-of-the-art tagger according to

these metrics that is scalable, however, this should not be taken as the final

result in source code identifier tagging. It would be a naive judgment that

the Scalable Tagger could not be potentially improved upon since the Scalable

Tagger itself is an improvement on the previous state-of-the-art tagger. To

mitigate this, the data-sets and code for the Scalable Tagger have been made

publicly available on GitHub.

Chapter 8

Conclusion

This thesis has detailed the creation and evaluation of a new scalable part-

of-speech tagger. The Scalable Tagger was modeled using the Decision Tree

machine learning algorithm and trained using various features to target the

better tagging of specific annotation categories while allowing for a rapid tag-

ging rate. This resulted in the Scalable Tagger having an 87% accuracy, which

is a 1% increase over its predecessor, a balanced accuracy of 75%, which is a

20% improvement over its predecessor, and a tagging rate of 245 annotations

per second, which is 245 times faster than its predecessor.

This part-of-speech tagger has, therefore, become the new state-of-the-art

tagger for the annotation of source code identifiers. It has addressed the major

inadequacy of the Ensemble Tagger, its predecessor, of lacking scalability due

to its slow tagging rate. The Scalable Tagger detailed in this thesis is deemed

successful as it has addressed this thesis’ main goal of being scalable while

maintaining the accuracy set by the Ensemble Tagger.

32

CHAPTER 8. CONCLUSION 33

Future work on the subject of the tagging of source code identifiers may

arise around handling certain limitations of this project. Future taggers can

implement other machine learning algorithms that were not tested in this thesis

in order to increase the scalability and/or the accuracy of the tagger. The usage

of a larger data set to train the model, whose annotations are validated by more

analysts, would aid in allowing the tagger to recognize patterns that may not

be present in the data set used for this thesis.

Bibliography

[1] Vahid Alizadeh, Marouane Kessentini, Mohamed Wiem Mkaouer, Mel

Ocinneide, Ali Ouni, and Yuanfang Cai. An interactive and dynamic

search-based approach to software refactoring recommendations. IEEE

Transactions on Software Engineering, 46(9):932–961, 2018.

[2] Wajdi Aljedaani, Mona Aljedaani, Eman Abdullah AlOmar, Mo-

hamed Wiem Mkaouer, Stephanie Ludi, and Yousef Bani Khalaf. I cannot

see you—the perspectives of deaf students to online learning during covid-

19 pandemic: Saudi arabia case study. Education Sciences, 11(11):712,

2021.

[3] Wajdi Aljedaani, Mohammed Alkahtani, Stephanie Ludi, Mohamed Wiem

Mkaouer, Marcelo M Eler, Marouane Kessentini, and Ali Ouni. The state

of accessibility in blackboard: Survey and user reviews case study. In 20th

International Web for All Conference, pages 84–95, 2023.

[4] Wajdi Aljedaani, Mohamed Wiem Mkaouer, Anthony Peruma, and

Stephanie Ludi. Do the test smells assertion roulette and eager test im-

34

BIBLIOGRAPHY 35

pact students’ troubleshooting and debugging capabilities? arXiv preprint

arXiv:2303.04234, 2023.

[5] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,

Mohamed Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif

Ghallab, and Stephanie Ludi. Test smell detection tools: A system-

atic mapping study. Evaluation and Assessment in Software Engineering,

pages 170–180, 2021.

[6] Bader Alkhazi, Andrew DiStasi, Wajdi Aljedaani, Hussein Alrubaye, Xin

Ye, and Mohamed Wiem Mkaouer. Learning to rank developers for bug

report assignment. Applied Soft Computing, 95:106667, 2020.

[7] Nuri Almarimi, Ali Ouni, Salah Bouktif, Mohamed Wiem Mkaouer,

Raula Gaikovina Kula, and Mohamed Aymen Saied. Web service api rec-

ommendation for automated mashup creation using multi-objective evo-

lutionary search. Applied Soft Computing, 85:105830, 2019.

[8] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. csdetector: an open source tool for community smells detec-

tion. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 1560–1564, 2021.

[9] Nuri Almarimi, Ali Ouni, Moataz Chouchen, Islem Saidani, and Mo-

hamed Wiem Mkaouer. On the detection of community smells using

genetic programming-based ensemble classifier chain. In Proceedings of

BIBLIOGRAPHY 36

the 15th International Conference on Global Software Engineering, pages

43–54, 2020.

[10] Nuri Almarimi, Ali Ouni, and Mohamed Wiem Mkaouer. Learning to

detect community smells in open source software projects. Knowledge-

Based Systems, 204:106201, 2020.

[11] Rafi Almhana, Wiem Mkaouer, Marouane Kessentini, and Ali Ouni. Rec-

ommending relevant classes for bug reports using multi-objective search.

In 2016 31st IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pages 286–295. IEEE, 2016.

[12] Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Can refactor-

ing be self-affirmed? an exploratory study on how developers document

their refactoring activities in commit messages. In 2019 IEEE/ACM 3rd

International Workshop on Refactoring (IWoR), pages 51–58. IEEE, 2019.

[13] Eman Abdullah AlOmar, Salma Abdullah AlOmar, and Mohamed Wiem

Mkaouer. On the use of static analysis to engage students with soft-

ware quality improvement: An experience with pmd. arXiv preprint

arXiv:2302.05554, 2023.

[14] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,

Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-

text of modern code review: An industrial case study at xerox. In

2021 IEEE/ACM 43rd International Conference on Software Engineering:

BIBLIOGRAPHY 37

Software Engineering in Practice (ICSE-SEIP), pages 348–357. IEEE,

2021.

[15] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer,

Ali Ouni, and Marouane Kessentini. Refactoring practices in the con-

text of modern code review: An industrial case study at xerox. In

2021 IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP), pages 348–357. IEEE,

2021.

[16] Eman Abdullah AlOmar, Ben Christians, Mihal Busho, Ahmed Hamad

AlKhalid, Ali Ouni, Christian Newman, and Mohamed Wiem Mkaouer.

Satdbailiff-mining and tracking self-admitted technical debt. Science of

Computer Programming, 213:102693, 2022.

[17] Eman Abdullah AlOmar, Jiaqian Liu, Kenneth Addo, Mohamed Wiem

Mkaouer, Christian Newman, Ali Ouni, and Zhe Yu. On the documen-

tation of refactoring types. Automated Software Engineering, 29(1):1–40,

2022.

[18] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian New-

man, and Ali Ouni. On preserving the behavior in software refactor-

ing: A systematic mapping study. Information and Software Technology,

140:106675, 2021.

[19] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. Min-

ing and managing big data refactoring for design improvement: Are we

BIBLIOGRAPHY 38

there yet? Knowledge Management in the Development of Data-Intensive

Systems, pages 127–140, 2021.

[20] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. To-

ward the automatic classification of self-affirmed refactoring. Journal of

Systems and Software, 171:110821, 2021.

[21] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and

Marouane Kessentini. On the impact of refactoring on the relationship

between quality attributes and design metrics. In 2019 ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 1–11. IEEE, 2019.

[22] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,

Christian Newman, Ali Ouni, and Marouane Kessentini. How we refactor

and how we document it? on the use of supervised machine learning

algorithms to classify refactoring documentation. Expert Systems with

Applications, 167:114176, 2021.

[23] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer,

Christian D Newman, and Ali Ouni. Behind the scenes: On the relation-

ship between developer experience and refactoring. Journal of Software:

Evolution and Process, page e2395, 2021.

[24] Eman Abdullah AlOmar, Anthony Peruma, Christian D Newman, Mo-

hamed Wiem Mkaouer, and Ali Ouni. On the relationship between devel-

oper experience and refactoring: An exploratory study and preliminary

BIBLIOGRAPHY 39

results. In Proceedings of the IEEE/ACM 42nd International Conference

on Software Engineering Workshops, pages 342–349, 2020.

[25] Eman Abdullah AlOmar, Philip T Rodriguez, Jordan Bowman, Tianjia

Wang, Benjamin Adepoju, Kevin Lopez, Christian Newman, Ali Ouni,

and Mohamed Wiem Mkaouer. How do developers refactor code to im-

prove code reusability? In International Conference on Software and

Software Reuse, pages 261–276. Springer, 2020.

[26] Eman Abdullah Alomar, Tianjia Wang, Vaibhavi Raut, Mohamed Wiem

Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: an

empirical study. Innovations in Systems and Software Engineering, pages

1–31, 2022.

[27] Eman Abdullah AlOmar, Tianjia Wang, Raut Vaibhavi, Mohamed Wiem

Mkaouer, Christian Newman, and Ali Ouni. Refactoring for reuse: An

empirical study. Innovations in Systems and Software Engineering, pages

1–31, 2021.

[28] Hussein Alrubaye, Deema Alshoaibi, Eman Alomar, Mohamed Wiem

Mkaouer, and Ali Ouni. How does library migration impact software qual-

ity and comprehension? an empirical study. In International Conference

on Software and Software Reuse, pages 245–260. Springer, 2020.

[29] Hussein Alrubaye, Stephanie Ludi, and Mohamed Wiem Mkaouer.

Comparison of block-based and hybrid-based environments in transfer-

BIBLIOGRAPHY 40

ring programming skills to text-based environments. arXiv preprint

arXiv:1906.03060, 2019.

[30] Hussein Alrubaye and Mohamed Wiem Mkaouer. Automating the de-

tection of third-party java library migration at the function level. In

CASCON, pages 60–71, 2018.

[31] Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon

Reznik, Ali Ouni, and Jason Mcgoff. Learning to recommend third-party

library migration opportunities at the api level. Applied Soft Computing,

90:106140, 2020.

[32] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. Migration-

miner: An automated detection tool of third-party java library migration

at the method level. In 2019 IEEE international conference on software

maintenance and evolution (ICSME), pages 414–417. IEEE, 2019.

[33] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. On the use of

information retrieval to automate the detection of third-party java library

migration at the method level. In 2019 IEEE/ACM 27th International

Conference on Program Comprehension (ICPC), pages 347–357. IEEE,

2019.

[34] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Anthony Peruma. Vari-

ability in library evolution: An exploratory study on open-source java li-

braries. In Software Engineering for Variability Intensive Systems, pages

295–320. Auerbach Publications, 2019.

BIBLIOGRAPHY 41

[35] Deema Alshoaibi, Kevin Hannigan, Hiten Gupta, and Mohamed Wiem

Mkaouer. Price: Detection of performance regression introducing code

changes using static and dynamic metrics. In International Symposium

on Search Based Software Engineering, pages 75–88. Springer, 2019.

[36] Alex Bogart, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali

Ouni. Increasing the trust in refactoring through visualization. In 2020

IEEE/ACM 4th International Workshop on Refactoring (IWoR), 2020.

[37] Caprile and Tonella. Restructuring program identifier names. In Pro-

ceedings 2000 International Conference on Software Maintenance, pages

97–107, 2000.

[38] Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang, Patana-

mon Thongtanunam, Mohamed Wiem Mkaouer, and Kenichi Matsumoto.

Anti-patterns in modern code review: Symptoms and prevalence. In

2021 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 531–535. IEEE, 2021.

[39] Moataz Chouchen, Ali Ouni, and Mohamed Wiem Mkaouer. Androlib:

Third-party software library recommendation for android applications. In

International Conference on Software and Software Reuse, pages 208–225.

Springer, 2020.

[40] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina

Kula, and Katsuro Inoue. Whoreview: A multi-objective search-based ap-

BIBLIOGRAPHY 42

proach for code reviewers recommendation in modern code review. Applied

Soft Computing, 100:106908, 2021.

[41] Motaz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikov-

ina Kula, and Katsuro Inoue. Recommending peer reviewers in modern

code review: a multi-objective search-based approach. In Proceedings of

the 2020 Genetic and Evolutionary Computation Conference Companion,

pages 307–308, 2020.

[42] Marwa Daaji, Ali Ouni, Mohamed Mohsen Gammoudi, Salah Bouktif, and

Mohamed Wiem Mkaouer. Multi-criteria web services selection: Balancing

the quality of design and quality of service. ACM Transactions on Internet

Technology (TOIT), 22(1):1–31, 2021.

[43] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mo-

hamed Wiem Mkaouer. On the classification of bug reports to improve

bug localization. Soft Computing, 25(11):7307–7323, 2021.

[44] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Mon-

tassar Ben Messaoud. Augmenting commit classification by using fine-

grained source code changes and a pre-trained deep neural language

model. Information and Software Technology, 135:106566, 2021.

[45] Sirine Gharbi, Mohamed Wiem Mkaouer, Ilyes Jenhani, and Montas-

sar Ben Messaoud. On the classification of software change messages

using multi-label active learning. In Proceedings of the 34th ACM/SI-

GAPP Symposium on Applied Computing, pages 1760–1767, 2019.

BIBLIOGRAPHY 43

[46] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey

Bryksin, and Mohamed Wiem Mkaouer. One thousand and one stories:

a large-scale survey of software refactoring. In Proceedings of the 29th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pages 1303–1313,

2021.

[47] Samir Gupta, Sana Malik, Lori Pollock, and K. Vijay-Shanker. Part-

of-speech tagging of program identifiers for improved text-based software

engineering tools. In 2013 21st International Conference on Program Com-

prehension (ICPC), pages 3–12, 2013.

[48] Oumayma Hamdi, Ali Ouni, Eman Abdullah AlOmar, Mel Ó Cinnéide,

and Mohamed Wiem Mkaouer. An empirical study on the impact of

refactoring on quality metrics in android applications. In 2021 IEEE/ACM

8th International Conference on Mobile Software Engineering and Systems

(MobileSoft), pages 28–39. IEEE, 2021.

[49] Oumayma Hamdi, Ali Ouni, Mel Ó Cinnéide, and Mohamed Wiem

Mkaouer. A longitudinal study of the impact of refactoring in android

applications. Information and Software Technology, 140:106699, 2021.

[50] Einar W. Høst and Bjarte M. Østvold. Debugging method names. In

Sophia Drossopoulou, editor, ECOOP 2009 – Object-Oriented Program-

ming, pages 294–317, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

BIBLIOGRAPHY 44

[51] Licelot Marmolejos, Eman Abdullah AlOmar, Mohamed Wiem Mkaouer,

Christian Newman, and Ali Ouni. On the use of textual feature extraction

techniques to support the automated detection of refactoring documen-

tation. Innovations in Systems and Software Engineering, pages 1–17,

2021.

[52] Montassar Ben Messaoud, Ilyes Jenhani, Nermine Ben Jemaa, and Mo-

hamed Wiem Mkaouer. A multi-label active learning approach for mobile

app user review classification. In International Conference on Knowledge

Science, Engineering and Management, pages 805–816. Springer, 2019.

[53] Mohamed W Mkaouer, Marouane Kessentini, Slim Bechikh, and Daniel R

Tauritz. Preference-based multi-objective software modelling. In 2013

1st International Workshop on Combining Modelling and Search-Based

Software Engineering (CMSBSE), pages 61–66. IEEE, 2013.

[54] Mohamed Wiem Mkaouer. Interactive code smells detection: An initial

investigation. In International Symposium on Search Based Software En-

gineering, pages 281–287. Springer, Cham, 2016.

[55] Mohamed Wiem Mkaouer and Marouane Kessentini. Model transforma-

tion using multiobjective optimization. In Advances in Computers, vol-

ume 92, pages 161–202. Elsevier, 2014.

[56] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-

moy Deb, and Mel Ó Cinnéide. High dimensional search-based software

engineering: finding tradeoffs among 15 objectives for automating software

BIBLIOGRAPHY 45

refactoring using nsga-iii. In Proceedings of the 2014 Annual Conference

on Genetic and Evolutionary Computation, pages 1263–1270, 2014.

[57] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-

moy Deb, and Mel Ó Cinnéide. Recommendation system for software

refactoring using innovization and interactive dynamic optimization. In

Proceedings of the 29th ACM/IEEE international conference on Auto-

mated software engineering, pages 331–336, 2014.

[58] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, and Mel

Ó Cinnéide. A robust multi-objective approach for software refactoring

under uncertainty. In International Symposium on Search Based Software

Engineering, pages 168–183. Springer, Cham, 2014.

[59] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel

Ó Cinnéide, and Kalyanmoy Deb. On the use of many quality attributes

for software refactoring: a many-objective search-based software engineer-

ing approach. Empirical Software Engineering, 21(6):2503–2545, 2016.

[60] Mohamed Wiem Mkaouer, Marouane Kessentini, Mel Ó Cinnéide, Shin-

pei Hayashi, and Kalyanmoy Deb. A robust multi-objective approach to

balance severity and importance of refactoring opportunities. Empirical

Software Engineering, 22(2):894–927, 2017.

[61] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,

Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-objective software

BIBLIOGRAPHY 46

remodularization using nsga-iii. ACM Transactions on Software Engineer-

ing and Methodology (TOSEM), 24(3):1–45, 2015.

[62] C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma, M. Mkaouer,

S. Mohapatra, T. Vishnoi, M. Zampieri, T. J. Sheldon, and E. Hill. An

ensemble approach for annotating source code identifiers with part-of-

speech tags. IEEE Transactions on Software Engineering, 48(09):3506–

3522, sep 2022.

[63] Christian D. Newman, Reem S. AlSuhaibani, Michael L. Collard, and

Jonathan I. Maletic. Lexical categories for source code identifiers. In 2017

IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 228–239, 2017.

[64] Christian D. Newman, Reem S. AlSuhaibani, Michael J. Decker, Anthony

Peruma, Dishant Kaushik, Mohamed Wiem Mkaouer, and Emily Hill. On

the generation, structure, and semantics of grammar patterns in source

code identifiers. Journal of Systems and Software, 170:110740, 2020.

[65] Christian D Newman, Michael J Decker, Reem Alsuhaibani, Anthony

Peruma, Mohamed Mkaouer, Satyajit Mohapatra, Tejal Vishoi, Marcos

Zampieri, Timothy Sheldon, and Emily Hill. An ensemble approach for

annotating source code identifiers with part-of-speech tags. IEEE Trans-

actions on Software Engineering, 2021.

[66] Christian D Newman, Mohamed Wiem Mkaouer, Michael L Collard, and

Jonathan I Maletic. A study on developer perception of transformation

BIBLIOGRAPHY 47

languages for refactoring. In Proceedings of the 2nd International Work-

shop on Refactoring, pages 34–41, 2018.

[67] Profir-Petru Pârtachi, Santanu Kumar Dash, Christoph Treude, and

Earl T. Barr. Posit: Simultaneously tagging natural and programming

languages. In Proceedings of the ACM/IEEE 42nd International Confer-

ence on Software Engineering, ICSE ’20, page 1348–1358, New York, NY,

USA, 2020. Association for Computing Machinery.

[68] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-

hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the distribution

of test smells in open source android applications: An exploratory study.

In Proceedings of the 29th Annual International Conference on Computer

Science and Software Engineering, CASCON ’19, page 193–202, USA,

2019. IBM Corp.

[69] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem

Mkaouer, Ali Ouni, and Fabio Palomba. On the distribution of test smells

in open source android applications: An exploratory study. In Proceedings

of the 29th Annual International Conference on Computer Science and

Software Engineering, pages 193–202, 2019.

[70] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-

hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. Tsdetect: An

open source test smells detection tool. In Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Sympo-

BIBLIOGRAPHY 48

sium on the Foundations of Software Engineering, ESEC/FSE 2020, New

York, NY, USA, 2020. Association for Computing Machinery.

[71] Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem

Mkaouer, Ali Ouni, and Fabio Palomba. tsdetect: an open source test

smells detection tool. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering, pages 1650–1654, 2020.

[72] Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah AlOmar, Mo-

hamed Wiem Mkaouer, and Christian D Newman. Using grammar pat-

terns to interpret test method name evolution. In 2021 IEEE/ACM 29th

International Conference on Program Comprehension (ICPC), pages 335–

346. IEEE, 2021.

[73] Anthony Peruma, Emily Hu, Jiajun Chen, Eman Abdullah AlOmar, Mo-

hamed Wiem Mkaouer, and Christian D. Newman. Using grammar pat-

terns to interpret test method name evolution. In 2021 IEEE/ACM 29th

International Conference on Program Comprehension (ICPC), pages 335–

346, 2021.

[74] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J Decker, and Chris-

tian D Newman. An empirical investigation of how and why developers

rename identifiers. In Proceedings of the 2nd International Workshop on

Refactoring, pages 26–33. ACM, 2018.

BIBLIOGRAPHY 49

[75] Anthony Peruma, Mohamed Wiem Mkaouer, Michael John Decker, and

Christian Donald Newman. Contextualizing rename decisions using refac-

torings and commit messages. In 2019 19th International Working Con-

ference on Source Code Analysis and Manipulation (SCAM), pages 74–85.

IEEE, 2019.

[76] Anthony Peruma, Christian D. Newman, Mohamed Wiem Mkaouer, Ali

Ouni, and Fabio Palomba. An exploratory study on the refactoring of unit

test files in android applications. In Proceedings of the IEEE/ACM 42nd

International Conference on Software Engineering Workshops, ICSEW’20,

page 350–357, New York, NY, USA, 2020. Association for Computing

Machinery.

[77] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D

Newman, Mohamed Wiem Mkaouer, and Ali Ouni. How do i refactor this?

an empirical study on refactoring trends and topics in stack overflow.

Empirical Software Engineering, 27(1):1–43, 2022.

[78] Nasir Safdari, Hussein Alrubaye, Wajdi Aljedaani, Bladimir Baez Baez,

Andrew DiStasi, and Mohamed Wiem Mkaouer. Learning to rank faulty

source files for dependent bug reports. In Big Data: Learning, Analytics,

and Applications, volume 10989, page 109890B. International Society for

Optics and Photonics, 2019.

[79] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. On the prediction of continuous integration build failures using

BIBLIOGRAPHY 50

search-based software engineering. In Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion, pages 313–314, 2020.

[80] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. Predicting continuous integration build failures using evolu-

tionary search. Information and Software Technology, 128:106392, 2020.

[81] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem

Mkaouer. Bf-detector: an automated tool for ci build failure detection. In

Proceedings of the 29th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software En-

gineering, pages 1530–1534, 2021.

[82] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Web service api

anti-patterns detection as a multi-label learning problem. In International

Conference on Web Services, pages 114–132. Springer, 2020.

[83] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the

prediction of continuous integration build failures using deep learning.

Automated Software Engineering, 29(1):1–61, 2022.

[84] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Fabio Palomba.

On the impact of continuous integration on refactoring practice: An ex-

ploratory study on travistorrent. Information and Software Technology,

138:106618, 2021.

[85] Islem Saidani, Ali Ouni, Mohamed Wiem Mkaouer, and Aymen Saied. To-

wards automated microservices extraction using muti-objective evolution-

BIBLIOGRAPHY 51

ary search. In International Conference on Service-Oriented Computing,

pages 58–63. Springer, Cham, 2019.

[86] Islem Saidani, Ali Ouni, and Wiem Mkaouer. Detecting skipped commits

in continuous integration using multi-objective evolutionary search. IEEE

Transactions on Software Engineering, 2021.

[87] Ian Shoenberger, Mohamed Wiem Mkaouer, and Marouane Kessentini.

On the use of smelly examples to detect code smells in javascript. In

European Conference on the Applications of Evolutionary Computation,

pages 20–34. Springer, Cham, 2017.

[88] Makram Soui, Mabrouka Chouchane, Narjes Bessghaier, Mohamed Wiem

Mkaouer, and Marouane Kessentini. On the impact of aesthetic defects

on the maintainability of mobile graphical user interfaces: An empirical

study. Information Systems Frontiers, pages 1–18, 2021.

[89] Makram Soui, Mabrouka Chouchane, Ines Gasmi, and Mohamed Wiem

Mkaouer. Plain: Plugin for predicting the usability of mobile user inter-

face. In VISIGRAPP (1: GRAPP), pages 127–136, 2017.

[90] Makram Soui, Mabrouka Chouchane, Mohamed Wiem Mkaouer,

Marouane Kessentini, and Khaled Ghedira. Assessing the quality of mobile

graphical user interfaces using multi-objective optimization. Soft Comput-

ing, 24(10):7685–7714, 2020.

[91] Taryn Takebayashi, Anthony Peruma, Mohamed Wiem Mkaouer, and

Christian D Newman. An exploratory study on the usage and readabil-

BIBLIOGRAPHY 52

ity of messages within assertion methods of test cases. arXiv preprint

arXiv:2303.00169, 2023.

[92] Kristina Toutanova and Christopher D. Manning. Enriching the knowl-

edge sources used in a maximum entropy part-of-speech tagger. In Pro-

ceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in

Natural Language Processing and Very Large Corpora: Held in Conjunc-

tion with the 38th Annual Meeting of the Association for Computational

Linguistics - Volume 13, EMNLP ’00, page 63–70, USA, 2000. Association

for Computational Linguistics.

[93] Jianwei Wu and James Clause. A pattern-based approach to detect and

improve non-descriptive test names. Journal of Systems and Software,

168:110639, 2020.

[94] Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem Mkaouer.

Recommending pull request reviewers based on code changes. Soft Com-

puting, 25(7):5619–5632, 2021.

[95] Sofonias Yitagesu, Xiaowang Zhang, Zhiyong Feng, Xiaohong Li, and

Zhenchang Xing. Automatic part-of-speech tagging for security vulnera-

bility descriptions. In 2021 IEEE/ACM 18th International Conference on

Mining Software Repositories (MSR), pages 29–40, 2021.

	Efficiently Annotating Source Code Identifiers Using a Scalable Part of Speech Tagger
	Recommended Citation

	tmp.1684764050.pdf.Ks_4p

