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ABSTRACT 

 
When wireless sensors are capable of variable transmit power and are battery powered, it is important to select the 
appropriate transmit power level for the node. Lowering the transmit power of the sensor nodes imposes a natural 
clustering on the network and has been shown to improve throughput of the network. However, a common transmit 
power level is not appropriate for inhomogeneous networks. A possible fitness-based approach, motivated by an 
evolutionary optimization technique, Particle Swarm Optimization (PSO) is proposed and extended in a novel way to 
determine the appropriate transmit power of each sensor node. A distributed version of PSO is developed and explored 
using experimental fitness to achieve an approximation of least-cost connectivity. 
 

1. INTRODUCTION 
 
A common theme in energy-aware sensor network operation is that the network lifetime is extended by reducing the 
power output of the nodes. However, reducing the transmit power of a wireless device may not translate into real energy 
savings. This is because the total power required to transmit a packet of data must include the additional power required 
to retransmit it when the packet is not received correctly at the destination because of collisions. Therefore, finding an 
“optimum” transmit power for each node is a constrained optimization problem whose objective function must be 
evaluated in the context of the sensor network application.  It has been demonstrated1 that the optimum transmit power 
of the nodes varies with load on the network, assuming a common transmit power. Here, we allow each node to have a 
different transmit power, but we address the same problem of finding the optimal transmit power of the sensor nodes. 
By optimal, we mean that the topology generated by the algorithm will perform well in terms of throughput for a wide 
range of network loads using a contention-based communication protocol.2 Our optimization specifically targets 
contention introduced by hidden nodes and asymmetric links. This is not the case for most topology/power control 
algorithms. However, there are exceptions.3 In section 2, we formulate a statement of the constrained optimization 
problem. The PSO algorithm is described briefly in section 3. A distributed extension of the PSO algorithm is proposed 
and developed generally in section 4. The subsections of section 4 are used to cast the distributed algorithm in a form 
suitable for attacking the problem statement. Section 5 details the simulations and results. A summary and future work 
section concludes the paper. 
 

2. PROBLEM STATEMENT 
 
Part of the problem is to find a connectedi group of N graph vertices that minimizes the cost of connectivity. 4 We 
assume all edges/links have symmetric costs. Without constraints, this is just the minimum cost spanning tree problem. 5 
We add the constraint that if a retained edge emanating from a node has weight w, then all other possible edges 
emanating from the node that have weight less than or equal to w should also be included in the graph. The purpose of 
the constraint is to encourage symmetric links. Symmetric links are needed for proper functioning of many protocols 
across different layers of the protocol stack. The MAC layer relies on symmetric links for acknowledgements and many 
routing protocols assume symmetric links. 6-8 This constrained optimization problem can be expressed as follows. Let 
r
�

represent the communication radii of the nodes. Define ( )C r
�

 to be a function that returns 1 if the nodes are 

connected. Let iΩ be the set of node indexes that are able to correctly receive packets from node i . Given that ijd is the 

distance between nodes i and j , the problem statement is, 

                                                
i There exists a path from any node to any other node in the graph. Since our graphs are not directed, connected is identical to 
strongly-connected. 

Digital Wireless Communications VI, edited by Raghuveer M. Rao, Sohail A. Dianat,
Michael D. Zoltowski, Proceedings of SPIE Vol. 5440 (SPIE, Bellingham, WA, 2004)
0277-786X/04/$15 · doi: 10.1117/12.541663

145



                                                                                

( ){ }

1

min max

min( )

,

( ) 1

|

N

i
i

ij j i

r

subject to

C r

r r r

d r j r

=

=
< <

< ∈Ω

�

�

� � �

�

.                                                                      (1) 

 
In Eqn. 1, for clarity, we have explicitly included the dependence of iΩ on the current communication radii of the 
nodes.  
 
This problem statement can easily be justified as perfectly applicable to a sensor network. In a sensor network, each 
node/vertex is assumed to be a wireless sensor with limited radio communication range. In general, a node will not be 
able to reach all of the other nodes in the sensor network. It has been shown that for a uniformly distributed wireless 
network, throughput and energy consumption can be optimized by reducing the common power level of the nodes. 9, 10 
Therefore, we want to reduce the communication range of all of the nodes, just to the point where they are all still 
connected. In this configuration, to minimize collisions, links should be maintained with all nodes that are within a 
node’s communication range. This is equivalent to minimizing the number of asymmetric links. Although a global 
parameter optimization is required, nodes may not have global knowledge, and therefore must participate in solving the 
problem using only local interactions.  
 

3. THE APPROACH: PARTICLE SWARM OPTIMIZATION (PSO) 
 

The PSO 11 approach utilizes a cooperative swarm of particles, where each particle represents a candidate solution, to 
explore the space of possible solutions to the optimization problem of interest. Each particle is randomly or heuristically 
initialized and then allowed to ‘fly’. At each step of the optimization, each particle is allowed to evaluate its own fitness 
and the fitness of its neighboring particles. The fitness or objective function is a function of the solution. Each particle 
can keep track of its own solution, which resulted in the best fitness, as well as see the candidate solution for the best 
performing particle in its neighborhood. At each optimization step, each particle adjusts its candidate solution (flies) 
according to, 
 

                                                                 
1 2( 1) ( ) ( ) ( )

( 1) ( ) ( 1)

p nv t v t x x x x

x t x t v t

φ φ+ = + − + −

+ = + +
                                                        (2) 

 
Subscripts for particle index and dimensionality have been left off of Eqn. 2, which may be interpreted as the 
‘kinematic’ equation of motion for one of the particles (test solution) of the swarm where the particle is one-
dimensional. The variables in Eqn. 2 are summarized in Table 1. 
 

Table 1- List of variables used in the equations 

v  The particle velocity. 
x  The particle position (test solution). 
t  Time 

1φ  A uniform random variable usually 
distributed over [0,2]. 

2φ  A uniform random variable usually 
distributed over [0,2]. 

px  The particle’s position (previous) that 
resulted in the best fitness so far. 

nx  The neighborhood position that resulted in 
the best fitness so far. 
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Eqn. 2 can be interpreted as follows. Particles combine information from their previous best position and their 
neighborhood best position to maximize the probability that they are moving toward a region of space that will result in 
a better fitness. 
 
The application of PSO to solve the minimum cost constrained sub-graph problem we have described is not trivial since 
each sensor node must select its power level / communication range autonomously. There is no communication with a 
base station that can perform the optimization and pass along optimal communication ranges to each of the nodes. Thus, 
even if we could construct a PSO particle representing the solution and construct an appropriate fitness, the sensor 
network could not compute the result. We need a distributed version of the PSO algorithm. 
 

4. DISTRIBUTED PSO (DPSO) 
 
In traditional PSO, the fitness function is shared among the particles in the swarm. Particles in traditional PSO represent 
the solution to a single optimization problem. In contrast, in the distributed form developed here, particles have no 
knowledge, or limited knowledge, of the global objective function. Particles do not represent a global solution to a 
single optimization problem. Rather, particles have individual objectives and their objective function is a function of 
their individual parameters. This can be written as, 
 
                                                                               ( )1 2, ,... ,i i i iMf p p p .                                                                             (3) 

 
where each particle, i , has M  parameters. The operational parameters, ijp , of Eqn. 3 can be: communication range, 

sensing range, carrier sense range, number of neighbors, battery reserve level. This list provided is exemplary and is 
neither complete nor the list used in this paper. The system designer may and probably will have a global objective or 
optimization targeted, like in Eqn. 1, but the particles cannot evaluate the global objective function because they do not 
have access to all of the nodes’ communication radii, again addressing Eqn. 1 for illustration. It is up to the designer to 
craft a suitable local objective function that will cause the system to approximate the desired global objective. 
 
Another difficulty arises due to the use of local objective functions and their dependence on local parameters. How does 
one calculate the neighborhood best (labeled nx  in Eqn. 2)? In traditional/centralized PSO, the neighborhood best is 
simply the solution represented by the most fit neighbor. In DPSO, the solution represented by the most fit neighbor 
evaluated using the particle’s local objective function, may not, and probably won’t, result in a better fitness for the 
particle. Therefore particles must be able to interpret solutions/parameters received from their neighbors. Particles must 
be able to convert parameter values and fitnesses exchanged with neighbors into a possible “better fit” set of values for 

their own operational parameters, their neighborhood best parameters. This mapping is expressed as ,i i nbestQ p�
��  where 
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and ,i nbestp
�

 is the neighborhood best values for node i . iQ�  is a set, for node i , of values of fitnesses, f , and 

parameters, p , that it receives from its iN neighbors. In Eqn. 4, each neighbor has a single fitness value, but may have 

up to M  parameter values to report to particle i . Once each particle is able to evaluate its fitness function and is able to 

construct its Q�  set with information from its neighbors, the computation can proceed as in traditional PSO. Eqn. 2 
becomes 
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( 1) ( ) ( 1)
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We have used slightly modified notation in Eqn. 5 in order to remove some labeling ambiguity. The subscript best 
denotes the previous best value for the particle, which determines the cognitive component of the particles’ motions. 
The subscript nbest demotes the neighborhood best and determines the social component of the particles’ motions. We 
changed x ’s in Eqn. 2 to p ’s to be consistent with the notation in Eqns. 3 and 4. We emphasize here that the 
calculation of the neighborhood best must be discussed in the context of a specific problem. 
 
4.1 DPSO for the least-cost connected constrained sub-graph problem, the local fitness function 
For applying DPSO to wireless sensors, we take the sensors/nodes to be the particles in the swarm, and a node’s 
neighborhood consists of the set of nodes with which it has communication links.  For approximating the least-cost, 
connected, constrained sub-graph problem, we must identify the fitness function to be used by the sensor nodes. This 
involves identifying the form as well as the parameters of each sensor node’s fitness function. Also to be determined is 

an appropriate choice for ,i i nbestQ p�
�� .  First we identify some assumptions. We assume each node knows its position so 

that communicating nodes can calculate distances. We also assume that the sensor node can adjust its power so it can 
vary its reach or communication range. Define iS  to be the number of distinct nodes reachable by node i , including 

itself, and assume that a protocol is in place to build iS  for each node in each step of the DPSO algorithm. We leave to 

future work implementing a distributed representation of this ‘reachability’, iS  but note that a probabilistic measure, 
representing the probability that the network is strongly connected could be adopted. 12 We assume that each node 
communicates with all of its neighbors with the same power and does not vary its power on a neighbor-by-neighbor 
basis. 13 We assume that each node’s carrier sense range is the same as its communication range. It is this assumption 
that will allow us to equate minimization of hidden nodes to minimization of neighbors for uniform node distributions. 
If the carrier sense range is not the same as its communication range, then a formal definition of a hidden node is, 
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In Eqn. 6, node k is hidden from node i . 
 
Power consumption has two main components. The transmit power of the node is the first component. The second 
component is the power consumed in re-transmitting frames lost due to collision at the MAC layer. Building 
minimization of power expended in normal transmissions into the fitness function is straightforward. We simply make 
the sensor node fitness proportional to the transmit radius, ir . (We are minimizing fitness.)  Minimizing the power 
expended in re-transmissions can be achieved by minimizing the impact of the hidden node problem. Both, reducing the 
number of hidden nodes, and maximizing the number of symmetric links can reduce the impact of hidden nodes. In a 
uniformly distributed collection of sensor nodes, the number of hidden nodes (2 hop neighbors) can be minimized by 
minimizing either the transmit radius or number of neighbors for a given node. Therefore in a general expression for the 
fitness of a node, we will make the fitness proportional to the transmit radius and proportional to the number of 
neighbors, 1,iN .  If we denote 2,iN  as the number of nodes that a given node can “hear”, but cannot reach in a single 

hop, then the number of asymmetric links can be minimized by minimizing 2,iN . Therefore, a general expression for the 

sensor node’s fitness will be proportional to 2,iN . A node is most fit when it may send a packet successfully to any 

other node in the network. Therefore the fitness of a node will be inversely proportional to iS .    Finally, a general 
expression of each node’s fitness is (node i ) 
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In Eqn. 7, the parameters, 1 2, , , , ,c cα β γ δ  are constants to be determined. The fitness of Eqn. 7 is not applicable for all 
nodes. For solitary or disconnected nodes, an expression for the fitness which encourages disconnected nodes to 
broadcast with greater and greater power in an attempt to gain connectivity to a supposed existing sensor network is 
given by, 
 

                                                                          ( )i
i

K
f disconnected node i

r
=  ,                                                               (8) 

 
where K  is a large constant and ir  is the sensor node’s communication range. Eqn. 8 expresses that solitary nodes are 
more fit when they expand their communication range. Through the discussion above, we have identified the 
parameters, p

�

, in the fitness function. They are 1N , 2N , r  and S . Note that more parameters may be necessary and 

will be introduced as needed. 
 
                                                               ( )1, 2,, , ,i i i i ip r N N S=                                                               (9) 

 

In Eqn. 9, ,1i ip r= , ,2 1,i ip N= , ,3 2,i ip N=  and ,4i ip S= . We argue that the  set  { }| 1, 2... , 1,2,3,4ijp i N j= = that 

minimizes f
�

component by component, will result in a locally optimal, probably non-pareto solution to the least-cost, 

strongly-connected, constrained sub-graph problem. Specifically, if { } { }2 0i iS N N i= = ∀� , then the graph will be 

strongly-connected and all links will be symmetric. 
  
The only parameter in the node’s fitness function over which it has independent control is its communication radius, ir .  
Therefore, Eqn. 5 can be re-written as, 
 

                                                             1 , 2 ,( 1) ( ) ( ) ( )

( 1) ( ) ( 1)
i i i i best i i nbest

i i i
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When the nodes fix their communication range, then the topology is fixed and 1 2,i iN N  and iS  are determined. The only 
quantity left to discuss in Eqn. 10 is the neighborhood best. We hope to explain our interpretation of the neighborhood 
best in the DPSO approach and discuss explicitly how it is calculated.  Again, this is one of the major challenges to 
applying this algorithm. 
 
4.2 DPSO for the least-cost connected constrained sub-graph problem, the neighborhood best mapping 
Since a node cannot simply query the most fit node for the value of ,i nbestr , it must infer the value. To maintain the spirit 

of cooperative swarming, the node must somehow use neighborhood information to infer ,i nbestr . How does the 

neighborhood indicate to a node what its ,i nbestr  should be? To start to understand the answer to this question, consider a 

node with no neighbors. It has a neighborhood, a null neighborhood. That neighborhood is also conveying information 
to the node. That information is “you are solitary and should increase your communication range”. We have already 
implicitly built in this neighborhood influence right into the fitness function. We stated that when a node becomes 

disconnected, its fitness must change to cause it to expand its communication radius.  Hence when 0Q =�  (null set), the 

node should adjust its neighborhood best ,i nbestr to a larger value. We are free to experiment with different ways to adjust 

the neighborhood best ,i nbestr value in this situation. We could select the maximum communication range of the node, for 

example. This illustrates our interpretation of how the neighborhood can allow a node to compute a value for ,i nbestr . 

Now we discuss in more detail the neighborhood best for non-null neighborhoods. 
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4.2.1 Neighborhood best: 2-node experiments 
As a first guess at an appropriate value for the neighborhood best ,i nbestr , nodes are encouraged to maintain connectivity 

with the worst fit node whose transmissions are detectable (packets can be correctly decoded). If a node is the worst fit 
in its detectable neighborhood, then it set its neighborhood best ,i nbestr  to be the distance to its nearest neighbor plus a 

small overlap. The reasoning behind this choice is that nodes will be encouraged to reach out to disconnected nodes and 
thereby promote connectivity. This definition of the calculation of ,i nbestr  can be represented as a simple state machine. 

The node internalizes 2 different states for ,i nbestr ′ . The prime indicates that the variable is different from ,i nbestr . One 

state, say ,i nbestr ′ =0 means the nodes neighborhood best is set to the distance between it and its nearest neighbor and 

,i nbestr ′ =1 means that the node sets its neighborhood best ,i nbestr  to the distance between itself and its least fit detectable 

neighbor. If we define a variable U that represents the state on the environment, where 0U = means that the node is the 
worst fit in its neighborhood and 1U =  means it is not, then the simple state machine is shown in Figure 1.  
 
 

 
Figure 1 -- 2 node state machine to determine neighborhood best 

 
The state machine of Figure 1 can be used to calculate ,i nbestr  at each step of the algorithm. 

 
4.2.2 Neighborhood best: 3-node experiments 
Unfortunately, when a third node is added, the algorithm cannot converge to an optimum solution for all initial 
conditions hence the state machine of Figure 1 is not sufficient for more than 2 nodes. For example, if all 3 nodes are 
initialized with a minimum communication range, then all 3 will begin expanding their communication ranges. The 2 
nearest nodes will discover each other and stop exploring. As the communication range of the third node expands 
further, the 2 connected nodes will overhear the 3rd node and set their neighborhood best ,i nbestr  to the distance to the 

newly discernible, disconnected, and therefore unfit node.  Both of the connected nodes will begin to expand their 
communication ranges in an attempt to gain connectivity with the orphaned node. After their communication ranges are 
sufficient to connect to the orphaned node, they are unable to determine which node should stay connected to the new 
node and which should contract its communication radius and allow the other to provide connectivity. Allowing each 
node to maintain a gateway status parameter can solve this problem. This will be another parameter that will be used by 

nodes for performing their ,i i nbestQ p�
��  mapping. 

 
For 3 nodes we expand the state space of the node by introducing more states into ,i nbestr ′  and defining a new state 

variable. We allow nodes to take on gateway roles. A new state variable, igw  represents the gateway status of a node.  

Each node must somehow infer its ‘next state’ where its next state is a combination of its gateway status, igw  and its 

neighborhood best communication range ,i nbestr ′ .  igw  can be 0 or 1, and ,i nbestr ′  can be 0,1 or 2. These state values and 

their meanings are summarized in  
Table 2. 
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Table 2 – node state variables relating to neighborhood best FSM (finite state machine), 3-node simulations 

,i nbestr ′ =0 set ,i nbestr = maxr  

,i nbestr ′ =1 set ,i nbestr = distance to nearest neighbor 

,i nbestr ′ =2 set ,i nbestr = distance to farthest neighbor 

igw =0 node is not a gateway 

igw =1 node is a gateway 

 
 
Of the 6 possible combinations of the allowed internal states summarized in  
Table 2, we configure the transition function such that only 4 of the states are accessible. The transition function that 
determines the next state of the node, and hence its ,i nbestr , is constructed to be dependent on the factors that should 

affect a node’s ,i nbestr . Specifically, the presence of asymmetric links or the lack of neighbors should encourage a node 

to explore. If a node is directly linked to a gateway, then resolving asymmetric links should be relegated to the gateway. 
We therefore identify 3 environmental states that factor into the transition function of the nodes FSM. They are the 
number of neighbors, the number of asymmetric links, and whether the node is linked to a gateway. Each of these states 
we allow to take on values 0 and 1. The states and their meanings are summarized in  Table 3. If we represent the triple 
of these states as [ 1 2, , 2N N l gw′ ′ ], we can write the set of possible states as 
 

Table 3 – environmental states in the FSM 

1N ′ =0 node has no neighbors 

1N ′ =1 node has one or more neighbors 

2N ′ =0 node has no asymmetric links 

2N ′ =1 node has one or more asymmetric links 

2l gw =0 node is not linked to a gateway 

2l gw =1 node is linked to a gateway 
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With these definitions, we can provide visualization for the full FSM for simulations with 3 nodes in Figure 2. 
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Figure 2 -- 3 node state machine to determine neighborhood best 

 
With this enhancement, the problem of 2 clustered nodes maintaining links with a distance node is alleviated, as one of 
the nodes becomes a gateway and the non-gateway node disconnects from the distant node and reduces its 
communication range based on a revised neighborhood best ,i nbestr .   

 
5. SIMULATION AND RESULTS 

 
A simulation environment, using C++ was constructed to allow us to place nodes either constructively or randomly, 
assign initial communication ranges and execute the algorithm. Nodes are created in a 100x100 unit rectangle. The 
maximum communication range is set at 100 and the minimum communication range, minr  is set such that for the 

experimental choices of 1 2, , , , ,c c andα β γ δ , the fitness of a node cannot improve by reducing its communication 
range if that reduction causes the node’s ‘reachability’ to decrease. If the distance between a node and its nearest 
neighbor is less than this minimum minr , then the node can sacrifice ‘reachability’ and end up with a better fitness. To 
illustrate this concept, Figure 3 presents an initial and final configuration of a set of three nodes. There could be many 
other nodes in the environment, but these 3 are simply not connected to the rest in these 2 instances. 
 

 
Figure 3 – Node 1 adopts a smaller communication range at the expense of connectivity. 

In Figure 3, the initial state for node 1 is represented by the values, 
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To discourage nodes from making transitions like the one illustrated in Figure 3, we must force the fitness of the final 
state to be larger than the fitness of the initial, more highly connected, state. Therefore, 
 

initial finalf f< ,  

 
or given that 1 20, 1, 1, 1, 1c c α β γ= = = = =  and allowing δ  as a free parameter, 

 

13 12

3 2

r r
δ δ< . 

 
Rearranging and identifying that in the worst case, 13 max 100r r= = , we find that 
 

2
100

3
r

δ

δ

� �
> � �

� �
. 

 
If 7δ = , then min 5.85r � .  This bound on the minimum communication radius is an appreciable fraction of the size of 

the simulation environment. To allow nodes to have smaller communication radii, we either need to increase δ  or 
decrease γ . We choose to set 1/ 2γ =  because the value for δ  is already quite large. With these choices, the minimum 

communication radius is min .34r � . 
 
The initial communication ranges of the nodes could be set to all minimum values, all maximum values or a mixture 
between the two extremes. The choice of these initial values impacts the simulation results. For these investigations, we 
choose to initialize the communication range of the nodes to their maximum value. For the maximum communication 
range we have chosen, even for small numbers of nodes (3 or more), the probability that the graph is connected when all 
nodes transmit at their maximum range is high. 14 The PSO algorithm requires a choice for the weighting of the 
cognitive and social components of the particle’s motion. The ‘off-the-shelf” 15 PSO indicates that 2.8 and 1.3 are 
reasonable choices for the weighting of the cognitive and social components, respectively, but based on our 
experimentations, we adopt values of 1.75 and .35. Because the form of the fitness is such that larger radii are desirable 
for disconnected nodes while smaller radii are desirable for connected nodes, oscillations may occur. We use a random 
variable to weigh the node’s positional motion in Eqn. 10 to quench these oscillations. We implemented a ‘fitness timer’ 
to expire periodically for each node, which effectively restarted the node’s search for a best communication range. 
Allowing a node to forget about a previous best communication range helps a node to maintain gateway status in the 
event that it was previously a part of a connected network and had a smaller communication range. We executed 
experiments with 2, 3, 4 and 5 nodes to expose whether or not the distributed PSO algorithm offers any promise of 
approximating the solution to the problem stated and to assist in choosing good values for simulation parameters. The 
experiments used values for 1 2, , , , ,c c andα β γ δ  of 0,1,1,1,0.5 and 7 respectively.  The base parameters of the 
investigated DPSO algorithm for this problem are summarized in Table 4. 
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Table 4 – base simulation parameters 

1 2, , , , ,c c andα β γ δ  0,1,1,1,0.5 and 7 respectively 

1φ  distributed on [0,1.75] 

2φ  distributed on [0,0.35] 

minr  .34 

maxr  100 

range of x 50 50x− < <  
range of y 50 50y− < <  

initial swarm particle velocities randomly and uniformly distributed on [-5,5] 

maxv   (heuristically constricted) 5 4*( / )i I− , where i is current iteration and I 
is stopping iteration, taken to be 700 

initial communication range set to maxr  

  
 
 
5.1 2-Node Experiments 
With the formulation of the neighborhood best from section 4.2.1, call it the ‘basic’ ,i nbestr  formulation, the DPSO 

algorithm can easily solve the problem for 2 nodes as shown in Figure 4.  
 

 
Figure 4 –2 node steady state, ‘basic’ ,i nbestr  

 
5.2 3-Node Experiments 
The DPSO algorithm, with the ‘gateway enhanced’ ,i nbestr  of section 4.2.2 is able to consistently converge to the optimal 

solution for 3 nodes. A typical result is displayed in Figure 5.  
 

 
Figure 5 -- 3 node steady state, ‘gateway enhanced’ ,i nbestr  

 
5.3 4 and 5 Node Experiments 
When simulating with 4 nodes and more, we introduce more structure into the FSM that is used to determine the social 
component of the node’s motion. Environmental states added to the structure include, the distance to the nearest node 
contributing to an asymmetric link and the distance between a node’s nearest gateway and its nearest node contributing 
to an asymmetric link. We also expand ,i nbestr ′  by one state and allow a node to set its neighborhood best communication 

radius equal to the distance to the nearest node contributing to an asymmetric link. The benefit derived from introducing 
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these modifications was discovered through experimentation. The actual FSM used for 4 and 5 node simulations is 
rather large and is not included here. While checking 3 node simulations for optimality is trivial, doing so for 4 or more 
nodes requires a check by a complete algorithm that guarantees convergence to the optimal. Since 4 and 5 node 
configurations are still small enough to allow an exhaustive search for the optimal solution, we implemented an 
exhaustive search in Matlab. 
 
Ten sets of 4 nodes and 10 sets of 5 nodes are randomly generated. For each set, the optimal communication ranges 
subject to the constraints are found using exhaustive search. The DPSO algorithm is executed for each set of nodes and 
the results tabulated.  For the 10 sets of 4 nodes, we find that in 8 of the 10 sets, the DPSO algorithm finds the optimal 
solution. In the other 2 sets, the DPSO algorithm finds a lower cost topology at the expense of 1 asymmetric link. In the 
10, 5-node sets, the DPSO algorithm finds the optimal topology in 3 out of 10, a lower cost topology at the expense of, 
on average, 1.5 asymmetric links, and a higher cost topology with, on average, 1.34 asymmetric links in 3 of the sets. 
Only one trial of the DPSO algorithm is executed for each node set and compiling more statistical data is for future 
work. No attempt is made to optimize the FSM developed for 4 nodes when simulating with 5. We suspect that 
optimization of the FSM could improve the 5 node results. 
 

6. SUMMARY AND FUTURE WORK 
 

The results are promising. The algorithm performs well for 2,3 and 4 node configurations. For 2 and nodes, as long as 
the nodes are within range, the algorithm works without fail. For 4 nodes, the algorithm converges to the optimal 
solution in 70% of our trials. The algorithm found a lower cost topology in the remaining 30% of trials at the expense of 
only a single asymmetric link. The algorithm performed well in 5 node trials even though no attempt was made to 
improve the FSM used to determine the neighborhood best. Gains could be made in improving the results for 5 and 
possibly more nodes by expanding the state space of the FSM and optimizing the transition function off-line to a global 
fitness criterion. The DPSO parameters 1 2,φ φ  could be included in the off-line optimization. It may be possible to 
evolve these parameters on-line and hence make an adaptive algorithm that could be apart of a general-purpose and 
reusable architecture for networking wireless ad-hoc nodes.  
 
One clear limitation of the algorithm is that it does not explicitly search for a global optimum. As mentioned in the 
previous paragraph, a global tendency could be engineered through the choice of the FSM and DPSO parameters, yet 
the algorithm still proceeds with nodes operating in a selfish mode otherwise. This selfish behavior could be softened 
through incorporating another term in to the node’s fitness function, which includes a neighborhood component. With 
such a fitness representation, nodes may choose a poorer value for the selfish component of their fitness in order to 
benefit the group, or their local neighborhood. 
 
The true test of a topology control algorithm lies in simulation. The application ultimately determines whether or not a 
given configuration is optimal.1 The topology generated by the algorithm should be simulated in the Network 
Simulator16 and compared to results of other topology generation schemes. 12, 17, 18  Of particular interest is determining 
the topological characteristics that make a given topology a good topology. While most existing approaches are 
typically inflexible, the algorithm presented here offers the possibility of adapting and conforming to operational 
parameters that do indeed optimize the performance of the wireless network.  
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