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Abstract

Unsupervised representation learning is an important task in machine learning that

identifies and models underlying explanatory factors hidden in the observed data.

In recent years, unsupervised representation learning has been attracting increasing

attention for its abilities to improve interpretability, extract useful features without

expert annotations, and enhance downstream tasks, which has been successful in many

machine learning topics, such as Computer Vision, Natural Language Processing,

and Anomaly Detection. Unsupervised representation learning has many desirable

abilities, including disentangling generative factors, generalization between different

domains, and incremental knowledge accumulation.

However, existing works had faced two critical challenges. First, the unsupervised

representation learning models were often designed to learn and disentangle all

representations of data at the same time, which obstructed the models from learning

representations in a more progressive and reasonable way (like from easy to hard),

resulting in bad (often blurry) generation quality with the loss of detailed information.

Second, when it comes to a more realistic problem setting, continual unsupervised

representation learning, existing works tended to suffer from catastrophic forgetting,

including forgetting learned representations and how to disentangle them. The
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continual disentangling problem was very difficult without modeling the relationship

between data environments while the forgetting problem was often alleviated by

generative-reply.

In this dissertation, we are interested in developing advanced unsupervised repre-

sentation learning methods based on answering three research questions: (1) how

to progressively learn representations such that it can improve the quality and the

disentanglement of representations, (2) how to continually learn and accumulate

the knowledge of representations from different data environments, and (3) how to

continually reuse the existing representations to facilitate learning and disentangling

representations given new data environments.

We first established a novel solution for resolving the first research question: progres-

sively learn and disentangle representations and demonstrated the performance in

a typical static data environment. And then, for answering the rest two research

questions, we extended to study a more challenging and under-investigated set-

ting: unsupervised continual learning and disentangling representations of dynamic

data environments, where the proposed model is capable of not only remembering

old representations but also reusing them to facilitate learning and disentangling

representations in a sequential data stream.

In summary, in this dissertation, we proposed several novel unsupervised repre-

sentation learning methods and their applications by drawing ideas from different

well-studied areas such as auto-encoders, variational inference, mixture distribu-

tion, and self-organizing map. We demonstrated the presented methods on various

benchmarks, such as dSprites, 3DShape, MNIST, Fashion-MNIST, and CelebA, to

provide the quantitative and qualitative evaluation of the learned representations.

We concluded by identifying the limitations of the proposed methods and discussing

future research directions.
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Chapter 1

Introduction

1.1 Overview

Learning useful representations of data with little or no supervision plays a vital role in

deploying artificial intelligence for massive amounts of information in the real world. This

makes unsupervised representation learning an important task in machine learning that has

been attracting increasing attention for its capabilities to improve interpretability, extract

useful features without expert annotations, and enhance downstream predictive tasks [4,21,53].

There are several iconic abilities for intelligent creatures to discover and utilize real-world

representation. First, intelligent creatures tend to keep discovering and disentangling the

generative factors of the real world. In the ancient world, people used to anticipate rain

through general natural phenomena like the shape of clouds. However, the shape of the

cloud actually contains and is entangled with many raining-related factors like air pressure,

temperature, and humidity that humans discover later and greatly improve the accuracy of

prediction by precisely identifying and treating different factors. Such disentangling ability is

desired for it offers better interpretability of the model and tackles complicated problems by

decomposing it into different sub-factors. Second, intelligent creatures won’t forget what they

learned and can continually learn new representations. It would be very strange that a skilled

vehicle technician forgets his or her knowledge of cars after starting to learn web design

on weekends. Even kids remember the animals they learned to recognize weeks ago from

1
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books after watching new animals in the zoo later. However, machines do suffer from naively

continually learning from stream data and this problem is often referred to as catastrophic

forgetting [1, 44]. Third, intelligent creatures especially human beings are extremely good at

building new concepts upon existing knowledge and reusing the existing ones to facilitate

learning new representations. For example, once kids recognize dogs and cats and form a

model that there is one head at the top and four legs at the bottom, they can quickly adopt

this knowledge when they first see horses. The existing knowledge of heads and legs can be

reused and help them focus on learning new features like bigger body sizes and different skin

textures. However, for current machine learning methods, this is a very difficult problem

that requires modeling the relationship among all data environments.

The above abilities are desired for machine learning, yet the gap at the moment leaves

many difficult challenges and research opportunities for representation learning researchers.

In this dissertation, we mainly focused on tackling the critical challenges of unsupervised

representation learning in terms of two aspects: the models’ ability to learn representations

progressively and continually. First, for progressive representation learning, most existing

unsupervised representation learning models lack this ability because they were designed

to learn and disentangle all representations of data at the same time, which obstructed

the models from learning representations from easy to hard. The inherent conflict between

the bottom-up inference process (encoder) and the top-down generation process (decoder)

additionally prevents deep models from fully utilizing the depth of neural networks. These

often resulted in bad (often blurry) generation quality with the loss of detailed information.

We will introduce and describe this in chapter 3. Second, when it comes to continual

unsupervised representation learning, which is a more realistic and less-explored problem

setting, existing works tended to suffer from catastrophic forgetting, including forgetting

learned representations and how to disentangle them. The latter problem was very difficult

without modeling the relationship between data environments while the former problem was

often alleviated by generative-reply. We will provide in-depth discussions and solutions for

this in chapter 4.

In summary, we approach the above challenges and research opportunities of unsupervised

representation learning by asking three main research questions: (1) how to progressively

learn representations such that it can improve the quality and the disentanglement of

representations, (2) how to continually learn and accumulate the knowledge of representations

from different data environments, and (3) how to continually reuse the existing representations

to facilitate learning and disentangling representations given new data environments. To
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answer these research questions, we investigated and divided unsupervised representation

learning into two complementary scenarios: static data environment and dynamic data

environment in this dissertation. In the first scenario, the data distribution is stationary,

and training samples are drawn i.i.d. (often being done by shuffling training data) and then

fed to the unsupervised representation learning model, which is the most typical setting for

learning and disentangling representations of existing works. In the second scenario, the data

distribution is non-stationary and is often fed to the model sequentially where old data is

overwritten by new ones in data steam, making the old data no longer available at a certain

time point.

We first present a novel solution for resolving the first research question: progressively

learning and disentangling representations. And we design and demonstrate its performance

in a typical static data environment, as we will describe in chapter 3. To address the

second and third research questions, we then extend the idea of progressive learning to

continual learning and investigated a more realistic and challenging problem setting: continual

unsupervised representation learning in dynamic data environments, as will be explained in

chapter 4. Specifically, we first establish a progressive representation learning network that

gradually increases its capacity to learn representations from high-level abstraction to low-level

abstraction to improve the quality and disentanglement of the learned representations given

static data environments. Then, to solve the second research question -how to continually

learn and accumulate the knowledge of representations - we turn to model the latent space

with a topologically-connected mixture of distributions in the form of a Bayesian formulation

of self-organizing map [28,58], as a foundation model for accumulating relational structure

of data and expanding the progressive representation learning to continual representation

learning. Finally, for the third research question - how to continually reuse and disentangle

representations - we propose novel methods for identifying active semantic factors of each

data environment and computing the shared dimensions between different data environments,

along with a continual disentangling framework that aims to guide and optimize the re-using

of old representations and facilitate learning and disentangling new representations.

1.2 Contribution

The goal of this research is to develop advanced unsupervised representation learning methods

to fill the gap between existing works and the current challenges and to improve the model’s
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progressive and continual learning ability. To this end, we presented the contributions of our

research in progressive and continual unsupervised representation learning:

• Progressive learning and disentangling representation

– We proposed a novel deep neural network for progressively learning and dis-

entangling hierarchical representation from high-level abstraction to low-level

abstraction. This allows the model to capture the most important and dominant

features first and then progressively learn the rest representations to refine the

remaining details [34].

– We proposed the implementation strategy for progressive learning that greatly

improved training stability [34].

• Continual learning and disentangling representation

– We proposed a principled variational inference framework to learn and optimize

a topologically-connected mixture model to continually reuse, expand, and

disentangle representations [33].

– We proposed a self-organized latent space with a Bayesian-SOM for continually

accumulating the relational structure of data [33].

– We proposed to distill the knowledge of active semantic factors across data

environments by modeling each component of the SOM mixture model as a

spike-and-slab distribution, for optimizing the reuse of shared representations

across different data environments and disentangling new representations [33].

• Disentanglement metrics and evaluations

– We proposed a new disentanglement metric MIG-sup to supplement existing

metrics by specifically measuring how multiple generative factors are entangled

in a single latent variable [34].

– We proposed a mutual-information-based disentanglement metric for evaluating

the performance of continual disentanglement, and reported the first comprehen-

sive continual disentanglement experiments, to the best of our knowledge [33].



Chapter 2

Principles

This chapter serves as an introduction to the principles and the foundation literature

of representation learning, disentangled representation, self-organized map, and continual

learning, which are helpful to understand the remainder of the dissertation and the description

of related works in later chapters.

2.1 Representation learning

Representation learning is an important task for machine learning. The choice of data

representation (or features) plays an important role in the performance of machine learning

methods. However, traditional feature engineering is labor-intensive and often relays on

experts’ prior knowledge [4]. Therefore, to expand the applicability of machine learning,

representation learning has been attracting increasing attention in recent years for its

ability to extract and organize the information from the observed data, and has been

shown successfully in many machine learning fields [4]. Some general assumptions to guide

representation learning include:

• data is generated by multiple explanatory factors, and there exists a hierarchical

organization of them,

5
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• certain factors are shared across tasks,

• representations are sparse, i.e., for any given observation, only a small number of

factors are active and relevant,

• and representations (especially categorical representations) naturally form distinguish-

able clusters etc.

2.2 Disentangled representations

Learning disentangled representation is an important topic in representation learning for

its desired interpretability of deep learning models and robustness analysis of complicated

problems by investigating their sub-factors. Existing works mainly tackle this by promoting

independence among the learned latent factors in VAE [9,21,25]. In [8,21], a hyperparameter

β is introduced for the KL-divergence term of VAE. Then a heavy posterior overlap caused by

the large value of β can force a smooth and disentangled latent space. In [9], a decomposition

of the KL term in VAE is proposed and the authors augured that it is the total-correlation

term in it that plays an important role in disentanglement. A similar emphasis on using

total correlation to promote disentanglement had been discussed in [25].

Although the one-to-one relationship between the generative factors and the latent variables

is one intuitive understanding of disentanglement, it is not easy to measure disentanglement

and different metrics are focused on different perspectives of disentanglement and sometimes

hard to align with each other [37,59], which leaves open questions that need further research.

2.3 Continual learning

Continual Learning (also often referred to as Incremental Learning or Life-long Learning) is

a machine learning concept that learns a model for a number of tasks sequentially without

forgetting knowledge obtained from the previous tasks, where the data in the old tasks are

not available during training new ones.

For unsupervised continual learning, the term “unsupervised” can be referred to the task or

the task boundary, or both. If it refers to the task, it means the task is unsupervised, e.g.,
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unsupervised representation learning, clustering, and in this case the unsupervised tasks

are learned continually. If it refers to the task boundary, it means there is no supervision

on the task identity and/or when the data distributions change, and the model needs to

infer that when necessary. In this dissertation, for clarity, “unsupervised” is referred to

as in the former case, and we use the term “data environments” to describe the different

data distributions during continual learning. In summary, we are interested in and focus

on conducting unsupervised representation learning and disentangling for sequential-arrived

data streams.

2.4 Variational auto-encoders (VAE)

VAE [26,47] are deep generative models that are very popular and successful for representation

learning. It describe the generation of data x as pθ(x|z), involving a set of latent variables

z that follows a prior distribution p(z) (often described by an isotropic Gaussian N (0, I)).

A proposal distribution qϕ(z|x) is introduced as the variational approximation of p(z|x),
and optimized together with pθ(x|z) to maximize the evidence lower bound (ELBO) of the

marginal data likelihood:

log p(x) ≥ L = Eqϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x)||p(z)), (2.1)

where the first term is often interpreted as minimizing a reconstruction error and the second

term minimizes the KL-divergence between the variational posterior and its prior.

2.5 Self-organizing map

A typical SOM [28] consists of a set of nodes on a two-dimensional gird, where a weight

vector is learned for each node such as to minimize the distance between each input data and

its distance to the closest weight vector (i.e., Best Matching Unit (BMU)). In a Bayesian

formulation of SOM [57], each node becomes one component of a mixture with the associated

density parameters. The BMU to a given data point is then determined by a component’s

posterior probability given the data. A sequential Expectation-Maximization (EM) like

algorithm was developed to incrementally update the SOM mixture to maximize the likelihood

of sequentially-arrived data [57]. Once trained, SOM nodes provide prototypes of the input
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data, where similar data will be mapped to neighboring prototypes. These allow Bayesian

SOM to formally model the joint distribution of input data and SOM prototypes. a classic

unsupervised neural network for learning a topologically interpretable relationship of data,

in the form of learned prototypes that each represents a summary of similar data and is

topologically connected to neighboring similar prototypes with distance measures. The

joint-probability density of Bayesian-SOM is:

p(z|Θ) =
∑K

k=1
p(z|vk, θk)p(vk), (2.2)

where p(z|vk, θk) = (2π)−d/2|Σk|−1/2exp{−0.5(z − µk)
TΣ−1

k (z − µk)} is the component

conditional density, θk = {µk,Σk} is the component parameters with Σk = diag(σ2
k),

p(vk) = wk is the mixing prior, for the k-th component. Θ = {θ1, θ2, ..., θk}.



Chapter 3

Progressive learning and

disentangling of representation

In this chapter, we describe our contributions to answering the first research question:

how to progressively learn representations such that it can improve the quality and the

disentanglement of representations. It includes a novel VAE-based neural network framework

and the corresponding progressive training strategy.

3.1 Introduction

In a typical unsupervised representation learning setting, i.e., stationary data environment

and i.i.d. training samples, most existing works are designed to learn and disentangle all

representations at the same time [9,19,21,25]. However, there exist challenges for extracting

and disentangling generative factors all at once, especially at different abstraction levels [34].

To solve this, inspired by the human cognition system, [14] suggested the importance of

“starting small” in two aspects of the learning process of neural networks: incremental input

in which a network is trained with data and tasks of increasing complexity, and incremental

memory in which the network capacity undergoes developmental changes given fixed external

data and tasks — both pointing to an incremental learning strategy for simplifying a complex

9
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final task. Indeed, the former concept of incremental input has underpinned the success of

curriculum learning [5]. In the context of deep generative models (DGMs), various stacked

versions of generative adversarial networks (GANs) have been proposed to decompose the

final task of high-resolution image generation into progressive sub-tasks of generating small

to large images [11, 61]. The latter aspect of “starting small” with incremental growth of

network capacity is less explored, although recent works have demonstrated the advantage

of progressively growing the depth of GANs for generating high-resolution images [24,54].

These works, so far, have focused on progressive learning as a strategy to improve image

generation.

Meanwhile, DGMs have not been able to fully utilize the depth of neural networks like their

supervised counterparts, for which a fundamental cause lies in the inherent conflict between

the bottom-up inference and top-down generation process [32, 62]: while the bottom-up

abstraction is able to extract high-level representations helpful for discriminative tasks, the

goal of generation requires the preservation of all generative factors that are likely at different

abstraction levels. This issue was addressed in recent works by allowing VAEs to generate

from details added at different depths of the network, using either memory modules between

top-down generation layers [32], or hierarchical latent representations extracted at different

depths via a variational ladder autoencoder VLAE, [62].

We are motivated to investigate the possibility to use progressive learning strategies to

improve learning and disentangling of hierarchical representations. At a high level, the idea

of progressively or sequentially learning latent representations has been previously considered

in VAE. In [18], the network learned to sequentially refine generated images through recurrent

networks. In [31], a teacher-student training strategy was used to progressively increase the

number of latent dimensions in VAE to improve the generation of images while preserving

the disentangling ability of the teacher model. However, these works primarily focus on

progressively growing the capacity of VAE to generate, rather than to extract and disentangle

hierarchical representations.

In comparison, in this chapter, we focus on 1) progressively growing the capacity of the

network to extract hierarchical representations, and 2) these hierarchical representations

are extracted and used in generation from different abstraction levels. We present a simple

progressive training strategy that grows the hierarchical latent representations from different

depths of the inference and generation model, learning from high- to low-levels of abstractions

as the capacity of the model architecture grows. Because it can be viewed as a progressive



CHAPTER 3. PROGRESSIVE LEARNING AND DISENTANGLING 11

strategy to train the VLAE presented in [62], we term the presented model pro-VLAE. We

quantitatively demonstrate the ability of pro-VLAE to improve disentanglement on two

benchmark data sets using three disentanglement metrics, including a new metric we proposed

to complement the metric of mutual information gap (MIG) previously presented in [9].

These quantitative studies include comprehensive comparisons to β-VAE [21], VLAE [62], and

the teacher-student strategy as presented in [31] at different values of the hyperparameter β.

We further present both qualitative and quantitative evidence that pro-VLAE is able to first

learn the most abstract representations and then progressively disentangle existing factors

or learn new factors at lower levels of abstraction, improving disentangling of hierarhical

representations in the process.

3.2 Related works

A hierarchy of feature maps can be naturally formed in stacked discriminative models ( [60]).

Similarly, in DGM, many works have proposed stacked-VAEs as a common way to learn a

hierarchy of latent variables and thereby improve image generation ( [2,27,50]). However,

this stacked hierarchy is not only difficult to train as the depths increases ( [2, 50]), but also

has an unclear benefit for learning either hierarchical or disentangled representations: as

shown in [62], when fully optimized, it is equivalent to a model with a single layer of latent

variables. Alternatively, instead of a hierarchy of latent variables, independent hierarchical

representations at different abstraction levels can be extracted and used in generation from

different depths of the network ( [47,62]). A similar idea was presented in [32] to generate lost

details from memory and attention modules at different depths of the top-down generation

process. The presented work aligns with existing works ( [47,62]) in learning independent

hierarchical representation from different levels of abstraction, and we look to facilitate this

learning by progressively learning the representations from high- to low-levels.

Progressive learning has been successful for high-quality image generation, mostly in the

setting of GANs. Following the seminar work of [14], these progressive strategies can be

loosely grouped into two categories. Mostly, in line with incremental input, several works

have proposed to divide the final task of image generation into progressive tasks of generating

low-resolution to high-resolution images with multi-scale supervision ( [11,61]). Alternatively,

in line with incremental memory, a small number of works have demonstrated the ability

to simply grow the architecture of GANs from a shallow network with limited capacity for
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generating low-resolution images, to a deep network capable of generating super-resolution

images ( [24,54]). This approach was also shown to be time-efficient since the early-stage

small networks require less time to converge comparing to training a full network from

the beginning. This latter group of works provided compelling evidence for the benefit of

progressively growing the capacity of a network to generate images, although its extension

for growing the capacity of a network to learn hierarchical representations has not been

explored.

Limited work has considered incremental learning of representations in VAE. In [18], recurrent

networks with attention mechanisms were used to sequentially refines the details in generated

images. It however focused on the generation performance of VAE without considering

the learned representations. In [31], a teacher-student strategy was used to progressively

grow the dimension of the latent representations in VAE. Its fundamental motivation was

that, given a teacher model that has learned to effectively disentangle major factors of

variations, progressively learning additional nuisance variables will improve generation

without compromising the disentangling ability of the teacher – the latter accomplished via a

newly-proposed Jacobian supervision. The capacity of this model to grow, thus, is by design

limited to the extraction of nuisance variables. In comparison, we are interested in a more

significant growth of the VAE capacity to progressively learn and improve disentangling of

important factors of variations which, as we will later demonstrate, is not what the model

in [31] is intended for. In addition, neither of these works considered learning different levels

of abstractions at different depths of the network, and the presented pro-VLAE provides a

simpler training strategy to achieve progressive representation learning.

Learning disentangled representation is a primary motivation of our work, and an important

topic in VAE. Existing works mainly tackle this by promoting the independence among

the learned latent factors in VAE ( [9,21,25]). The presented progressive learning strategy

provides a novel approach to improve disentangling that is different to these existing methods

and a possibility to augment them in the future.
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3.3 Methods

3.3.1 Model: VAE with hierarchical representations

We assume a generative model p(x, z) = p(x|z)p(z) for observed x and its latent variable

z. To learn hierarchical representations of x, we decompose z into {z1, z2, ..., zL} with

zl(l = 1, 2, 3, ..., L) from different abstraction levels that are loosely guided by the depth of

neural network as in [62]. We define the hierarchical generative model pθ as:

p(x, z) = p(x|z1, z2, ..., zL)
L∏
l=1

p(zl). (3.1)

Note that there is no hierarchical dependence among the latent variables as in common hier-

archical latent variable models. Rather, similar to that in [47] and [62], zl’s are independent

and each represents generative factors at an abstraction level not captured in other levels.

We then define an inference model qϕ to approximate the posterior as:

q(z1, z2, ..., zL|x) =
L∏
l=1

q(zl|hl(x)), (3.2)

where hl(x) represents a particular level of bottom-up abstraction of x. We parameterize pθ

and qϕ with an encoding-decoding structure and, as in [62], we approximate the abstraction

level with the network depth. The full model is illustrated in Fig. 3.1(c), with a final goal to

maximize a modified evidence lower bound (ELBO) of the marginal likelihood of data x:

log p(x) ≥ L = Eq(z|x)[log p(x|z)]− βKL(q(z|x)||p(z)), (3.3)

where KL denotes the Kullback-–Leibler divergence, prior p(z) is set to isotropic Gaussian

N (0, I) according to standard practice, and β is a hyperparameter introduced in [21] to

promote disentangling, defaulting to the standrd ELBO objective when β = 1.

3.3.2 Progressive learning of hierarchical representation

We present a progressive learning strategy, as illustrated in Fig. 3.1, to achieve the final

goal in equation (3.3) by learning the latent variables zl progressively from the highest

(l = L) to the lowest l = 1) level of abstractions. We start by learning the most abstraction
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representations at layer L as show in Fig. 3.1(a). In this case, our model degenerates to

a vanilla VAE with latent variables zL at the deepest layer. We keep the dimension of zL

small to start small in terms of the capacity to learn latent representations, where we define

the inference model at progressive step s = 0 as:

zL ∼ N (µL(hL), σL(hL)), hl = fel (hl−1), for l = 1, 2, ..., L, and h0 ≡ x, (3.4)

and the generative model as:

gL = fdL(zL), gl = fdl (gl+1), x = D(x; fd0 (g0)), (3.5)

where fel , µL, and σL are parts of the encoder architecture, fdl are parts of the decoder

architecture, and D is the distribution of x parametrized by fd0 (g0), which can be either

Bernoulli or Gaussian depending on the data. Next, as shown in Fig. 3.1, we progressively

grow the model to learn zL−1, ..., z2, z1 from high to low abstraction levels. At each progressive

step s = 1, 2, ..., L− 1, we move down one abstraction level, and grow the inference model by

introducing new latent code:

zl ∼ N (µl(hl), σl(hl)), l = L− s. (3.6)

Simultaneously, we grow the decoder such that it can generate with the new latent code as:

gl = fdl ([ml(zl);gl+1]), l = L− s, (3.7)

where ml includes transposed convolution layers outputting a feature map in the same shape

as gl+1, and [·; ·] denotes a concatenation operation. The training objective at progressive

step s is then:

Lpro = Eq(zL,zL−1,...,zL−s|x)[log p(x|zL, zL−1, ..., zL−s)]− β

L∑
L−s

KL(q(zl|x)||p(zl)), (3.8)

By replacing the full objective in equation (3.3) with a sequence of the objectives in

equation (3.8) as the training progresses, we incrementally learn to extract and generate

with hierarchical latent representations zl’s from high to low levels of abstractions. Once

trained, the full model as shown in Fig. 3.1(c) will be used for inference and generation, and

progressive processes are no loner needed.
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Figure 3.1: Progressive learning of hierarchical representations. White blocks and

solid lines are VAE models at the current progression. α is a fade-in coefficient

for blending in the new network component. Gray circles and dash line represents

(optional) constraining of the future latent variables.

3.3.3 Implementation strategies

Two important strategies are utilized to implement the proposed progressive representation

learning. First, directly adding new components to a trained network often introduce a

sudden shock to the gradient: in VAEs, this often leads to the explosion of the variance in

the latent distributions. To avoid this shock, we adopt the popular method of “fade-in” [24]

to smoothly blend the new and existing network components. In specific, we introduce a

“fade-in” coefficient α to equations (3.6) and (3.7) when growing new components in the

encoder and the decoder:

zl ∼ N (µl(αhl), σl(αhl)),gl = fdl ([αml(zl);gl+1]), (3.9)

where α increases from 0 to 1 within a certain number of iterations (5000 in our experiments)

since the addition of the new network components µl,σl, and ml.

Second, we further stabilize the training by weakly constraining the distribution of zl’s before

they are added to the network. This can be achieved by a applying a KL penalty, modulated

by a small coefficient γ, to all latent variables that have not been used in the generation at
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progressive step s:

Lpre−trained = γ

L−s−1∑
l=1

[
−KL(q(zl|x)||p(zl))

]
, (3.10)

where γ is set to 0.5 in our experiments. The final training objective at step s then becomes:

L = Lpro + Lpre−trained (3.11)

Note that the latent variables at the hierarchy lower than L− s are neither meaningfully

inferred nor used in generation at progressive step s, and Lpre−trained merely intends to

regularize the distribution of these latent variables before they are added to the network.

In the experiments below, we use both “fade-in” and Lpre−trained when implementing the

progressive training strategy.

3.3.4 Disentanglement metric

Various quantitative metrics for measuring disentanglement have been proposed [9,21,25].

For instance, the recently proposed MIG metrics [9] measures the gap of mutual information

between the top two latent dimensions that have the highest mutual information with a

given generative factor. A low MIG score, therefore, suggests an undesired outcome that

the same factor is split into multiple dimensions. However, if different generative factors are

entangled into the same latent dimension, the MIG score will not be affected.

Therefore, we propose a new disentanglement metric to supplement MIG by recognizing

the entanglement of multiple generative factors into the same latent dimension. We define

MIG-sup as:

1

J

J∑
1

(
Inorm(zj ; vk(j))− max

k ̸=k(j)
Inorm(zj ; vk)

)
, (3.12)

where z is the latent variables and v is the ground truth factors, k(j) = argmaxkInorm(zj ; vk),

J is the number of meaningful latent dimensions, and Inorm(zj ; vk) is normalized mutual

information I(zj ; vk)/H(vk). Considering MIG and MIG-sup together will provide a more

complete measure of disentanglement, accounting for both the splitting of one factor into

multiple dimensions and the encoding of multiple factors into the same dimension. In an ideal

disentanglement, both MIG and MIG-sup should be 1, recognizing a one-to-one relationship

between a generative factor and a latent dimension. This would have a similar effect to the
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Figure 3.2: An example of one factor being encoded in multiple dimensions. Each row

is a traverse for one dimension (dimension order adjusted for better visualization).

Notice that both the 1st and the 2nd rows are encoding floor-color, both the 3rd

and 4th rows are encoding wall-color, and both the 5th and 6th rows are encoding

object color. Therefore, the MIG is very low since it penalizes splitting one factor

into multiple dimensions. On the other hand, the MIG-sup and factor-metric are

not too bad since one dimension mainly encodes one factor, even though there is

some entanglement of color-vs-shape and color-vs-scale.

metric that was proposed in [12], although MIG-based metrics do not rely on training extra

classifiers or regressors and are unbiased for hyperparameter settings. The factor metric [25]

also has similar properties with MIG-sup, although MIG-sup is stricter on penalizing any

amount of other minor factors in the same dimension.

As shown in Fig. 3.2 and Fig. 3.3, we presented examples of how different disentanglement

metrics (MIG, MIG-sup, and the factor metric) correspond to the visual traversing results

to help the reader understand how different metric evaluates disentanglement.
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Figure 3.3: An example of one dimension containing multiple factors. Each row

is a traverse for one dimension (dimension order adjusted for better visualization).

Notice that both models achieve high and similar MIG because all 6 factors are

encoded and no splitting to multiple dimensions. However, the right-hand side model

has much lower MIG-sup and factor-metric than the left-hand side model. Because

both scale and shape are encoded in the 5th row, while the 6th row has no factor.

Both MIG-sup and factor-metric penalize encoding multiple factors in one dimension.

Besides, our MIG-sup is lower and drops more than factor-metric because MIG-sup

is stricter in this case.

3.4 Experiment

We tested the presented pro-VLAE on four benchmark data sets: dSprites ( [40]), 3DShapes

( [7]), MNIST ( [30]), and CelebA ( [35]), where the first two include ground-truth generative

factors that allow us to carry out comprehensive quantitative comparisons of disentangling

metrics with existing models. In the following, we first quantitatively compare the disentan-

gling ability of pro-VLAE in comparison to three existing models using three disentanglement

metrics. We then analyze pro-VLAE from the aspects of how it learns progressively, its

ability to disentangle, and its ability to learn abstractions at different levels.
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Figure 3.4: Quantitative comparison of disentanglement metrics. Each point is

annotated by the β value and averaged over top three best random seeds for the given

β on the give model. Left to right: reconstruction errors vs. disentanglement metrics

of factor, MIG, and MIG-sup, a higher value indicating a better disentanglement in

each metric.

3.4.1 Comparisons in quantitative disentanglement metrics

For quantitative comparisons, we considered the factor metric in [25], the MIG in [9], and the

MIG-sup presented in this work. We compared pro-VLAE (changing β) with beta-VAE ( [21]),

VLAE ( [62]) as a hierarchical baseline without progressive training, and the teacher-student

model ( [31]) as the most related progressive VAE without hierarchical representations.

All models were considered at different values of β except the teacher-student model: the

comparison of β-VAE, VLAE, and the presented pro-VLAE thus also provides an ablation

study on the effect of learning hierarchical representations and doing so in a progressive

manner.

For fair comparisons, we strictly required all models to have the same number of latent

variables and the same number of training iterations. For instance, if a hierarchical model

has three layers that each has three latent dimensions, a non-hierarchical model will have
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Figure 3.5: MIG vs. MIG-sup following a similar presentation in Fig. 3.4. A better

disentanglement should have higher MIG and higher MIG-sup, locating at the

top-right quadrant of the plot.

nine latent dimensions; if a progressive method has three progressive steps with 15 epochs

of training each, a non-progressive method will be trained for 45 epochs. Three to five

experiments were conducted for each model at each β value, and the average of the top three

is used for reporting the quantitative results in Fig. 3.4.

As shown, for MIG and MIG-sup, VLAE generally outperformed β-VAE at most β values,

while pro-VLAE showed a clear margin of improvement over both methods. With the factor

metric, pro-VLAE was still among the top performers, although with a smaller margin and a

larger overlap with VLAE on 3DShapes, and with β-VAE (β = 10) on dSprites. The teacher-

student strategy with Jacobian supervision in general had a low to moderate disentangling

score, especially on 3DShapes. This is consistent with the original motivation of the method

for progressively learning nuisance variables after the teacher learns to disentangle effectively,

rather than progressively disentangling hierarchical factors of variations as intended by pro-

VLAE. Note that pro-VLAE in general performed better with a smaller value of β (β < 20),

suggesting that progressive learning already had an effect of promoting disentangling and a

high value of β may over-promote disentangling at the expense of reconstruction quality.

Fig. 3.5 shows MIG vs. MIG-sup scores among the tested models. As shown, results from

pro-VLAE were well separated from the other three models at the right top quadrant of

the plots, obtaining simultaneously high MIG and MIG-sup scores as a clear evidence for

improved disentangling ability.
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Figure 3.6: Traversing each latent dimension in pro-VLAE (β = 8), VLAE (β = 10),

and teacher-student model. The hierarchy of the latent variables is noted by brackets

on the side.

Fig. 3.6 provides images generated by traversing each latent dimension using the best pro-

VLAE (β = 8), the best VLAE (β = 10), and the teacher-student model on 3DShapes data.

As shown, pro-VLAE learned to disentangle the object, wall, and floor color in the deepest

layer; the following hierarchy of representations then disentangled objective scale, orientation,

and shape, while the lowest-level of abstractions ran out of meaningful generative factors

to learn. In comparison, the VLAE distributed six generative factors over the nine latent

dimensions, where color was split across the hierarchy and sometimes entangled with the

object scale (in z2). The teacher-student model was much less disentangled, which we will

delve into further in the following section.

3.4.2 Information flow during progressive learning

To further understand what happened during progressive learning, we use mutual information

I(x, zl) as a surrogate to track the amount of information learned in each hierarchy of latent

variables zl during the progressive learning. We adopted the approach in [9] to empirically

estimate the mutual information by stratified sampling.

Fig. 3.7 shows an example from 3DShapes. At progressive step 0, pro-VAE was only learning
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Figure 3.7: Progressive learning of hierarchical representations. At each progression

and for each zl, the row of images are generated by randomly sampling from its prior

distributions while fixing the other latent variables (this is NOT traversing). The

green bar at each row tracks the mutual information I(x; zl), while the total mutual

information I(x; z) is labeled on top.

the deepest latent variables in z3, discovering most of the generative factors including color,

objective shape, and orientation entangled within z3. At progressive step 1, interestingly, the

model was able to “drag” out shape and rotation factors from z3 and disentangle them into

z2 along with a new scale factor. Thus I(x; z3) decreased from 10.59 to 6.94 while I(x; z2)

increased from 0.02 to 5.98 in this progression, while the total mutual information I(x; z)

increased from 10.61 to 12.84, suggesting the overall learning of more detailed information.

Since 3DShapes only has 6 factors, the lowest-level representation z1 had nothing to learn

in progressive step 2, and the allocation of mutual information remained nearly unchanged.

Note that the sum of I(x, zl)’s does not equal to I(x, z) and Iover =
∑L

1 I(x, zl)− I(x, z)

suggests the amount of information that is entangled.

In comparison, the teacher-student model was less effective in progressively dragging entangled

representations to newly added latent dimensions, as suggested by the slowing changing
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of I(x, zl)’s during progression and the larger value of Iover. This suggests that, since

the teacher-student model was motivated for progressively learning nuisance variables, the

extent to which its capacity can grow for learning new representations is limited by two

fundamental causes: 1) because it increases the dimension of the same latent vectors at

the same depth, the growth of the network capacity is limited in comparison to pro-VLAE,

and 2) the Jacobian supervision further restricts the student model to maintain the same

disentangling ability of the teacher model.

3.4.3 Disentangling hierarchical representations

We also qualitatively examined pro-VLAE on data with both relatively simple (MNIST)

and complex (CelebA) factors of variations, all done in unsupervised training. On MNIST

(Figure 3.8), while the deepest latent representations encoded the highest-level features in

terms of digit identity, the representations learned at shallower levels encoded changes in

writing styles. In Figure 3.9, we show the latent representation progressively learned in

CelebA from the highest to lowest levels of abstractions, along with disentangling within

each level demonstrated by traversing one selected dimension at a time. These dimensions

are selected as examples associated with clear semantic meanings. As shown, while the

deepest latent representation z4 learned to disentangle high-level features such as gender

and race, the shallowest representation z1 learned to disentangle low-level features such

as eye-shadow. Moreover, the number of distinct representations learned decreased from

deep to shallow layers. While demonstrating disentangling by traversing each individual

latent dimension or by hierarchically-learned representations has been separately reported

in previous works [21,62], to our knowledge, this is the first time the ability of a model to

disentangle individual latent factors in a hierarchical manner has been demonstrated. This

provides evidence that the presented the progressive strategy of learning can improve the

disentangling of first, the most abstract representations followed by progressively lower levels

of abstractions.

3.4.4 A closer comparison with VLAE

Here we presented a closer comparison with the baseline VLAE. Fig 3.10 showed the two-

dimensional traversing on MNIST dataset of pro-VLAE following the same generation
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Figure 3.8: Visualization of hierarchical features learned for MNIST data. Each

sub-figure is generated by randomly sampling from the prior distribution of zl at one

abstraction level while fixing the others. The original latent code is inferred from an

image with the digit “0”. From left to right: z3 encodes the highest abstraction:

digit identity; z2 encodes stroke width; and z1 encodes other digit styles.

strategy of VLAE. Table 3.1 showed the information allocation in each layer of VLAE and

pro-VLAE. Compared to VLAE, the pro-VLAE allocated information in a more clear pattern

of descending order due to the progressive learning strategy.

3.4.5 Ablation study on implementation strategies

As shown in Table 3.2, the proposed training strategies (“fade-in” and pre-trained KL

penalty) greatly improved the stableness of progressive training.

3.4.6 Closer investigation of information flow over latent variables

Finally, we presented additional quantitative results on how information flow among the

latent variables during progressive training. We conducted experiments on both 3DShapes

and MNIST data sets, considering different hierarchical architectures including a combination

of different numbers of latent layers L and different numbers of latent dimensions zdim for



CHAPTER 3. PROGRESSIVE LEARNING AND DISENTANGLING 25

Figure 3.9: Visualization of hierarchical features learned for CelebA data. Each

subfigure is generated by traversing along a selected latent dimension in each row

within each hierarchy of zl’s. From left to right: latent variables z4 to z1

progressively learn major (e.g., gender in z4 and smile in z3) to minor representations

(e.g. wavy-hair in z2 and eye-shadow in z1) in a disentangled manner.

each layer. Each experiment was repeated three times with random initializations, from

which the mean and the standard deviation of mutual information I(x; zl) were computed.

As shown in Tables 3.3 and 3.4, for all hierarchical architectures, the information amount

in each layer is captured in a clear descending order, which aligns with the motivation of

the presented progressive learning strategy. Generally, the information also tends to flow

from previous layers to new layers, suggesting a disentanglement of latent factors as new

latent layers are added. This is especially obvious for 3DShapes data where the generative

factors are better defined. In addition, models with small latent codes (zdim = 1) are not

able to learn the same amount of information (total I(x, z)) as those with larger latent codes

(zdim = 3). The variance of information in each layer in the former also appears to be high.

We reason that it may be because the model is trying to squeeze too much information into

a small code, resulting in large vibrations during progressive learning. On the other hand,

while a model has large latent codes (L = 4, zdim = 3), the information flow becomes less

clear after the addition of certain layers. Overall, assuming there are K generative factors

and there are D dimensions in total available in the model, ideally, we would like to design

the model such that D = K. However, since K is unknown in most data, L and zdim become

hyperparameters that need to be tuned for different data sets.



CHAPTER 3. PROGRESSIVE LEARNING AND DISENTANGLING 26

Figure 3.10: MNIST traversing results following the same generation strategy and

network hierarchy as those presented in Figure 5 of ( [62]). The network has 3 layers

and 2-dimensional latent codes at each layer. Each image is generated by traversing

each of the two-dimensional latent codes in one layer, while randomly sampling from

the other layers. From left to right: The top layer z3 encodes the digit identity

and tilt; z2 encodes digit width (digits around top-left are thicker than digits around

bottom-right); and the bottom layer z1 encodes stroke width. Compared to VLAE,

the representation learned in the presented method suggests smoother traversing on

digits and similar results for digit width and stroke width.

3.5 Conclusion

In this chapter, we presented a progressive strategy for learning and disentangling hierarchical

representations, for answering the first research question: how to progressively learn repre-

sentations such that it can improve the quality and the disentanglement of representations.

Starting from a simple VAE, the model first learns the most abstract representation. Next,

the model learns independent representations from high- to low-levels of abstraction by

progressively growing the capacity of the VAE from deep to shallow. Experiments on several

benchmark data sets demonstrated the advantages of the presented method. Based on these

foundation methods and results, to address the rest research questions, we expand progressive

representation learning to a continual manner of learning and disentangling representations

in dynamic data environments, as we will describe in the next chapter.
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Table 3.1: Mutual information I(x; zl) between data x and latent codes zl at each l-th

depth of the network, corresponding to the qualitative results presented in Fig. 3.6

and Fig. 3.8 on 3Dshapes and MNIST data sets. Both VLAE and the presented

pro-VLAE models have the same hierarchical architecture with 3 layers and 3 latent

dimensions for each layer. Compared to VLAE, the presented method allocated

information in a more clear descending order owing to the progressive learning.

3DShapes I(x; z3) I(x; z2) I(x; z1) total I(x; z)

VLAE 4.41 4.69 5.01 12.75

pro-VLAE 6.94 6.07 0.00 13.02

MNIST I(x; z3) I(x; z2) I(x; z1) total I(x; z)

VLAE 8.28 8.89 7.86 11.04

pro-VLAE 9.83 8.24 6.28 10.93

Table 3.2: The effect of progressive implementation strategies, i.e., “fade-in” and

pre-trained KL penalty, on successful training rates. We conducted 15 ablations

experiments that each have 4 sub-experiments. As shown, the pro-VLAE cannot be

trained successfully without the presented implementation strategies, while each of

the strategies helps stabilize the progressive training.

no strategies pre-trained KL only fade-in only Both

0.0 0.667 0.733 0.867
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Table 3.3: Mutual information flow on progressive learning 3DShapes dataset, with

L = 2, zdim = 3, L = 3, zdim = 2, and L = 4, zdim = 1 accordinginly.

progressive step I(x; z2) I(x; z1) total I(x; z)

0 10.68± 0.19 10.68± 0.19

1 7.22± 0.30 5.94± 0.26 12.88± 0.20

progressive step I(x; z3) I(x; z2) I(x; z1) total I(x; z)

0 10.16± 0.13 10.16± 0.13

1 9.76± 0.05 7.36± 0.10 13.00± 0.02

2 6.83± 1.37 6.66± 0.17 5.80± 0.41 13.07± 0.02

progressive step I(x; z4) I(x; z3) I(x; z2) I(x; z1) total I(x; z)

0 4.89± 0.03 4.89± 0.03

1 4.77± 0.04 3.55± 0.04 8.14± 0.09

2 4.66± 0.04 3.75± 0.04 2.70± 0.10 10.67± 0.09

3 4.55± 0.11 3.53± 0.35 2.80± 0.19 2.17± 0.14 11.72± 0.03

Table 3.4: Mutual information flow on progressive learning MNIST dataset, with

L = 3, zdim = 1, L = 3, zdim = 3, and L = 4, zdim = 3 accordinginly.

progressive step I(x; z3) I(x; z2) I(x; z1) total I(x; z)

0 5.86± 1.19 5.86± 1.19

1 3.62± 1.04 4.64± 2.83 7.62± 2.63

2 3.88± 0.75 4.99± 0.98 2.37± 0.77 8.25± 1.65

progressive step I(x; z3) I(x; z2) I(x; z1) total I(x; z)

0 10.08± 0.10 10.08± 0.10

1 9, 97± 0.05 8.03± 0.17 11.01± 0.04

2 9.91± 0.04 8.09± 0.07 6.27± 0.02 11.02± 0.02

progressive step I(x; z4) I(x; z3) I(x; z2) I(x; z1) total I(x; z)

0 10.06± 0.22 10.06± 0.22

1 10.11± 0.06 7.95± 0.08 10.98± 0.02

2 10.06± 0.08 8.1± 0.04 6.39± 0.12 10.98± 0.06

3 9.99± 0.09 8.11± 0.03 6.45± 0.15 3.52± 0.07 11.03± 0.03



Chapter 4

Continual Unsupervised

Disentangling of Self-Organizing

Representations

In this chapter, we introduced an under-investigated research direction that extends unsuper-

vised representation learning to continual learning settings. Unlike learning and disentangling

representations in a static data environment where the model sees all semantic factors at

once, which is a typical setting, continually learning and disentangling sequentially-arrived

semantic factors is fundamentally different. In this scenario, the model needs to confirm

that it 1) does not forget previously learned factors, 2) is able to re-use latent dimensions

corresponding to shared factors, and 3) prevents new presentations to be entangled into

the old ones. We argue that a fundamental bottleneck is that the existing models often

treat continually-arrived data independently with little knowledge of how they are related

based on the representations. To address these challenges, we build our work from two

main components. In the first component, we developed a foundation method, a VAE with

self-organizing latent space, to learn the relational structure of data, for answering the second

research question: how to continually learn and accumulate knowledge of representations

from different data environments, as described in section 4.3.1. In the second component,

we use knowledge learned by the foundation model for continual representation learning,

29
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including data-summary-based generative reply, and use the relational structure to improve

continual disentanglement, for answering the third research question: how to continually

reuse the existing representations to facilitate learning and disentangling representations

given new data environments, as detailed explained in section 4.3.2.

4.1 Introduction

The progress in continual learning has been mostly made for supervised discriminative

learning, whereas continual unsupervised representation learning remains relatively under-

explored [1,45,46]. The few existing works have primarily focused on battling catastrophic

forgetting in the generative performance of a model: for instance, a common approach

known as generative-replay synthesizes past samples using a snapshot of the generative model

trained from past data, and then continually trains the model to generate both new data

and synthesized past samples [1, 45,46].

There is however another important yet under-explored question in continual unsupervised

representation learning: how to reuse, expand, and continually disentangle latent semantic

factors across different data environments? These are inherent in the human learning process:

while learning from new data (e.g., learning cars after bicycles), we are naturally able to

reuse shared semantic factors without re-learning (e.g., wheels), expand and disentangle

new semantic factors (e.g., the shape of cars), while accumulating knowledge about the

relationship among data environments based on these semantic factors (e.g., bicycles and

cars both have wheels but are different in shapes). Disentangled representation learning, as

a long-standing research topic, has demonstrated various benefits in generative modeling

and downstream tasks [21, 22, 25, 29, 36, 48]. With increasing recent interests in unsupervised

representation learning in a continual learning setting [38,46], it is important to investigate

the challenges and solutions to achieve disentanglement of sequentially-arrived semantic

factors in streaming data.

Reusing latent dimensions for learned semantic factors has mainly been attempted by a

teacher-student like approach where the student model is taught to infer and generate

similarly to a snapshot of the past models (teacher) on replayed data [1,45]. In [1], this is

further facilitated by explicitly masking out latent dimensions that are not actively used in a

data environment. Such masks however have to be heuristically defined before training on
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Figure 4.1: Through a self-organizing spike-and-slab mixture, CUDOS continually

distills knowledge about the relational structure of data environments with their

shared and distinct semantic factors.

the new environment. How to automatically discover latent dimensions explaining active

semantic factors underlying each data environment, in a continual fashion, remains an open

question.

Expanding learned semantic factors, in part, results naturally from continually optimizing a

generative model to newly arrived data [1, 45], or even progressively increasing the model’s

latent capacity on the same data [8,34]. These alone however would not uncover the relational

structure among data environments in the latent space. In [46], a mixture of Gaussians

has been used and continually expanded such that newly arrived data are clustered to an

existing or new mixture component. While this captures the expanding data distributions, it

does not consider the reuse of semantic factors among data clusters.

Continually disentangling semantic factors, until now, is limited to the native disentangling

ability inherent in VAE, or promoting the reusing of shared semantic factors [1, 45]. While

the common strategy of generative replay teaches a model what latent dimensions to use for

shared semantic factors on the replayed data [1, 45], no such guidance is available on new

data. As a result, as we will show, none of the existing approaches can prevent newly-learned

semantic factors to be entangled with re-used ones.



CHAPTER 4. CONTINUAL UNSUPERVISED DISENTANGLING 32

In this work, we show that the above limitations boil down to a fundamental bottleneck

in existing continual unsupervised learning of representations: that the learner is asked to

treat continually-arrived data independently, without knowing how they are related based

on the underlying semantic factors. To overcome this, we argue that the model needs to

learn two critical knowledge: latent dimensions explaining active semantic factors underlying

each data environment, and the relationship among the latter based on the former. We

present Continual Unsupervised Disentangling of self-Organizing representations (CUDOS)

that is able to accumulate the relational structure of continually-arrived data based on their

underlying active semantic factors, and exploiting this knowledge to guide disentangling of

sequentially-arrived semantic factors. As illustrated in Fig. 4.1, to accumulate the relational

structure of the data, we model the latent representations with a topologically-connected

mixture of distributions via Bayesian self-organizing maps (SOM) [28,57]. To automatically

discover active semantic factors underlying each data environment, we model each component

of the SOM mixture with a spike-and-slab distribution [51,52], such that the sparse spike

variable identifies latent dimensions explaining active semantic factors. This results in a

generative model with a self-organizing mixture of slab-and-spike distributions, where the

distilled knowledge – the relational structure of data environments and their associated active

semantic factors – supports 1) mixture-based generative replay and 2) continual disentangling

of sequentially-arrived semantic factors.

We evaluated CUDOS on both benchmark datasets for continual representation learning, and a

split version of 3DShapes [7] designed for quantitative evaluation of disentangling sequentially-

arrived semantic factors. In comparison to existing works, we showed that CUDOS not only

addressed catastrophic forgetting, but also improved – both quantitatively and qualitatively –

continual disentanglement of latent semantic factors and thereby downstream discriminative

tasks.

4.2 Related works

Deep Learning with SOM:The use of SOM has been explored within deep learning of

image classification [35], image clustering [15,39], and time-series prediction [16,23]. None

of these works, however, considered continual learning of representations. In the context of

continual learning, SOM was used to first learn the relationship among all discriminative

tasks, and then used to mask the neurons of a fully-connected layer for each task [3]. A
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dual-memory self-organizing architecture was also presented for learning object instances

and categories in life-long object recognition [43]. While both works shared our motivation

to leverage the ability of SOM to maintain and expand a memory of data distributions across

environments, neither considered continual unsupervised representation learning, or utilized

SOM as a topologically-connected Bayesian mixture model.

Inferring Active Semantic Factors in VAE: Learning meaningful representations is

a vital task for VAE, where large latent space often leads to latent dimensions that carry

little information [10]. Sparse coding and discrete latent space have proved to be elegant

solutions [42, 52]. Non-parametric discrete densities have been explored for stochastic

latent activation to improve disentanglement [19]. A discrete latent space based on vector

quantization was shown to solve posterior collapse [42], whereas sparsity was directly modeled

in a continuous latent space using spike-and-slab priors [52]. None of these concepts has

been extended to continual unsupervised learning of representations.

Continual Unsupervised Representation Learning: Most existing works in contin-

ual unsupervised representation learning relied on enhanced generative replay to combat

catastrophic forgetting of generation using learned semantic factors [1, 45, 56]. The two most

related works are those presented in [1] and [46]. In [1], to reuse latent dimensions explaining

semantic factors shared with past data, a mask for active latent dimensions specific to each

data environment was used [1]. This mask was heuristically determined before training

on the new data, which will affect the learning and sharing of latent dimensions on the

new data. Furthermore, while this strategy protects latent dimensions specific to past data

environments (not shared and thus turned off), it does not prevent new semantic factors

from being entangled with the shared dimensions. CUDOS presents fundamental solutions to

these problems by 1) principled variational inference of active latent dimensions leveraging

slab-and-spike priors, and 2) guiding continual disentangling of sequentially-arrived semantic

factors by exploiting the relational structure of data.

In [46], a mixture of Gaussians was continually expanded as new data arrive. This shares our

intuition that continual learning of representations can benefit from accumulating an evolving

summary of data in the latent space. How the different data clusters are related in terms of

shared and distinct semantic factors, however, was not exploited in [46]. In contrast, CUDOS

exploits the relationship among data clusters based on their underlying active semantic

factors, and uses that to facilitate continual reuse and disentangling of sequentially-arrived

semantic factors.
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4.3 Methods

We first establish the foundation for CUDOS: a VAE with a self-organizing mixture of

spike-and-slab priors to learn the relational structure of data based on their active semantic

factors (Section 4.3.1). We then describe how to use this data summary for generative

replay (Section 4.3.2), and use the relation between new and past data to improve continual

disentangling of representations (Section 4.3.2).

4.3.1 Learning the Relational Structure of Data via Active Semantic

Factors

Fig. 4.1 outlines the foundation model underlying CUDOS. Given data x, we are interested

in learning representations of meaningful semantic factors within a latent vector z ∈ RJ .
While doing so we encourage sparse coding to discover latent dimensions explaining active

semantic factors in VAE [52], while learning the relational structure of data based on these

semantic factors.

Generative Model: To accumulate the relational structure of data, we model the latent

space by a mixture of distributions using Bayesian-SOM [57] with K nodes. Additionally,

to discover the active semantic factors for each data environment, we model each mixture

component as a spike-and-slab distribution that encourages sparsity in the latent dimensions

[52]. This gives rise to the following generative process:

w ∼ Cat(π), pψk(z|wk = 1) =

J∏
j=1

[αjkN (zj ;µjk, (σ
j
k)

2) + (1− αjk)δ(z
j)],

pψ(z) =

K∑
k=1

p(z|wk)p(wk), x ∼ pθ(x|z), pθ,ψ(x, z, w) = pθ(x|z)pψ(z|w)p(w).

(4.1)

where ∗j denotes the j-th element of ∗, and δ(∗) Dirac delta function centered at zero. The

mixing prior p(w) is parameterized by π, πi ≥ 0 and
∑
πi = 1. The latent variable z from

the k-th mixture component is parametrized by ψk = {µk,σ2
k,αk, πk}, where parameter αk

introduces sparsity to mask out inactive dimensions. Data x are generated from z via a

neural network parametrised by θ.

Inference Model: We define variational approximations of the posterior density p(z, w|x)
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as:

q(z, w|x) = qϕ(z|x)pψ(w|z), qϕ(z|x) =
J∏
j=1

[α̃jN (zj ; µ̃j , (σ̃j)2) + (1− α̃j)δ(zj)],

pψ(wk = 1|z) = p(z|wk, ψk)p(wk = 1)∑K
k′=1 p(z|wk′ , ψk′)p(wk′ = 1)

.

(4.2)

where pψ(wk = 1|z) is the posterior probability of the k-th mixture component. For

parameters µ̃ and logσ̃2 of the spike-and-slab distribution, their inference is amortized as

the output of an encoding network parameterized by ϕ. For parameter α̃, considering that

similar data should share latent dimensions for common semantic factors, we infer it at a set

level as inspired by the neural statistician [13,20]. We discuss how to determine the set in

Section 4.3.2.

Variational Inference: The parameters ψ, θ, and ϕ are optimized by the ELBO loss as:

log p(x) ≥ LELBO = Eqϕ(z,w|x)[log
pθ,ψ(z,x, w)

qϕ(z, w|x)
]

= Eqϕ(z,w|x)[log
pθ(x|z)pψ(z|w)p(w)
qϕ(z|x)pψ(w|z)

]

= Eqϕ(z|x)[log pθ(x|z)]

− Epψ(w|z)[DKL(qϕ(z|x)||pψ(z|w))]

− Eqϕ(z|x)[DKL(pψ(w|z)||p(w))].

(4.3)

The first reconstruction term is similar to that in the vanilla VAE. The second term measures

the KL-divergence between qϕ(z|x) and its conditional prior, measured over the posterior

distribution of the SOM mixture pψ(w|z). Specifically, we estimate the expectation over

pψ(w|z) as:

Epψ(w|z)[DKL(qϕ(z|x)||pψ(z|w))] =
K∑
k=1

pψ(wk = 1|z)DKL[qϕ(z|x)||pψ(z|wk = 1)], (4.4)

where pψ(wk|z) can be computed in a batch during forward propagation, and

DKL[qϕ(z|x)||pψ(z|wk = 1) can be derived following [52] as:

J∑
j

[α̃j(log
σjk
σ̃j

+
(µ̃j − µjk)

2 + (σ̃j)2

2(σjk)
2

− 1

2
) + (1− α̃j) log

1− α̃j

1− αjk
+ α̃j log

α̃j

αjk
] (4.5)
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This KL loss encourages qϕ(z|x) to follow a mixture density with the mixing probability

determined by the posterior probability of each component given z. Note that the latter

automatically considers sharing of semantic factors between the inferred z and each mixture

component k (via spike variable α̃ and αk). The third term in Eqn. (4.3) measures the

KL-divergence between the posterior density of w and its prior (set to be uniform in this

work). The expectation is estimated by Monte Carlo samples.

Iterative Optimization: We maximize the ELBO loss as defined in Eqn. (4.3) by iter-

ative optimization. In each iteration, we first fix ψ of the SOM mixture and maximize

Eqn. (4.3) with respect to the VAE’s parameters θ and ϕ by stochastic gradient descent with

reparameterization trick [26,52]: at the first iteration, the SOM-mixture is initialized as a

uniform mixture of ψ = {0, I,0.2} and the optimization becomes a standard ELBO with

spike-and-slab priors.

With the updated θ and ϕ, we then maximize Eqn. (4.3) with respect to the SOM-mixture

parameter ψ which, as derived in Eqn. (4.6), amounts to maximizing the expectation of

the log-likelihood of pψ(z) over the variational posterior distribution of qϕ(z|x): ψ∗ =

argmaxψEqϕ(z|x)[log pψ(z)]. To make the partial derivative of ψ clearer, we first rewrite the

last two terms of ELBO in Eqn. (4.3) as:

− Epψ(w|z)[DKL(qϕ(z|x)||pψ(z|w))]− Eqϕ(z|x)[DKL(pψ(w|z)||p(w))]

=

∫
pψ(w|z)

pψ(w|z)
∫
qϕ(z|x)log

pψ(z|w)
qϕ(z|x)

dzdw + Eqϕ(z|x)
∫
pψ(w|z)log

p(w)

pψ(w|z)
dw

=

∫
qϕ(z|x)

qϕ(z|x)
∫
pψ(w|z)logpψ(z|w)dzdw

−
∫
pψ(w|z)

pψ(w|z)
∫
qϕ(z|x)logqϕ(z|x)dzdw

+ Eqϕ(z|x)
∫
pψ(w|z)log

p(w)

pψ(w|z)
dw

= Eqϕ(z|x)
∫
pψ(w|z)log

pψ(z|w)p(w)
pψ(w|z)

dw − Epψ(w|z),qϕ(z|x)[logqϕ(z|x)]

= Eqϕ(z|x)[logpψ(z)]− Epψ(w|z),qϕ(z|x)[logqϕ(z|x)]

(4.6)

Therefore the optimized ψ∗ can be solved by:

ψ∗ = argmaxψELBO = argmaxψEqϕ(z|x)[logpψ(z)] (4.7)

We follow the theory in [17] to optimize ψ using stochastic gradient descent.
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Figure 4.2: (a) Combating catastrophic forgetting by generative replays from SOM-

mixture, and (b) Continually disentangling by using the relation between new and

past data based on their underlying shared semantic dimensions.

4.3.2 Continual Learning with CUDOS

We now consider a setting of continual unsupervised learning where the label of the underlying

data environments is unknown. Following existing approaches [1, 45, 46], we maintain a

snapshot of the model parameters [ψold, θold, ϕold] every τ training steps. These model

snapshots are used to guide (1) synthesizing replayed samples to teach the model to perform

consistently on past data (Section 4.3.2), and (2) continually disentangling sequentially-

arrived semantic factors using the relationship between past and new data (4.3.2).

Inferring α for streaming data

As mentioned in Section 4.3.1, we choose to infer α̃ at a set level to leverage shared information

underpinning a set of data. If the boundary between data environments is known, α̃ can

be shared for all data within the same data environment. Alternatively, if the boundary of

data environments is not known, we assume α̃ to be shared within each mini-batch xbatch.

Specifically, we maintain ϕα = {α̃1, α̃2, · · · , α̃d} for d number of sets with distinct underlying

semantic factors. Given a new batch of xbatch, we first determine if it can be described by an

existing α̃, or a new α̃d+1 has to be allocated if the existing ϕα fails to describe xbatch well:

α̃new =

α̂, if Ep(z|µ̃,σ̃2,α̂)[Lr] ≤ Tα,

α̃d+1, otherwise,
(4.8)

where α̂ = argminα̃∈ϕαEp(z|µ̃,σ̃2,α̃)[Lr], Tα is a threshold for the reconstruction error Lr of

xbatch averaging over pixels. Note that Equation (4.8) only determines how a data batch
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xbatch is associated with a variable α̃. The values of these variables are optimized during

variational inference.

Generative replay with CUDOS

To combat forgetting, we synthesize data samples following the generation process as defined

in Eqn. (4.1), using the snapshot of the SOM mixture with parameters ψold. As illustrated

in Fig. 4.2(a), on the synthesized samples x̃old and their corresponding latent samples zp, we

encourage the model to be consistent with its past snapshot [1, 31,45]:

Lold = Lc[S(pθ(x|zp)), x̃old] + Lc[S(qϕ(z|x̃old)), zp], (4.9)

where Lc is mean squared error and S(·) is a sampling process. This strategy combines the

two key existing concepts in replay mechanism: as in generative replay [45, 49], data are

synthesized quickly and readily with limited burden on storage; as in core-set methods [6,41],

the SOM-mixture provides a representative summary of data ensuring that more important

mixture components are more frequently re-used in future training.

Guiding Continual Disentanglement

Generative replay lacks mechanisms to teach the model how to disentangle newly-arrived

semantic factors from latent dimensions already used for previously-learned semantic factors.

CUDOS provides a unique opportunity to address this issue by its ability to describe the

relation between new and past data. For a new data x, its shared latent dimensions with

SOM summary of past data (parameterized by ψold) is determined by a mask sψold
computed

by a scaled and displaced Sigmoid function:

sjψold
= Sigmoid(b(α̃j · αjvBMU,ψold

− 0.5)), (4.10)

where α̃ is the spike variable inferred from x and αvBMU,ψold
the spike variable of the best-

matching unit vBMU (the component with the largest posterior) on the snapshot of the past

SOM. b scales and sharpens the Sigmoid function towards a gated function [52]. Note that

neither sψold
or vBMU is fixed; they are functions of the unknown spike variables α̃ and

αvBMU,ψold
. We now use this to (1) maintain consistency on latent dimensions for shared

semantic factors (if any), and (2) prevent entangling new semantic factors into the shared

latent dimensions.
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Reusing Shared Semantic Factors: To teach the model to reuse latent dimensions

corresponding to previously-learned semantic factors on new data x, we ask the VAE encoder

qϕ to be consistent with its past snapshot qϕold
in the shared dimensions when inferring from

the new data:

Lnewz = Lc[S(qϕ(z|x))⊙ sψold
, S(qϕold

(z|x))⊙ sψold
], (4.11)

where ⊙ is element-wise multiplication.

Disentangling New Semantic Factors: Now since the past model does not necessarily

know how to generate new data x, how does it teach the new model? Intuitively, given

the relation between x and the past data as determined in Eqn. (4.10), even though the

past model does not know how to generate the new x, it would know how to generate from

those shared semantic dimensions in x. Therefore, as illustrated in Fig. 4.2(b), if we take a

sample zvBMU,ψold
from the mixture component vBMU, and replace its latent values with those

inferred from x at the shared latent dimensions, the model should know how to generate

from this combined latent vector zcom in a way consistent with the past generator:

zvBMU,ψold
= S(pψold

(z|vBMU)), zcom = zvBMU,ψold
⊙ (1− sψold

) + S(qϕ(z|x))⊙ sψold
,

(4.12)

Lnewx = Lc[S(pθold(x|zcom)), S(pθ(x|zcom))]. (4.13)

Intuitively, if the model entangles new semantic factors into the shared dimensions, it will

be penalized as the past decoder does not know how to generate from these new factors. As

we will demonstrate, this constraint – uniquely made possible by CUDOS – is critical in

continual disentanglement.

Summary: In summary, the overall loss for CUDOS is:

L = LELBO + γ1Lold + γ2Lnewz + γ3Lnewx, (4.14)

where γ1, γ2, and γ3 are weighting hyperparameters. This extends the foundation objective

function to continual learning settings, which promotes the sharing of shared semantic factors

between new and past data environments, and the disentangling of new semantic factors.
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Figure 4.3: Continually learning a split version of 3DShapes where the variations of

floor colors were absent initially and appeared later. Black bounding boxes annotate

in which latent dimensions the new semantic factors are learnt. (a): Traversing

each latent dimension after training on data with no floor color variations. (b):

Traversing each dimension after training on the data with floor color variations,

where comparison of CUDOS with baseline methods shows the improved ability to

disentangle new semantic factors into previously inactive dimensions.

4.4 Experiments and Results

We evaluated CUDOS on (1) a split version of 3DShapes [7] for quantitative evaluation of

continual disentanglement, (2) MNIST [30], Fashion-MNIST [55], and their moving versions

in [1], and (3) split-CelebA [35].

Split-3DShapes: We quantitatively evaluated the continual disentanglement of past and

new representations in a split version of 3Dshapes with two sub-sets: The first one only had

red floor and wall, and the second added all floor colors except red. A successful continual

learning of representations is expected to continually learn the new factor of floor color while

reusing the others learned in the first set. We compared CUDOS to four groups of baselines:

(1) naive VAE [26], naive TC-VAE [9], and VAE with gradually increased capacity [8]

without an explicit mechanism to combat catastrophic forgetting, (2) unsupervised continual

learning reliant on generative replay [1, 45] and heuristically-defined masks of active latent

dimensions [1], (3) unsupervised continual learning using a mixture of Gaussian in the

latent space [46], and (4) a continual learning version of VQ-VAE [42] (a prototype-based
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Table 4.1: Quantitative metrics for disentanglement. MIG: mutual information

gap [9]. MIG-sup: supplement mutual information gap [34]. I(zpast; factorsnew):

mutual information between already active dimensions and the new factors. ∆

recon-loss: the relative loss change for reconstructing past data.

Method MIG ↑ MIG-sup ↑ I(zpast; factorsnew) ↓ ∆ recon-loss ↓

Naive VAE 0.23±0.05 0.23±0.09 1.22±0.30 0.35±0.04

Naive TC-VAE 0.30±0.14 0.38±0.17 1.11±0.16 0.36±0.14

Burgess2018 0.19±0.03 0.13±0.02 1.15±0.10 0.30±0.04

Continual TC-VAE 0.14±0.11 0.25±0.11 1.31±0.67 0.01±0.00

Continual VQ-VAE 0.12±0.05 0.23±0.05 1.47±1.24 0.01±0.00

Achille2018 0.16±0.06 0.23±0.08 0.64±0.20 0.03±0.01

Rao2019 0.10±0.08 0.09±0.04 0.89±0.08 0.04±0.01

Ramapuram2020 0.20±0.06 0.30±0.07 1.12±0.22 0.00±0.00

CUDOS 0.24±0.05 0.33±0.05 0.02±0.03 0.02±0.01

method similar to SOM) and TC-VAE [9] (a representative disentangling VAE) with replay

mechanism Lold. Experiments on each model were executed at least 5 times.

Choosing suitable disentanglement metrics is vital as different metrics may measure different

aspects of the disentanglement [37, 59]. Here we consider two types of metrics. First, to

form a complete measurement of the one-to-one relationship between latent dimensions and

semantic factors, we chose MIG-sup [34] that penalizes learning multiple semantic factors

into the same dimensions in combination with the complementary MIG [9]. Second, to focus

on the disentanglement of sequentially-arrived semantic factors, we compute the mutual

information I(zpast; factorsnew) between active dimensions for past data, and new factors

in the new data. Ideally, if a model manages to disentangle new semantic factors into

dimensions not used by previous data, I(zpast; factorsnew) should be close to 0. Finally, we

also compute the relative change of reconstruction loss for past data to measure forgetting.

As shown in Fig.4.3(a), major semantic factors such as object shape, size, and color were

learned from the first subset. When a new data stream is introduced (shown in Fig.4.3(b)),

while all models were able to reuse most of the latent dimensions corresponding to previously-

learned semantic factors, all baseline models entangled new semantic factors – the floor
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color – with these dimensions. In contrast, CUDOS was able to not only reuse shared latent

dimensions, but also disentangle new ones into previously inactive dimensions. Note that we

include results of [45] in Fig.4.3 as an example of the baseline models that have constraints

on replayed data, annotated by Lold. Visual traversing results of other comparison models

can be found in Section.4.4.3. Additional results on different sequences of split-3DShapes

can be found in Section 4.4.7.

Quantitatively, as summarized in Table. 4.1, CUDOS witnessed the lowest mutual informa-

tion I(zpast; factorsnew) among all comparison models, as well as the best disentanglement

performance as measured by MIG and MIG-sup. This carefully designed experiment pro-

vided clear evidence that CUDOS is able to continually disentangle new semantic factors

without entangling them with shared ones learned from the past. It also showed that this

cannot be achieved by naively using generative replay to extend existing disentangling or

prototype-based VAE (e.g., TC-VAE and VQ-VAE) into continual versions. More discussion

of differences between static and continual disentanglement can be found in Section 4.4.8.

Fig. 4.4 (a) shows that the SOM-mixture continually updated a summary of the relation

between past (blue box) and new data environments (black box) based on their active latent

dimensions (b). T-SNE plots of the learned latent representations after continual learning as

an alternative way to visualize the relation among data are provided in Section 4.4.6.

Moving MNIST & Fashion-MNIST: Based on the original MNIST and fashion-MNIST

dataset, we created the moving version of them by: (1) Resize the original 28*28 images

to 36*36 images, (2) Place the original 36*36 images image at the top-left of a 64*64 black

background. (2) Apply translation for both x and y axis with values [5,10,15,20,25]. We then

tested CUDOS on sequences of Fashion-MNIST, MNIST, and moving versions of them similar

to that presented in [1]. Fig.5 presented results for one sequence: Moving Fashion-MNIST

→ Moving MNIST → Fashion-MNIST. As shown, CUDOS was able to disentangle new

semantic factors (green boxes), while re-using those learned from the past (red boxes). For

instance, the positional semantic factors learned from Moving Fashion-MNIST were reused

while learning Moving MNIST.

CelebA: We further designed experiments for continually learning over split versions of

CelebA data. Fig.4.6 provide examples of results obtained by two different splits: by age

(top), and by bangs (bottom). Traversing results on selected dimensions showed that CUDOS

was able to reuse latent dimensions for previous semantic factors, while learning new ones
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Figure 4.4: SOM results on split-3DShapes. (a) SOM prototypes learnt after the first

(left) and second (right) data environments. Black boxes label prototypes associated

with current (black) and replayed data samples (blue), while the rest of the prototypes

are mixture-interpolated. (b) Average spike parameter αk. Prototypes of the second

data environment (black) shared active dimensions from the first data environment

(blue) with added dimensions. Gray represents inactive dimensions.

related to the new attributes.

4.4.1 Benefits on downstream tasks

To evaluate the usefulness of the disentangled representations learned by CUDOS, we focused

on shared tasks related to the continually-learned semantic factors shared among past and new

data environments, including predicting the scale and orientation of 3DShapes, and predicting

the X- and Y- positions of Moving-MNIST. For each task, we identified the corresponding

active latent dimensions after learning in data environment 1, and continually trained linear

regressors to predict the ground-truth labels using these active latent dimensions: the

intuition is that, if new semantic factors are entangled into these shared dimensions, the

performance of the regressor will decrease during continual learning. For comparisons, [1]

and [45] were used as baselines and their results aggregated for 3Dshapes, and [45] was

used as the baseline for Moving-MNIST. Table 4.2 summarizes the R2 scores of each task

obtained on new data along with their changes ∆ from the R2 scores obtained on old data

prior to continual learning. As shown, CUDOS achieved the best final R2 score for scale

and orientation regression, along with a minimum drop in performance over the course of
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Figure 4.5: Continual learning of Moving Fashion-MNIST and MNIST.

continual learning. For Moving-MNIST, CUDOS and baselines achieved similar results on

X-Y position regression, with in general less significant performance drop in comparison to

3DShapes. We argue that this is because X-Y position regression on a clean background is an

easier task, than scale and orientation regression on a more complex data environment like

3DShapes. Additionally, Table 4.3 shows digit-classification performance on Moving-MNIST

using active and inactive dimensions, which suggested that active semantic factors for the

digit data environments are learned properly.

4.4.2 Ablation study

Table. 4.4 presents a detailed ablation study on the contribution brought by the different

ingredients within CUDOS. We did not include results from VAE+ Lold because they are
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3DShapes baselines CUDOS

Scale R2 ↑ 0.05±0.07 0.58±0.13

Orientation R2 ↑ 0.08±0.05 0.93±0.02

∆ Scale ↑ -0.92±0.10 -0.13±0.13

∆ Orientation ↑ -0.81±0.15 -0.00±0.01

Moving-MNIST baselines CUDOS

X-pos R2 ↑ 0.67±0.09 0.70±0.06

Y-pos R2 ↑ 0.75±0.05 0.66±0.23

∆ X-pos ↑ 0.053±0.13 0.054±0.08

∆ Y-pos ↑ 0.01±0.06 -0.15±0.27

Table 4.2: R2 score on new data & its change ∆ from that on old data prior to

continual learing.

Table 4.3: Continual digit classification accuracy (testing) based on active or inactive

dimensions.

moving fashion moving MNIST fashion

active 0.74 0.85 0.86

inactive 0.4 0.17 0.35

represented by the work of [45] as reported in Table. 4.1. As shown, the sparsity introduced

by spike-and-slab distribution plays a significant role in improving the disentanglement ability

of CUDOS. While SOM alone does not appear to improve the general disentangling ability

of the model, it does seem to help disentangle new semantic factors from previously learned

ones; more importantly, it is a necessary component for learning the relational structure of

data to guide disentanglement, i.e., for enabling Lnewx in Eqn. (4.13). Indeed, the combined

introduction of SOM and Lnewx brings significant improvement in the ability of CUDOS

to disentangle new semantic factors from previously learned ones, as it is evident in the

improvement achieved in MIG-sup and I(zpast; factorsnew). More implementation details

can be found in the following section.
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Figure 4.6: CelebA split by age (top row) and bangs (bottom row). The green boxes

highlight the newly learned semantic factors, and the red boxes highlight the reused

ones.

4.4.3 Traversing results on split-3DShapes and Moving-MNIST

Here we presented additional traversing results for baseline methods, along with their

I(zpast; factorsnew) value for 3DShapes, and additional traversing results for baseline methods

on Moving-MNIST.
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Figure 4.7: Burgess2018, I(zpast; factorsnew): 1.185

Figure 4.8: Achille2018, I(zpast; factorsnew): 0.602.
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Figure 4.9: Ramapuram2020, I(zpast; factorsnew): 0.877

Figure 4.10: Continual VQ-VAE, I(zpast; factorsnew): 1.402
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Figure 4.11: Burgess2018.

Figure 4.12: Achille2018.
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Figure 4.13: Ramapuram2020.

Figure 4.14: Continual VQ-VAE.
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Table 4.4: Top: Continual digit classification accuracy (testing) based on active or

inactive dimensions. Bottom: Ablation study. SS: spike-and-slab density. Lold/Lnew:

constraints on replayed/new data. *: VAE+SOM

Method MIG ↑ MIG-sup ↑ I(zpast; factorsnew) ↓ ∆ recons ↓

*+Lold 0.13±0.03 0.13±0.03 0.97±0.24 0.01±0.00

VAE+SS+Lold 0.30±0.12 0.29±0.12 0.78±0.77 0.01±0.10

*+SS+Lold 0.22±0.07 0.24±0.08 0.65±0.27 0.02±0.00

*+SS+Lold+Lnewz 0.22±0.04 0.32±0.09 0.07±0.05 0.02±0.00

CUDOS (above+Lnewx) 0.24±0.05 0.33±0.05 0.02±0.03 0.02±0.01

4.4.4 SOM Prototypes

Additional SOM prototypes learnt for Moving-MNIST are shown in Fig 4.15. In SOM, the

presented model was able to remember and accumulate old representations, e.g., fashion

digits, while learning new representations, e.g., number digits, Additionally, the shared

representations, e.g., the x-y translation, were changing smoothly among prototypes.
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Figure 4.15: Prototypes learnt for continual learning on Moving-Fanshion-MNIST to

Moving-MNIST to MNIST.

4.4.5 Data environments mapping on SOM during training

In Fig 4.16 and Fig 4.17 we presented additional data environments’ mapping density on

SOM during continual training. As shown in Fig 4.17, the presented model is able to reuse

existing SOM prototypes while creating new prototypes.
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Figure 4.16: Mapping density on SOM of the first data environment of split-3DShapes

during training.

Figure 4.17: Mapping density on SOM of the second data environment of split-

3DShapes during training. Dots without black-boundaries are replay data.
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Figure 4.18: T-SNE plots for 3DShapes factors.

4.4.6 T-SNE for 3DShapes factors

Here we presented additional T-SNE plots for the learned latent representations of our model

(colored by the generative factors of 3DShape) after continual learning of split-3DShape as

shown in Fig 4.3. As shown in Fig.4.18, some factors such as floor color (10 classes) and

shape (4 classes) formed good clusters while some more difficult factors such as orientation

(15 classes) and scale (8 classes) formed fewer discriminative clusters.

4.4.7 Additional experiments of split-3DShapes

Here we first presented additional experiments of split-3DShapes with two splitting versions

that each has three data environments. The first version, as shown in Fig 4.19, is starting

with no floor and wall color variations and then continually added them. The second version,

as shown in Fig 4.20, was starting with no scale and wall color variations and then continually

added them. For most latent dimensions during continual learning, CUDOS was able to

reuse those corresponding to previously learned semantic factors and disentangle new ones

into previously inactive dimensions.

Next, we presented a reversed sequence of split-3DShape, where the first data environment

includes all semantic factors and the second one includes a subset that doesn’t have the floor
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Figure 4.19: Continually learning a split version of 3DShapes where the variations of

floor and wall colors were absent initially and appeared later. Each row of images

is traversing each latent dimension after training on data environment titled above.

Black bounding boxes annotate where the new semantic factors are learnt.

color variations (only red remained). As shown in fig 4.21, our model was able to reuse all

previous semantic factors without any expansion of latent space. our model was able to

reuse all previous semantic factors without any expansion of latent space. Furthermore, our

model was able to remember how to generate the variations of the missing floor color in the

second data environment after continual training.

4.4.8 Discussion of differences between static and continual disen-

tanglement

Continually disentangling sequentially-arrived semantic factors is fundamentally different

from disentangling a static dataset where the model sees all semantic factors at once. The

challenges cannot be addressed by state-of-the-art (SOTA) disentangling VAEs such as

FactorVAE [25] and TC-VAE [9]. The continual setting sees significant challenges such as
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Figure 4.20: Continually learning a split version of 3DShapes where the variations of

scale and wall colors were absent initially and appeared later. Each row of images

is traversing each latent dimension after training on data environment titled above.

Black bounding boxes annotate where the new semantic factors are learned.
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Figure 4.21: Continually learning a reversed sequence of split-3DShape where all

semantic factors were presented in the beginning but later the variation of floor

color was removed (only red remained). Each row of images is traversing each latent

dimension after training on data environment titled above.
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forgetting (including forgetting learned semantic factors) and, as in other continual learning

problems, cannot be expected to see similar disentanglement performance to those reported

on static settings. That’s why the non-continual baselines in Table 4.1, including naive

VAE, naive TC-VAE, and [8], all showed weaker performance than what would have been

expected in a static learning setting. Furthermore, because these models are not designed for

continual learning, they will also face challenges such as catastrophic forgetting. We can take

a closer look at this by taking naive TC-VAE versus continual TC-VAE (with generative

replay mechanism) as an example. As shown in Table 4.1, naive TC-VAE achieved overall

better MIG and MIG-sup scores because they can forget about previous data and focus on

disentangling the new data (in split 3DShapes, the two sequentially-presented datasets share

many latent factors but one). Therefore, forgetting previous semantic factors did not create

a large performance drop in MIG and MIG-sup scores. This catastrophic forgetting however

is reflected in the reconstruction loss, which increased from 2365 to 3207 (around 35%

change) on the previous data. In addition, the I(zpast; factorsnew) metric further shows that

naive TC-VAE is not able to separate new semantic factors from previously-learned latent

dimensions, but rather achieved relatively high disentangling by simply forgetting previous

factors and learning on the new data itself. This is similar to naive VAE’s performance.

By extending TC-VAE to a continual learning setting with generative replay, the continual TC-

VAE was able to remember how to reconstruct the previous data, where the reconstruction loss

only increased from 2376 to 2395 (0.7% change). However, its disentanglement performance

including MIG and MIG-sup dropped. This demonstrates the aforementioned challenges that

disentangling sequentially-arrived semantic factors (while remembering the previous factors

at the same time) is fundamentally different from disentangling all seen factors at once. It

also shows that such challenges cannot be addressed by either naive SOTA disentangling

VAEs, or simply extending these SOTA disentangling VAEs into a continual setting (via

standard techniques such as generative replay). We believe these provide further evidence

for the contribution of the presented work.

4.4.9 Hyper-parameters settings and implementation strategy

We set γ1 = 0.25, γ2 = 1, γ1 = 0.35, b = 10 in all experiments. Snapshot of the model is

updated every τ = 1500 iteration step. Regarding weights in Eqn. (4.14), in our experiments,

generally, we are trying to avoid certain parts of the loss function becoming too large or

small, and we found a rule-of-thumb weight value described above across different datasets.
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The most tricky part is the weighting for the constraints of old data and new data. We found

a slightly higher weight on new data can achieve better continual disentanglement results.

We reason that the constraint on new factors is more difficult compared with reconstructing

old data, and therefore emphasizing more on that (higher weight) can be helpful. In general,

we didn’t find obvious differences within around 30% percent changes of each weight. Putting

them too high (larger than the ELBO term) will affect the original continual learning of

new data. Metrics in Table. 4.1 are calculated in a setting where the boundary of data

environments is known.

4.5 Conclusion

In this chapter, we demonstrated that an overlooked key ingredient to continual unsupervised

learning of representations is to exploit the relational structure of data based on their under-

lying active semantic factors. We extended our previous research on progressive presentation

learning to continual representation learning. We explained and demonstrated the progressive

learning strategies proposed in chapter 3 and other VAEs for static data environments failed

to naively apply to continual learning scenarios. Specifically, we enhanced the idea of growing

the capacity of the model from progressive learning by developing a Bayesian-SOM latent

space to not only continual learning but also accumulating representations. We presented

CUDOS, a novel VAE with self-organizing spike-and-slab mixtures, to address the challenges

in continual representation learning and disentangling.



Chapter 5

Conclusion and Future Works

In this dissertation, we pointed out and reviewed the important aspects of unsupervised

representation learning and its challenges. We approached the challenges by asking three

research questions for improving unsupervised representation learning, especially in the

aspects of progressive and continual learning and disentangling. We presented several

advanced unsupervised representation learning methods with comprehensive experiments to

demonstrate their performance in both typical static data environments and dynamic data

environments.

5.0.1 Future Works

Robust optimization of continual representation learning: We plan to advance our

research progress for continual unsupervised learning of representations, especially in reusing,

expanding, and continually disentangling learned semantic factors across data environments.

In this dissertation, we tackled this problem via a novel definition of the shared representations

of the streaming data environment based on their active dimensions, such that the shared

representations can be optimized instead of heuristically determined. In the future, we plan

to advance this direction by investigating information-controllable representation learning

by explicitly defining and optimizing the amount of information during progressive and

continual representation learning for better interpretability and trustworthy AI.
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Fair and distributionally-robust representation learning: Underrepresented subgroups

are often experiencing the biased performance of machine learning models, and the differential

performance of deep learning models in well- and under-represented subgroups remains

relatively under-explored. Distributionally robust optimization (DRO) was shown to be an

effective approach that minimizes the worst-case performance of the model. Most existing

approaches however require the subgroups to be known. Furthermore, the coexistence of

multiple subgroup attributes (e.g., gender and ethnicity) in the same data leaves an open

question as to how addressing disparity for one subgroup may benefit or harm other types of

under-represented subgroups. We plan to explore the role of unsupervised representation

learning in improving subgroup robustness without subgroup supervision.

Comprehensive metrics and evaluations for continual disentanglement: The

evaluations of disentanglement have been a long-standing problem and, as far as we know, all

existing disentanglement metrics are each focused on a specific perspective of disentanglement.

In this dissertation, we proposed a new metric MIG-sup that supplements information-

based metrics and reported the first disentanglement performances in continual settings.

In the future, we plan to investigate novel metrics and experimental protocols for more

comprehensive evaluations of continual representation learning and disentangling, such as

how existing representations remain the same, and how new representations are separated

from old ones.

Learn minor disease-specific representations: Compared to many visual benchmarks,

disease-specific factors in medical images may be buried by other more significant factors

in terms of contribution to pixels distribution (e.g., a lung nodule area vs. torso shape &

orientation). This, we believe, may explain the relatively limited progress of unsupervised

representation learning in medical images despite its recent traction in other visual domains.

In the future, we plan to extend our works of representation learning to resolve the unique

challenges of medical areas, especially learning and capturing minor disease-specific features.
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[16] Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar
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