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Abstract

Landslides are often catastrophic, causing loss of life and destruction of property and infras-

tructure. Landslide susceptibility and hazard modeling help mitigate these losses by finding

regions prone to landslides and providing probabilistic forecasting of landslide occurrence in

a region. However, these landslide susceptibility and hazard models’ efficacy depends on the

quality of existing databases that often lack crucial information, like the underlying trigger

and failure mechanism of a landslide. In this Ph.D. project, we developed methods to identify

landslide triggering and failure mechanism information using their geometric and topological

properties. For identifying landslide trigger information, we developed three different methods

based solely on landslide polygon shapefiles containing landslides’ two-dimensional (2D) poly-

gon shapes. The first method uses geometric properties of landslide polygons as a feature space

for a machine learning classifier–random forest. In the second method, we transformed these

2D shapes into three-dimensional (3D) point clouds by incorporating the digital elevation data

and then extracting landslides’ topological properties by topological data analysis (TDA) of

these 3D points clouds; and to classify landslides; we treat these topological properties as the

feature space of a random forest classifier. The third method uses images of landslides as in-

put to a convolutional neural network (CNN). We tested all three methods using two different

testing schemes on six known trigger inventories spread over the Japanese archipelago. In the

first scheme, we combine all inventories and then split the dataset into various combinations

of training and testing. We train the method on five known triggered inventories in the second
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scheme and test it on the sixth inventory. Moreover, we implemented each method on an

inventory without triggering information to showcase a possible real-world application. The

TDA-based method is consistently the most accurate in the above analyses, ranging between

84% to 98% accuracy.

To determine the failure mechanism, we explored various geometric and topological prop-

erties of landslide shape and found that topological properties are excellent predictors for

identifying landslide failure mechanisms. Therefore, we developed a method for determining

landslide failure types using landslide topology. First, we extracted the topological features of

the landslide 3D shape using Topological Data Analysis and then fed these features as an input

to the machine learning algorithm–random forest. We implemented the developed method on

the Italian and the US data separately. The method achieves above 95 and 80 accuracies for

each landslide failure type for the Italian and US data sets.

The methods presented in this Ph.D. dissertation show strong performance in identifying

landslide triggers and failure mechanisms. The methods are easy to use as they depend on

landslide polygon as input and are transferrable to different regions of the world with adequate

training data from areas with similar tectonic and climatic properties. We anticipate that the

landslide community and modelers will find our method useful in determining landslides’ trig-

ger and failure mechanism. Moreover, we expect that the developed method will enhance the

efficiency of landslide predictive models, such as landslide susceptibility and hazards models.
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Chapter 1

Introduction

1.1 Motivation

Landslides are natural hazards responsible for thousands of deaths and billions of dollars in an-

nual economic losses (Froude and Petley, 2018). Predictive models like Landslide susceptibility

and hazard models aim to mitigate these losses by locating landslide-vulnerable regions, eval-

uating the potential risks and consequences, and forecasting landslide occurrences. However,

the efficacy of these models depends on the quality of existing landslide databases that often

lack triggering and failure mechanism information, a much-required information for landslide

predictive modeling. Furthermore, even state-of-the-art landslide mapping methodologies,

including those reliant on satellite technology, routinely overlook the inclusion of triggering

events and failure mechanism information, thereby impeding the optimal performance of pre-

dictive models.

Earthquakes and rainfall-induced landslides have different geological and geotechnical prop-

erties as two distinct physical processes trigger them (Taylor et al., 2018b; Öztürk, 2018). Sim-

ilarly, distinct failure mechanisms have unique geotechnical properties due to their contrasting

mechanical and kinematic behavior. Therefore, separate predictive models must be built for

each trigger and failure mechanism-induced landslide. Consequently, using earthquake land-

slides for predictive rainfall models or vice-versa and grouping all failure mechanisms into one

group leads to biases in predictive modeling (Reichenbach et al., 2018; Fressard et al., 2014)

Chapter 1. Introduction 1



Chapter 1. Introduction

Moreover, these biases might be catastrophic, for example, the inability to locate landslide-

prone regions or predicting a low probability of landslide in a high landslide-risk zone. Hence,

determining the triggering events and failure mechanism of landslides is a critical problem

for landslide predictive modeling, and we decided to address and solve these problems in this

Ph.D. thesis.

The landslide database contains information about the landslide’s shape, time of failure,

trigger mechanism, failure types, area, and volume of the failed slopes. However, the amount

of information available in databases varies a lot, and most of the databases contain only infor-

mation about landslide shape, especially in economically emerging countries. So, we planned

to determine landslides’ trigger and failure mechanisms solely based on their shape. Our ap-

proach is motivated by existing studies that showed that physical processes are embedded in

the general shape of the landslides (Varnes, 1996). Inspired by these studies and the availabil-

ity of polygons in landslide databases, we wanted to investigate how far the trigger and failure

mechanism is ingrained in the landslide’s shape.

The presented work focuses on determining landslide triggers and failure mechanisms based

solely on landslide shape by exploring its geometric and topological properties. The methods

presented in this work employ state-of-the-art techniques, such as Topological Data Analysis

(TDA), Convolutional Neural Network (CNN), and decision tree-based classification algo-

rithms.

1.1.1 Objectives

This Ph.D. dissertation is based on several objectives, which are explained below:

1. To explore geometric properties of landslide polygons in order to identify their triggering

mechanisms.

(a) To investigate geometric properties that distinguish between the earthquake and

rainfall-induced landslide polygon.

(b) To develop a method to determine the landslide’s trigger using geometric properties

of landslide shape.

2 1.1. Motivation



1.2. Landslides

2. To employ topological properties of landslide shape to identify its triggering mechanism

(a) To use the 3D shape of landslides to capture more information about their shape

(b) To extract topological properties of the 3D shape of landslides to enhance triggers

classification performance

3. To develop a python based library to estimate the likely triggering mechanism of the

landslides.

(a) To include the presented method for identifying triggering mechanisms in an open-

source Python library.

4. To explore landslide topological and geometrical properties to determine its failure mech-

anism.

(a) To compare geometric and topological properties of landslides and identify the

superior predictors in separating failure mechanisms.

(b) To develop a method for determining the failure mechanism using the best predic-

tors based on the landslide shape.

1.2 Landslides

Landslides are the movements of rocks, debris, and soil under gravity’s influence and often have

disastrous consequences. Each year landslides cause thousands of deaths, injuries, and billions

of dollars in economic losses (Froude and Petley, 2018). Moreover, landslides are responsible

for 17% of all deaths among all-natural disasters. At times, landslides can be cataclysmic;

for example, the landslides that occurred in the aftermath of the 1920 Haiyuan earthquake

in China led to 100, 000 deaths (Tianchi et al., 1992). Landslides are prevalent in almost all

parts of the world. In the United States alone, landslides cause around 25− 50 deaths yearly,

and around 1 to 4 billion dollars in annual economic losses (Dai et al., 2002). In Japan, the

annual losses surpass the US and are around 4 to 6 billion dollars. In European countries like
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Italy, France, Switzerland, and Austria, the annual economic loss due to landslides is around

1 to 5 billion dollars (Geertsema et al., 2009).

Furthermore, globally, around 5 percent of the world population and about 3.7 million

square kilometers is vulnerable to landslides, and around 66 million people live in high-risk

landslide areas (Dilley, 2005). Also, with the increase in urbanization leading to expansion of

population and infrastructure, there are increasing numbers of people that are vulnerable to

landslides.

1.3 Causes of Landslides

Various factors like natural causes, human activities, and a combination of natural and human

actions cause landslides by disturbing slope stability. Human activities, such as deforestation,

which can initiate landslides, as flora help hold soil and stabilize slopes. Moreover, constructing

infrastructure without sufficient slope grading causes surface soil instability, which contributes

considerably to the occurrence of landslides (Kjekstad and Highland, 2009). Another human

activity that contributes to landslides is mining in landslide-prone areas.

The natural causes of landslides are earthquakes, heavy or prolonged rainfall, rapid snow

melting, and volcanic eruptions. These natural causes are sudden events that imbalance the

stable slope and lead to failure. Heavy rainfall and earthquakes are the most common natural

causes of landslides. Heavy rainfall increases the soil weight and decreases the shear strength

and cohesion between soil particles, leading to surface failures (Tacher and Bonnard, 2007).

In contrast, earthquakes are caused by the movement of tectonic plates, leading to seismic

waves that often cause landslides; that is why earthquake-triggered landslides are common in

tectonically active zones and mountain ranges.

The effects and size of landslides triggered by natural causes depend on factors like lithol-

ogy, topography, and trigger intensity (Öztürk, 2018). Properties of rocks called lithology

affect landslide movements related to the landslide effect. For example, clay layers behave

like a fluid with a sufficient water content that minimizes the gravitation pull on the clay

particles (Stark et al., 2017). Whereas karst layers form holes between rock layers, leading

4 1.3. Causes of Landslides



1.4. Landslides Susceptibility and Hazard Models

Figure 1.1: The landslides are shown in the image with the landslide polygon as the red dotted
line outlining the landslides (This image is reproduced with the permission of the authors of
the paper (Landslide shape, ellipticity and length-to-width ratios) (Taylor et al., 2018b).

to slope instability and surface failure (Martinotti et al., 2017). Apart from lithology, the

region’s topographic properties play a critical role in causing landslides. The slope is the es-

sential topographic property that determines the landscape stability through the gravitation

force (Imaizumi et al., 2017). Regions with high slopes are more prone to surface failure than

regions with low slopes. Variation in slope called curvature is equally crucial in determining

surface failure.

1.4 Landslides Susceptibility and Hazard Models

The economic and life losses that occur due to landslides can be mitigated by landslide pre-

dictive models such as landslide susceptibility and hazard models. Landslide susceptibility
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models provide the probability of a region prone to slope failure without the expected failure

time (Hervás and Bobrowsky, 2009). These models utilize the existing landslide databases

with their triggers and other landslide-controlling factors to locate the landslide-prone regions

(Hervás and Bobrowsky, 2009). Moreover, these models assume that past landslides include

information about the conditions that lead to failure, which will also lead to future failures

(Nadim et al., 2006; Hong et al., 2007). Susceptibility models can be categorized based on

physical and statistical models. Usually, physical models for landslide susceptibility include

lithological information like soil texture, water infiltration rate, and topographic factors like

slope and curvature of landscape (Trigila et al., 2015). In contrast, statistical landslide suscep-

tibility models primarily depend on landslide-triggering factors that can locate landslide-prone

areas. These statistical models assume that landslides depend more on landslide-triggering

mechanisms than a region’s topographic and lithological properties (Lee et al., 2018).

Landslide hazard modeling provides the probability of landslide occurrences in a specific

time interval with potential landslide area, and volume (Crozier and Glade, 2005). Some

models can even calculate where and how the failure material will travel and deposit. Landslide

hazard models assume that future landslides will occur in similar climatic, geomorphological,

and hydrogeological conditions that cause the past landslides. This model efficacy depends on

the landslide databases quality, mainly containing triggering information, as there are separate

hazard models for distinct triggering mechanisms (Ozturk et al., 2021a). For example, hazard

models for an earthquake require only past earthquake landslide datasets.

Apart from susceptibility and hazard models, there are other ways that help in mitigating

landslide losses—for example, avoiding construction in steep slopes and existing landslide

areas. Monitoring the slope stability in construction and populated areas is another way to

mitigate landslide losses through the use of active sensors like ground-based interferometric

synthetic aperture radars (InSAR) or satellite-based InSARs. In addition, diverting roads and

highways from the rockfall landslide regions and providing drivers with early warning help

mitigate losses.

6 1.4. Landslides Susceptibility and Hazard Models



1.5. Types of Landslides

1.5 Types of Landslides

Landslides are classified according to the type of movement, material, and trigger. Depending

on the material involved, landslides are classified as rock, sand, or soil (Öztürk, 2018). Based on

the type of movement, landslides are mostly classified as slide, flow, complex, and fall (Hungr

et al., 2014a). Based on the triggers, landslides are classified as earthquake-triggered, rainfall-

induced, a combination of earthquake and rainfall, and anthropogenic landslides. In this

Ph.D. project, we developed methods to classify landslides based on their trigger and failure

mechanism, as triggering and failure information is much-needed information for landslide

predictive modeling.

1.5.1 Based on their Trigger Mechanism

Triggers are the external stimulus that leads to the instability of slope failures by rapidly

decreasing the strength of the slope materials. Earthquakes, prolonged or heavy Rainfall,

snowmelt, volcanic eruption, and heavy constriction near the steep slope are examples of

landslide triggers. Earthquakes and Rainfall causes most of the landslides, so in this Ph.D.

project, we only focused on classifying them.

The sudden movement of tectonic plates created seismic activity leading to earthquakes

that often destabilize steep slopes and trigger landslides. For example, the earthquake (MW

7.9) in 2002 Denali and 2008 Wenchuan earthquake triggered around 1,500 and 60,000 land-

slides (Jibson et al., 2004; Cui et al., 2011).

Rainfall induces landslides by rising water tables that lead to a decrease in shear strength,

and cohesion, an increase in soil weight, and causes the erosion of soil. Both rainfall intensity

and amount can induce landslides. However, high-intensity Rainfall usually induces shallow

landslides, whereas high rainfall amounts are also responsible for reactivating deep-seated

landslides. For example, intense and prolonged Rainfall during hurricane Mitch induced tens

of thousands of landslides of different sizes (Devoli et al., 2007); 800 mm of Rainfall in the

Fukuoka region in Japan in a day induced around 2000 shallow landslides.
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1.5.2 Based on their Failure Mechanism

Landslides are classified into four types based on their failure mechanism–slide, flow, fall, and

complex. Slide failure mechanism involves the movement of soil and rock sliding through

almost a planar or curved concave surface (Varnes, 1978). Slides usually occur in steep slopes

having cohesive rock or soil. In contrast, falls is the rapid movement of rock down detached

from the cliff of a steep slope (Bourrier et al., 2013). Usually, the removed material strikes at

a lower angle slope, leading to breaking or rolling rocks until it reaches a flattened area.

A flow is a continuous spatial movement in which shear surfaces are short-lived, closely

spaced, and rarely preserved. The displacing mass of a flow’s component velocities is similar

to those of a viscous liquid as they propagate in a viscous kinematic state contouring the

landscape. Whereas complex failures exhibit characteristics of a combination of more than

one failure mechanism that occur simultaneously or later (Cruden, 1996; Hungr et al., 2014b).

For example, a combination of slide and flow is considered a complex landslide.

1.6 Landslides Dataset

Detailed information about past occurrences of landslides is stored in landslide databases.

These databases contain information about the landslide polygon, which outlines the landslide

(Fig.1.1), time of failure, trigger mechanism, failure types, slope angle, rainfall patterns, and

vegetation in the failure location. The quality of databases is an essential factor for landslide

predictive models such as landslide susceptibility and hazards and understanding landslide

causes, effects, and impacts. However, most of these past landslide databases lack trigger and

failure mechanism information, much-needed information for predictive modeling. Also, newly

acquired landslide databases lack triggering and failure information due to the automated data-

capturing process. This Ph.D. thesis is focused on developing methods to identify landslide

triggering and failure mechanisms for better quality landslide databases and their importance

for better landslide predictive modeling.
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1.7 Past Studies on Triggering and Failure Mechanism

Past studies suspect landslide polygons to reveal their triggering mechanism (Varnes, 1996).

(Taylor et al., 2018a) showed that earthquake-triggered landslides have longer accumulation

zone than rainfall-induced landslides and thus have a lower length-to-width ratio than rainfall-

induced landslides. Moreover, few other studies attempt to categorize landslides based on their

triggering mechanism and use perimeter, area, and similarity of landslides to circle or ellipsoid

(HR.Pourghasemi et al., 2014; Samia et al., 2017; Taylor et al., 2018a; Milledge et al., 2014).

However, none of the past studies classify landslides based on triggering mechanisms due to

irregularities in landslide polygons (O.Marc and Hovius, 2015).

Regarding the identification of failure mechanisms, there have only been a few research that

can be divided into two categories: knowledge-based and data-driven methods. Knowledge-

driven approaches to identifying failure mechanisms are limited to small areas as these studies

are based on spectral, topographic, and morphometric parameters that vary from region to

region, because of which they cannot be adapted dynamically to other regions (Barlow et al.,

2006). To the best of our knowledge, there exists only one data-driven method for determining

failure mechanism (Amato et al., 2021); however, this method uses only a 2D landslide polygon

and misses crucial information like kinematic and mechanic information of landslide failure.

Kinematic and mechanic information on landslide failure is much more important information

for distinctive different failure mechanisms, and disregarding this information reflects in the

performance of the data-driven method.

1.8 Layout of the Thesis

This Dissertation consists of 8 chapters containing the introduction, results, and conclusion of

the work done during the Ph.D. period. Chapter 1 provides the motivation, objectives, and

introduction of the Ph.D. project. Chapters 2 and 3 address the first objective of the Ph.D.

project, which is using geometric properties to identify the trigger mechanism of landslides.

Chapter 4 addresses the second objective of the Ph.D. project, using topological properties
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to enhance landslide triggers classification accuracy. Chapter 5 includes the third objective of

the Ph.D. about developing a library to estimate likely triggers of landslides. Chapter 6 and 7

contains the last objective of the Ph.D. about using geometrical and topological properties to

determine the failure mechanism of the landslides. Finally, Chapter 8 contains the conclusion

of the work.
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Chapter 2

Landslide Geometry Reveals its

Trigger

This chapter is based on Objective 1 of the Ph.D. thesis about exploring the geometric prop-

erties of landslide polygon to identify its triggering mechanism. Here, we explored the various

geometric properties of the landslide polygon and found seven geometric properties that are

excellent predictors in identifying landslide triggering mechanisms. The work presented in this

chapter is published in:

Rana, K., Ozturk, U., & Malik, N. (2021). Landslide geometry reveals its trigger. Geophysical

Research Letters, 48(4), e2020GL090848.

2.1 Abstract

Electronic databases of landslides seldom include the triggering mechanisms, rendering these

inventories unusable for landslide hazard modeling. We present a method for classifying the

triggering mechanisms of landslides in existing inventories, thus, allowing these inventories to

aid in landslide hazard modeling corresponding to the correct event chain. Our method uses

various geometric characteristics of landslides as the feature space for the machine learning

classifier random forest, resulting in accurate and robust classifications of landslide triggers. We

applied the method to six landslide inventories spread over the Japanese archipelago in several

Chapter 2. Landslide Geometry Reveals its Trigger 11



Chapter 2. Landslide Geometry Reveals its Trigger

different tests and training configurations to demonstrate our approach’s effectiveness, and we

achieved mean accuracy ranging from 67% to 92%. We also provide an illustrative example

of a real-world usage scenario for our method using an additional inventory with unknown

ground truth. Furthermore, our feature importance analysis indicates that landslides having

identical trigger mechanisms exhibit similar geometric properties.

2.2 Introduction

Landslides pose a constant threat to human life, individual property, and infrastructure in

rugged terrains globally. Thus, algorithms that can learn patterns from past landslides and

provide early-warning signals are highly sought-after (Osanai et al., 2010). However, the

performance of such algorithms critically depends on the quality of the existing landslide in-

ventories. Some of these inventories are compiled by mapping landslides that cause damages,

e.g., along roads (Pittore et al., 2018) and merging these mappings with existing datasets

to create a knowledge base (Havenith et al., 2015). More contemporary mapping includes

repeated satellite monitoring of landslide-prone regions to create complete landslide databases

(Behling et al., 2014; Tanyas et al., 2017). Although event-based inventories include clear

traces of the triggering mechanisms of landslides (von Specht et al., 2019), many other inven-

tories, such as satellite-based, lack crucial information linking a given landslide to a specific

triggering mechanism (Behling et al., 2014). The missing information about triggering mech-

anisms decreases the efficacy of these inventories in landslide hazard analyses, as this could

introduce biases, for instance, inadvertently using earthquake-triggered landslides to assess

landslide hazard for extreme rainfall (Ozturk et al., 2020). Hence, there is a need to identify

triggers of landslides in exiting databases to make them usable in hazard models.

Geometric features of landslide polygons are suspected to reflect their trigger (Varnes,

1996). Coseismic landslides tend to have a lower length-to-width ratio than the rainfall-

induced landslides due to their extended accumulation zone (Taylor et al., 2018a). Topographic

site effects amplify seismic signals at higher altitudes causing coseismic landslides to cluster

around mountain ridges (Meunier et al., 2008; Rault et al., 2019). On the contrary, rainfall-
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induced landslides happen to connect to the local drainage network, which could be deceptive

considering their extended accumulation (Marc et al., 2018; Ozturk et al., 2018). Accordingly,

existing studies try to categorize landslide based on their triggers using (i) perimeter area

indices (HR.Pourghasemi et al., 2014); (ii) similarity of a landslide planform to a circle or

an ellipsoid (Samia et al., 2017; Taylor et al., 2018a); and (iii) scaling relationships between

landslide dimensions and area (Milledge et al., 2014). However, it is challenging to apply

these metrics for automatic classification of landslides due to the irregularities in landslide

polygons and amalgamation of several types of landslides in the databases (see, e.g.,(O.Marc

and Hovius, 2015)).

Here we present a machine learning-based approach that uses the geometric features of

landslide polygons to identify the underlying triggering mechanisms of landslides. It is the

geometry of the landslides that provides physical insight about their trigger. The trigger mech-

anisms get encoded into the geometry of the landslide polygons (e.g. the outline of debris field).

To illustrate the effectiveness and accuracy of our approach, we apply it to several inventories

spread over the Japanese archipelago with known triggers. We anticipate that our robust yet

straightforward approach will be transferable to build a landslide knowledge base. For future

practical deployment of the approach, we also demonstrate the applicability of our method

on a landslide inventory without any triggering information. Apart from providing a useful

technique for landslide trigger classification, our study also highlights that the information of

trigger mechanisms is embedded in the geometric features of landslides.

2.3 Data

In this work, we analyze seven landslide inventories that belong to six different regions of Japan

(see Fig. 7.2). We know the trigger mechanisms in six of the seven inventories, and we will em-

ploy these inventories with known triggers to test the efficiency of our method. For the seventh

inventory, the triggering mechanism is unknown, and we will use it to demonstrate the prac-

tical implementation of the method as this scenario represents the most probable real-world

usage of our method. We used the coseismic landslides associated with following earthquakes:
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the 2018 Hokkaido Eastern Iburi (MW 6.6); the 2008 Iwate–Miyagi Nairiku (MW 6.9), and the

2004 Niigata (MW 6.6). The Geospatial Information Authority of Japan (GSI) is the source of

landslide inventory from the Hokkaido Eastern Iburi earthquake, while the source of the other

two coseismic inventory is the repository created by (Schmitt et al., 2018b). GSI also provides

rainfall-induced landslide inventories of the Fukuoka (July 2017) and Saka (July 2018) regions.

We employ two more inventories from the Kumamoto region provided by the National Re-

search Institute for Earth Science and Disaster Resilience (NIED) of Japan. In one of these

inventories, the underlying trigger is documented as rainfall; however, the second inventory

lacks any triggering information. We will refer to this second inventory as “unspecified.”

The unspecified Kumamoto inventory locates in the Kumamoto region of Japan but is

geographically far from the rainfall-triggered Kumamoto inventory. The landslides in the

unspecified Kumamoto inventory are mapped along the rims of the Aso Caldera, which is an

volcanic active region.

2.4 Method

The landslide planforms (polygons) are one of the primary information in landslide invento-

ries, and geometric features of these polygons are a rich source for understanding physical

mechanisms underlying a particular landslide (Kasai and Yamada, 2019; Milledge et al., 2014;

HR.Pourghasemi et al., 2014; Samia et al., 2017; Taylor et al., 2018a). Therefore, we explored

various geometric properties of landslide polygons and identified a subset to form the feature

space for machine learning-based automatized classification of landslides into two categories:

earthquake-induced and rainfall-induced landslides.

We started by exploring a broad set of measures to quantify the geometric shapes of

two-dimensional polygons extracted from the landslide planforms. In Table 3.1, we provide a

complete list of these geometric measures. Using a combination of feature selection approaches

(described in detail in section 3.2 and 3.3 of the chapter 3), we were able to select seven features

that lead to the best classification accuracy (Ambroise and McLachlan, 2002; Friedman et al.,

2001; Chandrashekar and Sahin, 2014; Scott, 2015a). These seven geometric features were area
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(d) Saka
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(f) Kumamoto 
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Event: July 2017 
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Figure 2.1: The map of Japan shows the geographical locations of the seven landslide inven-
tories used in this work. (a-g) Shows the Digital Elevation Model (DEM) of these inventories,
and the adjoining panels list the region, trigger type, the origin of the event, and the number
of landslides. The red color overlays on the DEM are a subset of landslide polygons of each
inventory. Japanese Geospatial Information Authority (GSI) is the source of data in (a),(d),
and (e); National Research Institute for Earth Science and Disaster Resilience (NIED) is the
source of (f) and (g) and data in (c) and (b) is from (Schmitt et al., 2018a).

A, perimeter P , convex hull based measure Ch =
A

Ac
, where, Ac is the area of the convex hull

fitted to the polygon (hereafter, we will refer Ch as convex hull measure), the ratio of area and

perimeter
A

P
, width of the minimum area bounding box W , minor axis sm, and eccentricity

of the fitted ellipse e (Fig. 2.2). As each feature has a different range of measurement values,

we standardized the data by calculating z-scores of each feature.

For classifying landslides, we employed random forest, an ensemble-based learning method

(Liaw et al., 2002; Breiman, 2001; Biau and Scornet, 2016; Biau, 2012; Barnett et al., 2019;

Kursa, 2014; Roy and Larocque, 2012; Rodriguez-Galiano et al., 2012). Unlike the standard

tree-based methods, where all the attributes are used for the best split of a node, in a random

forest, only a random subset are used, and each decision tree is constructed using different
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(c) Geometric Features

(a) Earthquake Induced Landslides (b) Rainfall Induced Landslides 

Hokkaido 

Iwata

Niigata 

Saka 

Kumamoto

Fukuoka 

Width (W ) Area (A)

Perimeter (P) Minor 
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Eccentricity ( ) e

e = 1 − s2
m
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M

Convex hull 

Area of 
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  (Ac) Ch = A
Ac

Major 
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Figure 2.2: Sample landslide planforms from (a) Earthquake triggered (b) Rainfall triggered
inventories (c) Geometric features (left to right): Width (W ) of minimum area bounding box
fitted to the landslide polygon, area (A) and perimeter (P ) of the landslide polygon, minor
(sm) and major axis (SM ) lengths of an ellipse fitted to the polygon and convex hull based
measure Ch = A

Ac
where Ac is the area of convex hull fitted to the polygon.

bootstrap samples of the data (Liaw et al., 2002; Breiman, 2001). For the testing sample,

each tree predicts the class independently, and the class having the majority vote is the class

prediction of the sample. Below we briefly describe the steps in implementing random forest

for our binary classification problem (Liaw et al., 2002; Breiman, 2001; Zhang and Ma, 2012a;

Friedman et al., 2001).

We build a decision tree Tb for each bootstrap sample b of the training set; let Xi = [xij ]
p
j=1

represent a p dimensional feature vector for data point i. Next, we recursively repeat the
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following two steps for each node of the tree: (i) select m variables among p and (ii) split the

node into daughter nodes that best separate the classes. As we carry out binary classification,

i.e., classifying landslides into earthquake or rainfall triggered, the parent node q is split into

two daughter nodes left l and right r. For this splitting, we employ the Gini index method,

where Gini index for l and r are Gl = 1−p2l1−p2l2 and Gr = 1−p2r1−p2r2 respectively. Note plj

is the probability of data points of class j in node l. For each split of a node, the Gini index

of the sub-nodes should be less than the parent node, and can be achieved for a split sq of

node q if we maximize the decrease in the quantity ∆θ(sq) = Gq − ρrqGr − ρlqGl; where ρrq

(ρlq) are the ratio of the number of data points in daughter nodes r (l) to the total number

of points in the parent node q (Zhang and Ma, 2012a; Kuhn and Johnson, 2013). The two

recursive steps (i) and (ii) continue until a predefined criterion is satisfied. For example, we

are left with one data point each in the daughter nodes, and no further splitting is possible.

Now if Cb(Yi) is the class prediction of the b-th random forest tree for Yi point in the

training set, then the class prediction of Yi is given by the majority vote in the set {Cb(Yi)}B1 ;

where B is the total number of bootstrap samples. In this setting, the importance of the k-th

feature in predicting the training set is given by I(k) =
1

B

∑
Tb

∑
q∈Tb:D(sq)=k

ρqθ(sq); where ρq

is ratio of number of points in the q-th node to total number of points in training data and

D(sq) = k implies that the feature involved in the split sq is k-th feature. The I(k) in above

formulation measures the average of weighted impurity decrease ρqθ(sq) over all the splits in

the ensemble of random forest trees. As
∑

k I(k) = 1, we express the feature importance in

percentage as
I(k)∑
k I(k)

× 100.

2.5 Results

For the first numerical experiment, we constructed testing and training set by combining the

six inventories with known triggers to validate our approach (Fig. 2.3). In this experiment, the

total number of samples in the combined dataset were ntotal = 26501, with nrainfall = 10305

and nearthquake = 16196. We randomly resample the data to take an equal number of the

earthquake and rainfall samples (nrainfall = nearthquake = 10305) to avoid any class imbalance.
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Figure 2.3: (a) Earthquake and rainfall triggered class accuracies using random forest classifier
on geometric features of landslide polygons. The underlying data is a concoction of all the
six inventories with available ground truth, where the training set has 18, 548, and the test
set has 2, 062 samples. Within the test set, 1, 031 samples are earthquake driven, and 1, 031
are rainfall driven. Using 1000 runs of10-fold cross-validation, we identified 86.15 ± 0.22%
earthquake-triggered landslides and 85.29± 0.19% rainfall-triggered landslides correctly. The
plot in (a) is the output from one of the runs of the random forest classifier. The class
probability represents the proportion of votes for a class in the ensemble of trees. The x-axis
is the index of the sample in the test set. (b) The importance of geometric features used in
(a). The percentage corresponding to each feature represents the mean decrease in the tree
leaf impurity over the full random forest such that the total percentage sums to 100.

Thus, we apply the algorithm on n = 2×10305 = 20610 samples. We also employed 1000 runs

of 10-fold cross-validation to swap training and testing sets to avoid the likelihood of results

influenced by overfitting and smaller standard deviation in each case indicate more stable class

performances. Dividing 20610 landslide samples into 10-folds with an equal number of landslide

samples in each fold leads to uneven numbers of earthquake and rainfall samples (20610/10

=2061; an odd number). To tackle this issue, the five-folds out of ten-folds have 2062 samples

(both earthquake and rainfall have 1031 samples), and the remaining five-folds have 2060

landslide samples (each earthquake and rainfall have 1030 samples). Thus, each iteration of

10-fold cross validation has either ntrain = 18548, ntest = 2062 (1031 each rainfall-induced and
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coseismic) or ntrain = 18550, ntest = 2060 (1030 each rainfall-induced and coseismic). Here

ntrain, ntest are number of training and testing samples.

In the experiment with combined data, using X = [A,P,Ch,
A
P ,W, sm, e] as the feature

vector, we achieved the mean classification accuracy of 85.73 ± 0.16%, where 86.15 ± 0.22%

earthquake-triggered and 85.29 ± 0.19% rainfall-triggered events were classified correctly (see

Fig. 2.3 (a)). Among all the geometric features, minor axis length sm has the highest feature

importance of 21.42%, followed by the convex hull measure Ch (18.58%) (see Fig. 2.3 (b)).

To check for the possible bias in feature importance due to multi collinearity of the geometric

predictors. We use two different approaches and end up with the same conclusion that minor

axis length sm , convex hull measure Ch and area to perimeter(AP ) are the most important

predictors and perimeter is the least important feature (described in detail in section 3.6 of

the chapter 3).

In section 3.6 of the chapter 3, we provide further detailed analysis of these results, in-

cluding additional metrics evaluating the algorithm’s performance. Also, see Figs. 3.6-3.7 and

Table 3.2 in the chapter 3.

In the second experiment, we applied to our approach to individual inventories; we train

the algorithm on five of the six inventories and predict the trigger of landslides in the sixth

inventory. That is, the training data has no information on the test data inventory—a situation

similar to the one we anticipate this method will be used in the real world. We use the

same set of geometric features as in Fig. 2.3, and to avoid class imbalance, we keep the

number of rainfall and earthquake samples the same by resampling the data. The method

achieved over 85% classification accuracy for the Saka (ntrain = 14976, ntest = 2817), and

Niigata (ntrain = 14832, ntest = 8780) region. 83.63% accuracy for the Kumamoto region

(ntrain = 9482, ntest = 5564), 75.59% for the Iwata region (ntrain = 20610, ntest = 4160), and

66.62% for the Hokkaido (ntrain = 20610, ntest = 3256), and 69.40% for Fukuoka (ntrain =

16762, ntest = 1924) regions (see Fig. 2.4). In this experiment, the model performed better

with classifying the rainfall triggered inventories than the earthquake triggered inventories.

Performance drops as low as 67% in the case of Hokkaido. We repeat the run 1000 times with
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Figure 2.4: Predicting one of the six inventories while the random forest classifier was trained
on the rest of five inventories, i.e., the classifier has no information on the data being predicted.
The geometric features used are the same as in Fig. 2.3. The deviation quoted in the accuracy
percentage was calculated by running the classifier algorithm 1000 times (note cross-validation
is not possible to implement in this configuration of testing and training data). Also, see Figs.
S8 and S6 in the SI.

random selection of equal earthquake and rainfall landslide samples for training. The results

are stable with change in training samples, as the standard error is small and greatest being

0.65% for the Hokkaido region. For further analysis of this experiment see Sec. 3.5 in the

chapter 3.

In the third experiment, we applied our method to the unspecified trigger inventory from

the Kumamoto region (inventory (g) in Fig. 7.2). Out of 612 landslides in the test case, 604

were classified as earthquake-induced and 8 as rainfall-induced. We present a detailed analysis

and discussion on this inventory and our results in section 3.4 of the chapter 3.
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2.6 Discussion

We showed that using the random forest algorithm in conjunction with geometric features of

landslide planforms is a robust technique for classifying landslides trigger mechanisms, and

it can achieve excellent classification rates in a variety of settings. For example, while using

the aggregate data from different regions of Japan with varied geology and topography, this

scheme achieved an accuracy of 85%. Whereas in the individual analysis of different regions,

the classification accuracy went up as high as 92%. Moreover, we identified seven geometric

features of landslide polygons that appear to be the best predictors of the underlying trigger

mechanisms. Our results indicate that although there is diversity in the physical mechanisms

producing landslide events, there is also a universality in these mechanisms that get embedded

in the geometry of landslide planforms.

A possible reason for the emergence of this universality could be that both rainfall-induced

and coseismic landslides in our databases consist of a mostly shallow landslide, e.g., debris flows

(von Specht et al., 2019; Watakabe and Matsushi, 2019; Kasai and Yamada, 2019). Although

coseismic rockslides tend to cut the mountain ridge and slide through concave slopes likely on a

lithological failure plain with relatively short accumulation zones (Havenith, 2002), the number

of such failures is limited in our databases. Shallow landslides, such as debris flows, tend to

flow through convex slopes, following the local morphology with extended accumulation that

could increase the source area tenfold (Uchida et al., 2013; Wang et al., 2015; Hungr et al.,

2014b). Additionally, debris flows are prone to form concave planforms due to flow divergence

along valley bottoms. Hence more extended accumulation areas will result in elevated convex

hull and area–perimeter ratio (Fig. 2.2c) in our analyses. Although these shallow slope failures

could be classified into the same landslide type (Varnes, 1996; Hungr et al., 2014a), our results

indicate that the coseismic and rainfall-induced landslides form divergent planforms (Taylor

et al., 2018a). Hence length-to-width and area-perimeter ratios, together with the semi-minor

axis, contribute the most to the classification (see Fig. 2.3), highlighting that rainfall and

earthquake driven landslides have distinct geometry.

To further demonstrate the practical aspects of our approach, we also applied it to an
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unspecified trigger inventory from the Kumamoto region (inventory (g) in Fig. 7.2). The

landslides in this inventory are mapped along the rims of the Aso Caldera; the active volcano

Mount Aso shakes the surrounding area, frequently triggering landslides within its vicinity

(Saito et al., 2018). Therefore, the majority of the unspecified landslides may be seismically

triggered. In our analysis, we find the same, out of 612 landslides in the test case, our algorithm

classified 604 as earthquake-induced and 8 as rainfall-induced. Given most of the landslides

classified as coseismic, we are confident in flagging this inventory as seismically triggered due

to the volcanic activity.

The size of the databases we used is relatively small, i.e., it is challenging to apply more

sophisticated image classification algorithms, such as the convolutional neural networks (CNN)

to the problem at hand, as these algorithms require extensive training sets. In contrast, as

illustrated above, the random forest was able to achieves good enough accuracy to apply

the method in real world application even when training sets were rather small. . Also,

the random forest is comparatively computationally inexpensive, its complexity in our case

was O(n log n), where n is the number of samples. Furthermore, the random forest is highly

portable, as nowadays many machine learning packages include an elaborate implementation

of this algorithm (Pedregosa et al., 2011). Given these advantages, we anticipate that the

landslide modeling community will find our scheme useful.

2.7 Conclusion

Historic landslide inventories rarely include the triggering mechanisms of the observed land-

slides, a critical piece of information for landslide hazard and susceptibility models. We devel-

oped a method that can fill this missing information by classifying existing landslides in digital

databases of landslides. Our method uses geometric characteristics of landslide polygons as

features for random forest classifier. The resulting algorithm is highly portable and accurate

and can be applied to any region of interest with adequate training data from regions with

similar tectonic and climatic features. We also identified seven geometric features of landslide

planforms that appear to capture some universal patterns in the landslide trigger mechanisms.
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Furthermore, we applied our scheme to several different tests and training set configurations

of the available data from Japan, and our results indicate this method is versatile, robust,

and can classify landslide triggers with high accuracy. Envisioning that this method will be

applied to individual inventories with unknown triggers in practice, we prepared such a test

application and demonstrated that the model classifies it as an earthquake driven inventory,

a highly plausible classification based on the geographic location of the inventory.

Our study is limited to the Japanese archipelago consisting of landslides samples triggered

by either earthquake or rainfall. We hope research community will use our method to datasets

inventories from various geographical regions with different mechanism.
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Chapter 3

Additional Evidences showing

landslide geometry exhibit its

triggering information

This chapter is based on objective 1 of the Ph.D. thesis about exploring the geometric prop-

erties of landslide polygon to identify its triggering mechanism. Here, we showed a details

analysis of selecting seven geometric properties for identifying the triggering mechanism. The

work presented in this chapter is published in the supplementary material of the Journal

manuscript:

Rana, K., Ozturk, U., & Malik, N. (2021). Landslide geometry reveals its trigger. Geophysical

Research Letters, 48(4), e2020GL090848.

3.1 Introduction

This supporting information (SI) to the manuscript titled: “Landslide Geometry Reveals its

Trigger,” describes the approaches we followed for selecting the geometric predictors used in

the landslide triggers classification. It also contains an in-depth analysis of these geometric

attributes’ probability distributions quantifying the dissimilarities between earthquake and

rainfall triggered landslide polygons. With the help of the probability density of geometric

predictors, we provide additional evidence that the earthquakes are the triggers for the un-
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specified Kumamoto inventory (inventory with unknown ground truth). In this SI, we have

also included an elaborate discussion on the performance of our algorithm.

3.2 Geometric Attribute Selection For Landslide Classification

Selecting the optimum number of features for the model is crucial as it reduces the overfit-

ting, generalization error, and computational time. A model with fewer predictors is much

more interpret-able than a model with a large number of predictors(Ambroise and McLachlan,

2002)(Friedman et al., 2001)(Chandrashekar and Sahin, 2014). In our work, we used 17 at-

tributes(refer to Table. S1) of landslide polygons quantifying the different geometric properties

of a landslide shape, i.e., area, perimeter, complexity, compactness, and circularity. Out of

these 17 geometric attributes, some of the features are strongly correlated, as a few predictors

represent the same geometric property of a shape. More than one feature representing the

same geometric property in a model will not significantly improve the generalization accuracy,

and the possibility of overfitting will increase. Removing one of the two strongly correlated

features is a common practice (unsupervised feature selection)(Friedman et al., 2001), and we

used Spearman rank-order correlation, a measure of the monotonic relationship between the

two variables to identify strongly correlated features(Kuhn and Johnson, 2013).

Spearman rank-order correlation, ρ vary from -1 (perfect negative correlation) to 1 (perfect

positive correlation). Out of the two strongly correlated predictors, one was removed from the

feature space if |ρ| = 1 between them. For instance, the eccentricity of the fitted ellipse has

|ρ| = 1 with the ratio of major and minor axis, complexity measure, compactness calculated

using iso-perimetric quotient and Richardson complexity measure. Elongation and aspect

ratio of the fitted minimum bounding box are also strongly correlated with |ρ| = 1. Therefore,

among all these features, we kept the eccentricity and elongation for further feature selection

and removed the rest of them. After an initial unsupervised selection of features, the feature

importance of the remaining eleven relevant predictors is calculated with the Gini index-based

method using a random forest algorithm (see manuscript for a brief description; for a more

detailed description, see (Breiman, 2001)). For estimating error bounds on feature importance
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and due to class imbalance (briefly explained in manuscript), we employed 100 realizations of

K-fold cross-validation(K=10) that divides the data into K-groups(folds). Each iteration of

cross-validation chooses K-1 folds for training and rest one fold for the testing purpose such

that none of the iterations have the same subset of fold for testing the model (Kuhn and

Johnson, 2013). The feature with the least feature importance was removed. We repeat the

whole process of removing one feature at a time until the error rate remains constant. We

found that the error rate is constant until we are left with seven features. We chose these seven

features in the model and removed the less relevant predictors as they were not significantly

increasing accuracy and only contributing to increasing the model’s complexity. The seven

features selected are minor-axis, convex hull measure, area, perimeter, width, eccentricity, and

the ratio of area and perimeter.

Width (𝑊)
Area (𝐴)

Perimeter (𝑃) Minor 
Axis (𝑠𝑚) Convex hull 

Major 
Axis (𝑆𝑀)

Length (𝐿)

Maximum 
Radius (𝑅𝑚𝑎𝑥)

Centroid 

Area of 
Convex hull (𝐴𝑐)

Figure 3.1: Geometric features (left to right): Width (W) and length(L) of minimum area
bounding box fitted to the landslide polygon, area (A) and perimeter (P) of the landslide
polygon, minor (sm) and major axis (SM ) lengths of an ellipse fitted to the polygon, convex
hull fitted to landslide polygon and area of convex hull, and maximum radius of landslide
polygon.

3.3 Probability Density of Geometric

attributes

In this section, we visualize the probability density functions (PDF) of the geometric properties

used in the classification of earthquakes, and rainfall triggered landslides. We estimate these

PDFs’ using Kernel Density Estimation (KDE), which gives a non-parametric estimate of the
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Figure 3.2: The importance of geometric features used after the removal of strongly correlated
predictors. The percentage corresponding to each feature represents the mean decrease in the
tree leaf impurity over the full random forest such that the total percentage sums to 100.
The Y-axis shows the feature importance values and x-axis shows geometric attributes. The
abbreviations used in the figure for geometric attributes are listed in Table 3.1.

PDF (Friedman et al., 2001; Scott, 2015b). These PDFs’ (shown in Fig. 3.3) revealed that

predictors with high feature importance have relatively high dissimilarity between the PDFs

of two landslide triggering classes: rainfall and earthquake. For instance, sm, the minor axis

of an ellipse fitted to rainfall landslide polygons have a relatively high probability of having

a value below 25 meters and fewer chances for having above 50 meters. However, observing

earthquake landslide polygons with sm above 25 meters and below 75 meters is high.

For the convex hull measure Ch, the earthquake polygons have a very sharp peak around

Ch = 1.0; whereas, this peak is more subdued in rainfall. The PDF of Ch reveals that the

earthquake polygons are more compact than rainfall, as the convex hull measure quantifies the

compactness of polygon. Similarly, the value of eccentricity e of the fitted ellipse for rainfall-

triggered landslide has a sharp peak near e = 1.0, in contrast, distribution for earthquake lacks

such a peak (see Fig. 3.3). For the ratio of area to perimeter
A

P
, the probability of observing

rainfall landslides polygon with
A

P
< 10 is higher than earthquake polygons (see Fig. 3.3).

The PDFs of area (A), width (W ), perimeter (P ), length (L), and major axis (SM ) shows

that the probability of observing earthquake polygons with relatively higher values of these

variables is more than the rainfall-triggered landslide polygons.
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Figure 3.3: Probability density functions of all the geometric attributes used after the initial re-
moval of highly correlated predictors of earthquake and rainfall triggered polygons. The y-axis
shows the probability density values and x-axis shows the value of geometric attributes. The
probability density calculated using Kernel Density Estimate (KDE) method using gaussian
kernel and bandwidth selected using Scott’s rule (Scott, 2015b).

3.4 Unspecified Kumamoto Landslide

Polygons classification

The PDFs of geometric features used for classifying landslides polygons of the unspecified Ku-

mamoto inventory (inventory (g) in Fig. 1 in the paper) has no resemblance to the rainfall trig-

gered landslide polygons(see Fig. 3.4). However, for properties Ch and e there is a considerable
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Figure 3.4: Probability density functions of the relevant predictors of unspecified kumamoto
inventory compared with probability density functions of earthquake and rainfall landslide
polygons. The y-axis shows the probability density values and x-axis shows the value of
geometric attributes. The probability density calculated using Kernel Density Estimate (KDE)
method using gaussian kernel and bandwidth selected using Scott method.

visual resemblance between PDFs of the unspecified inventory and the earthquake-triggered

landslide polygons. It is evident from the PDFs of geometric attributes that landslides in the

unspecified Kumamoto inventory are not triggered by rainfall; there is some evidence in these

PDFs that these landslides are triggered by earthquake.

Moreover, we calculated the average landslide trigger class probability of each landslide

sample in unspecified Kumamoto using 1000 iterations(training on the equal number of earth-

quake and rainfall samples from the six known triggered inventories)(see Fig. 3.5). We ob-

served that around 90% of samples have earthquake class probability from 90 to 100%, and

approximately 95% of samples have earthquake class probability from 80 to 100% (see Fig.

3.5). High earthquake class probabilities for most of the samples provides additional evidence
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that earthquakes triggered unspecified Kumamoto inventory landslides. As we have observed

in other cases, when the algorithm is confident (assign a high possibility to a landslide trigger

class for a test sample), almost all the time, it is correct.
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Figure 3.5: The plot shows the percentage of testing landslides samples that fall within a
particular interval of earthquake class probability. The random forest classifier was trained
on six known triggered inventories and tested on the unspecified Kumamoto inventory. The
geometric features used are the first seven variables in Table 3.1. Observe that 95% of samples
have earthquake class probability from 80 to 100%, highlighting algorithms high confidence in
classifying majority of landslides in this inventory as earthquakes.

3.5 Other measures to evaluate model performance

We applied various other measures to evaluate the performance of our method. Assuming the

earthquake as the positive class and rainfall as the negative class, we first measured the true

positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) values and

then using them, we calculated sensitivity, specificity, precision, negative predictive value, and

F1 score. Furthermore, we also constructed the confusion matrix for each of our numerical
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Figure 3.6: Confusion matrices for various numerical experiments, we assumed earthquakes as
the positive class and rainfall as the negative class. (a) Table explaining the terminologies used
in the confusion matrices. (b) Confusion matrix for one iteration of 10 fold cross-validation for
the numerical experiment when landslide samples are from all the six inventories with known
ground truth. Fig. 3 in the paper corresponds to this experiment. (c-h) Confusion matrix for
one realizations for the case where the algorithm’s training is done on five of the six inventories
and tested on the remaining one inventory. (c-e) for earthquake-triggered inventories (f-h)
rainfall triggered inventories. Fig. 4 in the paper corresponds to this experiment. Note, the
asterisk symbol represents the case where we cannot calculate a particular element of the
confusion matrix due to the presence of only one class in testing samples.

experiments (see Fig. 3.6).

The sensitivity ( TP
TP+FN ) is the positive class classification rate, whereas specificity( TN

TN+FP )

is the negative class classification rate. Precision ( TP
TP+FP ) is the proportion of samples des-

ignated correctly positive among all predicted positive values by the algorithm. Similarly,

negative predictive value ( TN
TN+FN ) is the proportion of samples assigned accurately negative

among all predicted negative values. F1 score ( 2TP
2TP+FP+FN ) is the harmonic mean of pre-
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cision and sensitivity. Accuracy ( TP+TN
TP+TN+FN+FP ) is calculated as the ratio of total samples

correctly classified to the total samples. We used the average TP, FP, FN, and TN estimated

over 1000 10-fold cross-validation run (see Table 3.2).

All the measures calculated are over 85% and have a standard deviation of less than 0.25%

(Table 3.2). The high accuracy and low standard deviation of all the measures show that the

presented method can efficiently predict landslide triggers. We can only calculate sensitivity

for earthquake-triggered inventories and specificity for negative-triggered inventories for the

experiment, where we trained on five of the six inventories and tested on the remaining one

inventory. As in this experiment, we have either earthquake or rainfall triggered test samples.

For each testing landslide sample, the random forest algorithm assigns the probability

(pe, pr) to each landslide trigger class (earthquake, rainfall). Hereafter we will express these

class probabilities (pe, pr) in percentage (note: pe = 1− pr). We divided the class probability

percentage range of earthquakes pe from 0 to 100 into 20 equal bins to calculate the variation of

accuracy with class probability intervals. In Fig. 3.7 we show variation of accuracy with class

probability intervals for the numerical experiment which includes all the data with ground

truths accessible to us. We observed that for more than 50% of testing samples, the method

gives a very high probability of over 90% for being earthquakes or rainfall. The approach pre-

dicts landslide triggers class accurately in more than 95 percent cases in this probability range.

There is relatively less classification accuracy for the intervals where the algorithm assigns

class probabilities between 50 to 70%. However, the proportion of testing samples with this

probabilities range are relatively low compared to instances where the algorithm assigns class

probabilities of around 80 to 100%. We found that the algorithm is more confident (assigning

higher probability for any class) when a high probability class is the landslide’s actual trigger.

Next, we carried out the same analysis for each inventory where the algorithm is trained on

five of the six inventories and tested on the remaining one inventory. We found similar obser-

vations; most correctly classified samples have a higher probability of actual trigger class(see

Fig. 3.8). For instance, most of the correctly classified samples in earthquake-triggered in-

ventories have 80 to 100% earthquake class probability. Similarly, correctly classified samples
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Figure 3.7: This plot corresponds to the numerical experiment where we have used all the
inventories with known ground truth (i.e., Fig. 3 in the main paper). nr is the proportion of
testing landslide samples that fall within the given class probability interval. The y-axis shows
the classification accuracy, and the x-axis shows the percentage class probability interval for
the earthquake. Here, a landslide with class probability greater than 50 is classified as triggered
by an earthquake, and a landslide with class probability less than 50 is classified as triggered
by rainfall. The seven geometric features used are the first seven variables listed in Table 3.1.
Error bars were calculated using 1000 runs of 10-fold cross-validation.

of rainfall trigger inventories have 0 to 20% earthquake class probability (80 to 100% rainfall

class probability).

Our motivation for carrying out the above calculations was to show that our algorithm’s

high-class probabilities also correspond to highly accurate results. In real-world applications,

this fact can be manipulated to identify a subset of landslides in an inventory for which the

algorithm is highly confident about the underlying trigger.

3.6 Approach to examine bias in feature importance

Random Forest selects a random subset of features for node split that decreases the bias in

feature importance due to collinearity. However, it does not decrease the bias completely. To

minimize this bias, we already removed strongly correlated features. Note we started with 17

Chapter 3. Additional Evidences showing landslide geometry exhibit its
triggering information

33



Chapter 3. Additional Evidences showing landslide geometry exhibit its
triggering information

0

25

50

75

100

n
r
=2

.4
2

n
r
=3

.1
8

n
r
=3

.2
6

n
r
=3

.2
5

n
r
=3

.3
1

n
r
=3

.4
5

n
r
=3

.5
3

n
r
=3

.5
7

n
r
=3

.6
6

n
r
=3

.7
5

n
r
=3

.8
8

n
r
=3

.9
1

n
r
=3

.9
3

n
r
=3

.9
1

n
r
=4

.0
8

n
r
=4

.3
8

n
r
=4

.7
5

n
r
=5

.0
9

n
r
=6

.6
7

n
r
=2

6.
02Hokkaido Region

(66.62± 0.65)

n
r
=3

6.
38

n
r
=1

1.
48

n
r
=7

.9
4

n
r
=6

.2
2

n
r
=5

.1
3

n
r
=4

.3
5

n
r
=3

.7
1

n
r
=3

.2
n
r
=2

.7
7

n
r
=2

.4
2

n
r
=2

.1
4

n
r
=1

.9
2

n
r
=1

.7
5

n
r
=1

.6
3

n
r
=1

.5
8

n
r
=1

.5
4

n
r
=1

.5
2

n
r
=1

.4
9

n
r
=1

.3
7

n
r
=1

.4
7

Kumamoto Region
(83.63± 0.41)

0

25

50

75

100

n
r
=3

.3
5

n
r
=2

.6
7

n
r
=2

.3
1

n
r
=2

.1
1

n
r
=2

.0
6

n
r
=2

.1
5

n
r
=2

.3
n
r
=2

.4
n
r
=2

.5
n
r
=2

.5
6

n
r
=2

.6
7

n
r
=2

.8
6

n
r
=3

.1
2

n
r
=3

.4
2

n
r
=3

.7
8

n
r
=4

.3
n
r
=4

.9
5

n
r
=5

.9
5

n
r
=8

.8
4

n
r
=3

5.
69Iwata Region

(75.59± 0.34)

n
r
=1

7.
2

n
r
=9

.8
6

n
r
=7

.9
9

n
r
=6

.9
n
r
=6

.0
n
r
=5

.2
2

n
r
=4

.6
4

n
r
=4

.2
n
r
=3

.8
3

n
r
=3

.5
5

n
r
=3

.3
2

n
r
=3

.1
7

n
r
=3

.0
3

n
r
=2

.9
1

n
r
=2

.8
2

n
r
=2

.7
6

n
r
=2

.6
9

n
r
=2

.6
3

n
r
=2

.7
n
r
=4

.5
7

Fukuoka Region
(69.40± 0.61)

0 20 40 50 60 80 100
0

25

50

75

100

n
r
=3

.7
3

n
r
=1

.7
n
r
=1

.3
1

n
r
=1

.1
8

n
r
=1

.0
4

n
r
=1

.0
n
r
=1

.0
4

n
r
=1

.1
1

n
r
=1

.2
4

n
r
=1

.4
4

n
r
=1

.6
7

n
r
=1

.9
1

n
r
=2

.1
6

n
r
=2

.5
4

n
r
=3

.0
9

n
r
=3

.8
9

n
r
=5

.1
8

n
r
=7

.5
7

n
r
=1

2.
52

n
r
=4

4.
68Niigata Region

(85.22± 0.20)

0 20 40 50 60 80 100

n
r
=5

5.
24

n
r
=1

4.
18

n
r
=6

.9
2

n
r
=4

.3
7

n
r
=3

.1
n
r
=2

.3
7

n
r
=1

.8
9

n
r
=1

.5
7

n
r
=1

.3
4

n
r
=1

.1
5

n
r
=1

.0
1

n
r
=0

.9
5

n
r
=0

.8
9

n
r
=0

.8
7

n
r
=0

.8
5

n
r
=0

.8
1

n
r
=0

.7
n
r
=0

.5
6

n
r
=0

.5
n
r
=0

.7
2

Saka Region
(92.12± 0.25)

A
cc

ur
ac

y
(%

)

Class Probability (%)
(earthquake)

Figure 3.8: This plot corresponds to the numerical experiment where we trained on five of the
six inventories and tested on the remaining inventory (i.e., Fig. 4 in the main paper). nr is the
proportion of testing landslide samples that fall within the given class probability interval. The
y-axis in each subfigure shows the classification accuracy, and the x-axis shows the percentage
class probability interval for the earthquake. Here, a landslide with class probability greater
than 50 is classified as triggered by an earthquake, and a landslide with class probability less
than 50 is classified as triggered by rainfall. The seven geometric features used are the first
seven variables listed in Table 3.1.

features and removed 6 of them due high correlations between them and used only 11 of them

for the further analysis. Please see section S2 for details.

We implemented PCA to get another view on the feature importance of predictors. The

contribution to variance in principal components is almost equal by all predictors except convex

hull measure and eccentricity, which have a minimum contribution to variance. However, we

did not end up to any conclusions as it shows most of the features are equally important. Also,

it is not always true that features that contributed the maximum to variance are the most

important features, and PCA works only for linear data.

To check the bias in the feature importance of predictors, we used another approach. We

took all possible subset of seven predictors and calculate feature importance for all the cases.
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In each case, we observed that minor-axis, convex hull measure, and area to perimeter ratio

have relatively higher feature importance than rest predictors. Area, eccentricity, and width

have comparable feature importance, and the perimeter has the least important feature among

all predictors. The order of relative feature importance of predictors found in all cases supports

the order of predictor feature importance using all seven predictors.

We also project features data into a lower dimension for classification using PCA, and even

we used sophisticated dimensionality reduction techniques like manifold learning. However,

there was no improvement in the classification accuracy of landslides. Other issues with these

techniques are that once we project our geometric features into a lower dimension, the predic-

tors’ geometric interpretation will be lost.

Chapter 3. Additional Evidences showing landslide geometry exhibit its
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Variables Description
A Area of the polygon.
P Perimeter of the polygon.

A/P Ratio of the area and perimeter of the polygon.
Ch Convex hull measure (Ch = A/Ac); here Ac is the area of the convex hull fitted

to the landslide polygon.
sm The minor axis of the fitted ellipse (with area A and perimeter P ) to the

polygon,(sm =
√
P 2 −

√
P 4 − 16π2A2/π)

SM The major axis of the fitted ellipse to the polygon (SM =

4A/
√

P 2 −
√
P 4 − 16π2A2)

L The length of the minimum area bounding box fitted to the polygon.
W The width of the minimum area bounding box fitted to the polygon.

L/W The elongation of the minimum area bounding box fitted to the polygon.
W/L The aspect ratio of the minimum area bounding box fitted to the polygon.
C The circularity measure; it is calculated using the ratio of the radius of a circle

having the same area as of polygon to the maximum radius of a polygon(C =√
A/π/Rmax), here Rmax is the maximum distance from the centroid to vertex

of a polygon

e The eccentricity of the fitted ellipse to the polygon (e =
√
1− s2m/S2

M )
sm/SM The ratio of minor axis to major axis of the fitted ellipse
SM/sm The ratio of major axis to minor axis of the fitted ellipse
Cp1 Compactness of landslide polygon, calculated using Iso-Perimetric Quotient

(Cp1 = 4πA/P 2)
Cp2 Compactness of landslide polygon, calculated using Richardson complexity

measure (Cp2 = 2
√
πA/P )

Cv Complexity of landslide polygon, calculated using Schwartzberg complexity
measure (Cv = 0.5P/

√
πA)

Table 3.1: List of all the variables (their abbreviations and formulas) used in this work. The
variables listed here were used to identify the most relevant predictors for landslide trigger
classification, and we identified seven features (first seven variables in the table) as the most
relevant predictors.
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Measures Average Values (in %) Standard Deviation values(in %)
Sensitivity 86.15 0.22
Specificity 85.29 0.19
Accuracy 85.73 0.16
Precision 85.42 0.17
False Negative Rate 86.03 0.20
F1 Score 85.78 0.16

Table 3.2: List of all the measures calculated to evaluate the model for landslide triggers
classification. We are assuming an earthquake as the positive class and rainfall as the negative
class. The average value and error bounds of each measure are calculated using 1000 runs of
10-fold cross-validation. These results correspond to the case shown in Fig. 3 and Fig. 3.6;
that is where we include all the available data into the testing and training set.
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Chapter 4

Using Landslide topology for

determining its trigger mechanism

This chapter is based on objective 2 of the Ph.D. thesis about exploring the topological prop-

erties of landslide shapes to enhance their triggering mechanism performance. Here, we com-

puted the topological properties of the landslide 3D shape to identify its triggering information.

The work presented in this chapter is published in:

Rana, K., Malik, N. & Ozturk, U. (2022). Landsifier v1.0: a Python library to estimate likely

triggers of mapped landslides. Natural Hazards and Earth System Sciences, 22(11), 3751-3764.

4.1 Abstract

Landslide hazard models aim at mitigating landslide impact by providing probabilistic fore-

casting, and the accuracy of these models hinges on landslide databases for model training

and testing. Landslide databases at times lack information on the underlying triggering mech-

anism, making these inventories almost unusable in hazard models. We developed a Python-

based unique library, landsifier, that contains three different Machine-Learning frameworks

for assessing the likely triggering mechanisms of individual landslides or entire inventories

based on landslide geometry. Two of these methods only use the 2D landslide planforms,

and the third utilizes the 3D shape of landslides relying on an underlying Digital Elevation
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Model (DEM). The base method extracts geometric properties of landslide polygons as a fea-

ture space for the shallow learner—Random Forest (RF). An alternative method relies on

landslide-planform images as an input for the deep learning algorithm—Convolutional Neural

Network (CNN). The last framework extracts topological properties of 3D landslides through

Topological Data Analysis (TDA) and then feeds these properties as a feature space to the

Random Forest classifier. We tested all three interchangeable methods on several inventories

with known triggers spread over the Japanese archipelago. To demonstrate the effectiveness

of developed methods, we used two testing configurations. The first configuration merges all

the available data for the k-fold cross-validation, whereas the second configuration excludes

one inventory during the training phase to use as the sole testing inventory. Our geometric

features-based method performs satisfactorily, with classification accuracies varying between

67% and 92%. We have introduced a more straightforward but data-intensive CNN alter-

native, as it inputs only landslide images without manual feature selection. CNN eases the

scripting process without losing classification accuracy. Using topological features from 3D

landslides (extracted through TDA) in the RF classifier improves classification accuracy by

12% on average. TDA also requires less training data. However, the landscape autocorrelation

could easily bias TDA-based classification.

Finally, we implemented the three methods on an inventory without any triggering infor-

mation to showcase a real-world application.

4.2 Introduction

Landslides are gravitational movements of rock and debris that pose a severe threat to the hu-

man environment (Depicker et al., 2021). Hazard models are developed to forecast landslides

or to aid in understanding landslide processes to mitigate their undesired consequences (Lom-

bardo et al., 2020). These models commonly rely on mapped landslides to assess the relevant

landslide causes in combination with landslide triggers, i.e., earthquake and rainfall (Lombardo

and Tanyas, 2021; Ozturk et al., 2021b; Marin et al., 2020). However, many historical landslide

inventories lack information about the triggering mechanism decreasing their potential utility
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in models (Bíl et al., 2021; Martha et al., 2021). More recent semi-automated satellite-based

landslide mappers also often disregard the triggering information (Behling et al., 2014; Behling

et al., 2016; Ghorbanzadeh et al., 2019), except the event-based inventories—landslide map-

ping campaigns following a precursory triggering event such as a strong earthquake (Stumpf

and Kerle, 2011; Gorum et al., 2014). Using landslide inventories with missing triggers could

introduce biases as it is possible to accidentally use an earthquake-triggered inventory to as-

sess rainfall-induced landslide hazards and vice-versa. Hence, classifying the trigger of entire

landslide inventories or mapped individual landslides would enhance the usability of newly

acquired and historical inventories in landslide models (Guzzetti et al., 2012).

Landslide planforms are used to estimate the mobilized landslide volume, for example,

estimating the potential sediment budget of a large landslide triggering events (Malamud

et al., 2004; Fan et al., 2012). This type of scaling relationship between the area of landslide

planforms to mobilized landslide volume allows comparing the impact of different landslide

triggers, such as human versus earthquakes, in terms of the landslides triggered influence on

landscape (Tanyaş et al., 2022). However, this area-volume scaling depends on the triggering

mechanism of landslides. For example, an earthquake-triggered landslide has a different area-

volume relationship than a rainfall-induced landslide. Hence, extracting the landslide triggers

information could enhance the estimation capacity of landslide volumes (Moreno et al., 2022)

and also help predict the size of co-seismic landslides for a given earthquake (Lombardo et al.,

2021). Also, when the exact trigger is known, observed landslides help assess earthquakes’

ground motion patterns when no seismic observation is available (Lombardo et al., 2019).

Landslides with the same trigger morphologically cluster, for example, covering narrowly

the available statistical variability of hillslope angles in a study region (Jones et al., 2021) and,

thus, could have characteristic shapes reflecting their triggering mechanism, for instance, by

having similar area and perimeter ratio, or size (Taylor et al., 2018a; Samia et al., 2017). We

developed a binary classifier that groups landslides either as earthquake-triggered or rainfall-

induced based on this hypothesis (Rana et al., 2021). This initial model demonstrated that the

landslides with an identical trigger indeed exhibit similar geometric properties. Thus, finding
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the trigger of landslides is a classification problem, and one can employ machine learning tools

to carry out automated classification of landslide triggers. In each classification problem, the

principal idea is to construct a classifier based on training samples and evaluate its performance

on testing samples. The classifier predicts the class y corresponding to the input sample

x. These input samples x can be one-dimensional vectors or images; for instance, in a soil

classification problem (Bhattacharya and Solomatine, 2006), x is a one-dimensional vector,

and in any image classification problem, x is an image (2D or multi-dimensional matrix)

(Domingos, 2012).

Our preliminary model (Rana et al., 2021) can classify landslide triggers by only using

the geometric properties of landslide polygons. Here, we introduce two additional methods

for landslide trigger classification. In one new method, we treated landslide polygons as

images, and these images are fed as the sole predictor to a deep learner—Convolutional Neural

Networks (CNN). Treating landslide polygons as images eases the workflow as an image already

resembles some of the geometric features of the first method. Both these methods rely on two-

dimensional (2D) landslide planforms, ignoring the three-dimensional (3D) shapes of real-world

landslides. In another approach, we included the 3D shapes of landslides by incorporating the

elevation of landslides via a Digital Elevation Model (DEM). In this approach, we extracted

the topological features of these 3D shapes using a recently developed technique known as

Topological Data Analysis (TDA). These topology-based features are input to the decision tree-

based shallow learner as in the first method. We included the TDA-based model considering

its potential to handle other relevant classification problems in future versions of our tool, e.g.,

classifying landslide types (Cruden and Varnes, 1996; Varnes, 1978). Above listed methods

could be used independently following similar script streams.

This study also introduces a new Python library, landsifier, that classifies the trigger

of landslides, individually or as a whole, in an inventory, where the landslide source mecha-

nism is undocumented. Landsifier is the first-ever library built for estimating likely triggers

of mapped landslides, the methods used in this library to find landslides’ triggers are new.

Two of these methods are introduced in this paper for the first time, while the third was
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published in our preliminary work (Rana et al., 2021). The library consists of three different

machine learning-based methods mentioned above; we elaborate on these methods in section

4.4. Various functionalities of the library are described in section 5.2 of the chapter 5; where

we also list several supporting functions to calculate landslide polygons’ geometric properties,

convert landslide polygons’ shape to a binary-scale image, download a Digital Elevation Model

(DEM) corresponding to inventory location, and evaluate the diagnostic performance of the

final classification. To demonstrate the efficacy of the developed methods, we apply each to six

landslide inventories with known triggers spread over the Japanese archipelago and document

our findings in section 4.5. In section 4.7, we further highlight the weaknesses of each method

to ease choosing the suitable classifier for the various applications.

4.3 Data

In this work, we used seven landslide inventories spread over the Japanese archipelago (Figure

4.1). The trigger mechanism of six out of seven landslide inventories are known (Figure 4.1a–f),

whereas the last inventory has no documented triggering information (Figure 4.1g). We use the

last inventory to demonstrate the practical deployment of the final model as this case represents

the model’s real-world usage. Out of six landslide inventories, three inventories are earthquake-

triggered (Figure 4.1d–f) that are associated with the 2018 MW 6.6 Hokkaido Eastern Iburi

(3256 landslides); the 2008 MW 6.9 Iwate–Miyagi Nairiku (4160 landslides), and the 2004

MW 6.6 Niigata (8780 landslides). The remaining three are rainfall-induced (Figure 4.1a–c),

and these are associated with the 2017 Fukuoka-northern Kyushu torrential rainfall disaster

(1924 landslides), the 2018 Saka-Japan floods (2817 landslides), and Kumamoto inventory

(5564 landslides) that is collected over 1992–2012—not associated with any particular event.

The Geospatial Information Authority of Japan (GSI) is the source of the Hokkaido Eastern

Iburi earthquake (September 2018), Fukuoka rainfall (July 2017), and Saka rainfall (July 2018)

inventories. The source of the other two coseismic inventories—Iwata and Niigata—is the

global repository created by (Schmitt et al., 2018b). The remaining two inventories from the

Kumamoto region are provided by Japan’s National Research Institute for Earth Science and

42 4.3. Data



4.3. Data

(g) Unspecified

(d) Hokkaido

(e) Iwata

(f) Niigata

0       2.5      5 km

(b) Kumamoto

(c) Fukuoka

(a) Saka

0       2.5      5 km0   10   20 km

Earthquake

Unspecified

Rainfall

(c)    

(a) 

(d) 

(e) (f)

(b) (g) 

450 N 

300 N 1300 E 1400 E

Figure 4.1: The seven landslide inventories used in this work are spread over Japan, and their
geographical locations are shown on the Country’s map at the center of the figure. (a)–(g)
Shows the subset of landslide polygons highlighted by red color on local hillshades. (a)–
(c) Rainfall-induced inventories; (d)–(f) coseismic inventories; (g) undocumented "Kumamoto
unspecified" inventory.

Disaster Resilience (NIED). The first inventory from Kumamoto is associated with rainfall

(Figure 4.1b), whereas the second inventory is without any triggering information (Figure

4.1g). From hereafter, we refer to this second inventory as "Kumamoto unspecified" (it consists

of 612 landslides with unknown triggers).

The TDA-based method uses elevation data to obtain the 3D shapes of landslides from their

2D planforms. We use the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model

(DEM) data that comes with a spatial resolution of approximately 30 meters. The SRTM

data is freely available from https://www2.jpl.nasa.gov/srtm/ by manually selecting the
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tiles which correspond to topographic quadrangles. Each tile covers 1 degree of both latitude

and longitude region. The landsifier library automatically downloads the corresponding

tile(s) covering the region of the used landslide inventory (explained further in section S2 of

the Supplementary information).

4.4 Methods

In our preliminary study (Rana et al., 2021), we introduced a method that can classify land-

slide triggers by only using geometric features of landslide planforms. This initial model

constitutes the first method in landsifier library, and for continuity, we briefly describe it

in section 4.4.1. In this paper, we further diversify our initial model and introduce two new

methods, one based on the topological features of 3D shapes of landslides computed using

TDA; described in section 4.4.2. The other new method uses CNN to carry out an image-

based classification of landslide triggers; see section 4.4.3. We anticipate that the variety of

methods and corresponding Python library presented here would allow researchers to perform

this analysis seamlessly.

4.4.1 First method: geometric features based classification

In the first method, we used the geometric properties of 2D landslide polygons for the classifi-

cation. We explored several geometric properties of landslide polygons (e.g., Figure 4.2). Using

a combination of feature selection methods and feature importance analysis, for instance, re-

moving highly correlated features, we choose the seven geometric properties of polygons that

lead to optimum results. These geometric features are area A, perimeter P , convex hull based

measure Ch =
A

Ac
, where, Ac is the area of the convex hull fitted to the polygon (hereafter,

we will refer Ch as convex hull measure), the ratio of area to perimeter
A

P
, the width of the

minimum area bounding box W , minor axis sm, and eccentricity of the fitted ellipse e having

area A and perimeter P . All these seven geometric features are calculated using the Python li-

brary, shapely (Gillies, 2013). The feature vector ([A,P,Ch,W, sm,
A

P
, e]) is input variable to

machine learning algorithm—random forest (described in the chapter 5 section 5.1). Further
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Figure 4.2: Sample landslide planforms from all six known triggered inventories (a) Earthquake
triggered inventories, (b) Rainfall induced inventories. (c) geometric properties of landslide
polygon (from left to right): width (W ) of the minimum area bounding box fitted to polygon,
convex hull based measure (Ch), minor(sm), and major axis(SM ) of an ellipse fitted to polygon
having area A and perimeter P, area (A) and perimeter (P ) of the polygon.

details of the method can be found in (Rana et al., 2021).

In (Rana et al., 2021), we analyzed the distributions of geometric properties of the earth-

quake and rainfall polygons and found geometric dissimilarities between earthquake and rain-

fall polygons’ shapes. Earthquakes polygons are more likely to have a compact shape (as

measured by convex hull-based measure) than rainfall polygons. Moreover, earthquake poly-

gons have more chances to have a larger area (A), perimeter (P ), the ratio of the area to the

perimeter (
A

P
), and minimum width (W ) than rainfall polygons. In contrast, rainfall poly-

gons have a larger eccentricity (e) than earthquake polygons of an ellipse fitted to the polygon.
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Rainfall polygons are more sinuous in shape leading to the smaller minor axis and larger major

axis leading to the larger eccentricity of the ellipse fitted to the polygon (Rana et al., 2021).

4.4.2 Second method: topological features based classification

In the second method, we used the 3D shapes of landslides by incorporating the elevation data

of the landslide regions. We extracted geometrical and topological properties of a landslides’

3D shapes using Topological Data Analysis (TDA) and then used these properties as a feature

space for the machine learning algorithm—random forest (described in section 5.1 of the

chapter 5). The topological properties of the landslide’s 3D shape extracted using DEM provide

additional insights into the landslide triggers, which might further improve the accuracy of

the landslide trigger classification. We converted the 2D landslide polygons to 3D landslide

polygons using interpolation of 30 meters’ elevation data (DEM) around the bounding box

of landslides. We took only the elevation data within the landslide polygons to preserve the

geometric shape of the landslides (Figure 4.3). We explored various TDA features to quantify

the 3D shapes of landslides using the Python library, giotto-tda (Tauzin et al., 2021). Using

random forest feature importance analysis, we selected the top ten most relevant features, as

irrelevant features increase the complexity of the model and are ineffective in improving the

classification results. These selected relevant features constitute the input variables for the

random forest classifier.

Topological Data Analysis (TDA) provides a gamut of metrics to quantify the multidi-

mensional shape of data by applying techniques of algebraic topology (Carlsson, 2009). These

metrics could also serve as a feature space for machine learning algorithms to solve classifica-

tion problems, e.g., the classification of manifolds or complex geometric shapes. The central

idea of TDA is persistent homology that identifies persistent geometric features in the data; it

uses simplicial complexes to extract topological features from the point cloud data. A simpli-

cial complex is a collection of simplexes and building blocks of higher dimensional counterparts

of a graph. For example, a point is a 0-dimensional simplex, an edge which is a connection

between two points is 1-dimensional simplex, a filled triangle formed by connecting three non-

linear points is a 2-dimensional simplex. In general, an n-dimensional simplex is formed by
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Figure 4.3: Sample 3D landslides from six known triggered inventories, (a) flow chart of conver-
sion of 2D landslide planforms to 3D landslide shape. (b) Earthquake triggered 3D landslide
samples, (c) rainfall induced landslide 3D samples. The 2D landslide planforms converted to
3D landslide shapes by using the elevation of landslides through a Digital Elevation Model
(DEM).

connecting n+1 affinely independent points (Munch, 2017; Garin and Tauzin, 2019).

Generally, in TDA, one constructs a simplicial complex by the Vietoris-Rips complex

method, where one chooses a parameter ϵ > 0 to find the structure present in the data. For

each pair of points (x, y) in the point cloud data, add an edge between x and y if euclidean

distance (d) between x and y is less than ϵ. For a n-dimensional simplex, distance between

each pair of n+1 affinely independent points should be less than ϵ (d(x, y) < ϵ). Each value of

ϵ provides a set of simplexes representing a data structure. Different values of ϵ could lead to

a different structure in data. To get the complete information about the structures present in
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Figure 4.4: An example of using persistence homology: the data points are sampled from a
noisy circle. (a)-(g) As the disk’s radius increases ( ϵ2), persistence homology captures various
structures in the data. (h) The origin (birth) and disappearance (death) of loops and connected
components is shown in the persistence diagram. The biggest loop in the noisy circle data is
captured by the data points shown with the blue dotted line in (h).

the data, all the possible values of ϵ are used, creating a sequence of simplicial complex (this

process is called filtration, Figure 4.4a-g).

Homology measures particular structures present in the data providing valuable informa-

tion about the geometrical and topological properties of the data. For example 0-dimensional
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homology captures connected components or clusters, 1-dimensional homology measures loops,

2-dimensional homology measures voids (Munch, 2017; Hensel et al., 2021). Structures like

connected components, holes, and voids originate (birth) and disappear (death) with a change

in the value of ϵ. A persistence diagram, shown in Figure 4.4(h); documents the birth and

death information of these structures. Using the birth and death information of clusters,

holes, and voids present in the persistence diagram, we can calculate several topological fea-

tures of the data. We used various topological features to quantify the shape of data such

as persistence entropy, average lifetime, number of points, betti curve-based measure, per-

sistence landscape curve-based measure, Wasserstein amplitude, Bottleneck amplitude, Heat

kernel-based measure, and landscape image-based measure. Each topological metric considers

different homology dimensions separately.

The above mentioned topological features can be explained using two objects, one the set

of {(bi, di)}i=N
i=1 birth-death pair in the persistence diagram; where i and N are the birth-death

pair index and the total number of birth-death pairs respectively, and two the elements of

lifetime vector [li]
i=N
i=1 , calculated as difference between death and life of (bi, di) pair (li =

di − bi). Then the number of points is the length of the lifetime vector, whereas Wasserstein

and Bottleneck amplitudes are p-norm and ∞-norm of lifetime vector, respectively. Average

lifetime and persistence entropy are average and Shannon-entropy of lifetime vector.

Betti and persistence landscape curves based features are calculated from p-norm of dis-

cretized betti and persistence landscape curves. Betti curve is a function B(ϵ) that maps

persistence diagram to an integer-valued curve, B(ϵ) : R → Z, it counts the number of (birth,

death) pairs at ϵ that satisfy the condition bi < ϵ < di (Garin and Tauzin, 2019). Whereas,

persistence landscape curve is a function λ(k, ϵ) : R → R+, where λ(k, ϵ) = kmax{fbi,di(ϵ)}i=n
i=1 ,

kmax is k-th largest value of set of functions defined by fbi,di(ϵ) = max{0,min(ϵ− bi, di − ϵ)}

for each (bi, di) pair (Bubenik and Dłotko, 2017).

The heat kernel-based feature is calculated using the p-norm of the 2D function discretiza-

tion obtained using the heat kernel on the persistence diagram. Heat kernel transforms the

persistence diagram to a function on R2 obtained by placing a Gaussian kernel with standard
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deviation σ to each (birth, death) pair and negative of Gaussian kernel with same standard

deviation in the mirror image of (birth, death) pairs across the diagonal (Reininghaus et al.,

2015). Whereas persistence image-based measure is calculated using the p-norm of 2D function

discretization obtained using the weighted Gaussian kernel on the birth-persistence diagram.

Weighted Gaussian kernel transforms birth-persistence diagram to a function on R2 obtained

by placing a weighted Gaussian kernel with standard deviation σ to each (birth, death - birth)

pair in birth-persistence diagram (Adams et al., 2017). In the birth-persistence diagram, the

y-axis represents the lifetime (death-birth) information of each (birth, death) pair.

4.4.3 Third method: image based classification

In the third method, we used landslide planform images as input to Convolutional Neural

Networks (CNN) for the classification. We converted landslide polygons into binary images in

a way that preserves the relative shape and structure of the polygons (Figure 4.5). Then using

CNN for landslide triggers classification is straightforward via a simple CNN architecture with

3 convolutional layers and 2 fully connected layers. The input to CNN is a 64×64 binary pixel

image, and the output is the probability of the input image belonging to one of the landslide

trigger classes.

Convolutional Neural Networks (CNNs) are a class of artificial neural networks that are

effective for various applications, such as image classification and object detection (Li et al.,

2014; Guo et al., 2017; Albawi et al., 2017). The CNN architecture for classification problems

consists of the input, hidden, and output layers (as shown in Figure 4.6). The input layer

consists of the input data to CNN, an image of a landslide polygon in our application. The

hidden layer primarily contains convolutional layers, max-pooling, and fully connected layers.

Finally, the output layer provides the probability of input data belonging to an output class—

rainfall-induced or coseismic.

Convolutional layers are the fundamental component of CNN that uses kernels (matrix of

learnable parameters) to perform convolutions operations on the input. The resulting output

of the convolution operation is called a feature map that learns the feature representation of

the input data (Yamashita et al., 2018). Each neuron in a feature map captures the antecedent
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(a) Conversion of Landslide Polygon to Image

Figure 4.5: Sample input images for the image-based classification. (a) Flow chart of con-
verting landslide planforms to a landslide polygon image. (b) Earthquake-triggered landslide
image samples. (c) Rainfall-induced landslide image samples.

layer’s local characteristics by convolution of kernels with the previous layer’s feature maps

(Guo et al., 2017). However, increasing convolutional layers could lead to over-parametrization

and increase model complexity and, thus, over-fitting. One of the ways to avoid the issue is

to use pooling layers that reduce feature maps dimension and the number of neurons in the

output layer of CNN’s (Yamashita et al., 2018; Guo et al., 2017). We used max-pooling layers

of n×n (n = 2) size that takes a patch of size n×n from a feature map and produces one-value

corresponding to that patch, and the pooling layer itself is free from parameters (Li et al.,

2014).

Activation functions in CNN’s capture the non-linear relationship between the input data

Chapter 4. Using Landslide topology for determining its trigger mechanism 51



Chapter 4. Using Landslide topology for determining its trigger mechanism

Fully Connected Layers

Earthquake 

class probability

Rainfall

class probability

Flatten

Convolution

3x3 kernel
Convolution

3x3 kernel

Max Pooling

2x2 

Max Pooling

2x2 

Hidden LayerInput layer Output layer 

Figure 4.6: The figure shows the Convolutions Neural Network (CNN) architecture used in
the image-based method. The input of CNN is a binary scale landslide image, and the output
of CNN is the probability of a landslide image belonging to an earthquake or rainfall-induced
class.

and its output class. We used ReLu for the hidden layer neurons activation functions as past

studies have proved that ReLu improves classification results and learning speed (Li et al.,

2014; Krizhevsky et al., 2012). The output of ReLu activation function is f(x) = max(0, x),

here x means the output of a neuron (Li et al., 2014). For the output layer, we used the softmax

activation function. The softmax activation function calculates the output probabilities of the

input sample belonging to each class in the last layer of CNN. The class probabilities are

calculated as

Pi =
exp zi∑j=m

j=1 exp zj
, (4.4.1)

where zi is the output from last layer of CNN corresponding to i class and m is the number

of classes (in our case, m = 2).

Fully connected layers (FCC) work as a classification layer for CNNs and comes after the

convolutional layers. All layers in FCC are fully connected which means each neuron in a

layer is connected to every neuron in the next layer of FCC (Albawi et al., 2017; Guo et al.,
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2017). In classification problems, the last layer of the FCC layer gives the probabilities of the

input image to belong to one of the output classes with the help of the softmax activation

function (Eq. 4.4.1). The output predicted probabilities of the input sample are used in a loss

function that evaluates how well the model works for classifying the class of the input image

dataset. We used the cross-entropy loss function that measures the difference between actual

and predicted probability distribution. The cross-entropy loss function for a sample is defined

as: −∑i=m
i=1 yilog(ŷi), where m is the total number of classes, yi (ŷi) is actual (predicted)

probability corresponding to class i. If i is actual class of the input sample then yi = 1,

otherwise yi = 0. In the case of binary classification m = 2. The sample’s output probabilities

are a function of parameters used in convolution kernels and FCC layers to connect neurons in

one layer to the next layer. These parameters are altered iteratively using the back-propagation

algorithm and stochastic gradient method to increase the probability of samples belonging to

the actual class and thus, minimize the loss (Aurisano et al., 2016).

4.5 Landsifier model evaluation

We used two different testing configurations to evaluate the efficacy of our methods. Finding

the triggers of individual landslides irrespective of their inventories is the first testing con-

figuration. Here, we combined all the known trigger landslides from all six known triggered

inventories and then split the combined landslides data into various training and testing sets

following the k-fold cross-validation framework. In this testing configuration, landslides in

each training and testing set are from all six landslide inventories. The second testing config-

uration finds the trigger of landslide inventories itself. We used all the possible combinations

to train the algorithm on five known trigger inventories and test it on the sixth inventory. In

this second testing configuration, landslides in the testing set are from a single inventory. Note

that there are seven inventories in the analyzed data set, and six have known triggers. The

analysis of this seventh inventory (Kumamoto unspecified) with unknown triggers is presented

in the section 4.7.
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4.5.1 Evaluation of the first method (geometric features based classifica-

tion)

Combining all the landslide inventories with known triggers lead to 26, 501 samples (ntotal),

out of which 16, 196 are earthquake-triggered landslides (nearthquake) and 10, 305 are rainfall-

induced landslides (nrainfall). As the number of earthquake-triggered landslides is much larger

than the number of rainfall-induced landslides, we use equal numbers of each trigger class to

avoid any class-imbalance problems. To avoid selection bias and overfitting, we apply 10-fold

cross-validation. k-fold cross-validation splits the combined classes dataset into k random

subsets where each iteration of cross-validation, k − 1 folds are used for training and the

remaining fold for testing. We use 20, 610 samples (nrainfall = nearthquake = 10, 305) for cross-

validation and to get generalizable results we employ 1000 runs of cross-validation. In each

run of cross-validation we randomly select 10, 305 earthquake samples from 16, 196 earthquake

landslides. We achieved 86.15 ± 0.22% classification accuracy for earthquake, 85.29 ± 0.19%

for rainfall, and 85.73 ± 0.16% as the mean classification accuracy.

For the second split configuration, we trained the random forest classifier on five inven-

tories and tested it on the sixth inventory. For earthquake triggered inventories the method

achieved classification accuracy of 66.62 ± 0.65%, 75.59 ± 0.34% and 85.22 ± 0.20% for

the Hokkaido (ntrain = 20, 610, ntest = 3, 256), Iwata (ntrain = 20, 610, ntest = 4, 160) and

Niigata (ntrain = 14, 832, ntest = 8, 780) inventories (for geographical locations of these inven-

tories see Figure 4.1). For rainfall induced inventories, we achieved classification accuracy of

83.63 ± 0.41%, 69.40 ± 0.61% and 92.12 ± 0.25% for Kumamoto (ntrain = 9, 482, ntest =

5, 564), Fukuoka(ntrain = 16, 762, ntest = 1, 924) and Saka (ntrain = 14, 946, ntest = 2, 817)

region. In each one of the the case we took equal number of earthquake and rainfall triggered

landslide samples to avoid any class imbalance issues (nearthquake = nrainfall). The low stan-

dard deviation in classification accuracy shows that results are stable with change in training

samples.
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4.5.2 Evaluation of the second method (topological features based classifi-

cation)

In the first test and training set split configuration, as in section 4.5.1, we used ntotal= 20, 610

(total number of samples), nearthquake=10, 305 (number of earthquake-triggered samples) and

nrainfall =10, 305 (number of rainfall-induced samples), keeping numbers of each trigger class

equal to avoid class imbalance. We first identify the top ten relevant topological features out of

thirty features, employing 1000 runs of 10-fold cross-validation of random forest. Using these

top ten relevant topological features as the feature space for the random forest classifier, we

carry out 1000 runs of 10-fold cross-validation to get generalized classification accuracy. The

method achieved above 94% classification accuracy for earthquake, rainfall, and mean class

classification.

In the second split configuration, this method achieves above 90% accuracy for the Iwata,

Niigata, Kumamoto, and Saka inventories. For the Hokkaido and Fukuoka region, the method

achieves above 80% classification accuracy (see Figure 4.7). The number of training and

testing samples for each case is the same as in section 4.5.1.

4.5.3 Evaluation of the third method (image based classification)

As explained above in section 4.4.3 we removed large landslides from the analysis leading to

ntotal = 24, 311, nearthquake = 14, 892, and nrainfall = 9, 419. We used an equal number of

training samples of the coseismic and rainfall-induced landslides to avoid any class imbalance

issues. We used 100 runs of different test and training sets instead of different runs of 10

fold cross-validation as convolutional neural networks are computationally expensive. The

method achieved above 85% classification accuracy for earthquake, rainfall, and mean class

classification.

For the second split configuration, the method achieved above 80% accuracy for the Saka

region (ntrain = 13, 738, ntest = 2, 550). For the Niigata (ntrain = 12, 780, ntest = 8, 502),

Kumamoto (ntrain = 8, 276, ntest = 5, 281) and Fukuoka (ntrain = 15, 662, ntest = 1, 588) re-

gion the method achieves accuracy of above 70%. The Method achieves 67% accuracy for the
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Figure 4.7: The topological features-based method (second method) accuracies for all the six
known triggered inventories. The model is trained on five inventories in each case and tested
on the sixth inventory. The y-axis in the plot shows the probability of landslides belonging to
the earthquake and rainfall class, and the x-axis shows the sample index of landslides.

Hokkaido inventory (ntrain = 18, 838, ntest = 2, 431). In each one of the the cases, we took

equal number of earthquake and rainfall induced landslide samples to avoid class imbalance

issues.

4.6 Landsifier library

One of the main aims of this paper is to introduce Landsifier, a Python library we built

to provide the landslide research community with a user-friendly computational package to

implement the methods described above. At the moment, we have made the code available on

the corresponding author’s GitHub: https://github.com/kamalrana7843/Landsifier.git.

Furthermore, we published the Landsifier library under an open-source license in a way
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that it is accessible via the python terminal using the import command. In section 5.2 of the

chapter 5 we provide details of the library and brief descriptions of the available functionalities.

Apart from three different methods for landslide trigger classification, the library also contains

other useful functions like calculating geometric properties of landslide polygons, converting

polygons to binary scale images, downloading DEM corresponding to an inventory region, and

converting 2D landslide polygon to 3D landslide shape (see Figure 3a and 5a). Please refer to

section 5.2 of the chapter 5 for further details about the library functions (Figure 5.1). Each

of the three methods used in the library is simple to use and only requires polygon shapefiles

as input. Also, the computation process is relatively fast; for example, the geometric, image,

and topological features-based method takes less than 5, 15, and 45 minutes for training on

20,000 landslides (equal earthquake and rainfall samples) on a windows machine with 16 GB

of RAM (Random-Access Memory) using only landslide shapefiles as input. Moreover, none

of the methods requires a GPU (Graphics Processing Unit).

4.7 Discussion

The geometric properties of landslides can provide information about their trigger (Taylor

et al., 2018a). Our preliminary work on landslide trigger classification demonstrated that

landslides with identical triggers share similar geometric properties, which could be exploited

to classify landslide triggers—see the publication (Rana et al., 2021) and briefly reproduced

results here in sections 4.4.1, 4.5.1 and chapter 5 section 5.1. In this work, we further expanded

our initial approach by adding two additional methods for landslide triggers classification and

a Python library Landsifier to implement them. One of these two new methods uses 3D

shapes of landslides for their trigger classification by incorporating the elevation information.

We compute topological features of these 3D shapes using Topological Data Analysis (TDA)

and use the features as an input to a machine learning-based algorithm—random forest. The

other method uses binary scale landslide polygon images as an input to Convolutional Neural

Networks (CNN) for the classification. Using six landslide inventories spread over the Japanese

archipelago, we showed that each method exhibit strong performance to classify landslide
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triggers. However, each method has its strengths and limitations that primarily depend on

training and testing landslide data quality, quantity, and location. We explained each methods’

strengths and limitations in different conditions in this section. Before providing some hints

about potential future work and opportunities that could arise from using Landsifier library,

here, we also present and discuss the results of each three method on the seventh Kumamoto

unspecified inventory.

The landslide data quality depends on the data acquiring technique; e.g., landslide data

obtained using aerial or satellite images are much higher quality than the data acquired via

field campaigns. Geologists collect landslide data acquired via field campaigns, and by nature,

such inventories tend to fail to represent the smaller landslides and cover the larger landslides

(Ozturk et al., 2020). Whereas landslides inventories acquired via aerial or satellite images

cover both small and larger landslides and are called complete inventories as they adequately

capture landslides of various sizes in their respective study area, e.g., see (Schmitt et al.,

2018b). The performance of developed methods depends on landslides data quality and with-

out similar data quality in training and testing set the accuracy of classification techniques

could be insufficient to conclude the trigger of landslide inventory and also might lead to bi-

ases. Training the geometric feature-based and image-based methods on landslide planforms

with landslide data acquired via satellite or aerial images and testing on data acquired via field

campaign or vice-versa could lead to biases in landslide classification results. The methods

based on landslide planforms shape consider the area and perimeter as the most important

features and rely on the information that coseismic landslides are generally larger than rainfall-

induced landslides (Rana et al., 2021) (e.g., Taylor et al., 2018; Tanyas et al., 2021). So, a

testing inventory triggered by rainfall but lacks smaller landslides due to field campaign ac-

quisition technique could be classified as earthquake-triggered—given that training inventories

are satellite or aerial image-based. We recommend using similar field campaign acquired in-

ventories with known triggers to train the models for more accurate classification in such a

scenario. Another option is to sample landslides from the satellite or aerial image-based inven-

tories that resemble the size distribution of the testing data acquired via field campaign. This
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shortcoming motivated us to offer another alternative solution relying on topological analysis

of 3D shapes of landslides.

Landslides are 3D shapes; thus, using 3D shapes of landslides instead of 2D could pro-

vide additional information related to the landslide morphology. Consequently, a 3D landslide

shape-based method might elevate classification accuracy, especially in regions without proper

training and testing data of similar quality. We use TDA, a method rooted in algebraic topol-

ogy, to compute topological features of a landslides’ 3D shapes to classify landslide triggers.

TDA based method extracts topological information along with geometric information of land-

slide shape. Whereas, geometric features based method and likely Image based method use

only geometric information of the landslide shape for landslide classification. We expect TDA

based method will provide best landslide trigger classification results. In Table 4.1 one can

observe that the TDA-based method indeed performs better than the other two methods.

However, TDA-based measures encode landslide morphology; hence, if testing and training

inventories share similarities in the geomorphology of the studied regions (spatial autocorre-

lation) (Oksanen and Sarjakoski, 2005), then the trigger prediction is highly influenced by

training inventory. Geometric features and image-based methods are less sensitive to the geo-

morphological similarities between the training and testing landslide inventories, as these only

use the 2D landslide planforms. Although the image-based performs satisfactorily only when

adequate large training data is available. Hence, we recommend using geometric or topological

features-based methods in inventories with limited landslide counts.

We applied each method to classify landslides triggers in the Kumamoto unspecified in-

ventory having an undocumented trigger to demonstrate the real-world application of the

Landsifier library. Out of 612 landslides in the inventory, the geometric feature-based and

topological feature-based classified 604 and 612 landslides as earthquake-triggered. In com-

parison, the image-based method uses 164 landslides after removing landslides having width

and length greater than 180 meters (see section 4.4.3 for more details) and classified all of the

landslides as seismically triggered. As each method classifies the majority of the landslides as

earthquake-triggered, we are confident that earthquake is the most likely trigger for most of
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Inventory Region Geometric
features
based
method (%)

Topological
features based
method (%)

Image
based
method
(%)

Hokkaido 67 84 68
Iwata 76 94 67

Niigata 85 94 77
Saka 92 98 88

Kumamoto 84 92 78
Fukuoka 69 83 70

Table 4.1: The table shows landslide classification results using the three methods. The model
is evaluated on all possible training set combinations of the five inventories and tested on the
sixth inventory.

the landslides in this inventory. Moreover, the Kumamoto unspecified inventory documents

landslides along the rims of the Aso Caldera, the active volcano Mount Aso shakes the sur-

rounding area frequently triggering landslides within its vicinity (Saito et al., 2018). Hence,

it is very likely that this inventory is consistent of landslides of cosesimic origin.

Considering the above discussions, in future work, we plan to explore further the sensitivity

of our trigger classification methods to spatial autocorrelations. We will also examine the influ-

ences of landslide size distributions on each method. Specifically, we plan to classify the trigger

of large landslides (Area > 90, 000 square-meters) as they are the most dangerous landslides

and effect huge area by training each method on large landslides training dataset.Moreover,

we will consider model transferability to different regions by extensively testing these meth-

ods on national landslide inventories, e.g., India, Nepal, Taiwan, and the USA. Our methods

could also provide other opportunities. For example, assessing landslide-prone regions as an

alternative to landslide susceptibility measure using TDA. Also, TDA could be used to classify

landslide types, according to the types described in (Cruden and Varnes, 1996) and (Varnes,

1978). Landslide type information plays a crucial role in landslide risk assessment which is

usually missed in landslide databases (Loche et al., 2022). We plan to further develop the

current version of the Landsifier by incorporating a landslide type classifier in the next ver-

sion (Amato et al., 2021). This method will be able to find the analogy between an observed

landslide and a generic landslide type by (Cruden and Varnes, 1996).
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4.8 conclusions

The landslide triggering mechanism is crucial information to develop landslide hazard mod-

els, e.g., a landslide hazard model for extreme rainfall incidents requires landslide inventories

related to rainfall events only. However, modern automated landslide mappers for continuous

monitoring and historical landslide inventories rarely report the landslide triggering mecha-

nism. Missing triggers in the landslide inventories decrease their efficacy for landslide hazard

models. In this work, we developed a Python library, Landsifier, containing three methods

for landslide trigger classification by exploiting landslide planforms and 3D shapes. To develop

the first two of these methods, we combined geometric and topological features with machine

learning, and in the third method, we used deep learning. The latter two methods are new,

i.e., we are reporting them here for the first time.

We use seven landslide inventories spread over the Japanese archipelago. Six among these

seven inventories have known triggers, while the seventh inventory has a missing trigger. We

applied each method to all possible sets of five training inventories and one testing inventory

using six known triggered inventories. Moreover, we took different training and testing sets

of landslides by mixing all known triggered landslides inventories following the k-fold cross-

validation. The achieved results demonstrate that the methods are robust and capable of

classifying triggers of landslide inventories with high accuracy (70%–95%). To demonstrate

the real-world application of our toolbox, we also applied the three methods to the seventh

inventory without any triggering information and classified it as an earthquake-triggered in-

ventory.

Python-based Landsifier library provides a user-friendly computational package to im-

plement the methods described above to the landslide research community. Two of the three

methods included in the library are new and introduced here for the first time, while the

third method is published in our previous work. To our best of knowledge Landsifier is the

first python tool developed for landslide triggers classification, and also such a tool does not

exist in other programming languages. We anticipate that the landslide research community

will find the Landsifier library helpful in finding the trigger mechanism of inventories or
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individual landslides. The presented methods and the library could be deployed in any re-

gion of the world with adequate training data from areas with similar climatic and tectonic

features. Landsifier library also contains useful functions like finding geometric properties

of landslides polygon, downloading DEM corresponding to an inventory region, and convert-

ing landslide polygon to landslide 3D shape, these elements could be useful for the landslide

research community.”

Furthermore, methods in Landsifier library are easy to use as they require only shapefiles

of landslide polygons as input. Landsifier is a modular software, we hope the landslide com-

munity will further improve the offered tool and expand the available functions for new appli-

cations such as classifying landslide types, assessing landslide-prone regions, and other possible

usage are listed in the discussion section. At the moment, we have made the code available on

the corresponding author’s GitHub: https://github.com/kamalrana7843/Landsifier.git.

Moreover, we published the Landsifier library under an open-source license in a way that it

is accessible via the python terminal using the import command. In section S2 of the Supple-

mentary information, we provide details of the library and brief descriptions of the available

functionalities.
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Chapter 5

Landsifier v1.0: a Python library to

estimate likely triggers of mapped

landslides

The work presented in this chapter is published in the supplementary material of the

paper: Rana, K., Malik, N. & Ozturk, U. (2022). Landsifier v1.0: a Python library to

estimate likely triggers of mapped landslides. Natural Hazards and Earth System Sciences,

22(11), 3751-3764. This chapter also describes the landsifier library functions and their usage

in detail. We developed this library as a software product as part of this thesis, for more

information, see: https://pypi.org/project/landsifier/.

5.1 Random forest

Random forest (RF) is a decision-tree based ensemble-learning method, a proven and powerful

technique for classification and regression (Barnett et al., 2019; Biau, 2012; Biau and Scornet,

2016; Breiman, 2001; Kursa, 2014; Chaudhary et al., 2016; Rodriguez-Galiano et al., 2012).

The random forest classifier consists of multiple classifiers, where each classifier bootstraps

the training data samples (Breiman, 2001; Liaw et al., 2002). Bootstrapping in each random

forest classifier is done by selecting N samples randomly from training samples of size N

with replacements. For N training samples bootstrapping N times leads to the approximate
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selection of 2/3 of training samples (Azar et al., 2014; Belgiu and Drăguţ, 2016). Hence, each

tree in a random forest classifier is trained independently using around 2/3 of the training

samples selected using bootstrapping.
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Figure 5.1: (a) The sample architecture of one of the trees of random forest classifier. The tree
is trained on 20610 landslides samples with 10305 each earthquake and rainfall trigger class.

Feature vector ([A,P,Ch,W, sm,
A

P
, e]) represents landslide geometric property corresponding

to each landslide sample. For illustration purposes, the tree is grown to only depth three. (b)
testing sample of landslide tested on the tree shown in (a). The sample landslide polygon is
classified as an earthquake.

In a binary classifier, as in our case, each parent node q splits into two daughter nodes:

right r and left l. Instead of selecting all the p features for node split, a subset of features m

(m=√
p) is selected randomly for each node split (Azar et al., 2014; Okun and Priisalu, 2007).

Among m features, one of the features selected for the node split is based on optimizing a

criterion. The criterion is called the ’Gini Index,’ which measures the features’ impurity to
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the classes. The Gini index of right r and left l daughter nodes are calculated as:

Gr = 1− P 2
r1 − P 2

r2 (5.1.1)

Gl = 1− P 2
l1 − P 2

l2, (5.1.2)

where Prj (Plj) is the probability of samples in the right (left) daughter nodes having class j.

The Gini index is calculated for each predictor in the subset of predictors m, and the features

that maximize the change in Gini index is chosen for node split. Change in Gini-index is

calculated as:

∆θ(sq) = Gq − ρrqGr − ρlqGl, (5.1.3)

where ρrq (ρlq) are the ratio of the number of data points in daughter nodes r (l) to the total

number of points in the parent node q (Kuhn et al., 2013; Zhang and Ma, 2012b). The process

of splitting nodes continues until a stopping criterion is met, e.g., when no further samples are

remaining, or the Gini-index of parent nodes is lower than the daughter nodes.

The steps for constructing trees in the random forest are as follows:

(i) Select bootstrap samples of size N from training samples of size N .

(ii) Randomly select m variables among p variables for the node split.

(iii) Choose one variable among m variables that best split the node according to the Gini-

index criterion.

(iv) Continue repeating steps (i) to (iii) until the stopping criterion is met.

For testing, each tree classifier predicts the class of testing sample independently, and the class

with majority votes is the final outcome of random forest (Kuhn and Johnson, 2013; Pal, 2005;

Arabameri et al., 2021; Belgiu and Drăguţ, 2016).

In random forest, bootstrapping training samples selection and random selection of features

for a node split reduces the correlation between trees. This technique has proven to improve

the predictive power of ensemble learning (Azar et al., 2014). In addition, random forest

assigns each feature a score that provides its relative importance (Qi, 2012; Friedman et al.,
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2001). Features with low relative scores should be discarded as they are neutral to the model

accuracy and increase the model complexity.

5.2 Details of Landsifier library

Landsifier is a Python library we built with version 3.6 of Python and the code is avail-

able on GitHub: https://github.com/kamalrana7843/Landsifier.git ( we published the

Landsifier library under an open-source license in a way that it is accessible via the python

terminal using the import command). On this link, prospective users can also find the list of

Python packages used in the library. Landsifier contains three methods for landslide trigger

classification, and these methods only use shapefiles from landslide inventories (two of these

methods use 2D polygon shapes of landslides, while the third method uses the 3D shapes of

landslides). This section describes various functions provided in the Landsifier library to im-

plement the above methods and Figure 5.2 summarizes these functions in form of a flowchart.

Also, Figure 5.3 shows a sample output of the Landsifier.

5.2.1 Functions for geometric features based classification

Below we list functions to implement the geometric features-based classification, details of the

method can be found above in section 3.1 of the main paper and in our publication (Rana

et al., 2021). Note below we have described functions in a form that this method can be used

for inventories with unspecified triggers, i.e., unknown ground truth.

latlon_to_eastnorth(latlon_polydata): This function takes polygons data in (longitude, latitude)

coordinates as an input and provides polygon data in (easting, northing) coordinates as out-

put to the function. This function is used to get landslide polygons in (easting, northing)

coordinates when polygon data in shapely files are in (longitude, latitude) coordinates.

Calculate_geometric_properties (polygon_shapefile): As the name suggests, this func-

tion calculates the geometric properties of each of the landslide polygons present in shapefile.
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Figure 5.2: The figure shows the flowchart of implementations of all the three methods using
functions and their variables used in the landsifier library. All three models use polygon
shapefiles as an input to the model and provide the probability of landslide belonging to
earthquake and rainfall as an output (a) geometric features based method (b) topological
features based method (c) image-based method.

This function takes polygons shapefiles

(polygon_shapefile) as input, converts polygon data into (easting, northing) coordinates if

required using the

latlon_to_eastnorth function, and then provides the geometric properties of polygons as out-

put to the function. For each landslide polygon it calculates a vector([A,P,Ch,W, sm,
A

P
, e])

containing polygon geometric properties as output to the function. All the geometric proper-

ties of the landslide polygon are calculated using the shapely package in Python.

classify_inventory_rf (earthquake_inventory_features, rainfall_inventory_features,

test_inventory_features): This function takes the earthquake-triggered inventories

(earthquake_inventory_features), rainfall-induced inventories (rainfall_inventory_features)

and testing inventories (test_inventory_features) geometric features as the input. Within
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Figure 5.3: The output of the geometric feature-based method when Kumamoto inventory is
testing inventory and the rest five inventories are used as training inventories. Each method
in the landsifier will produce similar outputs. The y-axis in the plot shows the probability
of landslides belonging to the earthquake and rainfall class, and the x-axis shows the sample
index of landslides. For each landslide in the testing inventory, all the models give a probability
of landslides belonging to earthquake and rainfall-induced classes. The predicted trigger of
most of the testing landslides is the probable trigger of the testing inventory.

the function, it trains the random forest algorithm on training data containing equal samples

of the earthquake and rainfall-induced class. The output of the function is the probability of

testing landslides belonging to each trigger class.

5.2.2 Functions for topological features based classification

Below we list functions to implement the topological features-based classification, details of

the method can be found above in section 3.2 of the main paper. Note below we have described

functions in a form that this method can be used for inventories with unspecified triggers, i.e.,

unknown ground truth.

download_dem (polygon_shapefile): This function takes shapefile of landslide polygons as
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an input and downloads the Shuttle Radar Topography Mission digital elevation model (DEM)

of resolution 30 meters corresponding to inventory region (Farr et al., 2007). It takes the

bounding box over the entire inventory location and calculates the (minimum latitude,

minimum longitude) and (maximum latitude, maximum longitude). Using the elevation

package in Python, it downloads the DEM data of a region bounded by minimum latitude,

minimum longitude, maximum latitude, and maximum longitude coordinates. This func-

tion downloads all the tiles (one tile constitutes 1◦× 1◦ region in both latitude and longitude)

of the inventory region and combines all the tiles into one file corresponding to one inventory.

make_3d_polygons (polygon_shapefile, dem_location, inv_name, dem_down_yesno ): This

function takes landslide polygon shapefiles (polygon_shapefile), DEM path location (dem_location),

inventory name (inv_name) and Boolean parameter (dem_down_yesno) as input and pro-

vides 3D point cloud data of landslides as output. This function carries out several tasks.

First, it downloads the DEM data corresponding to the whole inventory region in path

location (dem_location) with inventory name (inv_name) using download_dem function if

dem_down_yesno is True. If users already have DEM corresponding to inventory in path loca-

tion (dem_location) with inventory name (inv_name) then (dem_down_yesno) is False. Then

corresponding to each landslide polygon it interpolates the DEM data around the bounding

box of the polygon. Using the shapely package, the function removes all the interpolated data

outside the outline of the landslide polygon and takes elevation data only within the landslide.

get_tda_features (three_d_data): This function takes the 3D shape of landslides point

cloud data (three_d_data) as an input and provides machine learning features corresponding

to each 3D landslides as an output to function. This function calculates the persistence diagram

using Vietoris Rips persistence for each 3D landslide, and then using the persistence diagram, it

calculates the following TDA metrics: persistence entropy, average lifetime, number of points,

betti curve based measure, persistence landscape curve based measure, Wasserstein amplitude,

Bottleneck amplitude, Heat kernel-based measure, and landscape image-based measure corre-
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sponding to each homology dimension–0, 1, and 2. These TDA metrics are used as a feature

space for the machine learning algorithms.

classify_inventory_tda (earthquake_inventory_features, rainfall_inventory_features,

test_inventory_features): This function takes training earthquake inventory’s

(earthquake_inventory_features), training rainfall inventory’s (rainfall_topological_features)

and testing inventory’s (test_inventory_features) TDA based features as input to function.

Inside the function, it first selects the top 10 features with the highest feature importance using

training data. It then combines an equal number of training earthquake and rainfall samples

to avoid any class imbalance problem. It trains the random forest algorithm on training data

and predicts the probability of testing landslides belonging to each trigger class.

5.2.3 Functions for image based classification

Below we list functions to implement the image-based classification, details of the method can

be found above in section 3.3 of the main paper. Note below we have described functions in

a form that this method can be used for inventories with unspecified triggers, i.e., unknown

ground truth.

increase_resolution_polygon (poly_data): This function takes a single polygon coordi-

nates data (poly_data) in (easting, northing) coordinates as input and increases the number

of points between any two adjacent vertexes of the polygon within the function. This function

is useful in creating smooth binary scale landslide polygon images. The output of the function

is landslide polygons coordinates data having multiple points between the adjacent vertex of

polygons.

make_ls_images (polygon_shapefile): This function takes polygon shapefiles (polygon_shapefile)

as an input and provides landslide polygon images as an output to the function. It creates

N×N (N = 64 in our case) pixel image with binary values of 0 or 255 for each pixel. This func-
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tion first increase the number of data points in polygons using increase_resolution_polygon

function and then takes a bounding box of polygon and transforms the coordinates of polygons

by subtracting polygon (minimum_easting,minimum_northing) value from each point in

the polygon. Then divide each point in polygon (easting, northing) value by resolution of

pixels (desired spatial distance between any two adjacent horizontally or vertically pixels) and

convert them into nearest integers. Then for each pixel (x, y) the value of the pixel is 255

if there exists a point in the polygon with coordinates (x, y) otherwise the value of the pixel

is 0. This function also removes those landslides having length and width of bounding box

greater than 180 meters as the image of a polygon has some restrictions on maximum landslide

polygon it can have (resolution of pixels ( 3 meters) × N = 192 meters).

train_augment (train_data, train_label): This function takes input training landslides

data (train_data) and training labels (train_label) as input. The main idea behind using

train_augment function is to augment the training data as CNN is data extensive algorithm.

It rotates each image by 90°, 180°, 270°and flip the image vertically and horizontally to increase

the number of training samples. The output of the function is augmented training data and

labels.

classify_inventory_cnn (earthquake_inventory_images, rainfall_inventory_images,

test_inventory_images): This function takes training earthquake inventory images

(earthquake_inventory_images), training rainfall inventory images (rainfall_inventory_images)

and testing inventory images (test_inventory_images) as input to the function. Within the

function, it combines an equal number of training earthquake and rainfall samples to avoid any

class imbalance problem and then augments the training data by using the train_augment

function. Then it trains the CNN algorithm on augmented training data and predicts the

probability of testing landslides belonging to each of the trigger classes.
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Chapter 6

Landslide Topology Uncovers failure

Mechanism

This chapter is based on objective 4 of the Ph.D. thesis about developing a method for de-

termining the failure mechanism of landslides. We explored various geometric and topological

properties of landslide shape to identify failure mechanism and found that topological prop-

erties are excellent predictors for identifying failure mechanism. The work presented in this

chapter will be submitted soon to Nature Communication Journal:

Rana, K.1, Bhuyan K.1, Ferrer J.V., Cotton F., Catani F., Ozturk, U., & Malik, N. (2023).

Landslide topology uncovers its failure mechanism (under review in Nature Communication)

6.1 Abstract

The death toll and monetary damages from landslides continue to rise despite advancements in

predictive modeling. The predictive capability of these models is limited as landslide databases

used in training and assessing the models often have crucial information missing, such as

underlying failure mechanisms. Here, we present an approach for identifying failure mech-

anisms—flows, falls, slides, and complex—by leveraging 3D landslide topology. We observe

topological proxies reveal prevalent signatures of mass movement mechanics embedded in the

1These authors contributed equally.
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landslides’ morphology or shape, such as unfolding mechanisms within complex landslides. We

find identical failure mechanisms exhibit similar topological properties, and by using them as

predictors, we are able to identify failure mechanisms in Italy and the US’s Pacific Northwest

region with 80-94% accuracy. These new insights can considerably improve the performance

of landslide predictive models and impact assessments. Moreover, our work introduces a new

paradigm for studying landslide shapes to understand underlying processes through the lens

of landslide topology.

6.2 Introduction

Every year, landslides cause economic damages worth 20 billion US dollars (Klose et al.,

2016), and between 2004 and 2019 non-seismic landslides alone caused about 70, 000 fatalities

worldwide (Froude and Petley, 2018). Within the first two months of 2023, we have seen reports

of devastating landslides in São Paulo, Brazil (Simoes and Araujo, ), Southern Peru (Aljazeera,

), and New Zealand (Craymer and Feast, ), injuring many and killing approximately 70 people.

Adding to this, recent studies count over one million landslide occurrences with annual volumes

estimated at fifty-six billion cubic kilometers globally (Broeckx et al., 2020), presenting a risk

to sixty million people (Ozturk et al., 2022). With the increase in urbanization, global climate

change, and environmental change trends, the frequency of landslides and the associated risks

will keep increasing globally over time (Ozturk et al., 2022). In line with this, landslides

are anticipated to evolve and remobilize with increased frequency under changing climatic

conditions on a decadal scale (Fan et al., 2021; Gariano and Guzzetti, 2016). Our ability

to identify hazards from emerging landslides and dynamically assess impact areas is essential

in averting risk to rapidly urbanizing communities and adapting to changing environmental

conditions (Lima et al., 2023; Ozturk et al., 2022).

To address the rising landslide risk, predictive models for hazard, risk, and early warning

systems are developed which assist in forecasting landslide occurrences and locating landslide-

prone regions to mitigate the associated impacts (Corominas et al., 2014). However, the

efficacy of these models is contingent on the quality of the underlying landslide databases.
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These databases often lack the much-needed information about failure mechanisms of the

mapped landslides (Guzzetti et al., 2012). Baffling predictive models (e.g., Huang et al.(Huang

et al., 2023)), these databases instead rely on a broader definition of landslides that covers

all types of gravitational mass wasting processes, such as slides, flows, and falls. Typically,

each landslide failure mechanism exhibits different geological, geometrical, and geotechnical

properties (see Figure 6.1). For instance, slides have conspicuous primary scarps and collapse

along the planar or rotational surfaces (Varnes, 1978), flows such as mudflows exhibit visco-

plastic or viscous/fluid kinematics caused by excess pore water pressure (Bradley et al., 2019),

and rock falls entails the free falling of fragmented rocks from steep slopes (Bourrier et al.,

2013) (see Supplementary Section S2 for detailed explanations).

Practitioners usually combine these different failure types into one group, despite their dif-

ferent properties (Guzzetti et al., 2006; Lombardo and Mai, 2018; Rossi et al., 2010), since cat-

egorizing them manually requires comprehensive surveys (remote and field) and standardized

classification protocols (Guzzetti et al., 2012), which are laborious and time-consuming. Con-

sequently, predictive models start to harbor significant levels of uncertainty and bias (Huang

et al., 2023), hence failing to match empirical observations, especially when moving from local

levels to regional and global scales (Kirschbaum et al., 2010; Reichenbach et al., ; Fressard

et al., 2014). For instance, they may predict a low probability of landslide occurrence in a high

landslide-prone region. Therefore, identifying landslide failure mechanisms is fundamental to

improving predictive modeling.

Preliminary attempts at identifying failure mechanisms have considered both knowledge-

driven and data-driven approaches. While the former are region-specific, bounded by expert-

based rules, and constrained to small areas (Martha et al., 2010; Barlow et al., 2006), the latter

addressed these problems with supervised learning and have successfully identified landslide

failure types in the Italian context (Amato et al., 2021). However, the existing solutions are

still limited in their prediction capabilities, as the failure information is derived from geomet-

ric properties of two-dimensional (2D) landslide polygons (outlining the landslide planforms).

Owing to the inherent limitations of 2D landslide polygons, crucial kinematic and mechanical
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Figure 6.1: The schematic illustrates different landslide failure mechanisms and their asso-
ciated mechanical and kinematic behavior. For example, Type 1 refers to slide-type failures
that can constitute deep ruptures, where a cohesive unit of soil or rock slides down a slope
following a well-defined rupture plane. Type 2 refers to flow-type failures where soil, rock, or
other material flows down a slope as a dense, fluid-like mass with a flow-like motion. Type 3 is
a fall-type of failure where a body of rock detaches from a steep slope or cliffs and exhibits free
falling and episodic impacts as they propagate down the slope. Type 4 refers to the complex
interaction and effect of numerous geomorphic processes transpiring in a single failure event,
where processes start as one mechanism and evolve into another; such as a slide-type failure
evolving to a flow-type failure.

details embedded in the landslides’ three-dimensional (3D) morphology are overlooked, such

as the style of kinematic progression, deformation patterns and structures, and debris deposits

at the talus. Furthermore, the kinematic evolution of one or more failure types may culminate

in the convergent evolution of landslide shapes, wherein landslides starting as completely dif-

ferent movements may evolve to follow similar planar outlines. This phenomenon complicates

the discernment of mechanisms based solely on 2D representations or simple topographic mea-

sures. We posit that such morphological and kinematic information is rooted in the landslide’s

morphology which can be extracted via topology.

Topology is a sub-discipline of mathematics explored in many fields that concern the study

of shapes (Lum et al., 2013), such as in protein structures, data modeling, complex networks,

and signal processing (Luo, 2023; Carlsson, 2020; Han and Bao, 2022; Zangeneh-Nejad and
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Figure 6.2: The diagram shows the geographical regions: Italy and the US Pacific Northwest,
whose data we analyzed in this work. The inset in the circular shape shows snippets from
diverse regions with landslide polygons of different failure mechanisms on top of the World
Hillshade Map. Map credits: World Shaded Relief-ESRI (ESRI, 2020)

Fleury, 2019). We explore advanced data analysis tools rooted in topology, known as topolog-

ical data analysis (TDA), which captures critical structures present in the data’s shape (in our

case, the landslide’s 3D shape). We hypothesize that key features of landslide kinematics are

embedded in the 3D topology of the involved landforms and that TDA properties can capture

the kinematics and mechanics as a proxy for identifying landslide failure

In this study, we introduce an approach for uncovering landslide failure mechanisms by

examining the topological properties inherent in the 3D shapes of landslides. We demonstrate

that this method offers a more comprehensive understanding of the underlying failure pro-

cesses compared to traditional analyses based on 2D polygonal geometry. To validate the

effectiveness and applicability of our approach, we apply it to landslide data sets from two

distinct geomorphological settings: Italy and the United States (US) Pacific Northwest region

(see Figure 6.2). Additionally, we utilized the topological properties of complex landslides to

reveal the underlying physical processes behind their formations. Here, we showcase with our

76 6.2. Introduction



6.3. Results

findings that the proposed method (1) is user-friendly, exclusively requiring only the landslide

polygonal shape and a Digital Elevation Model (DEM) as input, (2) exhibits high performance

in discerning failure mechanisms, (3) is transferable across various geomorphological regions,

and (4) shows strong performance and remains robust, even when the availability of samples is

limited, indicating its applicability in data-scarce regions. By offering a deeper understanding

of landslide failure mechanisms, this approach has the potential to enhance the accuracy and

reliability of landslide susceptibility, hazard, and risk assessment models, by providing valuable

insights to the predictive modeling community.

6.3 Results

6.3.1 Landslide topology as a proxy to identify failure mechanisms

The underpinning of topological data analysis (TDA) is rooted in structures in the data’s

shape, such as connected components and holes. Holes represent the empty spaces in the

data’s shape, and connected components represent the connection of the data’s points linked

by a continuous path. Using the holes and connected components, we can calculate various

topological properties to quantify a shape. For this, we perform the TDA on landslide shapes to

compute topological properties which can then be used as a proxy to investigate the underlying

failure mechanisms. It is important to note that we employ 3D point clouds (containing

geographical latitude, longitude, and elevation information) from the landslide’s outline (see

Figures 6.3 and 7.2) obtained via the landslide polygon and the Digital Elevation Model

(DEM). The landslide polygon provides the best available approximation of the landslide

boundaries in the geographic space, as derived by standard surveying methods with suitable

accuracy.

The degree of compactness in a landslide shape is essential when identifying failure mecha-

nisms (Amato et al., 2021). For instance, slides are characterized by a more cohesive material

that tends to remain as a single component (e.g., slides with clay-rich soil (Kenigsberg et al.,

2020)), leaving behind a more compact-shaped footprint as they fail. In contrast, flows in-

volve more fluid and fragmented materials deposited at the talus and display viscous/fluid
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Figure 6.3: (a) An example of a landslide failure in a terrain with a steep slope. The diagram
also shows the 3D landslide polygon, which outlines the landslide shape. (b-e) 3D landslide
samples for different landslide failure types, namely, the slide, flow, complex, and fall types.

kinematics that follows the contours of the natural landscape and are less compact. On the

other hand, falls consist of fragmented materials that roll/bounce off steep cliffs with a rather

shorter and straighter run-out path compared to flows which leave behind a footprint that

has an intermediate degree of compactness between the slide and flow-type failures. We use

the amount of empty space inside the footprints of the landslide shape outline to quantify its

compactness. To give a simple example, a higher amount of empty space in a landslide shape

outline is associated with a higher degree of compactness (e.g., for slide-type failures as seen

in chapter 7 Figure 7.1-a). Representing the average lifetime of holes, ALH (one of the topo-

logical properties) computes the hole’s average size and estimates the information pertaining

78 6.3. Results



6.3. Results

to the empty space, and thus the compactness of a landslide’s shape. So, landslide shapes

with a longer ALH are more compact than shapes with a shorter ALH. Based on the Proba-

bility Density Function (PDF) of the ALH, our analysis reveals that slides are more compact

than flows, falls, and complex landslides because they have a longer ALH (see Figure 6.4).

Moreover, we observe the ALH PDF curve for falls to lie between those of slides and flows,

showing that empty spaces generated in falls do not survive long since materials detach from

steep slopes and travel a short distance, thereby leaving behind a footprint that represents an

intermediate level of compactness. Also, the PDF of the ALH for complex landslides shows an

intermediate level of compactness, credited to their amalgamated behavior as a combination

of slides, falls, and flows.

Another critical property for diagnosing failure mechanisms is the sinuosity of the transport

zone, which describes the landslide’s path or kinematic propagation as it progresses downslope.

Of all failure types, flows are the most sinuous, following the contours of the landscape, owing

to the fluid and mobile nature of the materials involved, while slides are the least sinuous as

their material is rarely channelized and remains on the open slope, resulting in a relatively

straight and uniform path. Fall-type failures are comparatively less sinuous than flows but

still exhibit some degree of sinuosity, as they too follow the landscape’s contours. Sinuosity

defines the existence of numerous curves in the landslide’s shape attributed to the landscapes’

contours, leading to the generation of partitions within the landslide outlines by the TDA

and hence, generating multiple empty spaces with shortened lifetime (see Methods section).

This information on the sinuosity of landslide shapes is inferred from the combination of two

topological properties–the bottleneck amplitude of holes, BAH, and the average lifetime of

holes, ALH. The BAH represents the maximum lifetime of holes in the landslide shape, which

quantifies the maximum empty space in the 3D space occupied by the landslide. As sinuous

shapes result in numerous smaller empty spaces with shorter lifetimes, the ALH drops without

significantly impacting the largest empty space as determined by the BAH (see Figure 6.4).
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Figure 6.4: Plots (a-f) show the probability distribution functions of the six most optimal
topological properties used in classifying the failure mechanisms for slides, flows, complex,
and falls in Italy. The y-axis shows the probability density values (calculated using kernel
density estimation), and the x-axis shows the value of topological attributes. The topological
properties in plots (a-f) are: Average lifetime of holes (ALH), Average lifetime of connected
components (ALC), Betti-curve based feature of connected components (BCC), Betti-curve
based feature of holes (BCH), Wasserstein amplitude of holes (WAH), and Bottleneck ampli-
tude of holes (BAH) (the computations of these properties are explained in detail in chapter
7 Section 7.3 and Figure 7.2). The percentage values in the gray circular disk in each figure
indicate the topological feature’s importance (in %), as estimated by the random forest-based
classification procedure. Sub-plot (g) shows the joint computed feature importance of topolog-
ical and geometric properties by the random forest model. The geometric properties from top
to bottom are: area (A), perimeter (P ), the ratio of area to perimeter A

P , convex hull-based
measure (Ch), minor(sm), and width (W ) of the minimum area bounding box fitted to the
polygon.
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Consequently, a landslide shape with a relatively higher BAH and a shorter ALH is indica-

tive of increased sinuosity. In light of these observations, our findings indicate that flow-type

landslides indeed display a higher degree of sinuosity compared to other failure mechanisms.

This is evident from the fact that flows exhibit a similar BAH to falls but a shorter ALH in

comparison. This is expected, as flows, being the most sinuous, cause multiple small holes

or empty spaces (see flow-type failure in chapter 7 Fig. 7.1-b) that end up shortening the

ALH. Conversely, slides display both longer BAH and ALH, reflecting their minimal level of

sinuosity.

We are also interested in the role that slope variations play, as they significantly impact

the stability of the slope and influence the type of landslide that occurs. For example, falls

and slides have a more significant slope transition in their profiles compared to flows, which

propagate with a nearly constant slope (Catani et al., 2005). This slope variation is captured

by the lifetime of the connected components. A sharp change in slope causes the points out-

lining the landslide to be spaced vertically further apart, leading to a longer lifetime of the

connected components. Two topological properties—the Wasserstein amplitude of the con-

nected components, WAC, and the average lifetime of the connected components, ALC—help

capture information about this slope variation in a landslide’s profile. The WAC quantifies

the set of longer lifetimes of the connected components, quantifying the most significant slope

change in the landslide outline. This is nicely illustrated in the PDF (Figure 6.4) of WAC,

which shows that slide and fall failures underwent more drastic slope changes compared to

flows. Yet, falls possess a shorter ALC than slides. This is due to the lower portion of the

shape’s outline (at the talus) displaying a flatter terrain (representing the area where materials

accumulate) and attributing negligible slope change, which ultimately shortens the ALC. In

contrast, flows display the minimum ALC, as they more or less propagate on constant slopes.

Several topological properties, like the Betti curve-based feature (BC), capture more intri-

cate landslide shape properties and help in discerning landslide failure mechanisms. The Betti

curve-based feature represents the total number, lifetime, and presence of the structures (holes

and connected components) emerging simultaneously. We hypothesize that it encompasses a
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Figure 6.5: Plots (a and c) show the classification accuracy (in %) for each failure class in
Italy and the US Pacific Northwest. The x-axis of the plots shows the testing sample’s index,
and the y-axis shows the class probability corresponding to each failure class. Plots (b and
d) show the classification accuracy (in %) corresponding to each failure mechanism with the
number of training samples. The x-axis shows the number of training samples from each class
used to train the model, and the y-axis shows the classification accuracy (in %) corresponding
to each class. At 500 samples, the mean classification accuracy reaches over 80% in Italy, and
over 75% in the US Pacific Northwest

combination of compactness, sinuosity, slope variations, and similar structures within a given

landslide shape. However, the exact connection to the underlying physical mechanisms is not

clear due to the complex nature of this topological property. We anticipate that such prop-

erties consider higher-order information about the landslide shape that is not immediately

apparent to us.

Through our analysis, we discovered that common topological properties such as ALH,

ALC, and BAC govern the general movements of distinct failure types. These properties act

as proxies for the diverse kinematic and mechanical characteristics, which are essential to
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consider when identifying the different failure mechanisms. This finding simplifies and brings

coherence to our understanding of landslide behaviors from a topological lens, offering a more

effective approach to discerning and predicting these complex natural phenomena.

6.3.2 Comparison between landslide geometry and landslide topology

Traditional geometric descriptors of landslide shape, including properties such as area, perime-

ter, and convexity, are derived from 2D representations of the landslide body. As a consequence

of this inherent simplification, these 2D-based geometric properties may not adequately cap-

ture crucial information, such as failure depth or internal deformations, associated with the

landslides’ 3D configuration. To address these limitations and provide a more comprehensive

understanding of the landslide dynamics, we computed topological properties that are derived

from the landslides’ 3D configurations (more detailed information can be found in chapter 7

Section 7.3). We postulated that the topological properties would prove more meaningful in

decoding the characteristics of the landslides and their underlying failure mechanisms than the

traditional geometric counterparts. To test this, we used a set of seven well-known geometric

properties that are commonly employed in the literature (Rana et al., 2021; Taylor et al.,

2018b; Stark and Guzzetti, 2009) along with six topological properties (for the justification

of using six topological properties, please refer the Methods section) to determine the failure

mechanisms in the Italian context.

We jointly computed the feature importance of geometrical and topological properties using

the Gini-index feature importance method in the random forest algorithm (see Figure 6.4-g).

After running over 100 iterations on the Italian data set, our findings consistently demon-

strated that topological properties exhibited higher feature importance than the traditional

geometric counterparts (achieving Micro F1-scores of 94%, ∼65% respectively), yielding su-

perior predictive capabilities for identifying failure mechanisms. Additionally, we observed

that even the least important topological property (BCC) has similar feature importance as

the other geometric ones, while the former conveys unique information about the landslide

shapes as discussed in the previous section. Moreover, we calculated the Probability Density

Function (PDF) for both geometric and topological properties and observed that the latter
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had greater dissimilarity than the former among different failure types (see chapter 7 Figure

7.3). These two findings demonstrate that topological properties are stronger predictors for

identifying failure mechanisms. The reason for this can be attributed to the enhanced ca-

pacity of topological properties to encapsulate important information pertaining to landslide

kinematic progression, failure depth, sinuosity, compactness, and slope variation.

6.3.3 Determining failure mechanisms with TDA and machine learning

Next, we employed Topological Data Analysis (TDA) to compute a diverse array of topo-

logical properties/features. Subsequently, we conducted a correlation analysis and feature

importance assessment to identify the six most optimal properties out of thirty. Our evalua-

tion unveiled that several TDA properties were redundant, amplifying the model’s complexity

and undermining its predictive potential. Consequently, we opted to eliminate the irrelevant

ones. Leveraging the six best features, we applied the random forest algorithm to discern

the failure mechanisms. We independently scrutinized the performance of our approach using

various training and testing sets for both Italy and the US Pacific Northwest without merging

the data sets.

The cumulative number of samples (ntotal) for Italy equates to 254,916, encompassing

100,419 slide-type samples (nslides), 89,316 flow-type samples (nflows), 51,511 complex-type

samples (ncomplex), and 13,610 fall-type samples (nfall). To counteract potential class im-

balances, we used an equal number of samples from each landslide type for training, with

nslides = nflows = ncomplex = nfall = 13, 610. To alleviate overfitting and bias, we executed

10-fold cross-validation, iterated 1,000 times on 54,440 samples (4 × 13, 610 = 54, 440), and

we achieved a Micro F1-score—a performance metric—surpassing 94% for each failure class

(see Figure 6.5-a), with a performance standard deviation below 0.2%. This illustrated the

robustness of our methodology in handling variations among training samples across Italy. We

examined various other metrics (chapter 7 Section 7.7), such as the True Positive Rate (TPR)

and True Negative Rate (TNR), to evaluate the method’s performance. These metrics consis-

tently exhibited high scores across all classes, thereby ascertaining the model’s classification

ability.

84 6.3. Results



6.3. Results

In parallel, the aggregated samples from the US Pacific Northwest amounted to ntotal =

36, 686, with nslides = 11, 826, nflows = 20, 805, ncomplex = 3, 165, and nfall = 890. We utilized

an equal number of samples from each class (nslides = nflows = ncomplex = nfall = 896) and

conducted 1,000 iterations of 10-fold cross-validation to mitigate class imbalance, bias, and

overfitting. We attained an average Micro F1-score exceeding 80% with a standard deviation

reported below 1% (see Figure 6.5-c). Strong performances with respect to other metrics were

also observed, similar to those in the Italian context (see chapter 7 Figure 7.5).

Additionally, we examined model transferability by training the model in Italy and testing

it on the US Pacific Northwest dataset, thereby gauging its performance and robustness when

training and testing the methods in geographically disparate regions (see Supplementary Figure

S4). However, the method performs poorly in this scenario which was anticipated as these

regions have different internal (e.g., geological and topographical) and external (e.g., rainfall

and seismic shaking intensities) conditions. Such contrasts in the geophysical systems will

harbor unique properties even in similar failure mechanisms. More details are provided in

Supplementary Section S6.

6.3.4 Method performance with limited landslide samples

The efficacy of data-driven approaches is dependent upon the number of training samples

(Devarakonda, 2022), which, in our study, are samples with known failure mechanisms. A

methodology exhibiting robust performance, even when confronted with limited training data,

is of paramount importance in real-world scenarios. To assess the method’s performance

in data-scarce circumstances, we conducted several assessments, incrementally increasing the

number of training samples for each failure type starting from 100 samples in 100-step intervals

(Figure 6.5-b, d). Remarkably, even with a meager 100 training samples from each class, the

method achieved a mean classification accuracy exceeding 50% in both Italy and the US Pacific

Northwest. The method’s performance was enhanced with the increment of training samples,

attaining a mean classification accuracy above 80% and 75% with just 500 training samples

from each class.

Our findings show that the method performs well even with fewer training samples (>500
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from each type) and can benefit regions with scarce samples of known failure types. In areas

devoid of documented samples with failure data, practitioners can manually annotate a few

instances to train the algorithm, enabling them to discern the failure mechanisms for the

remaining landslide population.

6.3.5 Deciphering complex landslides in the US Pacific Northwest

Complex landslides typically occur as amalgamations of numerous processes or failure types

that appear successively, such as slides to flows (LaHusen et al., 2020). Because complex land-

slides include multiple failures, it is challenging to investigate their behavior for the purposes

of predictive modeling. Topological properties are capable of capturing intricate information

between different failure processes (as seen in the previous sections), and hence, we further

explored its capability to understand the underlying physical processes that lead to complex

failures. We utilize 428 complex landslides from the US Pacific Northwest data set to dis-

cern the combination of failure types present in them. Out of 428 complex landslides, 198

of them are documented as "Translational rock slides followed by rock falls" and the rest are

documented as "Rotational slides followed by flows" (as reported by the Statewide Landslide

Information Database for Oregon, SLIDO(Franczyk et al., 2019)).

To identify the failure mechanisms within these complex failures, we trained our method

with three classes (i.e., slides, flows, and falls) and forced the model to predict the class

probability corresponding to each failure type. For 198 complex landslides documented as

"Translational rock slides followed by rock falls", our model predicts slide-type failures with the

highest probability followed by falls (see chapter 7 Figure 7.6-a). Similarly, for the remaining

230 "Rotational slides followed by flows" complex landslides, our model predicts slide-type

failures with the highest probability followed by flows (see chapter 7 Figure 7.6-b). Among

these 428 landslides, slides are predicted as the most dominant failure type, which is also

evident when observing the resemblance of the slide and complex failure topological properties

(such as ALH, BCH, and BAH) in the PDF plots (see chapter 7 Figure 7.2). These findings

demonstrate that topological properties are able to decipher more than just one physical

process in a given landslide.
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6.4 Discussion

In this work, we attempt to determine the failure mechanisms through the lens of landslide

topology. Our key findings elucidate the connection between the topological properties as a

proxy to identify underlying failure mechanisms. We observe that identical landslide types

harbor similar topological properties, indicating the presence of common morphological char-

acteristics that govern the general movement of the failures. Also, we observe that topological

properties offer a more profound capacity to distinguish between failure types than traditional

geometric properties. This finding can be attributed to the fact that topological proper-

ties inherently capture critical information related to landslide kinematic progression, failure

depth, sinuosity, compactness, and variations in slope. In contrast, geometric properties tend

to oversimplify the complex spatial, kinematic, and mechanical relationships that govern the

behavior of landslides and are hence less effective in helping to differentiate between various

failure mechanisms. Additionally, we utilized topological properties to dive deeper into the

complex failures and identified the underlying processes that contribute to their formation.

Our findings suggest that topological properties can reveal more than one physical process in

a given landscape. Given these advantages, we anticipate that our method will present new

avenues for future research, particularly in the landslide modeling community.

Understanding the failure type of a landslide can provide insight into its triggering mecha-

nism (Rana et al., 2021). Therefore, by analyzing the landslide failure types, we can diagnose

the temporal frequency of the associated trigger that causes them. This is particularly im-

portant for forecasting the remobilization of unconsolidated deposits of post-seismic landslides

that evolve into frequent rainfall-triggered flow-type landslides that interface with risk on a

decadal scale (Tanyaş et al., 2021; Fan et al., 2021). Forecasting the increased frequency and

identifying the magnitude of impacted areas under changing climate conditions rely on our

ability to support scenarios of physically-based hazard models with landslide-type-specific trig-

gering information (Lima et al., 2023; Gariano and Guzzetti, 2016). Furthermore, identifying

failure mechanisms increases our capability of extracting quantitative data on sediment bud-

gets and on dominant geophysical cycles at continental and global scales, with direct effects
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on our knowledge of forecasted climate change impacts (Francis et al., 2022).

Building on this, it is crucial to acknowledge that predictive models that simulate type-

specific behaviors require multiple input parameters tailored to each failure type (Katz et al.,

2014). For example, sliding mechanisms triggered by seismic activity require additional pa-

rameters such as seismic loading, the internal friction angle of the soil, and peak ground

acceleration. In contrast, flow-type failures such as debris flow require parameters like the

precipitation amount, pore water pressure, and infiltration rate. Failing to differentiate be-

tween these distinct landslide types leads to an oversight of the parameters which drive their

behavior and can lead to inaccurate predictions when simulating them; for instance, loca-

tions or slopes susceptible to seismically-induced slides may be underestimated if a model is

calibrated with precipitation data to simulate rainfall-induced flow-type failures, ultimately

resulting in erroneous predictions and ineffective hazard assessments of seismic-slides.

Additionally, the failure-type information has notable potential to improve landslide risk

assessment and associated hazard models (Huang et al., 2023). The level of damage to infras-

tructures and the risk of human casualties vary depending on the intensity of the landslide,

which differs for each failure type (Varnes, 1978). For example, a slow-moving deep-seated

rotational landslide (1.5 m/year to 16 mm/year) may not pose an immediate threat to the

population, but it can cause extensive structural damage to buildings over a prolonged period

(Sundriyal et al., 2023; Dille et al., 2022). In contrast, flow-type failures, such as debris flows,

have rapid mobility and can result in significant casualties and infrastructure damage simul-

taneously (Vega and Hidalgo, 2016; Perkins, 2012). Similarly, episodic impacts in fall-type

failures can cause massive damage to infrastructures in a matter of seconds due to their high

energy (e.g., impact pressure measured in kilopascals, kPa) (Dietze et al., 2017). We can infer

from these broad examples that the availability of failure-type information is crucial for differ-

ent aspects of predictive modeling and that incorporating it benefits the landslide community

as it enables the development of accurate landslide predictive models.

The potential of the proposed method reaches beyond just understanding the complex in-

terplay between landforms, their shapes, and the underlying geophysical processes responsible
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Figure 6.6: The diagram illustrates the procedure of computing topological features corre-
sponding to a landslide shape. The flowchart shows the use of persistent homology in captur-
ing various structures of the landslide shape by using an evolving disk size (ϵ) around each
point in the point cloud. With the increase in ϵ, various structures like connected components
and holes emerge in the data’s shape which is captured by the persistence diagram. Using this
information, we can calculate the topological properties of the landslide’s shape. Please note
that when processing the TDA features, we display the flowchart using a 2D illustration for
simplicity and better visualization.

for their formation; they also serve as a subject captivating interest across various geophys-

ical disciplines. The ability to acquire knowledge about the processes generating complex

landforms based solely on their shapes suggests a rich presence of signatures imprinted on

the landscapes. Our method leverages their topological properties to effectively extract this

information. Envisioning compelling applications beyond landslides, we can explore other geo-

physical processes such as permafrost-borne retrogressive thaw slumps in Arctic regions (Nicu
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et al., 2021) and sub-surface processes, e.g., submarine landslides (Frey-Martínez et al., 2006),

which commonly occur in a typical data-scarce environment such as the sea bottom, where

geological and geotechnical information are almost absent. These processes also give rise to

unique landforms displaying distinct shapes and configurations, and employing topology can

aid in gauging the mechanisms governing their occurrences.

While the proposed solution demonstrates notable success in identifying failure mecha-

nisms, there are inherent limitations that warrant attention. The effectiveness of the method

relies on the quality and geographical location of the training and testing data used in the

model. Manual annotations of failure mechanisms can lead to bias since various mappers will

have different perspectives (mapping on aerial or satellite imagery versus geomorphological

field mapping can display distinct perceptions) when annotating the landslides and their fail-

ure types. Also, due to the ambiguous nature of complex-type failures, they could include

slides and flows simultaneously, which can impact the overall performance of the model. The

method’s reliance on a DEM for converting 2D polygons into 3D shapes also presents potential

challenges. DEM quality in the training and testing regions can bias the results, particularly

for smaller landslides, as coarser DEM resolutions may struggle to capture the profiles of these

smaller-scale events.

In the future, we plan to develop a complete transferability method that learns from

data-rich regions such as Italy and implement it to identify failure mechanisms in data-

scarce landslide-affected regions of the world, such as Africa, central and south Asia, and the

Caribbean island countries. We also envisage including this complete transferability method

in a Python library for the landslide community. Moreover, we will also diversify the land-

slide failure types to accommodate the community’s needs in adapting to other classification

systems (such as Cruden and Varnes (Cruden, 1996)), including failure mechanisms such as

spreads, earth flows, debris flows, and rotational and translational slides. We hope that the

landslide community will find our method useful in their line of research, and appreciate its

contribution to understanding/identifying failure mechanisms, and make an effort to improve

landslide predictive modeling in different parts of the world.
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6.5 Methods

6.5.1 Topological Feature Engineering

In the proposed method, landslide polygons serve as the primary input. These polygons repre-

sent the 2D outline of the landslide body on the ground and are commonly found in landslide

databases. Each vertex of the landslide polygon comprises geographical latitude and longitude

coordinates. Utilizing the Digital Elevation Model, the landslide polygons are transformed into

normalized 3D shape outlines, wherein each vertex encompasses latitude, longitude, and eleva-

tion information. Topological Data Analysis (TDA) is employed to extract the geometrical and

topological characteristics of a landslide’s 3D shape outline (see Figure 7.2). This information

is subsequently used as input for a machine learning algorithm, specifically the random forest.

The Python library Giotto-TDA is leveraged to extract an assortment of TDA properties/fea-

tures from the 3D shape of landslides (Tauzin et al., 2021). To ascertain the most pertinent

features for landslide-type classification, a correlation test is conducted between TDA features,

and those with high correlation are removed. The remaining, less correlated features are then

assessed, and the least important ones are iteratively eliminated until six robust predictors

remain. The exclusion of additional predictors results in decreased performance, while incor-

porating more than seven yields comparable outcomes. Utilizing fewer predictors facilitates

the development of a more generalizable model. The six features thus form a feature space for

the random forest classifier.

Topological Data Analysis (TDA) quantifies the multidimensional shape of data using

algebraic topology techniques. TDA offers a variety of metrics for capturing the geometric

and topological properties of data shape (Carlsson, 2009). These metrics could be used as

a feature space for the machine learning algorithm to solve various classification and regres-

sion problems, such as shape classification. TDA’s central idea is persistent homology, which

identifies persistent geometric features by using simplicial complexes to extract topological

features from point cloud data. Simplicial complexes are a collection of simplexes that are

the building blocks of higher-dimensional counterparts of a graph. An n-dimensional simplex
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is formed by connecting n+1 affinely independent points (Munch, 2017; Garin and Tauzin,

2019). For example, a point is a 0-dimensional simplex, an edge that connects two points

is a 1-dimensional simplex, and a filled triangle formed by combining three non-linear points

is a 2-dimensional simplex. A Vietoris-Rips complex indicates the simplicial complex in the

data’s shape using a parameter ϵ. The main idea of the Vietoris-Rips complex is to connect

any two points in the point cloud data set whose distance is less than ϵ. These connections

of data points create structures in the data that change with the parameter ϵ. Therefore, to

get complete information about all the structures in the data, the idea is to use all ϵ > 0 values.

Only specific structures in the data shape provide crucial information about the geometrical

and topological properties of the data. Homology measures these unique structures in the data,

where e.g., 0-dimensional homology captures connected components or clusters, 1-dimensional

homology measures loops, and 2-dimensional homology measures voids (Munch, 2017; Hensel

et al., 2021). These crucial structures emerge and die with changes in ϵ, and this information is

captured in the persistence diagram. With the help of a persistence diagram, we can calculate

various measures quantifying the topological properties of the shape– persistence entropy,

average lifetime, number of points, Betti curve-based measure, persistence landscape curve-

based measure, Wasserstein amplitude, Bottleneck amplitude, Heat kernel-based measure, and

landscape image-based measure (Bubenik and Dłotko, 2017; Reininghaus et al., 2015; Adams

et al., 2017). We have explained all these topological features in detail in chapter 7, section

7.3. Finally, we used all these measures as input in the machine learning method–random

forest.

6.5.2 Machine learning model: Random Forest

Random forest is an ensemble-based learning method that has shown promising results in

various classification and regression problems (Barnett et al., 2019; Biau and Scornet, 2016;

Breiman, 2001; Kursa, 2014; Chaudhary et al., 2016). Random forest classifiers consist of

multiple classifiers trained independently on bootstrapping training samples. Bootstrapping

N training samples leads to 2N
3 independent samples, so each tree in the random forest is
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constructed from a distinct subset of training samples (Azar et al., 2014; Belgiu and Drăguţ,

2016). Moreover, each tree in the random forest predicts the output class of the testing sample

independently, and the class with the majority votes is the final decision of the random forest

(Arabameri et al., 2021; Belgiu and Drăguţ, 2016).

Each random forest tree divides a parent node into two daughter nodes, right (r) and left

(l). For each node split, the random forest chooses p features from the m total features of the

samples (Azar et al., 2014; Okun and Priisalu, 2007). Among p features, the random forest

selects a single feature for a node split based on the "Gini-index" criterion. The Gini-index for

each right and left daughter node can be calculated as: Gr=1-Σj=N
j=1 Prj and Gl=1-Σj=N

j=1 Plj .

Here, Prj(Prlj) and N are the probability of the samples in the right (left)nodes having class j

and the total number of the classes. The features that maximize the change in the Gini-index

that is calculated as follows: ∆θ(sq) = Gq − ρrqGr − ρlqGl is used for the node split (Kuhn

et al., 2013; Zhang and Ma, 2012b). Here, ρrq and ρlq are the proportion of samples in the right

and left daughter nodes. The process of splitting nodes continues until a stopping criterion

is met, such as when no more samples are available for splitting, or when the Gini-index of

parent nodes is lower than that of daughter nodes.

6.6 Data availability

The dataset we utilized in this study to classify the failure mechanism of landslides was ob-

tained from the Inventario dei Fenomeni Franosi (Inventory of Landslide Phenomena) in Italy

(IFFI) (Trigila et al., 2010). The IFFI project catalog (www.progettoiffi.isprambiente.it)

was created in 1999, with the aim of mapping and identifying landslides in Italy, and holds

information on over 250, 000 usable landslide polygons. Aerial image interpretation, historical

sources, and field surveys were used to acquire and validate this catalog, while the classifica-

tion protocol/scheme referred to that of Varnes (1978) (Varnes, 1978) and Cruden and Varnes

(1996) (Cruden, 1996). In our work, we chose the polygonal landslide data from this catalog

and also carried out post-processing to correspond to the spatial extent and resolution of the

25-meter EU-DEM (Bashfield and Keim, 2011).
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The second study area is the Pacific Northwest region of the United States. The data set

from the US Pacific Northwest consists of inventories from Oregon’s Statewide Landslide Infor-

mation Database for Oregon (SLIDO-4.4 updated 10/29/2021; Franczyk et al.(Franczyk et al.,

2019)), mapped by the Oregon Department of Geology and Mineral Industries (DOGAMI), and

the Washington State Landslide Inventory Database (WASLID updated 2018/08/01; Slaughter

et al.(Slaughter et al., 2017)), mapped by the Department of Natural Resources, Washington

Geological Survey (WGS). The combined inventories comprise 47, 653 landslides from the US

Pacific Northwest region. The inventories contain LiDAR-derived landslide polygons guided by

protocol to capture the movement types with spatial information on the scarps, head scarps,

toes, and deposits (Burns and Madin, 2009; Burns and Mickelson, 2016; Slaughter et al.,

2017). Since this data is categorized using a combination of Cruden and Varnes (Cruden,

1996) and Hungr et al. (Hungr et al., 2014b) (i.e., slides, flows, complex, and falls), we mod-

ified the Italian data correspondingly to maintain uniformity in the taxonomy of the failure

mechanisms.

The EU-DEM for Italy was downloaded from https://land.copernicus.eu/imagery-in-situ/

eu-dem/eu-dem-v1.1 and the DEM for the US Pacific Northwest was downloaded from

https://www.opentopography.org/.
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Chapter 7

Additional evidence for landslide

topology uncovering its failure

mechanism

This chapter is based on objective 4 of the Ph.D. thesis about developing a method for de-

termining the failure mechanism of landslides. Here, we showed additional evidence that the

landslide topological properties are better than the geometrical properties for identifying its

failure mechanism. The chapter is supplementary material of the paper that will be submitted

soon to Nature Communication Journal:

Rana, K.1, Bhuyan K.1, Ferrer J.V., Cotton F., Catani F., Ozturk, U., & Malik, N. (2023).

Landslide topology uncovers its failure mechanism (Under review in Nature Communication )

7.1 Introduction

This supporting information (SI) to the manuscript titled “Landslide topology uncovers failure

mechanisms” includes a detailed analysis of landslide topology and its importance in finding

the failure mechanisms of landslides. The SI includes an in-depth analysis of the topological

features and their probability distributions, quantifying the differences among the different fail-

1These authors contributed equally.
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ure mechanisms and the connection between the landslide topology and the physical processes.

Moreover, we include a section for a detailed evaluation of the model and its transferability

analysis. We also show that landslide topological information provides more information about

landslide shape than classical geometric information like area, perimeter, and ellipticity, and

therefore can be helpful in other landslide research.

7.2 Behavior of different failure mechanisms

The inherent differences between failure mechanisms, notably their kinematic and mechanical

behaviors, contribute prominent intricacies to the topography (see surface profiles in Figure 1 in

the main manuscript). These intricacies are attributed to slope deformity, interior deformation,

kinematic width of failures while propagating down-slope, main scarp deformation, run-out

length represented by the debris/earth/soil transportation, and accumulated debris at the

talus, and others are captured by topology. The followings are some of the most common

failure mechanisms and their various behaviors.

The profile of rotational slides is marked by a conspicuous primary scarp and a distinctive

back-tilted bench at the head, but little interior deformation (a schematic view can be seen

in Figure 1 in the main manuscript). They are typically slowly moving a large portion of

the weak rock mass. At the same time, kinematically rapid planar sliding is marked by the

sliding of a rock mass on a planar rupture surface with little to no internal deformation, where

the scarp might be separated from the stable rock at deep vertical tension cracks. Typically,

they exhibit very compact shapes. Cohesion, c plays an important role in slides, as the degree

of internal strength between the particles in a block of material determines the strength and

stability along the slip plane. Translational landslides, like the ancient Seimareh slide in Iran’s

Zagros Mountains, are among the largest and most destructive on Earth (Roberts and Evans,

2013).

Flows are characterized by very rapid movements consisting of saturated granular material

on moderate slopes, including liquefaction of materials (in the context of co-seismic triggers) or

excess pore pressure (in the context of rainfall triggers) originating from the landslide source.
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When the internal friction angle, φ, is low (due to the mixture of solid and fluid particles),

less external force is required to instantiate a failure because they are displaced quite easily.

Kinematically flow-ish movements are observed with channelized streams and a bulk deposit

of debris at the talus (deposition zone), representing highly elliptical, elongated bodies (Evans

et al., 2001).

Usually limited in volume, falls (particularly rock falls) exhibit ballistic movements (high

velocity, energy, and momentum) that are massively destructive. They detach from cliffs and

move at high velocities, either by rolling, falling, or bouncing due to the influence of gravity.

The run-out of a rock fall is often shorter and is more likely to travel along a straight path,

whereas the run-out of debris flows is longer and can meander and spread out over a wider area

(Bourrier et al., 2013).

Complex failures are very hard to describe, as there is an amalgamation of different failure

mechanisms occurring at the same time or subsequently, and they can therefore can exhibit

multiple characteristics of other mechanisms. For example, irregular debris slides evolving

into a debris flow or any other combination of slides, flows, and falls eventually evolving into

another movement style can be considered examples of complex failure mechanisms (Cruden,

1996; Hungr et al., 2014b).

Such morphological and geometrical information for each distinct mechanism is theorized

to be captured in the topological space by the topological properties, which are then utilized

in the machine-learning model to identify the failure mechanisms.

7.3 Topological Features

Persistence diagrams capture the life-death information of structures like connected compo-

nents, holes, and voids. The persistence diagram consists of a set of {(bi, di)}i=N
i=1 pairs corre-

sponding to each structure type; here, i and N are the indexes of birth-death pairs and the

total number of the birth-death pairs. Using the set of {(bi, di)}i=N
i=1 pairs, we can calculate

various topological features such as persistence entropy, average lifetime, number of points,

Betti curve-based measure, persistence landscape curve-based measure, Wasserstein ampli-
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tude, Bottleneck amplitude, Heat kernel-based measure, and landscape image-based measure.

Some of the above topological features can be explained using a lifetime vector that is

calculated using a set of {(bi, di)}i=N
i=1 pairs. The lifetime vector [li]

i=N
i=1 is calculated as the

difference between death and life of the (bi, di) pair (li = di − bi). The number of points,

average lifetime, and persistence entropy are the length, average, and Shannon entropy of

the lifetime vector. In comparison, topological features like Bottleneck and Wasserstein’s

amplitudes quantifying the magnitude of the lifetime vector are p-norm (p=2) and ∞-norm

of the lifetime vector, respectively.

The Betti curve-based feature is a p-norm of a 1D discretized betti curve, which is a

function (B(ϵ) : R → Z) mapping the persistence diagram to an integer-valued curve, and it

counts the number of birth-death pairs at a given ϵ, satisfying the condition bi < ϵ < di

(Garin and Tauzin, 2019). Similarly, a persistence landscape curve-based feature is a p-

norm of a 1D discretized persistence landscape curve defined as λ(k, ϵ) : R → R+, where

λ(k, ϵ) = kmax{fbi,di(ϵ)}i=n
i=1 , kmax is the k-th largest value of a set of functions defined by

fbi,di(ϵ) = max{0,min(ϵ− bi, di − ϵ)} for each (bi, di) pair (Bubenik and Dłotko, 2017).

The heat kernel-based feature is a p-norm (p=2) of the discretized 2D function obtained

using the operation of the heat kernel on the persistence diagram. Heat kernel uses a gaussian

kernel (σ) and a negative of the gaussian kernel (σ) for each (bi, di) pair and mirror of (bi, di)

pair across the diagonal (Reininghaus et al., 2015). In contrast, the persistence image-based

feature is a p-norm (p=2) of the discretized 2D function obtained using the operation of the

weighted Gaussian kernel on all (bi, di − bi) pairs in the birth-persistence diagram (Adams

et al., 2017). The birth-persistence diagram consists of (bi, di − bi) pairs where the x-axis

shows the birth information, and the y-axis shows the lifetime of the (bi, di) pair.

7.4 Probability Density of Topological Features

The probability density (PDF) of topological features shows that a distinct failure mechanism

usually leads to a similar landslide 3D shape each time; for example, slides tend to be more

compact than flow failure types. Topological features are calculated using the persistence di-
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Figure 7.1: The diagram shows a schematic outlook of how empty spaces are created in
different landslide types. This illustration is shown using a simplified 2D transformation of a
rather complex 3D topological phenomenon for ease of understanding. Sub-plots (a–c) refer
to the possible configurations of empty spaces created in the typical polygons of each failure
mechanism. Slides tend to have the fewest empty spaces or holes due to their compact shapes,
followed by falls. Flow-type failures tend to have multiple numbers of empty spaces due to
the sinuous shapes they conjure as they follow the landscape’s contour.

agram containing the lifetime information on connected components, holes, and voids. With

this, we get information such as the degree of compactness, which is calculated by measuring

the amount of empty spaces (holes) in a landslide’s morphological footprint (see Figure 7.1).Us-

ing a persistence diagram, we can calculate topological features that capture various landslide

morphological properties, like compactness, sinuosity, and variations in slope. We visualized

the probability density distribution of topological features important for classifying the land-
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Figure 7.2: The diagram shows the probability distribution functions of the topological features
used for classifying failure mechanisms for slides, flows, complex, and falls in the US Pacific
Northwest. The y-axis shows the probability density values (calculated using kernel density
estimation), and the x-axis shows the value of topological attributes.

slide failure mechanism using the Kernel Density Estimation (KDE) method. The topological

features’ probability distribution functions (PDF) reveal the differences between the failure

mechanisms. Below, we explain some topological features that capture the characteristics of

landslide morphology in the US Pacific Northwest and how it is connected to the general move-

ments of different failure mechanisms.

Bottleneck amplitude is the L-∞-norm of the lifetime vector, which is the maximum lifetime

of the (birth, death) pair in the persistence diagram. The PDF of the bottleneck amplitude

(holes) shows that the probability of getting a bottleneck amplitude (holes) above 0.2 is much

higher for slide than for flow, fall, or complex. The PDF of the bottleneck amplitude (holes)

shows that slides have a bigger circular shape in the landslide shape than do flows and falls, as

can be seen in Figure 7.2-f. However, the PDF peak of the complex landslides for the bottleneck

amplitude (holes) appears to be bigger than that of slides, which can be indicative of complex
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Figure 7.3: Probability distribution functions of the geometrical and the topological features
for each failure mechanisms type– slides, flows, complex, and falls–in Italy. The y-axis shows
the probability density values (calculated using kernel density estimation), and the x-axis
shows the value of topological or geometrical attributes. The geometric features from top
to bottom are: area (A), perimeter (P ), the ratio of area to perimeter A

P , convex hull-based
measure (Ch), minor(sm), and width (W ) of the minimum area bounding box fitted to the
polygon.

failure types evolving primarily or at the least, predominantly as a sliding mechanism and

developing into either a flow or fall in the US Pacific Northwest. Furthermore, as indicated

Chapter 7. Additional evidence for landslide topology uncovering its failure
mechanism

101



Chapter 7. Additional evidence for landslide topology uncovering its failure
mechanism

in the main manuscript and demonstrated in the example of slide and complex failures in the

US Pacific Northwest (Figure 7.2-f), they possess longer lives, indicating the presence of more

compact morphologies in their footprints. Similarly, the Wasserstein amplitude, which is the

p-norm (p==2) of the lifetime vector, shows a similar pattern for the PDF of the different

failure mechanisms. The Wasserstein amplitude is 2-norm, which is more influenced more by

the largest holes present in the landslide’s morphology.

Average life (holes) is the average life of (birth, death) pairs of holes and will be influenced

by the size (small or large) and the number of holes. The PDF of the Average life (holes) shows

that slides and complex have, on average, larger holes in the landslide shape compared to flows

and falls. Also, the PDF peak of the flow and fall failures for Average lifetime (holes) decays

quickly, which shows that all the holes in the flow are smaller. This can also be attributed to

their rather sinuous footprint which stems from their kinematic progression as they propagate

following the landscape’s contours. In particular, as flows propagate in a meandering fashion

across the landscape, they conjure multiple shorter lifetime holes (refer to Figure 7.1-b) that

indicates high degree of sinuosity.

7.5 Geometric versus Topological Features

Geometric properties define an object’s shape and size, but topological properties explain the

connections and topological interactions among its parts. Geometric properties such as area,

perimeter, convexity, and ellipticity define the physical dimensions of a landslide, whereas

topological properties such as average lifetime of holes, Betti curve, and landscape curve

describe the connections and interactions of the soil and rock masses, the width of kinematic

propagation, and depth of failure in a landslide. Geometric properties are, however, sensitive

to any changes made to the original shapes of the geometry and therefore, more susceptible to

drastically changing the geometric property values. For example, any change to a landslide’s

boundary/body would inadvertently change each of the values of the geometric properties

like area, perimeter, convexity, etc., but the same cannot be said for topology as it relies

on the number of voids that are generated based on the overall shape of the landslide body.
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This is even more pronounced upon investigating the landslides in 3D. Since these geometric

properties cannot be broadcasted to 3D, much information related to variational changes

in the topography (attributed by elevation and slope) is lost. As TDA captures this 3D

information and utilizes it when engineering topological features, intricate information on

landslides such as depth of failure, deformations pattern, the width of kinematic progression

are well recorded. Therefore, to assess and evaluate the differences between the classical and

topological properties, we compare them in this section. This comparison was based on KDE

plots that represent the PDFs of the samples for each failure mechanism. We also plotted box

plots to compare the median values and distribution of said values between the geometric and

topological properties. As we see in Figure 7.3-b, the PDFs of the failure types are very similar

to each other, specifically when looking at the ellipticity, semi-major axis, perimeter, and

width. However, when comparing them to the topological properties Figure 7.3-a, we observe

that the PDFs of the failure types are more dissimilar to each other under each property (e.g.,

the average lifetime of holes, bottleneck amplitude of holes, Wasserstein amplitude of holes).

This can be the reason why the random forest models show promising results, as the PDFs

are dissimilar enough to find evident differences between each failure type when using the

topological properties/features.

7.6 Model Transferability Analysis

As we see in Figure 7.4, sharing samples from two different study areas could not drastically

increase the overall performance compared to simply training the model independently in a

particular area (like the US Pacific Northwest). We achieved an overall F1-score of ∼65% in

identifying the landslide failure mechanisms in the US Pacific Northwest. This is reasonable,

given the differences in climatic, geomorphometric, and topographical conditions between

these systems, which are not only because they are geographically separated but also because

landslides in these two parts of the world behave differently even while having similar failure

mechanisms.

This is actually quite a comprehensible problem, as both regions have distinct and di-
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Figure 7.4: The figure shows the classification accuracy when the model is trained on just the
Italian data and tested to identify failure mechanisms in the US Pacific Northwest. The per-
formance is analyzed by investigating first with zero samples and then incrementally increasing
sample populations from the US Pacific Northwest data.

verse geologies; for example, the US Pacific Northwest is distinguished by young volcanic

rocks and strong tectonic activity, whereas Italy is distinguished by steep hilly terrain and old

rock formations, as well as high tectonic activity. These geological differences can influence soil

and rock stability and, therefore, the probability of landslide occurrence in these two contexts.

Now, let us consider the elevation as one factor from a topographical point of view, and let

us take a look at similar failure mechanisms occurring in the same geography but at different

elevations. Debris flows at different elevations can vary as the size and content of the sediment

change accordingly, which can impact the density and viscosity of the flow and hence define

its mechanical and kinematic properties (Roelofs et al., 2022). A debris flow behavior can

be affected by factors such as slope angle, sediment size and composition, and water content,

which can change with elevation. In the context of the Himalayas, debris flows at higher

elevations may have a higher amount of fine glacial sediment, such as clay and silt, rendering

the flow more thick and viscous, and hence more difficult to erode and transport, whereas

debris flows on gentler slopes may have a greater amount of coarse alluvial sediment, such as

gravel and sand, making the flow more laminar and less thick and viscous, and thus, simpler
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Slide 85.06 6.90 4.60 3.45

Flow 11.63 82.56 0.0 5.81

Complex 3.45 0.0 86.20 10.34

Fall 4.60 3.49 17.24 74.72

Figure 7.5: The figure shows the confusion matrix and the associated accuracy metrics of the
random forest model for the data of both Italy and the US Pacific Northwest.

to erode and transport. This can impact the debris flow’s characteristics, such as its velocity,

turbulence, and propensity to erode the channel and transfer sediment. These changes will

be captured in the propagation of the debris flows, which changes their topology, thereby

contributing to different properties that are picked up by the TDA. Such apparent differences

guided by the topography can lead to differences in similar failures between Italy and the US

Pacific Northwest.

Another example can be based on climatic conditions. Italy is characterized by the Mediter-

ranean climate, which features high precipitation in autumn and winter seasons and dry sum-

mers. Torrential downpours in the autumn and winter months can affect the soil saturation,

causing the soil and rock to be less stable and prone to landslides. This is especially true in
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Figure 7.6: The diagram shows the probability of complex landslides belonging to each of
the failure types class (slide, flow, and fall) as predicted by the model. Box plot (a) shows
the complex landslide samples that occur from "Translational rock slides followed by rock
falls" as documented in the Statewide Landslide Information Database for Oregon (SLIDO).
Model predictions indicate sliding mechanisms to be the predominant type of failure, which are
most likely translational slides according to SLIDO. Similarly, box plot (b) shows the complex
landslide samples that occur from "Rotational slides followed by flows" as recorded in SLIDO.
Model predictions indicate sliding mechanisms to be the predominant type of failure, which
most likely rupture rotationally. Beige bars illustrate sliding mechanisms while bars with
darker and lighter shades of blue illustrate flows and fall mechanisms, respectively. Note the
number of annotated complex failures with behavioral definitions by SLIDO in box plot (a)
constitutes 198 samples and box plot (b) constitutes 230 samples.

locations where the soil is already saturated from the rainy summers, as the soil will be unable

to take any further water. High precipitation in the autumn and winter months can also form

thick, saturated topsoil that is susceptible to landslides. When soil becomes saturated, it loses

strength, and soil particles move more easily, resulting in landslides. The Pacific Northwest

has a maritime climatic system with mild winters and close proximity to the Pacific Ocean.

This proximity to the ocean can lead to increased coastal erosion and landslides, particularly

in areas where the coastline is steep and composed of unstable rock. Therefore, the conditions

of the triggering mechanism and their inherent differences can lead to different kinematic and

mechanical properties of similar failures, which constitute different behaviors.

Considering these observations, we can gauge that properties of similar failures can bear

different characteristics, especially if they are geographically separate, wherein climate and

topography (as examples) can massively influence their kinematic propagation.
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7.7 Other measures to evaluate model performance

In order to evaluate the performance of the method, we also calculated the confusion matrix

and other accuracy metrics like the True Positive Rate, True Negative Rate, False Positive

Rate, False Negative Rate, and the F1-score.

The True positive rate (also known as Sensitivity, Recall) (equation 1) and true negative

rate (also known as Specificity) (equation 2) are performance metrics that are used to assess

a model’s accuracy in accurately detecting positive and negative instances. The number of

genuinely negative instances identified as positive by the model are known as false positives

(FP) (equation 3). The number of cases that are genuinely positive but are categorized as

negative by the model are known as false negatives (FN) (equation 4).

TPR (= Recall) =
True Positives

True Positives+ False Negatives
(7.7.1)

TNR =
True Negatives

True Negatives+ False Positives
(7.7.2)

FPR =
False Positives

True Negatives+ False Positives
(7.7.3)

FNR =
False Negatives

True Positives+ False Negatives
(7.7.4)

The F1-score (equation 6) is the harmonic mean of precision (equation 5) and recall (equa-

tion 1), and it is used to balance the precision-to-recall trade-off. Precision is the number of

correct positive predictions produced by the model out of all correct positive predictions made

by the model, and recall is the number of correct positive predictions made out of all correct

positive occurrences.

Precision =
True Positives

True Positives+ False Positives
(7.7.5)

F1-score = 2 · Precision ·Recall

Precision+Recall
(7.7.6)

In Figure 7.5, we see the confusion matrix and the respective scores of the TPR, TNR,
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FPR, FNR, and F1-score of both Italy and the US Pacific Northwest.
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Chapter 8

Conclusion and future work

8.1 Conclusion

Landslide predictive models, such as susceptibility and hazards, aim to mitigate losses by

locating landslide-prone regions and forecasting landslides. However, the effectiveness of these

models relies on the quality of the landslide databases, which often miss triggering event and

failure mechanism information, crucial information for landslide predictive modeling. Also,

newly acquired landslide databases lack landslide trigger and failure information due to the

automated data-capturing process.

Combining different failure mechanisms into one group leads to biases as each failure type

has different geological and geotechnical properties. Similarly, using earthquake-triggered

landslides for predictive rainfall models or vice-versa leads to biases in the model as they

have distinct geological and geotechnical properties and are triggered by different physical

processes. These biases could be dangerous; for example, missing high landslide-prone regions

or predicting a low probability of landslide occurrences in high landslide-prone areas. This

crucial but missing information in landslide databases motivated us to develop methods to

identify landslides’ triggering and failure mechanisms.

Landslide databases often contain polygons information, which outlines the landslide’s 2D

shape. Existing studies show that physical processes are embedded in the general morphol-

ogy of the landslides. Inspired by these studies and the availability of polygons in landslide
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databases, we wanted to investigate how far the trigger and failure mechanism is ingrained in

the landslide morphology. For identifying landslide trigger information, we developed three

different methods for landslide trigger classification based solely on landslide polygon shapefiles

containing landslides’ two-dimensional (2D) polygon shapes. The first method uses geometric

properties of landslide polygons as a feature space for a machine learning classifier–random

forest. In the second method, we transformed these 2D shapes into three-dimensional (3D)

point clouds by incorporating the digital elevation data and then extracting landslides’ topo-

logical properties by topological data analysis (TDA) of these 3D points clouds; and to classify

landslides; we treat these topological properties as the feature space of a random forest clas-

sifier. The third method uses images of landslides as input to a convolutional neural network

(CNN). Each of the methods showed above 80% performance in six landslide databases spread

over the Japanese archipelago.

To identify the failure mechanism, we explored various geometric and topological properties

of landslide shape and found that topological properties are excellent predictors for classifying

landslide failure mechanisms. Therefore, we developed a method for determining landslide

failure types using landslide topology. First, we extracted the topological features of the

landslide 3D shape using Topological Data Analysis and then fed these features as an input

to the machine learning algorithm–random forest. Finally, we separately implemented the

developed method on the Italian and US data. The technique achieved above 95 and 80

accuracies for each landslide failure type for the Italian and US data sets.

The presented landslide-triggering methods are easy to use as they depend solely on the

landslide polygon and show robust performance. Furthermore, the geometric-based method

shows that triggering information is embedded in a landslide polygon shape. We also found

seven geometric properties, which are excellent predictors for identifying trigger information.

Moreover, we found that using the topological properties of the landslide 3D shape provides

better results than methods based on the landslide polygon shape, which is the 2D outline

of the landslide shape. Even though the triggering mechanism methods are limited to the

Japanese archipelago, our methods are portable to different world regions provided training
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and testing data are from similar climatic and tectonic areas. We included all these methods

in a python library, "landsifier," that provides all the methods for finding triggers and other

valuable functions like downloading DEMs corresponding to an inventory region. We made

the landsifier library publicly available with detailed documentation and implementation of

the library.

The proposed landslide failure mechanism methods solely depend on landslide polygon and

are portable to different regions. By leveraging the topology of landslides, the method can

efficiently classify landslide failure types in existing and new databases and support experts

in generating quality inventories. The study shows that landslide topology provides more

information than landslide geometry for identifying the failure mechanism. We also connect

topological properties to the physical process, which could be helpful in other landslide research

related to its shape. Furthermore, the method shows strong performance even with fewer

training samples and will be helpful in regions with fewer training samples. Even in areas

without training samples, the landslide experts can manually label a few landslide samples to

be used in the developed method to predict the failure mechanism of more extensive databases.

8.2 Future Work

In this Ph.D. thesis, we developed methods to determine the triggering and failure mechanisms

of landslide databases. The presented methods show strong performance and robustness in

the testing regions with numerous annotated landslide samples with triggering and failure in-

formation. However, the transferability of the techniques by training and testing the approach

in geographically far apart areas has yet to be explored. Such a case is of immense importance

in regions lacking annotated training samples to train the technique. In such scenarios, we

can use annotated landslide samples from high-quality, data-rich areas to train the methods

and test them on the regions lacking triggering and failure information.

Our work identifies the trigger mechanism of the earthquake and rainfall-triggered land-

slides and excludes anthropogenic landslides. In future work, one can include anthropogenic

landslides as another triggering mechanism type. Identifying the anthropogenic landslides will
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help understand landslides caused by human intervention on the landscape and help develop

separate predictive models for them. Moreover, the developed method could identify the large

landslides’ (area > 90,000 meters-square) trigger and failure mechanism, which are the most

deadly because of their vast impact area.

The efficacy of predictive models depends on crucial information, such as the triggering

mechanism, which is often missing in the landslide database. Separate predictive models are

required for earthquake and rainfall landslides as distinct physical mechanisms cause them.

For example, rainfall pattern in a region is crucial information for rainfall landslide predictive

models, whereas seismic zone information is essential for earthquake-triggered landslides. Our

methods will aid in identifying the trigger mechanism of past landslide databases that will

make these databases useful for predictive modeling and enhance their efficiency. Identifying

the trigger mechanism will reduce the bias and uncertainty in predictive models that can

occur by accidentally using earthquake landslides for predictive rainfall-fed landslide models

and vice-versa. In addition, identifying the failure mechanism can also aid in developing more

finer predictive models for different failure and triggering mechanisms, .e.g, predictive models

for earthquake-triggered slide landslides. In future work, landslide researchers can implement

our methods to identify the trigger and failure mechanisms of landslides and develop finer

predictive models with higher performance.

Our methods have the potential to identify the regions that are prone to landslides, as

topological data analysis-based methods can also capture the variations in the slope of a given

landscape. In the future, we envision the use of topological information of the regions to

determine their proneness to landslides by training the methods on both landslide and non-

landslide regions. Moreover, our methods can potentially identify other geophysical processes

like badlands, permafrost-borne thaw slumps, and marine landslides.

Our presented methods have huge potential for improving the efficacy of landslide predic-

tive models and are helpful for various landslide research topics like large landslides. Therefore,

we anticipate that the landslide community and modelers will find our methods helpful in their

line of research in understanding the landslide process and in determining the trigger and fail-
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ure mechanism of the landslides.
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