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Abstract

Binary Neural Networks (BNNs) are the result of a simplification of network parame-

ters in Artificial Neural Networks (ANNs). The computational complexity of training

ANNs increases significantly as the size of the network increases. This complexity can

be greatly reduced if the parameters of the network are binarized. Binarization, which

is a one bit quantization, can also come with complications including quantization

error and information loss.

The implementation of BNNs on quantum hardware could potentially provide

a computational advantage over its classical counterpart. This is due to the fact

that binarized parameters fit nicely to the nature of quantum hardware. Quantum

superposition allows the network to be trained more efficiently, without using back

propagation techniques, with the application of Grover’s Algorithm for the training

process. This thesis presents two BNN designs that utilize only quantum hardware

and provides practical implementations for both of them. Looking into their scala-

bility, improvements on the design are proposed to reduce complexity even further.
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Chapter 1

Introduction

1.1 Motivation

Artificial Neural Networks (ANNs) are used in Artificial Intelligence (AI) to provide

a model for computers to predict outputs based on a set of inputs. ANNs can provide

computers with the ability to learn, often called Machine Learning (ML), by using a

set of tunable parameters (weights) in the network. The act of adjusting the network

parameters comes with growing computational cost as the network or input dataset

grows. The storage required for a large number of network paramters can also be

large. Both the computation cost and memory of networks can be reduced by utiliz-

ing a Binary Neural Network (BNN) to restrict the weights of the network to binary

values. While BNNs can reduce the complexity of Neural Networks (NNs), various

approaches are being explored to attempt to reduce complexity or computation time

further. One such method, explored in this thesis, is the use of Quantum Hardware

to implement BNNs. Properties of Quantum Computing (QC) such as superposi-

tion can be used to improve the training of BNNs to perform better than its classical

counterpart. Development and refinement of BNNs on QC is still required to improve

the performance of these networks for use with larger, more complex networks and

problems. This thesis explores practical implementations of the binary neural net-

work, utilizing the design proposed in [1]. It will evaluate the scalability of proposed

2



Chapter 1. Introduction

Quantum Binary Neural Networks (QBNNs) and will improve upon the design of the

Networks.

1.2 Objective

The objective of this thesis is to explore current implementations of QBNNs and

provide a practical implementation utilizing the two distinct designs found in [1].

While both designs implement the Grover’s Search Algorithm, one design uses Phase

Estimation while the other uses Register Counting to train the neural network. This

work, [1], discusses designs of the Phase Estimation circuit, but it does not give an

implementation of the Register Counting circuit. The implementations of the Phase

Estimation circuit only cover a small set of neural networks and datasets, the largest

network being a three-layer Neural Network with eight weights, three inputs and

one ouput. The implementations are made using Huawei’s HiQ quantum computing

cloud platform and contain errors that may cause confusion or incorrect results if

they were to be implemented. The small set of neural networks that [1] tested their

circuits on may be caused by the large exponential growth in circuit depth as the

neural network gets larger. To combat these shortcomings, an implementation of

the Register Counting method will be developed, and a larger neural network will

be tested with more datasets and practical implementations. The discrepancies in

the design by [1] includes a misrepresentation of weight applications, and a non-

standard implementation of the Quantum Phase Estimation algorithm. These issues

will be discussed and corrected in this thesis. The thesis explores the scalability of

the design when using quantum hardware and provides formulas detailing the circuit

scaling given a problem and network size. It will also examine aspects of the Grover’s

Algorithm Quantum Binary Neural Network (QBNN) and attempt to improve upon

its implementation to reduce the number of qubits, depth, or computation time.

Other related work will be researched and compared against the algorithms in this

3



Chapter 1. Introduction

thesis.

1.3 Thesis Contribution

Machine Learning is a research topic that is gaining more and more contributions

within various research fields. Not only can machine learning be used to improve

upon artificial intelligence, it can even be used to assist researchers in non-engineering,

or non-artificial intelligence related fields, such as biology or more specifically neu-

roanatomy. Within all of the various research areas of machine learning, a prominent

topic of discussion is the training of neural networks. Improving the training speed

or efficiency of neural networks allows the machine learning models to produce more

accurate results after a much smaller period of time. This thesis tackles binary neu-

ral network training efficiency by utilizing the properties of Quantum Computing and

Grover’s Algorithm. The contribution of this thesis to machine learning is:

1. We have fixed a couple of errors present in a training circuit design

(QPE) in [1] to provide correct results with fewer qubits.

2. The fixed training circuit design in [1] was improved upon to reduce

the depth of the circuit greatly (QPE Simplified).

3. A Register Counting training circuit was proposed in [1] but not

implemented. This thesis implements that circuit.

4. The three circuits above are tested using a basic three input, one

output neuron to ensure accuracy and correct outputs.

5. The three circuits are also tested using a 2x2 and 3x3 pixel edge

detection model as the circuit improvements allow for larger tests to

be conducted.

4



Chapter 1. Introduction

6. The scalability of all three circuits are calculated in detail to show

the feasibility of the circuits with larger problems.

All of the above are explained in detail in Chapter 3. These contributions will

allow for faster integration of quantum computing into the machine learning field.

5



Chapter 2

Background and Related Work

2.1 Artificial Neural Networks

Artificial Neural Networks are networks made of a collection of elementary nodes

called neurons. These neurons can have any number of inputs and an output that is

generated based on the input(s). Each input of a neuron has an associated weight

that is multiplied by the input. The resulting values from each weighted input are

summed together. This process can be seen in the sum of products equation

s = b+
N∑

n=1

an ∗ wn (2.1)

where an is an input, wn represents the weight applied to the input, and b is some

bias value added to the sum of products that also acts as a tunable parameter. The

variable an corresponds to an input of the neuron with index n, and the variable wn

is its corresponding weight. The resulting value, s, is then passed into an activation

function that determines the output of the neuron. This function can be realized

by multitude of different functions. Some functions include the sigmoid function, or

ReLU activation function. The full neuron model can be seen in Figure 2.1.
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Figure 2.1: Two input neuron. [1]

Assembling these neurons together results in a neural network. This network can

come in many shapes and sizes. The most common type of network that is used

in Machine Learning (ML) is a feed-forward network and is a collection of neurons

organized into multiple layers. The outputs of one layer serves as the input of the

next layer. Even though a neuron only has one output, the output can be used by

any number of other neurons as their inputs. The first layer of a NN serves as the

input layer that takes in the initial inputs and the last layer results in the output of

the full network. An example network can be seen in Figure 2.2.

Figure 2.2: 2-3-2 neural network example. This network is a fully connected neural
network since any particular node is connected to all nodes in the next layer. [1]

Binary Neural Networks (BNNs) are a subset of Artificial Neural Networks that

binarize its network parameters. The parameters of a binary neural network are

commonly constrained to either 0 and 1, or -1 and 1. The activation functions of

BNNs are commonly threshold functions. This means that if the resulting sum of

products is less than a threshold, then the neurons outputs a zero; otherwise the
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output of the neurons is a one.

Training the network is the process that determines the weight values of the NN,

and is the computationally intensive part of ANNs. This usually requires a large

set of data containing inputs and expected outputs. The network works through the

dataset, attempting to tune the network parameters to result in the highest possible

accuracy compared to the data-set. In ANNs it is common to use back propagation

to calculate the weights of the network. One way to perform back propagation is

to compute gradient descent which can be calculated from the derivative of the cost

function. The cost function calculates an error between the output of the NN and

the expected output given by the dataset by utilizing the derivative of the activation

function of the neurons. Propagating backwards and finding the derivative of the cost

function is the computationally intensive part of training ANNs. Due to the use of

threshold activation functions within BNNs, the derivative is often non-derivable and

does not allow for back propagation to be used for training [5]. This is commonly

fixed by utilizing a real-valued gradients of the weights to perform the training of

the neural network [5]. The full process of training the BNN can be generalized by

first completing a forward propagation of the NN with binarized weights, comparing

the expected output to the calculated output of the NN, and then calculating the

real-value gradient and updating the real-value weights. This process is done for each

data point in the training dataset [5].

A common issue that arises when using the gradient descent for training is that

gradient descent is designed to find the local minima of the hyperparameters. Gradi-

ent descent moves the hyperparameters toward values that generate less output error.

However, if this set of hyperparameters is the lowest point locally, a more optimal set

of hyperparameters will not be found using this method. A common way to find this

globally optimal set of weights is to do a brute force search that tests the BNN with

all d×N possibilities, where d is the number of training dataset entries, and N is the
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number of possible weight strings where N = 2n and n is the number of weights.

2.2 Quantum Computing

Quantum Computing (QC) utilizes the nature of quantum physics to process and

compute data. Utilizing quantum physics allows developers to perform computations

of certain applications faster than classical computing. Currently, quantum computers

are still in their early stages. Research is actively being done on many aspects of QC

and new contributions are being generated rapidly.

One of the most important concepts that make up a quantum computer is the

qubit. The qubit is used to encode information, similar to how bits are used to

encode information in classical hardware. Qubits can only be measured into a binary

set of states, 1 and 0. However, before measurement qubits can have a probability

of being in a certain quantum state, as well as contain other quantum mechanical

information such as global phase [6]. This phenomenon of quantum mechanics can

be taken advantage of to process the data in new and useful ways.

The ability of qubits to be in more than one state at once with a certain probability

of being in each state is known as superposition. Superposition of qubits is a very

useful feature of quantum computing that allows for algorithms and computations

which are not possible in classical computing. When a qubit or string of qubits are in

superposition, any gate or algorithm that uses the qubits will act on all the possible

states of the qubit. This feature will be used extensively in this research [6].

Multiple qubits can also become entangled with one another. Entangled qubits

have a unique property wherein acting on one entangled qubit impacts the quantum

state of other entangled qubits, even if the other qubits are not acted upon. This

can occur even if the entangled qubits are far from one another. The quantum state

of entangled qubits cannot be separated from one another, meaning that observing

one of the qubits collapses the other qubit instantaneously (as the state of one qubit
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means that the other must be in a certain state) [6].

2.2.1 Quantum Phase Estimation

Quantum Phase Estimation (QPE) [7] is an algorithm widely used in quantum com-

puting. The main functionality of the QPE algorithm is to estimate the eigenvalue of

a unitary operator U , where U |Ψ⟩ = e2πiΘ |Ψ⟩ [7]. The controlled unitary operator

is applied to a set of qubits called the counting register. It utilizes phase kickback

that will rotate the state of the controlled bit of the unitary while keeping the target

qubits unaffected. The kickback can be used for 2t times, where t = 0, 1, 2, ..., n is the

index of the counting register and n is the number of counting registers. A general

circuit design of the QPE algorithm is shown in Figure 2.3.

Figure 2.3: Quantum phase estimation circuit. The controlled unitary that applies an
phase is represented as ’U’ and is repeated a power of two times, dependent on which qubit
acts as the control. [2]

Once the controlled unitaries are used on each counting register qubit, the phase of

the unitary is encoded onto the counting registers in the Fourier domain. To convert

from the Fourier domain to the computational basis in classical computing, an inverse

Fourier transform is used. The same method is followed when working in the quantum

computing realm. Here an inverse Quantum Fourier Transform (QFT) [8] is used to

convert the phase to the computational basis. The phase can then be read as x by

measuring the qubits after the inverse QFT. The binary output x can then be used to
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find Θ = x
2n

where n is the number of counting registers [2]. It is important to note

that as the number of counting registers are increased, the precision of Θ is increased.

The application of the QPE algorithm could be used for a variety of different

problems and algorithms in quantum computing. Some applications include logical

quantum arithemetic [9] and even the notorious Shor’s algorithm [10] which can be

used to find the prime factors of an integer and potentially break RSN encryption.

2.2.2 Grover’s Algorithm

Grover’s Algorithm [11] is a fundamental algorithm used in quantum computing. It

is utilized in many diverse problems that require a search through a database and can

identify a target element faster than classical computing search algorithms. Grover’s

Algorithm is able to achieve this speedup by utilizing quantum superposition of the

database elements which allows the algorithm to search through the elements all

at once. The algorithm is realized in two main parts: the Grover’s oracle and the

Grover’s diffuser.

The task of the Grover’s oracle is to perform the ”search” of the database. The

oracle is a quantum circuit that identifies the target element in a given ”database”,

or more commonly, in the set of all possible states of the quantum system, placed in

superposition. Once identified, the oracle applies a phase inversion onto the specific

element, inverting its amplitude. This results in a superposition of all elements where

the target elements have a negative magnitude and all others elements have a positive

magnitude. An example of the oracle acting on the superposition of elements is shown

in Figure 2.4.
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Figure 2.4: Grover’s oracle vector and amplitude representation. [3]

In Grover’s algorithm, the oracle is the most important component that defines

the search. It can be designed to solve a number of problems related to data base

searches, including some NP hard problems and optimization problems where the

data base target is the solution to minimize a cost function. The definition and the

implementation of a Grover’s oracle is the most important part of the algorithm as

well as the biggest challenge when implementing the algorithm.

The Grover’s diffuser then inverts the amplitude of all elements about the mean

of the amplitudes. This results in the target elements amplitude to increase while the

non-target elements amplitudes decrease. This can be seen in Figure 2.5

Figure 2.5: Grover’s diffuser vector and amplitude representation. [3]

Combining the oracle and diffuser results in a single Grover’s Algorithm cycle.

The complete circuit is repeated in order to achieve an amplitude amplification in the

target elements of at least 50%.
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Figure 2.6: Complete Grover’s algorithm circuit. The oracle and diffuser pair is to be
repeated

√
N/M times where N is the number of elements and M is the number of targets

in the solution. [3]

The complete Grover’s algorithm is seen in Figure 2.6. It can be seen that a set of

Hadammard gates are placed on each qubit to put all of the qubits in superposition.

The Grover’s oracle and diffuser are repeated until one or more outcomes have a

probability greater than 50% and are considered detected as the target outcome. The

Grover’s cycle should be repeated around
√
N/M times where N is the number of

elements and M is the number of target elements in the solution [11].

Grover’s Algorithm [11] is also used in a wide array of quantum applications. An

example of a problem includes solving the maximum clique problem [12][13]. This al-

gorithm is able to correctly identify the maximum fully connected sub-graph (clique)

of a larger graph. In this [12] solution, the Grover’s oracle flips a target qubit if

the state represents a subgraph that is larger than the minimum acceptable number

of vertices for the clique. The diffuser can then identify cliques over the minimum

acceptable size. Another use of Grover’s algoritm is the solving of boolean satisfiabil-

ity problems [14][15]. This determines if a set of binary clauses are satisfiable. The

satifiability problem has been seen to be NP-complete [16]. It has also been observed

that Grover’s Algorithm provides speedup for NP-complete problems [17], which can

allow quantum computing to speed up this algorithm.
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2.3 Quantum Machine Learning and Related Work

Quantum Machine Learning is the use of quantum computers and quantum physics

to attempt to improve various aspects of machine learning. This research area has

been an attraction for a number of academic contributions that attempt to improve

speedup, training, or simply implement a full neural network in quantum hardware

[18]. The implementations of neural networks on quantum hardware either aim to

model biological processes, or attempt to emulate classical algorithms in quantum

hardware [18]. While some designs and models work better than others, this field is

still in its infancy and more research is needed to integrate quantum machine learning

into practice.

2.3.1 Quantum-Classical Hybrid Machine Learning

While there are many different approaches to improve machine learning, something

that is often researched is the use of quantum computing in tandem with classical

computing, to improve upon already existing classical machine learning algorithms.

Due to the nature of quantum computing and quantum mechanics, some shortcom-

ings of strictly classical implementations can be improved with the integration of

quantum computation. An example of this utilizes quantum computing to speedup

data storage and assignment in quantum machine learning applications [19]. Here,

the use of quantum memory allows for the assignment of N -dimensional vectors to

one of several clusters of M states [19]. It is even possible to reduce the storage space

of N -dimensional complex vectors to log2N qubits using qRAM [19].

In addition to improvements of the limitations found in classical machine learning

applications, some algorithms exist that allow for the use of quantum computing to

simplify the computation required for classical algorithms. An example of this is the

acceleration of single-layer binary neural networks using the Harrow-Hassidim-Lloyd
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(HHL) algorithm [20]. The HHL algorithm is used to provide a solution to the linear

regression problem in training NNs and can be used to reduce the complexity on

the classical side. This algorithm reduces the hyperspace of all possible weights to a

surface of a hyper-sphere whose radius is defined by the SWAP test of a test state

to a reference state [20]. This gives an advantage to the classical computation of

the optimal weights, which resulted in a lower number of iterations required for the

constrained/assisted training.

2.3.2 Quantum Neural Networks

Another method of introducing quantum computing into the field of machine learning

is the attempt to implement the network models within the quantum circuitry itself.

Some advantages can be seen by keeping information strictly in the quantum space

rather than switching between both the quantum space and classical space. This

includes the ability to keep qubits in superposition and in some cases allow qubits

to remain entangled with one another. An example of a quantum neural network

implemented in quantum circuitry is designed by [21]. This implementation utilizes

a custom unitary gate that is applied to the input qubits. The output of the gate

is the resulting output of the network. The weights are encoded into the matrix

representation of the gate.

Unand =
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6


(2.2)

Equation 2.2 shows an example of a unitary function used in [21] to represent

the application of weights onto a two qubit input state. After the application of the

unitary, a gate D(m, δ) is used to essentially serve as the activation function of the
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neuron.

2.4 Quantum Binary Neural Networks

Quantum Binary Neural Networks (QBNNs) are a realization of BNNs in Quantum

Computing. QBNNs can use a mix of classical computing and quantum computing,

or can use solely quantum computing. In general, the goal of utilizing quantum

hardware in BNNs is to provide either raw speedup or information that will reduce

the problem complexity in the classical space. Implementing the QBNN using only

quantum hardware allows the network to maintain its information in the quantum

space. One such implementation is explored in this thesis [1]. This article introduces

a quantum circuit and algorithm that implements and trains a QBNN on strictly

quantum hardware.

The paper details two possible implementations of the QBNN, both of which im-

plement Grover’s Algorithm to detect and amplify the ideal set of weights that should

be used. Both implementations work by essentially counting the number of times that

each possible set of network weight strings give the correct output compared to a set

of training data. This allows the quantum training algorithm to find the globally

optimal set of weights for a given neural network and dataset. The first of the im-

plementations use Quantum Phase Estimation(QPE) to measure an accumulation

of phase on weight strings that provide correct network outputs compared to the

dataset. The second implementation increases a register of qubits each time a set of

weights gives the correct output. Both implementations provide speedup compared

to a classical implementation, as the quantum circuit is able to observe all possible

combinations of weight strings at once by placing them in superposition [1].
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2.4.1 Quantum Binary Neural Network Circuit Implementation

The first step in implementing the QBNN in quantum hardware is creating the net-

work itself. Observing the classical implementation of a BNN, the weights are mul-

tiplied to their corresponding inputs. However, in QBNNs, the inputs and weights

implement a XOR operation between each weight-input pair. This is done because

the behavior relates directly to the quantum Controlled NOT (CNOT) gate. The

CNOT gate utilizes one control qubit and one target qubit. If the control qubit is

one, then a NOT gate is performed on the target qubit, otherwise, if the control qubit

is zero, then the target qubit is kept the same. The next step in implementing the

QBNN is to sum the weight-input pairs and apply the activation function threshold.

This can be done by implementing a unitary function. The unitary will be able to

observe the output of the weight-input pairs and apply a threshold as an activation

function [1]. An example of the implementation of the QBNN structure is shown in

Figure 2.7.

Figure 2.7: QBNN structure. Weight applications onto inputs are represented by a CNOT
gate that leaves the result s, on the input qubit a. A circuit is then used to act as an
activation function and generate an output onto a new qubit. This figure is an example of
a single neuron with two inputs, two weights, and one output. [1]

The structure shown in Figure 2.7 shows an example of a single neuron imple-

mented as a quantum circuit. The neuron has two inputs, two corresponding weights,

and one output. The output is determined based on the unitary activation function
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that implements a threshold. If the number of weight-input pairs, s, is greater than or

equal to the threshold, the function will set the output qubit to state |1⟩, otherwise

it will remain at |0⟩. The output of this neuron can then be used as an input to

other neurons and a full network can be composed of any size or shape. Utilizing a

unitary function and unitary gates during the creation of the BNN is required as it

allows the circuit to be uncomputed without disrupting the quantum superposition

or entanglement of qubits. This is useful for repeating this circuit multiple times on

different data inputs, which is vital for training BNNs [1].

2.4.2 Weight String Phase Accumulation

Once the structure for the QBNN is set up, the paper details the methods of training

the network. The first method given is the Phase Estimation training method. In

order to implement this algorithm, a Phase Accumulation cycle is introduced that

uses the QBNN circuit shown in Figure 2.7. The procedure can be realized in the

following steps:

1. Set all of the weight qubits into superposition, allowing them to be in all states

at once.

2. Set the input and expected output qubits to match the corresponding values in

the first entry of the training dataset.

3. Execute the QBNN circuit.

4. Use a phase accumulation circuit to increment the phase (by π
n
, where n is the

number of cases in the training datset) of the weight strings that produce an

output equal to the expected output.

5. uncompute the QBNN by implementing the inverse of the circuit in step 3.
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6. repeat from step 2, with the next entry of the training dataset until all dataset

entries have been executed.

As explained in the steps shown above, the weight inputs are placed into superpo-

sition, which allows all possible combinations of weights to be used. This allows for

every possible weight string to be tested all at once. The QBNN is then given inputs

based on the training data-set and the QBNN is executed. This is represents steps

1-3 above and is implemented in Figure 2.8 below.

weight0 H

QBNN

weight1 H

input0 X

input1

a′

a∗ X

ancilla

Figure 2.8: Steps 1-3 are shown in the circuit. The weights are first placed into super-
position to allow the testing of all possible weight strings at once. The first entry in the
training dataset is applied using X gates. In this case, the testing dataset entry used is |1⟩
for intput0, |0⟩ for intput0, and |1⟩ for a∗, the expected output. The QBNN circuit is then
executed.

The resulting output of the network, placed on the a′ qubit, is then in a su-

perposition corresponding to the output for each corresponding weight string. This

means that the execution of the QBNN has 2N possible weight strings, where N is

the number of weights in the network, and 2N outputs that correspond to each weight

string.

The accumulation phase then implements an accumulation oracle that is used to

compare each output for the given weight string to the desired output, a∗, given by

the dataset. The oracle compares the output with the expected output and adds a
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phase to the output of the network if they are equal to each other. The phase that

is added to the output by the oracle is a phase of π
n
where n is the number of data

entries in the training data-set.

Figure 2.9: Accumulation oracle circuit. Applies a phase of ϕ to the weight string if a
correct output is produced. a′ represents the output from the QBNN and a∗ represents the
expected output from the training dataset. [1]

The accumulation oracle implemented in the accumulation cycle can be realized

in multiple ways. The methods introduced by the paper uses an ancilla qubit that is

set to a state of 1. The first method (i) changes the ancilla bit if the network output

(a′) and desired output (a∗) from the dataset are different from each other. That

ancilla bit is then used as a control bit on a quantum controlled phase gate, which

adds the phase of π
n
to the output [1]. The second design (ii), shown in Figure 2.9,

only utilizes two doubly-controlled phase gates that have control bits of either both

one or both zero [1]. If the output and expected output are the same, the phase gate

is applied to the ancilla bit. The accumulation oracle will be represented as Λ for

future circuits.

After the accumulation oracle is executed, the QBNN is un-computed. This allows

the added phase to be decoupled from the output and applied to the weight string

that gave the successful output [1]. The dataset entry is also undone in order to revert

the inputs and expected output qubits to state |0⟩. This circuit is shown in Figure

2.10 below.

20



Chapter 2. Background and Related Work

weight0 H

QBNN QBNN

weight1 H

input0 X X

input1

a′

Λa∗ X X

ancilla

Figure 2.10: Accumulation cycle circuit. The circuit seen in Figure 2.7 is executed once
and then uncomputed, with an accumulation oracle in between. The un-computation of
the QBNN reverts the qubits to their original state, with a new phase applied to a correct
output producing weight string.

The accumulation cycle, without the Hadamard gates, is then repeated n times

for each entry in the training dataset. This will continue to add phases to the weight

strings that result in accurate output compared to the training set. The results

after repeating the circuit for each data point will give a set of weight strings in

superposition with varying phase accumulations. The best weight string that gives

the most accurate results will have the highest accumulated phase, with a maximum

phase of nπ
n
. An example of the full phase accumulation is shown in Figure 2.11.

Figure 2.11: Full accumulation cycle. The QBNN circuit shown in Figure 2.10 is repeated
for each data entry in the training dataset. The blue boxes in this figure represents the
QBNN in this case. NOTE: aout is equivalent to a′, and the ancilla qubit used for the
accumulation oracle is still used but not represented in the circuit. [1]
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Figure 2.11 implements an example of four different training dataset entries. These

entries are arbitrarily chosen as an example and can be changed.

2.4.3 Quantum Phase Estimation Training

Now that the accumulation phase is complete, each weight string contains a phase that

represents the number of times they provided a correct output. The Quantum Phase

Estimation algorithm must be used in order to read and utilize the phases. This is

done by converting the complete circuit shown in Figure 2.11 to a controlled unitary

gate. This controlled unitary can then implement phase kickback, as explained in

Section 2.2.1, to encode a multiple of the phase onto a register of qubits. This then

allows the use of the inverse QFT to be applied to the register, and the estimated

phase will be encoded on the register as a binary representation.

An accuracy threshold is then called that reads the binary representation of each

weight string, and flips the weight strings that are above a pre-defined phase threshold.

This threshold is implemented using a multi-controlled CNOT gate. Finally the phase

estimation circuit is un-computed to revert all the states to their original states, and

a Grover’s diffuser is applied to the set of weight strings, amplifying the weight strings

that give the most accurate outputs [1]. The full training algorithm is shown in Figure

2.12.
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Figure 2.12: Full training cycle. The full accumulation cycle shown in Figure 2.11 is used
as the control unitary in the Quantum Phase Estimation Circuit. After an inverse QFT
application, the phase of each weight string will be able to be read as a binary representation.
An accuracy threshold is used to determine weight strings that perform above a certain
specified threshold. The phase estimation is then un-done to revert the circuit to the
original states. Finally, a Grover’s diffuser is used to amplify the targeted weight strings.
[1]

In Figure 2.12, the green box represents a single cycle of Grover’s Algorithm, la-

beled as Q, and the blue box represents the Phase Estimation circuit that implements

a controlled unitary of the circuit found in Figure 2.11. Qubit one is set to the |−⟩

state which will be used in the accuracy threshold to invert the target weight strings.

Qubits two, three, and four in this example are used as the Phase Estimation regis-

ters. This means that the phase can be estimated up to kπ
n
, where m is the number of

register qubits, and where k = 2m−1. Qubit five represents all weight qubits used in

the QBNN that will be placed in superposition. Lastly, qubit six represents a string

of all other qubits needed to compute the network. This includes the inputs, outputs

and any other ancilla bits needed for execution.

The accuracy threshold in Figure 2.12 uses a multi-controlled NOT gate that

inverts the weight string if the binary representation of its phase is equal to 4π
n
. The

control qubits of the circuit can be altered to implement various desired thresholds.

For example, if a threshold of > 6π
n
is desired, two multi-CNOT gates should be added

with a (1,1,0), and (1,1,1) control scheme, meaning that accuracy threshold would

mark weight strings that are either equal to or above 6π
n

(max of 7π
n

for three register
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qubits). The value of the threshold, and the multi-controlled CNOTs that define it

can be adjusted to fit the needs and accuracy of the network training and the desired

weight string accuracy [1].

Finally, the Phase Estimation is un-computed in the second blue box which de-

couples the accuracy threshold inversion from the Phase Estimation registers and

applies it to the weight string. A Grover’s diffuser is then called, which is denoted

by the D gate and inverts all states about the mean of the magnitudes of the states.

This amplifies the most accurate weight strings that are equal to or above the pro-

vided accuracy threshold. This process is repeated for the amount of times needed for

Grover’s Algorithm and when measured, should have the highest probability of the

register corresponding to the best weight strings that should be used for the network

[1].

2.4.4 Register Counting Training

The next implementation of the QBNN training is the Register Counting implemen-

tation. This implementation acts almost identically to the Phase Estimation imple-

mentation, but does not use any Quantum Phase Estimation for its solution. The

Phase Estimation register is replaced with a counting register that is encoded in bi-

nary, similar to the way that the phases were read by the accuracy threshold circuit.

When performing the phase accumulation stage, the algorithm no longer accumulates

a phase onto the weight strings. It now accumulates a counter in the register counter

for each weight string. This means that there are ⌈log2(n+ 1)⌉ register qubits needed,

where n is the number of data points in the training dataset. The binary version of

the number of times a particular weight string results in a correct network output

can then be read directly from the register counting qubits, and the accuracy thresh-

old can apply an inversion based on that value. The use of the Grover’s Algorithm

remains the same for the rest of the implementation [1].
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2.4.5 Binary Search Method for Accuracy Threshold

For the QBNN training implementations, a problem arises when the number of good

weight strings are unknown for the given problem. A solution to this was given by

[1] and implements a binary search on the accuracy threshold to identify the optimal

weight strings. The solution requires a desired precision δ, that denotes the stopping

point of the algorithm. When the number of possible correct training data matches

of a given weight string is less than δ, the binary search is able to find the weight

string within the precision δ of the globally optimal weight [1]. The range of possible

dataset matches scales with n2−i where i is the i-th step of the binary search. The

binary search then takes ⌈log n
δ
⌉ steps to complete. This is not used in this thesis.

2.4.6 QBNN Speedup

The speedup of this method over the classical search for the globally optimal weight

string was observed in [1] as well. Using the number of QBNN circuit calls in the

quantum training with binary search, versus the number of BNN calls in classical

globally optimal training, the following speedup was found:

N cl
C

N qm
C

>
2N/2

4N log(N
δ
)

(2.3)

This equation was given in [1] where N is the number of possible weight combi-

nations. N cl
C and N qm

C are the number of BNN calls for the classical and quantum

versions respectively.
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Chapter 3

Contribution

3.1 Overview

This section details all the main contributions that this thesis brings to the field.

Using the information and design described in [1], multiple Quantum Binary Neural

Network approaches were designed using the Qiskit library [22]. First, a fixed version

of the QPE training algorithm proposed by [1] was designed. A Register Counting

circuit that was discussed, but gave no implementation, was implemented in this

thesis. Finally, an Improved QPE Training circuit was implemented. This section also

details all of the additional work done in this thesis including scalability equations,

various set-ups, tests, and metrics that are used to examine various properties of the

designs. The tests include a small three input, one output neuron to test functionality

and verify accuracy of the new designs, as well as a larger, more practical test that

can detect vertical edges in 2x2 pixel matrices. While this section details the design

and setup of the thesis contributions, the next chapter, Chapter 4, details the results

from all of the contributions.
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3.2 Quantum Phase Estimation Binary Neural Network Er-

rors and Fixes

The first Quantum Binary Neural Network (QBNN) implemented, designed by [1],

utilizes Quantum Phase Estimation to accumulate the number of successes for each

given weight string. This thesis details a couple of fixes of the design. This imple-

mentation was written in Python using Qiskit library [22] and IBM Quantum Lab

[23] and generally follows the design that was detailed in Section 2.4. Look to Section

2.4 for more detail of this implementation. The implementation of the network itself

is dependent on the network size and dataset size. In the following examples, a single

neuron with two inputs and one output is used for demonstration purposes and is

shown in Figure 3.1.

Figure 3.1: Two input example neuron.

3.2.1 Phase Accumulation Oracle (Λ) Improvement

Figure 3.1 shows the arbitrary BNN circuit that will be used for demonstration in

the training circuit. To implement this as a Quantum Binary Neural Network, the

neuron required two qubits for inputs, two qubits for weights, one qubit for the

output, and one qubit for the dataset output. This gives a total of six qubits used for

the BNN. The first step in implementing the neuron is to XOR the weights to their

corresponding inputs and is done by using CNOT gates. The activation function can
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be implemented by defining a threshold value and applying multi-controlled NOT

gates that implement this threshold.

π
n

weight0

weight1

input0

input1

a′

a∗

Figure 3.2: Quantum Phase Estimation binary neural network two input neuron example.
This circuit implements the neuron shown in Figure 3.1 for the QPE training implemen-
tations. The first two CNOT gates implement the XOR functionality of the weights and
inputs. The doubly-controlled NOT gate implements the activation function, where the
threshold is 2 in this case. The 1 controlled and 0 controlled phase gates are the accumu-
lation oracle, Λ, and is an improvement made by this thesis. The old version found in [1]
can be seen in Figure 2.9.

Figure 3.2 shows the full QBNN version of the example seen in Figure 3.1. The

multi-controlled NOT gate activation function utilizes a threshold th = 2 in this case.

A key design change in the accumulation oracle, Λ, of the circuit is shown in Figure

3.1 that diverges from the design shown in [1]. Here, there are only two qubits used

as the ancillary qubit proposed was removed. This is possible due to the fact that

phase gates simply are doubly-controlled gates with no target qubit. The phase is

simply applied if the state matches the control state. That means that the circuitry

and ancillary qubit used in [1] can be removed and replaced with two multi controlled

phase gates. The new design is controlled based on the values of the output and the

expected output. The phase controls are both set to ’1’ or both set to ’0’ in order to

ensure that the phase is only applied to a weight string if the output and expected

output are both ’1’ or both ’0’. This behavior will add the phase to the weight string

if the QBNN output equals the expected output in the dataset.
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3.2.2 Quantum Phase Estimation Fix

The next error that this thesis corrected was the Quantum Phase Estimation im-

plementation that was shown in Figure 2.12. The controlled unitaries that are used

in Figure 2.12 are placed in a reversed order compared to standard Quantum Phase

Estimation implementations. This could cause confusion as well as incorrect results

if others were to attempt the design shown in Figure 2.12. The corrected version is

shown in Figure 3.3.
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. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

marker |0⟩ X H |−⟩

QPE Reg0 |0⟩ H

QPE Reg1 |0⟩ H

QPE Reg2 |0⟩ H

weight0 |0⟩ H

DS DS DS DS DS DS DS

weight1 |0⟩ H

input0 |0⟩
input1 |0⟩

a′ |0⟩

a∗ |0⟩

1 3

Figure 3.3: QPE QBNN training implementation. The controlled-DS gate represents the
complete training dataset implementation that was shown in Figure 2.11. This controlled
gate is used for the implementation of the Quantum Phase Estimation circuit and is doubled
on each subsequent QPE register qubit. The orientation of the controlled-DS circuits are
implemented such that the top QPE register qubit only implements one controlled-DS
circuit, and the bottom QPE register qubit implements 2n, where n is the index of the
QPE register qubit. This orientation is inverted in [1] and causes confusion due to its non-
standard nature.

Figure 3.3 shows the setup for the complete QPE training cycle. The ’DS’ gates is

the controlled version of the circuit shown in Figure 2.11 that implements the entire

dataset. This controlled gate is applied by each QPE register qubit and doubles
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with each successive qubit. This implements the QPE algorithm detailed in [7].

The purpose of doubling the controlled unitary for each successive qubit allows for

multiples of the phase to kickback onto the phase estimation register qubits. The

larger the multiple of the phase kickback corresponds to a more significant bit in

the phases binary representation. This then allows the inverse QFT to convert the

phase from the phase domain to a binary encoding of the phase. The notable change

that differs from the method proposed in [1] is the way that the QPE algorithm

is implemented. The order of how many times the controlled unitary is repeated

for each qubit is inverted compared to the approach in Figure 2.12. The MSB, or

QPE Reg2 in Figure 3.3, needs to be rotated by 4θ in order for that bit to be the

MSB. The approach given in [1] is backwards and will result in the wrong ordering of

bits and an incorrect marking of a weight string using the accuracy threshold. After

the controlled ’DS’ gates, the inverse-QFT circuit will be applied to the QPE qubits

to convert the phase representation in the Fourier basis to the computational basis.

The marking of the weight string using the accuracy threshold will remain the same

as described in Section 2.4 and is shown in Figure 3.4.
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Figure 3.4: This circuit continues the circuit shown in Figure 3.3. This section is placed
after the implementation of all the controlled-DS circuits. This uses the inverse Quantum
Fourier Transform to convert the weight string phases to a binary encoding, with the LSB
being the top most qubit. A triple-controlled NOT gate is then used to mark the weight
strings that have a ’100’ binary encoding, or a phase of 4π

n . The QFT is then applied to
begin to uncompute the circuit.

Figure 3.4 shows the application of the inverse QFT to the phase results obtained

in Figure 3.3 to give the estimated phase of e2πiθ. The accuracy threshold can then

be applied to the weight strings, marking the strings that succeed above a certain

threshold. In the case of Figure 3.4, the threshold chosen is a value of θ = 4 that

represents the number of dataset entries that the particular weight string computed

correctly. After marking the weight strings with the accuracy threshold, a QFT can

be applied to uncompute the inverse QFT. The full accumulation cycle seen in Figure

3.3 can also now be uncomputed to return the circuit to the original state.
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Figure 3.5: This circuit is an additional continuation of the circuit shown in Figure 3.4.
This circuit uncomputes the controlled-DS circuits that were applied previously and then
applies a Grover’s diffuser to the weights. NOTE: A negative phase is used in the QBNN
accumulation oracle for the ’DS’ circuits.

The uncomputation of the QBNNs using the full dataset can be seen in Figure

3.5. It is important to ensure that within these unitaries, the accumulation oracle, in

Figure 3.2, applies a negative phase to ensure that all of the phases return to 0 before

the Grover’s diffuser is applied. The Grover’s diffuser is then applied and shown as

’D’ in Figure 3.5. To change this algorithm for other networks, there only requires

a change in the BNN controlled unitary implementation and with it the number of

qubits needed to implement the BNN. The number of QPE qubits can also be adjusted

to add or remove precision. The rest of the algorithm stays consistent.

3.3 Improved QPE BNN Implementation

The improved version of the QPE training implementation has a subtle change that

decreases the depth of the quantum circuit greatly. In the original paper proposed by

[1], the author uses the generic implementation of the QPE algorithm. The general

idea of the QPE algorithm is to determine the phase of a black box unitary operation.

The algorithm can determine the resulting phase of the black box without knowing

what the phase should be. This works by implementing the black box circuit as a
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controlled unitary on each QPE register qubit, but doubles the number of controlled

unitaries used for the next highest significant qubit in the register. The requirement

of doubling the number of controlled unitaries begins to exponentially increase the

depth of the circuit with QPE register size. This however can be avoided by removing

the need to double the controlled unitary for each subsequent QPE qubit.
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. . .
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marker |0⟩ X H
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QPE Reg2 |0⟩ H

weight0 |0⟩ H

DS(ϕ) DS(2 ∗ ϕ) DS(4 ∗ ϕ)

weight1 |0⟩ H

input0 |0⟩
input1 |0⟩
output |0⟩

expected output |0⟩

1 2

Figure 3.6: The QPE Improved training circuit follows the same structure and order of
the original QPE training circuit shown in Figure 3.3. The difference, or improvement,
of this circuit can be seen within the QPE part of the training. Due to the fact that the
accumulation oracle is a set phase based on the number of training dataset entries, the
oracle phase can simply be doubled for each higher bit QPE register as seen above. This
reduces the depth of the circuitry greatly.

Figure 3.6 shows the resulting circuit, utilizing only one controlled unitary per

qubit. The controlled gates in this circuit represent the ’DS’ gates shown in Figure

3.3 and the ϕ represents the phase that the accumulation oracles (Λ) apply. This

method is possible due to the fact that the controlled unitary in this problem is

known. The controlled unitary is a circuit implemented by the user and applies a

rotation that is based on the size of the dataset. That means that for each qubit in
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the QPE algorithm, the phase that is added to the weight strings can be doubled for

each successive qubit, essentially performing the same operation of the original QPE

algorithm shown in Figure 3.3, without the added depth. This method is also applied

to the uncomputation section of the training circuit where the controlled unitaries in

Figure 3.6 are reversed and the phases that are applied are negated.

3.4 Register Counting Quantum Binary Neural Network Im-

plementation

The Register Counting implementation follows a similar structure to the Quantum

Phase Estimation implementation provided in [1]. The paper proposes the implemen-

tation of the register counting method, without providing the circuitry for it. The

paper also notes that ⌈log2 (dataset size+ 1)⌉ qubits are required to have a register

that can increment for each dataset point. The incrementation performed in the reg-

ister counting method is similar to the QPE method. The registers for both methods

are incremented after a weight string provides an output equal to the expected output

given by the dataset. The difference between the two is that the incrementation in

the QPE example increments the phase of the circuit, whereas the implementation of

the Register Counting method increments a binary representation of the count that

is stored in the register.

3.4.1 Register Counting Accumulation Oracle Implementation

The incrementing operation is performed by the accumulation oracle in the QBNN

implementation and replaces Λ. This means that an oracle for the RC implementation

needs to be designed such that the binary representation increases by one on each

successful output. First, a circuit that increments a register was designed and tested

for various register sizes.
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Figure 3.7: The register incrementation circuit is the replacement of the accumulation
oracle (Λ) that is used for the Register Counting training circuit implementation and was
developed by this thesis. The circuit simply increases the binary value in the n-bit register
by a value of one. This circuit can then be converted to a controlled circuit and used as the
accumulation oracle (Λ) for the Register Counting QBNN.

Figure 3.7 uses only n multi-controlled NOT gates for an n sized register. This

circuit works by starting with the most significant bit and changing its value, only if

all of the bits that are less significant than it are in state |1⟩. It then moves to the

next highest bit and performs the same controlled not. As an example, a binary value

0111 will accumulate to 1000 after the incrementation circuit. The implementation

of the increment circuit shown in Figure 3.7 will eventually be used to replace the

accumulation oracle (Λ) found in Figure 2.9. It will be replaced because the count of

the number of times a weight string produces a correct output will now be encoded

directly as a binary encoding rather than as a phase. An issue that may arise from

using this circuit is that with a large register, there requires a CNOT with a large

amount of controlled bits. With real quantum computers, this will pose a challenge

as not all qubits can be used to control certain qubits and must adhere to the systems

coupling map. An additional circuit needs to be created to allow for decrementing

or uncomputing after the a accuracy threshold application, marking weight strings

above a certain threshold, is complete. This can simply be done by reversing the

circuit.
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Figure 3.8: The register decrementation circuit is the inverse of the circuit seen in Figure
3.7. This performs the same functionality but decrements the register by a binary value of
one as opposed to incrementing it by one.

Figure 3.8 can be seen to have simply reversed the circuit shown in Figure 3.7.

This allows the values in the register to be decremented, and therefore allows the

training circuit to be reverted to its original state.

The next step in creating the oracle (Λ) for the RC implementation is to allow

this circuit to be doubly controlled.

RC Reg

U URC Reg

RC Reg

a′

a∗

Figure 3.9: The Register Counting accumulation oracle implementation uses the circuit
shown in either Figure 3.7 as a doubly controlled circuit. Using controlled by ’1’ and
controlled by ’0’ versions, the oracle can detect if the circuit is either both in state |1⟩ or
|0⟩.

Two of these doubly controlled incrementation circuits will be used: one for when

the output and expected outputs are both |1⟩, and one for when they are both |0⟩.

The gate U represents the circuits shown in Figure 3.7. The circuit shown in Figure

3.9 can now be used as the accumulation oracle Λ. Besides the phase oracle circuitry,

Λ, the rest of the QBNN circuit does not change. And example is shown in Figure

3.10.
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Figure 3.10: The complete register counting QBNN implementation is shown, implement-
ing the 2-input neuron example. Here the RC accumulation oracle is implemented instead
of the QPE oracle.

The QBNN circuit is repeated for each dataset entry, accumulating a count for

each weight string that is stored in the register. Due to the fact that the RC circuit is

not in the Fourier domain, the QPE circuitry, and therefore the controlled unitaries,

are not needed. Once all dataset entries have been applied to the QBNN circuit, the

accuracy threshold could then be applied and mark the weight strings that meet the

threshold. The next step in the training process is to uncompute by reversing the

circuitry of the QBNN, utilizing the decrementing circuits in Figure 3.8, and running

the circuit for each dataset entry. Finally, the Grover’s diffuser can be used to amplify

the weight strings. This full training algorithm is shown in Figure 3.11 and Figure

3.12.
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Figure 3.11: Due to the fact that the Register Counting implementation records each
successful weight string with a binary encoding, no Quantum Phase Estimation Circuitry
is required. This means that the training dataset only needs to be implemented once before
the accuracy threshold. The caveat is that the Register Counting implementation needs to
have enough qubits to represent the number of training dataset entries in a binary encoding.
The example can only handle up to 7 dataset entries.

Figure 3.11 demonstrates the beginning of the RC Training Circuit. It is set up

in the same way as the QPE training circuit, but uses the QBNN circuit designed

in Figure 3.10. The X gates before and after the QBNN represent the values from

the given dataset. In the example shown in Figure 3.11, it can be seen that the

first data entry designates that input0 should be ’1’, input1 should be ’0’, and the

expected output should be ’1’. Whereas in the next dataset entry, the input0 should

be ’1’, input1 should be ’1’, and the expected output should be ’0’. This process is

repeated for each data entry.
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Figure 3.12: This circuit continues the circuit shown in Figure 3.11. The accuracy thresh-
old is applied here and is a set of controlled CNOT gates that are dependent on the user’s
chosen threshold. The dataset is then uncomputed to return the states of all qubits to their
original state, some of which are marked by the accuracy threshold. The Grover’s diffuser
is then applied.

Figure 3.12 shows the Accuracy Threshold(AT) and the uncomputation of the

QBNN’s before the Grover’s Diffuser (D). The accuracy threshold applies a negative

amplitude to the weight strings that have given a correct output greater than or equal

to the threshold. The uncomputation utilizes the QBNN decrement oracle in Figure

3.8 and reverts the circuit back to its original state, while keeping the marked weight

strings marked. The Grover’s diffuser can then invert the amplitudes about the mean

and amplify the marked weight strings, completing the Grover’s algorithm.

3.5 Calculating Scalability of the Circuits

The scalability of these circuit implementations are very important, especially since

they are implemented only in the quantum space. Current quantum computing tech-

nology is extremely sensitive to number of gates (depth) and number of qubits (width)
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used. This is because it is very hard to avoid noise during quantum computation that

can come from the environment. When a circuit has a larger depth, the circuit must

run for a longer period of time, and the more qubits that are part of the circuit, the

more difficult it is to ensure that all qubits remain without noise. The noise can alter

the state of the ions or particles in the system and cause the computation to result

in error. While technology is still improving for quantum systems, many other meth-

ods are being researched and employed to reduce the error. Some of these methods

include error correction circuits and qubit mapping and routing. The less error that

is observed from a system increases the feasibility of implementing the circuit on real

quantum hardware. The expected error of a circuit can also be reduced by simply

reducing the number of qubits or depth required to complete the desired functionality.

It is therefore important to assess the change in quantum circuit width or depth as the

problem size increases or decreases. This allows the feasibility of the implementation

to be evaluated for potential real world usage in the future. The following paragraph

details the method of calculating the circuit width and depth of each of the three

implementations explained in Section 3.2, Section 3.3, and Section 3.4, as the size of

the neural network and dataset increases.

3.6 Calculating Width of the Circuits

The best way to calculate the width and depth of each implementation is starting

from the QBNN circuit. For all three implementations, the QBNN has the same

number of qubits. This is defined by the number of weights, inputs, ancillas, and

outputs that the QBNN requires and is defined as

QQBNN = Qinput +Qancilla +Qweights +Qoutputs (3.1)

Equation 3.1 shows that the number of qubits needed for the BNN implementation

40



Chapter 3. Contribution

is the combination of all the parameters of the QBNN plus extra ancilla bits for input

copying and hidden neuron output. Upon inspection of various NN sizes the following

is found

Qinput +Qancilla = Qweights (3.2)

and

Qoutputs = 2 ∗BNNoutputs (3.3)

where the output qubits are for the final output of the NN and the expected output

from the dataset. Using the observations shown in Equations 3.2 and 3.3, the width

equation of the QBNN can be simplified to

QQBNN = (2 ∗Qweights) +Qoutputs (3.4)

It is important to note that [1] requires an extra ancilla qubit to implement the

accumulation oracle of the QBNN. Whereas the implementations in this thesis only

require the output qubits without an ancilla bit. For the equations shown here, that

qubit will be removed.

3.6.1 Width of the Quantum Phase Estimation Training Circuits

The added width of the training portion is dependent on the implementation. The

QPE and improved QPE implementations both utilize a number of QPE qubits and

a marking ancilla qubit. The number of qubits required for the QPE is dependent on

the desired precision, which is defined as

θ =
π

2QQPEQubits
(3.5)
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where QQPEQubits is the number of QPE qubits used. Figure 3.5 is the smallest θ

that can be observed from the given number of qubits. If more precision is desired,

the number of qubits for QPE must be increased. The added width for the QPE

implementation and improved QPE implementation is then

QQPEImplementations = QQBNN +QQPEQubits + 1marking (3.6)

3.6.2 Width of the Register Counting Training Circuits

The Register Counting Implementation is slightly different as the number of RC qubits

is dependent on the number of data entries in the problem dataset. This is because

the RC register must have enough bits to encode the maximum possible number

of correct QBNN outputs, with the maximum being all data entries are outputted

correctly. So the equation

QRCRegister = ⌈log2 n+ 1⌉ (3.7)

Equation 3.7 utilizes a logarithmic function of base 2 to determine the number of

bits needed to store the decimal representation, n + 1, into a binary representation.

The n represents the number of dataset entries. The 1 is added to n as when using log

to determine bits, 0 is included as a representation. So without the 1, the bits could

only represent from 0 up to N-1. The result is then placed into a ceiling function

that will round up to the nearest integer. This allows numbers that aren’t perfect

powers of two to result in an integer number of qubits. RC implementation also uses

a marking qubit for the Grover’s search. The total number of qubits for the RC

method is

QRCImplementation = QRCRegister +QQBNN + 1 (3.8)
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3.7 Calculating Depth of the Circuits

The depth of the implementations is the next metric that will be calculated. The

depth is an important metric because the more depth a circuit has then the more

error will be found in the result. The depth for each of the three versions are different

from each other and will be explained separately.

3.7.1 Depth of the Quantum Binary Neural Network Circuits

The first implementation that will be looked at is the original QPE implementation.

Beginning with the QBNN depth the following generic equation can be used.

QBNNDepth = 2∗(QWeights+InputCopyDepth+ActivationDepth)+AccumulationOracleDepth

(3.9)

Equation 3.9 shows that the depth of the BNN circuit is dependent on multiple

parts of the circuit. These parts include the number of weights that the NN con-

tains, the number of times the inputs need to be copied, the depth of the activation

functions, and the depth of the accumulation oracle.
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Figure 3.13: This figure shows the different color-coded parts of the QBNN circuit. While
all three of these parts can be used for the QBNN, they will look different for each neural
network implementation. The blue part is the input copy circuitry, the red is the application
of the weights, and the green is the activation threshold circuitry. The example implements
a 2-2-1 circuit, with two inputs, two hidden layer nodes, and one output.

Figure 3.13 shows the parts of the QBNN circuit as described in this section.

The blue box represents the input copy circuitry composed of CNOT gates. The red

colored boxes are the CNOTs that apply the weights to the corresponding inputs or

ancilla qubits throughout the QBNN. Finally, the green boxes represent the activation

functions of the QBNN for each neuron. It can be observed that the number of CNOTs

required for the weights is equal to the number of weights as one CNOT gate is needed

per gate. The number of input copies that are required is explained as

InputCopyDepth = Inputs ∗ (Nodesl − 1) (3.10)

Equation 3.10 shows that the depth of the input copy CNOTs are dependent on
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the number of inputs of a single neuron, and the number of nodes in the layer l. This

is because for any given layer l, the output of the nodes in the layer before it must

be copied (Nodesl − 1) times for the inputs of layer l, where the number of nodes in

layer l is (Nodesl. This means all nodes, except for one node in a given layer, receive

a copy of the previous layers outputs to use as its intputs. This is done in order to

prevent the weights that act on the original outputs to disturb their values before the

other nodes apply their weights to it.

Figure 3.14: Example of copying inputs. The 3 input, 2 node hidden layer example above
shows the need to copy inputs if there is more than one weight that will be applied to it.
The black lines represent applications of weights onto inputs that are the original inputs.
The blue lines are applications of weights that need to use a copied version of the inputs.

Figure 3.14 shows when inputs will be copied and how that translates to the depth

of the QBNN circuit. The black lines indicate weights in the NN that will be applied

to the original inputs, the blue lines indicate the weights that are applied to a copy

of the inputs.
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Figure 3.15: This quantum circuit implements the network shown in Figure 3.14. The
blue highlighted section is the circuitry to copy the inputs. The blue dashed box is the
weight applications onto the copied inputs.

Figure 3.15 shows the example of Figure 3.14 if it were implemented as a QBNN. It

can be seen that Equation 3.10 works in this example as InputCopyDepth = 3∗(2−1) =

3.

The depth of the activation functions, or the green boxes in Figure 3.13 is depen-

dent on a desired activation threshold, and the number of qubits that the activation

function is using, which is the same as the number of inputs to any given node.
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Figure 3.16: This three input, one output neuron will be used as an example to show the
activation function circuitry.

Figure 3.16 will be used to demonstrate the calculation of the activation function

depth. It can be seen that the node has three inputs, meaning the activation function

will access those inputs and compare them to a threshold. The threshold can be in a

range from 0 to the number of inputs. The inputs are summed together and if they

are greater than or equal to the threshold, the output of the node will be |1⟩. To

implement this in a quantum circuit requires a multi-controlled CNOT gate for each

possibility of bit combinations that are greater than or equal to the threshold.

3 2
input0

input1

input2

output

Figure 3.17: The circuit above implements a possible activation threshold for the neuron
seen in Figure 3.16. The threshold in this case is a threshold of th=2 meaning that after
the application of weights, the values must sum to greater than or equal to 2. This is
implemented as a multi-controlled CNOT gate for each possible combination of qubits
equal to, or greater than th=2.

Figure 3.17 shows a possible activation circuit for Figure 3.16. The chosen thresh-

old for this circuit is two, meaning that the sum of the inputs must be greater than
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or equal to two. The circuit implements a multi-controlled NOT gate for all of the

input combinations that satisfy the threshold. The first region labeled ’3’ shows the

MCNOT gate for if the inputs are all |1⟩. The region labeled ’2’ shows the MCNOT

gates for any combination of the inputs containing exactly two |1⟩ states. The depth

of the activation function can be generalized as

ActivationFunctionDepth =

Q∑
k=threshold

(
Q

k

)
(3.11)

In Equation 3.11, Q represents the number of input qubits to the activation func-

tion. The value k is initialized to the chosen activation function in which 0 ≥ k ≥ Q.

This equation is then used for each neuron that utilizes an activation function and

is summed as follows

ActivationFunctionsDepth =
L∑
l=0

N∑
n=0

Q∑
k=threshold

(
Q

k

)
(3.12)

Equation 3.12 shows the summation of the activation function, for all nodes N ,

in each layer L.

The depth of the accumulation oracle is defined by the number of outputs to the

NN. In the general case, the number of outputs for the NN is one, meaning that the

depth of the oracle does not change with NN size. However, when NNs have more

than one output, for example using a one-hot encoding, the depth of the oracle grows

as

QPE OracleDepth = 2Outputs (3.13)

In the case where the number of outputs is 1, the depth of the accumulation oracle

stays at a value of two. The Register Counting accumulation oracle uses a circuit that

was designed to accumulate the RC registers by one on each successful output. The

depth of this circuit grows with the number of register qubits as well as the number
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of outputs.

RC OracleDepth = RegisterQubits ∗ (2Outputs) (3.14)

It is important to note that in Equation 3.9, the Copied inputs, weight size, and

activation depths are doubled as the QBNN needs to be uncomputed after the oracle.

After calculating the depth of the QBNN for the specific implementation, the depth

of the complete circuit with training can be calculated.

3.7.2 Depth of the Original Quantum Phase Estimation Training Circuit

For the original QPE training implementation, the depth of the circuit depends on

the number of data entries in the dataset as well as the number of QPE register

qubits used. The QPE Implementation also requires the use of the Quantum Fourier

Transform circuit. The QBNN circuit must be repeated for each dataset entry, for

each QPE register qubit.

QPE TrainingDepth = (

QPE Reg−1∑
q=0

n ∗ 2q ∗QBNNDepth) ∗ 2

+(QFTDepth ∗ 2) + AccuracyThresholdDepth +Grovers DiffuserDepth + 2

(3.15)

Equation 3.15 defines the complete depth of the QPE Training circuit. The

QBNNDepth is the depth that was calculated in Equation 3.9. This depth is mul-

tiplied by the number of data entries n, and by 2q. 2q comes from the requirements of

the QPE algorithm, where the circuit controlled unitary is repeated 2q times, where

q is the index of one of the QPE register qubits. The product that results is then

summed for each qubit in the QPE register, where the index of the qubits go from 0

to QPE Reg− 1. The resulting summation is doubled as it needs to be uncomputed.

The QFTDepth is the depth of the QFT circuit, which is doubled since an inverse QFT
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is needed as well. The Grovers DiffuserDepth is the depth of the Grover’s diffuser

circuit, which is dependent on the number of QPE Reg qubits.

The depth of the Accuracy Threshold (AT),AccuracyThresholdDepth, is consistent

for all three implementations. The depth can generally be seen to have the following

equation.

AccuracyThresholdDepth = 2QReg − ATth (3.16)

Equation 3.16 shows that the depth of the accuracy threshold is dependent on

the number of register qubits (QReg) that the given training implementation uses

(Either the QPE version or RC version). It also depends on the chosen threshold of

the Accuracy Threshold (ATth). The depth is simply the max decimal value of the

binary registers minus the decimal values threshold.

3.7.3 Depth of the Improved Quantum Phase Estimation Training Circuit

The QPE Simplified circuit, follows the same methodology as the original QPE circuit,

with a minor difference when calculating the number of times the QBNN circuit

repeats.

QPE Simplified TrainingDepth = (n ∗QPE Reg ∗QBNNDepth) ∗ 2

+(QFTDepth ∗ 2) + AccuracyThresholdDepth +Grovers DiffuserDepth + 2

(3.17)

Equation 3.17 shows the updated equation for the QPE simplified circuit. Notice

the summation is removed and the 2q is replaced by simply the number of QPE qubits

(QPE Reg) in the circuit. This change will serve to show how the depth of the QPE

simplified circuit is greatly reduced compared to the original QPE circuit.
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3.7.4 Depth of the Register Counting Training Circuit

For the RC Implementation, the depth of the circuit, like the QPE versions, is de-

pendent on the number of data entries in the dataset. The circuit consists of set-

up circuitry, the repeated QBNN circuits for each of the data entries, the accuracy

threshold, the QBNN uncompute, and the Grover’s diffuser.

RCTrainingDepth = (n ∗ 2 ∗QBNNDepth) + AccuracyThresholdDepth

+GroversDiffuserDepth + 2

(3.18)

The difference in the depth for the Equation 3.18 is that the QBNN circuit only

needs to be repeated for twice the amount of the dataset size. Twice because the RC

implementation does not use the controlled unitary circuits that are required for the

QPE algorithm and only need to run through the complete dataset once to compute,

and once to uncompute. The +2 that is at the end of the three depth equations:

Equation 3.15, Equation 3.17, and Equation 3.18, is added to represent the setup

gates including Hadamard’s and X gates. The QFT and inverse QFT Depth[8] is

dependent on the number of QPE qubits (QPEReg).

QFTDepth =

QReg∑
i=1

i+ ⌈QReg

2
⌉ (3.19)

Equation 3.19 is summing 1, up to QReg register qubits which accounts for the

Hadamard and controlled phase gates of the QFT. The ceiling function calculates the

number of swap gates needed for the QFT.

Finally, the Grover’s diffuser Depth [11] is always a depth of 5. This is because

the circuit consists of a two sets of Hadamard gates and X gates on each qubit and a

multi-controlled Z gate.
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3.8 Initial Testing Implementations

A very small test was run to prove the functionality of each design. The test used

a single neuron with three inputs and one output. A dataset was taken from [1] in

order to compare results. The dataset is shown in Table 3.1.

in 0 in 1 in 2 Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 3.1: 3-1 Dataset

The design of the circuit only required 12 qubits: three weight qubits, three input

qubits, one output qubit, one dataset output qubit, three register qubits, and one

marker qubit. The same QBNN circuit was used for all three implementations. It

also utilized a activation function threshold value, th = 2.
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weight0

weight1

weight2

input0

input1

input2

output

Λ
data output

Figure 3.18: The first half of the 3-1 QBNN circuit is shown above, up to the accumulation
oracle. The full implementation will mirror the CNOTs on the other side of the oracle.

As seen in Figure 3.18, the QBNN circuit only required a handful of CNOT gates

and the accumulation oracle Λ. The activation function with a threshold th = 2 is

implemented as the 4 multi-controlled CNOT gates. The training of the QBNN was

implemented using the original QPE method, the QPE Simplified method, and the

Register Counting method.
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. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

marker |0⟩ X H

Reg0 |0⟩

QBNN QBNN

Reg1 |0⟩
Reg2 |0⟩

weight0 |0⟩ H

weight1 |0⟩ H

weight2 |0⟩ H

input0 |0⟩
input1 |0⟩

input2 |0⟩ X X

output |0⟩

data output |0⟩

1 2 3

Figure 3.19: This circuit implements the training circuit of the 3-1 network. The QBNN
box represents the circuit shown in Figure 3.18. The figure is set-up for the Register
Counting training implementation. The QPE methods will have Hadamard gates placed on
the Register qubits, and the QBNNs will be replaced with controlled versions that implement
the whole training dataset.

Figure 3.19 shows the beginning of the training algorithm for the Register Count-

ing algorithm. For the implementation of the QPE methods, Hadamards will be

placed on the Reg qubits, and the dataset implementation will be replaced with con-

trolled QBNN circuits. The results of this test are shown in the next chapter. This

neuron simply finds the best set of weights that supports its activation threshold of

two.

3.9 Practical Machine Learning Implementations

The original QPE training circuit shows various small scale implementations that

demonstrate the functionality of the QPE implementation. The datasets given seemed
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arbitrary and created just to prove that the circuit works. Their use of small scale

networks are justified as attempting to run larger issues can result in many issues

including but not limited to: the processing requirements of simulators, the repre-

sentation of large weight string outputs, and circuit runtime. A goal of this thesis

is to attempt to provide a real world example or problem that can be solved using

the original QPE circuit proposed by [1], as well as the new circuits developed for

this thesis. The work done in this thesis allow for the testing of larger circuits due

to the reduced size of the designed implementations. These issues were encountered

while trying to achieve this goal. However, a small scale real world problem was

found and implemented to demonstrate the potential that the quantum circuits hold

when quantum systems are improved in the future. The problem that was tested is

convolutional edge detection image filters or in this use case, simply edge detection

networks.

A 3x3 and 2x2 convolution edge detection circuits were tested using the three

versions of the QBNN training circuits. For these tests, a neural network was created

to identify vertical edges from given pixel values. The output of the network is a

one when the pixels in the filter make an edge, and a zero when the pixels do not

represent a vertical edge.

The 2x2 filter was used to detect vertical edges in images. There are 4 inputs

needed for this network totaling a maximum dataset size of 24 = 16 possible inputs.

The dataset used for this filter is shown in Table 3.2.
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0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1

0 1 0 1 0 1 0 1

0 0 0 1 1 0 1 1

1 0 1 0 1 0 1 0

0 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1

0 0 0 1 1 0 1 1

Table 3.2: 2x2 Dataset

The Table 3.2 shows all possible input combinations, where the highlighted inputs

are considered to be a vertical edge while the others are not. Due to the much smaller

size of this dataset, the full dataset was able to be trained on the neural network.

The neural network used for the 2x2 edge detection was a 4-2-1 network, meaning 4

inputs, 2 hidden layer nodes, and one output.
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Figure 3.20: 2x2 Convolution edge detection filter neural network. 4-2-1

Training the network shown in Figure 3.20 with the three quantum algorithms

still resulted in some complications that will be discussed later. However, the circuits

were still able to run and produce a correct output. The quantum circuit for the 4-2-1

network is shown in Figure 3.21 for demonstration purposes.
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weight0

weight1

weight2

weight3

weight4

weight5

weight6

weight7

weight00

weight01

input0

input1

input2

input3

ancilla0

ancilla1

ancilla2

ancilla3

ancilla4

ancilla5

output

expected output

Figure 3.21: 4-2-1 Quantum binary neural network circuit.

As seen in Figure 3.21, the first four CNOTs implement the input copy circuitry,

and the next eight CNOTs are the initial weight applications to the input values in

the first layer. The first two multi-CNOT gates are the activation functions of each of

the neurons in the hidden layer. Here the threshold of the neurons are set to th = 4.

The last two weights in the next layer are then applied to the outputs of the hidden

layer neurons, an finally the activation function of the output layer is applied. The

results of the circuits are explained in the next chapter.

The 3x3 edge detection filter was then implemented using the quantum neural

network. Due to the fact that there are 9 input values associated with the 3x3 filter,

58



Chapter 3. Contribution

there is a potential of 29 = 512 possible input combinations. However, due to the

large size of the dataset, it was reduced to 16 entries.

0 1 1 0 0 0 1 1 0 1 1 1

0 1 1 1 1 1 1 1 0 1 1 1

0 1 1 1 1 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 0 0 0 0 1 0 0 0

1 0 0 1 1 1 0 0 1 0 0 0

0 0 1 1 0 0 1 1 1 1 1 1

0 1 1 1 1 0 1 1 0 0 1 1

1 1 1 1 1 1 1 0 0 0 0 1

0 0 0 1 0 0 1 1 1 0 1 1

0 1 1 1 1 0 1 1 0 0 1 1

1 1 1 1 1 0 0 0 0 0 0 1

Table 3.3: 3x3 Dataset

The data entries shown in Table 3.3 have two entries that were considered vertical

edges while the others were not considered edges. The highlighted inputs of Table

3.3 were considered edges whereas the non-highlighted inputs were not. The two

highlighted entries shown were chosen to be edges over the entries that are directly

beneath them because the center pixel has a value of 1. For convolution, the main use

of this practical application, the output of the image filter would be applied to the

center pixel value. Reducing the number of entries that are considered vertical edges

to only the once with a pixel value of 1 in the center will remove extra wide vertical
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edges in the resulting filtered image. A neural network was designed to handle 9 input

nodes and one output node. Originally, a network with only the input and output

layers was used.

Figure 3.22: 3x3 Convolution edge detection filter 9-1.

However the accuracy of the model shown in Figure 3.22 could only correctly

determine around 50% of the dataset using the best weight string. A second neural

network was then designed to try and increase the accuracy of the model further.

This involved including a hidden layer with 3 hidden nodes, creating a 9-3-1 neural
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network.

Figure 3.23: 3x3 Convolution edge detection filter. This is not a fully connected network
(9-3-1).

However, as seen in Figure 3.23, the neural network is not fully connected. There

are only 3 input nodes connected to each hidden layer node instead of the full nine.

This allows for a larger network with an addition of only 3 weights compared to Figure

3.22. This network was tested with the dataset shown in Table 3.3.
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Results

4.1 QBNN Circuit Scalability

Using the equations and methods found in Section 3.5, the various circuit implementa-

tions could be analyzed. The figures shown in this section will detail how the circuits

grow while adjusting different variables of the network. This section will observe

how circuits grow with NN layers, NN layer nodes, dataset size as well as adjusting

various parameters within the NNs. For each neural network in this section, it will

be assumed that the NN nodes will be a fully connected network. First the width

and depth of the neural network will be observed with varying hidden layer nodes.

The NN will start as a 4-2-1 network, meaning there is 4 input nodes, 2 hidden layer

nodes, and 1 output node. The network will also assume the following parameters:

QPE, RC Qubits 5

Dataset Size 16

Grover’s Iterations 1

Accuracy Threshold 3

Neuron Thresholds 2

Table 4.1: Hidden layer nodes variation parameters

The number of hidden layer nodes will grow to show how the quantum neural
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QPE QPE Simp RC
2 77436 12540 2782
3 123068 19900 4254
4 176636 28540 5982
5 246076 39740 8222
6 347260 56060 11486
7 470268 75900 15454
8 636924 102780 20830
9 861116 138940 28062
10 1158716 186940 37662
11 1547580 249660 50206
12 2047548 330300 66334
13 2680444 432380 86750
14 3470076 559740 112222
15 4442236 716540 143582
16 5624700 907260 181726
17 7047228 1136700 227614
18 8741564 1409980 282270
19 10741436 1732540 346782
20 13082556 2110140 422302

Table 4.2: The depth for each of the three implementations given based on the number of
hidden layer nodes.

network scales. This is shown for all three implementations: QPE, QPE Simplified,

and Register Counting.

Table 4.2 shows the results from the initial hidden layer node depth test. This

table and future experiment tables will be converted to a graph to better show the

trends of the experiments.
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Figure 4.1: Quantum training circuit depth as the number of hidden layer nodes increase.

Figure 4.1 Shows the depth of the QBNN with training for each implementation.

Each version increases exponentially as the number of hidden layer nodes increase.

However, the rate that the original QPE implementation increases is much higher than

that of the QPE Simplified version, as well as the Register Counting Implementation.

This behavior is expected as shown by previous equations, and occurs due to the

exponential nature of the original QPE algorithm. The QPE Simplified version is

still larger than the Register counting implementation in this case. This should very

often be the case as the QPE versions contain multiples of the dataset implementation

whereas the Register counting version only implements the dataset once. The only

case where the RC implementation depth would be more than the QPE depth would

be if the QPE implementations only contained one QPE qubit and the dataset size

is larger than two. However it would not be common to only use one QPE qubit as

the precision of the results would not be high.
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Figure 4.2: Quantum training circuit width as the number of hidden layer nodes increase.
All three implementations follow the same width when adjusting the number of hidden
nodes.

As seen in Figure 4.2, all three implementations grow linearly at the same values.

This is because the QPE, RC Qubits are kept constant and the same. The QBNN

for each implementation is implemented in the same way and therefore also contain

the same number of qubits.

It can be seen that the circuit implementations increase in depth and width as

the number of hidden layer nodes increases. The circuits were then tested to see how

they scale as the number of hidden layers increased. The following parameters were

kept constant for this test:
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QPE, RC Qubits 5

Dataset Size 16

Grover’s Iterations 1

Accuracy Threshold 3

Neuron Thresholds 2

Table 4.3: Hidden layer variation parameters

The neural network that was used for this test started as a 4-4-1 network: 4

inputs, 4 node hidden layer, 1 output. The network then added a 4 node hidden layer

repeatedly and measured the width and depth of the circuit.
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(a) All implementations

(b) Only QPE and RC implementations shown for clarity

Figure 4.3: Quantum training circuit depth as the number of hidden layers increases.

Figure 4.3 shows that the depth of the implementations increase linearly as the

number of hidden layers increase in the circuit. The rate that the QPE implementa-

tion increases is large at first compared to the depth shown in Figure 4.1. However,

the rate of Figure 4.1 eventually surpasses the rate of increase in Figure 4.3 for a

large number of hidden layer nodes. The rate of increase for the Simplified QPE and
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Register Counting implementations are much less than the QPE version in this test

as well.

Figure 4.4: Quantum training circuit width as the number of hidden layers increase. The
number of qubits for each implementation are all the same in this case as well.

The width of all three circuits, similar to what is seen in Figure 4.2, are all linear

and the same values. The rate of increase in Figure 4.4 is 3.16 times larger compared

to Figure 4.2. The reason this test is seen to be linear is due to the fact that with

each additional hidden layer, a constant number of weights are added, and with it

a constant number of qubits for each layer. For this case specifically, there are 16

weights added on each layer, meaning the circuit should increase by 32 qubits for each

iteration.

Next, the scalability of the circuits will be tested by increasing the number of

QPE qubits used. The number of QPE qubits directly relates to the precision of

the QPE algorithm, less qubits means less precision and therefore less control for

what Grover’s algorithm can return as a successful weight string. However, using less
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qubits is always preferred do to scalability issues with quantum systems. The QPE

and QPE Simplified implementations will have a correlation with changing the QPE

qubits, whereas the RC implementation should remain constant for this test as the

number of RC bit needed is dependent on the dataset size. The following parameters

will be used for this test:

Nerual Network 4-4-3-1

Dataset Size 32

Grover’s Iterations 1

Neuron Thresholds 2

Table 4.4: QPE qubit variation parameters

As seen in Table 4.4, the Neural Network used in this experiment is a 4-4-3-

1 network: four inputs, two hidden layers with four and three nodes respectively,

and one output node. The dataset is fixed to a size of 32 bits, meaning that the

number of qubits needed for the Register counting method should remain at six

qubits (⌈log 232 + 1⌉). The depth of the Register Counting method should also remain

constant as the depth relies on the number of dataset elements.
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(a) Original QPE Implementation

(b) Only Improved QPE implementation shown.

Figure 4.5: Quantum training circuit depth as the number of QPE qubits is increased.
Note that the Register Counting implementation is not shown because it is dependent on
the number of dataset elements.

Figure 4.5 shows that the depth of the original QPE circuit increases exponentially.

The QPE Simplified circuit increases linearly and at a much slower rate than the

original QPE circuit. This is because the QPE Simplified circuit increases by twice

the depth of the QBNN depth for each QPE qubit added. Whereas the original QPE

implementation increases exponentially by powers of 2.
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Figure 4.6: Quantum training circuit width as the number of QPE qubits is increased.
Note that the Register Counting is not shown because it is constant and dependent on the
number of dataset elements.

Figure 4.6 shows the width of the quantum circuit with training, as the number

of QPE qubits are increased, the QPE and QPE Simplified implementations increase

linearly and as the same size. When the dataset size is large, a smaller number of

QPE qubits may be used to approximate the accumulation portion of the circuit, and

therefore reduce the qubits needed.

As seen in Figure 4.6, changing the number of QPE qubits alters the width and

depth of the QPE implementation, but does not effect the RC implementation. The

size of the dataset will effect the RC implementation and is tested in the next exper-

iment. The following parameters are kept constant for this test:

Nerual Network 4-4-3-1

QPE Qubits 5

Grover’s Iterations 1

Neuron Thresholds 2

Table 4.5: Dataset size variation parameters
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As seen in Table 4.5, the neural network used is kept constant at 4-4-3-1. The

QPE qubits are kept at a constant 5 qubits for this test, and the other variables,

Grover’s Iterations and Neuron Thresholds, are kept the same as they have been in

the previous tests. The size of the dataset starts at a value of 4 data entries, and

increases by 4 for each iteration, up to 64.

(a) Quantum training circuit depth as the size of the training dataset increases.

(b) Quantum training circuit depth as the size of the training dataset increases. Only QPE and
RC implementations shown for clarity

Figure 4.7: Dataset size effect on circuit depth.
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Figure 4.7 shows the depth of the circuits as the size of the dataset increases.

It can be seen that the increase in dataset size causes all three implementations to

increase in depth linearly. Like previous tests, the original QPE method increases

at the highest rate, followed by the simplified QPE version, and finally the Register

Counting method. The width of the circuits are then tested.

Figure 4.8: Quantum training circuit width as the size of the training dataset increases.

Figure 4.8 shows the width of the circuit implementations as the dataset size

increases. Notice that the QPE versions do not change as their depth does not

depend on the size of the dataset. The width of the Register Counting method

increases logarithmically with the size of the dataset. With small datasets, the width

of RC can be seen to be less than the QPE versions, however the number of qubits

quickly exceeds that of the QPE versions. This shows the potential downfall of the

RC implementation, as with large datasets, the width of the quantum circuit will

increase greatly. The trade-off of the RC to the QPE methods will be discussed

further in later sections.

Finally, the quantum circuit dimensions are tested when the individual neu-

rons(nodes) activation thresholds are increased. The following parameters are set
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for this experiment:

Neural Network 4-16-16-1

QPE, RC Qubits 5

Dataset Size 16

Grover’s Iterations 1

Accuracy Threshold 3

Table 4.6: Node activation threshold variation parameters

As seen in Table 4.6, the neural network used is slightly larger to show the effect

of increasing the activation threshold with more detail. All other variables in the

circuits are kept constant besides the nodes activation thresholds, that begin at 1

and are increased by 1 for each iteration.
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(a) QPE

(b) QPE Simplified

(c) Register Counting

Figure 4.9: Effect of node threshold on circuit depth.
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Only the depth was tested for this experiment as the width of the circuits are

not effected by the activation functions of the neurons, as seen in previous sections.

The depth of the circuits can be seen to decrease as the activation functions are

increased. This is because the circuits require more multi-controlled CNOT gates

as the activation functions are decreased. The multi-controlled CNOT gates must

account for the binary representation of the threshold value, plus any binary encoded

value above the threshold.

4.2 Variations in QPE bits

As seen and explained throughout this thesis, there does not need to be a fixed

number of QPE register qubits. In Section 4.1, it can also be seen to reduce both

the width and depth of the QPE implementations when a smaller number of QPE

qubits are used. The trade-off however, comes with the reduced precision of what

the accuracy threshold can detect. This behavior comes directly from the description

and implementation of the Quantum Phase Estimation algorithm. As seen in [7],

the number of QPE registers will determine what kind of result can be read from

the QPE binary encoding. For example, if a qubit was rotated eight times by π
8
, or

in the case of QBNNs, achieved eight correct outputs, you would expect to find the

final rotation to be 8π
8

or π. You could easily see and detect this rotation by using

four QPE qubits. This is achieved by rotating the index 0 qubit by 8π
8
, the index 1

qubit by 8π
4
, the index 2 qubit by 8π

2
, and the index 3 qubit by 8π

1
. Performing the

inverse QFT will result in an output in state ’1000’ or binary for 8. However, less

qubits can be used in this case. Since the goal is to observe 8 rotations of π
8
, three

qubits can be used for the QPE algorithm instead. In this setup, the index 3 qubit

used previously will be removed. Which leaves only the index 0, 1, and 2 qubits with

rotations 8π
8
, 8π

4
, and 8π

2
respectively. This will result in an output of ’100’ or binary

for four. This means that when fewer than the the required number of bits needed
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to represent the rotations in binary are used. The QPE output is scaled by a power

of 2 directly related to the number of missing qubits. So in this example, the output

of the QPE algorithm will output R
2
where R is the number of rotations.

There is an issue however when using less QPE bits than required for the full

binary encoding. In cases where R
2
results in a non-integer, the result is encoded

in a distribution of all states, with the mean centered around the non-integer value.

However this output could still provide correct results when training the QBNN. This

is due to the fact that the accuracy threshold could be placed on one of the midpoint

values, which would have a less probable, yet still valid marking that will allow for

a successful Grover’s algorithm. The obvious benefits to reducing the QPE qubits

is reducing the overall width of the circuit. Small amounts of QPE qubits could be

used with large datasets and still detect large rotations. Where the Register Counting

method would need to be able to represent all dataset entries in a binary encoding

which can grow large with large datasets.

4.3 Accuracy Threshold Variation

A parameter of the training circuits that can be adjusted to give varying results is

the accuracy threshold value. This threshold determines which weight strings will

be marked by the circuit for the Grover’s diffuser to invert about the mean. The

variation of this threshold value changes the depth of the circuit in a similar way to

how the activation thresholds of neurons change the depth. However, the accuracy

threshold is only run once per Grover’s iteration. So this change in depth is only

slight compared to the full depth of the training circuits.

Adjusting this value can allow the circuit to return weight values that are less

accurate. For example, if a circuit was to find a weight string that correctly identifies

16/16 dataset entries, and a weight string that identifies 15/16 entries, setting the

accuracy threshold to 15 would result in an accuracy threshold circuit depth of 2,
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and return both the 15/16 and 16/16 weight string results. If the threshold was 16,

the depth of the threshold circuit would be 1, and only return the weight string that

results in 16/16 correct entries.

The accuracy threshold could be adjusted by the QBNN training user at their

own discretion and to achieve any desired weight string accuracy. This only effects

the depth very slightly and will not make a huge computation time difference.

4.4 Initial Testing Results

As discussed earlier in this thesis, the functionality of the Simplified QPE training

circuit, and the Register Counting circuit were tested. For these tests, the 3-input,

1-output neuron was used and trained on a dataset provided by [1]. This was done

to compare functionality against the method described in [1].

in 0 in 1 in 2 Output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 4.7: 3-1 Dataset

By observing the dataset, the 3-1 Neuron should be expected to perform best

when the three weight qubits are set to |000⟩. This would allow the inputs to enter

the activation threshold unchanged. Due to the fact that the threshold value is set to
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th = 2, the neuron should output a |1⟩ state if the inputs sum greater than or equal to

th = 2. This functionality can be observed in Figure 4.7. The QPE implementation

proposed by [1], is implemented first as a control.

Figure 4.10: QPE histogram results.

As seen in Figure 4.10, the basis encoded result of the quantum circuit is the ex-

pected ’000’ weight string. This histogram represents a collection of ’shots’ computed

on the quantum circuit by the quantum simulator. Each shot is an execution of the

circuit with artificial noise added. On each measurement of the quantum state, the

shot is collapsed into one of these eight states. The state that it collapses into is

dependent on both the noise added for that shot and the probability of ending up in

that state denoted by the state-vector of the circuit. For this test, 4096 shots were

used with this circuit, but converted to a fraction. The same test will reproduced

using the circuit designs developed in this thesis and compared to Figure 4.10 for

accuracy.
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(a) QPE simplified histogram results. (b) Register Counting histogram results.

Figure 4.11: 3-1 Histogram results

As seen in Figure 4.11, the results are very similar to what was observed in Figure

4.10. It can be seen that the amplitude of the results in the three cases are slightly

different. This is the result of the Qiskit Aer simulator that adds a small amount of

artificial noise during each shot. It was found that all three implementations result

in the exact same output. The amplitude is centered around 0.78125 for the correct

circuit output.

While all three circuits are able to produce the same output, it is important to

examine the size differences.

QBNN Training Implementation Width Depth

QPE 12 2032

QPE Simplified 12 880

Register Counting Method 13 356

Table 4.8: Initial testing circuit width and depth results.

For each circuit tested in the 3-1 Neuron example, a total of 12 qubits were used,

except for the RC implementation that required 13, as seen in Table 4.8. The depth

of the quantum training circuit is reduced greatly when using the QPE Simplified

and Register Counting Circuits. This proves that the work of this thesis can produce
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the same NN training results on a much smaller quantum circuit.

4.5 2x2 Convolution Filter Results

After proving the functionality of the circuits in Section 4.4, the more practical ex-

ample of 2x2 convolutional edge detection filter results were tested. For these ex-

periments, more hardware resources were required than was was available on local

machines. Rochester Institute of Technology’s Research Computing Cluster [4], was

used to access more memory and computation time needed for these circuits.

During initial testing of these circuits, the original setup consisted of generating

an output histogram plot similar to what was shown in the previous section, Section

4.4. Upon running the circuit and obtaining the results, the following output was

seen.

Figure 4.12: Illegible 2x2 convolution edge detection histogram results.

Due to the fact that there are 10 weights involved in this circuit, the number

of possible measured states are 210 or 1024. Not only does this number of outputs

produce an illegible output plot, but the number of shots required to show a decent

histogram would result in a very long circuit runtime. Due to the fact that the
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histogram is a collection of the number of shots that collapse into each state, a large

amount of shots would need to be run in order to produce a histogram with good

results. Specifically, a decent multiple more that 210 shots must be simulated to

ensure that the shots are collapsing enough times to see any states that are more

probable than others.

A different method was then used to obtain the results from larger circuits. Instead

of running multiple shots and measuring the states, the statevector of the circuit

was calculated using the Qiskit statevector simulator[22]. The statevector of the

quantum circuit will be a vector calculated by applying matrix representations of

quantum gates to a zero vector. The process of applying the matrix representation

of quantum gates is the mathematically intensive part of the quantum simulation.

This is because for each layer in the circuit, a matrix of size qubits ∗ qubits must be

multiplied against a statevector of size 1 ∗ qubits. The number of layers in a circuit

is approximately the depth of the circuit. The result after computing each layer is

a vector of complex values, representing the state amplitudes. If the circuit contains

any number of measurement gates, the circuit statevector will then be collapsed on

those specified qubits.

It was found during testing that the use of measurement gates using Qiskit’s stat-

evector simulator resulted in extremely long runtimes that did not finish. However,

the removal of the measurement gates results in a statevector of the complete cir-

cuit and runtime of a couple hours. This vector can then be artificially collapsed on

certain substates, which is a state made of part of the complete circuit state, by sum-

ming the magnitude squared of each equivalent substate. An example of the artificial

collapsing is shown in Table 4.9.
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State Substate Complex Value

0011100 111 0.25+0j

1011101 111 0.25+0j

0010100 101 0.125+0j

0110111 101 0.375+0j

Table 4.9: Substate collapsing process example. The states on the left hand side represent
the full state of the complete quantum circuit. However, if only the middle three qubits are
needed, the magnitude of each complex state that has the middle three qubits in the same
states need to be summed together.

In the example shown in Table 4.9, the full circuit possible states are assumed

to only be the binary strings shown in the left column. If it is desired to collapse

those states, or essentially measure those states on the center three qubits, the two

possible substates are then ’111’ and ’101’. To find the probability of the circuit

falling into those states, the magnitude of each complex number is found, squared

and added to each of the same substate. The result for the example shown in Table

4.9 is a probability of 0.5 for ’111’ and 0.5 for ’101’. A Python script was developed

to perform this operation on any full statevector output. This could then be used

to extract the probabilities of the 2x2 Convolutional filter results without using the

histogram or the measurement gates.

The test involved the 4-2-1 neural network that utilized the same number of qubits

in order to properly compare all of the circuit implementations. The size of the circuits

were calculated for depth comparison.

QBNN Training Implementation Width Depth

QPE 28 41714

QPE Simplified 28 6770

Register Counting Method 28 1620

Table 4.10: 4-2-1 Network width and depth
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As seen in Table 4.10 and in previous observations, the use of the circuits designed

by this thesis result in circuits that are much smaller than the one originally proposed

by [1]. The results of all three implementations correctly found the best weight strings

for the 4-2-1 NN and the dataset shown in Figure 3.2.

Figure 4.13: 2x2 Convolution histogram results. Two states have a much higher prob-
ability than all other states, meaning that those are the two resulting weight strings. All
states that are not the two amplified states are represented by the lower bars. Each state
has a probability equal to those bars.

The probability outputs found by the collapsing python script are shown in Figure

4.13. All of the states or weight strings that are less probable are summarized into the

three separate smaller histogram bars. All three implementations gave these results

and showed that the most optimal weight strings are ’0001011010’ and ’0010100101’.

These two weight strings result in correctly identifying 16 out of 16 dataset entries.

Utilizing another Python script that tests all of the possible weight strings on the

neural network classically, these results were found to be accurate and the only two

weight strings that result in perfect vertical edge detection. While in classical machine

learning, there is a separation between the training dataset, and testing dataset, here,

there is only a combined training and testing dataset due to the small dataset. This
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results in overfitting and the potential of being unable to identify new data.

QBNN Training Implementation Time to Run (hrs)

QPE 13:23:50

QPE Simplified 2:46:39

Register Counting 1:22:05

Table 4.11: 2x2 Filter training timing results

For each test case, the runtime of the quantum circuit was recorded to show how

the depth of the various circuits effect the training time. The results of the three

versions are shown in Table 4.11 where the last two rows are the circuits developed in

this thesis. It can be seen that the much smaller circuit sizes result in a much faster

computation time. While this does improve the performance of quantum simulation

on classical computers, the results translate into the quantum realm as well. First,

quantum computers will need to perform less gate applications on qubits when the

circuit depth is less, which reduces the runtime of the quantum computer. Second, the

smaller depth of quantum circuit produces less noise and error than longer circuits.

4.6 3x3 Convolution Filter Results

Circuits utilizing all three training implementations were developed to test the 9-3-1

Neural Network. The QBNN circuits were setup to be trained using the dataset seen

in Figure 3.3. There was a total of 32 qubits used for all three implementations in this

case. The QPE and QPE simplified circuits could have been reduced however they

were kept at 32 to be able to compare against the Register Counting Implementation.

There is a total of 12 weight values in this circuit, meaning that there are 212 =

4096 weight strings that this circuit will evaluate. Similar to the 2x2 edge detection

example, the histogram output of this circuit is illegible and is difficult to determine

the correct weight strings. This is again due to both the large number of output
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possibilities and the inability to run an adequate amount of shots for the result. This

issue was once again fixed by utilizing the python script developed to measure the

weight strings. The results of the training are shown in Figure 4.14.

Figure 4.14: 9-3-1 Neural network weight strings. These 30 weight strings are able to
correctly identify all of the edges in the dataset. The ’others’ bar represents the probability
of each weight string that was not amplified.

As seen in Figure 4.14, the training algorithm for both the Improved QPE cir-

cuit and Register Counting circuit resulted in 30 weight strings that produce a 100%

accuracy of the training dataset. A bar named ’Other’ is added to show the proba-

bilistic differences between the amplified weight strings and the non-amplified weight

strings. The amplified weight strings are about 9.409% more probable than all the

non-optimal weight strings. When observing the resulting weight strings classically,

the weight strings [0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1] and [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], which

are two of the weight strings produced in Figure 4.14, gives a 96.09% accuracy when

testing against the complete dataset of 512 entries. This test therefore shows the po-

tential of these training methods to work well for larger and more practical problems.
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The scalability and runtime of the various circuit implementations are shown 4.12a.

QBNN Training Implementation Width Depth

QPE 32 41702

QPE Simplified 32 6758

Register Counting Method 32 1608

(a) Scalability

QBNN Training Implementation Time to Run (hrs)

QPE ∼10 Days

QPE Simplified ∼48 hrs

Register Counting 22:02:49

(b) Runtime

Table 4.12: The scalabilty and the runtime of the 9-3-1 neural network training methods.
The QPE method described in [1] was not able to complete within the allowed runtime
of the research cluster [4]. This shows the benefits of using the designs developed in this
thesis.

Table 4.12 shows scalability and runtime results of the 9-3-1 neural network. The

scalability of the circuit can be seen to be around the same size as the circuit used

for the 2x2 edge detection. This is because the 9-3-1 network is not a fully connected

network and does not use as many weights. It is important to notice that the original

QPE circuit designed in [1] was not able to complete its test as the time limit of the

testing cluster[4] was reached. This improves the potential of the designs proposed

in this thesis as they are able to train the QBNN in much less time than the original

circuit proposed in [1].
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Sensitivity 1.0

Specificity 0.960784

Precision 0.090909

Accuracy 0.960938

F1 Score 0.166667

Table 4.13: Statistical classifications of the 3x3 vertical edge detection test

As seen in Table 4.13, the F1 score of this test is very low. The F1 score is

extremely low in this case due to the dataset imbalance. The dataset of all possible

pixel values is 29 or 512 with only 2 cases that are considered a vertical edge and 510

cases that are not considered a vertical edge. The imbalance causes the precision of

the model to be low and therefore the F1 score will be low. To fix this issue, a better

dataset or larger NN could be used to improve the confusion matrix of these results.

The confusion matrix is shown in Figure 4.15 below for reference.

Figure 4.15: 3x3 Vertical Edge Detection Confusion Matrix

The low F1 score and precision seen in Table 4.13 is a result of the dataset and

neural network structure. The low scoring results are found in both the quantum

and classical implementation of this binary neural network and do not define the

performance of the quantum algorithm.
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Conclusion

5.1 Conclusion

This thesis was able to design and improve upon a Grover’s Quantum Binary Neural

Network that was originally proposed by [1]. A design was made based on a idea

continuation from [1] that utilized a Register Counting method as apposed to the

Quantum Phase Estimation method. Improvements to the original design found in

[1] was made, and an improved version that simplifies the Quantum Phase Estimation

algorithm was also implemented. This thesis was written to help explore the field of

quantum machine learning and provide some more practical demonstrations that show

the potential of quantum neural networks and their use. This was done through the

contribution of two new quantum binary neural networks, and their application on

pixel edge detection models.

The first contribution involved the improvement of the design found in [1]. This

included the removal of an unnecessary qubit that was utilized for applying a phase

to correctly classified dataset entries. This was possible due to the functionality of

the quantum phase gate that treats the target qubit as an additional control bit.

A fix was also implemented in regards to the quantum phase estimation algorithm.

The setup suggested in [1] goes against standard practices when implementing the

Quantum Fourier Transform and would result in incorrect results.
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The second contribution is the design of a training circuit that was proposed, but

not designed in [1]. This circuit utilized a Register Counting method that replaces

the Quantum Phase Estimation qubits with a set of register qubits that will store a

binary encoding of the number of times a weight string produces a correct result. This

removes the need to encode the number of correct outputs in the phase of the weight

string, and therefore removes the need to perform the Quantum Phase Estimation

algorithm. With this circuit the count of correct outputs can be read after training

each dataset entry. This is then able to reduce the depth of the training algorithm

for the Quantum Binary Neural Network greatly. However, the width of the qubit

register grows with the size of the training dataset and can results in a higher number

of qubits when compared to the QPE algorithms. Depending on the problem, or on

the capabilities of the quantum hardware, the increase in width may be more desirable

than the depth of the circuit. Due to the extreme depth that can be seen from these

circuits, the circuit run time and error rates will be much higher with a higher depth.

An improvement was made based on the original circuit design from [1]. This

design is the Improved Quantum Phase Estimation training algorithm and utilized a

shortcut in the Phase Estimation algorithm that was possible due to the nature of

the QBNN training process. Due to the fact that the phase applied to the weight

string is known, the repeated unitary circuits that are part of the QPE algorithm

can be replaced with controlled unitary QBNNs that apply half of the phase for each

successive QPE register qubit. This implementation was able to cut the depth of

the original circuit seen in [1] by at least 50% in most cases. This will allow for the

benefits of a reduced number of qubits, and remove the drawback of a large circuit

depth.

The product of this thesis resulted in two implementations that perform better

than the implementation in [1]. The implementations were tested on small neural

networks as well larger practical circuits. The 2x2 edge detection networks showed
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a practical implementation that utilized a larger circuit than what was found in [1].

While the training of this 4-2-1 neural network provides two weight strings with

100% accuracy, the small dataset does not allow new, unseen data, to be tested on

the model. This means that the accuracy of the network on new data that is not

part of the dataset was not able to be tested. The use of the 3x3 edge detection

neural network utilized an even larger circuit than the 2x2 networks and allowed for

a much larger possible dataset. The 3x3, or 9-3-1 network, was trained using only 16

data points that resulted in 30 possible weight strings that gave 100% accuracy to

the dataset. When testing these weight strings against the complete possible dataset,

it was found that 2 weight strings result in an accuracy of 96.09375%. While this is

still a limited dataset and problem, it shows that the training of the neural network

was successful and the potential for this quantum machine learning method is very

promising. To improve the results of this test, a larger NN could be used as well as

increasing the number of edges in the dataset.

The utilization of these approaches on real quantum hardware would allow for an

accelerated training of globally optimal binary neural network weights compared to

classical training methods. This is because the quantum computer is able to assess

every possible weight string all at once due to the properties of superposition. As

real quantum computers improve in size and reduce noise, the new implementations

designed in this research can be used to train larger problems faster than the training

time of classical training algorithms.

Future work could be done using the designed implemented in this thesis. One

very important direction to research is the implementation of other classical machine

learning methods to be used on this quantum training technique. Some classical topics

that could be adapted to this model is the use of various activation functions. There

may be a way to implement non-threshold activation functions or even new activation

functions that could provide benefit to quantum neural network implementations.
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Another classical machine learning topic that is important for this specific area of

ML are methods to reduce over-fitting in Binary Neural Networks. Various methods

could be adapted to quantum machine learning using the training techniques discussed

in this thesis. Finally, an quantum training method that uses a non-binary neural

network implementation could be developed and tested. This could potentially allow

for other practical models to be implemented in quantum hardware.
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