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Abstract

Distributed-feedback (DFB) lasers support a wide range of applications including fiber-optic

and free-space optical communications, sensing and measurement, military warfare, and

manufacturing and metrology. The desire for a reduction in size, weight, power, and cost

(SWAP-C) for each of these applications continues to aggressively drive integrated- and

silicon-photonic circuit development. Since DFB lasers based on uniform refractive-index

diffraction gratings are naturally dual-mode, a variety of techniques have been introduced

to impose single-mode operation, including the currently ubiquitous λ/4-grating phase-

shift technique. This grating phase shift, however, creates an undesirable peaky-power

profile within the laser cavity resulting in nonlinear behavior ultimately limiting single-mode

operation above threshold.

Seeking to specifically address the limitations associated with λ/4-phase shifted lasers,

this dissertation introduces the following three scientific advancements:

1. Introduces two novel single-mode DFB lasing concepts based on new physical

principles

2. Derives parameterized mathematical models and their closed-form analytic solutions

for each concept

3. Predicts excellent lasing performance at threshold for one lasing concept while avoid-

ing the detrimental issues associated with a peaky-power profile

One of the two single-mode DFB lasing concepts places a passive photonic waveg-

uide in proximity to a uniform-grating DFB lasing structure to form direct-Bragg cou-

pling, exchange-Bragg coupling, and evanescent coupling among the optical modes of the
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ABSTRACT

structure’s two waveguides. Waveguide loss, gain, wavenumbers, and the semiconductor

nonlinearity along with the lasing structure’s coupling coefficients are the fundamental

quantities of the structure. The waveguide-wavenumber detuning is used to position the

exchange-Bragg photonic bandgap (PBG), suppressing the degenerate mode associated with

the active-waveguide direct-Bragg PBG resulting in single-mode lasing.

The second introduced single-mode DFB lasing concept makes use of a negative-index

material (NIM) waveguide placed in proximity to an active positive-index material (PIM)

waveguide. The electric field in the NIM waveguide has a Poynting vector oriented in the

direction opposite to its wave vector and, when evanescently coupled to the PIM waveguide,

yields distributed feedback and an associated PBG without using a diffraction grating.

Unlike the uniform-grating DFB laser, the NIM-PIM laser has a mode spectrum defined by

the difference in waveguide wavenumbers, yielding single-mode operation for waveguides

whose wavenumbers never match.

A set of newly introduced coupled-mode equations (CMEs) whose solutions generate

closed-form parameterized analytical expressions describe each lasing concept and capture

structure behaviors. The fourth-order uniform-grating-based lasing structure CMEs are

solved using a custom developed mathematical method whereas, solutions for the second-

order metamaterial-based lasing structure CMEs are arrived at using traditional eigenvalue-

analysis techniques. For both structures, the coupled-mode equations and derived solutions

are entirely new to the literature.

The uniform-grating based lasing solution predicts a peak gain margin of αL = 1.05

and associated longitudinal power flatness of F = 0.017, surpassing the performance of

the industry-standard λ/4-shifted DFB laser of maximum αL = 0.735 with the associated

longitudinal power flatness of F = 0.215. Moreover, this dissertation predicts that high-

performance single-mode lasing occurs in spite of the introduction of evanescent coupling

and, in some cases, marginal amounts can actually help to improve upon the longitudinal

power flatness. The impact of exchange-Bragg coupling and secondary-lasing mode compe-
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ABSTRACT

tition is also revealed and mitigated. The required dual waveguide geometry of the lasing

structure is compelling for both III-V and heterogeneous III-V-on-silicon devices.

The predicted performance motivates further research of these novel lasing concepts

while the established mathematical models are tools to aid in this future work.
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1. Introduction

1.1 Motivation and Background

1.1.1 Applications & Market

Fiber-Optic Communications

Single-mode distributed feedback (DFB) lasers are the primary light source used in fiber-

optic networks forming the backbone of modern internet communications. These fiber-

optic cables interconnect network data devices and can be as short as a couple meters to

connect adjacent rack-mounted switches to as long as tens of kilometers traversing oceans

or circumnavigating continents [1], [2]. The single-mode laser is included in the transmit

optical sub-assembly (TOSA) of an optical transceiver and, when coupled to a single-mode

fiber, can support commercially available data-rates as high as 400 gigabits per second

(Gbps) on a single wavelength [3]. Multiple laser wavelengths can be supported on a single

optical fiber, further increasing the data capacity for each wavelength added.

Modern semiconductor processes are used to create the features of DFB lasers including

active waveguides, which provide for optical gain, and diffraction gratings, which provide

the required optical feedback [4]–[7]. DFB lasers can be packaged as stand-alone devices or

included directly onto photonic-integrated circuits through micro-packing [8], [9], flip-chip

integration [10], [11], wafer bonding [12]–[14], direct or molecular bonding [15], [16],

backside integration [17], [18], or, recently, using transfer-printing techniques [19]–[21].
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Sensing and Measurement

Touchless measurement techniques determine the time of flight between a light pulse emitted

by a laser and its received reflected power to accurately measure the distance to an objects

surface. These techniques aid in the measurement of surface roughness, film thickness,

defect detection, vibration distortion, and surface topography to accuracy of less than a

nanometer [22]. This time of arrival method forms the basis for light detection and ranging

(LIDAR) systems capable of performing 2D and 3D map generation. LIDAR systems are

not only used as tools for terrestrial mapping and planing but also for precision navigation

and timing (PNT) in automotive and robotic applications where they either augment GPS

based systems or act as an alternate in GPS denied environments [23].

A single mode laser can also be used to detect vibrations, pressure changes, temperature

changes, and other dynamics in mechanical structures when passed through a Bragg fiber.

Periodic diffraction gratings within the optical fiber create reflections along the length of the

fiber. Laser pulses traveling along these Bragg fibers create a pattern of expected reflections

under a baseline condition. As the baseline condition changes, the reflection timing and

spectrum also changes. When correlated to an environmental parameter of interest, these

reflections may provide details about system dynamics. Such fibers are commonly used in

aircraft to determine bend distribution or even rotation along the length of the fuselage and

wings [24].

Military Warfare

Single-mode lasers provide the light source for free-space optical (FSO) communications sys-

tems. FSO is most commonly used in commercial low-earth orbit (LEO) satellite networks

such as Starlink or Kuiper. Lasers are pointed and tracked using a mechanical gimbal system

from one satellite to another creating a network of optical space interconnects. The depart-

ment of defence (DoD) supports highly specialized and classified FSO systems connecting

multiple satellites, aircraft, ground stations, and other transmitter/receivers for command,

2



CHAPTER 1. INTRODUCTION

control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR)

applications [25].

Military targeting solutions rely on lasers to target and mark and adversarial asset with a

pulse coded laser for a tracking munition to lock and destroy. Laser targeted bombs (LTBs)

and other precision-guided munitions are accurate to areas less than five meters due to the

point precision nature of these targeting systems [26]. Laser-illumination devices are used in

concert with night-vision goggles to illuminate a target area for improved optical stand-off.

A illumination laser, operating at a wavelength which is not visible to the human eye but

is detectable by highly sensitive night-vision equipment, can be used to scan and light up

areas without combative forces being aware. These same laser wavelengths are used in

military-grade precision-targeting range-finding equipment to calculate the distance to an

adversarial target for accurate positioning of ballistic and mortar fire.

Silicon Photonics

Silicon photonics, the integrated-photonic circuit development process using a traditional

CMOS manufacturing processes and materials, has continued to demonstrate significant

promise for complicated and compact photonic solutions. Because these integrated-photonic

circuits are based off well-understood silicon-based process-design kits and manufacturing

tools, they provide promise for a reduction in size, weight, power, and cost of final product

offerings through wafer-level production and CMOS co-integration [27]. The primary

limiter for large scale silicon-photonic adoption remains to be the complexity, cost, and

yield associated with laser integration. As silicon is an indirect-bandgap material and is not

capable of optical gain, integration of external light sources or heterogeneous integration,

that is III-V on silicon based approaches, need to be considered [28]. Each embedment

option still faces many challenges, remain at a low technology-readiness level (TRL), and

are not suitable for high-volume commercial production where economic scale can be fully

realized [29], [30].
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The market demand for high-quality single-mode lasers and the need for effective

embedment of these light sources drives research in novel lasing structures, materials, and

manufacturing processes. Characterizing the fundamental behaviors of a lasing structure

under variable quantities is paramount to the success of a structure’s performance and,

ultimately, its integration. As the demand for on-chip lasers continues to increase, novel

lasing structures which compliment established manufacturing processes and seek to address

integration and performance limitations will become attractive to the industry.

1.1.2 Modeling

Fundamental physics and mathematical models provide for a conceptual understanding

of new lasing structures and present a foundation from which basic requirements can

be derived. Proper physical models result in parameterized closed-form mathematical

solutions describing lasing behaviors through relevant and controllable quantities. Such

models and solutions can predict and optimize electromagnetic fields, longitudinal power

profiles, lasing conditions, and other important at-threshold or above-threshold behaviors

using a parameter-driven analysis which directly correlates to structure quantities. These

closed-form mathematical models present lasing behaviors in a compact language which is

accessible for both direct and clear understanding.

Finite-difference time domain (FDTD) modeling, experimental methods, and system

integration should ideally all be built upon a closed-form predictive analytical model rooting

results in the structure physics. Executing higher-level simulation or prototyping before a

mathematical model is developed and understood can result in an open-loop iterative devel-

opment process not grounded in expectation. Developing and maintaining a mathematical

model will ultimately accelerate the adoption of new lasing structures for standalone and

integrated-photonic applications.

In recent years, finite-difference time domain (FDTD) simulation methods have become

more prevalent due to increased compute capability and robust, accessible, commercially-
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available software-modeling applications [31]. These methods have proven to be very

powerful and yield meaningful empirical results, even for highly complicated photonic

structures. The widespread use of FDTD simulation methods and their ability to allow for

rapid digital prototyping has dominated publications over the past couple decades [31]–[33],

making the more rigours closed-form modeling based approaches, such as coupled-mode

equations (CMEs), fewer and further between. As powerful as modern FDTD simulation

methods are, they do not provide for a deep parameter-based physical understanding of

novel structures and, instead, rely on iterative design methodologies which tend to abstract

results from the underlying mathematical physical principles.

1.1.3 DFB Lasing

Many seminal works in DFB lasers utilize CMEs to mathematically model optical-mode in-

teractions, ultimately generating the structure’s electric-field expressions [4], [5], [34]. These

field expressions allow for the development of longitudinal-power profiles, transmittivity and

reflectivity expressions, lasing-threshold calculations, single-mode operation expectations,

and nonlinear semiconductor-gain-based behaviors such as spatial-hole burning [35].

The pioneering work on DFB lasers use a uniform grating reflector to generate direct-

Bragg coupling between the forward and backward modes of an adjacent active waveguide

as schematically captured in Fig. 1.1(a) [4]. The active waveguide provides for optical gain

while the coupled diffraction grating produces the required optical feedback. CMEs were

used to characterize the structure and ultimately predict lasing behaviors on either side of a

photonic bandgap (PBG).

The quantity of gain margin at threshold is proportional to the difference between the

gain values of the two lowest-order lasing modes. Gain margin is used as a predictor of

side-mode suppression ratio (SMSR) [35]. As the uniform-grating DFB lasing structure

has two symmetric lasing modes for one value of threshold gain, as seen in Fig. 1.1(b) for

various values of normalized direct-Bragg coupling coefficient κaL, the gain margin is zero.
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Figure 1.1 The uniform-grating distributed feedback (DFB) laser structure and mode spec-
trum demonstrating the mode degeneracy. (a) Adding an active region to the grating
reflector provides for optical gain and, with the feedback provided by the diffraction grating,
forms a DFB laser. (b) The mode spectrum of a uniform-grating DFB laser demonstrating
degeneracy due to the symmetric pairs of modes on either side of the photonic bandgap.
For a given normalized coupling κaL, the structure will seek to lase at two points on either
side of the photonic bandgap when operated at its gain threshold. The dashed lines indicate
the constant-coupling curves connecting across multiple lasing modes.

1.1.4 Methods of Single-Mode DFB Lasing

As high gain margin is desired for stable single-mode performance [36], and the seminal

work on semiconductor DFB lasers demonstrate lasing but result in degenerate lasing modes

[4], a λ/4-phase shift was introduced into the center of the diffraction grating resulting in

single-mode operation with moderately high gain margin, as shown in Fig. 1.2(a) [5]. The
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Figure 1.2 The λ/4-shifted grating distributed feedback (DFB) lasing structure and associ-
ated mode spectrum. (a) Including a λ/4-shift in the center of the diffraction grating breaks
the mode degeneracy resulting in single-mode lasing. (b) Unlike the uniform diffraction
grating, the λ/4-shifted DFB laser has a single mode centered at the normalized waveguide
detuning ∆βaL = 0.

associated mode spectrum reveals a single mode at the center of the waveguide detuning

∆βaL = 0, as seen in Fig. 1.2(b). Unlike the uniform-grating DFB laser, this structure

demonstrates gain margin between its fundamental mode and the first degenerate mode.

Gain margin changes as κaL increases and depends upon the relationship between the

fundamental lasing mode and the next closest lasing mode for a given κaL value. The gain

margin for the λ/4-shifted DFB laser is shown in Fig. 1.3 and demonstrates a peak gain

margin of ∆αL = 0.735 at a normalized direct-Bragg coupling of κaL = 2.2.
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Figure 1.3 The gain margin ∆αL for the λ/4-shifted DFB laser as a function of the normal-
ized direct-Bragg coupling coefficient κaL. A peak gain margin of ∆αL = 0.735 occurs a
κaL = 2.2.

The nonmonotonic nature of gain margin can be seen by tracing the mode-spectrum plot

across various values of κaL. As the direct-Bragg coupling increases from smaller values up

to the value of κaL = 2.2, the separation from the fundamental mode to the first degenerate

mode increases as seen by the yellow and orange dotted lines of Fig. 1.2(b). As coupling

continues to increase, the degenerate modes enter compression, as seen by the blue dotted

line, causing gain margin to decline.

1.1.5 Issues with λ /4-Shifted DFB Lasing

Though single-mode lasing was achieved, industry-standard lasing devices based on a

λ/4-shift exhibit power peaks in the active region of the waveguide centered at the diffrac-

tion grating phase-shift [34]. These peaky-power profiles, as shown by the blue curve in

Fig. 1.4(a) for the λ/4-shifted DFB lasing structure, result in spatial-hole burning of gain

along the length of the laser cavity.

The Henry’s αH nonlinearity, also known as the linewidth enhancement factor, quantifies

a gain-dependent phase shift due to carrier injection in the active waveguide region due to a

change in refractive index [37]. Peaky power within the active region, and its associated

8



CHAPTER 1. INTRODUCTION

spatial-hole burning effect, results in a localized change in refractive index [35]. This

localized change alters the λ/4-phase shift, thereby worsening gain margin.

A single value to represent the longitudinal power flatness F , when paired with gain

margin ∆αL, provides for a set of metrics to predict and optimize for expected above-

threshold lasing stability and performance. Laser cavity designs seek to minimize on flatness

while maximizing on gain margin. For the traditional λ/4-shifted DFB laser, flatness is

typically specified to be less than F = 0.05 to maintain good single-mode performance

above gain threshold [38], [39]. The minimum flatness of the λ/4-shifted laser is F = 0.012

but does not correspond to the peak gain margin and instead has a lower ∆αL = 0.68.

The importance of gain margin as a predictor of above-threshold performance is well

documented in the literature [36]; maximizing gain margin at threshold provides for a buffer

of single-mode operation as laser power output increases. Nonlinear effects in the active

region due to spatial-hole burning impact laser stability and the side-mode suppression ratio

(SMSR) as long as Henry’s alpha αH remains non-zero. Active regions have non-zero values

of Henry’s alpha αH ∼ 1.5 for quantum well based regions, though highly dependent on

wavelength and well width [40], [41], and on the order of αH ∼ 5 for bulk III-V materials

[42]. Though recent work in quantum dots has predicted a near-zero-valued αH , such

materials continue to be relegated to academic research and appear to be several years away

from commercial foundry integration.

Areas of high power can cause catastrophic laser failure if longitudinal power peaks

coincide with dislocations or defects within the active region resulting in localized heating

and, in worst case, cavity burnout [43]. Though mitigated though mature material processing

in monolithic standalone devices, heterogeneous silicon-photonic lasers integration based on

epitaxial growth or molecular bonding can result in threading dislocations which propagate

through the active region due to a lattice mismatch between the silicon and III-V material

boundaries [44]. Vertical and horizontal aspect ratio trapping (ART) and nano-ridge engi-

neering seek to minimize on these defects but continue to remain an active and nascent area
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Figure 1.4 Longitudinal power profiles and gain margin for three DFB lasers with different
phase-shift elements. (a) The longitudinal power profile of the λ/4-shifted DFB laser has
a peaky power profile centered on the phase-shift region. Including additional phase-shift
elements reduces the peaky profile. (b) The gain margin for the λ/4-shifted DFB peaks at
∆αL = 0.735 for a single π/2 element and declines dramatically as additional elements are
included. The normalized direct-Bragg coupling is κaL = 2.2 for all cases shown.

of research [45], [46]. Minimizing on flatness within the laser cavity reduces the peak power

and lowers the likelihood of critical failure due to cavity burnout.
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1.1.6 Attempted Fixes

Additional phase elements and other variations in diffraction-grating geometries were stud-

ied, intent on flattening the power profile and, thereby, maintaining single-mode performance

as gain increased above its threshold value. These structures improve on power flatness

as shown by the red and yellow curves of Fig. 1.4(a) for the inclusion of two and three

grating phase shifts respectively. The flatness values of each power profile for κaL = 2.2

are included in Fig. 1.4(a) and the degenerate uniform-grating DFB laser power profile is

shown in black for reference.

An unfortunate trade of adding the additional phase-shift elements is a reduction in peak

gain margin and an increase in diffraction-grating complexity [34]. The maximum gain

margin occurs for a single phase shift in the diffraction grating. As additional elements are

included gain margin dramatically drops as seen in Fig. 1.4(b). The blue and yellow curves

with Nsh = 1 and Nsh = 3 are the gain margins across element phase shift value for a DFB

laser with κaL = 2.2.

Additional grating phase shifts [36], [38], longitudinal variation in coupling strength

[47], [48], spreading of the required phase shift through corrugation pitch modulation

(CPM) [34], [49], and longitudinal variations in wavenumber detuning using traditional

or machine-learning based methods to generate optimal complex grating structures [36],

[39], were all considered to improve on the power flatness. Though each proposed solution

improved upon flatness, they all did so at the expense of a reduction in gain margin and an

increase in diffraction-grating complexity. The λ/4-phase shifted DFB lasers form the bulk

of commercially available semiconductor-based solutions whether for stand-alone devices

or those embedded in integrated- or silicon-photonic circuit offerings and, as such, all suffer

from these limitations.
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Figure 1.5 The first novel single-mode lasing structure. A uniform diffraction grating is
sandwiched between a waveguide A having an active region and a passive waveguide B.
Single-mode behavior is derived from direct-Bragg coupling providing the optical feedback
and exchange-Bragg coupling working to suppress the degenerate mode.

1.2 Overview of Dissertation

1.2.1 Single-Mode DFB Lasing using Photonic-Bandgap

Alignment

This dissertation models and explores two novel single-mode lasing structures using coupled

dissimilar waveguides. The first structure is comprised of an active waveguide coupled

to a uniform diffraction grating coupled to a passive waveguide as shown in Fig. 1.5. In

this structure, direct-Bragg coupling provides for optical feedback while exchange-Bragg

coupling provides for degenerate mode suppression presenting an entirely new method for

achieving single-mode distributed-feedback lasing using photonic bandgaps (PBGs). This

structure eliminates the λ/4-phase shift introduced into the diffraction grating of legacy

DFB lasers and, therefore, avoids the associated peaky power profile and its nonlinear

effects.

Waveguide A contains the active region for lasing, and therefore direct-Bragg coupling

within A is expected to exhibit strong, degenerate resonances on either side of its PBG.

Through the proper selection of waveguide wavenumber detuning, these degenerate modes

are suppressed by aligning the exchange-Bragg PBGχ and the passive waveguide B direct-
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Bragg PBGb on top of the undesired resonance, resulting in single-mode lasing. By using a

uniform grating, the λ/4-phase shift, spatial chirp, and other non-uniformities, as well as

the exacerbated nonlinear spatial-hole burning problem are each avoided.

Coupled-mode equations (CMEs) are introduced that include gain and the associated

nonlinearity of the active region to solve for the key lasing characteristics of gain threshold,

gain margin, and longitudinal power flatness [50]. Furthermore, the impact of exchange-

Bragg-coupling strength as well as evanescent-coupling strength is considered in the lasing

model. Using an at-threshold analysis, closed-form analytic solutions are formed at lasing

threshold for this dual-waveguide, four-port structure revealing a high normalized gain

margin accompanied by a low power flatness along the active region, outperforming the

λ/4-shifted DFB laser structure.

The closed-form mathematical models for the new single-mode lasing structure are

developed, behaviors presented, and performance optimized. The developed model is used

to characterize and predict lasing behaviors using quantities such as waveguide detuning,

coupling strength, gain, loss, and the Henry’s αH nonlinearity. Optimizing desired behaviors,

such as gain margin and longitudinal power flatness, is accomplished using minimization

techniques across the model quantities. A physical understanding of why specific quantities

results in optimal behaviors becomes apparent when the mathematical model for the structure

is dissected.

This single-mode lasing mechanism is compelling for both standalone III/V and hetero-

geneous III/V-on-silicon platforms.

1.2.2 Single-Mode DFB Lasing using a Coupled NIM Waveguide

The second of the two novel structures presented in this dissertation models an active waveg-

uide coupled to a negative-index material (NIM) waveguide to provide optical feedback

without using a diffraction grating. Here, single-mode behavior is predicted through inten-

tional design of waveguide wavenumber detuning between the active positive-index material

13
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(PIM) waveguide and the NIM waveguides. Unlike Bragg based DFB lasers, where the

waveguide wavenumber detuning is relative to a fixed Bragg wavelength, detuning for the

PIM-NIM lasing structure is based on the difference between each waveguides dispersion

characteristics. By ensuring detuning is always positive or always negative one of the

degenerate modes can be avoided resulting in single-mode lasing behavior.

A new method for achieving DFB has been recently proposed and modeled based on the

evanescent coupling of PIM waveguide to a NIM waveguide [51]–[53]. Metamaterials offer

remarkable electrodynamic behavior stemming from a negative refractive index [54]; despite

having a negative refractive index, a NIM sandwiched between PIM has been predicted

to support the propagation of a transverse optical mode [55]–[57]. Notably, the Poynting

vector of an optical field traveling through a NIM waveguide can have the opposite direction

as the associated wave vector [53], [55]. Such a NIM waveguide, when evanescently

coupled to PIM waveguide, creates a distributed coupling region where power flows in either

longitudinal direction [51].

Figure 1.6 The second novel lasing structure. A schematic of the PIM-NIM DFB laser,
where the active region of a PIM waveguide A is evanescently coupled to a lossy NIM
waveguide B over length L. The (white) cladding regions surrounding the waveguides are
PIM. The counter-directional nature of the Poynting vectors in either waveguide results in
distributed feedback, resonant optical gain, and, ultimately, lasing.

The inclusion of optical gain to PIM waveguide over the length of the coupling region L

generates the proposed active PIM-NIM lasing structure shown in Fig. 1.6. To study this

active structure, the PIM-NIM coupled-mode equations are expanded to include gain for

the PIM waveguide and loss for the NIM waveguide. This model predicts the occurrence of
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lasing with unique dependencies on waveguide parameters not found in traditional active

DFB structures.

Closed-form mathematical models for the new single-mode PIM-NIM lasing structure

are developed and behaviors presented. The developed model is used to characterize and

predict lasing behaviors using quantities such as waveguide detuning, coupling strength,

gain, and loss. A transcendental lasing condition is derived which supports the prediction of

the lasing structures threshold gain and its at-threshold mode spectrum.

1.2.3 Methodologies: Research Design & Strategy of Inquiry

This dissertation focuses on coupled-mode theory to derive the physical relationships

between the modes of the novel lasing structures. Presented mathematical solutions provide

closed-form expressions for electric-fields, longitudinal power profiles, transmittivity, lasing

thresholds, gain-margin, and power flatness for at-threshold analysis. An entirely new

solution method is developed and presented which solves for the fourth-order CMEs of

the active-passive uniform grating coupled structure. Each solution exposes new lasing

behaviors for both structures and provides design requirements for future work.

1.2.4 Outline

This dissertation dedicates Chapter 2 to fundamental mathematics of coupled-mode theory.

Coupled-mode theory is presented and each constituent quantity of the general formulation

is discussed. The theory is used to develop models for the well-understood directional

coupler, grating reflector, and DFB laser. Two independent coupled-mode equation solution

processes are showcased in the development of the electric-field expressions for the direc-

tional coupler and the grating reflector; both processes are used in the later chapters of this

work. The concepts for complex detuning, mode spectrum, gain-margin, and power flatness

are introduced using the DFB laser.

Chapter 3 presents the first novel lasing structure based on an active waveguide coupled to
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a uniform diffraction grating coupled to a passive waveguide. Coupled-mode equations and

coupling coefficients are defined and the electric-field, longitudinal power, and transmittivity

expressions are derived. The new solution process developed explicitly to solve these fourth-

order coupled differential equations is first executed for the three-coupling case, where

evanescent coupling is neglected, and then executed for the more complicated and inclusive

four-coupling case which includes all Bragg-based coupling as well as evanescent coupling.

Chapter 4 uses the expressions developed in Chapter 3 to understand and optimize on

lasing behavior for the structure while accounting for the semiconductor non-linearity in the

lasing model. The exchange-Bragg photonic bandgap is aligned and shown to suppress the

degenerate mode resulting in single-mode lasing behavior. It is a primary objective for the

presented lasing structures to maintain a highly flat longitudinal power profile and, thereby,

minimizing the spatial-hole burning nonlinear impacts. The presented mathematical models

predict and optimize the structure quantities of gain margin and longitudinal power flatness.

The lasing-mode spectrum is presented and gain margin is then demonstrated which exceeds

that of the industry standard λ/4-shifted DFB laser. Furthermore, the parameterized model

demonstrates extremely low longitudinal power flatness again outperforming the λ/4-shifted

DFB laser. Further characterization of lasing behaviors is provided over changes exchange-

Bragg coupling strength κχ and evanescent coupling strength κe. This lasing structure

demonstrates highly compelling at-threshold results and is applicable for silicon-photonic or

integrated-photonic platforms and integration.

Chapter 5 presents CMEs and solutions for the second novel lasing structure, one based

on the evanescent coupling between an active positive-index material (PIM) waveguide

and a passive negative index material (NIM) waveguide. Solutions presented are shown

to be remarkably similar to the traditional uniform-grating DFB laser, however, achieve

feedback without the use of a diffraction grating. Eigenvalues and the associated photonic

bandgap expression introduce a round-trip gain and a disparity from transparency not seen

in grating-based DFB lasers.
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Chapter 6 examines the behaviors of the PIM-NIM lasing structure and provides mo-

tivation for single-mode operation. It is shown that through the insightful design of the

PIM-NIM’s dispersion relationship over the gain bandwidth of the PIM’s active region, the

detuning between the waveguides can be made always positive or always negative, resulting

in single-mode operation.

Chapter 7 concludes the dissertation, presenting potential future work and summarizing

the main contributions of the research.
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2. Basic Theory

2.1 Introduction

Coupled-mode theory and the associated differential coupled-mode equations (CMEs) are

well established in the photonics and laser research communities. They have been employed

in various passive structures such as directional couplers [58]–[60], narrow-band reflectors

[61], [62], filters [63], [64], and add-drop multiplexers [65]. CMEs have been used to develop

the mathematical models and predict the associated behaviors of active devices including

distributed feedback (DFB) lasers [4], [5], [35], [66], [67]. These works demonstrate that

CMEs provide for relevant and appropriate models to understand photonic structures and, in

particular, lasing behaviors.

Unlike finite-difference time-domain methods (FDTD) and finite-element methods

(FEM), which approximate behaviors by breaking a structure into many small parts and

solving numerically for localized electric-fields or other quantities, CMEs seek to derive

parameterized solutions of a structure in a more global fashion. Though the closed-form

parameterized solutions typically limit CMEs to fundamental devices of one to several

perturbations and modes, they provided for unparalleled physical insight into structure

behavior. Devices such as differential couplers or traditional distributed feedback lasers are

modeled with two coupled modes and result in a second-order differential equation which

can be solved in closed-form using quadratic methods [4], [5], [62], [68].

In this chapter, the mathematical foundation for coupled-mode theory, coupled-mode
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Figure 2.1 The unperturbed waveguide A and its associated modes form the well-
understood baseline for perturbation theory. The waveguide has a permittivity of εcore

and is surrounded by cladding material of permittivity εclad. The forward-traveling longi-
tudinal mode a+(z), shown as the arrow, has a transverse mode profile e+a (x,y), shown
symbolically with the blue curve. The structure is of length L.

equations, coupling coefficients, and wavenumber detuning will be introduced. The grating

coupler, the distributed feedback laser, the contra-directional coupler, and the directional

coupler will each be developed and examined using coupled-mode theory. For the grating

coupler, electric-field solutions are found using an ansatz-based approach, while for the

directional coupler, an eigenvalue-based approach is taken to isolate electric-field solutions.

These two mathematical methods are presented deliberately so as to showcase both the

underlying coupled-mode theory as well as the basics of the solutions processes which will

be used in this work.

As a matter of notation, vectors and vector fields are presented in bold font though out

this work. The longitudinal direction of propagation will be ẑ and the transverse directions

will be x̂ and ŷ. All quantities which are marked with a ˜ are assumed to be complex valued.

2.2 Coupled-Mode Theory

2.2.1 Geometry

Coupled-mode theory presents a mathematical model describing the change in a guided

mode’s electromagnetic-field envelope when subject to a perturbation in the local refractive

index [68]. The guided mode is typically given as an optical mode longitudinally propagating

along a section of waveguide with the longitudinal direction of propagation given by z. The
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forward-propagating unperturbed mode a+(z) has a transverse electric-field profile e+a (x,y)

which is a function of the core permittivity, cladding permittivity, and the physical waveguide

geometry as shown in Fig. 2.1. This structure and its associated mode provide a reference

by which more complicated structures are modeled.

Coupled-mode theory seeks to mathematically model the modes of a new perturbed

structure as created through the introduction of permittivity changes and new guided modes

to the original well-understood unperturbed geometry. Two examples of such perturbations

are shown in Fig. 2.2. The first example couples a uniform diffraction grating, built on a

material with permittivity ε3, to the original waveguide. The second example introduces

an adjacent waveguide B made of a permittivity εcore2 which has its own guided mode

b+(z). In both cases, coupled-mode theory seeks to model and understand the modal power

transfer which occurs along the length of the perturbed structure. A detailed mathematical

formulation of each of these two structures will be presented in the sections below.

2.2.2 Lorentz Reciprocity Theorem

This dissertation uses the sign convention of e−iωt , such that the electric and magnetic fields

are given by E(x,y,z, t) = e(x,y)e−iωt+iβ z and H(x,y,z, t) = h(x,y)e−iωt+iβ z. Note that the

only z dependence of E and H is in the phase term and not in the amplitude term. In this

sense, the expressions represent the eigenmodes of the unperturbed waveguides. Ignoring

the time component and focusing on the longitudinal direction of propagation z, the basic

field expressions become:

Ep(x,y,z) = ep(x,y)eiβpz (2.1a)

Hp(x,y,z) = hp(x,y)eiβpz, (2.1b)

where p is the propagation mode index and βp = sgn(p) 2πn/λ0 is the modal wavenumber,

n is the modal refractive index of the waveguide, and λ0 is the free-space wavelength.
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Figure 2.2 Two examples of perturbations introduced to the original unperturbed geometry.
(a) A uniform diffraction grating with permittivity ε3 working to couple power back into mode
a−(z). (b) A second adjacent waveguide with permittivity εcore2 and its associated mode
b+(z). In both cases, the transverse mode profile associated with the unperturbed region
overlaps with the second transverse mode in the region of perturbation. This modal overlap
will define the coupling coefficient capturing the power transfer capability between the two
modes.

The expression sgn(p) = + for p > 0, where p ∈ Z, implying βp > 0, corresponding to

forward-propagating waves. Moreover, sgn(p) = − for p < 0, where p ∈ Z, implying

βp < 0, corresponding to backward-propagating waves and, thus, β−p =−βp.

Coupled-mode equations represent the perturbed system as a linear combination of

the unperturbed modes. It is assumed that the modes are and remain orthogonal when

under the introduction of the perturbation. This assumption provides for a reasonable first-

order approximation such that physical behaviors can be well understood even if the exact

calculated values are only approximate. Fields of the unperturbed system will be noted as E

and H and fields of the perturbed system are noted with an apostrophe as E′ and H′.
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The Maxwell-Heaviside curl equations for the unperturbed system are written as

∇×E =−iωµH, (2.2a)

∇×H = iωεE, (2.2b)

and for the perturbed system are written as

∇×E′ =−iωµH′, (2.3a)

∇×H′ = iωε
′E′, (2.3b)

where ε ′ is the permittivity of the introduced perturbation. The permeability is assumed to

be that of free space µ(x,y,z) = µ0 in both the unperturbed and perturbed spaces.

The dot product of the conjugate (∗) of each unperturbed field and the opposite curl

equation for the perturbed field in Eq. (2.3) provides:

E∗ · (∇×H′) = iωε
′E∗ ·E′, (2.4a)

H∗ · (∇×E′) =−iωµH∗ ·H′. (2.4b)

Similarly, the dot product of each perturbed field can be taken with the conjugate of the

opposite curl equation of the unperturbed field is Eq. (2.2) to arrive at:

E′ · (∇×H∗) = iωε
′E′ ·E∗, (2.5a)

H′ · (∇×E∗) =−iωµH′ ·H∗. (2.5b)

The equations above can be combined as (2.4a) − (2.4b) + (2.5a) − (2.5b) and, with the

use of the vector calculus cross-product identity

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A, (2.6)
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and some simplification, produces the expression

∇ ·
(
E∗×H′+E′×H∗)=−iω(ε ′− ε)E∗ ·E ′. (2.7)

The volume integral of the above expression along the unperturbed waveguide after applica-

tion of Gauss’s law and further manipulation, ultimately generates the relationship

∫∫
Ξ

∂

∂ z

(
E∗

t ×H′
t +E′

t ×H∗
t
)
· ẑ dΞ =−iω

∫∫
Ξ

(
ε
′− ε

)
E′ ·E∗ dΞ. (2.8)

where Et and Ht are the transverse field components of the electric and magnetic fields

respectively and Ξ is the surface surrounding the volume of integration. The variable

ε ′(x,y,z) represents the permittivity of the perturbation and can be arbitrarily complicated.

The field components in the x̂ and ŷ directions do not contribute to the integral expression

as they are evanescent and become zero valued infinitely far away from the waveguide. As

the vector cross product produces a resultant vector which is orthogonal to the constituent

input vectors, only the transverse mode components Et , Ht , E∗
t and H∗

t contribute to the

surface integral along the ẑ direction of Eq. (2.8). This expression is known as the Lorentz

reciprocity theorem and provide the foundation from which the coupled-mode equations,

used throughout this document, are based.

2.2.3 Mode Kernels

By examining the condition where both the perturbed and unperturbed geometries are

identical, that is ε ′(x,y,z) = ε , the Lorentz reciprocity theorem can be reduced to:

∫∫
Ξ

∂

∂ z

(
E∗

t ×H′
t +E′

t ×H∗
t
)
· ẑdΞ = 0. (2.9)

Substituting back in the expressions for both the electric and magnetic field of the unper-

turbed modes indexed by r, and the perturbed modes indexed by s, as shown in Eq. (2.1),
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and reducing results in two expressions; one for forward-traveling modes (s > 0):

(βr −βs)
∫∫

Ξ

(E∗
rt ×Hst +Est ×H∗

rt) · ẑdΞ = 0, (2.10)

and one for reverse-traveling modes (s < 0):

(βr +βs)
∫∫

Ξ

(−E∗
rt ×Hst +Est ×H∗

rt) · ẑdΞ = 0, (2.11)

where Et and Ht represent any viable transverse mode-profile pair indexed by either r or s.

The above expressions are valid under two conditions. The first condition occurs where

r ̸= s and βr ̸= βs; the integral itself must then resolve to zero. The sum of the forward and

reverse-traveling wave equations under this condition becomes:

∫∫
Ξ

(Est ×H∗
rt) · ẑdΞ = 0. (2.12)

The second condition occurs when either r = s or r =−s and the integral can be non-zero

as βr = β±s =±βs. The expression in the integral for both forward and reverse traveling

waves under this condition reduces to the Poynting vector S and denotes the optical modes

power P. The sgn(S) is present to ensure that the power is a positive result as the Poynting

vector S will result in a negative value for backwards-traveling power. The expression of

Eq. (2.12) then becomes

ℜ

[∫∫
Ξ

(Ert ×H∗
rt) · ẑdΞ

]
= 2P sgn(S), (2.13)

where ℜ denotes the real portion of the result. From this expression, any mode r is orthogonal

to any other mode s when r ̸= s and, only when r = s, is power produced.
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The transverse modes are each normalized by
√

2P yielding

ert =
Ert√
2P

, (2.14a)

hrt =
Hrt√

2P
, (2.14b)

such that,

ℜ

[∫∫
Ξ

(ert ×h∗
rt) · ẑdΞ

]
= sgn(S), (2.15)

where ert and hrt are the normalized transverse electric- and magnetic-field components of

the rth modes. This is the necessary and sufficient condition to form a basis set spanning the

signal space defined by the unperturbed mode fields. Each supported normalized mode can

be considered as a mode-kernel function to form solutions for a perturbed system under the

approximation that an introduced perturbation does not alter the original unperturbed mode.

2.2.4 Coupled-Mode Equations

For each mode indexed by r, a complex function ar(z) is found which adjusts both the power

and phase of perturbed mode along the longitudinal position z:

E′(x,y,z)

H′(x,y,z)

= ∑
r

ar(z)

er(x,y)

hr(x,y)

eiβrz. (2.16)

Taking advantage of the orthogonality relationship and returning to the Lorentz reci-

procity theorem in Eq. (2.8) under the condition where now ε ′(x,y,z) represents the per-

turbed system, it can be found that the modal field envelopes are described by the family of

coupled-mode differential equations:

dar(z)
dz

= isgn(S)∑
s

as(z)e−i2∆βrsz κsr, (2.17)
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where ∆βrs = (βr − βs)/2, sgn(S) is the sign of the receive mode power flow as shown

in Eq. (2.15), and κsr, defined further in the section below, are the coupling coefficients

between sending and receiving modes.

The detuning parameter ∆βrs captures the difference between wavenumbers of the

“receive” mode r to the wavenumber of the “send” mode s. When solved, each value of ar(z)

will express the slow-moving envelope for the rth mode in the perturbed system [68] as

E′
r(z) = ar(z)ei∆βrsz er(x,y)eiβ̄ z, (2.18a)

H′
r(z) = ar(z)ei∆βrsz hr(x,y)eiβ̄ z, (2.18b)

where β̄ = (βr +βs)/2.

Summing across all modes r provides for the composite electromagnetic field of the

perturbed structure as:

E′(x,y,z)

H′(x,y,z)

= ∑
r

E′
r(x,y)

H′
r(x,y)

= ∑
r

ar(z)ei∆βrsz

er(x,y)

hr(x,y)

eiβ̄ z. (2.19)

The slow moving envelope expression on the right-hand side is in a rotated frame and can

be captured by defining the quantity

â(z) = a(z)ei∆βrsz. (2.20)

Using this rotated-frame form leads to linear variants of the coupled-mode equations in

Eq. (2.16), as will be seen in later sections.

2.3 Coupling Coefficients

Each coupling coefficient κsr is defined by a transverse-mode-overlap integral of a normal-

ized power-sending mode profile es(x,y) and a normalized power-receiving mode profile
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er(x,y), as [68]

κsr =
ωε0

2

∞∫
−∞

∞∫
−∞

∆ε̄(x,y)es(x,y) · e∗r (x,y) dy dx, (2.21)

where es(x,y) and er(x,y) are the normalized transverse electric-field components of the

sending and receiving modes with scalar amplitudes of es(x,y) and er(x,y) respectively,

∆ε̄(x,y) = ε̄ ′(x,y)− ε̄(x,y) is change in relative permittivity of the perturbation region

relative to the unperturbed region, ε̄ ′ = ε ′/ε0 is the relative permittivity of the perturbed

region, ε̄ = ε/ε0 is the relative permittivity of the unperturbed region, ε0 is the permittivity

of free-space, ω the angular frequency, and ∗ denotes the complex conjugate. If the

transverse modes es(x,y) and er(x,y) occupy the same waveguide and experience the same

perturbations then their mode profiles are the same whether traveling in the + or − z

direction.

Coupling coefficients capture the field coupling between a sending and receiving mode

and may be estimated using Eq. (2.21). Though the definitions of coupling coefficients are

provided, all coupling values are treated phenomenologically throughout this dissertation

and their mode-overlap integrals are not explicitly calculated. Presented coupling-coefficient

values are considered as design requirements for future experimental or fabrication efforts.

Furthermore, the approximation is made that the unperturbed modes match the actual mode

profiles and are orthogonal. These approximations have allowed for insightful modeling of

passive and active structures having evanescent, direct-Bragg, and exchange-Bragg coupling

[4], [5], [35], [58]–[66].

2.4 Wavenumbers & Detunings

The wavenumber, given as βp in Eq. (2.1), is associated with either a receiving or sending

mode in the coupled-mode equations and is denoted as

β(r,s) = sgn(Sr,Ss)
2πn
λ0

, (2.22)
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where r or s indicates a receiving or sending mode, n is the effective refractive index of the

waveguide associated with the mode, and λ0 is the free-space wavelength.

The coupled-mode equations in Eq. (2.17) contain a real-valued wavenumber detuning

in the exponent defined as

∆βrs = (βr −βs)/2. (2.23)

Loss in a waveguide is accounted for by introducing an imaginary component to the

wavenumber as

β̃(r,s) = β(r,s)+ iα/2, (2.24)

where α is the power loss coefficient of the waveguide and ˜ indicates a complex-valued

wavenumber. Wavenumbers for active waveguides, that is waveguides with optical gain, can

similarly be written as

β̃(r,s) = β(r,s)− ig/2, (2.25)

where g is the power gain coefficient.

In semiconductor media, the increase in carrier density within the active region drives

an increase in optical gain and an undesired decrease in the waveguides refractive index.

The rate of change in refractive index as gain increases is accounted for in the complex

wavenumber by including a constant gain multiplier (1−αH ) where αH is Henry’s alpha, also

referred to as the linewidth enhancement factor [37]. A complex waveguide wavenumber

which considers Henry’s alpha is given by

β̃(r,s) = β(r,s)− ig(1− iαH )/2, (2.26a)

= β(r,s)−gαH/2− ig/2. (2.26b)

When expanding out the gain phase relationships as above, the impact on detuning becomes

apparent; as gain increases the injected carriers work to shift the waveguide wavenumber.
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Figure 2.3 A grating reflector of length L demonstrating direct-Bragg coupling (symbolically
represented by the blue arrow) between a forward-traveling mode a+ in the A waveguide to
a backward-traveling mode a− also in the A waveguide.

2.5 Grating Reflector & Direct-Bragg Coupling

2.5.1 Theory

Grating reflectors couple an optical waveguide with a diffraction grating to selectively

reflect wavelengths at the center of the grating’s bandgap while passing other wavelengths

through the structure [61]. Grating reflectors form the primary structural component found

in passive devices such as optical filters [69], [70], frequency selective couplers [59], [60],

[71], channel-dropping filters [62]–[64], distributed feedback lasers [4], [5], [35], [38].

A schematic for a grating reflector is shown in Fig. 2.3 where direct-Bragg coupling

is formed between the forward-traveling mode a+(z) and backward-traveling mode a−(z)

shown symbolically as the blue arrow. The diffraction grating has a grating period of Λ

establishing the Bragg wavelength βΛ = π/Λ as described in the sections above.

The Electric Field

The electric field expression for the grating-reflector shown in Fig. 2.3 is written as:

E(x,y,z) = a+(z)ea(x,y)e+iβpz +a−(z)ea(x,y)e+iβ−pz, (2.27)
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where a±(z) are the longitudinal field envelopes, ea(x,y) are the normalized transverse mode

profiles, βp is the wavenumber of the forward-traveling mode, and β−p is the wavenumber

of the backward-traveling mode. As shown in earlier sections, β−p = −βp, allowing the

introduction of βa ≡ βp, such that:

E(x,y,z) = a+(z)ea(x,y)e+iβaz +a−(z)ea(x,y)e−iβaz, (2.28)

where βa = 2πna/λ0 is the wavenumber of the transverse-mode associated with the A

waveguide, na is the effective refractive index of the A waveguide, and λ0 is the wavelength.

Coupled-Mode Equations

The two coupled-mode equations for the grating reflector can be written directly from the

CME definition in Eq. (2.17) as:

da+(z)
dz

= isgn(S+)
(

a+(z)κaa +a−(z)e−i(βp−β−p)zκaa

)
,

da−(z)
dz

= isgn(S−)
(

a+(z)e−i(β−p−βp)zκaa +a−(z)κaa

)
,

(2.29)

where the sgn function returns the sign associated with the mode’s direction of power

flow, captured by the exponent in the given mode notation, such that, sgn(S+) = +1 and

sgn(S−) =−1.

Recalling again that βa ≡ βp =−β−p, the coupled-mode equations can be rewritten as:

da+(z)
dz

= isgn(S+)
(

a+(z)κaa +a−(z)e−i(βa+βa)zκaa

)
,

da−(z)
dz

= isgn(S−)
(

a+(z)e−i(−βa−βa)zκaa +a−(z)κaa

)
,

(2.30)
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and further simplified as:

da+(z)
dz

= i
(

a+(z)κaa +a−(z)e−i2βaz
κaa

)
,

da−(z)
dz

=−i
(

a+(z)ei2βaz
κaa +a−(z)κaa

)
.

(2.31)

Direct-Bragg Coupling Coefficients

The quantity κaa represents the coupling between any two modes pairs {a±(z),a±(z)}, each

due to the presence of the diffraction-grating which has a grating period of Λ and a grating

depth of h. The diffraction-grating’s relative permittivity profile is defined as:

∆ε̄(x,z) = u(x)∆ε̄(z) (2.32)

where

u(x) =


1 for |x−d/2|< h/2

0 otherwise
, (2.33)

where d/2 is the fixed height of the unperturbed waveguide, x is the transverse-profile

dimension, and z is the direction of propagation. The permittivity changes due to the

diffraction grating are given through the cosine expansion:

∆ε̄(z) = ∆ε̄1 cos
2π

Λ
z+∆ε̄2 cos

4π

Λ
z+ · · ·+∆ε̄p cos

2π p
Λ

z, (2.34)

where, for a rectangular shaped grating,

∆ε̄m =


4(ε̄2−ε̄1)

πm (−1)
m−1

2 m odd

0 m even
, (2.35)
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ε̄2 = ε2/ε0 is the diffraction grating relative permittivity, ε̄1 = ε1/ε0 is the cladding relative

permittivity, ε2 is the diffraction-grating permittivity, ε1 is the cladding permittivity, and ε0

is the permittivity of free space.

Considering only the first harmonic of the cosine expansion as an approximation, the

relative change in permittivity becomes

∆ε̄(z) = ∆ε̄1 cos
2π

Λ
z. (2.36)

If the grating height is h is small then the transverse mode profile ea can be assumed constant

over the region of integration. The field value for each mode as a result of the integration, is

equal to the respective field value at x = d/2.

Using the cosine-expansion approximation above and the definition in Eq. (2.21), the

coupling coefficient κaa can be written as:

κaa =
ωε0

2

∞∫
−∞

∞∫
−∞

∆ε̄1 cos
(

2πz
Λ

)
ea(x,y) · e∗a(x,y) dy dx, (2.37)

=
ωε0

2
∆ε̄1 cos

(
2πz
Λ

) ∞∫
−∞

∞∫
−∞

|ea(x,y)|2 dy dx, (2.38)

=
ωε0

2
∆ε̄1 cos

(
2πz
Λ

)∫ W

0

∫ (d+h)/2

(d−h)/2
|ea(x,y)|2 dy dx, (2.39)

=Caa cos
(

2πz
Λ

)
(2.40)

=Caa cos(2βΛz) (2.41)

where, using Eq. (2.35) with m = 1 to isolate the first harmonic, yields:

Caa =
ωε0

2
∆ε̄1

∫ W

0

∫ (d+h)/2

(d−h)/2
|ea(x,y)|2 dy dx, (2.42)
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and

βΛ =
π

Λ
. (2.43)

As in general, ε̄ = n2, the coupling coefficient becomes:

Caa =
ωε0∆n′

2

∫ W

0

∫ (d+h)/2

(d−h)/2
|ea(x,y)|2 dy dx, (2.44)

where

∆n′ =
4(n2

2 −n2
1)

π
, (2.45)

n1 is the refractive index of the cladding, and n2 is the refractive index of the grating.

All three remaining direct-Bragg coupling coefficients follow the identical derivation

shown above and will have a similar final expression.

Introduction of Coupling Coefficients into CMEs

Substituting the coupling coefficient definition in Eq. (2.41), the CMEs for the grating

reflector become

da+(z)
dz

= i
(

a+(z)Caa cos(2βΛz)+a−(z)e−i2βazCaa cos(2βΛz)
)
,

da−(z)
dz

=−i
(

a+(z)ei2βazCaa cos(2βΛz)+a−(z)Caa cos(2βΛz)
)
.

(2.46)

The isolated cos expressions will integrate out becoming zero valued, leaving:

da+(z)
dz

= ia−(z)e−i2βazCaa cos(2βΛz),

da−(z)
dz

=−ia+(z)ei2βazCaa cos(2βΛz),

(2.47)

The wavenumber exponent e±i2βaz, in conjuction with the remaining cos on the right-

hand side, produces slow-moving content when the waveguide wavenumber βa is close to
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the Bragg wavenumber βΛ. This can be seen by writing the cosine in the exponential form

cos(2βΛz) =
ei2βΛz + e−i2βΛz

2
, (2.48)

and distributing the waveguide wavenumber exponent through the expansion of Eq. (2.47)

to become:

da+(z)
dz

= ia−(z)Caa
e−i2(βa−βΛ)z + e−i2(βa+βΛ)z

2
,

−da−(z)
dz

= ia+(z)Caa
ei2(βa+βΛ)z + ei2(βa−βΛ)z

2
.

(2.49)

Defining the wavenumber detuning and wavenumber mean valued quantities

∆βa = βa −βΛ, (2.50a)

β̄a =
βa +βΛ

2
, (2.50b)

results in the CMEs

da+(z)
dz

= ia−(z)
Caa

2

(
e−i2∆βaz + e−i4β̄az

)
,

−da−(z)
dz

= ia+(z)
Caa

2

(
ei4β̄az + ei2∆βaz

)
.

(2.51)

The Bragg condition is met when βa = βΛ, where the guided longitudinal propagating

optical wavefront is optimally reflected back to its opposite longitudinally propagating mode.

This Bragg reflection sets up a photonic bandgap within the coupled structure that ultimately

hinders light propagation.

As the waveguide wavenumber is a positive quantity, the exponents including the β̄a
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terms will be large such that they integrate out to zero and can be discounted, resulting in:

da+(z)
dz

= ia−(z)κae−i2∆βaz,

−da−(z)
dz

= ia+(z)κaei2∆βaz,

(2.52)

where, from Eq. (2.44):

κa =
Caa

2
=

ωε0∆n′

4

∫ W

0

∫ (d+h)/2

(d−h)/2
|ea(x,y)|2 dy dx. (2.53)

This derivation of the Bragg detuning and the Bragg-coupling coefficient is applicable

throughout the remainder of this dissertation for all Bragg-based coupling mechanisms

presented.

Solution using an Ansatz Approach

Though the CMEs Eq. (2.52) can be solved using rotated-frames and eigenvalues, an

alternate solution method using an ansatz approach will be instead demonstrated. Using this

method, a general solution to the CMEs is assumed to take the form

a+(z) = a+0 eiθ+z, (2.54a)

a−(z) = a−0 eiθ−z, (2.54b)

where a±0 and θ± are both complex constants. These assumed solutions are propagated

through the CMEs in Eq. (2.76) to arrive at

iθ+a+0 eiθ+z = κae−i2∆βaza−0 eiθ−z, (2.55a)

iθ−a−0 eiθ−z = κaei2∆βaza+0 eiθ+z. (2.55b)
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Moving the exponents to the right-hand side:

iθ+a+0 = κae−i2∆βaza−0 eiθ−ze−iθ+z, (2.56a)

iθ−a−0 = κaei2∆βaza+0 eiθ+ze−iθ−z, (2.56b)

consolidating,

iθ+a+0 = κaa−0 e−i(2∆βa+θ+−θ−)z, (2.57a)

iθ−a−0 = κaa+0 ei(2∆βa+θ+−θ−)z, (2.57b)

and diving through by the imaginary coefficient provides:

θ+a+0 =−iκaa−0 e−i(2∆βa+θ+−θ−)z, (2.58a)

θ−a−0 =−iκaa+0 ei(2∆βa+θ+−θ−)z. (2.58b)

For a solution to the CMEs to be valid, it must be valid for all value of z [68]. This can only

occur if the exponents of Eq. (2.58b) are themselves zero valued, implying

2∆βa +θ−−θ+ = 0, (2.59)

providing the relationship

θ− = θ+−2∆βa. (2.60)

Under this condition Eq. (2.58b) reduces to simply become

θ+a+0 =−iκaa−0 , (2.61a)

θ−a−0 =−iκaa+0 . (2.61b)

36



CHAPTER 2. BASIC THEORY

The relationship in Eq. (2.60) is substituted into Eq. (2.61b) to arrive at:

(θ+−2∆βa)a−0 =−iκaa+0 . (2.62)

Both sides of Eq. (2.62) are multiplied by θ+ to produce:

θ
2
+a−0 −2∆βa θ+a−0 =−iκaθ+a+0 . (2.63)

The right-hand side of the above expression contains a θ+a+0 which can be eliminated using

the definition in Eq. (2.61a):

θ
2
+a−0 −2∆βa θ+a−0 =−iκa(−iκaa−0 ) =−κ

2
a a−0 . (2.64)

The unknown constant a−0 can be divided out and all terms brought to the left-hand side to

reveal a quadratic polynomial in θ+:

θ
2
+−2∆βa θ+a−0 +κ

2
a a−0 = 0. (2.65)

The roots of this quadratic produce values for θ+ as:

θ+ = ∆βa ∓
√

∆β 2
a −κ2

a . (2.66)

The value of θ− can be then found using the relationship Eq. (2.60) to arrive at:

θ− =−∆βa ∓
√

∆β 2
a −κ2

a . (2.67)
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Electric-Field Expressions

The general solutions in a+(z) and a−(z) of Eq. (2.54) will be a linear combination of the

kernels given by the two expressions for θ+ and the two expressions for θ−, respectively:

a+(z) = ei∆βaz
(

a+1 e−i
√

∆β 2
a −κ2

a z +a+2 ei
√

∆β 2
a −κ2

a z
)
, (2.68a)

a−(z) = e−i∆βaz
(

a−1 e−i
√

∆β 2
a −κ2

a z +a−2 ei
√

∆β 2
a −κ2

a z
)
, (2.68b)

where each a±n is a complex value which can be found by imposing boundary conditions on

the structure.

The electric-field expressions for the grating coupler are

a+(z) =
−2B1

κae−iη (∆βa sinh(iη(z−L))+η cosh(iη(z−L))) , (2.69a)

a−(z) =
2B1

e−iη sinh(iη(z−L)), (2.69b)

where

η =
√

∆β 2
a −κ2

a , (2.70)

and L is the length of the coupling region. The derivation method to arrive at the electric-field

expression is fully detailed in Section 2.8 below.

Power, Transmittivity, and Reflectivity Expressions

The power expressions are determined as the magnitude squared of the field expressions and

are given as:

P+
a (z) = P0

|∆βa sinh(iη(z−L))+η cosh(iη(z−L))|2

|∆βa sinh(−iη)+η cosh(−iη)|2
, (2.71a)

P−
a (z) = P0

|κa|2 |sinh(iη(z−L))|2

|∆βa sinh(−iη)+η cosh(−iη)|2
. (2.71b)
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Figure 2.4 The transmittivity Ta and reflectivity Ra of a direct-Bragg grating reflector with a
normalized coupling coefficient κaL= 1.47. The photonic bandgap is seen in the transmittivity
centered at the normalized wavenumber detuning ∆βaL = 0. The depth and the width of the
PBG increases with the Bragg-coupling strength κaL.

The transmittivity of a structure is defined as the ratio of an output power to an input

power and, when examined over a change in detuning ∆βa, shows the wavenumber response

of the structure. For the grating reflector, the input is taken as P+
a (z = 0), the output is

given by P+
a (z = L), and reflected power as P−

a (z = 0) giving rise to the transmittivity and

reflectivity

Ta =
P+

a (z = L)
P+

a (z = 0)
=

∣∣∣√∆β 2
a −κ2

a

∣∣∣2∣∣∣∆βa sinh
(
−i

√
∆β 2

a −κ2
a

)
+
√

∆β 2
a −κ2

a cosh
(
−i

√
∆β 2

a −κ2
a

)∣∣∣2 ,
(2.72a)

Ra =
P−

a (z = 0)
P+

a (z = 0)
=

|κa|2
∣∣∣sinh

(
−i

√
∆β 2

a −κ2
a

)∣∣∣2∣∣∣∆βa sinh
(
−i

√
∆β 2

a −κ2
a

)
+
√

∆β 2
a −κ2

a cosh
(
−i

√
∆β 2

a −κ2
a

)∣∣∣2 .
(2.72b)
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2.5.2 Behavior

Plotting the transmittivity Ta as over waveguide detuning ∆βa for a constant coupling κa

results in the transmittivity spectrum shown in Fig. 2.4. The counter-directional Bragg-

coupling processes of the grating reflector produces a photonic bandgap (PBG) centered

at the waveguide detuning value ∆βa = 0. The width and depth of the PBG is established

by the coupling strength which, for an index grating, is itself a function of the separation

of the diffraction grating to the coupled waveguide, the grating width and depth, and the

grating material index. The center of the PBG is characterized by a low transmittivity Ta

through the structure as seen in Fig. 2.4. The power in this band of detuning is efficiently

coupled into the a−(z) field and appears as a reflected signal as seen by the reflectivity Ra

in Fig. 2.4. The wings of the transmittivity become 0 dB outside the photonic bandgap

for a lossless waveguide, indicating that the device is transparent at values of wavenumber

detuning well away from zero. For the lossless passive structure the sum of the transmittivity

and reflectivity must be unity. The symmetrical solution for a−(z) injection at z = L mirrors

this response and is not detailed here.

2.6 Traditional DFB Laser & Direct-Bragg Coupling

2.6.1 Theory

Distributed feedback (DFB) lasers utilizing a uniform grating to generate direct-Bragg

coupling between the forward and backward modes of an adjacent active waveguide as

depicted in Fig. 2.5(a) [4]. The electric field expressions are written as:

E(x,y,z) = a+(z)ea(x,y)e+iβpz +a−(z)ea(x,y)e+iβ−pz, (2.73)

where a±(z) are the longitudinal field envelopes, ea(x,y) is the normalized transverse

mode profile, and β±p are the wavenumbers associated with the forward- and backward-

40



CHAPTER 2. BASIC THEORY

Figure 2.5 The uniform-grating distributed feedback (DFB) laser structure and mode spec-
trum demonstrating the mode degeneracy. (a) Adding an active region to the grating reflector
provides for optical gain and, with the feedback provided by the diffraction grating, forms a
DFB laser. (b) Increasing gain gL in the active region demonstrates resonant behavior in
the direct-Bragg coupled structure. Lasing occurs at a gain threshold gL = gthL where two
degenerate lasing modes are formed separated from the center of the photonic bandgap.
The structure shown has a normalized coupling coefficient κaL = 1.47, and lasing occurs at
a gain gL = gthL = 2.61.

propagating modes respectively. Substituting βa ≡ βp =−β−p equivalently yields

E(x,y,z) = a+(z)ea(x,y)e+iβaz +a−(z)ea(x,y)e−iβaz, (2.74)

where βa = 2πna/λ0 is the wavenumber of the transverse mode associated with the A

waveguide, na is the effective refractive index of the A waveguide, and λ0 is the wavelength.
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Coupled-Mode Equations

The CMEs describing lasing behavior follow from those of the grating reflector in Eq. (2.52)

and are written as:

da+

dz
= isgn(S+)κaa−(z)e−i2∆β̃az, (2.75a)

da−

dz
= isgn(S−)κaa+(z)ei2∆β̃az, (2.75b)

where sgn returns the sign associated with the direction of modal power flow, ∆β̃a =

β̃a−βΛ is the complex wavenumber detuning, β̃a = (βa− ig/2) is the complex wavenumber,

βa = 2πna/λ0 is the wavenumber, na is the effective refractive index of the A waveguide,

βΛ = π/Λ is the Bragg wavenumber, g is the gain coefficient, and κa is the direct-Bragg

coupling coefficient. Expressions for the coupling coefficients remain unchanged from the

grating coupler example above as the only modification to the structure is the inclusion of

an active region into the optical waveguide.

Evaluating the sgn function and pulling the resulting sign to the left-hand side results in:

da+

dz
= iκaa−(z)e−i2∆β̃az, (2.76a)

−da−

dz
= iκaa+(z)ei2∆β̃az. (2.76b)

A rotated-frame form of the coupled-mode equations can be generated by propagating the

rotated-envelope expressions from Eq. (2.20), rewritten here as

a+(z) = â+(z)e−i∆βaz, (2.77a)

a−(z) = â−(z)e+i∆βaz, (2.77b)
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through the CMEs of Eq. (2.76). Performing this substitution and simplifying eliminates the

common exponential and results in a set of linear differential equations in the rotated frame:

dâ+

dz
= i∆β̃aâ++ iκaâ−, (2.78a)

−dâ−

dz
= i∆β̃aâ−+ iκaâ+. (2.78b)

A normalized length quantity ζ = z/L is now introduced. Normalizing in this manner

also normalizes all coefficient values to unitless quantities such that the CMEs in Eq. (2.78)

become

dâ+

dζ
= i∆β̃aLâ++ iκaLâ−, (2.79a)

−dâ−

dζ
= i∆β̃aLâ−+ iκaLâ+. (2.79b)

It is typical to analyze structures and present their associated quantities in a normalized form

and, unless stated otherwise, will be done so moving forward.

Direct-Bragg Coupling Coefficients

The coupling coefficients for the uniform-grating DFB lasing structure are unchanged from

the grating reflector. Details for their derivation can be found in that section and will not be

repeated here.

Solution using an Eigenvalue Approach

The CMEs in Eqs. (2.79) can be written in a matrix form as:

d⃗v
dζ

= A⃗v, (2.80)
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where

v⃗ =

â+

â−

 , (2.81)

is the slow-moving envelope vector and A is the characteristic matrix or Hamiltonian matrix

of the DFB laser, given as

A=

i∆β̃aL iκaL

−iκaL −i∆β̃aL

 . (2.82)

The eigenvalues of the A matrix are

q1 =+i

√(
∆βaL− i

gL
2

)2

− (κaL)2 (2.83a)

q2 =−i

√(
∆βaL− i

gL
2

)2

− (κaL)2. (2.83b)

The eigenvalues displayed here align with the ansatz approach results for the grating coupler

shown in Eq. (2.66), understanding that the leading ei∆βaz term, seen in Eq. (2.68) term of

the ansatz approach, is the frame rotation pulled out to arrive at the linear CMEs above.

Furthermore, the imaginary term preceding the square-root of the eigenvalues above is

explicitly written in the original ansatz exponent of Eq. (2.54), and the complex detuning for

the DFB laser includes the normalized gain coefficient gL unlike the passive grating coupler.

Electric-Field Expressions

The field expressions for the DFB laser are again similar to the grating coupler and are

written as:

a+(ζ ) =
−2B1

κaLe−iη̃L (ψ̃Lsinh(iη̃L(ζ −1))+ η̃Lcosh(iη̃L(ζ −1))) , (2.84a)

a−(ζ ) =
2B1

e−iη̃L sinh(iη̃L(ζ −1)), (2.84b)
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where now

η̃L =
√

(ψ̃L)2 − (κaL)2, (2.85a)

ψ̃L = (∆βaL− igL/2). (2.85b)

Power, Transmittivity, and Reflectivity Expressions

The unidirectional modal power expressions for the DFB laser are given by the magnitude

squared of the field expressions:

P+
a (ζ ) = P0

|ψ̃Lsinh(iη̃L(ζ −1))+ η̃Lcosh(iη̃L(ζ −1))|2

|ψ̃Lsinh(−iη̃L)+ η̃Lcosh(−iη̃L)|2
(2.86a)

P−
a (ζ ) = P0

|κaL|2 |sinh(iη̃L(ζ −1))|2

|ψ̃Lsinh(−iη̃L)+ η̃Lcosh(−iη̃L)|2
, (2.86b)

The longitudinal power profile within the laser cavity is the sum of the unidirectional modal

powers, where carrier diffusion is assumed to fill any longitudinal interference pattern: [4],

[5], [35]:

Pa(ζ ) = P+
a (ζ )+P−

a (ζ ). (2.87)

A single value capturing the flatness F of the longitudinal power profile within the laser

cavity provides an indicator for above-threshold lasing stability and is defined as

F =
∫ 1

0
(PA(ζ )−µ)2 /µ

2, (2.88)

where µ =
∫ 1

0 PA(ζ ) dζ [35]. High values of F indicate peaky longitudinal power profiles

which may negatively impact above-threshold lasing performance. Lasing structures with

low values of F are desired to maintain lasing stability for above-threshold operation.
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The transmittivity and reflectivtity of the uniform grating DFB laser then becomes:

Ta =
|η̃L|2

|ψ̃Lsinh(−iη̃L)+ η̃Lcosh(−iη̃L)|2
, (2.89a)

Ra =
|κaL|2 |sinh(−iη̃L)|2

|ψ̃Lsinh(−iη̃L)+ η̃Lcosh(−iη̃L)|2
. (2.89b)

When the uniform-grating DFB laser is brought to lasing threshold by increasing gain gL,

the transmittivity demonstrates degenerate modes on either side of the photonic bandgap

as seen in Fig. 2.5(b). Such a degeneracy results in a laser with no gain margin and, by

extension, is not single mode [4].

Transcendental Lasing Conditions

Lasing occurs when the transmittivity expression goes to infinity which happens when the

denominator of Eq. (2.89a) becomes zero or, equivalently, when

ψ̃thLsinh(iη̃thL) = η̃thLcosh(iη̃thL) , (2.90)

where the “th” subscript denotes a lasing threshold value. Expanding the square of Eq. (2.90),

applying Eqs. (2.85), and using the identity cosh2 x− sinh2 x = 1 yields, after some manipu-

lation,
gthL

2
+ i∆βthL =±iκaLcosh(iη̃thL) . (2.91)

Substitution of Eq. (2.91) back into Eq. (2.90) ultimately generates the following transcen-

dental equation relating η̃thL to the normalized coupling coefficient κaL:

κaL =± η̃thL
sinh(iη̃thL)

. (2.92)

The solution pairs {κaL, η̃thL} are found from Eq. (2.92) by using a numerical solver.
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These solution pairs are then fed into the right-hand side of Eq. (2.91), and the real and imagi-

nary parts are used to determine gthL and ∆βthL. These threshold gain gthL and wavenumber

detuning ∆βthL pairs across a span of coupling coefficient values κaL collectively form a

mode spectrum.

Alternatively, for a fixed κaL, threshold pairs can be found by ramping the gain coefficient

gL up from zero until the transmittivity, as plotted across wavenumber detuning ∆βaL,

reaches infinity. The gain value and associated wavenumber detuning when this occurs

provides for the first threshold pair. Additional threshold pairs are found by continuing to

increase the structure’s gain past the previous threshold value. Either approach will yield the

collection of all threshold pairs for a span of coupling κaL and provides the mode spectrum

seen in Fig. 1.1(b).

The quantity of gain margin is defined as

∆αL = (gth2L−gthL)/2, (2.93)

where gthL is the fundamental lasing-mode’s gain threshold value and gth2L is the next-

highest lasing-mode’s gain threshold value. Large values of gain margin provide an in-

dication of above-threshold single-mode lasing stability. Values for gain margin across

direct-Bragg coupling for the λ/4-shifted DFB laser are shown in Fig. 1.3 and peak with a

value ∆αL = 0.735.

Transfer-Matrix Method

Closed-form expressions do not exists for some structures which include grating non-

uniformities. For such structures, alternate methods must be used to find quantities like

threshold gain, electric-fields, longitudinal powers, and transmittivity. One such method

is the transfer-matrix method (TMM) which breaks non-uniform structures into smaller

approximately uniform segments of normalized length ℓ= 1/N, where N is the number of
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Figure 2.6 An approximately uniform section of a non-uniform DFB lasing structure. The
uniform section is defines the transfer-matrix method used to model the non-uniform
structure.

TMM segments used to model the structure.

For a photonic waveguide with a forward-traveling wave a+(ζ ) and a reverse-traveling

wave a−(ζ ), the transform operation is given by:

a+(ζ2)

a−(ζ2)

=

t11 t12

t21 t22


a+(ζ1)

a−(ζ1).

 (2.94)

The values of t jk capture the self and cross-coupling values of the two slow-moving envelopes

as they propagate through the region described by the matrix. The transfer matrix will be

denoted as T and its elements as t jk. As long as the region captured by T is approximately

uniform and has a length much greater than the optical wavelength traversing the region,

ℓ >> λ , then the transfer produces meaningful results. Schematically this is shown for a

section with a diffraction-grating period Λ in Fig. 2.6.

For the DFB lasing structure, the elements of T have been provided elsewhere and are

given as [72]:

t11 =
1

1− (rℓ)2

[
eiη̃ℓ− (rℓ)2e−iη̃ℓ

]
(2.95a)

t12 =−t21 =
rℓ

1− (rℓ)2

[
eiη̃ℓ− e−iη̃ℓ

]
(2.95b)

t22 =
1

1− (rℓ)2

[
e−iη̃ℓ− (rℓ)2eiη̃ℓ

]
(2.95c)
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The value of η̃ℓ= η̃L/N where η̃L is given in Eq. (2.85a). The reflection coefficients rℓ

are defined as

rℓ=
η̃ℓ− ψ̃ℓ

κaℓ
=− κaℓ

η̃ℓ+ ψ̃ℓ
(2.96)

where ψ̃ℓ= ψ̃L/N and ψ̃L is given in Eq. (2.85b) [72].

The transfer-matrix method divides the larger, non-uniform structure into smaller ap-

proximately linear segments. The structure taken in its entirety could have parameters which

are variable with ζ or which induce nonlinearities impacting behaviors along the length

of the waveguide. When segmented as described, the structure behaviors are determined

through a linear combination of transforms for each approximately uniform segment. For

system which does not include nonlinearities but does exhibit ζ dependent nonuniformities,

the total system response is simply the product of the individual transfer matrices:

a+(ζN)

a−(ζN)

= T1 T2 . . . TN

a+(ζ1)

a−(ζ1)

=
N

∏
n=1

Tn

a+(ζ1)

a−(ζ1).

 (2.97)

In case where nonlinearities are involved, iterative methods are required. The linear

system is first solved as described above with a initial set of values which do not consider the

nonlinearities of the system. This solution provides a seed set of parameters for each segment

in the structure and are used to isolate the first-order approximation of behaviors within each

segment. These first-order approximations are used to calculate structure parameters which

are dependent upon the nonlinearities. The transfer-matrix elements are updated once the

impact of the nonlinearities on structure parameters is understood.

The above process represents one full iteration of the transfer-matrix method (TMM)

when considering nonlinear effects. The transfer matrix elements, after a complete pass, will

contain the second-order approximation of the nonlinear effects. The process repeats until

all calculated parameters and behaviors converge on a solution with an acceptable error. The

final set of equations provide a model for the nonlinear behaviors as well as non-uniformities
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along the structure longitudinal position ζ .

2.6.2 Behavior

The transmittivity of the uniform-grating DFB laser is shown in Fig. 2.5(b). Two degenerate

lasing modes are seen rising to infinity on either side of the photonic bandgap centered at the

wavenumber detuning ∆βaL = 0. The threshold gain gthL and the threshold detuning ∆βathL

depend upon the direct-Bragg coupling value κaL. Stronger coupling values increase the

resonator strength and lower the gain threshold while also extending the photonic-bandgap

width.

For a given direct-Bragg coupling strength, increasing threshold gain past the initial-

threshold value gthL exposes other lasing modes in the structure at higher values of gain.

Each of these modes is identified by a pair of threshold gain and detuning valued noted as

{gthm ,∆βthm}. The collection of all threshold pairs for all modes across all values of κaL

forms the mode spectrum plot shown in Fig. 1.1(b).

The longitudinal power profile, given by the expression in Eq. (2.87), is shown as the

black curve in Fig. 1.4(a) and has a low flatness of F = 0.010 for a κaL = 2.2, the coupling

which results in the largest gain margin for the λ/4-shifted DFB laser. There is no associated

gain margin plot in Fig. 1.4(b) because the uniform-grating DFB laser has a degenerate

mode spectrum which guarantees a gain margin ∆αL = 0 for all values of κaL.

Isolating the mode spectrum shown in Fig. 1.2, the gain margin shown in Fig. 1.3, and

the longitudinal power profiles shown in Fig. 1.4, or other quantities, each for DFB-lasing

structures which include phase shifts or other non-uniformities, requires the use of the

transfer-matrix method (TMM) discussed in Section 2.6.1.
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Figure 2.7 The contra-directional coupler utilizes a diffraction grating to couple reflected
power across modes of one waveguide to the adjacent waveguide. The wavenumbers
associated with each waveguide are not the same and will have an associated detuning
∆βabL.

2.7 Contra-Directional Coupler & Exchange-Bragg

Coupling

2.7.1 Theory

The Electric Field

The electric field of contra-directional coupler shown in Fig. 2.7 is written as:

E(x,y,ζ ) = a+(ζ )ea(x,y)e+iβ a
p Lζ +a−(ζ )ea(x,y)e+iβ a

−pLζ+

b+(ζ )eb(x,y)e+iβ b
p Lζ +b−(ζ )eb(x,y)e+iβ b

−pLζ ,

(2.98)

where a±(ζ ) are the longitudinal field envelopes of the A waveguide, b±(ζ ) are the longi-

tudinal field envelopes of the B waveguide, ea(x,y) is the transverse mode profile of the A

waveguide, eb(x,y) is the transverse mode profile of the B waveguide, β a
±p are the forward-

and backward-propagating wavenumbers of the A waveguide, β b
±p are the forward- and

backward-propagating wavenumbers of the B waveguide, and L is the length of the structure.

Making the substitutions βa ≡ β a
p =−β a

−p and βb ≡ β b
p =−β b

−p where βa = 2πna/λ0 is

the wavenumber of the A waveguide, na is the effective refractive index of the A waveguide,
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βb = 2πnb/λ0 is the wavenumber of the B waveguide, nb is the effective refractive index of

the B waveguide, and λ0 is the wavelength, gives:

E(x,y,ζ ) = a+(ζ )ea(x,y)e+iβaLζ +a−(ζ )ea(x,y)e−iβaLζ+

b+(ζ )eb(x,y)e+iβbLζ +b−(ζ )eb(x,y)e−iβbLζ ,

(2.99)

Coupled-Mode Equations

For this example, both direct-Bragg and evanescent coupling will be ignored. Focus will

be solely on the exchange-Bragg coupling process which defines the contra-directional

coupler behaviors. In practice, and as will be seen in future sections, all three coupling

processes of direct-Bragg, exchange-Bragg, and evanescent coupling, should simultaneously

be considered when analyzing or optimizing structure behaviors.

Following the same derivation process completed for the grating reflector in Section 2.5

and under the provided assumptions so as to isolate the exchange-Bragg coupling process,

the four coupled-mode equations for the contra-directional coupler are written as:

da+(ζ )
dζ

= isgn(S+a )κχbaLb−(ζ )e−i2∆βχ Lζ ,

db+(ζ )
dζ

= isgn(S+b )κχabLa−(ζ )e−i2∆βχ Lζ ,

da−(ζ )
dζ

= isgn(S−a )κχbaLb+(ζ )ei2∆βχ Lζ ,

db−(ζ )
dζ

= isgn(S−b )κχabLa+(ζ )ei2∆βχ Lζ ,

(2.100)

where κχ(ab,ba) are the exchange-Bragg coupling coefficients detailed in the section below,

∆βχ = β̄ab − βΛ is the exchange detuning, β̄ab = (βa + βb)/2 is the average waveguide

wavenumber of the A and B waveguides, βΛ = π/Λ is the Bragg wavenumber, Λ is the

grating period, and L is the grating length.

Executing the sgn function and moving the resulting sign associated with the direction
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of power flow to the left-hand side provides the final form of the contra-directional coupler

CMEs as

da+(ζ )
dζ

= iκχbaLb−(ζ )e−i2∆βχ Lζ ,

db+(ζ )
dζ

= iκχabLa−(ζ )e−i2∆βχ Lζ ,

−da−(ζ )
dζ

= iκχbaLb+(ζ )ei2∆βχ Lζ ,

−db−(ζ )
dζ

= iκχabLa+(ζ )ei2∆βχ Lζ .

(2.101)

Examining the CMEs in the above set shows that there are two independent symmetric

pairs of coupled equations, simplifying the solution process. As such, solutions will only be

derived and explored for one pair of CMEs; the second set of CMEs will follow the identical

solution process and have symmetric behaviors. The clockwise set of CMEs used for the

remainder of this section is given by

da+(ζ )
dζ

= iκχbaLb−(ζ )e−i2∆βχ Lζ ,

−db−(ζ )
dζ

= iκχabLa+(ζ )ei2∆βχ Lζ .

(2.102)

Exchange-Bragg Coupling Coefficients

The exchange-Bragg coupling coefficients are determined as a mode overlap integral between

ea and eb only over the diffraction grating perturbation region. Waveguide perturbations are

not necessary for the determination of the exchange-Bragg coupling coefficients and are

reserved solely for the evanescent coupling process shown in the next section.

Isolation of each exchange-Bragg coupling coefficient follows the same steps as shown

in the direct-Bragg coupling-coefficient derivation in Section 2.5. The exchange-Bragg
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coupling coefficients in their raw form are written as

κχab =
ωε0∆n′

2

∫ W

0

∫ (d+h)/2

(d−h)/2
ea(x,y) · e∗b(x,y) dy dx, (2.103a)

κχba =
ωε0∆n′

2

∫ W

0

∫ (d+h)/2

(d−h)/2
eb(x,y) · e∗a(x,y) dy dx, (2.103b)

where

∆n′ =
4(n2

2 −n2
1)

π
, (2.104)

where n2 is the refractive index of the diffraction-grating core, and n1 is the refractive index

of the diffraction-grating cladding. Furthermore, the two expressions in Eq. (2.103) differ

only by their integrands which are conjugates of one another, implying κχab = κ∗
χba, such

that the CMEs of Eq. (2.102) become:

da+(ζ )
dζ

= iκχbaLb−(ζ )e−i2∆βχ Lζ ,

−db−(ζ )
dζ

= iκ∗
χbaLa+(ζ )ei2∆βχ Lζ .

(2.105)

Solution using an Ansatz Approach

The contra-directional CMEs in Eq. (2.102) are the same form as the grating reflector,

shown in Eq. (2.52), where a−(ζ )→ b−(ζ ), κaL → κχ(ab,ba)L, and ∆βaL → ∆βχL acts as

a quantity mapping between the two structure’s CMEs. Taking this approach provides the

root solutions as a mapping from Eq. (2.66) as

θ+ = ∆βχL∓
√

(∆βχL)2 − (κχbaLκχabL). (2.106)

The value of θ− can be then found using the relationship Eq. (2.60) to arrive at:

θ− =−(∆βχL)∓
√
(∆βχL)2 − (κχL)2, (2.107)
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where κχba κχab = κχba κ∗
χba = |κχba|2 = κ2

χ .

Electric-Field Expressions

The general solutions in a+(ζ ) and b−(ζ ) will be a linear combination of the kernels given

by the two expressions for θ+ and the two expressions for θ−, respectively:

a+(ζ ) = ei∆βχ Lζ

(
a+1 e−i

√
(∆βχ L)2−(κχ L)2 ζ +a+2 ei

√
(∆βχ L)2−(κχ L)2 ζ

)
, (2.108a)

b−(ζ ) = e−i∆βχ Lζ

(
b−1 e−i

√
(∆βχ L)2−(κχ L)2 ζ +b−2 ei

√
(∆βχ L)2−(κχ L)2 ζ

)
, (2.108b)

where each a+n and b−n are complex values which can be found by imposing boundary

conditions on the structure. The electric-field expressions for the contra-directional coupler

are

a+(ζ ) =
−2B1

κχabLe−iηL

(
∆βχLsinh(iηL(ζ −1))+ηLcosh(iηL(ζ −1))

)
, (2.109a)

b−(ζ ) =
2B1

e−iηL sinh(iηL(ζ −1)), (2.109b)

where

ηL =
√
(∆βχL)2 − (κχL)2. (2.110)

The derivation method to arrive at the electric-field expressions is fully detailed in Section 2.8

below.
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Power, Transmittivity, and Reflectivity Expressions

The power expressions are determined as the magnitude squared of the field expressions and

are given as:

P+
a (ζ ) = P0

∣∣∆βχLsinh(iηL(ζ −1))+ηLcosh(iηL(ζ −1))
∣∣2∣∣∆βχLsinh(−iηL)+ηLcosh(−iηL)

∣∣2 , (2.111a)

P−
b (ζ ) = P0

|κχabL|2 |sinh(iηL(ζ −1))|2∣∣∆βχLsinh(−iηL)+ηLcosh(−iηL)
∣∣2 . (2.111b)

The transmittivity of a structure is defined as the ratio of an output power to an input

power and shows the wavenumber response of the structure. For the contra-directional

coupler, the input is taken as P+
a (ζ = 0), the contra-directional output is given by P−

b (ζ = 0),

and co-directional out power as P+
a (ζ = 1) giving rise to the two transmittivity expressions

Tcontra =
P−

b (ζ = 0)
P+

a (ζ = 0)
=

∣∣κχabL
∣∣2 ∣∣∣sinh

(
−i

√
(∆βχL)2 − (κχL)2

)∣∣∣2∣∣∣∆βχLsinh
(
−i

√
(∆βχL)2 − (κχL)2

)
+
√
(∆βχL)2 − (κχL)2 cosh

(
−i

√
(∆βχL)2 − (κχL)2

)∣∣∣2 ,
(2.112a)

Tco =
P+

a (ζ = 1)
P+

a (ζ = 0)
= ∣∣∣√(∆βχL)2 − (κχL)2

∣∣∣2∣∣∣∆βχLsinh
(
−i

√
(∆βχL)2 − (κχL)2

)
+
√
(∆βχL)2 − (κχL)2 cosh

(
−i

√
(∆βχL)2 − (κχL)2

)∣∣∣2 .
(2.112b)

2.7.2 Behavior

Plotting both transmittivity responses as over waveguide detuning ∆βaL for a constant

coupling κaL results in the transmittivity spectrums shown in Fig. 2.8. A band of signal
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Figure 2.8 The transmittivity responses of a contra-directional coupler for three values
of waveguide wavenumber detuning ∆βabL. (a) The contra-directional transmittivity Tcontra

response shows a band of the optical power input at the A waveguide at ζ = 0 coupled and
output on the B waveguide also at ζ = 0. (b) The photonic bandgap is clearly seen in the
co-directional transmittivity response Tco centered at the normalized wavenumber detuning
∆βaL = ∆βabL =−π,0,π. For all parts κχL = 1.47.

presented at the input of waveguide A at ζ = 0 is contra-directionally coupled to waveguide

B and output at position ζ = 0 as seen in Fig. 2.8(a). This exchange-Bragg coupling occurs

between waveguides even when evanescent coupling is not present. Though the two coupling

processes may co-exist, evanescent coupling is completely independent of exchange-Bragg

coupling and one is not required for the other to function.

For a given wavenumber detuning ∆βaL, the photonic bandgap location is set by the

waveguide wavenumber detuning ∆βabL. The coupled-mode equations for the contra-

directional coupler are functions of ∆βχL = (βaL+ βbL)/2− βΛ and therefore shift as
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Figure 2.9 A directional coupler of length L demonstrating evanescent coupling (symbolically
represented by the green arrow) between a forward-traveling mode a+ in the A waveguide
to a forward-traveling mode b+ in the B waveguide. The symmetric coupling process of
backwards-traveling modes is not shown.

∆βabL changes. The PGBs are shown to shift for three different waveguide wavenumber

detuning values in Fig. 2.8(b). For the grating-reflector, the center of the PBG is always

located at ∆βaL = 0 as its CMEs are functions of ∆βaL = βaL−βΛ which is completely

independent of βbL.

Structures which manifest both direct-Bragg and exchange-Bragg coupling may position

their associated PBGs relative to one another through changes in the structures waveguide

wavenumber detuning.

2.8 Directional Coupler & Evanescent Coupling

2.8.1 Theory

The Electric Field

The electric field expression for the directional coupler shown in Fig. 2.9 is written as:

E(x,y,ζ ) = a+(ζ )ea(x,y)e+iβ a
p Lζ +b+(ζ )eb(x,y)e+iβ b

p Lζ , (2.113)

where (a,b)+(ζ ) are the forward-propagating longitudinal field envelopes, e(a,b)(x,y) are

the normalized transverse mode profiles, β
(a,b)
p are the wavenumbers for the forward-
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propagating modes associated with the A and B waveguides respectively and L is the length

of the coupling region. Analysis for the forward propagating modes of the directional

coupler will be provided in this section. The backwards-propagating solution for a−(ζ ) and

b−(ζ ) is symmetric to what is presented here and will not shown.

As only the forward propagating modes are considered above, the substitutions of

βa ≡ β a
p and βb ≡ β b

p result in the electric field expression:

E(x,y,ζ ) = a+(ζ )ea(x,y)e+iβaLζ +b+(ζ )eb(x,y)e+iβbLζ , (2.114)

where βa = 2πna/λ0 is the wavenumber of the A waveguide, na is the effective refractive

index of the A waveguide, βb = 2πnb/λ0 is the wavenumber of the B waveguide, nb is the

effective refractive index of the B waveguide, and λ0 is the wavelength.

Coupled-Mode Equations

The directional coupler is a dual-waveguide photonic structure that transfers co-directional

power across two coupled optical waveguides as shown in Fig. 2.9 [68], [73]. The amount

of power transferred depends upon the distance between the two waveguides, the length of

the structure, and the waveguide-wavenumber detuning.

The coupled-mode equations (CMEs) for the structure can be written from Eq. (2.17) as

da+

dζ
= isgn(S+a )

(
a+(ζ )κaaLe−i(β a

p L−β a
p L)ζ +b+(ζ )κbaLe−i(β a

p L−β b
p L)ζ

)
,

db+

dζ
= isgn(S+b )

(
a+(ζ )κabLe−i(β b

p L−β a
p L)ζ +b+(ζ )κbbLe−i(β b

p L−β b
p L)ζ

)
,

(2.115)
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which reduces to:

da+

dζ
= isgn(S+a )

(
a+(ζ )κaaL+b+(ζ )κbaLe−i(β a

p L−β b
p L)ζ

)
,

db+

dζ
= isgn(S+b )

(
a+(ζ )κabLe−i(β b

p L−β a
p L)ζ +b+(ζ )κbbL

)
,

(2.116)

Making the substitutions of βa ≡ β a
p and βb ≡ β b

p , where βa = 2πna/λ0 is the wavenumber

of the A waveguide, na is the effective refractive index of the A waveguide, βb = 2πnb/λ0 is

the wavenumber of the B waveguide, nb is the effective refractive index of the B waveguide,

and λ0 is the wavelength, yields:

da+

dζ
= isgn(S+a )

(
a+(ζ )κaaL+b+(ζ )κbaLe−i2∆βabLζ

)
, (2.117a)

db+

dζ
= isgn(S+b )

(
a+(ζ )κabLei2∆βabLζ +b+(ζ )κbbL

)
. (2.117b)

Resolving the sgn function and moving the sign associated with the direction of power flow

to the left-hand side results in

da+

dζ
= i

(
a+(ζ )κaaL+b+(ζ )κbaLe−i2∆βabLζ

)
, (2.118a)

db+

dζ
= i

(
a+(ζ )κabLei2∆βabLζ +b+(ζ )κbbL

)
. (2.118b)

Evanescent Coupling Coefficients

The coupling coefficients for co-directional evanescent-coupling in the directional coupler

CMEs consider the alternate waveguide as the region of perturbation. The change in relative

permittivity ∆ε̄ is due to the sending-mode’s waveguide perturbation as:

∆ε̄ = ε̄s − ε̄1, (2.119)
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where ε̄s is the relative permittivity of the sending-mode’s waveguide and ε̄1 is the relative

permittivity of the cladding. These values are both constant across the transverse mode

profile coordinates x and y and can be pulled out of the double integral. In general, ε̄ = n2

where n is the refractive index, the coupling coefficient expression of Eq. (2.21) becomes:

κsr =
ωε0(n2

s −n2
1)

2

∞∫
−∞

∞∫
−∞

es(x,y) · e∗r (x,y) dy dx. (2.120)

The evanescent-coupling coefficients for the directional coupler then become:

κaa =
ωε0(n2

b −n2
1)

2

∫∫
B

ea(x,y) · e∗a(x,y)dx dy (2.121a)

κab =
ωε0(n2

a −n2
1)

2

∫∫
A

ea(x,y) · e∗b(x,y)dx dy (2.121b)

κba =
ωε0(n2

b −n2
1)

2

∫∫
B

eb(x,y) · e∗a(x,y)dx dy, (2.121c)

κbb =
ωε0(n2

a −n2
1)

2

∫∫
A

eb(x,y) · e∗b(x,y)dx dy, (2.121d)

where n(a,b) is the constant material refractive index of the respective waveguide, n1 is the

refractive index of the cladding, ω is the angular frequency, ε0 is the permittivity of free

space, A is the region bounded by the A waveguide, and B is the region bounded by the B

waveguide.

The coupling coefficients κaa and κbb are each determined by an overlap integral of

a single mode over a region of integration bounded by the adjacent waveguide. In this

region, only the tail of dot product e(a,b) · e∗(a,b) = |e(a,b)|2 contributes to the integral, which

is assumed small such that κaa = 0 and κbb = 0.

The coupling coefficients κab = κ∗
ba occurs exactly when na = nb and A = B or if there

is a balance between an unmatched na and nb and an unmatched
∫∫

a and
∫∫

B.
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Solution Using an Eigenvalue Approach

The coupled-mode equations of Eq. 2.118, assuming κaaL = 0 and κbbL = 0, become:

da+

dζ
= ib+(ζ )κbaLe−i2∆βabLζ , (2.122a)

db+

dζ
= ia+(ζ )κabLei2∆βabLζ , (2.122b)

which may be expressed in a rotated frame by substituting the envelope expressions from

Eq. (2.20), rewritten here as

a+(ζ ) = â+(ζ )e−i∆βabLζ , (2.123a)

b+(ζ ) = b̂+(ζ )e+i∆βabLζ . (2.123b)

Performing this substitution and simplifying results in differential equations in the rotating

frame as

dâ+

dζ
= i∆βabLâ++ iκbaLb̂+, (2.124a)

db̂+

dzζ
=−i∆βabLb̂++ iκabLâ+. (2.124b)

The CMEs of Eq. (2.124) have been written in a linear form and can be expressed in

matrix notation as
d
dz

s⃗ = A⃗s, (2.125)

where

s⃗ =

â+

â−

 , (2.126)
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and

A=

i∆βabL iκbaL

iκabL −i∆βabL

 , (2.127)

where the explicit function of ζ has been dropped for notational simplicity.

Solutions to Eq. (2.125) can be found using an eigenvalue approach and takes the general

form:

s⃗n = v⃗neqnζ where n ∈ {1,2}, (2.128)

v⃗n = [vn1, vn2]
† is an eigenvector, qn is an eigenvalue, n takes on integer values up to the

rank of the matrix A, and † is the matrix transpose operator.

Eigenvalues are scalar values such that

A⃗s = q⃗s, (2.129a)

A⃗s− q⃗s = 0, (2.129b)

(A− Iq)⃗s = 0, (2.129c)

where I is the identity matrix, here of dimension 2×2. Non-trivial solutions occur when the

left hand matrix is singular

det(A− Iq) = 0. (2.130)

The determinant for the 2×2 case shown above expands out as:

det

∣∣∣∣∣∣∣
a11 −q a12

a21 a22 −q

∣∣∣∣∣∣∣= 0, (2.131)

where anm are the elements of A for n,m ∈ (1,2). The determinant for the 2×2 matrix is
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straightforward to calculate as the difference between the products of cross elements:

Step 1 : (a11 −q)(a22 −q)−a21a12 = 0, (2.132a)

Step 2 : a11a22 −a11q−a22q+q2 −a21a12 = 0, (2.132b)

Step 3 : q2 − (a11 +a22)q+(a11a22 −a21a12) = 0. (2.132c)

The expression in Eq. (2.132c) is called the characteristic equation whose roots provide

the eigenvalues for the general solutions in Eq. (2.128). The two roots of a second-order

characteristic equation are given by the quadratic formula as:

q1 =
a11 +a22

2
+ 1

2

√
(a11 +a22)2 −4(a11a22 −a21a12), (2.133a)

q2 =
a11 +a22

2
− 1

2

√
(a11 +a22)2 −4(a11a22 −a21a12), (2.133b)

(2.133c)

or

q1 =
a11 +a22

2
+ i

√
(a11a22 −a21a12)−

(
a11 +a22

2

)2

, (2.134a)

q2 =
a11 +a22

2
− i

√
(a11a22 −a21a12)−

(
a11 +a22

2

)2

. (2.134b)

The eigenvalues for the directional-coupler case given by the matrix A in Eq. (??)

become:

q1 =+i
√

(∆βabL)2 +κabLκbaL, (2.135a)

q2 =−i
√
(∆βabL)2 +κabLκbaL. (2.135b)

The product κabκba is defined to be κe such that κeL =
√

κabLκbaL; the eigenvalues for a
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directional coupler can be written as

q1 =+i
√

(∆βabL)2 +(κeL)2, (2.136a)

q2 =−i
√
(∆βabL)2 +(κeL)2. (2.136b)

Electric-Field Expressions

The general slow-moving rotated-frame envelope expression Eq. (2.128) can now be ex-

panded for the directional coupler as:

â+(ζ ) = v11e+i
√

(∆βabL)2+(κeL)2 ζ + v12e−i
√

(∆βabL)2+(κeL)2 ζ , (2.137a)

b̂+(ζ ) = v21e+i
√

(∆βabL)2+(κeL)2 ζ + v22e−i
√

(∆βabL)2+(κeL)2 ζ , (2.137b)

where vnm are the unknown elements of the two eigenvectors which can be found by

imposing boundary conditions on the structure. If power is injected only into waveguide A

at ζ = 0 then the boundary condition is

b̂+(0) = 0, (2.138)

which, by using Eq. (2.137b), shows that v21 =−v12. After manipulation and reduction, the

slow-moving rotated-frame envelope field expression for b+(ζ ) becomes

b̂+(ζ ) = 2v12 sinh
(

i
√
(∆βabL)2 +(κeL)2 ζ

)
. (2.139)
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Substituting the above b+(ζ ) expression back into the directional coupler CME given in

Eq. (2.124b) provides the slow-moving rotated-frame envelope field expression for â+(ζ ) as

â+(ζ ) =
2v12

κeL

(
∆βabLsinh(i

√
(∆βabL)2 +(κabL)2 ζ ) · · ·

+
√
(∆βabL)2 +(κeL)2 cosh(i

√
(∆βabL)2 +(κeL)2 ζ )

) (2.140)

To return to the slow-moving envelope field-expressions from the rotated frame, Eq. (2.123)

is used resulting in expressions for a+(ζ ) and b+(ζ ).

Power Expressions

Figure 2.10 A directional coupler transfers power between two evanescently coupled optical
waveguides. (a) When the directional coupler is synchronous, defined as the waveguide
wavenumber detuning ∆βab = 0, complete power transfer occurs across the two waveguides.
This transfer happens at the coupling length Lc. (b) As the waveguide wavenumber detuning
increases, that is the structure becomes asynchronous, power transfer efficiency rapidly
declines. κeL = 1.47 for both subfigures.
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The power in a waveguide is the magnitude squared of the field [68]:

Pa(ζ ) = |a+(ζ )|2 = |â+(ζ )|2, (2.141a)

Pb(ζ ) = |b+(ζ )|2 = |b̂+(ζ )|2. (2.141b)

Recall, for this example, power was injected in waveguide A at ζ = 0. If the injected power

is Pa(ζ = 0) = P0 then:

P0 = Pa(ζ = 0) = |â+(0)|2 =
∣∣∣∣2v12

κeL

∣∣∣∣2 ((∆βabL)2 +(κabL)2) . (2.142)

The value is v12 can be found in terms of the input power P0 which falls out due to normal-

ization.

2.8.2 Behavior

The longitudinal power profile for both waveguides of the directional coupler when βaL =

βbL is shown in Fig. 2.10(a). Under this condition ∆βabL = 0 and the directional coupler is

considered synchronous, providing full transfer of power across the two waveguides at a

coupling length Lc. Detuning the two waveguides such that βaL ̸= βbL results in a shift in the

peak power transfer location and a reduced power transfer efficiency as seen in Fig. 2.10(b).

The magnitude of the waveguide-wavenumber detuning ∆βabL establishes the efficiency

of the power transfer between the two waveguides of the directional coupler and quickly

falls off as the waveguide-wavenumber detuning varies from zero as seen in Fig. 2.11 [68].

The total power transfer across waveguides is therefore a function of both the coupling

coefficient and the waveguide-wavenumber detuning.
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Figure 2.11 The maximum power transfer efficiency of a directional coupler peaks when the
waveguides are matched in wavenumber and quickly falls off as the magnitude of waveguide
wavenumber detuning ∆βabL increases. Maximum power transfer in this plot assumes the
structure is long enough to support at least one full evanescent-coupling cycle. This length
is called the coupling length Lc for the synchronous case.

2.9 Conclusion

The basic language of coupled-mode theory has been developed and the coupled-mode

equations for the grating reflector, the uniform-grating DFB laser, the contra-directional

coupler, and the directional coupler presented. Two methods of generating electric-field

expressions, the eigenvalue approach and the ansatz approach, were presented in detail.

Furthermore, closed-form parameterized waveguide power and transmittivity expressions

were generated for each structure.

The transmittivity expression were used to isolate the lasing thresholds for the uniform-

grating distributed feedback laser which was shown to result in a degenerate lasing mode

spectrum. Single-mode lasing behavior was achieved by introducing a λ/4-phase shift

element in the diffraction grating. Single-mode behavior was characterized by the quantity

of gain margin, capturing the difference in threshold gain between the fundamental and

secondary lasing modes of the structure, and longitudinal power profile flatness, capturing

the expected impact of spatial-hole burning on above-threshold lasing performance.
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The methods presented here leveraged in this dissertation on single-mode distributed

feedback lasing in coupled dissimilar photonic waveguides.
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3. Single-Mode DFB Lasing using

Photonic-Bandgap Alignment:

Theory

3.1 Introduction

This chapter presents a novel single-mode lasing mechanism which seeks to avoid the

diffraction grating’s λ/4-phase shift and its exacerbated nonlinear phase-shift problem.

This is accomplished by introducing a passive waveguide placed in proximity to a uniform

diffraction grating that is itself in proximity to an active waveguide, as depicted in Fig. 3.1(a).

Due to the presence of the diffraction grating, the proposed structure supports direct-

Bragg coupling within the modes of each waveguide as well as exchange-Bragg coupling

between the modes of both waveguides [65]. Through proper selection of waveguide-

wavenumber detuning, the exchange-Bragg PBG can be aligned to suppress the degenerate

mode associated with the direct-Bragg PBG of the active waveguide, resulting in single-

mode lasing.

Each of the three Bragg-coupling processes produces an associated PBG. Waveguide

A contains the active region for lasing, and therefore direct-Bragg coupling within A is

expected to exhibit strong, degenerate resonances on either side of its PBG. These degenerate

modes are suppresed by positioning the exchange-Bragg PBGχ and the waveguide B direct-
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Figure 3.1 Single-mode DFB lasing structure & mechanism. (a) Structure: a uniform
diffraction grating & active waveguide A, both of length L, plus a passive waveguide B.
(b) Mechanism: the exchange-Bragg photonic bandgap PBGχ and direct-Bragg photonic
bandgap PBGb suppress degenerate lasing modes belonging to direct-Bragg coupling in
active waveguide A.

Bragg PBGb, as shown in Fig. 3.1(b).

The required dual waveguide geometry and waveguide wavenumber detuning of our

proposed structure may be satisfied by integrated-photonic or silicon-photonic circuit process

designs. A DFB laser seeking to take advantage of exchange-Bragg coupling to provide both

optical feedback and power coupling across an active and passive waveguide pair was shown

to be compatible with a III-V laser stack and silicon-on-insulator (SOI) process, however,

no mathematical model was presented to capture the underlying physics of the structure and

a λ/4-phase shift was again required to achieve its single-mode lasing behavior [6], [7].

Previous analytical modeling works that include exchange-Bragg coupling primarily

focus on passive devices such as couplers [59], [60], [74], narrow-band reflectors [61], filters

[63], and optical add-drop multiplexers [65]. To date, no active-passive dual-waveguide

single-mode laser, which includes evanescent, direct-Bragg, and exchange-Bragg coupling,
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has been mathematically modeled and parameterized closed-form solutions provided. New

& unexplored analytic solutions for the 2-waveguide DFB structure having direct- and

exchange-Bragg coupling are herein developed allowing for the study of these key charac-

teristics.

Coupled-mode equations (CMEs) that include gain and the associated nonlinearity of the

active region are introduced for the novel single-mode lasing structure. Solutions to these

CMEs will allow for the study of key at-threshold lasing characteristics and behaviors. The

first portion of this chapter will assume evanescent coupling between waveguides is weak

and can be disregarded in order to simplify the presented CMEs and the associated solution

process. Neglecting evanescent coupling in the presence of exchange-Bragg coupling

assumes that the opposite transverse modes do not overlap significantly each opposing

waveguide, but do overlap significantly within the diffraction grating. Furthermore, the

structures required detuning of waveguide wavenumbers is assumed to be sufficiently large

to reduce the efficiency of evanescent coupling to a negligible level as discussed in Section

2.8. A new solution process will be presented which provides for electric-fields, longitudinal

power profiles, and transmittivity for the three-coupled structure.

Once a baseline set of CMEs and the associated closed-form solutions are developed for

the structure without evancesent coupling, evanescent coupling is then introduced and new

closed-form analytic solutions are derived to capture the complete coupling model of the

proposed four-coupled structure. Closed-form solutions can theoretically be provided for a

coupled-mode system up to and including the fourth-order; quintic (fifth-order) equations

and greater do not have closed-form roots using traditional algebraic methods [75]. It is

with this full model that the effects of exchange-Bragg coupling strength and evanescent

coupling strength will be explored in Chapter 4.
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Figure 3.2 Single-mode DFB lasing structure and coupling processes. Two direct-Bragg
coupling processes transfer power between modes of the same waveguide where the
exchange-Bragg coupling processes transfer power across counter-directional modes
in opposite waveguides. The Bragg coupling processed have the associated coupling
coefficients and photonic bandgaps as shown in the table. The modes for which power
transfer occurs under each coupling process is specified in “WG Modes”.

3.2 Coupled-Mode Equations without Evanescent

Coupling

The electric fields for the A and B waveguides of the structure shown in Fig. 3.2(a) are given

by:

EA(x,y,z, t) =
(

a+(z)eiβ̃ a
p z +a−(z)eiβ̃ a

−pz
)

ea(x,y)e−iωt , (3.1a)

EB(x,y,z, t) =
(

b+(z)eiβ̃ b
p z +b−(z)eiβ̃ b

−pz
)

eb(x,y)e−iωt , (3.1b)

where a±(z) and b±(z) are the longitudinally varying amplitudes in either waveguide for the

forward (+) and backward (−) propagating fields, β̃ a
p = β a

p − ig(1− iαH )/2+ iαa/2 and
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β̃ b
p = β b

p + iαb/2 are the associated complex-valued wavenumbers of the unperturbed modes,

β a
±p are the forward- and backward-propagating modes of associated with the A waveguide,

β b
±p are the forward- and backward-propagating modes of associated with the B waveguide,

g is the modal gain coefficient of the active region, αH is the semiconductor nonlinearity

of the active region made of semiconductor, αa and αb are the loss coefficients of either

waveguide, and ω is the angular frequency. Using βa = β a
p =−β a

−p and βb = β b
p =−β b

−p

gives:

EA(x,y,z, t) =
(

a+(z)eiβ̃az +a−(z)e−iβ̃az
)

ea(x,y)e−iωt , (3.2a)

EB(x,y,z, t) =
(

b+(z)eiβ̃bz +b−(z)e−iβ̃bz
)

eb(x,y)e−iωt , (3.2b)

where β̃a = βa− ig(1− iαH )/2+ iαa/2, β̃b = βb+ iαb/2, βa = 2πna/λ0 is the wavenumber

of the A waveguide, na is the effective refractive index of the A waveguide, βb = 2πnb/λ0 is

the wavenumber of the B waveguide, nb is the effective refractive index of the B waveguide,

and λ0 is the wavelength.

The quantities ea(x,y) and eb(x,y) are the unperturbed mode profiles for each waveguide

in isolation. It is assumed that the unperturbed modes match the actual mode profiles and

are approximately orthogonal. These approximations have allowed for insightful modeling

of passive structures having direct- and exchange-Bragg coupling [65].

Under these approximations, and using the techniques detailed in Section 2.5 and

Section 2.7 for the grating reflector and the contra-directional coupler, respectively, the

coupled-mode equations (CMEs) governing direct- and exchange-Bragg coupling between
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the longitudinally varying field amplitudes can be written as:

da+

dζ
= isgn(S+a )

(
κaL e−i2∆β̃aLζ a−+κχbaL e−i2∆β̃χ Lζ b−

)
, (3.3a)

db+

dζ
= isgn(S+b )

(
κχabL e−i2∆β̃χ Lζ a−+κbL e−i2∆β̃bLζ b−

)
, (3.3b)

da−

dζ
= isgn(S−a )

(
κaL ei2∆β̃aLζ a++κχbaL ei2∆β̃χ Lζ b+

)
, (3.3c)

db−

dζ
= isgn(S−b )

(
κχabL ei2∆β̃χ Lζ a++κbL ei2∆β̃bLζ b+

)
, (3.3d)

where the sgn function returns the sign associated with the direction of modal power flow,

ζ = z/L is the normalized longitudinal coordinate, κa and κb are the direct-Bragg coupling

coefficients of waveguide A and B, and κχab and κχba are the exchange-Bragg coupling

coefficients, as defined in Section 2.7, that accounts for counter propagating-mode coupling

between the waveguides. Executing the sgn function and moving the resulting sign to the

left-hand side provides:

da+

dζ
= iκaL e−i2∆β̃aLζ a−+ iκχbaL e−i2∆β̃χ Lζ b−, (3.4a)

db+

dζ
= iκχabL e−i2∆β̃χ Lζ a−+ iκbL e−i2∆β̃bLζ b−, (3.4b)

−da−

dζ
= iκaL ei2∆β̃aLζ a++ iκχbaL ei2∆β̃χ Lζ b+, (3.4c)

−db−

dζ
= iκχabL ei2∆β̃χ Lζ a++ iκbL ei2∆β̃bLζ b+, (3.4d)

The associated wavenumber detunings in terms of the Bragg wavenumber βΛ = π/Λ

and grating period Λ are:

∆β̃a = β̃a −βΛ = ∆βa −αH g/2− i(g−αa)/2, (3.5a)

∆β̃b = β̃b −βΛ = ∆βa −2∆βab + iαb/2, (3.5b)

∆β̃χ =
β̃a + β̃b

2
−βΛ = ∆βa −∆βab −

αH g
4

− i
g−αs

4
. (3.5c)
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where αs = αa+αb and each complex-valued detuning quantity has been expressed in terms

of 2 real-valued detuning quantities:

∆βa = βa −βΛ, ∆βab = (βa −βb)/2. (3.6)

A gain coefficient g appears only for the optical mode in active waveguide A, ensuring

that the PBG of direct-Bragg coupling in waveguide A exhibits the strongest resonances.

Loss coefficients αa and αb appear for the A and B waveguides respectively. In semicon-

ductor media, an increase in carrier density that drives an increase in gain also drives a

descrease in the refractive index, accounted for in Eq. (3.5a) by Henry’s alpha αH [4].

Evanescent coupling coefficient κe terms are excluded from the CMEs because asyn-

chronous operation (e.g., large ∆βabL) produces a phase mismatch that weakens evanescent

coupling efficiency [68], [73]. Evanescent coupling has been excluded for the study of

passive asynchronous structures exhibiting a maximal power coupling of up to 9% [73]. Our

structure meets a more severe coupling limit of 1% for κeL ≤ 0.23, a reasonable assumption

as the evanescent mode of either waveguide is assumed to extend only weakly into the

opposite waveguide. This assumption is removed in Section 4.

3.3 Analytic Solution without Evanescent Coupling

3.3.1 Fourth-Order CME Solutions

General Solution

Analytic solutions of the CMEs in Eq. (3.4) are found by substituting the ansatz (a,b)± =

(a0,b0)
± exp(iγ±

(a,b)Lζ ). Solving the resulting fourth-order characteristic polynomial drops

the (a0,b0)
± coefficients and yields the normalized quantities γ

±
(a,b)mL which can then be
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used to form the general solution:



â+(ζ )

b̂+(ζ )

â−(ζ )

b̂−(ζ )


=



a+1 a+2 a+3 a+4

b+1 b+2 b+3 b+4

a−1 a−2 a−3 a−4

b−1 b−2 b−3 b−4





eiΘ1ζ

eiΘ2ζ

eiΘ3ζ

eiΘ4ζ


, (3.7)

where (a,b)±m are complex-valued coefficients, m ∈ {1,2,3,4}, and γ
±
(a,b)mL = φ

±
(a,b)+Θm.

The field amplitudes have been written in a rotated frame (â, b̂)± = (a,b)±e−iφ±
(a,b)ζ , where

φ
±
a =±(−∆β̃abL−∆β̃χL), φ

±
b =±(∆β̃abL−∆β̃χL). (3.8)

The complex-valued wavenumber detuning ∆β̃ab is given by:

∆β̃ab =
β̃a − β̃b

2
= ∆βab −

αH g
4

− i
(g−αa +αb)

4
. (3.9)

The quantities Θm are found from the four roots of the characteristic polynomial [76]:

Θm =
Rm +Dm(−1)(m−1)

2
, (3.10a)

Rm = (−1)τm

√
1
4

p2 −q+ yc, (3.10b)

Dm =


√

3
4 p2 −R2

m −2q+ (−1)τm

4Rm
(4pq−8u− p3) Rm ̸= 0√

3
4 p2 −2q+2(−1)τm

√
y2

c −4v Rm = 0
, (3.10c)

where τm = ⌈m/2⌉−1. The root yc of the resolvent cubic is [76]:

yc =

(
q−ξ (n−1)E − ∆0

ξ (n−1)E

)
3

, (3.11a)

E =
3

√√√√∆1 +(−1)δ

√
∆2

1 −4∆3
0

2
, (3.11b)
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where n ∈ {1,2,3} is selected to provide the largest |yc|, ξ =−1
2 + i

√
3

2 , and δ ∈ {1,2} is

selected to provide the largest |E |. The ∆0 and ∆1 quantities are defined as [76]:

∆0 = q2 −3pu+12v, (3.12a)

∆1 =−2q3 −27(u2 + p2v)+9pqu+72qv. (3.12b)

The quantities p, q, u, and v are the coefficients of the fourth-order characteristic polynomial,

and can be written in terms of two detuning quantities ∆β̃ab and ∆β̃χ as:

p = (4∆β̃ab +4∆β̃χ)L, (3.13a)

q = (4∆β̃
2
ab +12∆β̃ab∆β̃χ +4∆β̃

2
χ +κ

2
a +κ

2
b +2κχabκχba)L2, (3.13b)

u = (8∆β̃
2
ab∆β̃χ +8∆β̃ab∆β̃

2
χ +2∆β̃abκ

2
a +2∆β̃abκ

2
b

+4∆β̃abκχabκχba +4∆β̃χκχabκχba +2∆β̃χκ
2
a +2∆β̃χκ

2
b )L

3,

(3.13c)

v = (4∆β̃
2
abκχabκχba +4∆β̃ab∆β̃χκ

2
a +4∆β̃ab∆β̃χκχabκχba

+κ
2
a κ

2
b −2κaκbκχabκχba +κ

2
χabκ

2
χba)L

4.

(3.13d)

Recast Using Reflection Coefficients

The solutions in Eq. (3.7) can be recast in terms of reflection coefficients:



â+(ζ )

b̂+(ζ )

â−(ζ )

b̂−(ζ )


=



1 rb+
c2 ra−

d3 rb−
χ4

ra+
c1 1 ra−

χ3 rb−
d4

ra+
d1 rb+

χ2 1 rb−
c4

ra+
χ1 rb+

d2 ra−
c3 1





a+1 eiΘ1ζ

b+2 eiΘ2ζ

a−3 eiΘ3ζ

b−4 eiΘ4ζ


, (3.14)
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where the reflection coefficients are given by:

rws
cm =

(b,a)±m
(a,b)±m

=
γs

wmγ s̄
wmκw̄ +κ2

wκw̄ −κwκχww̄κχw̄w

γ s̄
wmγs

w̄mκχw̄w −κwκw̄κχw̄w +κχww̄κ2
χw̄w

, (3.15a)

rws
dm =

(a,b)∓m
(a,b)±m

=
s̄γs

wmκw̄κχw̄w + s̄γs
w̄mκwκχw̄w

γ s̄
wmγs

w̄mκχw̄w −κwκw̄κχw̄w +κχww̄κ2
χw̄w

, (3.15b)

rws
χm =

(b,a)∓m
(a,b)±m

=
sγs

wmγ s̄
wmγ s̄

w̄m + sγs
w̄mκ2

w + sγs
wmκχww̄κχw̄w

γ s̄
wmγs

w̄mκχw̄w −κwκw̄κχw̄w +κχww̄κ2
χw̄w

, (3.15c)

Each reflection coefficient is a ratio of two (a,b)±m coefficients and has been written in terms

of a sign s ∈ {+,−} and an amplitude identifier w ∈ {am,bm}. The values of s̄ and w̄ in

Eqs. (3.15) are the opposite element of the respective set.

3.3.2 Electric-Field Expressions

To study lasing, the analytic solutions provided by Eq. (3.14) are made to satisfy the boundary

conditions â−(1) = 0, b̂+(0) = 0, and b̂−(1) = 0 under the assumption that facet reflections

are negligible; â+(0) is designated as the reference non-zero input field amplitude value.

Applying these boundary conditions yields:



â+(0)

0

0

0


=



1 rb+
c2 ra−

d3 rb−
χ4

ra+
c1 1 ra−

χ3 rb−
d4

ra+
d1 eiΘ1 rb+

χ2 eiΘ2 eiΘ3 rb−
c4 eiΘ4

ra+
χ1 eiΘ1 rb+

d2 eiΘ2 ra−
c3 eiΘ3 eiΘ4





a+1

b+2

a−3

b−4


. (3.16)
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Using the lower three expressions of equation above, the coefficients a+1 , b+2 , and a−3 can be

written in terms of b−4 :

a+1 =
(

Ω(2,3)(r
b+
χ2 ra−

c3 rb−
d4 − rb+

d2 rb−
d4 )+Ω(2,4)(r

b+
d2 ra−

χ3 rb−
c4 − rb+

χ2 ra−
χ3 )

−Ω(3,4)(r
a−
c3 rb−

c4 −1)
)
(−1)U−1b−4 = Γ1b−4 ,

(3.17a)

b+2 =
(

Ω(1,3)(r
a+
d1 ra−

c3 rb−
d4 − ra+

χ1 rb−
d4 )+Ω(1,4)(r

a+
χ1 ra−

χ3 rb−
c4 − ra+

d1 ra−
χ3 )

−Ω(3,4)(r
a+
c1 ra−

c3 rb−
c4 − ra+

c1 )
)

U−1b−4 = Γ2b−4 ,
(3.17b)

a−3 =
(

Ω(1,2)(r
a+
d1 rb+

d2 rb−
d4 − ra+

χ1 rb+
χ2 rb−

d4 )+Ω(1,4)(r
a+
χ1 rb−

c4 − ra+
d1 )

−Ω(2,4)(r
a+
c1 rb+

d2 rb−
c4 − ra+

c1 rb+
χ2 )

)
(−1)U−1b−4 = Γ3b−4 ,

(3.17c)

U = Ω(1,2)(r
a+
d1 rb+

d2 ra−
χ3 − ra+

χ1 rb+
χ2 ra−

χ3 )

+Ω(2,3)(r
a+
c1 rb+

χ2 ra−
c3 − ra+

c1 rb+
d2 )−Ω(1,3)(r

a+
d1 ra−

c3 − ra+
χ1 ),

(3.17d)

where Ω(a,b) = ei(Θa+Θb). Using the equations above, the analytic solutions in Eq. (3.14)

can be simplified as:



â+(ζ )

b̂+(ζ )

â−(ζ )

b̂−(ζ )


= b−4



1 rb+
c2 ra−

d3 rb−
χ4

ra+
c1 1 ra−

χ3 rb−
d4

ra+
d1 rb+

χ2 1 rb−
c4

ra+
χ1 rb+

d2 ra−
c3 1





Γ1eiΘ1ζ

Γ2eiΘ2ζ

Γ3eiΘ3ζ

eiΘ4ζ


= b−4



f̂+a (ζ )

f̂+b (ζ )

f̂−a (ζ )

f̂−b (ζ )


. (3.18)

3.3.3 Power, Transmittivity, and Reflectivity Expressions

The power of each unidirectional field along ζ is given by:

P±
a (ζ ) = |a±(ζ )e±iβ̃aLζ |2 = |â±(ζ )ei(φ±

a ±β̃aL)ζ |2 = |â±(ζ )|2, (3.19a)

P±
b (ζ ) = |b±(ζ )e±iβ̃bLζ |2 = |b̂±(ζ )ei(φ±

b ±β̃bL)ζ |2 = |b̂±(ζ )|2. (3.19b)
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To eliminate the unknown coefficient b−4 , each power expression is normalized by a reference

power P+
a (1):

P±
(a,b)(ζ ) =

P±
(a,b)(ζ )

P+
a (1)

=
|b−4 |2| f̂

±
(a,b)(ζ )|

2

|b−4 |2| f̂
+
a (1)|2

=
| f̂±
(a,b)(ζ )|

2

| f̂+a (1)|2
. (3.20)

The normalized longitudinal power in each waveguide is the sum of the associated counter-

propagating powers [4], [5], [35] :

PA(ζ ) = P+
a (ζ )+P−

a (ζ ) and PB(ζ ) = P+
b (ζ )+P−

b (ζ ). (3.21)

Lasing threshold and gain margin can be determined via the transmittivity or reflectivity

through any pair of ports; the transmittivity Ta through waveguide A is given by:

Ta = P+
a (1)/P+

a (0) = |â+(1)|2/|â+(0)|2 = | f̂+a (1)|2/| f̂+a (0)|2. (3.22)

3.4 Coupled-Mode Equations with Evanescent

Coupling

Evanescent coupling, which may occur between the active and passive waveguides, is

not necessary to form the photonic bandgaps that govern lasing behavior of the proposed

structure. Although this kind of coupling may occur in principle, it was argued in the

previous section that it can be neglected due to poor transverse-field overlap in either

waveguide and due to the required asynchronous operation (i.e., wavenumber mismatch)

[50]. This bound is realized for coupling values of κeL ≤ 0.25 and ∆βabL ≥ 5. In general,

evanescent coupling values which are greater than 0.25 should be accounted for when

modeling lasing behaviors. In this section, the CMEs are extended to include evanescent

coupling as shown in Fig. 3.3, and then execute a full closed-form solution derivation,

81



CHAPTER 3. SINGLE-MODE DFB LASING USING PHOTONIC-BANDGAP ALIGNMENT:
THEORY

Figure 3.3 The single-mode DFB lasing structure and coupling processes with evanescent
coupling included. The Bragg based coupling processes remain unchanged but evanescent
coupling is now included in the model shown by the green arrows. Evanescent coupling
transfers power between co-diretional modes across waveguides and does not have an
associated photonic bandgap.

ultimately, to ascertain its impact on lasing properties.

The electric fields EA and EB for light in the active waveguide A and passive waveguide

B, respectively, are given by:

EA(x,y,z, t) =
(

a+(z)eiβ̃ a
p z +a−(z)eiβ̃ a

−pz
)

ea(x,y)e−iωt , (3.23a)

EB(x,y,z, t) =
(

b+(z)eiβ̃ b
p z +b−(z)eiβ̃ b

−pz
)

eb(x,y)e−iωt , (3.23b)

where (a,b)± are the forward (+) and backward (-) slowly varying amplitudes in either

waveguide, β̃ a
±p are the complex wavenumbers for the forward- and backwards-propagating

modes for the A waveguide, and β̃ b
±p are the complex wavenumbers for the forward- and

backwards-propagating modes for the B waveguide, as defined in Eq. 3.2. The time depen-

82



CHAPTER 3. SINGLE-MODE DFB LASING USING PHOTONIC-BANDGAP ALIGNMENT:
THEORY

dence is expressed using the angular frequency ω = 2πc/λ , where c is the speed of light in

vacuum.

Making the substitutions βa ≡ β a
p =−β a

−p and βb ≡ β b
p =−β b

−p where βa = 2πna/λ0 is

the wavenumber of the A waveguide, na is the effective refractive index of the A waveguide,

βb = 2πnb/λ0 is the wavenumber of the B waveguide, nb is the effective refractive index of

the B waveguide, and λ0 is the wavelength, yields:

EA(x,y,z, t) =
(

a+(z)eiβ̃az +a−(z)e−iβ̃az
)

ea(x,y)e−iωt , (3.24a)

EB(x,y,z, t) =
(

b+(z)eiβ̃bz +b−(z)e−iβ̃bz
)

eb(x,y)e−iωt , (3.24b)

The transverse mode profiles ea(x,y) and eb(x,y) express the shape of the optical mode

in waveguides A and B, respectively, over the transverse dimensions x and y. These mode

profiles are the fundamental modes of either waveguide and their shapes are assumed to be

unperturbed in the presence of the diffraction grating and opposite waveguide. Moreover,

these structural perturbations are assumed not to erode the orthogonality of the mode profiles,

an approximation that has historically been used to model physical systems and structures

which include evanescent, direct-, and exchange-Bragg coupling [50], [65].

Using the techniques detailed in Section 2.5 for the grating reflector, Section 2.7 for

the contra-directional coupler, and Section 2.8 for the directional coupler, the coupled-

mode equations (CMEs) governing direct-Bragg, exchange-Bragg, and evanescent coupling

processes between the four longitudinally varying field amplitudes (a,b)± can be written as:
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da+

dζ
= isgn(S+a )

(
b+κbaLe−i2∆β̃abLζ +a−κaLe−i2∆β̃aLζ

+b−κχbaLe−i2∆β̃χ Lζ

)
,

(3.25a)

db+

dζ
= isgn(S−a )

(
a+κabLei2∆β̃abLζ +a−κχabLe−i2∆β̃χ Lζ

+b−κbLe−i2∆β̃bLζ

)
,

(3.25b)

−da−

dζ
= isgn(S+b )

(
a+κaLei2∆β̃aLζ +b+κχbaLei2∆β̃χ Lζ

+b−κbaLei2∆β̃abLζ

)
,

(3.25c)

−db−

dζ
= isgn(S−b )

(
a+κχabLei2∆β̃χ Lζ +b+κbLei2∆β̃bLζ

+a−κabLe−i2∆β̃abLζ

)
,

(3.25d)

where the sgn function returns the sign associated with the direction of modal power flow,

L is the length of the coupling region and active region, and ζ = z/L is the normalized

longitudinal position. Evaluating the sgn function and moving the resulting sign to the

left-hand side results in:

da+

dζ
= ib+κbaLe−i2∆β̃abLζ + ia−κaLe−i2∆β̃aLζ

+ ib−κχbaLe−i2∆β̃χ Lζ ,

(3.26a)

db+

dζ
= ia+κabLei2∆β̃abLζ + ia−κχabLe−i2∆β̃χ Lζ

+ ib−κbLe−i2∆β̃bLζ ,

(3.26b)

−da−

dζ
= ia+κaLei2∆β̃aLζ + ib+κχbaLei2∆β̃χ Lζ

+ ib−κbaLei2∆β̃abLζ ,

(3.26c)

−db−

dζ
= ia+κχabLei2∆β̃χ Lζ + ib+κbLei2∆β̃bLζ

+ ia−κabLe−i2∆β̃abLζ ,

(3.26d)
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Each term of each derivative function couples a slowly varying amplitude via a coupling

coefficient and complex wavenumber detuning. The latter are defined as

∆β̃a = β̃a −βΛ = ∆βa −αH g/2− i(g−αa)/2, (3.27a)

∆β̃χ =
β̃a + β̃b

2
−βΛ = ∆βa −∆βab −

αH g
4

− i
g−αs

4
(3.27b)

∆β̃b = β̃b −βΛ = ∆βa −2∆βab + iαb/2, (3.27c)

where αs = αa +αb.

Using the complex-detuning definitions of Eq. (3.27), the interrelationships between the

complex-detuning values is found as

∆β̃aL+∆β̃bL = 2∆β̃χL, (3.28)

In the CMEs, κa and κb are the coupling coefficients of direct-Bragg coupling within

the A and B waveguides, respectively, κχab and κχba are the exchange-Bragg coupling

coefficients for counter-directional coupling into and out of waveguide B, respectively,

and κab and κba are the evanescent coupling coefficients for co-directional coupling into

and out of waveguide B, respectively. In this work, the coupling coefficients are treated

phenomenologicaly and do not calculate them from specific perturbation values & shapes

with specific shapes of transverse mode profiles. Nonetheless, the equations for various

coupling coefficients are instructive, and were provided in the sections above, showing that

the coupling coefficients for evanescent coupling, direct-Bragg coupling, and exchange-

Bragg coupling can all be different. This study assumes a specific range of values can be

achieved.
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3.5 Analytic Solution with Evanescent Coupling

3.5.1 Fourth-order CME Solutions

The Ansatz

To analytically solve the CMEs of Eq. (3.26), a set of viable slowly varying envelope

solutions are assumed to take the form:

(a,b)±(ζ ) = (a,b)±0 eiγ±
(a,b)ζ , (3.29)

where (a,b)±0 are four unknown complex-valued coefficients and γ
±
(a,b) are four unknown

complex-valued quantities that reside in the ζ -dependent exponential function.
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Complex-Exponent Relationships

Substituting the ansatz Eq. (3.29) into the CMEs of Eq. (3.26) generates four expressions:

γ
+
a a+0 = b+0 κbaLe−i(2∆β̃abL−γ

+
b +γ+a )ζ

+a−0 κaLe−i(2∆β̃aL−γ−a +γ+a )ζ

+b−0 κχbaLe−i(2∆β̃χ L−γ
−
b +γ+a )ζ ,

(3.30a)

γ
+
b b+0 = a+0 κabLei(2∆β̃abL+γ+a −γ

+
b )ζ

+a−0 κχabLe−i(2∆β̃χ L−γ−a +γ
+
b )ζ

+b−0 κbLe−i(2∆β̃bL−γ
−
b +γ

+
b )ζ ,

(3.30b)

−γ
−
a a−0 = a+0 κaLei(2∆β̃aL+γ+a −γ−a )ζ

+b+0 κχbaLei(2∆β̃χ L+γ
+
b −γ−a )ζ

+b−0 κbaLei(2∆β̃abL+γ
−
b −γ−a )ζ ,

(3.30c)

−γ
−
b b−0 = a+0 κχabLei(2∆β̃χ L+γ+a −γ

−
b )ζ

+b+0 κbLei(2∆β̃bL+γ
+
b −γ

−
b )ζ

+a−0 κabLe−i(2∆β̃abL−γ−a +γ
−
b )ζ .

(3.30d)

Since the left-hand side of each expression is independent of ζ , each of the six unique

complex-exponents of Eq. (3.30) must equal zero for the expressions to be valid for all

values of ζ :

2∆β̃abL+ γ
+
a − γ

+
b = 0, 2∆β̃abL+ γ

−
b − γ

−
a = 0, (3.31a)

2∆β̃aL+ γ
+
a − γ

−
a = 0, 2∆β̃bL+ γ

+
b − γ

−
b = 0, (3.31b)

2∆β̃χL+ γ
+
a − γ

−
b = 0, 2∆β̃χL+ γ

+
b − γ

−
a = 0. (3.31c)

This same logic has been used for sets of two CMEs [68], and is extended for the provided

set of four CMEs.
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Linear Frame Expression

The conditions above eliminate the exponential functions of Eq. (3.30), resulting in four

ζ -independent algebraic equations:

γ
+
a a+0 = κbaLb+0 +κaLa−0 +κχbaLb−0 , (3.32a)

γ
+
b b+0 = κabLa+0 +κχabLa−0 +κbLb−0 , (3.32b)

−γ
−
a a−0 = κaLa+0 +κχbaLb+0 +κbaLb−0 , (3.32c)

−γ
−
b b−0 = κχabLa+0 +κbLb+0 +κabLa−0 . (3.32d)

The Matrix Expression

By combining the expressions in Eq. (3.31) with the interrelations among complex-valued

detuning quantities in Eq. (3.28), it is found that any of the four complex-valued exponents

γ can then expressed in terms of another exponent. Thus, solving for γ+a yields all other

exponents via:

γ
+
b = γ

+
a +2∆β̃abL, (3.33a)

γ
−
a = γ

+
a +2∆β̃abL+2∆β̃χL, (3.33b)

γ
−
b = γ

+
a +2∆β̃χL. (3.33c)

Using the complex-exponent relationships of Eq. (3.33), the four linear equations in

Eq. (3.32) can be written in one complex exponent γ+a as

A⃗x = 0 (3.34)
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where,

A=



γ+a −κbaL −κaL −κχbaL

−κabL γ+a +2∆β̃abL −κχabL −κbL

κaL κχbaL γ+a +2∆β̃χL+2∆β̃abL κbaL

κχabL κbL κabL γ+a +2∆β̃χL


, (3.35)

and

x⃗ =
[

a+0 b+0 a−0 b−0

]†

, (3.36)

where † represents the transpose.

Characteristic Polynomial

Non-trivial solutions to the matrix expression A⃗x = 0 occur if and only if detA= 0. This was

performed for a set of 2 CMEs [68], and has been extended here to the novel set of 4 CMEs.

For this case, the determinant expressions forms fourth-order characteristic polynomial in

γ+a as:

detA≡ γ
+4
a + pγ

+3
a +qγ

+2
a +uγ

+
a + v = 0, (3.37)
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where the polynomial coefficients are found, after some work, to be

p = (4∆β̃ab +4∆β̃χ) L, (3.38a)

q = (4∆β̃
2
ab +12∆β̃ab∆β̃χ +4∆β̃

2
χ

−2κabκba +κ
2
a +κ

2
b +2κχabκχba) L2,

(3.38b)

u = (8∆β̃
2
ab∆β̃χ +8∆β̃ab∆β̃

2
χ +2∆β̃abκ

2
a +2∆β̃abκ

2
b

+4∆β̃abκχabκχba −4∆β̃abκabκba −4∆β̃χκabκba +4∆β̃χκχabκχba

+2∆β̃χκ
2
a +2∆β̃χκ

2
b ) L3,

(3.38c)

v = (4∆β̃
2
abκχabκχba −4∆β̃ab∆β̃χκabκba +4∆β̃ab∆β̃χκ

2
a

+4∆β̃ab∆β̃χκχabκχba −2∆β̃abκabκaκχba +2∆β̃abκabκbκχba

−2∆β̃abκbaκaκχab +2∆β̃abκbaκbκχab −4∆β̃
2
χκabκba

+2∆β̃χκabκaκχba +2∆β̃χκabκbκχba +2∆β̃χκbaκaκχab

+2∆β̃χκbaκbκχab +κ
2
abκ

2
ba −κ

2
abκ

2
χba −2κabκbaκaκb

−κ
2
baκ

2
χab +κ

2
a κ

2
b −2κaκbκχabκχba +κ

2
χabκ

2
χba) L4.

(3.38d)

Root Solutions

Root expressions for polynomials of degree four or less can be found in closed-form

[76]. The fourth-order polynomial in Eq. (3.37) has four roots γ+am ∀ m ∈ {1,2,3,4}. The

polynomial root expressions are of the form

γ
+
am = φ

+
a +Θm (3.39)

where φ+
a is common across each of the four roots defining a complex axis of symmetry

or rotation. The unique component Θm of each of the four roots establishes its complex

position relative to the common rotation φ+
a . Roots of this form allow complex-exponent

solutions to be developed in a rotated frame by factoring out φ+
a and solving for solutions in
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Θm.

Calculating the roots in the required form provides the common rotation φ+
a as

φ
+
a =−

(
∆β̃abL+∆β̃χL

)
(3.40)

with the four unique values of Θm in terms of the characteristic-polynomial coefficients

p,q,u, and v being:

Θm =
Rm +Dm(−1)(m−1)

2
, (3.41a)

Rm = (−1)τm

√
1
4

p2 −q+ yc, (3.41b)

Dm =


√

3
4 p2 −R2 −2q+ (−1)τm

4Rm
(4pq−8u− p3) Rm ̸= 0√

3
4 p2 −2q+2(−1)τm

√
y2

c −4v Rm = 0
, (3.41c)

where τm = ⌈m/2⌉−1. The value yc is the root of the resolvent cubic:

yc =−1
3

(
−q+ξ

(n−1)E +
∆0

ξ (n−1)E

)
, (3.42a)

E =
3

√√√√∆1 +(−1)δ

√
∆2

1 −4∆3
0

2
, (3.42b)

where n ∈ {1,2,3} is selected to provide the largest |yc|. The value ξ = ei3π/2 is the first

complex cube-root of 1. The exponent δ ∈ {1,2} is selected so as to provide the largest |E |.

Each of the quantities ∆0 and ∆1 are defined using Cardano’s method as:

∆0 = q2 −3pu+12v, (3.43a)

∆1 =−2q3 −27(u2 + p2v)+9pqu+72qv. (3.43b)
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The Complex Exponents

Each of the 12 remaining members of the 16-member set of complex exponents γ
±
(a,b)m

can

be found using the complex-exponent relationships in Eq. (3.33). The complex-exponent

relationship offsets the common rotation of γ+a to a new rotation while leaving the unique

root component Θm unchanged. The complete set of 16 complex exponents are

γ
+
am =−

(
∆β̃abL+∆β̃χL

)
+Θm = φ

+
a +Θm, (3.44a)

γ
+
bm =

(
∆β̃abL−∆β̃χL

)
+Θm = φ

+
b +Θm, (3.44b)

γ
−
am =

(
∆β̃abL+∆β̃χL

)
+Θm = φ

−
a +Θm, (3.44c)

γ
−
bm =−

(
∆β̃abL−∆β̃χL

)
+Θm = φ

−
b +Θm. (3.44d)

The complex exponents generate four groups of four unique kernels in each group

exp(iγ±
(a,b)m

ζ ) where each groups kernels satisfy the associated slowly varyting envelop

(a,b)±(ζ ) as a solution to the CMEs in Eqs. (3.26).

General Solution

Generalized solutions for each slow-moving envelope (a,b)±(ζ ), are comprised of the

weighted sum of the four kernels in the associated group. These general solutions are

a+(ζ ) = a+1 eiγ+a1ζ +a+2 eiγ+a2ζ +a+3 eiγ+a3ζ +a+4 eiγ+a4ζ , (3.45a)

b+(ζ ) = b+1 eiγ+b1ζ +b+2 eiγ+b2ζ +b+3 eiγ+b3ζ +b+4 eiγ+b4ζ , (3.45b)

a−(ζ ) = a−1 eiγ−a1ζ +a−2 eiγ−a2ζ +a−3 eiγ−a3ζ +a−4 eiγ−a4ζ , (3.45c)

b−(ζ ) = b−1 eiγ−b1ζ +b−2 eiγ−b2ζ +b−3 eiγ−b3ζ +b−4 eiγ−b4ζ . (3.45d)
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Rotated Frames

The general solutions can be written in a rotated frame by dividing both sides of Eq. (3.45)

by its associated common rotation exponent exp(iφ±
(a,b)). The result is a set of general

solutions in a rotated frame, shown here in matrix notation:



â+(ζ )

b̂+(ζ )

â−(ζ )

b̂−(ζ )


=



a+1 a+2 a+3 a+4

b+1 b+2 b+3 b+4

a−1 a−2 a−3 a−4

b−1 b−2 b−3 b−4





eiΘ1ζ

eiΘ2ζ

eiΘ3ζ

eiΘ4ζ


, (3.46)

where (a,b)±m are unknown coefficients to be determined using boundary conditions and

(â, b̂)± = (a,b)±e−iφ±
(a,b)ζ . (3.47)

The longitudinal component of the electric-field expressions in Eqs. (3.24) can be rewritten

in the rotated frames as:

EA(ζ ) = â+(ζ )ei(β̃aL+φ+
a )ζ + â−(ζ )e−i(β̃aL−φ−

a )ζ , (3.48a)

EB(ζ ) = b̂+(ζ )ei(β̃bL+φ
+
b )ζ + b̂−(ζ )e−i(β̃bL−φ

−
b )ζ . (3.48b)

Rotated CMEs

A new set of rotated-frame coupled-mode equations is found by passing the rotated frames

in Eq. (3.47) through the original coupled-mode equations in Eqs. (3.26). The common-

rotation of the rotated frame causes each of the exponent expressions of the original CMEs
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to drop out, leaving a set of four linear coupled-mode equations in the rotated frame:

dâ+

dζ
=−iâ+φ

+
a + ib̂+κbaL+ iâ−κaL+ ib̂−κχbaL, (3.49a)

db̂+

dζ
= iâ+κabL− ib̂+φ

+
b + iâ−κχabL+ ib̂−κbL, (3.49b)

−dâ−

dζ
= iâ+κaL+ ib̂+κχbaL+ iâ−φ

−
a + ib̂−κbaL, (3.49c)

−db̂−

dζ
= iâ+κχabL+ ib̂+κbL+ iâ−κabL+ ib̂−φ

−
b . (3.49d)

Reflection Coefficients

The general solutions in the rotated frame of Eq. (3.46) are applied to the rotated-frame

CMEs of Eq. (3.49) producing four expressions with each expression written in terms of the

four rotated-frame kernels eiΘmζ .

Collecting terms from like exponents generates sixteen linear expressions relating the

sixteen unknown coefficients (a,b)±m of the rotated-frame general solution to the known

values of κaL,κbL,κχabL,κχbaL, and γ
±
(a,b)m:

γ
+
ama+m = b+mκbaL+a−mκaL+b−mκχbaL, (3.50a)

γ
+
bmb+m = a+mκabL+a−mκχabL+b−mκbL, (3.50b)

−γ
−
ama−m = a+mκaL+b+mκχbaL+b−mκbaL, (3.50c)

−γ
−
bmb−m = a+mκχabL+b+mκbL+a−mκabL. (3.50d)

Creating four sets of four equations, each set in terms of an index m, allows for the

solution of any coefficient ws
m, where w ∈ (a,b) and s ∈ (+,−), in terms of a selected

coefficient for that set. The selected coefficient for each set m is determined as the coefficient

indexed by m in Cm ∈ {a+1 ,b
+
2 ,a

−
3 ,b

−
4 }, being the diagonal of Eq. (3.46). The reflection
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coefficients for a set of equations indexed by m are found as the ratio of each coefficient to

the selected coefficient of the set:

rws
cm =

w̄s
m

ws
m
, rws

dm =
ws̄

m
ws

m
, rws

χm =
w̄s̄

m
ws

m
. (3.51)

The values w and s are determined from the selected coefficient which appears in the

denominator of every reflection coefficient. The quantities w̄ and s̄ are determined as the

opposite set element identifier of the selected coefficient. For example, the first selected

coefficient from C is a+1 implying w = a, w̄ = b,s =+, and s̄ =−.

To form these ratios only twelve of the sixteen expressions are required. This implies

there are four equivalent forms for each of the twelve reflection coefficients r for a total of

forty-eight unique expressions. Due to the equivalency of each form, the following set of

twelve coefficients has been selected for this work, though any of the other three sets would

produce identical results:

rws
cm =

(
γ

s
wmγ

s̄
wmκw̄ + s̄γ

s
wmκw̄wκχww̄ + sγ

s̄
wmκww̄κχw̄w

−κw̄wκww̄κw +κ
2
wκw̄ −κwκχww̄κχw̄w

)
V−1,

(3.52a)

rws
dm =

(
−γ

s
wmγ

s
w̄mκw̄w + s̄γ

s
wmκw̄κχw̄w + s̄γ

s
w̄mκwκχw̄w

+κww̄κ
2
ww̄ −κww̄κ

2
χw̄w −κw̄wκw̄κw

)
V−1,

(3.52b)

rws
χm =

(
sγ

s
wmγ

s̄
wmγ

s̄
w̄m + s̄γ

s̄
wmκww̄κw̄w + sγ

s
w̄mκ

2
w

+sγ
s
wmκχww̄κχw̄w +κw̄wκwκχww̄ +κww̄κwκχw̄w

)
V−1,

(3.52c)

V = γ
s̄
wmγ

s
w̄mκχw̄w + sγ

s̄
wmκw̄wκw + s̄γ

s
w̄mκw̄wκw

−κ
2
w̄wκχww̄ −κwκw̄κχw̄w +κχww̄κ

2
χw̄w

(3.52d)

Using the reflection coefficients of Eqs. (3.52), the rotated-frame general solutions of
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Eqs. (3.46) can be written in four unknowns as:



â+(ζ )

b̂+(ζ )

â−(ζ )

b̂−(ζ )


=



1 rb+
c2 ra−

d3 rb−
χ4

ra+
c1 1 ra−

χ3 rb−
d4

ra+
d1 rb+

χ2 1 rb−
c4

ra+
χ1 rb+

d2 ra−
c3 1





a+1 eiΘ1ζ

b+2 eiΘ2ζ

a−3 eiΘ3ζ

b−4 eiΘ4ζ


. (3.53)

Interrelations among a+1 , b+2 , a−3 , and a−4

Interrelations among the constant coefficients a+1 , b+2 , a−3 , and a−4 are found by applying the

boundary conditions that light is only injected into the a+1 (0), and thus b̂+(0) = 0, â−(1) = 0

and b̂−(1) = 0 where â+(0). These boundary conditions assume that facet reflections are

negligible. Substituting these boundary conditions into (3.53) yields



â+(0)

0

0

0


=



1 rb+
c2 ra−

d3 rb−
χ4

ra+
c1 1 ra−

χ3 rb−
d4

ra+
d1 eiΘ1 rb+

χ2 eiΘ2 eiΘ3 rb−
c4 eiΘ4

ra+
χ1 eiΘ1 rb+

d2 eiΘ2 ra−
c3 eiΘ3 eiΘ4





a+1

b+2

a−3

b−4


, (3.54)

where the rotated-frame kernels Θm, evaluated at their respective boundary points, have

been pulled into the reflection coefficient matrix.

Non-zero values of â+(0) allow for the study of the structures transmittivity behavior

as it approaches lasing. The value of â+(0) will become zero when lasing conditions are

satisfied (i.e. transmittivity becomes infinite).

The lower three expressions of Eq. (3.54) are used to resolve three of our four remaining

unknown coefficients. The coefficients a+1 , b+2 and a−3 are expressed in terms of the one

remaining unknown coefficient b−4 as

a+1 = Γ1b−4 , b+2 = Γ2b−4 , a−3 = Γ3b−4 , (3.55)
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where

Γ1 =
(

σ(2,3)(r
b+
χ2 ra−

c3 rb−
d4 − rb+

d2 rb−
d4 )+σ(2,4)(r

b+
d2 ra−

χ3 rb−
c4 − rb+

χ2 ra−
χ3 )

−σ(3,4)(r
a−
c3 rb−

c4 −1)
)
(−1)η−1,

(3.56a)

Γ2 =
(

σ(1,3)(r
a+
d1 ra−

c3 rb−
d4 − ra+

χ1 rb−
d4 )+σ(1,4)(r

a+
χ1 ra−

χ3 rb−
c4 − ra+

d1 ra−
χ3 )

−σ(3,4)(r
a+
c1 ra−

c3 rb−
c4 − ra+

c1 )
)

η
−1,

(3.56b)

Γ3 =
(

σ(1,2)(r
a+
d1 rb+

d2 rb−
d4 − ra+

χ1 rb+
χ2 rb−

d4 )+σ(1,4)(r
a+
χ1 rb−

c4 − ra+
d1 )

−σ(2,4)(r
a+
c1 rb+

d2 rb−
c4 − ra+

c1 rb+
χ2 )

)
(−1)η−1,

(3.56c)

η = σ(1,2)(r
a+
d1 rb+

d2 ra−
χ3 − ra+

χ1 rb+
χ2 ra−

χ3 )+σ(2,3)(r
a+
c1 rb+

χ2 ra−
c3 − ra+

c1 rb+
d2 )

−σ(1,3)(r
a+
d1 ra−

c3 − ra+
χ1 ),

(3.56d)

and σ( j,k) = ei(Θ j+Θk).

3.5.2 Electric-Field Expressions

The rotated-frame slowly varying amplitudes of Eq. (3.53) can be written in terms of the

single unknown b−4 using the expressions shown in Eq. (3.55) as



â+(ζ )

b̂+(ζ )

â−(ζ )

b̂−(ζ )


= b−4



1 rb+
c2 ra−

d3 rb−
χ4

ra+
c1 1 ra−

χ3 rb−
d4

ra+
d1 rb+

χ2 1 rb−
c4

ra+
χ1 rb+

d2 ra−
c3 1





Γ1eiΘ1ζ

Γ2eiΘ2ζ

Γ3eiΘ3ζ

eiΘ4ζ


= b−4



f̂+a (ζ )

f̂+b (ζ )

f̂−a (ζ )

f̂−b (ζ )


. (3.57)

Each of the unidirectional quantities f±
(a,b) are closed form and are comprised of complex

detunings and coupling coefficients.
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3.5.3 Power, Transmittivity, and Reflectivity Expressions

Unidirectional Power Expressions

The power associated with each unidirectional slowly varying amplitudes a±(ζ ) and b±(ζ )

is given by

P±
a (ζ ) = |a±(ζ )e±iβ̃aLζ |2 = |â±(ζ )ei(±β̃aL+φ±

a )ζ |2 = |â±(ζ )|2, (3.58a)

P±
b (ζ ) = |b±(ζ )e±iβ̃bLζ |2 = |b̂±(ζ )ei(±β̃bL+φ

±
b )ζ |2 = |b̂±(ζ )|2. (3.58b)

Normalizing each power expression by the reference value P+
a (1) eliminates the unknown

coefficient b−4 :

P±
(a,b)(ζ ) =

P±
(a,b)(ζ )

P+
a (1)

=
|b−4 |2| f̂

±
(a,b)(ζ )|

2

|b−4 |2| f̂
+
a (1)|2

=
| f̂±
(a,b)(ζ )|

2

| f̂+a (1)|2
. (3.59)

With this final normalization, all unknown coefficients have been removed from the analytic

solution to the CMEs.

Longitudinal Waveguide Power Expressions

The normalized longitudinal power in the A and B waveguides is the sum of the respective

waveguides counter-propagating unidirectional powers shown in Eq. (3.59):

PA(ζ ) = P+
a (ζ )+P−

a (ζ ) and PB(ζ ) = P+
b (ζ )+P−

b (ζ ). (3.60)

Transmittivity and Reflectivity

The structure of Fig. 3.1 has two transmittivity values and two reflectivity values. All four

quantities are ratios of an output unidirectional power with respect to the input unidirectional

power P+
a (0) = |â+(0)|2 as discussed in the sections above. For this work, transmittivity

98



CHAPTER 3. SINGLE-MODE DFB LASING USING PHOTONIC-BANDGAP ALIGNMENT:
THEORY

captures the forward-propagating power ratios while reflectivity captures the backward-

propagating powers ratios as

Ta =
P+

a (1)
P+

a (0)
=

|â+(1)|2

|â+(0)|2
=

| f̂+a (1)|2

| f̂+a (0)|2
, (3.61a)

Tb =
P+

b (1)
P+

a (0)
=

|b̂+(1)|2

|â+(0)|2
=

| f̂+b (1)|2

| f̂+a (0)|2
, (3.61b)

Ra =
P−

a (0)
P+

a (0)
=

|â−(0)|2

|â+(0)|2
=

| f̂−a (0)|2

| f̂+a (0)|2
, (3.61c)

Rb =
P−

b (0)
P+

a (0)
=

|b̂−(0)|2

|â+(0)|2
=

| f̂−b (0)|2

| f̂+a (0)|2
. (3.61d)

Lasing threshold is found when any of these expressions reach infinity [50]. Physically,

an infinite transmittivity or reflectivity corresponds to output power without an input power.

3.6 Conclusion

This chapter introduces a new lasing structure comprised of a lossy-passive waveguide

coupled to a uniform diffraction grating coupled to an active-waveguide. Two sets of

fourth-order coupled-mode equations and their closed-form electromagnetic-field, power,

and transmittivity solutions capture the structures modal interactions and behaviors.

Simplified CMEs and their associated solutions are first developed which neglect evanes-

cent coupling arguing that large waveguide separation and waveguide wavenumber detuning

can result in a small and inefficient associated power transfer. Once the three-coupling

solutions are developed, CMEs which include evanescent coupling are formulated and

the four-coupling solutions derived. These CMEs consider the four independent coupling

mechanisms, the four complex-detuning values, the active-region gain coefficient, each

waveguide’s loss coefficient, and the nonlinearity introduced through Henry’s alpha αH .

These closed-form solutions are expected to provide for physical insights into lasing

behaviors though the parameterization of individual model quantities. The derived solutions
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allow for the design of lasing structures which achieve single-mode operation with desired

and optimized characteristics. The photonic-bandgap behaviors, and specifically their

placements for degenerate mode suppression, can be initially understood without including

the additional complexity of evanescent coupling. Solutions which include evanescent

coupling will be later used to understand lasing behaviors once the associated power-transfer

efficiency assumptions no longer hold true and evanescent coupling cannot be ignored.

The models presented here properly reduce to solutions which describe a variety of

single or dual waveguide, active or passive structures which may include a coupled diffrac-

tion grating. Such reduced structures embedded within our four-coupling model include

directional couplers, traditional uniform-grating DFB lasers, contra-directional couplers,

and filters.
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4. Single-Mode DFB Lasing using

Photonic-Bandgap Alignment:

Lasing Behavior

4.1 Introduction

This chapter leverages the mathematical models and solutions of Chapter 3 to study lasing

behavior. Note that the proposed single-mode lasing mechanism is entirely new. Earlier work

reports using exchange-Bragg coupling to form the primary lasing modes and suggest using

a λ/4 shift to improve single-mode performance [6]. However, geometries that rely on a

λ/4 shift are expected to exhibit undesirable behaviors such as the gain-margin degradation

problem due to poor longitudinal power flatness as discussed in Section 2.6. Using an

at-threshold analysis of the previously derived closed-form solutions, both gain-margin and

longitudinal power flatness of the described structure will be shown to surpasses that of the

traditional λ/4-shifted DFB laser while also avoiding its complex grating geometries.

Since the proposed structure makes use of an active waveguide and passive waveguide

pair, it is applicable to both III/V platforms and hybrid III/V-on-silicon platforms which

may be satisfied by integrated-photonic or silicon-photonic circuit process designs. Early

works in silicon-evanescent lasers use a λ/4-shifted diffraction grating sandwiched between

an upper active III-V waveguide and a lower silicon waveguide to achieve single-mode
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lasing [12], [77], [78]. The gain margin and longitudinal power flatness of these lasers

are therefor expected to suffer from the same limitations as described above. A DFB laser

seeking to take advantage of exchange-Bragg coupling to provide both optical feedback and

power coupling across an active and passive waveguide pair was shown to be compatible

with a III-V laser stack and silicon-on-insulator (SOI) process, however, no mathematical

model was presented to capture the underlying physics or associated lasing behaviors of the

structure and a λ/4-phase shift was again required to achieve single-mode lasing behavior

[6], [7].

In this chapter, the previously derived parameterized solutions are used to understand

the proposed structure’s underlying physics and optimize on its single-mode lasing behavior.

Single-mode operation will be characterized by considering threshold gain, gain margin,

and longitudinal power flatness as a function of direct-Bragg coefficient, exchange-Bragg

coefficient, evanescent coupling coefficient, waveguide detuning, and Henry’s alpha.

4.2 Photonic-Bandgap Alignment

Each of the Bragg-coupling processes produces a photonic bandgap. Direct-Bragg coupling

produces photonic bandgaps PBGa and PBGb, for the A and B waveguides respectively,

while exchange-Bragg coupling produces the photonic bandgap PBGχ , capturing the ex-

change of power between counter-directional modes across the A and B waveguides. The

center of each PBG is characterized by its low transmittivity through the structure, as seen

in the general transmittivity for a two-port structure shown in Fig. 4.1.

Since waveguide A of the uniform grating DFB structure shown in Fig. 2.5(a) contains

the active region, the modes of the associated PBGa are the strongest and dominate lasing

considerations. Each edge of PBGa is inhabited by a transmission resonance, as shown in

Fig. 4.1. These degenerate modes lead to a lasing mode spectrum without gain margin and

result in a laser which is not single mode.
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The detuning of the resonance from the center of the bandgap is denoted as ∇a. The

presence of optical gain will strengthen and shift these transmission resonances, which

ultimately rise to infinity at lasing threshold. The distance of the resonance R+1 relative to

the PBGa center depends upon the normalized coupling strength κaL and the normalized

gain coefficient gnetL and is written as

R+1 =Ca +∇a = αH gL/2+∇a. (4.1)

The location of this resonance pulls inward toward the PBG edge as gain increases from

gL = 0 and the structure enters lasing. The change in resonance location as gain increases is

shown as the rising dotted line in the Fig. 4.2(a).

The value of gnetL = gL−αaL is the normalized net gain coefficient of the structure,

gL is the normalized gain coefficient, and αaL is the normalized loss coefficient associated

with the active region, taken here as αaL = 0.25. The values along the dotted line represent

the resonance detuning when the structure is operating at lasing threshold. The threshold

separation can be approximated by a ∇est using a simple linear expression

∇est = (κaL/2+3π/4), (4.2)

or by the more accurate second order polynomial

∇est = 0.02322 (κaL)2 +0.6526 κaL+1.985. (4.3)

The error in ∇est for the second-order-polynomial estimate is less than 0.005 when Tp > 30

dB for all κaL as shown in Fig. 4.2(b).
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Figure 4.1 Transmittivity spectrum of the uniform-grating DFB lasing structure showing
PBGs for various values of net gain coefficient gnetL and coupling coefficient κaL. Reso-
nances labeled as R+1, R−1, R+2, and R−2. gnetL = gL−αaL where αaL = 0.25 is used as a
representative normalized loss coefficient associated with an active region waveguide.

The center of each PBG, as placed along the ∆βaL axis, is given as follows:

Ca = αH gL/2, (4.4a)

Cχ = ∆βabL+αH gL/4, (4.4b)

Cb = 2∆βabL. (4.4c)

The center Ca of PBGa is due to direct-Bragg coupling in waveguide A, the center Cχ of

PBGχ is due to exchange-Bragg coupling, and the center Cb of PBGb is due to direct-Bragg

coupling in waveguide B. Each center movement as wavguide-wavenumber detuning ∆βabL

changes is illustrated in Fig. 4.3(a) for the nonlinearity αH = 0 and in Fig. 4.3(b) for the

nonlinearity αH ̸= 0.

In order to suppress the first-order degenerate mode R+1, the center Cχ of the exchange-
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Figure 4.2 Location of the first-order degenerate resonance R+1 of a photonic bandgap
PBGa; this resonance will be suppressed by PBGχ and so its position must be well under-
stood. (a) Resonance separation from center ∇a = R+1 −Ca of resonance R+1 from PBGa

center Ca, showing low variation with κaL for gL near lasing threshold. (b)Difference between
second-order estimated resonance separation ∇est and actual ∇a, showing low estimate
error for gL near lasing threshold.

Bragg PBGχ must be matched to its location:

Cχ = R+1, (4.5a)

αH gL/4+∆βabL = ∇a +αH gL/2, (4.5b)

∆βabL = ∇a +αH gL/4, (4.5c)
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Figure 4.3 Suppression alignment, showing the positions of the photonic-bandgap centers
Ca, Cχ , Cb and the R±1 degenerate resonances. (a) For αH = 0, the PBGs shift with respect
to each other only due to the waveguide wavenumber detuning ∆βabL. (b) αH introduces a
new relative shift of the PBGs. The suppression condition for PBG positioning is Cχ = ∇a.
κaL = 1.47,gL = 2.61.

where ∇a is the approximate detuning from the center of PBGa to its first-order degenerate

lasing mode and the second term accounts for a relative PBG shift due to αH . Thus,

suppression alignment is achieved by knowing the resonance position ∇a, which can be

taken from a look-up table of exact values as plotted in Fig. 4.2, found using an estimate

∇est such as that in Eq. (4.3), or be found using an alternate approximation approach. In

general, the alignment methods will be some function of gain, semiconductor nonlinearity,

and direct-Bragg coupling κaL.

Breaking the degeneracy and achieving single-mode lasing is accomplished by offsetting

the PBGs with respect to each other such that suppression alignment occurs when operating

106



CHAPTER 4. SINGLE-MODE DFB LASING USING PHOTONIC-BANDGAP ALIGNMENT:
LASING BEHAVIOR

at threshold gain gthL. The introduced mismatch in wavenumber between the modes in

opposite waveguides, as characterized by the waveguide wavenumber detuning ∆βab:

∆βab = (βa −βb)/2, (4.6)

must be such that the conditions of Eq. (4.5) are satisfied when gL = gthL.

The offset detuning between PBGs can be further accentuated by noting the interrelation

among the four wavenumber detuning quantities; specifically, any two quantities can be used

to express the other two. For this work, all equation and figure detunings will use the two

quantities ∆βa and ∆βab; knowing the detuning relationships ∆βa = βa −Λ, ∆βχ = βχ −Λ,

and that shown in Eq. (4.6), the remaining detunings ∆βb and ∆βχ can be expressed as

∆βb = ∆βa −2∆βab, (4.7a)

∆βχ = ∆βa −∆βab. (4.7b)

Since the nonlinearity αH only changes the wavenumber of the optical mode in waveg-

uide A, it impacts the relative position of each PBG differently. Specifically, the wavenumber

detunings become

∆β
′
a = β

′
a −βΛ = ∆βa −αH g/2, (4.8a)

∆β
′
χ = β

′
χ −βΛ =

β ′
a +βb

2
−βΛ = ∆βχ −

αH g
4

, (4.8b)

and ∆βb is unchanged from Eq. (3.5b). Thus, as the gain is increased, PBGa will shift

by βH = αH g/2, PBGχ will shift by βH/2, and PBGb will remained fixed in place. These

relative shifting must be accounted for to achieve single-mode lasing when operating at

lasing threshold.

Note that the modal wavenumber detuning ∆βab is also associated with evanescent,

co-directional coupling between the waveguides, as found in standard directional couplers.
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Variation from zero can be understood in terms of a variation in effective refractive index na

and nb of either waveguide, where

βa = 2πna/λ0, βb = 2πnb/λ0, (4.9)

and λ0 is the free-space wavelength. The evanescent coupling efficiency weakens with

the deviation from zero ∆βab, as is required for this single-mode lasing mechanism. For

this reason, evanescent, co-directional coupling will be discounted from the first model of

PBG-based single-mode lasing for structures assuming small evanescent coupling strengths

κeL < 0.25. [50]

4.3 Mode Spectrum

Lasing threshold gthL and the normalized active-waveguide threshold detuning ∆βathL are

found by increasing the normalized gain coefficient gL above zero until the transmittivity of

Eq. (3.22) becomes infinite, as depicted in Fig. 4.4(a), where the highest value gL = 2.60 =

gthL. As gL increases, the lasing resonance rises smoothly to infinity whereas all other

resonances remain weak. Parameter values for these plots are αH = π and κaL = κχL =

κbL/2, where κχL = κχabL = κχbaL. In addition, αaL = 0.25 and αbL = 0.09, appropriate

values for III/V and silicon waveguides, respectively.

The photonic bandgaps PBGχ & PBGb enable single-mode lasing by suppressing degen-

erate direct-Bragg resonances of the active waveguide A. To see this action, each underlying

PBG is depicted in isolation in Fig. 4.4(b) by setting only its associated coupling coefficient

nonzero. PBGχ & PBGb are positioned near the first- and second-order degenerate lasing

resonances of PBGa, respectively, by setting ∆βabL = 5.13. Here, the linear approximation

∇est = (κaL/2+3π/4) is used which results in the waveguide-wavenumber detuning ∆βabL

shown as a dashed line in Fig. 4.5. The approximate detuning for a given coupling κaL is

taken at gain threshold gL = gthL assuming a Henry’s alpha of αH = π .
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Figure 4.4(a) A single resonance dominates the transmittivity spectrum as gL increases to
lasing threshold gthL. (b) The transmittivity at gL = gthL for each separate coupling process
shows that PBGχ and PBGb can be centered near degenerate lasing modes, thereby
suppressing them, by setting ∆βabL.

Determining the threshold gain gthL, the threshold wavenumber detuning ∆βathL, and

the required waveguide wavenumber detuning ∆βabL for a structure of fixed coupling is an

iterative process. The initial estimate of threshold values g0
thL and ∆β 0

athL is determined by

ramping gain gL up from zero until the transmittivity first goes to ∞ for a structure where all

coupling values but the desired κaL have been set to zero. This initial structure is essentially

a uniform-grating DFB laser; the lower ∆βaL degenerate mode will be preserved and is used

as the initial estimated value for ∆β 0
athL.

An initial waveguide wavenumber detuning ∆β 0
abL is then found using Eq. (4.5c) by
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Figure 4.5 The quadratic (solid) and linear (dahed) approximations of the resonance position
∇est used to determine the required waveguide wavenumber detuning ∆βabL which aligns
PBGχ over the degenerate mode to realize single-mode lasing. Values used in figure:
gL = gthL, αH = π, αaL = 0.25, αbL = 0.09.

substituting g0
thL → gL. All coupling values of the structure are then reintroduced to their

non-zero values and, with the estimated ∆β 0
abL, the gain is again increased from zero until

lasing occurs. This results in new estimated values of g1
thL and ∆β 1

athL. An updated ∆β 1
ab is

calculated using g1
thL and the process repeats until the value of gthL changes less than 1%

per iteration. Stabilization typically occurs after about five iterations of this process.

The set of all threshold pairs for each mode across a range of κaL produces the mode

spectrum plot shown in Fig. 4.6. The purple curve captures the fundamental mode and the

black curve the next highest mode. Recalling that, for this structure, κaL = κχL = κbL/2;

in the coupling region R2 ∈ (0.5 ≤ κaL ≤ 0.98), PBGχ does not have sufficient strength to

suppress the degenerate lasing mode. As κaL increases further, so does κχL and PBGχ ’s

suppression strength. The secondary lasing mode then shifts from the opposite side to the

same side as the fundamental lasing mode at κaL = 0.98. This transition is marked by red

dotted line and the R2 and R1 regions in Fig. 4.6, respectively.
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Figure 4.6 Lasing-mode spectrum showing threshold values for 200 values of κaL, five
of which are labelled with markers. A large normalized gain margin ∆αL = 0.86 occurs at
κaL = 1.47 with threshold values gthL = 2.60 and ∆βathL = 0.234π.

4.4 Gain Margin

A transmittivity heat map of the structure, shown in Fig. 4.7, demonstrates the fundamental

and secondary lasing modes which are found by extending gL through and above gthL to

allow each lasing mode to rise for a single fixed value of κaL = κχL = κbL. Lasing is

indicated by bright red, the total-structure PBG is blue, and the shifting of the resonances as

gL increases is due to αH .

Using this figure, a normalized gain margin ∆αL = ∆gL/2 = (gth2L−gthL)/2 = 0.86

is found at the coupling value of κaL = 1.47 which exceeds the reported limit of 0.735 for

λ/4-shifted DFB lasers and its phase-shift variants at lasing threshold, shown in Fig. 1.4.

[34]–[36], [38], [47], [49]. The high gain margin of the proposed structure is due to having

both lasing modes on the same side of the mode spectrum. The same values of lasing

threshold gthL and normalized gain margin ∆αL are found from transmittivity or reflectivity

expressions between any ports of the four-port structure (not shown).

In general, the normalized gain margin is a measure of single-mode stability [35], and,
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Figure 4.7 Normalized gain margin ∆αL = 0.86 between lasing modes (red) on the same
side of the mode spectrum as seen by sweeping the transmittivity Ta over gL to form a
transmittivity heat map. The low-order degenerate lasing modes at higher detuning are
suppressed. The values used to generate this figure are κaL = κχL = κbL/2 = 1.47 and
αH = π.

for a given direct-Bragg coupling κaL on the mode-spectrum plot of Fig. 4.6, is determined

by finding the difference in gain threshold of each low-order mode. This can be visualized

as tracing the difference in the purple curve and black curve across this mode-spectrum plot.

The region shift from R2 to R1 is noted in both figures with the dotted red line.

The gain-margin ∆αL values for the proposed structure across a span of κaL are shown

in Fig. 4.8. The proposed structure realizes ∆αL = 0.87 at its peak which outperforms

the λ/4-shifted structure peaking at ∆αL = 0.735 [35]. These high gain margins of the

proposed lasing structure are due to having both lasing modes on the same side of the

mode spectrum centered on the amplifying waveguide Bragg wavenumber βa. The value of

waveguide wavenumber detuning ∆βabL used for each κaL is shown in Fig. 4.5.

The decline in gain margin for the proposed structure for larger values of κaL > 2 occurs

as the fundamental lasing mode enters compression, allowing for the secondary lasing mode

to “catch up” as κaL continues to increase. The transition between regions R2 and R1 in the
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Figure 4.8 At-threshold normalized gain margin ∆αL for a range of κaL. The new laser
structure outperforms the λ/4-shifted DFB laser. Values used in figure: κaL = κχL =
κbL/2, gL = gthL, αH = π, αaL = 0.25, αbL = 0.09.

mode-spectrum plot given in Fig. 4.6 correlates to the location of the kink in the gain-margin

plot. The fundamental lasing mode compression can be seen in the purple curve of Fig. 4.6

for increasing values of κaL.

4.5 Longitudinal Power Flatness

The power profiles along the active and passive waveguides of the proposed structure are

shown at lasing threshold in Fig. 4.9(a) and (b) respectively. The active-waveguide profiles

of the uniform-grating and λ/4-shifted DFB laser structures are also shown in Fig. 4.9(a) for

comparison; the poor flatness of the latter degrades its gain margin above lasing threshold

[35]. This flatness correlates to the degree of spatial-hole burning occurring for above-

threshold operation. High flatness values indicate a non-uniform distribution of optical

power in the waveguide. Areas of high photon density along the length of the laser cavity

consume free carriers and present localized changes in the index of refraction, worsening as

laser output power increases.

The variation in flatness F as a function of κaL is shown in Fig. 4.10, where again

F =
∫ 1

0 (PA(ζ )−µ)2 dζ/µ2, and µ =
∫ 1

0 PA(ζ ) dζ [35]. The κaL value that yields the
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Figure 4.9 At-threshold longitudinal power along (a) active waveguide A and (b) passive
waveguide B. The power profiles for the λ/4-shifted DFB and the (degererate) uniform-
grating DFB laser are provided for reference. Values used in figure: κaL = κχL = κbL/2, gL =
gthL, αH = π, αaL = 0.25, αbL = 0.09.

minimum flatness for each lasing structure was used to generate the curves shown in Fig. 4.9.

For the proposed structure, the minimum flatness corresponds to the same local direct-

Bragg coupling κaL region as the peak gain margin, unlike the λ/4-shifted DFB laser

where the two local extrema are separated by larger span of κaL. At minimum flatness, the

proposed structure with ∆αL= 0.86 & F = 0.001 outperforms the λ/4-shifted structure with

∆αL = 0.68 & F = 0.012. At its slightly higher peak gain margin of ∆αL = 0.87, as shown

in Fig. 4.8, the proposed structure realizes a flatness F = 0.006, which also outperforms the

λ/4-shifted structure at its gain-margin peak ∆αL = 0.735 and corresponding flatness of

F = 0.25 [35].
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Figure 4.10 The active-waveguide power flatness across normalized direct-Bragg coupling
κaL. The minimum flatness of the proposed structure is F = 0.001 and occurs simultaneously
with the gain margin value of ∆αL = 0.86 out performing the λ/4-shifted structure whose
flatness is F = 0.012 with a corresponding gain margin of ∆αL = 0.68. Values used in figure:
κaL = κχL = κbL/2, gL = gthL, αH = π, αaL = 0.25, αbL = 0.09.

4.6 Impact of Exchange-Bragg Coupling

In the previous section, a relationship between Bragg based coupling coefficients was

established as κaL = κχL = κbL/2. For the remainder of this chapter no such interdependent

relationship will continue and coupling values will be independently set and explicitly called

out. The values for the normalized loss coefficients of the active waveguide αa = 0.25

and passive waveguide αb = 0.09 will remain unchanged and have been selected based on

expected values for III-V and silicon waveguides, respectively. A Henry’s alpha αH = π will

be used for the rest of this work because it closely matches multi-quantum well gain media

[41]. The impact of the exchange-Bragg coupling κχL = κχabL = κχbaL on lasing behavior

is studied assuming κbL = 2.94, and κabL = κbaL = 0; the impact of the latter evanescent

coupling coefficients κabL and κbaL are studied independently in 4.7 below.

Additionally, photonic bandgap alignment is improved by migrating to the quadratic

approximation model for ∇est as given in Eq. 4.3. The quadratic waveguide-wavenumber

detuning approximation model used moving forward in this work is shown as the solid line
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Figure 4.11 Single-mode lasing performance over κχL for three values of κaL. (a) Net
spectrum, showing single-mode behavior at lasing threshold. (b) Underlying PBGs at lasing
threshold. For all parts: κbL = 2.94,κeL = 0,αH = π,αaL = 0.25,αbL = 0.09.

in Fig. 4.5. The small subtle change in threshold gain between this section at gthL = 2.61

and the previous at gthL = 2.60 is due to the adoption of the refined alignment estimate

function for ∇est .

4.6.1 Single-Mode Lasing and Photonic-Bandgap Alignment

Exchange-Bragg coupling produces the PBG that is used to suppress the degenerate lasing

mode. The strength of this suppression is set by the normalized exchange-Bragg coupling

coefficient κχL. This section explores the dependence of the single-mode laser performance

on κχL.

The single-mode nature of the lasing structure is evident in the transmittivity at lasing

threshold as shown in Fig. 4.11(a) for three different values of exchange-Bragg coupling
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κχL∈{0.7, 1.47, 3.60} and a fixed value of κaL= 1.47. For a fixed value of κaL, increasing

the κχL of the structure lowers the gain threshold gthL and shifts the lasing resonance in

negative ∆βaL.

For the small value of κχL = 0.70, suppression of the degenerate mode is marginal even

though proper PBG alignment has been achieved. The family of blue curves in Fig. 4.14(b)

demonstrates this as Ta for κχ (dot-dashed line) is seen properly aligned to the degenerate

mode of Ta for κaL (solid line) but does not have sufficient bandgap depth to fully suppress

the lasing mode.

Increasing κχL = 1.47 fully suppresses the degenerate mode and results in the clean

single-mode transmittivity, shown in red, of Fig. 4.14(a). The family of red curves in

Fig. 4.11(b) shows both alignment and suppression strength of PBGχ against the degenerate

lasing mode.

Further increase of κχL = 3.60 continues to demonstrate single-mode lasing behav-

ior, however, a new degenerate mode begins to form in the yellow transmittivity plot of

Fig. 4.14(a). The family of yellow curves shown in Fig. 4.14(b) demonstrate an aligned

PBGχ that has grown in width and resonant strength due to the increased exchange-Bragg

coupling coefficient. The new degenerate mode forming in the composite lasing transmit-

tivity plot is due to the exchange-Bragg resonance itself approaching lasing as seen by the

increased peaks on each side of PBGχ .

The photonic bandgap PBGb remains relatively unchanged as the increase in the coupling

κχL has no direct impact on the isolated PBGb. The slight shift in the curves is due to the

required change in waveguide wavenumber detuning ∆βabL to maintain PBGχ alignment.

4.6.2 Mode Spectrum & Gain Margin

The mode spectrum is now taken for increasing κχL between 0.5 (square marker) and 4.0

(triangle marker) and is shown in Fig. 4.12, for a fixed κa = 1.47. The fundamental lasing

mode, shown in purple, traces a contiguous path as κχ is varied. However, the secondary
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Figure 4.12 The mode spectrum over 200 values of κχL for a fixed value of κaL. κbL =
2.94,κabL = 0,κbaL = 0,αH = π,αaL = 0.25,αbL = 0.09.

lasing mode, shown in black, jumps between three different resonances as κχ is varied,

producing three distinctive regions.

For the mid range of κχL between 1.07 and 3.07, the secondary mode is located near

a detuning ∆βathL = 0 and corresponds to a PBGa resonance on the same side of as the

fundamental mode. This region is characterized by a high gain margins above 0.77 that

increase with an increase in κχ , shown in Fig. 4.13(a). The gain margin reaches a peak value

of ∆αL = 1.05 at κχL = 3.14 for the red κaL = 1.14 case.

The weaker values of κχL below 1.07, do not result in a strong enough PBGχ to

completely suppress the degenerate mode R+1. Therefore the secondary mode corresponds

to the degenerate R+1 resonance, occurring on the opposite side of PBGa as the fundamental

mode and near a detuning ∆βathL = 3 in the mode spectrum of Fig. 4.12. Accordingly, this

region is associated with the gain margin that drops precipitously at low values of κaL, as

seen in Fig. 4.13(a).

As mentioned above, for stronger values of κχL above 3.07, PBGχ becomes so strong

that, although it completely suppresses the degenerate mode R+1, it builds a resonances of

its own that takes over as the secondary lasing mode. This new mode occurs within PBGa
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Figure 4.13 Lasing behaviors over three values of κχL showing (a) gain-margin, (b) lon-
gitudinal power profiles, (c) flatness, and (d) required waveguide wavenumber detuning
using the quadratic ∇est approximation. For all figures: κbL = 2.94,κabL = 0,κbaL = 0,αH =
π,αaL = 0.25,αbL = 0.09.

and at a detuning ∆βathL near 1 in the mode-spectrum figure. Thus, strong values of κχL are

associated with a sharp reduction in gain margin, as seen in Fig. 4.13(a). Note that as κaL is

increased, PBGa itself works to suppress this unwanted resonance of PBGχ , resulting in the

extended gain margin as seen by the yellow “◦” curve in Fig. 4.13(a).

4.6.3 Longitudinal-Power Profiles & Flatness

The minimum longitudinal-power profiles are shown in Fig. 4.13(b) for the three selected val-

ues of κaL. In all cases the power flatness in the active region is exceptionally low, reaching

a minimum value of F = 0.0009 for κaL = 1.14 and κχL = 2.43. The required exchange-

Bragg coupling κχL to realize minimum flatness decreases as direct-Bragg coupling κaL

increases.

The variation in flatness F as a function of κχL and for three values of κaL is shown
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in Fig. 4.13(c). As κaL is decreased, the minimum-flatness point shifts to higher values

of κχL; accordingly, the minimum-flatness point is associated with higher gain margin.

The minimum flatness F = 0.0009 for the κaL = 1.14 curve occurs at an exchange-Bragg

coupling value of κχL = 2.43 and corresponds to a large gain margin value of ∆αL = 0.89.

Moreover, the peak gain margin ∆αL = 1.05 at κχL = 3.14 occurs with a κaL = 1.14 and

results in a longitudinal power-flatness of F = 0.017. For comparison, the minimum flatness

F = 0.012 of the traditional λ/4-shifted DFB laser has an associated gain margin of only

∆αL = 0.68.

4.6.4 Waveguide-Wavenumber Detuning

The required waveguide wavenumber detuning ∆βabL to maintain suppression and which

satisfies Eq. (4.5c) varies only slightly across the three values of κaL, as seen in Fig. 4.13(d).

The decrease in threshold gain gthL as κχL increases, seen in the purple curve of Fig. 4.12,

causes ∆βabL to decline due to the relatively large Henry’s alpha αH = π .

4.7 Impact of Evanscent Coupling

Evanescent coupling can cause power transfer between waveguides, and is the basis for

the well-known directional coupler [68]. Such coupling is most efficient when the waveg-

uides have matching wavenumbers, referred to as synchronous operation and expressed as

∆βabL = 0. This efficiency is decreased in asynchronous operation, where the waveguide

wavenumbers no longer match [68]. In the context of the proposed laser structure, where

asynchronous operation of ∆βabL ≈ 5 is required for relative PBG alignment, evanescent

coupling has been neglected provided κeL ≤ 0.25 [50], where κeL =
√

κabLκbaL [79]. In

this case, the power-transfer efficiency of the evanescent coupling structure taken in isolation

is held to 1%. This section explores the dependence of the single-mode laser performance

on the evanescent coupling strength κeL beyond 0.25.
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Figure 4.14 Single-mode lasing performance over κχL for four values of evanescent coupling
κeL. (a) Underlying PBGs at lasing threshold. (b) Net spectrum, showing single-mode
behavior at lasing threshold. For all parts: κaL= 1.05, κbL= 2.94, αH = π, αaL= 0.25, αbL=
0.09.

The inclusion of a non-zero κeL adds a second coupling method to transfer power

between the A and B waveguides. Unlike exchange-Bragg coupling which transfers power

between contra-propagating waves of each waveguide, evanescent coupling transfers power

between co-propagating waves of each waveguide. This exchange of power through two

separate but co-dependent coupling mechanisms complicates the longitudinal-power profiles.

4.7.1 Single-Mode Lasing & Gain Margin

The impact of evanescent coupling on the single-mode lasing spectrum is illustrated in

Fig. 4.14. Increasing κeL does not prohibit lasing, but actually decreases the gain threshold

gthL, as listed in the figure table. This lower gain level results in a shift in the lasing mode

to lower values of ∆βaL due to αH as expressed by Eq. (4.4a). In this section, κaL = 1.05,

the case which provides the worst minimum flatness F in Fig. 4.13(c). It will be seen below,

that evanescent coupling can work to improve this flatness value.

The mode spectrum of the proposed lasing structure without evanescent coupling (i.e.

κeL = 0.0) and direct-Bragg coupling of κaL = 1.05 for an increasing κχL is shown in

Fig. 4.15(a). The regions of suppression are shown as the three black curves starting on the
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Figure 4.15 The mode spectrum over 200 values of κχL for (a) κeL = 0.00 and (b) κeL = 1.00.
For all parts: κaL = 1.05, κbL = 2.94, αH = π,αaL = 0.25,αbL = 0.09.

opposite-side mode and ending on the exchange-Bragg resonance at the center of the figure.

The desired region of operation is the same-side resonance covering the κχL ∈ (1.25,3.20)

span where gain margin will be at its highest and flatness at its lowest. The point of minimum

flatness occurs at κχL = 2.64 and is noted with the black star.

Increasing evanescent coupling to κeL = 1.0 shows that sufficient suppression starts

slightly later at κχL = 1.14 but ends further out at κχL = 3.60 thereby increasing the span

over which same-side operation occurs. With the inclusion of evanescent coupling, the

minimum flatness location shifts up to κχL = 1.14. Finally, it is noted that the fundamental

mode shifts down in threshold gain entering compression earlier and reducing the structures

gain margin for larger κχL.
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Figure 4.16 Lasing behaviors over four values of κeL showing (a) gain-margin, (b) flatness,
(c) longitudinal power profiles, and (d) required waveguide wavenumber detuning. For all
parts: κaL = 1.05, κbL = 2.94, αH = π,αaL = 0.25,αbL = 0.09.

The gain margin for the four values of κeL ∈ {0.0, 0.25, 0.5, 1.0} are plotted across

exchange-Bragg coupling strength κχL in Fig. 4.16(a). For the center region characterized

by relatively high gain margin, evanescent coupling has the effect of tilting the slope of the

gain margin with respect to κχL. Whereas κeL = 0.0 produces a positive slope, an increase

in κeL above zero adds negative slope, with pivot point of negligible gain-margin change

near κχL = 2.21. Notably, κeL = 0.5 provides a relatively consistent gain-margin within

0.07 of 0.89 over a wide span of κχL ∈ (1.1,3.5). Furthermore, an increase in evanescent

coupling pushes out the kink in gain margin at higher levels of κχL; evanescent coupling

weakens the degenerate mode strength of PBGχ which dominates as the secondary lasing

mode at high κχL.
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4.7.2 Longitudinal-Power Profiles & Flatness

The impact of evanescent coupling on the power flatness F is illustrated in Fig. 4.16(b)

by plotting over a range of κχL and for several values of κeL. For the baseline case of

κeL = 0, the minimum flatness value F = 0.0014 occurs at κχL = 2.64. As κeL is increased

above zero, the point of minimum flatness shifts to a lower value of κχL. The value of

minimum flatness actually drops below 0.001, being 0.0006 and 0.0007 for κeL = 0.25 and

0.5, respectively, as seen in Fig. 4.16(b).

The shift in the point of minimum flatness F tracks well with the rise in gain margin,

as evident by comparing Figs. 4.16(a) and (b). For κeL = {0.0, 0.25, 0.5, 1.0}, ∆αL =

{0.906, 0.880, 0.872, 0.876}. All of these values exceed the gain margin of 0.65 for an

optimal flatness of F = 0.012 for the reference λ/4-shifted DFB laser.

The longitudinal power profiles corresponding to the minimum flatness F for each value

of κeL are shown in Fig. 4.16(c). Within the active waveguide, κeL = 0 corresponds to a

power profile having a valley in the center of the structure (ζ = 0.5); as evanescent coupling

increases, this valley flattens and ultimately inverts for κeL = 1. The interim values of κeL

exhibit the lowest values of flatness F . It can be concluded that evanescent coupling as small

as κeL = 0.25 will appreciably impact both gain margin and flatness.

4.7.3 Waveguide-Wavenumber Detuning

The waveguide-wavenumner detuning ∆βabL required to achieve degenerate-mode sup-

pression via Eq. (4.5c) is shown in Fig. 4.16(d) for all values of κeL. As κeL is increased

above zero, lasing threshold decreases and the required waveguide-wavenumber detuning to

maintain suppression correspondingly shifts to lower values of ∆βabL.
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4.8 Conclusion

This chapter studies a new means of achieving single-mode lasing by suppressing degenerate

modes on one side of the uniform-grating DFB lasing spectrum. The high gain margin

∆αL = 0.86 at lasing threshold, low power flatness F = 0.001 in the active region, and lack

of a λ/4 shift are promising for good gain margin above lasing threshold.

Single-mode lasing has been explored for a dual-waveguide direct-Bragg, exchange-

Bragg, and evanescently coupled distributed feedback structure. This lasing structure

introduces a second coupled waveguide to the original single-waveguide uniform diffraction-

grating laser introduced in [4]. This approach takes advantage of the exchange-Bragg

photonic bandgap, created with the introduction of the second waveguide, to suppress the

degenerate mode and, by doing so, avoids the peaky longitudinal power profile such as seen

in the ubiquitous λ/4-shifted DFB laser.

It has been shown that exchange-Bragg photonic bandgap PBGχ can be aligned to the

degenerate lasing mode through the proper selection of waveguide wavenumber detuning

∆βabL, resulting in a single-mode laser which avoids the undesired phase-shift associated

with the ubiquitous λ/4-shifted DFB laser. This alignment can be maintained even as

Henry’s alpha αH is introduced. Furthermore, the suppression strength of PBGχ is controlled

through the exchange-Bragg coupling value κχL, resulting in a single-mode laser capable of

very high gain margin ∆αL = 1.05 and low longitudinal power-profile flatness F = 0.017.

The models inclusion of evanescent coupling demonstrated that values as small as

κeL = 0.25 impact laser performance and, in some cases, can be used to improve on both

gain margin and power flatness. Evanescent coupling can be used to maintain consistent

gain margin across a span of κχL. Furthermore, increasing κeL serves to delay the unwanted

mode associated with PBGχ , which occurs at larger values of κχL, extending the same-

side secondary lasing-mode span. A structure with an evanescent coupling coefficient of

κeL = 0.25, can have a flatness as low as F = 0.0006 and a gain margin of ∆αL = 0.87,

both values which exceed those of the industry standard λ/4-shifted DFB laser.
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5. Single-Mode DFB Lasing using

a Coupled NIM Waveguide: Theory

5.1 Introduction

This chapter lays the foundation for a second new type of distributed feedback (DFB)

lasing mechanism whose optical feedback is due to the evanescent coupling between an

active positive-index material (PIM) waveguide and a lossy negative-index metamaterial

(NIM) waveguide. Because optical feedback is accomplished though an evanescent coupling

process and does not employ a diffraction grating, the λ/4-shift, which is often used to

achieve single-mode lasing in traditional DFB lasers, and its associated nonlinear behaviors,

can be avoided [5], [35]. Active PIM-NIM coupled-mode equations are presented and solved

to characterize the dispersion relation, resonant optical gain, and lasing.

A new method for achieving DFB has been recently proposed and modeled based on

the evanescent coupling of a positive-index material (PIM) waveguide to a negative-index

metamaterial (NIM) waveguide [51]–[53]. Metamaterials offer remarkable electrodynamic

behavior stemming from a negative refractive index [54]; despite having a negative refractive

index, a NIM sandwiched between PIM has been predicted to support the propagation of a

guided optical mode [55]–[57]. Notably, the Poynting vector of an optical field traveling

through a NIM waveguide can have the direction opposite as the associated wave vector

[53], [55]. Such a NIM waveguide, when evanescently coupled to PIM waveguide, creates a
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Figure 5.1 Single-mode coupled NIM lasing structure, where the active region of a PIM
waveguide is evanescently coupled to a lossy NIM waveguide over length L. The (white)
cladding regions surrounding the waveguides are PIM. The counter-directional nature of the
Poynting vectors in either waveguide results in distributed feedback, resonant optical gain,
and, ultimately, lasing.

distributed coupling region where power flows in either longitudinal direction [51].

Coupled-mode equations for the PIM-NIM structure were first presented for passive,

lossless waveguides and revealed a reflectivity spectrum characteristic of DFB [51]. Coupled-

mode equations were then extended to the case of a nonlinear lossless PIM-NIM structure and

used to study optical bistability [52]. These studies were performed for passive structures.

In the proposed structure, PIM-NIM DFB is leveraged to form a new kind of DFB

laser. Specifically, an active PIM-NIM structure in which the gain is provided by the PIM

waveguide over the length of the coupling region L is considered, as shown in Fig. 5.1. To

study this active structure, the PIM-NIM coupled-mode equations are extended to include

gain for the PIM waveguide and loss for the NIM waveguide. This model predicts the

occurrence of lasing with unique dependencies on waveguide parameters not found in

traditional active DFB structures.
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5.2 Coupled-Mode Equations

The electric field for the composite A (PIM) and B (NIM) waveguide structure shown in

Fig. 5.1 is given by:

E(x,y,z, t) = (EA(x,y,z)+EB(x,y,z))e−iωt , (5.1)

where

EA(x,y,z) = a(z)ea(x,y)e
˜iβ a
p z, (5.2a)

EB(x,y,z) = b(z)eb(x,y)e
˜iβ b
p z. (5.2b)

The expressions a(z) and b(z) are the longitudinally varying amplitudes for the A and B

waveguides respectively, β̃ a
p = β a

p − ig/2 and β̃ b
p = β b

p + iαb/2 are the associated complex-

valued wavenumbers of the unperturbed modes, β a
p and β b

p are real-valued modal wavenum-

bers for the A and B waveguides respectively, g is the modal net-gain coefficient of the active

region in the A (PIM) waveguide, αb is the loss coefficient of the B (NIM) waveguide, and ω

is the angular frequency. The quantities ea(x,y) and eb(x,y) are the unperturbed transverse

mode profiles for each waveguide in isolation. The approximation is made that the unper-

turbed modes match the actual mode profiles and are orthogonal. These approximations

have previously allowed for insightful modeling of evanescently coupled PIM and NIM

waveguide structures [52].

Making the substitutions βa ≡ β a
p and βb ≡ β b

p where βa = 2πna/λ0 is the wavenumber

of the A waveguide na is the effective refractive index of the A waveguide, and βb = 2πnb/λ0

is the wavenumber of the B waveguide nb is the effective refractive index of the B waveguide,
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and λ0 is the wavelength, yields:

EA(x,y,z) = a(z)ea(x,y)e
˜iβaz, (5.3a)

EB(x,y,z) = b(z)eb(x,y)e
˜iβbz. (5.3b)

The electric-field amplitudes in the PIM and NIM waveguides can be written in a rotated

frame given by EA(z) = a(z)e−i∆β̃ z and EB(z) = b(z)ei∆β̃ z, respectively, where A & B are the

slowly varying complex-field amplitudes of a relative rotating frame, and ∆β̃ = (β̃a − β̃b)/2

is the detuning parameter. By doing so, the rotated-frame electric-field expressions become:

EA(x,y,z) = a(z)e−i∆β̃ zea(x,y)eiβ̄ z, (5.4a)

EB(x,y,z) = b(z)ei∆β̃ zeb(x,y)eiβ̄ z, (5.4b)

where β̄ = (βa +βb)/2.

The coupled-mode equations (CMEs) for the PIM-NIM structure can be written from

Eq. (2.17) as

da
dz

= isgn(Sa)κnpb(z)e−i2∆β̃ z, (5.5a)

db
dz

= isgn(Sb)κpna(z)ei2∆β̃ z, (5.5b)

where sgn returns the sign associated with the direction of modal power flow. Resolving the

sgn function and moving the resulting sign to the left-hand side results in:

da
dz

= iκnpb(z)e−i2∆β̃ z, (5.6a)

−db
dz

= iκpna(z)ei2∆β̃ z. (5.6b)
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The coupled-mode equations for the optical-field amplitudes A and B within the PIM-

NIM structure are written using rotating frames as:

da
dz

=
(

i∆β +
g
2

)
a+ iκnpb, (5.7a)

−db
dz

=
(

i∆β − αb

2

)
b+ iκpna, (5.7b)

where ∆β = (βa −βb)/2 is the real valued waveguide wavenumber detuning, g is the net

gain coefficient of the PIM, αb is the loss coefficient of the NIM, and κpn and κnp are the

coupling coefficients for coupling into the NIM and PIM, respectively. It is assumed that the

anisotropy of each waveguide is small, a common assumption for coupled-mode equations

and for previous modeling work in PIM-NIM couplers [51]–[53].

These coupled-mode equations are similar in form to those of a traditional DFB laser

as seen in Eq. 2.79, whose counter-propagating A and B field amplitudes traverse a single

waveguide and are coupled via a diffraction grating [72], [80]. One significant difference

is that for the traditional DFB laser, the detuning parameter ∆β = βa −βΛ where βa is the

wavenumber of both optical modes, βΛ = π/Λ is the Bragg wavenumber, and Λ is the period

of the diffraction grating. Also, since the counter-propagating modes traverse the same

active waveguide, they each experience the gain coefficient g [i.e., αb →−g in Eq. (5.7b)].

For the PIM-NIM structure, the exclusive appearance of g or αb in either equation results in

important sum and difference expressions that govern the resonant amplification and lasing

behavior.

Evanescent Coupling Coefficients

The coupling coefficients for evanescent-coupling in the PIM-NIM CMEs above consider

the alternate waveguide as the region of perturbation. The change in relative permittivity ∆ε̄
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is due to the sending-mode’s waveguide perturbation as:

∆ε̄ = ε̄s − ε̄1, (5.8)

where ε̄s is the relative permittivity of the sending-mode’s waveguide and ε̄1 is the relative

permittivity of the cladding. These values are both constant across the transverse mode

profile coordinates x and y and can be pulled out of the double integral. In general, ε̄ = n2

where n is the refractive index, the coupling coefficient expression of Eq. (2.21) becomes:

κsr =
ωε0(n2

s −n2
1)

2

∞∫
−∞

∞∫
−∞

es(x,y) · e∗r (x,y) dy dx. (5.9)

The evanescent-coupling coefficients for the PIM-NIM then become:

κpn =
ωε0(n2

p −n2
1)

2

∫∫
A

ep(x,y) · e∗n(x,y)dx dy (5.10a)

κnp =
ωε0(n2

n −n2
1)

2

∫∫
B

en(x,y) · e∗p(x,y)dx dy, (5.10b)

where n(p,n) is the constant material refractive index of the respective waveguide, n1 is the

refractive index of the cladding, ω is the angular frequency, ε0 is the permittivity of free

space, A is the region bounded by the A waveguide, and B is the region bounded by the B

waveguide. For a negative-index material, both the permittivity ε and the permeability µ

are negative resulting in a material-index of refraction for the NIM waveguide that is also

negative [81].
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5.3 Analytic Solution

5.3.1 General Solution

As the coupled mode equations in Eq. (5.7) are written in their rotated-frame form, they can

be rewritten in a matrix notation as:

d⃗v
dz

= iA⃗v, (5.11)

where

A=

∆β − ig/2 κnp

−κpn −(∆β − iαb/2)

 , (5.12)

v⃗ = [A B]†, and † is the matrix transpose function.

The eigenvalues q± of the coupled-mode equations describe the behavior of the PIM-

NIM structure and are solved as the roots of the characteristic polynomial

q2 + pq+ r = 0, (5.13)

where p =−(a+d), r = (ad −bc), a = ∆β − ig/2, b = κnp, c = κpn, and d =−(∆β −

iαb/2), and are given as:

q+ =
δ

4
+ i

√(
∆β − i

σ

4

)2
−κ2, (5.14a)

q− =
δ

4
− i

√(
∆β − i

σ

4

)2
−κ2, (5.14b)

where

κ =
√

κpnκnp, σ = g−αb, δ = g+αb, (5.15)

The quantity σ is the round-trip gain coefficient for light that propagates down the

full length of the PIM waveguide followed by a return trip down the full length of the
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NIM waveguide (without evanescent coupling throughout). The quantity δ is the disparity

from transparency and equals zero only for passive, lossless waveguides. Compared to the

eigenvalues of a traditional DFB laser [72], [80], σ/2 takes the place of the traditional DFB

gain coefficient, the δ term is entirely new, and κ is due to evanescent coupling instead of

diffraction.

The eigenvalues given by Eq. (5.14a) and Eq. (5.14b) form the following general

solutions of the amplitudes a and b:

a(ζ ) = a1eq+Lζ +a2eq−Lζ , (5.16a)

b(ζ ) = b1eq+Lζ +b2eq−Lζ , (5.16b)

where ζ = z/L is the normalized longitudinal spatial coordinate and A1,A2,B1,and B2 are

constant coefficients.

5.3.2 Electric-Field, Power, Transmittivity, and Reflectivity

Expressions

Amplification of optical power between the ends of the PIM waveguide is studied by

disallowing an optical signal in the NIM waveguide at z = L; i.e., b(ζ = 1) = 0. Applying

this boundary condition after substituting the eigenvalue Eq. (5.14a) and Eq. (5.14b) into

the amplitude Eq. (5.16a) and Eq. (5.16b) yields:

a(ζ ) =−2B1e(δL/4)ζ

e−iη̃LκpnL
[ψ̃Lsinh(iη̃L(ζ −1))+ η̃Lcosh(iη̃L(ζ −1))] , (5.17a)

b(ζ ) =
2B1e(δL/4)ζ

e−iη̃L sinh(iη̃L(ζ −1)) , (5.17b)
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where the following quantities do not depend on the disparity δ :

η̃ =
√

ψ2 −κ2, ψ̃ = ∆β − i
σ

4
. (5.18)

The field amplitudes at the ends of the PIM-NIM structure are determined by a substitu-

tion of the appropriate value of ζ :

a(ζ = 0) =
2B1

e−iη̃LκpnL
[ψ̃Lsinh(iη̃L)− η̃Lcosh(iη̃L)] , (5.19a)

a(ζ = 1) =−2B1eδL/4η̃L
e−iη̃LκpnL

, (5.19b)

b(ζ = 0) =− 2B1

e−iη̃L sinh(iη̃L) . (5.19c)

The transmittivity T and reflectivity R expressions are found from the ratio of field

amplitudes as follows:

t =
a(ζ = 1)
a(ζ = 0)

=
−e(δL/4) η̃L

ψ̃Lsinh(iη̃L)− η̃Lcosh(iη̃L)
, (5.20a)

r =
b(ζ = 0)
a(ζ = 0)

=
−κpnLsinh(iη̃L)

ψ̃Lsinh(iη̃L)− η̃Lcosh(iη̃L)
, (5.20b)

T = |t|2 = e(δL/2) |η̃L|2

|ψ̃Lsinh(iη̃L)− η̃Lcosh(iη̃L)|2
, (5.21a)

R = |r|2 =
∣∣κpnL

∣∣2 |sinh(iη̃L)|2

|ψ̃Lsinh(iη̃L)− η̃Lcosh(iη̃L)|2
. (5.21b)
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5.3.3 Transcendental Lasing Conditions

The threshold and detuning of lasing modes for DFB resonators can be obtained by deeper

consideration of the transmittivity expression [80]. Eq. (5.21a) for T becomes infinite when

its denominator becomes zero, which happens in the non-trivial case when

ψ̃thLsinh(iη̃thL) = η̃thLcosh(iη̃thL) , (5.22)

where the subscripts explicitly indicate that the quantities ψ̃ and η̃ are at their lasing-

threshold values. Expanding the square of Eq. (5.22), applying Eqs. (5.18), and applying the

identity cosh2 x− sinh2 x = 1 yields, after some manipulation,

σthL
4

+ i∆βthL =±iκLcosh(iη̃thL) . (5.23)

Substitution of Eq. (5.23) back into Eq. (5.22) ultimately generates the following transcen-

dental equation relating η̃thL to the normalized coupling coefficient κL:

κL =± η̃thL
sinh(iη̃thL)

. (5.24)

The solution pairs {κL, η̃thL} are found from Eq. (5.24) by a numerical solver. These

solution pairs are then fed into the right-hand side of Eq. (5.23), and the real and imaginary

parts are used to determine σthL and ∆βthL. This approach to studying lasing also shows

that the lasing threshold σthL is independent of the NIM loss L and disparity δ .

5.4 Conclusion

This chapter presented the coupled-mode equations and associated solutions for the second

novel type of DFB laser, one based on the evanescent coupling between an active PIM

waveguide and a lossy NIM waveguide. The eigenvalues of the new structure are reminiscent
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of the traditional uniform-grating DFB laser where the gain coefficient g has been replaced

with a round-trip gain coefficient σ and the diffraction based coupling coefficient has been

replaced instead with an evanescent coupling process. An entirely new term δ representing

the disparity from transparency acts as a bias to the eigenvalue solution.
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6. Single-Mode DFB Lasing using

a Coupled NIM Waveguide: Lasing

Behavior

6.1 Introduction

This chapter leverages the model and solutions introduced in Chapter 5 to study lasing

behavior. Traditional distributed feedback (DFB) lasers rely on a first-order diffraction

grating to provide feedback along the length of the active region; as was previously shown,

this DFB produces a degenerate pair of lowest-threshold lasing modes, one on either side

of the photonic bandgap [80]. To realize a single-mode laser, this degeneracy is commonly

broken by shifting the mode spectrum via, for example, fabricating a phase shift in the

grating or optimizing facet reflectivities.

It will be shown that the photonic bandgap and single-mode lasing behavior of the

coupled NIM waveguide structure depends on the difference between modal wavenumbers

of the PIM and NIM waveguides, its behavior is not restricted by a grating-defined Bragg

wavenumber; single-mode operation is predicted by tailoring the wavenumber difference to

avoid mode degeneracy.
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6.2 Photonic Bandgap

Figure 6.1 Dispersion relations for the q+ eigenvalue (upper half-plane) and q− eigenvalue
(lower half-plane) for σ/κ = 0,0.3, and 2.5/3. A photonic bandgap is clearly seen for σ = 0,
and the disparity quantity δ does not impact the dispersion relations.

The imaginary portion of either eigenvalue q± directly reveals the photonic bandgap

nature of the active PIM-NIM structure, as illustrated in Fig. 6.1 for several values of

the round-trip gain σ normalized by κ . For σ = 0, a photonic bandgap occurs between

∆β =±κ wherein optical fields exponentially decay in the direction of the Poynting vector.

Increasing σ produces oscillatory, decaying optical fields within the photonic bandgap, as

is the case for the traditional DFB laser [80]. For the PIM-NIM structure, the dispersion

relations are independent of the disparity quantity δ .

For a PIM-NIM DFB laser, ∆β = (βa−βb)/2, and so the center of the photonic bandgap
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is achieved only if the modal wavenumbers βa and βb are equal. Thus, ∆β is akin to that of

the traditional photonic directional coupler despite the occurrence of DFB along the hybrid

PIM-NIM structure.

6.3 Transmittivity

Figure 6.2 Resonant optical-amplification route to lasing threshold. The transmittivity
spectrum for a NIM loss of 5 dB reveals resonant optical amplification at the edges of
the photonic bandgap. Increasing the PIM gain increases the strength of the resonances.
Transmittivity far from ∆βL = 0 is at the level of an uncoupled, active PIM.

The transmittivity T of an active PIM-NIM structure is shown in Fig. 6.2 for κL = 3

and a NIM-waveguide loss L = 5 dB, where L = exp(−αL). Resonant amplification is

exhibited on either side of the photonic bandgap. The resonances increase in strength as the

value of the PIM-waveguide gain G = exp(gL) is increased, and their peak transmittivity

exceeds 30 dB for G = 15 dB. For detuning ∆βL away from the photonic bandgap, the

dissimilarity in modal wavenumbers prevents efficient coupling between waveguides; this

inefficiency results in a transmittivity T that is equivalent to the gain G of the uncoupled
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PIM waveguide.

Figure 6.3 Ramping structure gain reveals lasing threshold. (a) Peak transmittivity TP as
a function of PIM gain coefficient gL for three values of NIM loss L . Lasing threshold
gthL occurs when TP = ∞ and depends on the NIM loss. (b) TP as a function of normalized
round-trip gain σthL is independent of the NIM loss L and disparity δ . κL = 3 for all parts.

Lasing is achieved when the transmittivity peak Tp reaches infinity, physically corre-

sponding to obtaining an optical output power without an optical input power [72]. The

increase in Tp as a function of the normalized PIM gain coefficient gL is shown in Fig. 6.3(a)

for κL = 3 and several values of NIM loss L . Tp is seen to increase at a low rate for small

gL and eventually rises in an extreme manner as gL approaches the lasing-threshold value

gthL. The threshold gthL increases as the NIM loss L increases.

The relation between lasing-threshold values across different NIM-loss cases is seen

clearly when the peak transmittivity Tp is considered in terms of the round-trip gain σL. As

shown in Fig. 6.3(b), the value of σthL is the same regardless of the amount of the NIM loss

L . Since the disparity δ = σ +2α [from Eqs. (5.15)], each curve in Fig. 6.3(b) corresponds
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to a unique value of δL, and therefore the lasing threshold σthL is independent of δL.

6.4 Mode Spectrum

Figure 6.4 The lasing-mode spectrum as a function of coupling κL using transcendental
Eqs. (5.23) and (5.24); the three lowest lasing-threshold modes are shown for positive
∆βthL (symmetric modes for negative ∆βthL not shown). (a) Lasing threshold σthL and
wavenumber detuning ∆βthL solution pairs for specific coupling-coefficient values, several of
which are highlighted using dashed lines. (b) Lasing threshold expressed as gthL and for
three values of NIM loss L , where L = 5 dB has been used for the κL highlight lines.

The threshold values σthL and ∆βthL of the three lowest lasing-threshold modes are

shown in Fig. 6.4(a), where only the curves for positive ∆βthL are shown (a symmetric set

occurs for negative ∆βthL). Each point on a mode curve is associated with a specific value

of the normalized coupling coefficient κL, and constant-coupling examples across the mode
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spectra are indicated using dashed lines. The red solid marker in the figure represents the

lasing threshold that limits the amplification behavior shown in Fig. 6.4(a). The impact of

the NIM loss L can be made explicit by applying gth = σth +α (from Eqs. (5.15)) to the

data of Fig. 6.4(a). Doing so yields the threshold gthL and ∆βthL pairs shown in Fig. 6.4(b);

each lasing mode is now represented by multiple curves, one for each value of NIM loss.

Figure 6.5 PIM-NIM DFB laser mode spectra as a function of normalized evanescent
coupling κL and NIM loss L . Mode degeneracy is broken by design of normalized detuning
∆βL.

The full upper and lower sides of the lasing mode spectrum for the three value of NIM

loss L is captured in Fig. 6.5. Although the shown lasing-threshold curves are similar in

form to those of the traditional DFB laser [80], a significant difference in the behavior of

either kind of DFB laser is rooted in the definition of ∆βthL. For a traditional DFB laser,

∆β = β − π

Λ
, and so the center of the photonic bandgap (∆βL = 0) is achieved when the

free-space wavelength λ matches the Bragg wavelength λB = 2nΛ, where n is the modal

index. Since the photonic bandgap spans only up to a couple of nanometers, the lowest

lasing-threshold mode on either side of the photonic bandgap experiences similar gain,

leading to the undesirable dual-lasing-mode nature of these devices [5], [80], [82].

For a PIM-NIM DFB laser, ∆β ∝ βa −βb, and so the center of the photonic bandgap

(∆βL = 0) is achieved only if the modal wavenumbers βa and βb are equal; equivalently,

since βa−βb =
2π

λ
(na−nb), the center of the photonic bandgap is achieved only if the modal
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indexes na and nb are equal. Matching the wavenumbers to yield ∆βL = 0 is commonly

achieved in traditional directional couplers (DCs) made of two PIM waveguides [68]. For the

PIM-NIM DFB laser, it may be possible to design the waveguides so that the wavenumbers

never match over the gain spectrum. Doing so would force ∆βL to be solely positive or

solely negative, thereby breaking the lasing-threshold mode degeneracy and giving rise to a

single-mode laser.

6.5 Conclusion

A new method for achieving DFB lasing has been proposed and modeled based on the

evanescent coupling between an active positive-index material (PIM) waveguide and a

negative-index metamaterial (NIM) waveguide. In this hybrid structure, the opposing nature

of the Poynting vector in either waveguide gives rise to DFB while the active PIM waveguide

provides for optical gain.

Coupled-mode equations are formed for the lasing structure and closed-form solutions

are derived. The eigenvalues of the second-order system demonstrate similarities to those

of the traditional diffraction grating based DFB lasers but introduce the new quantity of

disparity and update the definition of gain to include the round-trip gain and loss coefficients

of the PIM and NIM waveguides respectively. Coupling occurs in the new lasing structure

using an evanescent coupling process as opposed to a diffraction based process.

Closed form transmittivity solutions provide for gain and detuning threshold pairs which

generate a mode spectrum reminiscent of a traditional uniform-grating DFB laser. These

traditional lasers exhibit degenerate mode spectra which is broken by introducing non-

uniformities into the diffraction grating, tuning facet reflectivity, or by part sampling and

down selection.

Single-mode operation of the proposed NIM-PIM lasing structure is predicted by a

means not available to traditional DFB lasers though a tailoring of waveguide wavenumber
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detuning. By designing the waveguide’s refractive indexes such that the difference remains

positive or negative across wavelength, ∆βL can be made to be one sided. Forcing the

waveguide detuning to remain on one side of the mode spectrum breaks the lasing-mode

degeneracy and results in single-mode lasing behavior. If the difference between refractive

indexes can be made constant across wavelength, the single-mode broadband lasing may be

realized.

The lasing threshold values are found by solving a transcendental equation which only

depends upon coupling, detuning, and round-trip gain. Though the disparity term is entirely

new it does not impact the threshold values of the structure.
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7. Concluding Remarks

7.1 Overview

This dissertation introduces and explores two single-mode DFB lasing concepts, both of

which are new to the field. One single-mode lasing concept is based on the offset alignment

of multiple photonic bandgaps and the other is based on the counter-propagating nature of

light in a negative-index material waveguide. Each concept is explored via mathematical

models derived using coupled-mode theory. Closed-form analytic solutions are found for

each concept using a combination of traditional mathematical techniques as well as a newly-

developed solution process capable of handling the fourth-order coupled-mode equations.

Furthermore, the expected performance of one lasing concept is predicted to out perform

the industry standard λ/4-shifted DFB laser in both gain margin and longitudinal power

flatness.

The work developed and presented in this dissertation is guide-star research at low

technology readiness level. The predicted performance motivates further research; the

established mathematical models and closed-form solutions are tools to aide in that work.
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7.2 Single-Mode DFB Lasing using Photonic-Bandgap

Alignment

Single-mode lasing for a dual-waveguide direct-Bragg, exchange-Bragg, and evanescently

coupled distributed feedback structure is explored using coupled-mode equations. The

lasing structure introduces a second coupled waveguide to the original single-waveguide

uniform diffraction-grating laser introduced in Ref. [4]. This approach takes advantage of the

exchange-Bragg photonic bandgap, created with the introduction of the second waveguide,

to suppress the degenerate lasing mode and, by doing so, seeks to avoid the nonlinear effects

introduced by a peaky longitudinal power profile such as seen in the ubiquitous λ/4-shifted

DFB laser.

New fourth-order coupled mode equations are developed which describe waveguide

mode interactions with the uniform diffraction grating and each waveguide. These CMEs

consider the four independent coupling mechanisms, the four wavenumbers, the active-

region gain, each waveguide loss, and the active-region refractive-index nonlinearity.

A new method is developed to arrive at solutions to the fourth-order CMEs, resulting in

fully parameterized, normalized closed-form expressions of the lasing structures electromag-

netic fields, longitudinal power profiles, and transmittivity and reflectivity responses. The

derived solutions allow for the understanding of fundamental underlying physical principles

of the lasing structure by enabling the observation of behaviors though isolated changes

in well-defined model parameters. Confidence in this model is achieved because, through

the proper selection of parameter values, the provided closed-form solutions can model a

variety of two or four port, active or passive, and grating or gratingless structures.

The exchange-Bragg photonic bandgap PBGχ can be aligned to the degenerate lasing

mode through the proper selection of waveguide-wavenumber detuning ∆βabL, resulting

in single-mode lasing whose structure avoids the undesired phase shift associated with the

λ/4-shifted DFB laser. This alignment can be accomplished even as Henry’s alpha αH

146



CHAPTER 7. CONCLUDING REMARKS

is introduced. Furthermore, the suppression strength of PBGχ is controlled through the

exchange-Bragg coupling value κχL, resulting in a single-mode laser capable of very high

gain margin ∆αL = 1.05 and low longitudinal power-profile flatness F = 0.017.

Additionally, Exchange-Bragg coupling’s impact on the competition between secondary

lasing modes is revealed. Small values of κχL are not sufficient to suppress the degenerate

mode. Increasing the exchange-Bragg coupling coefficient serves to effectively suppress the

degenerate mode, but, gives rise to a resonance that ultimately dominates as the secondary

mode for high values of κχL. Viable exchange-Bragg coupling coefficient values are

therefore bounded between these two extremes which are themselves dependent on the

structure’s direct-Bragg coupling and evanescent coupling strengths.

The model’s inclusion of evanescent coupling demonstrates that single-mode lasing

survives as κeL is introduced; in some cases evanescent coupling can be used to improve

on both gain margin and power flatness, and maintain consistent gain margin across a span

of κχL. Furthermore, increasing κeL serves to delay the unwanted mode associated with

PBGχ occurring at larger values of κχL and extends the same-side secondary lasing-mode

span. A structure with an evanescent coupling coefficient of κeL = 0.25 was shown to result

in a single-mode laser with a best-in-class flatness of F = 0.0006 along with a gain margin

of ∆αL = 0.87, both values exceeding those of the industry standard λ/4-shifted DFB laser

(F = 0.012 & ∆αL = 0.682 for best flatness or F = 0.215 & ∆αL = 0.735 for best gain

margin). Unlike current lasing structures where the minimum flatness and high gain margin

occur for distinct direct-Bragg coupling values, the presented approach outperforms in both

quantities simultaneously for the same optimized structure.
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7.3 Single-Mode DFB Lasing Concept using a

Coupled NIM Waveguide

Single-mode lasing for a structure which evanescently couples a lossy negative-index

material (NIM) waveguide to a positive-index material (PIM) waveguide with gain is

explored using coupled-mode equations. The Poynting vector associated with the NIM

waveguide points in the direction opposite to its wavevector indicating power flow in

opposition to the field direction of propagation. As with a traditional PIM-PIM directional

coupler, optimal evanescent coupling occurs when detuning conditions are met. However,

unlike the traditional PIM-PIM directional coupler, the counter-directional nature of the

flow of power in the NIM waveguide establishes a feedback mechanism within the coupled

PIM-NIM structure.

New second-order coupled mode equations are developed which describe each waveg-

uide mode interactions. These CMEs consider the evanescent-coupling mechanisms, the

two wavenumbers, the PIM’s active-regions net gain, and the NIM waveguide’s loss.

For the PIM-NIM DFB laser, the waveguide-wavenumber detuning ∆β ∝ βA −βB, and

so the center of the photonic bandgap (∆βL = 0) is achieved only if the modal wavenumbers

βA and βB are equal; equivalently, since βA −βB = 2π

λ
(nA −nB), the center of the photonic

bandgap is achieved only if the modal indexes nA and nB are equal. Matching the wavenum-

bers to yield ∆βL = 0 is commonly achieved in traditional directional couplers (DCs) made

of two PIM waveguides [68]. For the PIM-NIM DFB laser, it may be possible to design

the waveguides so that the wavenumbers never match over the gain spectrum. Doing so

would force ∆βL to be solely positive or negative, thereby breaking the lasing-threshold

mode degeneracy and giving rise to a single-mode laser.
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7.4 Future Work

Future work on the two novel lasing concepts can encompass extending the presented

mathematical modeling research or pushing into higher TRL research activities through

FDTD modeling, fabrication, or experimentation.

7.4.1 Facet Reflections

Reflections can occur at the facets of standalone structures. For both lasing structures,

research may be performed to quantify and optimize on behaviors when facet reflections are

non-zero valued. The grating phase at non-zero facet reflections alters the position of the

dominant lasing mode and reduces the gain margin in traditional λ/4-shifted DFB lasers. In

stand-alone devices, these reflections are typically mitigated through anti-reflection coatings

or angled cuts at the laser facet edge.

7.4.2 Above-Threshold Operation

The mathematical modeling and behavior analysis of both lasing structures in this disserta-

tion was performed at-threshold. Above-threshold analysis to understand the degradation in

gain margin, side-mode suppression ratio, output optical power, and other behaviors would

further characterize each lasing structure’s performance expectations. Thermal effects and

wavelength tunability could also be included in such a study.

7.4.3 FDTD Modeling, Fabrication, and Experiment

Future work, more readily for the single-mode lasing structure using photonic-bandgap

alignment, may include the development of an experimental prototype. Initial prototypes

could be pursued in a monolithic III-V material process such as InP or InGaAsP, however,

longer-term heterogeneous integration with silicon-photonic platforms is desired. As a

precursor to any such tapeout, a high-level design and simulation using a finite-difference

149



CHAPTER 7. CONCLUDING REMARKS

time-domain (FDTD) method could be pursued to verify that available gain media, waveg-

uide materials, and fabrication processes support the κ and ∆β values determined by this

dissertations for single-mode operation. Furthermore, a study on the impact of material and

process variance on waveguide wavenumber detuning and, ultimately, mode suppression

could be considered. Detailed modeling and simulation of the various structures using the

selected foundry process design kit (PDK) would build confidence and address first-level

issues prior to experimental fabrication and test.

Future work for the PIM-NIM lasing structure may continue to explore the single-mode

capability of the structure through the dispersion design of the NIM waveguide. A lower

TRL experimental research effort in negative-index material waveguides could precede a

prototype effort of the PIM-NIM lasing structure. Continued investment in the mathematical

model is justifiable as NIM waveguides continue to mature.

7.4.4 PT -Symmetry

The dual-waveguide feedback structure of the PIM-NIM supports both coupling and indepen-

dent gain and loss subsystems as required of PT -symmetric structures. These parameters

are captured by its CMEs 2× 2 Hamiltonian matrix A. Further research exploring the

PIM-NIM concept may yield interesting behaviors when considering both unbroken (in

dynamic equilibrium) or broken (not in dynamic equilibrium) states around the structure’s

exceptional point. The unique properties captured by the PIM-NIM mathematical model

presented in this dissertation have already proven to be compelling for the PT -symmetry

research community [83], [84].
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