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Abstract

This thesis details the process in which a part-of-speech tagger is developed

in order to determine grammar patterns in source code identifiers. These

grammar patterns are used to aid in the proper naming of identifiers in order

to improve reader comprehension. This tagger is a continuation of an effort of

a previous Ensemble Tagger [62], but with a focus on increasing the tagging

rate while maintaining the accuracy, in order to make the tagger scalable.

The Scalable Tagger will be trained on open source data sets, with a machine

learning model and training features that are chosen to best suit the needs for

accuracy and tagging rate. The results of the experiment will be contrasted

with the results of the Ensemble Tagger to determine the Scalable Tagger’s

efficacy.
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Chapter 1

Introduction

The ability of a software engineer to comprehend code that others have writ-

ten is an integral part of the software engineering process [62]. In fact, it is

estimated that developers spend more time reading and comprehending code

than actually writing the code itself. A developer’s increased comprehension,

while reading other’s code, can lead to a decrease in time spent reading code,

a reduction in developer stress, and better overall code development [62]. One

of the primary ways that code is understood is through identifiers, which com-

promise approximately 70 percent of characters found in code [62]. Improving

the comprehension of these identifiers can therefore have the aforementioned

desired positive effects.

One way to begin addressing the problem of source code comprehension

is to understand how identifiers are connected with program behavior. This

can be accomplished by using a part-of-speech tagger [62] . A part-of-speech

tagger is a natural language processing technique in which words in a sentence

1



CHAPTER 1. INTRODUCTION 2

are annotated based on their linguistic role and how they interact with sur-

rounding words. Part-of-speech tags can be used to partially understand how

an identifier conveys program behavior [64]. The majority of part-of-speech

taggers deal with the annotation and tagging of conventional text, however,

the tagger addressing the problem of code comprehension needs to tag source

code identifiers. This issue has been faced before as although part-of-speech

tagging is the most popular method for natural language semantics, it has been

widely inaccurate and therefore been deemed untrustworthy. [62]

Prior researchers have attempted to solve this issue by creating an ensem-

ble part-of-speech tagger for tagging identifiers in source code [62]. The tagger

was an ensemble of SWUM, POSSE, and Stanford taggers and used the de-

cision tree and random forest machine learning techniques in order to achieve

significant results [62] . The goal of this thesis is to create a part-of-speech

tagger that maintains or improves on the state-of-the-art accuracy [62] while

significantly improving the tagging rate.

The rest of this thesis is organized as follows: Chapter 2 details the moti-

vations behind the creation of the scalable part-of-speech tagger, and lists the

research questions that this study sets out to answer. Chapter 3 is the related

work that is relevant to key concepts in the thesis. Chapter 4 details grammar

pattern definitions and gives context to the part-of-speech annotation. Chap-

ter 5 details the methodology behind the Scalable Tagger’s creation. Chapter

6 presents the evaluation of the Scalable Tagger and gives answers to the re-

search questions. Chapter 7 goes into potential threats to the validity of the

thesis. Lastly, Chapter 8 summarizes everything in the conclusion.



Chapter 2

Research Objective

2.1 Motivation and Contribution

The research in this thesis, as stated in Chapter 1, builds upon the research

of an ensemble part-of-speech tagger [62] . The Ensemble Tagger achieved

an accuracy rate of 75% for tagging identifiers and an 86% accuracy rate for

tagging at the word level, which is an increase of 17% from the closest individual

tagger which it’s composed of [62]. Despite its apparent success, the Ensemble

Tagger has a major ineptitude: it can only identify one identifier per second.

This flaw significantly limits its capability to scale to large source code bases

as at this rate tagging one million identifiers could take longer than 12 days.

This thesis has two main goals: (1) The creation of a scalable part-of-speech

tagger that can tag identifiers in source code with at least the same accuracy

as the state-of-the-art Ensemble Tagger, and (2) the Scalable Tagger must

significantly improve its tagging rate relative to the state-of-the-art Ensemble

3



CHAPTER 2. RESEARCH OBJECTIVE 4

Tagger. In the long run, this will help support program comprehension research

and tools. In particualr it will support further research into grammar patterns

which are critical to understanding the naming structures that developers use

in code [64].

2.2 Research Questions

• RQ1: What is the accuracy of this approach compared to the

state of the art Ensemble Tagger?

This research question seeks to determine whether increasing the tagging

rate is detrimental to the Scalable Tagger’s overall accuracy in annotating

source code identifiers. We base the success of the Scalable Tagger on

whether it acheives an equal or greater accuracy metrics.

• RQ2: How scalable is this approach compared to the state of

the art Ensemble Tagger?

This research question seeks to determine the increased tagging rate of

the developed scalable part-of-speech tagger compared to the state-of-

the-art, Ensemble Tagger. The increase in the tagging rate of the Scal-

able Tagger will determine its scalability, especially in contrast to the

Ensemble Tagger’s inability to scale, which was its major deficiency [62].



Chapter 3

Related Work

Many studies addressed challenged to software maintenance in general [1,2,3,4,

5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

32,33,34,35,36,38,39,40,41,42,43,44,45,46,48,49,51,52,53,54,55,56,57,58,59,

60,61,65,66,68,69,70,71,72,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,

90,91,94], and program comprehension in particular. Part-of-speech tagging is

a commonly used method to analyze code in order to understand underlying

relationships amongst identifiers. This has inspired numerous studies to be

performed and papers to be written about this topic.

3.1 Part-of-Speech Taggers

Newman et al. [62] created an ensemble part-of-speech tagger for annotating

identifiers in source code. The tagger comprised the SWUM, POSSE, and

Stanford models, and achieved a 75% success rate at tagging identifiers and an

5



CHAPTER 3. RELATED WORK 6

86% rate tagging at the word level [62] . This tagger is used as a reference in

this paper as this study is meant to address its slow tagging rate.

Yitagesu et al. [95] developed a part-of-speech tagger for security vulnera-

bility descriptions. That study set out to create a tagger that could tag SVDs

much more accurately than a word-level part-of-speech tagger. Through the

use of a neural network, the tagger was able to achieve a 93% accuracy for

tagging SVDs.

Gupta et al. [47] developed a part-of-speech tagger that also specializes

in tagging source code identifiers. This tagger uses POSSE (POS tagger for

Software Engineering) to achieve an 11-20% increase in accuracy over other

traditional taggers used for the same purpose.

Toutanova et al. [92] developed a part-of-speech tagger which optimizes for

maximum entropy in the text by enriching tagging information sources. This

tagger improved the accuracy of tagging individual words by using additional

context provided by outside information.

Partachi et al. [67] researched Software Engineers’ usage of mixed natural

language and source code in their communications and developed a part-of-

speech tagger, called POSIT to solve the problems of language identification

and token tagging amongst this mixed text. The tagger could tag code tokens

with their part-of-speech with an accuracy of 85.6%.

3.2 Part-of-speech-based Analysis of Identifiers

Newman et al. [63] describe the categorization of source code identifiers rather

than their common place connotations. This study categorized source code
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identifiers by their type, behavior, context, use, and meaning to provide a

more descriptive definition to the identifier. This study saw a high correlation

between the identifiers underlying meaning and the meaning of the words that

comprised it.

Caprile et al. [37] research the intrinsic value in identifier names and how

restructuring identifiers can improve their meaningfulness. The study was

able to replace words in identifiers with little meaning with other words that

retained the same connotation, but expressed a more significant meaning to

the reader.

Peruma et al. [73] researched the importance of names of test methods and

how proper use of grammar patterns can assist developers in better understand-

ing test methods over time. The study confirmed the usefulness of grammar

patterns in the understanding of test method names, and in understanding

how they relate to code behavior.

Høst et al. [50] extracted rules for naming methods in order to point out

"naming bugs" in code. An automatic suggestion of more suitable names was

studied and presented to have a high correlation between the name given to a

method and the method’s underlying functionality.

Wu et al. [93] created a process for identifying non-descriptive test method

names in JUnit tests to increase the comprehension of the purpose of the test

method to the reader. This was done by providing information on how the

test method name can be improved with a 95% accuracy rate in determining

which method names needed to be improved.



Chapter 4

Grammar Pattern Definitions

By definition, the usage of a part-of-speech tagger involves the annotation of

words with their parts of speech in grammar in a given context. This tagging of

identifiers in code then results in the formation of a grammar pattern. A gram-

mar pattern is the sequence of part-of-speech tags assigned to words within an

identifier. For example, an identifier called “GetDogData” would start with the

tagging of individual words (Get, Dog, and Data), and result in a grammar

pattern of verb noun-adjunct noun. This grammar pattern can then be used

to classify identifiers that share the same grammar patterns. This then can be

used to correlate identifiers that have different meanings and connotations but

share similarities in their program behavior.

8



CHAPTER 4. GRAMMAR PATTERN DEFINITIONS 9

Table 4.1: Part-of-Speech Categories to be Used by POS Tagger

Abbreviation Expanded Form Examples

N noun Disneyland, shoe, faucet, mother

DT determiner the, this, that, these, those, which

CJ conjunction and, for, nor, but, or, yet, so

P preposition behind, in front of, at, under, above

NPL noun plural Streets, cities, cars, people, lists

NM

noun modifier

(adjectives,

noun-adjuncts

red, cold, hot, scary, beautiful, small

V Verb Run, jump, spin

VM
Verb modifier

(adverb)
Very, loudly, seriously, impatiently

PR pronoun she, he, her, him, it, we, they, them

D digit 1, 2, 10, 4.12, 0xAF

PRE preamble Gimp, GLEW, GL, G, p, m, b



CHAPTER 4. GRAMMAR PATTERN DEFINITIONS 10

4.1 Annotating Words in Identifiers

As identifiers are broken down to have their comprised vocabulary annotated,

it is important to label and categorize these annotations. The categories used

in the part-of-speech tagger are all included in Table I. These categories are

the most common parts of speech that are recognizable from common English

grammar parts of speech. However, there are two categories in Table I that

are uncommon and need to be addressed, preambles and noun modifiers. In

the context of code identifiers, and in this thesis, a preamble is an abbreviation

that occurs at the beginning of an identifier to provide metadata, name-space

an identifier, or highlight the identifier’s type without changing the reader’s

understanding of the identifier. For example, the preamble p_ gives context

that the identifier is being used as a pointer. Noun modifiers are defined in

this thesis as an adjective or a noun that is being used as an adjective, called

a noun-adjunct. An example of a noun-adjunct can be seen in the identifier

"GetDogData" as the noun Dog is being used to describe the noun Data,

making the word Dog a noun-adjunct in this identifier.



Chapter 5

Methodology

In order to evaluate the effectiveness of the Scalable Tagger created in this

thesis against the Ensemble Tagger, both taggers will be trained on the same

data-set. The process and means of sourcing the data-set used for training

the Ensemble Tagger are not included in this thesis, but can be found in the

paper on the Ensemble Tagger [62] if desired. The data-set is comprised of

1,335 manually annotated identifiers to label their part-of-speech, which were

sourced from 20 different software systems. The sourcing of this data is broken

down and shown in Table 5.1. The data-set was then broken down into a

training set and test set in order to validate the results of the Scalable Tagger

across different data sets. The test set was comprised of the identifiers from 5

of the software systems and the remaining 15 comprised the training set, from

which more identifiers were extracted in order to maintain the 1,335 identifier

basis.

In order to reduce over-fitting, 5-fold validation is used on the training

11
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Table 5.1: Distribution of Annotations in Training and Test Sets

Annotation Training Set Unseen Test Set

CJ 11 1

D 20 7

DT 13 5

N 1149 322

NM 1520 415

NPL 220 78

P 91 32

PRE 83 33

V 330 81

VM 12 3

Total 3449 977

data. The training data sourced from 15 software systems is split into 5 smaller

train-test sets, or folds, which will be referred to as the "5-fold test set". The

test set comprised of identifiers that are removed from the training process is

referred to as the "unseen test set". The distribution of the annotations from

the identifiers into the training set and unseen test set can be seen in Table

5.2.
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Table 5.2: Systems used to create training (unbolded) and unseen test

(bolded) sets

Name Size (kloc) Age (years) Language(s)

junit4 30 19 Java

mockito 46 9+ Java

okhttp 54 6 Java

antlr4 92 27 Java/C/C++/C#

openFrameworks 130 14 C/C++

jenkins 156 8 Java

irrlicht 250 13 C/C++

kdevelop 260 19 C/C++

ogre 370 14 C/C++

quantlib 370 19 C/C++

coreNLP 582 6 Java

swift 601 5 C++/C

calligra 660 19 C/C++

gimp 777 23 C/C++

telegram 912 6 Java/C/C++

opencv 1000 19 C/C++

elasticsearch 1300 9 Java

bullet3 1300 10+ C/C++/C#

blender 1600 21 C/C++

grpc 1800 5 C++/C/C#
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5.1 5-fold test set

Another form of validation of the Scalable Tagger is through 5-fold validation.

During the training of the model, the training data comprised of 1,335 iden-

tifiers from 15 software systems are split into 5 smaller folds. This allows for

a split amongst the folds for a percentage to be used as training data while

the remaining is used as testing data to validate the trained model. After the

data is split into the 5 folds, 70% is used as training data, and the remaining

30% is used as testing data. This is repeated 5 times until all of the sets have

been used for testing. This is an application of k-fold cross-validation sets in

which the value of k has been set to 5. This is appropriate with choices from

researchers who often use k values of 5 or 10, from which 5 is used considering

the size of our data-set and the distribution of the annotations. Each testing

round is accompanied by the collection of metrics to evaluate the effectiveness

of the model, which is described in the next section.

5.2 Quality Model Measurements

The quality of the Scalable Tagger is measured using common metrics for

categorization problems. The metrics used are Accuracy, Precision, Recall, and

F1 Score. Another metric used is the balanced accuracy of the 5-fold testing

which is the average of each average accuracy for each annotation category

(i.e., N, NM, CJ, etc.). This allows for each part-of-speech annotation to be

equally represented, which helps with unbalanced data-sets by giving more

weight to underrepresented annotations.
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5.3 Choosing a machine learning approach

The Scalable Tagger uses a machine learning model in order to annotate iden-

tifiers with a part-of-speech. The model must be trained to follow a primary

machine learning approach from which the following were evaluated for use:

Random Forest, Decision Tree, XGBoost, Logistic Regression, Support Vector

Classification, and K-Nearest Neighbors. From these Random Forest and De-

cision Tree were selected to be used as the primary approaches due to their

out-performance of the other approaches in terms of the quality model met-

rics. The building of the models requires a training and testing set, which

is from a splitting of the training data in which 70% is used as the training

data and 30% is used as the testing data. Through further analysis of the

performance of the Random Forest and Decision Tree approaches the Decision

Tree approach was determined to be the better approach. Throughout the

formation of the Scalable Tagger Random Forest would reach a stagnation to

how well it performed, while Decision Tree continued to improve, eventually

surpassing the performance of Random Forest. Random Forest is also a much

slower approach than Decision Tree which is counterproductive to the goal of

creating a scalable part-of-speech tagger.

5.4 Features

Machine learning algorithms must be trained on a set of features in order to

derive patterns and predict outputs from given inputs. The basis for features

used for the Scalable Tagger is based on relevant features used for the Ensemble
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Tagger. The relevancy of features is determined by how they impact the quality

model measurements detailed in Chapter 5.2. New features were developed

in order to improve these quality measurements, thus improving the Scalable

Tagger. Certain features did not end up being used either due to their negative

impact to the Scalable Tagger. The testing of the features is detailed further

in Chapter 5.4.4.

5.4.1 Existing Features

The Scalable Tagger uses the finding of the Ensemble Tagger as a basis of the

features used for training. These existing features are those from the Ensemble

Tagger continuing to be used due to their continued relevance. They are as

follows:

1. Normalized position: We normalized the position metric described above

such that the first word in the identifier is in position 1, all middle words

are in position 2, and the last word is in position 3. For example, given

an identifier: GetXMLReaderHandler, Get is in position 1, XML is in

position 2, Reader is in position 2 and Handler is in position 3. The

reason for this feature is to mitigate the sometimes-negative effect of

very long identifiers.

2. Identifier size: The length, in words, of the identifier of which the word

was originally part.
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5.4.2 New Features

The training of the model focused on creating new features in order to better

the Scalable Tagger’s quality measurement metrics. Each new feature provides

new insight into understanding key similarities and differences between part-

of-speech categories. The new features are as follows:

1. Word Embeddings: Word vectorization is applied to each word to ana-

lyze the similarities and differences between them as they relate to other

words. Word vectorization is the process of converting words in text into

numerical arrays, in order for their use in training the model. Gensim,

a popular natural language processing library, is used to provide a pre-

trained model of a plethora of word vectors. Since this feature is an array

of numbers, each index in the array is used as a separate feature that

comprises the whole. The length of the array depends on the Gensim

model used, which is "fasttext-wiki-news-subwords-300" making there

be 300 Word Embedding features.

2. Last letter: The ASCII value of the last letter of the word. This provides

better contrast between nouns and noun plurals as the difference usually

occurs with noun plurals ending in the letter "S". For example the

difference between "Dog" being a noun and "Dogs" being a noun plural,

in which the last letter of the word being the key differentiator.

3. Digit: Determines whether the word is a digit or not. Is set to a value of

0 if the word is a digit or a 1 if the word is not.

4. Word Length: The length of the word. This can be used to differentiate
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preambles, prepositions and digits which are typically shorter in length

from nouns, noun plurals and verbs which are typically longer.

5.4.3 Removed and Failed Features

The Scalable Tagger detailed in this thesis used the features of the Ensemble

Tagger as a basis for its starting features. This also means that certain fea-

tures were removed due to their lack of relevance. The SWUM, POSSE, and

Stanford annotation features were three part-of-speech taggers that were used

to comprise the ensemble nature of the Ensemble Tagger. These features are

the source of the slow tagging rate experienced by the Ensemble Tagger, which

is the grounds for their removal. The Word, Data Type, Position, and Context

features were also removed as they had a negligible effect on the Scalable Tag-

ger’s quality measurement metrics, which is further explained in Chapter 5.4.4.

More information on these discarded features can be found in the Ensemble

Tagger paper [62].

Other features were attempted to increase the quality measurement metrics

besides those mentioned in Chapter 5.4.2, but they did not result in improve-

ments. Further attempts at the use of word vectors were made through cosine

correlation between word vectors. These cosine similarities were flawed in their

over-fitting to given data, and when corrected presented no statistical improve-

ments. Other features tried involved determining if a word was a commonly

used conjunction or determiner. These part-of-speech categories are comprised

of limited sets, however, this approach was unfruitful. These features were not

useful in the end, but the process of finding statistically beneficial features
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involves an arduous period of trial and error.

5.4.4 Feature Testing

Further testing was used to analyze the features to ensure which features were

statistically significant to the quality measurement metrics detailed in Chapter

5.2. The analysis of the features involved two techniques: Drop-column feature

importance and permutation importance. Drop-column feature importance is

the training of the model on every possible subset of the available features,

which can allow for the best possible subset to be determined. Permutation

importance involves first training the model. Then each feature is randomly

shuffled out, and the resulting importance is measured from the difference in

the quality measurement metrics. This then gives a value to the importance of

each feature, and whether it should be used. Each feature was run using these

techniques to value their importance, from which the features stated in Chap-

ters 5.4.1 and 5.4.2 were all validated. Testing using permutation importance

was can be shown on these validated features in Tables 5.3, 5.4, and 5.5, which

detail the importance of the features relating to F1 measure, balanced accu-

racy, and accuracy. The key exception is that of Word Length, which can be

shown with no importance in all of these categories. Unlike the other features

that have shown no importance, Word Length did have noticeable effects on

the quality model measurements when removed. It should be noted, that these

techniques do not represent non-linear relationships between features and the

target outcome and do not always reflect the true importance of a feature, as

can be seen in the instance of the Word Length feature.
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Table 5.3: F1 weighted importances for best features

Feature Set F1 Weighted Importances Average

Normalized Position 0.36 0.37 0.36 0.35 0.36 0.36

Last Letter 0.09 0.09 0.09 0.09 0.09 0.09

Identifier Size 0.03 0.03 0.03 0.03 0.03 0.03

Digit 0.01 0.01 0.01 0.01 0.01 0.01

Word Length 0.00 0.00 0.00 0.00 0.00 0.00

Word Embeddings 0.54 0.54 0.55 0.54 0.54 0.54

Table 5.4: Balanced accuracy importances for best features

Feature Set Balanced Accuracy Importances Average

Normalized Position 0.34 0.35 0.31 0.31 0.30 0.32

Last Letter 0.12 0.13 0.12 0.14 0.14 0.13

Identifier Size 0.02 0.03 0.02 0.02 0.02 0.02

Digit 0.08 0.08 0.08 0.08 0.08 0.08

Word Length 0.00 0.00 0.00 0.00 0.00 0.00

Word Embeddings 1.33 1.38 1.38 1.29 1.34 1.34

Table 5.5: Accuracy importances for best features

Feature Set Accuracy Importances Average

Normalized Position 0.37 0.36 0.37 0.36 0.35 0.36

Last Letter 0.08 0.08 0.08 0.08 0.08 0.08

Identifier Size 0.03 0.03 0.03 0.03 0.03 0.03

Digit 0.01 0.01 0.01 0.01 0.01 0.01

Word Length 0.00 0.00 0.00 0.00 0.00 0.00

Word Embeddings 0.53 0.51 0.51 0.49 0.51 0.51
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5.5 Tagger Scalability Timing

The essential flaw of the previous state-of-the-art part-of-speech tagger for

source code identifiers, the Ensemble Tagger, was its inability to scale. The

Scalable Tagger will be made scalable through the removal of the ensemble na-

ture while attempting to maintain the accuracy and other quality measurement

metrics set by the Ensemble Tagger.

The tagging rate for the Scalable Tagger will be determined by timing how

long the Scalable Tagger takes to tag the unseen test set. This allows for

the evaluation of the Scalable Tagger’s tagging rate on a set of data that was

not used in training. The tagging rate will therefore be calculated using the

following equation:

Tagging Rate =
# of words tagged

Total tagging time
(5.1)

The unseen test set is comprised of 977 words from 384 identifiers, causing the

tagging rate of the unseen test set to be:

Tagging Rate =
977 words

Total tagging time
(5.2)

The tagging rate has units of part-of-speech annotation, or tag, per second

(tag/sec). One thing to mention is that the time it takes for the new features

created for the Scalable Tagger was not applied to the time it takes for tagging.

It is assumed that the features have been applied to the data set before the

tagging is initiated.



Chapter 6

Analysis & Discussion

6.1 Tagger Accuracy

RQ1: What is the accuracy of this approach compared to the state-of-the-art

Ensemble Tagger?

The evaluation of the Scalable Tagger’s accuracy is determined in two ways.

The first method by using the 5-fold cross validation, which uses a set of 1,335

manually-annotated identifiers. This allows for the evaluation of the model

during its training. The second method is by running the trained model on

the unseen test set of 384 identifiers. This provides an unbiased set of identi-

fiers to provide assurance of the model’s accuracy and that it isn’t over-fitting

on the training data.

22
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Table 6.1: Benchmark Tagger quality measurement metrics for each annotation

category

Annotation Precision Recall F1-Score Support

CJ 0.00 0.00 0.00 2

D 0.89 1.00 0.94 8

DT 0.00 0.00 0.00 4

N 0.75 0.85 0.80 333

NM 0.83 0.94 0.88 509

NPL 0.20 0.05 0.08 77

P 0.00 0.00 0.00 24

PRE 0.00 0.00 0.00 31

V 0.57 0.55 0.56 76

VM 0.00 0.00 0.00 1

Table 6.2: Benchmark Tagger’s average quality measurement metrics

Metric Average

Accuracy 0.77

Balanced Accuracy 0.34

Weighted F1 Score 0.72

Weighted Precision 0.69

Weighted Recall 0.77
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6.1.1 5-fold Test Results

The first run of the Scalable Tagger, before any improvements were made,

involved using a stripped down version of the original Ensemble Tagger [62],

excluding the SWUM, POSSE, and Stanford annotations which were the cause

of the Ensemble Tagger’s detrimental slow tagging rate. This established a

benchmark for improvement upon which the Scalable Tagger’s improved re-

sults are compared. The Benchmark Tagger is shown in Tables 6.1 and 6.2.

The evaluation of the Scalable Tagger is run using the Decision Tree machine

learning approach as detailed in Chapter 5. The results from this evaluation

can be seen in Tables 6.3 and 6.4. Both tables, 6.2 and 6.4, give the averaged

results of the 5-fold evaluations which are the tagger’s quality measurement

metrics, which include the tagger’s accuracy, balanced accuracy, weighted F1

score, weighted precision, and weighted recall. Tables 6.1 and 6.3 detail the

precision, recall, and F1 score measured for each annotation category, which

characterize the tagger’s effectiveness across each category.

The Benchmark Tagger can be seen to have many inadequacies, as shown

in Tables 6.1 and 6.2. The accuracy of the Benchmark Tagger, at 77%, is

lower than that of the state-of-the-art Ensemble Tagger, at 86%. This needs

to be improved upon in order to meet the set standards. The balanced ac-

curacy, however, of the Benchmark is very low at 34%, as compared to the

Ensemble’s balanced accuracy of 55%, indicating that many categories are

being mis-annotated by the Benchmark Tagger. This can be clearly seen as

5 of the 10 annotation categories are not tagged accurately at all, with 0%

measurements for precision, recall, and F1 score. This contrast between ac-
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Table 6.3: Scalable Tagger quality measurement metrics for each annotation

category

Annotation Precision Recall F1-Score Support

CJ 1.00 1.00 1.00 2

D 1.00 0.88 0.93 8

DT 0.80 1.00 0.89 4

N 0.92 0.86 0.89 333

NM 0.87 0.94 0.90 509

NPL 0.89 0.82 0.85 77

P 0.80 0.83 0.82 24

PRE 0.89 0.52 0.65 31

V 0.68 0.63 0.65 76

VM 0.00 0.00 0.00 1

Table 6.4: Scalable Tagger’s average quality measurement metrics

Metric Average

Accuracy 0.87

Balanced Accuracy 0.75

Weighted F1 Score 0.87

Weighted Precision 0.87

Weighted Recall 0.87
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curacy and balanced accuracy is due to the heavy support of nouns(N) and

noun modifiers(NM), which are more accurately tagged than other annotation

categories.

The Scalable Tagger improves on the inadequacies of the Benchmark Tag-

ger in order to surpass the accuracy of the Ensemble Tagger, as can be seen in

Tables 6.3 and 6.4. There are enhancements in every annotation category, ex-

cept for that of VM, which can be attributed to its low support. The accuracy

of the Scalable Tagger, at 87%, increased 10% from the Benchmark Tagger, as

well as 1% from that of the Ensemble Tagger [62]. The biggest improvement is

the Scalable Tagger’s balance accuracy, at 75% is a 41% improvement over the

Benchmark Tagger, and a 20% improvement over the Ensemble Tagger. This

is due to the focus on addressing the tagging failures of the conjunction(CJ),

determinant(DT), noun plural(NPL), preposition(P), and preamble(PRE) an-

notation categories which allows for more accurate tagging on a wider variety

of identifiers that aren’t comprised of the more common noun and noun mod-

ifiers.

6.1.2 Unseen Test Set Results

The unseen test set is an unbiased test set used to validate the trained model

on data that hasn’t been used to train it. The model was run on the unseen

test set, resulting in the accuracy evaluations shown in Table 6.5. This result

validates the finding from the 5-fold test validation as the accuracy of the

Scalable Tagger remains congruent in both testing methods across most of

the annotations, except for conjunctions which has a low sample size. The
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Annotation Number Correct Number Incorrect Accuracy

CJ 0 1 0.0%

D 7 0 100.0%

DT 4 1 80.0%

N 280 42 87.0%

NM 400 15 96.4%

NPL 69 9 88.5%

P 28 4 87.5%

PRE 22 11 66.7%

V 59 22 72.8%

VM 1 2 33.3%

Total 870 107 89.0%

testing of the unseen test set resulted in a greater accuracy of 89%, which is

2% greater than that of the 5-fold validation. This demonstrates a very low

chance of over-fitting in the model, and that the Scalable Tagger’s improved

accuracy holds true.

6.2 Tagger Scalability

RQ2: How scalable is this approach compared to the state-of-the-art Ensemble

Tagger?

The lack of scalability of the Ensemble Tagger is a major limitation. This

limits its ability to perform tagging on large scale code bases, as users would
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like to use a tool that is timely and effective. The lack of scalability is due to

its slow tagging rate of approximately 1 part-of-speech annotation per second.

At this rate, the tagging of one million words from a large scale repository with

a very large amount of source code identifiers would take 12 days.The Scalable

Tagger attempts to have its tagging rate be swift in order to correct for this

limitation.

The scalability, through means of the tagging rate, has been evaluated by

measuring the amount of time the Scalable Tagger takes to tag all the identifiers

in the unseen test set. The time that the Scalable Tagger took to annotate all

977 words from 384 identifiers is 3.984 seconds. The Scalable Tagger’s tagging

rate can then be calculated by using Equation 5.2 using the newly measured

time:

Tagging Rate =
977 words

3.984 seconds
(6.1)

This computes to a tagging rate of approximately 245 tags per second. This

rate is 245 times faster than that of the Ensemble Tagger, which clearly

improves upon its slow tagging rate. This allows for a much more Scalable

Tagger, as in the aforementioned example of a large repository with one million

words to be tagged, the Scalable Tagger would only take approximately 1.2

hours to tag every word. This is a great improvement from the 12 days that

the Ensemble Tagger would take to achieve the same task.

It is also important to mention that this feat would not be as important

without the achievements evaluated in Chapter 6.1. The ability for the Scalable

Tagger to be much faster in its tagging rate, thus being scalable would not be

as useful if the Scalable Tagger’s accuracy, balanced accuracy, precision, recall,
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and F1-score suffered as a consequence.



Chapter 7

Threats to Validity

This thesis sources its datasets from those used by the Ensemble Tagger.

Therefore, one concern is that the collection of 1,335 identifiers could have

been improperly annotated by the authors of the ensemble tagging paper [62],

leading to imperfections in the data. This was validated by the cross-validation

amongst annotators for all grammar patterns, and by having the data sets pub-

licly available allowing for corrections from outside sources.

Another concern is the confidence we have that the features selected in

the training of the model have a true cause-and-effect relationship with the

evaluation of the Scalable Tagger’s accuracy and other quality measurement

metrics and that the positive evaluation of these measurements are not caused

by other external factors. The use of drop-column and permutation impor-

tances validated that the features were directly affecting these measurements,

as they were tested through 5-fold cross-validation. Outside external factors

were mitigated by keeping the same training and testing sets for the Scalable

30
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Tagger as the Ensemble Tagger.

Over-fitting is another threat that must be acknowledged. In order to en-

sure that the Scalable Tagger is not only valid on the data used to train it,

the Scalable Tagger went through the testing method of 5-fold cross-validation,

which used train-test folds to ensure that each sample of training data was also

used to test the Scalable Tagger. This was compounded by the use of an exter-

nal testing set, unseen to the Scalable Tagger during training. The validation

that both of these testing methods proved to have positive evaluations on the

Scalable Tagger’s quality measurement metrics indicates that over-fitting has

been properly mitigated.

Many machine learning approaches, including Random Forest, Decision

Tree, XGBoost, Logistic Regression, Support Vector Classification, and K-

Nearest Neighbors, were considered for this model along with numerous fea-

tures to train them. This resulted in the usage of a model implementing the

Decision Tree approach and the features discussed in Chapter 5. These were

then evaluated using the metrics of accuracy, balanced accuracy, recall, preci-

sion, and F1-score. This resulted in a new state-of-the-art tagger according to

these metrics that is scalable, however, this should not be taken as the final

result in source code identifier tagging. It would be a naive judgment that

the Scalable Tagger could not be potentially improved upon since the Scalable

Tagger itself is an improvement on the previous state-of-the-art tagger. To

mitigate this, the data-sets and code for the Scalable Tagger have been made

publicly available on GitHub.



Chapter 8

Conclusion

This thesis has detailed the creation and evaluation of a new scalable part-

of-speech tagger. The Scalable Tagger was modeled using the Decision Tree

machine learning algorithm and trained using various features to target the

better tagging of specific annotation categories while allowing for a rapid tag-

ging rate. This resulted in the Scalable Tagger having an 87% accuracy, which

is a 1% increase over its predecessor, a balanced accuracy of 75%, which is a

20% improvement over its predecessor, and a tagging rate of 245 annotations

per second, which is 245 times faster than its predecessor.

This part-of-speech tagger has, therefore, become the new state-of-the-art

tagger for the annotation of source code identifiers. It has addressed the major

inadequacy of the Ensemble Tagger, its predecessor, of lacking scalability due

to its slow tagging rate. The Scalable Tagger detailed in this thesis is deemed

successful as it has addressed this thesis’ main goal of being scalable while

maintaining the accuracy set by the Ensemble Tagger.
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Future work on the subject of the tagging of source code identifiers may

arise around handling certain limitations of this project. Future taggers can

implement other machine learning algorithms that were not tested in this thesis

in order to increase the scalability and/or the accuracy of the tagger. The usage

of a larger data set to train the model, whose annotations are validated by more

analysts, would aid in allowing the tagger to recognize patterns that may not

be present in the data set used for this thesis.
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