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Quantifying the Nexus of Climate, Economy, and Health: A State-of-the-Art
Time Series Approach

by KAMERON BLAIR KINAST

Extreme weather events pose significant threats to human life, the economy, agri-
culture, and various other socio-economic aspects. This thesis presents a compre-
hensive analysis of the patterns of climate factors and their impact on the economy
and human health using state-of-the-art and emerging statistical machine learning
techniques. This research consists of two parts: exploring and comparing the ef-
fectiveness of statistical models with respect to climate time series forecasting and
analyzing the effects on the economy and human health. The study employs a
predominantly computational approach, leveraging R, Python, and Julia to demon-
strate the role of statistical computing in understanding climate change and its im-
pacts. This thesis aims to construct powerful statistical models that establish a func-
tional relationship between climate measurements, economic indicators, and human
health. Furthermore, we speculate on potential causal relationships within the data
to contribute to a deeper understanding of the causes and consequences of extreme
weather events. By providing insights into the complex interplay of climate factors,
economy, and health, this research seeks to inform evidence-based policy decisions
that help mitigate the adverse effects of extreme weather events and foster resilience
in the face of dangerous climate change.
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Chapter 1

Introduction

1.1 Background

How has the climate changed over the past 100 years? Figure 1.1 presents the change
in the average maximum and minimum temperatures in the United States. In both
cases, you can see the average temperatures are increasing over time from 1950 to
2022. Within the figure, a binomial smoothing filter is a data smoothing technique
that reveals the underlying trends within the data (Aubury and Luk, 1996). Ris-
ing average maximum and minimum temperatures can be associated with changes
in weather patterns. For instance, heat waves and winter storms, known as extreme
weather events, have become more severe, long-lasting, and frequent due to increas-
ing temperatures.

FIGURE 1.1: Line graphs of contiguous U.S. Maximum (top) and Min-
imum (bottom) temperatures from 1950 to 2022 (Climate at a Glance:

National Time Series 2023).
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Extreme weather events have become increasingly frequent and intense in recent
years, posing significant risks to human life, the economy, agriculture, and various
other aspects of society (Ebi et al., 2021). Extreme weather events are crucial weather
phenomena that record above the thresholds of historical measurements (Senevi-
ratne et al., 2021). According to National Weather Services, extreme weather events,
known as Storm Data Events, can be defined in Table 1.1 and many more.

Events Type Events Type Events Type Events Type
Avalanche Astronomical Low Tide Hail Seiche
Blizzard Debris Flow Heavy Rain Storm Surge/Tide

Coastal Flood Dense Fog Hurricane Freezing Fog
Drought Dense Smoke Ice Storm Heavy Snow

Dust Storm Dust Devil Lightning High Wind
Excessive Heat Flash Flood Wildfire Tropical Storm
Extreme Cold Tornado Tsunami Volcanic Ash

TABLE 1.1: Types of Extreme Weather Events

Since 1980, the United States has experienced 341 extreme weather events that cost
$2.48 trillion in damages. In 2022, the United States experienced 18 extreme weather
events, including Hurricane Ian, which cost $112.9 billion in damages and 152 losses
of human lives, and drought in Western and Southern Plains states that cost $22 bil-
lion in damages and 136 deaths (Smith, 2023). According to Figure 1.2, the number of
severe storms and combined costs of disasters are increasing over time; it is concern-
ing for the future state of this country’s economy and human health. The growing
impacts of extreme weather events have heightened the need for advanced methods
to understand their patterns and relationships with the economy and human health
and as well as to predict their consequences.

FIGURE 1.2: A bar chart of billion dollars climate disaster in the
United States through years from 1980 to 2022 (Smith, 2023)

Climate change affects everyone, but specific communities or populations are af-
fected more than others. Extreme weather events have different amounts of degrees
of affecting particular populations or communities. For instance, people aged over
65 are more vulnerable to extreme weather events due to their limited physical abil-
ity or mobility. Extreme weather events have a concerning effect on particular social
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determinants of health, including the communities of color or low-income popu-
lations, due to health disparities, inadequate infrastructures, fewer resources, and
many more.

1.2 Motivation

For many decades, climate scientists have had concerns about the impact of climate
change. People might have some uncertainty with the rising concerns about the
effects of extreme weather events because they have not experienced them firsthand.
This study aims to address this challenge by employing state-of-the-art statistical
machine learning techniques to uncover hidden patterns within extreme weather
event data and analyze their devastating effects on various aspects of human life,
including health, economy, agriculture, and more.

Understanding, modeling, and predicting extreme weather events is an ongoing
challenge. Scientists use different methods of machine learning or traditional ap-
proaches to analyze and predict these events. For instance, various studies have
used deep learning techniques to analyze and forecast tropical cyclone intensity
(Wang, Wang, and Yan, 2020; Chen, Kuo, and Huang, 2023), precipitation nowcast-
ing (Beutler et al., 2022), and extreme precipitation events (Subrahmanyam et al.,
2021). Moreover, Kumar and Middey (2023) create the projection of extreme climate
indicators using the hybrid of random-forest and autoregressive integrated moving
average model.

Furthermore, the economic and health consequences of extreme weather events have
been investigated using machine learning techniques. Paudel et al. (2022) employed
machine learning for regional crop yield forecasting in Europe, highlighting the im-
portance of these techniques in assessing the impacts of climate change on agricul-
ture. Nishimura et al. (2021) developed a framework to estimate the number of
patients with heat-related illnesses based on average ambient temperatures using
the Long Short-Term Memory model.

Thus, the specific questions that this thesis will address:

• How did the maximum and minimum temperatures change over time?

• Which statistical models are best suited for time series forecasting?

• What is the relationship/association between climate factors, economy, and
human health considered?

• Do the economic indicators and human health have some dependency on cli-
mate factors?

1.3 Thesis Scope

My research will be predominantly computational, with approximately 70% of the
work focusing on the development and implementation of statistical models. The
remaining 30% of the work will be dedicated to gathering and refining data from
various sources available on the internet. In order to construct powerful statisti-
cal models, I will establish a functional relationship between climate measurements,
economic indicators, and human health. This research will utilize R, Python, and Ju-
lia to demonstrate the role of statistical computing in understanding climate change
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and its impacts. Furthermore, I will delve into the complex topic of causal inference,
speculating on potential causal relationships within the data.

This thesis explores various aspects of traditional approaches and machine learning
methods for time series forecasting with climate time series data. Specifically, I will
use two classical methods and two machine learning methods. I will only focus on
maximum and minimum daily temperatures to explore those time series forecast-
ing methods. The first objective of this research is to provide as thorough a review
as possible of the effectiveness of some of the most commonly used classical and
machine learning methods when it comes to time series forecasting.

Also, a part of this thesis is dedicated to the study of the relationship/association
between climate factors, inflation rates, and fatalities and injuries. I will use a multi-
variate regression model to determine the co-movements between climate factors,
consumer economy, and human health. The second objective of this research is
to provide an understanding of the correlation between weather components, eco-
nomic variables, and human health.

While causal inference remains a challenging endeavor, particularly in the context
of complex systems such as climate and economic and health interactions, recent
advancements in machine learning and statistical methods provide a foundation
for exploring these relationships. By developing and implementing advanced al-
gorithms that can unveil hidden patterns and relationships within the data, I aim
to contribute to a deeper understanding of the causes and consequences of extreme
weather events. This knowledge, in turn, will inform evidence-based policy deci-
sions and help mitigate the adverse effects.

1.4 Thesis Organization

The thesis consists of 7 chapters, with this chapter being the first and presenting a
brief background of the context of the research and motivation of this topic. This
thesis is divided into two parts of time series analysis with climate factors: 1) the
exploration of time series forecasting methods and 2) the evaluation of the effect on
health or economic factors.

Chapter 2 reviews the relevant works of Part 1) different approaches for time series
forecasting and Part 2) the impact on human health or economic variables. All pre-
vious work shares similar data collection, such as the climate time series dataset of
different regions within the United States.

Chapter 3 is considered Part 1, which explores some concepts of time series decom-
position and narrows down to four methods for time series forecasting. Chapter 4
is considered Part 2, which examines the context of a multivariate time series re-
gression model. Within these two chapters, each method contains a comprehensive
procedure for the development of the models.

Chapter 5 elaborates on the data collection of this research, which illustrates the
study areas with detailed data descriptions. Then, this chapter explains the prelim-
inary data preparation, which is data preprocessing, and wraps up with the data
visualization. Chapter 6 presents the results of Part 1 and 2, and Chapter 7 summa-
rizes the whole research work and discusses any potential future work.
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Chapter 2

Related Work

A time series is data that involves a sequence of data points organized within an
interval of time. Therefore, time is a crucial variable, where it can show the change
of data points over time. Time series analysis is a method of analyzing historical
data to understand the patterns and trends over time. Once the patterns and trends
are collected, the time series can predict the likelihood of future events with time se-
ries forecasting techniques. Time series analysis splits into two branches, which are
univariate and multivariate. Univariate time series consists of a single variable over
time, while multivariate time series consists of multiple variables, or more than one
variable, over time. Various fields rely on time series analysis for diverse purposes,
such as examining financial stocks, tracking climate variables, or monitoring health
indicators.

2.1 Univariate Time Series Forecasting

Time series forecasting is a technique for predicting future observations by analyzing
past values, or past trends, with the assumption that future trends behave similarly
to past trends. In the time series forecasting models (Figure 2.1), the input data,
or independent variable, will be the past values of observations where it will fore-
cast the dependent variables (Kumar, 2022). There are many different methods of
univariate time series forecasting, and each method has strengths and weaknesses.
Numerous comparison studies compare the classical and machine learning methods
for univariate time series forecasting.

FIGURE 2.1: General Univariate Time Series Forecasting Model
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2.1.1 Classical Methods

The classical approach to time series forecasting involves human analysis of the data,
while classical methods depend on this analysis to identify patterns within the data.
Classical methods typically use predefined techniques and statistical models that
include confidence intervals to present a level of certainty. The objective of classical
methods is to estimate a forecast value based on the analysis of historical data. The
main advantage of classical forecasting methods is the level of transparency of how
these methods function.

Naive Forecasting

Naive forecasting appeared in ancient times when mathematicians relied on ob-
served patterns and sequences of events in different scenarios to forecast. Naive
forecasting is considered one of the simplest forecasting methods where the fore-
casts are the value of past observations without any adjustments. In other words,
this method generates predictions that are equal to the past observations, or math-
ematically, yn+1 = yn, where yn is the past observation (Ahuja and Kumar, 2022).
Despite its potential for being imprecise at times, the Naive forecasting model is a
benchmark for most time series forecasting methods.

Auto-Regressive Integrated Moving Average

In 1970, George Box and Gwilym Jenkins developed Autoregressive Integrated Mov-
ing Average (ARIMA) model, also known as the Box-Jenkins model, which uses the
data-generating process to identify the patterns that generate and influence past ob-
servations (Jenkins, Box, and Reinsel, 2011). For decades, researchers have used the
ARIMA model in the application of climate projections. ARIMA model includes
three different parameters, ARIMA[p,d,q]. For instance, Figure 2.2 presents the dif-
ference in fluctuations of annual average temperature forecasts in Phoenix due to
the parameters in the ARIMA model, where the left image illustrates the model of
ARIMA [2,1,3] model compared to the model of ARIMA[0,1,1] in the right image
(Lai and Dzombak, 2020). ARIMA forecast values are typically influenced by recent
values and long-term historical trends.

FIGURE 2.2: 20 years ARIMA Projection of (top) annual average tem-
perature in Phoenix and (bottom) total precipitations in Chicago (Lai

and Dzombak, 2020)
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Exponential Smoothing

Exponential smoothing was first suggested in statistical literature by Robert Brown
in 1956, where he used the application of exponential smoothing to forecast the de-
mands in the Navy system. Also, Charles Holt has developed a similar methodology
of exponential smoothing independently from Brown; however, Holt has a different
approach to smoothing seasonal data than Brown’s. Holt’s methodology became
popular in 1960 when Winters amended a new method to Holt’s linear method,
which considers all components of time series. Exponential smoothing generates
a forecast based on the weighted average of past observations. A study compares
three different exponential smoothing with rainfall data (Figure 2.3) and claims that
Holt-Winters method is the best exponential smoothing for rainfall data (Dhamod-
haravadhani and Rathipriya, 2019).

FIGURE 2.3: Rainfall Predictions using Exponential Smoothing meth-
ods (Dhamodharavadhani and Rathipriya, 2019).

Various types of applications often utilize these three classical methods for time se-
ries forecasting. An empirical study found that the ARIMA model had better accu-
racy than Holt-Winters exponential smoothing, where they used 106 different time
series and measured with average squared error (Newbold and Granger, 1974). A
recent study also claimed that the ARIMA model yields higher accuracy than ex-
ponential smoothing with weather time series forecasting (Chatwaranon and Tun-
yasrirut, 2022). The exponential smoothing method considers the time series com-
ponents, while the ARIMA model considers the autocorrelations. Also, the ARIMA
model has the assumption that the time series data is stationary, while exponential
smoothing does not. In summary, all models might not give the same results from
the same dataset, but it is critical to determine which one works best based on the
univariate time series.

2.1.2 Machine Learning Methods

Over the last few decades, machine learning models have made significant strides,
utilizing mathematical and statistical models as a framework to conduct data analy-
sis. Unlike classical forecasting methods, machine learning methods rely on artificial
intelligence to analyze time series data, rather than human analysis. These meth-
ods are more demanding and complex since they require multiple steps to select the
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model with the smallest amount of loss. The main goal of machine learning methods
is to minimize the losses between actual and predicted observations.

Multilayer Perceptron

Multilayer Perceptron (MLP) model dates back to 1986 when Rummelhart, Hilton,
and Williams developed a backpropagation algorithm with a non-linear activation
function (Albrecht, 2023). It is believed the researchers use the MLP model for the
time series forecasting method because the MLP model can capture the correlations
between patterns. In other words, the MLP model can learn a function that com-
putes a forecast value with the input as a sequence of past observations. Like clas-
sical methods, the MLP model also has parameters researchers can alter for optimal
model predictions. One study developed an optimization method to find an optimal
number of hidden layers and hidden neurons for the MLP model with air tempera-
ture data in Padang (Kurniawan, Silaban, and Munandar, 2020). For instance, Figure
2.4 shows the optimal MLP model of two hidden layers and five hidden neurons for
the air temperature data.

FIGURE 2.4: 2 years MLP Air Temperatures Projection of Actual ver-
sus Predicted Values (Kurniawan, Silaban, and Munandar, 2020)

Convolutional Neural Networks

The first appearance of Convolutional Neural Networks (CNNs) was in the 1990s
by Yann LeCun and his colleagues. They train CNN with the well-known MNIST
database of handwritten digits by introducing the assembly of patterns or dot prod-
ucts of matrices. The ability of the CNN model to recognize the patterns from input
data can be useful for time series forecasting problems. Like the MLP model, CNN
can learn a function that computes forecast values with input as a sequence of past
observations, but CNN will treat a sequence as a one-dimensional image to learn
its features. Kurniawan and their colleagues also used the CNN model to predict
the air temperature in Padang, and the CNN’s prediction was pretty similar to the
MLP’s prediction in Figure 2.4. However, this study presented CNN as the best
performance in predicting the time series data of temperatures.
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Long Short-Term Memory

In 1997, the Long Short-Term Memory (LSTM) network was introduced by Hochre-
iter and Schmidhuber. LSTM is a type of recurrent neural network with the capa-
bility of learning long-term dependencies in sequential data (Albrecht, 2023). The
LSTM model is considered one of the most advanced and complex time series fore-
casting models. This model contains four components where a sequence of past
observations will go through several layers, and then the model keeps important
values before creating forecast values. Like MLP and CNN, LSTM consists of hid-
den layers and hidden neurons with activation functions in each layer. Inyoung
Park and their colleagues studied daily temperatures for two months in Seoul, Ko-
rea, and compared the model performance by measuring root mean squared error
(Park et al., 2019). Figure 2.5 illustrates a time series plot of observed and predicted
temperatures from four models with different parameters.

FIGURE 2.5: Daily time series plot of the observed and predicted tem-
perature data for two months from August to October in Seoul, Korea.

(Park et al., 2019)

Gaussian Processes

The earliest form of Bayesian optimization was introduced as Wiener processes by
Norbert Wiener, which is a continuous-time stochastic process. However, this pro-
cess is also often referred to as Brownian motion processes due to a physical phe-
nomenon observed by Robert Brown (Keeler, 2022). Wiener processes are considered
one of the Gaussian Process (GP), although there is no specific information about
who introduced the GP since the concept of Gaussian distribution appeared in the
1900s. GP is a powerful model for time series forecasting that considers multivariate
Gaussian distributions, with its covariance being defined by a kernel combination.

A research article studies different applications of Gaussian processes to various
types of data, and one of these types is multidimensional weather sensor data. For
this data case, Roberts and their colleagues use the sum of a periodic kernel and a
disturbance term in the form of Matérn as a covariance for the Gaussian Processes
(Roberts et al., 2013). Figure 2.6 illustrates the prediction of the Gaussian process
with four different sensor measurements of the tide heights.
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FIGURE 2.6: Gaussian Process’s prediction of tide height data for (a)
independent and (b) multi-outputs (Roberts et al., 2013)

Many researchers study an empirical comparison of classical and machine learn-
ing methods for time series forecasting. Most studies focus on the comparison of
ARIMA and neural network models with econometric time series data. There is
insufficient evidence of empirical comparison with classical and machine learning
methods for time series forecasting with climate time series data. Clearly, econo-
metric and climate time series data have different patterns and behaviors over time.
Therefore, this thesis provides an empirical comparison of classical methods and
machine learning methods for time series forecasting with climate time series data.

2.2 Multivariate Time Series Regression

Multivariate time series regression is a technique used to analyze the interaction
among a group of time series variables. It is more complicated than univariate time
series analysis since it involves multiple variables. Several variables that share the
same time domain are typically stacked together, enabling the multivariate time se-
ries regression to analyze the dynamic relationship between several variables over
time, as illustrated in Figure 2.7.

FIGURE 2.7: A multiple variables that shares the same domain of time
series stacks together to create a multivariate time series data (Spadon

et al., 2020)
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Vector Autoregression (VAR) model is one of the most common multivariate time
series regression models. The VAR model is one of the most successful and flexi-
ble models for the analysis of multivariate time series. Although VAR models are
usually used in finance or econometrics, many researchers now apply this model to
climate time series along with econometric and public health time series.

2.2.1 Influence on Public Health

Climate change and unpredictable weather events can have a serious effect on hu-
man health, especially in terms of the number of fatalities and injuries. Extreme
weather events are weather events that are destructive and unpredictable. Fatali-
ties and injuries are the direct health impacts most often associated with extreme
weather events. Different parts of the United States have different extreme weather,
which is a major cause of fatalities and injuries.

FIGURE 2.8: The number of fatalities and injuries from different ex-
treme events among different regions of the United States from 1950

to 2011. (Kirakosyan, 2016)

Figure 2.8 presents a strong correlation between the number of extreme events and
the geographic locations of the United States. For instance, avalanches are a major
cause of fatalities in the mountain region, and most injuries within the same region
come from strong winds. As expected, wildfires are a major cause of injuries in the
Pacific region, and most deaths in the same region are due to heavy rains. All central
regions, south Atlantic, and New England regions have major extreme events of a
tornado that causes most of the fatalities and injuries.

Many studies use time series regression methods and claim that there is an associa-
tion between temperatures and the mortality rate. For example, a research study on
health vulnerability to extremely cold temperatures in London were conducted for
the purpose of informing the Cold Weather Plan for England (Hajat et al., 2016). This
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study uses Poisson regression, assuming the outcomes of each variable, including
daily mean temperatures, daily all-cause mortality, and daily all-cause emergency
admission, follow a Poisson distribution. The result of this study claims that each
drop in temperature below 1◦C increases the number of deaths by 3.44%. There are
other studies that analyze the relationship between extreme heat and mortality rates.

As mentioned, many different studies examine the relationship between extreme
weather events and moralities and injuries. However, few to no research articles
use the VAR model to analyze the dynamic relationship between extreme weather
events and public health. Additionally, not enough studies analyze different climate
factors and their effects on human health. Therefore, this thesis analyzes the dy-
namic behaviors between climate factors and the number of fatalities and injuries
by severe storms or extreme weather events.

2.2.2 Impacts on Inflation

Climate change has proven as an environmental issue that has a potentially signif-
icant impact on the economy in different locations. As mentioned, climate change
influences rising sea levels, extreme rainfalls, and drought in areas where it impacts
agricultural and crop production. Among all socio-economic sectors, the agricul-
tural sector has the greatest impact on climate change. There are numerous studies
performing analysis to establish the major cause of price spikes.

A study aims to estimate and trace the historical effects of extreme weather events
on the change in maize prices. This study uses the structural VAR model to analyze
the relationship between monthly data on maize prices in different regions of Kenya
and the monthly climate data of maximum and minimum temperatures and rainfalls
(Muriuki, Mung’atu, and Waititu, 2018). The result of this study claims that there
is empirical evidence of co-movement between maize prices and climate factors in
Kenya.

FIGURE 2.9: Impulse response functions of macro variables to severe
weather data of the United States. Top panels represent the beginning
of the samples, while bottom panels represent the end of the samples.

(Kim, Matthes, and Phan, 2011)
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Most recent research studies the relationship between severe weather and the macroe-
conomics of the United States. Their data collection focuses on extreme tempera-
tures, rainfalls, and other extreme weather indicators with four different macroeco-
nomic measures, including the consumer price index, short-term interest rate, and
unemployment rate. This research uses the methodology of a smooth transition VAR
model, where it adds the weight of a convex combination to the VAR model (Kim,
Matthes, and Phan, 2011). Figure 2.9 presents the result of impulse response func-
tions of four macro-variables to the severe weather data. According to the figure,
severe weather has a positive effect on industrial production growth and unemploy-
ment rate, a negative effect on the consumer price index, and no effect on the short-
term interest rate. In conclusion, an increase in severe weather leads to a persistent
decrease in the growth rate of industrial production and a persistent increase in the
unemployment rate and consumer price index inflation.

Many research studies use a specific type of VAR model to examine the relationship
between climate factors and either economic factors or human health, such as mor-
tality and injuries. Most of this research analyzes the impact of extreme weather
events on home sales, crop yields, electricity costs, or stock prices. However, the re-
cent study examines this relationship between severe weather and macroeconomic
variables, including the consumer price index, within the United States, but it fo-
cuses on the entire country. Therefore, this thesis only focuses on the five most
populated cities in different regions of the United States. Also, this thesis analyzes
the dynamic behaviors between inflation rates and the climate factors among those
cities.
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Chapter 3

Forecasting Techniques for Time
Series

Time series data usually display a variety of patterns, and a time series decomposi-
tion can help identify specific characteristics or patterns within time series data. The
decomposition of time series data gives a better understanding of time series anal-
ysis. The time series decomposition typically focuses on three main components as
follows:

• Trend Component: A change in data values over a length of time. In other
words, it shows the tendency of the data to increase or decrease during a long
period of time.

• Seasonal Component: Repeated level shifts within the same period of time,
indicating the presence of rhythmic patterns in a regular and periodic manner
within a time series data

• Random Noise Component: Random variations or irregular patterns within
the time series data, also known as residuals after all other components are
removed from the time series data.

Moreover, the time series decomposition can determine if the model is additive or
multiplicative, which is significant for time series forecasting models. If the season-
ality exhibits similar patterns of frequency and amplitude, then the time series is
an additive model. Otherwise, it is a multiplicative model. In the case of studying
maximum and minimum temperatures, the time series model is more likely to be an
additive model. Therefore, this thesis will focus solely on additive models.

There are different decomposition techniques to split the components of time series
data. This thesis will approach the time series decomposition with the procedure
of a seasonal-trend decomposition procedure based on loess (SLT) (Cleveland et al.,
1990). Figure 3.1 shows a time series decomposition using the SLT technique. SLT is
a simple design that decomposes three components: seasonal, trend, and remainder.
If the time series is an additive model, SLT proposes:

Yt = Tt + St + Rt, (3.1)

where Tt is a trend component in time, St is a seasonal component in time, and Rt is
a remainder component in time.
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FIGURE 3.1: Time Series Decomposition of Houston’s Maximum
Temperatures Data

3.1 Selecting Time Series Forecasting Methods

Numerous comparison studies compare the classical and machine learning meth-
ods for time series forecasting. For instance, Hill and other colleagues studied the
comparison of the neural network model with classical models, including the Box-
Jenkins model, single exponential smoothing model, and naive model (Hill, O’Connor,
and Remus, 1996). Another study by Alon and their colleagues compared artificial
neural networks and classical methods with large economic time series data (Alon,
Qi, and Sadowski, 2001). The results of these studies are somehow mixed, but over-
all, the neural network models have better performance than the classical methods.

Also, Ahmed et al., 2010 performed a comparative study of different machine learn-
ing models for time series forecasting. This study claims MLP and GP regression
are the best models for time series forecasting with M3 competition data or different
types of time series data. However, there are no studies on the comparison of time
series forecasting methods with climate time series data. Therefore, this thesis will
study four different time series forecasting methods:

• Classical Time Series Forecasting Methods

1. Auto-Regressive Integrated Moving Average

2. Exponential Smoothing

• Machine Learning Time Series Forecasting Methods

1. Multilayer Perceptron

2. Gaussian Processes
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3.2 Auto-Regressive Integrated Moving Average

3.2.1 Stationarity

A common and conceptually important assumption in time series analysis is the of-
ten crucial assumption of stationarity. Essentially, stationarity in time series analysis
is needed to allow the time series methods to identify the patterns in each interval of
time. Intuitively, stationarity captures the recognition that for pattern discovery and
extraction to be possible, there has to be something to be extracted and discovered
and that pattern must be stable, or constant, or at least less variable with respect to
time.

Quintessentially, a time series can be either strictly stationary or weakly stationary.

Definition 3.2.1. A time series is said to be strictly stationary if the probabilistic
behavior of sets of random variables,

Xt1 , Xt2 , ..., Xtk and Xt1+h, Xt2+h, ...Xtk+h, (3.2)

are identical for all integers t1, t2, ...tk and positive integers k and h.

In other words, if the joint probability distributions of random variables are invari-
ant to shifts in time, then the time series is strictly stationary.

Definition 3.2.2. A time series Xt, t ∈ T (where T is the a time index set) is said to
be weakly stationary if

1. E(X2
t ) < ∞ for all t ∈ T

2. E(Xt) = µ for all t ∈ T

3. γ(Xs, Xt) = Cov(Xs, Xt) = γ(Xs+h, Xt+h) for all s, t, h ∈ T. (Hu, 2006).

In other words, a time series is said to be weakly stationary if the time series has a
finite variance process (1), a constant first moment (2), and an autocovariance func-
tion, Cov(Xs, Xt) depending only on the difference of t and s, (t − s), (3).

Random Walk

A random walk can be expressed as:

Xt = Xt−1 + ϵt (3.3)

with Xt = ∑t
i=0 ϵi and X0 = 0. Xt is independent and identically distributed with

mean zero and variance σ2 (Hu, 2006). Therefore, mean of random walk is E(Xt) =
µX, and the covariance function is:

γ(Xt, Xt+h) = Cov(Xt, Xt+h) = tσ2.

Hence, the covariance function is actually dependent on the time t; therefore, the
random walk is not stationarity.

White Noise

White noise has no pattern in the time series or just random variation. White noise
is a time series with a mean zero and variance σ2

ϵ , and the covariance function can
be written as:
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Cov(ϵt, ϵt+h) =

{
σ2

ϵ h = 0
0 h ̸= 0,

(3.4)

It states that mean and covariance function are independent of time; therefore, the
white noise is stationarity. An example of white noise, or known as remainder, is the
last panel of Figure 3.1, which is residuals after other components are removed from
the time series data.

Unit Root Tests

A time series is considered non-stationary if it exhibits a characteristic known as a
"unit root." A unit root is said to exist in a time series when the value of α equals to
1 in the equation below (Prabhakaran, 2022).

Xt = αXt−1 + βXe + ϵt, (3.5)

where Xe is an exogenous variable, ϵt is an error term, and α and β are hyperparam-
eters. There are several tests to determine whether the time series data are stationary,
such as Augmented Dickey-Fuller (ADF) test and Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test. However, this thesis uses the ADF test to test the null hypothesis that
the time series is not stationary. ADF test is an expansion of the Dickey-Fuller test,
where the null hypothesis assumes the presence of unit root or α = 1 in the equation
below (Prabhakaran, 2022).

Xt = c + βt + αXt−1 + ϕ1∆Xt−1 + ϕ2∆Xt−2 + ... + ϕp∆Xt−p + ϵt, (3.6)

where Xt−1 is a lag 1 of time series, ϕ∆Xt−p is a difference term of the time series at
(t-p), c is a constant term, β is a coefficient, p is a lag order, and ϵt is an error term. If
the ADF test’s p-value is greater than 0.05, then it fails to reject the null hypothesis
and confirms that the data are non-stationary.

3.2.2 Model Components

Autoregressive

Definition 3.2.3. An autoregressive model with an order of p, abbreviated as AR(p),
is written as the equation below (Shumway and Stoffer, 2017).

Xt = ϕ1Xt−1 + ϕ2Xt−2 + ... + ϕpXt−p + ϵt, (3.7)

where Xt is a value of time series that is defined as a function of past p values,
Xt−1, Xt−2, .. Xt−p, where p determines the number of past values of time series, ϕp
are constant terms, and ϵt is an error term or white Gaussian noise. It can also be
written as:

Xt = Σp
i=1ϕiXt−i + ϵt. (3.8)
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If p = 1, it is considered AR(1), which is known as the first-order AR model. AR(1) is
a random walk; therefore, the AR(p) model is an extension of a random walk. Gen-
erally, the AR(p) model generates predicted values based on the regression analysis
of past time series values.

Moving Average

Definition 3.2.4. A moving average model with an order of q, abbreviated as MA(q),
is written as the below equation.

Xt = θ1ϵt−1 + θ2ϵt−2 + ...θqϵt−q + ϵt (3.9)

Instead of p, q determines the number of errors of past predictions and θq are constant
terms as ϕp in AR(p) model. It can also be written as:

Xt = Σq
i=1θiϵt−i, (3.10)

Unlike the AR (p) model, MA(q) models generate predicted values based on the
errors of past forecasts.

Auto-Regressive Integrated Moving Average

ARIMA model is a combination of the AR(p) and MA(q) models, along with the
integrated method. As mentioned in Section 3.2.1, if the underlying time series of
the data is not stationary according to the unit root tests, the integrated method is
applied. This involves differencing the observations to make the time series sta-
tionary. Therefore, the ARIMA model requires three parameters, abbreviated as
ARIMA(p,d,q). The value of a parameter d is determined by the number of differ-
ences applied in the ARIMA model. Additionally, some ARIMA models have a
trend where the variance changes over time, so the model has a drift or a constant of
c. In terms of Xt, the general ARIMA forecasting equation is:

Xt = c + ϕ1Xt−1 + ... + ϕpXt−p + θ1ϵt−1 + ... + θqϵt−q + ϵt (3.11)

3.2.3 Model order selection

The autocorrelation function (ACF) and the partial autocorrelation function (PACF)
are critical statistical measures for analyzing time series data. The ACF assesses the
correlation between time series, considering all the lags or intervals between the
time periods, while the PACF only considers certain lags. Lags are a number of
intervals between two measurements, or in this case, time series. The order of the
MA(q) model is determined by the number of significant lags above the threshold in
the ACF plot, while the order of the AR(p) model is determined by the number of
significant lags above the threshold in the PACF plot.

To determine the optimal parameter values for the ARIMA model, the Akaike infor-
mation criterion (AIC) and the Bayesian information criterion (BIC) are commonly
used. These criteria assess the goodness-of-fit of the model to the data while also
penalizing models with a larger number of parameters. The AIC measures the infor-
mation value of the model using maximum likelihood, L, estimates, and the number
of parameters in the model k (Equation 3.12). The BIC is similar to the AIC but



Chapter 3. Forecasting Techniques for Time Series 19

has a larger penalty term that considers the number of observations, n, in the data
(Equation 3.13).

AIC = 2k − 2 ln(L) (3.12)

BIC = k ln(n)− 2 ln(L) (3.13)

3.2.4 Box-Jenkins Method

The ARIMA model is a form of the Box-Jenkins model, which is a mathematical
model that uses regression analysis to fit and forecast time series data. The Box-
Jenkins method involves an iterative five-step process to develop a forecasting model
for the time series, as outlined by Jenkins, Box, and Reinsel (2011):

1. Ensure the time series are stationary. If the time series is not stationary, then
differences can be applied to make it stationary.

2. Identify the best model for the time series. As mentioned, ACF and PACF can
be used to select a model that best summarizes the data.

3. Estimate the model parameters. Computer algorithms, such as Julia program-
ming, can be used to specify the coefficients that best fit the selected model.

4. Evaluate the fitted model using the goodness-of-fit tests, such as the AIC and
BIC, to measure the model’s performance in forecasting.

5. Use the model to forecast future time series values.

3.3 Exponential Smoothing

Exponential Smoothing is one of the traditional time series approaches that forecasts
future values of the time series based on the weighted averages of past observations
with the assumption that the current observations have more weight than past ob-
servations. Since it is more common for time series data to follow an additive model,
this thesis only focuses on the additive models of exponential smoothing. There are
three main types of exponential smoothing models that can apply to forecast climate
factors.

3.3.1 Single Exponential Smoothing

Single Exponential Smoothing (SES) method is the simplest model of exponential
smoothing where it doesn’t have trend or seasonality components. The SES method
only estimates the level component of the time series. A level Component is an aver-
age value in the time series. Since this method only computes a single component, it
only requires a single parameter, α, that determines the degree of smoothing or the
rate at which each observation influences the model.

Definition 3.3.1. The SES formula is given by:

Lt = α(Xt) + (1 − α)Lt−1 0 < α < 1, (3.14)
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where Lt is the level component at a time, α is a model parameter of the level com-
ponent, and Xt is a data point at time t.

The forecasting equation for SES is given by:

Ft+n = Lt, n = 1, 2, 3, ... (3.15)

where n represents the number of time periods ahead of the current time period t.

3.3.2 Double Exponential Smoothing

Double Exponential Smoothing (DES) method is similar to the SES method, except
that this method contains the level and trend components. If the trend displays a
constant, this method is commonly known as Holt’s Linear method (Dhamodhar-
avadhani and Rathipriya, 2019). Since the DES method involves two components, it
involves an additional parameter to the SES method, β, which controls the decay of
the influence of the change in trend.

Definition 3.3.2. The DES formula is given by:

Lt = α(Xt) + (1 − α)(Lt−1 + Tt−1) 0 < α < 1 (3.16)
Tt = β(Lt − Lt−1) + (1 − β)Tt−1 0 < β < 1,

where Tt is the trend component at time, and β is a model parameter of the trend
component.

The forecasting equation of the DES at time t is given by:

Ft+n = Lt + nTt, n = 1, 2, 3, ... (3.17)

3.3.3 Triple Exponential Smoothing

Triple Exponential Smoothing (TES) method is an extension of exponential smooth-
ing with an additional component, seasonality. The TES method is also known as
Holt-Winters method, which is a developed Holt’s Linear method with additional
parameters. Therefore, the TES method contains three components, and the addi-
tional parameter, γ, controls the influence on seasonality.

Definition 3.3.3. The TES formula of the additive model is given by:

Lt = α(Xt − St−p) + (1 − α)(Lt−1 + Tt−1) 0 < α < 1 (3.18)
Tt = β(Lt − Lt−1) + (1 − β)Tt−1 0 < β < 1

St = γ(Xt − Lt) + (1 − γ)St−p 0 < γ < 1

where St is the seasonal component at time, p is a number of periods in a seasonal
cycle, such as quarterly, monthly, or weekly, and γ is a model parameter of the sea-
sonal component.
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The forecasting equation at time t from the TES method with additive seasonality is
given by:

Ft+n = Lt + nTt + St−p+n, n = 1, 2, 3, .... (3.19)

3.3.4 Classification of Exponential Smoothing

Since exponential smoothing does consider three different components within time
series data, there is a classification scheme of the exponential smoothing methods.
Since this thesis uses Julia programming to develop a model using the exponential
smoothing model, the classification of exponential smoothing methods is limited to
the availability of the State Space Model Julia package (Hyndman and Athanasopou-
los, 2018). Table 3.1 presents a list of all variants of the classification for exponential
smoothing methods with a concentration on trend and seasonal components with
the additive models only.

Seasonal

Trend
N (None) A (Addictive)

N (None) A,N,N A,N,A
A (Addictive) A,A,N A,A,A

Ad (Addictive damped) A, Ad,N A,Ad,A

TABLE 3.1: Classification of Exponential Smoothing

3.4 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a type of feedforward artificial neural network
that is widely used in machine learning applications. Unlike recurrent neural net-
works (RNNs), which have feedback connections and can process sequential data,
MLPs only have forward connections and are primarily used for pattern recognition
and classification tasks. The algorithm used to train an MLP is known as backprop-
agation, which involves adjusting the weights of the network to minimize the dif-
ference between the predicted outputs and the actual outputs of the training data.
In contrast, RNNs use a variation of backpropagation known as backpropagation
through time (BPTT), which allows them to learn from sequences of data over time.

MLPs are a popular model for time series forecasting due to their ability to model
complex non-linear relationships between input and output variables. By process-
ing past observations of a time series as input, an MLP can learn to make accurate
predictions of future values, making it a powerful tool for tasks such as stock price
prediction, weather forecasting, and traffic flow analysis.

Many software packages are available in R, Python, and Julia that simplify the pro-
cess of implementing and training MLPs for time series forecasting tasks. In R, the
"neuralnet" and "nnet" packages provide simple and efficient tools for building and
training MLPs. In Python, the "scikit-learn" and "Keras" libraries are popular choices
for implementing MLPs, with Keras offering a high-level API for building and train-
ing neural networks. Julia has several packages for working with MLPs, including
"Flux" and "MLJ" packages. These tools are convenient for experimenting with dif-
ferent network architectures and training strategies, enabling users to develop pre-
cise and efficient models for time series forecasting.
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3.4.1 Elements of Multilayer Perceptron

As mentioned, MLPs are particularly effective for weather forecasting as they can
capture the complex non-linear relationships between different weather variables.
The structure typically consists of an input layer, one or more hidden layers of
densely connected neurons with non-linear activation functions, and an output layer.
The input layer typically consists of lagged observations of weather variables, such
as temperature, humidity, and wind speed, while the output layer produces fore-
casts of future weather conditions. Figure 3.2 depicts an example MLP model with
two hidden layers and four hidden neurons in each.

FIGURE 3.2: An example of a simple Multilayer Perceptron model.

Essentially, the computation of this model is conceptually quite simple. Let x ∈ Rp

be the input vector, z(1) ∈ Rm1 and z(2) ∈ Rm2 are the vectors of hidden, latent
variables for the first and second hidden layers, respectively, and y ∈ R is the output.
Suppose we use Figure 3.2 as an example, we have:

z(1) = σ(W(1)x + b(1)) (3.20)

z(2) = σ(W(2)z(1) + b(2))

y = W(3)z(2) + b(3),

The function σ(·) is a nonlinear activation function applied elementwise to the out-
put of the linear transformations W(1)x + b(1) and W(2)z(1) + b(2), where W(1) ∈
Rm1×p and b(1) ∈ Rm1 are the weight matrix and bias vector for the first hidden
layer, and W(2) ∈ Rm2×m1 and b(2) ∈ Rm2 are the weight matrix and bias vector for
the second hidden layer. Similarly, W(3) ∈ R1×m2 and b(3) ∈ R are the weight matrix
and bias scalar for the output layer.

Note that an MLP with two hidden layers is a more complex feedforward neural
network that allows for a richer set of nonlinear transformations to be applied to the
input. The number of hidden units in each layer m1 and m2 are hyperparameters that
can be tuned to improve the model’s performance on a given task. The activation
function σ(·) can be chosen from a variety of options, such as the sigmoid, tanh,
or ReLU functions. The weights and biases can be learned by minimizing a loss
function using an optimization algorithm such as stochastic gradient descent.
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Overfitting the MLP model can be convenient; however, it can be avoided by adding
a regularization technique. Dropout is a technique that randomly ignores selected
neurons during the training, reducing the model’s sensitivity to specific neurons’
weights. The common value for the dropout rate is p = 0.2 in each hidden layer.
With the dropout rate as d, the hidden layer from Equation 3.20 can be described as
(Srivastava et al., 2014):

d(1) ∼ Bernoulli(p), (3.21)

ẑ(1) = d(1) · z(1)

z(2) = ϕ(2)(ΣW(2)ẑ(1) + b(2)).

An optimizer is an optimization method that improves the quality of the MLP model
and determines optimal hyperparameters with the goal of reducing losses. Adaptive
Moment Estimation, or Adam for short, is one of the most commonly stochastic op-
timization algorithms for neural networks. The Adam optimization method stores
exponentially decaying averages of past squared gradients based on the first and
second moments of the gradients of the loss function (Bushaev, 2018).

Momentum is an extension to a gradient descent algorithm where it not only ac-
cumulates the current steps of the gradient but gathers the historical steps of the
gradient to smooth the gradient descent. The first moment is the mean of the gradi-
ents mt and the second moment is the uncentered variance of the gradients vt. The
equations for computing the first and second moments are as follows:

mt = β1mt−1 + (1 − β1)gt, (3.22)

vt = β2vt−1 + (1 − β2)g2
t , (3.23)

where gt is the gradient at time step t, and β1 and β2 are decay rates that control the
weight given to past gradients. The hyper-parameters, β1 and β2, are typically set to
0.9 and 0.999. Since these first and second moments are biased estimators, the next
step of the procedure is to use bias correction to ensure the fact that the moments are
initialized to zero. Suppose t is the time step, the bias-corrected estimates are given
by:

µ̂t =
mt

1 − βt
1

, (3.24)

Σ̂t =
vt

1 − βt
2

. (3.25)

Finally, the Adam optimizer’s update equation is:

θt+1 = θt −
η√

v̂t + ϵ
m̂t, (3.26)

where θt is the model parameters at time step t, η is the learning rate, and ϵ is a small
constant to prevent division by zero.
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In order to estimate the losses of the model, the MLP model requires to include a
loss function where it allows the updating parameters to minimize the losses. Since
the prediction is real values, this MLP model is considered a regression predictive
modeling problem. Therefore, this model uses the default loss function, which is
Mean Squared Error (MSE) (Equation 3.27).

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (3.27)

3.4.2 Training the Model

One commonly employed approach for training neural networks, particularly multi-
layer perceptrons (MLPs) with multiple hidden layers, is backpropagation. Its mech-
anism involves the computation of the gradient of the loss function concerning the
network’s weight and biases. The algorithm then employs this gradient to update
the weights and biases by moving them in the direction opposite to the gradient.

The backpropagation algorithm consists of two stages: forward propagation and
backward propagation. In the forward propagation stage, the input data is fed
through the network, and each hidden layer applies a nonlinear transformation to
the input using the associated weights and biases. Then, the output layer performs
a linear transformation of the last hidden layer, producing the final network output.

In the backward propagation stage, the gradient of the loss function with respect
to each weight and bias in the network is computed using the chain rule of calcu-
lus. This process involves calculating the gradient of the output within each layer
with respect to the input of that layer and then combining these gradients using the
chain rule. Then, the weights and biases are updated in the opposite direction of the
gradient, using a learning rate parameter to control the step size of the update.

The backpropagation algorithm iteratively applies these two stages to the input data,
adjusting the weights and biases of the network in order to minimize the loss func-
tion. This optimization process enables the network to generate accurate predictions
on new data by minimizing the loss function. As mentioned, the MLP model is
trained using a backpropagation algorithm to minimize the MSE between the pre-
dicted and actual values. During training, the weights and biases of the MLP model
are updated using the gradient of the error with respect to these parameters.
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Algorithm 1 Backpropagation for MLP with two hidden layers

Require: Training data (x1, y1), . . . , (xn, yn), learning rate α, number of hidden units
m1 and m2

1: Initialize weights and biases randomly: W1, b1, W2, b2, W3, b3
2: for each training example (xi, yi) do
3: Forward propagation:
4: z1 = σ(W1xi + b1) ▷ First hidden layer
5: z2 = σ(W2z1 + b2) ▷ Second hidden layer
6: ypred = W3z2 + b3 ▷ Output layer
7: Compute loss L = 1

2 (ypred − yi)
2

8: Backward propagation:
9: δ3 = (ypred − yi) ▷ Gradient of loss w.r.t. output

10: δ2 = σ′(z2)WT
3 δ3 ▷ Gradient of loss w.r.t. second hidden layer

11: δ1 = σ′(z1)WT
2 δ2 ▷ Gradient of loss w.r.t. first hidden layer

12: W3 = W3 − αδ3zT
2 ▷ Update output layer weights

13: b3 = b3 − αδ3 ▷ Update output layer biases
14: W2 = W2 − αδ2zT

1 ▷ Update second hidden layer weights
15: b2 = b2 − αδ2 ▷ Update second hidden layer biases
16: W1 = W1 − αδ1xT

i ▷ Update first hidden layer weights
17: b1 = b1 − αδ1 ▷ Update first hidden layer biases
18: end for

This MLP model consists of a batch size where it goes through a specific number of
samples before updating the internal parameters. In training the MLP model, the
training algorithm must go through a specific number of times to work through the
entire dataset, which is called a number of epochs. The number of epochs is typically
large, which allows the training algorithm to run until the losses are sufficiently
minimized. This MLP model is set to run through 2,000 epochs, which is typically
for time series forecasting models.

Overall, the MLP is a powerful tool for time series forecasting, capable of capturing
complex nonlinear patterns in the data. However, it can also be prone to overfitting
and requires careful tuning of its many hyperparameters. As with any machine
learning model, the effectiveness of the MLP depends heavily on the quality and
quantity of the input data.

3.5 Gaussian Processes

Gaussian Processes (GPs) are a powerful tool for time series analysis, providing a
flexible and non-parametric approach for modeling complex and non-linear rela-
tionships in data. In GP regression, a GP is used to model the probability distri-
bution over the function values at each time point in the time series, providing a
posterior distribution that captures the uncertainty of the model. By using a GP to
model the probability distribution over the function values, GP regression allows for
the calculation of prediction intervals that reflect the uncertainty of the model.

3.5.1 Kernels

The fundamental definition of a GP is a collection of random variables in which all
the finite-dimensional distributions are joint Gaussian distributions for any finite
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number (Quadrianto, Kersting, and Xu, 2010). In the context of time series analysis,
a GP can be thought of as a probability distribution over the set of all possible time
series functions, with the mean and covariance functions defining the GP’s prop-
erties. The mean function determines the expected value of the time series at each
point, while the covariance function determines the degree of correlation between
different points in the time series.

The goal of GP is to learn the underlying distribution from the training data, and
in order to do that, GP uses the method of Bayesian inference. Assuming that the
underlying function generating the time series values at time t is denoted by ft, GP
regression models the function ft as a Gaussian process with a mean function µt and
covariance function Σt. Suppose the time series Xt is given the observed values up
to time t, i.e., Dt = X1, X2, . . . , Xt, the conditional distribution of Xt+1 given Dt is
then given by:

p(Xt+1 | Dt) = N (mt+1, vt+1), (3.28)

where the posterior mean and covariance are given by:

µt+1 = k⊤t+1(Kt + σ2 I)−1Xt, (3.29)

Σt+1 = k(Xt+1, Xt+1)− k⊤t+1(Kt + σ2 I)−1kt+1, (3.30)

with kt+1 = [k(X1, Xt+1), k(X2, Xt+1), . . . , k(Xt, Xt+1)]
⊤, Kt is the t × t matrix with

entries Ki,j = k(Xi, Xj), σ2 is the noise variance, and I is the identity matrix. The ker-
nel functions k(Xi, Xj) specify the correlation between the predicted and observed
time series values. In practice, the mean and covariance functions are specified using
a kernel function k(Xi, Xj), which can be optimized by maximizing the log marginal
likelihood of the training data.

GP regression for time series analysis commonly utilizes various kernels, among
which the linear kernel, the squared exponential kernel, the Matérn kernel, and the
periodic kernel are particularly popular. The linear kernel is a simple kernel that
simply does Bayesian linear regression (Equation 3.31). The squared exponential
kernel, also known as radial basis function (RBF), is a smooth and infinitely differ-
entiable kernel that is commonly used for modeling stationary time series (Equation
3.32). The Matérn kernel is a more flexible kernel that can model non-stationary time
series, with the smoothness parameter controlling the degree of differentiability of
the function (Equation 3.33). The periodic kernel is a specialized kernel for mod-
eling time series with periodic behavior, such as seasonal fluctuations in economic
data or daily temperature patterns (Equation 3.34). Each kernel has its own set of
hyperparameters that can be optimized to improve the model’s performance on the
training data.

kLinear(Xi, Xj) = XiXj, (3.31)
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kRBF(Xi, Xj) = exp

(
−
(Xi − Xj)

2

2ℓ2

)
, (3.32)

kMatern(Xi, Xj) =
1

Γ(ν)2ν−1

(√
2ν

ℓ
|Xi − Xj|

)ν

Kν

(√
2ν

ℓ
|Xi − Xj|

)
, (3.33)

kPeriodic(Xi, Xj) = exp

(
−

2 sin2 (π|Xi − Xj|/p
)

ℓ2

)
, (3.34)

The linear kernel is a simple dot product between the two time series. The RBF
kernel has a hyperparameter, ℓ, that functions as a characteristic length scale of the
kernel. The Matérn kernel has an extra hyperparameter, ν, which functions as a
smoothness parameter. Kν denotes the modified Bessel function of the second kind.
The periodic kernel has a hyperparameter of p that represents the periodicity of the
kernel. Note that these kernels are stationary and do not depend on time, but only
on the distance between the points Xi and Xj.

GPs typically have a kernel composition where several kernels are combined by
adding or multiplying the kernels. The kernel composition influences the shape of
the resulting distribution. For weather forecasting, the common kernel composition
in GPs is:

k(Xi, Xj) = kLinear(Xi, Xj) + kPeriodic(Xi, Xj) + kRBF(Xi, Xj), (3.35)

where the linear kernel provides the trend, the periodic kernel provides the seasonal
patterns, and the RBF kernel introduces the non-linear trends.

3.6 Performance Evaluation

An optimal time series forecasting model will be determined by evaluating the per-
formance of forecasting with the testing datasets. To evaluate the performance of
four different time series forecasting models, the statistical measures are used in the
following: root mean squared error (RMSE) and mean absolute error (MAE). RMSE
measures the Euclidean distance between predicted values and observations (Equa-
tion 3.36), and MAE measures the magnitude of difference between predicted values
and observations (Equation 3.37).

RMSE =

√
∑N

i=1(yi − ŷi)2

N
(3.36)

MAE =
1
N

N

∑
i=1

|y − ŷ| (3.37)
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Chapter 4

Vector Autoregression

Vector autoregression is an extension of simple autoregressive processes where it
also analyzes other variables. VAR models study the relationship of multiple vari-
ables within the same time series. Suppose the time series is Xi,t where i = 1, .., m,
and t = 1, ..., T, the VAR model with the order of p, or VAR(p), can be written as:

X1,t = ϕ1,0 + ϕ1,1X1,t−1 + ϕ1,2X2,t−1 + . . . + ϕ1,mXm,t−1 + . . . + ϕ1,1Xm,t−p + ϵ1,t

X2,t = ϕ2,0 + ϕ2,1X1,t−1 + ϕ2,2X2,t−1 + . . . + ϕ2,mXm,t−1 + . . . + ϕ2,1Xm,t−p + ϵ2,t

...
Xm,t = ϕm,0 + ϕm,1Xm,t−1 + ϕm,2Xn,t−1 + . . . + ϕm,mXm,t−1 + . . . + ϕm,1Xm,t−p + ϵm,t,

(4.1)

where the ϕi are coefficients and the error term, ϵt, is white noise processes, which
is serially uncorrelated. Let Xt = [X1,t, X2,t, ...Xm,t]⊤ denote an (m × 1) vector of time
series variables. VAR(p) model can be written in matrix form as:

Xt = ϕ0 + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + ut. (4.2)

The ϕ0 and ut is (m× 1) vectors of constant and error terms, and ϕ1, ..., ϕp are (m×m)
coefficients matrices.

For the study of time series data, VAR(p) might need to add deterministic terms to
define the trend and seasonal components of the time series. Additionally, exoge-
nous variables might be required as well. Therefore, the VAR(p) model with the
deterministic terms and exogenous variables may be defined as:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + ξDt + δAtut, (4.3)

where Dt represents an (m × 1) vector of deterministic components, such as con-
stant, trend, or seasonal variables, At represents an (l × 1) vector of exogenous vari-
ables, and ξ and δ are parameter matrices (Zivot and Wang, 2003).

4.1 Type of Models

A VAR model consists of many parameters, which might become difficult to inter-
pret because of the complex interactions between the variables. Therefore, the VAR
model breaks down into components with specific focuses and functions.
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4.1.1 Structural Model

Definition 4.1.1. A structural VAR with the order of p, abbreviated as SVAR(p), can
be described as:

BXt = ϕ0 + ϕ1Xt−1 + ϕ2Xt−2 + . . . + ϕpXt−p + ut, (4.4)

where B is a main diagonal term or a matrix of Bij that has i = j. The matrix B
describes the contemporaneous effects of variables.

For instance, a bivariate first-order VAR model is:

X1,t = ϕ1,0 + ϕ1,1X1,t−1 + ϕ1,2X2,t−1 − b1,2X2,t + ϵ1,t (4.5)
X2,t = ϕ2,0 + ϕ2,1X1,t−1 + ϕ2,2X2,t−1 − b2,1X2,t + ϵ2,t

where =

(
ϵ1,t
ϵ2t

)
∼ iid

((
0
0

)(
σ2

1 0
0 σ2

2

))
.

It is assumed that the error terms, ϵ1,t and ϵ2,t, are uncorrelated. Therefore, the co-
efficient b1,2 describes the contemporaneous effect of a change in X2,t on X1,t, and
similarly, b2,1 describes the effect of a change in X1,t on X2,t. The next subsection will
discuss the analysis of these parameters.

The SVAR model has structural shocks to each variable, which are zero-mean white
noise processes that are serially uncorrelated and independent of each other. A gen-
eral VAR model typically has symmetric covariance matrices, which prevents the
analysis of the causal relationship between the variables. Therefore, SVAR models
add restrictions on covariance matrices to identify the structural relationships. How-
ever, the drawback of this type of model is that it depends on more or less subjective
assumptions made by the researchers. Generally, the SVAR model is usually used as
an application to economic time series data.

4.1.2 Reduced Form Model

Definition 4.1.2. By multiplying B−1 in the structural VAR model

Xt = B−1ϕ0 + B−1ϕ1Xt−1 + B−1ϕ2Xt−2 + . . . + B−1ϕpXt−p + B−1ut, (4.6)

the reduced form VAR model is given by

Xt = A0 + A1yt−1 + A2Xt−2 + . . . + ApXt−p + ut (4.7)

where Ai = B−1ϕi for i = 0, 1, . . . , p and ut = B−1ϵt (Kotze, n.d.).

Since the error terms in the reduced form VAR model are composites of the structural
shocks, it means that a structural shock, ϵt, can potentially influence the shocks in
all error terms ut. Going back to the bivariate example of the structural VAR model,
the reduced form of the bivariate VAR model is:
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X1t = A01 + A11yt−1 + A12Xt−1 + u1t

X2t = A02 + A21yt−1 + A22Xt−1 + u2t,
(4.8)

where the covariance matrix is E(ut, u′
t) = B−1E(ϵt, ϵ′t)B′−1. This covariance matrix

of the reduced form VAR model can have non-zero off-diagonal terms, which means
there is a correlation between error terms. Therefore, this model cannot determine
the individual impacts that each structural shock has on the model itself.

There is another form of the reduced form of the VAR model that may be used for
impulse response functions in Section 4.4.2:

A(L)Xt = A0 + ut (4.9)

where A(L) = I2 − AiL for i = 1, . . . , p. The reduced form VAR model is the simplest
model, considering each variable to be a function of its own past values and the past
values of other variables. The drawbacks of the reduced form VAR model are that
no variable has any direct contemporaneous effect on other variables in the model,
and as mentioned, the error terms are correlated.

4.1.3 Recursive Model

The reduced form of the VAR model loses the identification of the relationship in
structural shocks, but the recursive VAR model can recover them by applying the
Cholesky decomposition. In other words, the recursive VAR model uses a Cholesky
decomposition to orthogonalize the disturbances with no direct contemporaneous
effects. Since error terms of the reduced form VAR model are correlated, the recur-
sive VAR model includes some contemporaneous values as regressors to construct
the error terms in order to not correlate the error terms from each other.

4.2 Development of the Model

The development of the VAR(p) model involves a certain procedure to follow to re-
ceive the results of the relationship between multiple variables. Figure 4.1 illustrate
the steps involved in constructing the VAR model, which include:

1. Check for the Stationarity of Time Series Data

The stationarity of time series data is critical to the development of the VAR
model, as the statistical properties of the model may present inaccurate in-
formation. As with the ARIMA model, the ADF test is used in this thesis to
determine whether the time series data is stationary.

2. Combine the Datasets

To perform multivariate analysis, the climate dataset is refined to match the
time series of either the economic or human health dataset, allowing the datasets
to be combined.

3. Select an Optimal Lag Length
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An optimal lag length for the VAR model is selected using information criteria
to determine the performance of the model with a lag length of 1 to 20. More
details on this step are presented in the next section of this chapter, Section 4.3.

4. Train the VAR Model

Using R programming, the VAR model with its optimal lag length is fit to the
training datasets. The model then presents the summary of VAR Estimation
Results, which provides the standard error, t-value, and p-value for each rela-
tionship of variables in each number of lags. Additionally, the results provide
the covariance and correlation matrix of residuals.

5. Evaluate the Model

The VAR model has many different parameters that may be difficult to in-
terpret due to the complex interaction between variables. Therefore, the dy-
namic properties of a VAR model may be summarized using three main types
of structural analysis: the Granger Causality test, Impulse Response Function,
and Forecast Error Variance Decomposition. These details on the three types
of analysis are presented in 4.4.

FIGURE 4.1: A flowchart of constructing the VAR model.

4.3 Model Order Selection

Fitting a VAR model involves selecting a lag length, p, and the optimal value for the
lag length can be determined using model selection criteria. In this thesis, the VAR(p)
model is fitted using R programming. The R function for selecting the lag length in
VAR produces four different information criteria that evaluate the performance of
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the model with different numbers of lags. The lag length selection R function esti-
mates the VAR model using ordinary least squares (OLS), and the model selection
criteria for VAR(p) models take the form:

IC(p) = ln |Σ̃u(p)|+ cT · φ(n, p). (4.10)

Here, Σ̃ is the estimated covariance matrix of the residual, cT is a sequence in-
dexed by the sample size T, and φ(n, p) is a penalty function (Zivot and Wang,
2003). The information criteria include Akaike information criterion (AIC) (Equa-
tion 4.11), Schwarz criterion (SC), or Bayesian information criterion (BIC) (Equa-
tion 4.12), Hannan-Quinn Criterion (HQ) (Equation 4.13), and Final Prediction Error
(FPE) (Equation 4.14). The formulas for computing these criteria are as follows:

AIC(p) = ln |Σ̃u(p)|+ 2
T

pn2, (4.11)

BIC(p) = ln |Σ̃u(p)|+ ln(T)
T

pn2, (4.12)

HQ(p) = ln |Σ̃u(p)|+ 2 ln(ln(T))
T

pn2, (4.13)

FPE(p) = (
T + np + 1
T − np + 1

)n|Σ̃u(p)|, (4.14)

where T is a sample size and n is the total number of equations in the VAR(p), or the
number of rows in Xt ∼ (n × 1) in Equation 4.3.

4.4 Model Evaluation

4.4.1 Granger Causality Test

The Granger Causality test provides information about a variable’s forecasting abil-
ity for other variables. For instance, if a time series Xt can improve the forecast of
another variable Yt, then it said Xt Granger-cause Yt. In other words, Granger Causal-
ity may determine the causal influence between variables.

Granger Causality test uses the F-test, which determines the joint significance of the
coefficients in all numbers of lags. The null hypothesis of the Granger Causality test
is:

H0 : Xt fails to Granger-cause Yt. (4.15)

As the p-value is below the significance level, it reveals that a variable is relevant for
predicting another variable.
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4.4.2 Impulse Response Functions

An impulse response function provides a clearer understanding of the VAR model’s
dynamic behavior. The impulse response function depends on the moving average
representations of coefficients.

Definition 4.4.1. A Wold decomposition theorem states every covariance-stationary
time series can be written as the sum of a deterministic component and a component
of an infinite moving average representation. Multiplying Equation 4.9 by A(L)−1 =
(I2 − A1L)−1, we get:

Xt = µ + Ψ(L)ut,

Ψ(L) =
∞

∑
i=0

ΨiLi, Ψ0 = I2, Ψi = Ai,
(4.16)

where µ is a deterministic component, and Ψ(L) is a component that has an infinite
moving average representation.

Definition 4.4.2. Structural Moving Average (SMA) of time series is derived from
the infinite moving average representation of the structural shocks, ϵt (Zivot and
Wang, 2003). Suppose ut = B−1ϵt, Equation 4.16 gives:

Xt = µ + Ψ(L)B−1ϵt,
Xt = µ + Θ(L)ϵt,

Θ(L) =
∞

∑
i=0

ΘiLi, Θ0 = B−1, Θi = AiB−1.
(4.17)

Θ0 captures the initial impacts of structural shocks and determines the contempora-
neous correlation between two variables.

Also, the elements in Θ matrix can give the impulse responses of the variable to
changes in the structural errors. Let’s go back to an example of the bivariate first
order of the VAR model. Suppose the structural VAR model with h steps ahead,
may be defined in a matrix form as:

[
X1,t+h
X2,t+h

]
=

[
µ1
µ2

]
+

[
θ1,1 θ1,2
θ2,1 θ2,2

] [
ϵ1,t+h
ϵ2,t+h

]
+

[
θ1,1 θ1,2
θ2,1 θ2,2

] [
ϵ1,t
ϵ2,t

]
+ . . . (4.18)

Therefore, the impulse response of the bivariate VAR model is defined as the follow-
ing:

∂X1,t+h

∂ϵ1,t
= θ1,1,

∂X1,t+h

∂ϵ2,t
= θ1,2

∂X2,t+h

∂ϵ1,t
= θ2,1,

∂X2,t+h

∂ϵ2,t
= θ2,2,

(4.19)

where θi,j is (i, j)the element of Θ matrix. Thus, the plots of θi,j are called the orthog-
onal impulse response functions.

The impulse response function can’t confirm if there is a contemporaneous correla-
tion between the variables in the VAR model. The VAR model’s estimated correlated
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matrix can confirm if there is a correlation between error terms, but it remains un-
clear in which direction the causal influences go. There are three different impulse
response functions to identify the structural shocks of a VAR model. However, this
thesis uses the orthogonal impulse response. This type of response enables the de-
composition of the model’s variance-covariance matrix. In other words, the impulse
response function transforms the VAR model into the recursive model, as mentioned
in previous sections.

4.4.3 Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD) measures the amount of variance
of forecast errors in each variable that contributes to other variables. In other words,
the FEVD determines the proportion of the variance of the forecasting errors in each
variable at time based on the variance in structural shocks.

Definition 4.4.3. Using the Wold decomposition of Equation 4.16, the linear forecast
of a variable with h-steps ahead is:

Xt+h|h = µ + Ψhut + Ψh+1ut−1 + . . . , (4.20)

with the forecast error of

Xt+h − Xt+h|t = ut+h + Ψ1ut+h−1 + . . . + Ψh−1ut+1. (4.21)

Since ut = B−1ϵt and Θi = ΨiB−1, then the forecast error in terms of the structural
shocks is:

Xt+h − Xt+h|t = Θ0ϵt+h + Θ1ϵt+h−1 + . . . + Θh−1ϵt+1. (4.22)

Suppose the VAR model has a bivariate system (Equation 4.18), the forecast errors
of the bivariate VAR model is:

[
X1,t+h − X1,t+h|h
X2,t+h − X2,t+h|h

]
=

[
θ1,1 θ1,2
θ2,1 θ2,2

] [
ϵ1,t+h
ϵ2,t+h

]
+ · · ·+

[
θ1,1 θ1,2
θ2,1 θ2,2

] [
ϵ1,t+1
ϵ2,t+1

]
. (4.23)

Suppose the first equation of the bivariate VAR model is:

X1,t+h − X1,t+h|h = θ1,1ϵ1,t+h + . . . + θ1,1ϵ1,t+1 + θ1,2ϵ2,t+h + . . . + θ1,2ϵ2,t+1, (4.24)

the variance of forecast error may be decomposed as:

VAR(X1,t+h − X1,t+h|h) = σ2
1 (h)

= σ2
1 ((θ

(0)
1,1 )

2 + . . . + (θ
(h−1)
1,1 )2) + σ2

2 ((θ
(0)
1,2 )

2 + . . . + (θ
(h−1)
1,2 )2).

(4.25)
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Since the FEVD determines the proportion of variances dues to structural shocks,
the FEVD for X1,t+h is (Zivot and Wang, 2003):

ρ1,1(h) =
σ2

1 ((θ
(0)
1,1 )

2 + . . . + (θ
(h−1)
1,1 )2)

σ2
1 (h)

(4.26)

ρ1,2(h) =
σ2

2 ((θ
(0)
1,2 )

2 + . . . + (θ
(h−1)
1,2 )2)

σ2
2 (h)

(4.27)
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Chapter 5

Data Mining

5.1 Data Collection

5.1.1 Data Sources

The climate data is from the National Centers for Environmental Information’s (NCEI’s)
Climate Data Online (CDO), which is under a large scientific and regulatory agency,
the National Oceanographic and Atmospheric Administration (NOAA). CDO pro-
vides summaries of the historical daily land surface observations around the world.

The economic data is from the U.S. Bureau of Labor Statistics, which compiles the
information from the CPI for all urban consumers survey. The CPI for all urban
consumers covers approximately 93 percent of the total population, which doesn’t
include the remaining total population that lives in remote rural areas. CPI consid-
ers the prices of all goods and services purchased for consumption by urban house-
holds.

The storm events data is from the NCEI’s Storm Events Database, which contains
documents on the occurrence of storms, unusual weather phenomena, and other
significant meteorological events. It also collects the causes of these extreme weather
events, such as fatality, injuries, and cost of property damage.

5.1.2 Study Areas

FIGURE 5.1: A map of the United States with five airport sites
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This thesis focuses on five populated airport sites in different regions of the United
States (Figure 5.1). The United States Census Bureau has four regions: West, Mid-
west, Northeast, and South (Kirakosyan, 2016).In order to represent the regions, at
least one site is selected from each region. The principal characteristics of these sites
are summarized in Table 5.1.

Site Houston Chicago Boston San Francisco Miami

Airport Code HOU ORD BOS SFO MIA

Latitude 29° 38’ 26" 41°58’49" 42°21’56" 37° 37’ 17" 25°47’45"

Longitude -95° 16’ 26" 87°54’32" 71°0’34" 122°22’44" 80°17’13"

Elevation (feet) 38.43 652.89 10.77 5.73 16.4

County Harris Cook Suffolk San Mateo Miami-
Dade

Köppen-Geiger
Classification Cfa Dfa Dfa Csb Am

TABLE 5.1: Characteristics of airport sites

Houston’s site is classified as a humid subtropical climate or characterized by hot,
long summers with evenly distributed precipitation through the years. Flooding
and hurricanes typically occur in Houston during the summer and fall. Chicago’s
climate is hot summer continental, characterized by hot and humid summers and
severe winters. Boston’s climate might have classification as Chicago, but Boston
experiences hurricane season since the city is on the shore. San Francisco is classified
as a dry-summer subtropical climate, known as the Mediterranean climate, which
means this city has dry and hot summers with mild winters. Miami has short dry
winters and hot and humid summers; therefore, Miami’s climate is classified as a
tropical monsoon climate. Miami experiences frequent extreme weather events of
flooding and hurricanes.

5.1.3 Data Descriptions

The climate dataset comprises 26,538 daily observations with 40 distinct variables,
which is an extremely large size to compute efficiently in terms of time. Therefore,
the climate dataset is reduced to four different time series measurements in the fol-
lowing: maximum temperatures, minimum temperatures, rainfall, and snow depth.
The temperatures are measured in Fahrenheit, while rainfall and snow depth are
measured in inches. The climate dataset is recorded at the five airport sites in the
United States, and the dataset is collected from January 1st, 1950, to December 31st,
2022.

The economic dataset consists of 258 bi-monthly observations of a consumer price
index (CPI) and food-only CPI from January 1980 to December 2022. U.S. Bureau of
Labor Statistics combines the three nearest cities within a region, namely Houston-
The Woodlands-Sugar Land, Chicago-Naperville-Elgin, Boston-Cambridge-Newton
San Francisco-Oakland-Hayward, and Miami-Fort Lauderdale-West Palm Beach, to
calculate the CPI. The CPI is a measure of the average change in prices of a basket
of consumer goods and services (“Consumer Price Indexes Overview” 2023). The
CPI is widely used as a measure of inflation and is closely monitored by businesses,
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policymakers, and finance markets. The U.S. Bureau of Labor Statistics recorded
different start dates of bi-monthly observations in each city.

• Houston-The Woodlands-Sugar Land has bi-monthly observations that skip
odd numbers recorded from February 1980 to December 2022.

• Chicago-Naperville-Elgin has monthly observations, but since most records
are bi-monthly, the observations are summarized into bi-monthly, which starts
from February 1980 to December 2022.

• Boston-Cambridge-Newton has bi-monthly observations that skip even num-
bers, where it starts from January 1980 to November 2022.

• San Francisco-Oakland-Hayward has bi-monthly observations that skip odd
numbers recorded from 1980 to 1987 and 1997 to 2022. From 1987 to 1997, the
data contains monthly observations. Therefore, these monthly observations
are summarized bi-monthly.

• Miami-Fort Lauderdale-West Palm Beach has bi-monthly observations that
skip even numbers from January 1980 to November 1996 and then switches
to bi-monthly observations that skip odd numbers from February 1997 to De-
cember 2022.

The storm event dataset comprises various types of storm events, including torna-
does, hailstorms, and floods. However, tornado events were the only ones recorded
from 1950 through 1954. From 1955 through 1995, tornado, thunderstorm wind,
and hail events were recorded from paper publications, and since 1996, 48 different
types of events have been recorded. The data includes information on the number
of deaths and injuries for each event occurring between January 1st, 1950, and De-
cember 31st, 2022. The storm events dataset covers only counties within the airport
sites in the United States. The size of the storm events data varies depending on the
number of storm occurrences in each city between 1950 and 2022.

5.2 Data Preprocessing

After collecting the datasets, the next step of the data mining process is to enhance
the quality of the datasets and prepare them for algorithms to extract the information
and insights. This step involves several strategies to clean and integrate the datasets.

As all climate measurements exhibit a left-skewed distribution in histograms, miss-
ing values are replaced with the median value of the variable itself to mitigate the
impact of outliers. Dates in all datasets are converted into time series arrays using
Julia programming. Since the Bureau of Labor Statistics only collects the CPI values,
the change in index values and the inflation rate are computed and added as two
new variables to the economic datasets using Excel. The inflation rate, also known
as percent change, is calculated using the following equation:

Inflation Rate = Current CPI−Prior CPI
Prior CPI ∗ 100

Climate, economic, and storm event datasets have different data resolutions, and
each dataset has a unique time series collection. For the VAR model, the climate
dataset’s daily time resolution is modified to match the time resolution of either
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the economic or storm events dataset. Since the economic dataset represents a bi-
monthly average, the climate dataset averages the values every two months and
then merges them with economic variables.

The storm event dataset only consists of the dates of severe weather events occur-
rences. Therefore, the dates of storm events expand into daily data resolution, where
the number of deaths and injuries equals zero if the dates have no occurrence of
storm events. However, the storm events database has some dates with several
storm events occurring on the same day. To address this, all duplicated dates com-
bine into only one date, which sums up the number of deaths or injuries within the
duplicated dates.

The climate dataset is extremely large since it contains almost 75 years of data points
in each variable. Therefore, I create a mini-batch of the dataset where I reduce the
data size to only last twenty years or 7,305 days. The climate dataset splits into a
training set and a testing set in a ratio of 80% to 20% to compare the time series
forecasting methods. Since the dataset splits into 80% to 20% of twenty years of
observations, the training set has approximately 16 years of time series observations,
while the testing set has the most recent four years, or from 2019 to 2022.

5.3 Data Visualization

This thesis focuses on four climate factors, namely maximum temperature, mini-
mum temperature, precipitation, and snowfalls, in five cities in different regions of
the United States. The multivariate data analysis in this study considers two vari-
ables of the economy, namely the CPI inflation rate and Food only CPI inflation rate,
and two variables of human health during the storm events, namely the fatalities
and injuries. As different cities have varying degrees of severity in climate factors,
the effects of each storm event on the economy and human health may vary.

Figure 5.3 displays the plots of the four climate factors for the five airport sites. While
the periodicity of maximum and minimum temperatures may be consistent across
all five cities, the maximum or minimum values may differ. For example, Houston is
more likely to experience maximum temperatures over 100◦F, whereas Miami rarely
has maximum temperatures over 100◦F. Houston, Miami, and San Francisco have a
higher frequency of rainfall over 20 years, while Boston and Chicago have a higher
frequency of snowfall. This variation in climate factors may be attributed to the
locations of these cities. Cities in the south and west of the United States tend to
have warm temperatures with high precipitations, while cities in the north and east
are more likely to have cold temperatures with high snowfalls.



Chapter 5. Data Mining 40

FIGURE 5.3: Plots of climate factors in five different cities from first
day of the year 2003 to the last day of the year 2022.
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FIGURE 5.4: Plots of the inflation rates of CPI (left) and Food only CPI
(right) in five different cities from 1980 to 2022.

FIGURE 5.5: Plots of the number of fatalities (left) and injuries (right)
in five different cities from 1980 to 2022.

The economy plot in Figure 5.4 displays the inflation rates of the CPI and Food only
CPI among five cities. Comparing all five cities, San Francisco and Chicago exhibit
high inflation rates in either economic factor, while Miami and Boston have low
inflation rates. The fluctuations of inflation rates in either factor among the cities
appear consistent over the years. On the other hand, the health plot in Figure 5.5
shows the number of deaths and injuries in five cities. Based on the figure, Chicago
and Houston seem to have more occurrences of a high number of deaths compared
to the other three cities. However, Houston has more recent hits with a high number
of deaths. Additionally, Houston has the most recent hits with a high number of
injuries, while Chicago experienced a high number of injuries in the 1960s.



42

Chapter 6

Applications

This chapter presents the findings of this work. The first part of the research focuses
on applying four different time series forecasting methods to the climate dataset of
five cities and evaluating their forecasting performance using statistical measures.
The second part aims to analyze the dynamic relationship between climate aspects
and economic factors or human health.

Section 6.1 analysis is carried out in two statistical software tools: Julia and Python.
The packages in Julia programming used to develop ARIMA, Exponential Smooth-
ing, and GP models are "Forecast", "StateSpaceModels", and "GaussianProcesses"
packages. However, MLP model development was challenging with Julia, so the
PyTorch package of Python is used to provide more flexibility in developing the
framework for MLP of time series forecasting. Section 6.2 analysis is carried out in
the R software environment using the "vars" package.

6.1 Univariate Analysis

The analysis of the time series observations for the five cities starts with Houston
as the main city. Before developing any time series forecasting model, the time se-
ries needs to be analyzed using the seasonal-trend decomposition (STL). Figure 6.1
shows the components of the time series observations, where the STL divides the
time series observations into data (top), trend (first middle), seasonal (second mid-
dle), and the remainder (last). This figure clearly indicates that the time series has
seasonal components, and the periodicity occurs every year from 2003 to 2022. How-
ever, there is no trend in either the maximum or minimum temperatures. Therefore,
the time series forecasting models need to consider the seasonal component within
the models. The behaviors of seasonal and trend components in Houston’s daily
observations are similar to those of the other four cities.



Chapter 6. Applications 43

FIGURE 6.1: Plot of time series decomposition of Houston’s maxi-
mum (right) and minimum (left) temperatures from 2003 to 2022.

6.1.1 ARIMA

Prior to developing the ARIMA model, it is critical to ensure that the temperature
variables are stationary to avoid any fabrication of the results, which is a common
issue in time series analysis. The ADF test is utilized to determine the stationarity
of the time series, as presented in Table 6.1. It is observed that all variables are
stationary in their level form, implying that there is no need to add a differencing
order into the time series data.

Variables Measures Houston Chicago Boston San Francisco Miami

TMAX
ADF Values -10.62 -8.76 -9.22 -15.23 -11.80

P-Values <1e-18 <1e-13 <1e-14 <1e-27 <1e-21

TMIN
ADF Values -10.36 -8.36 -7.37 -11.48 -13.22

P-Values <1e-17 <1e-12 <1e-10 <1e-20 <1e-23

TABLE 6.1: Augmented Dickey-Fuller (ADF) Test for Stationarity for
Univariate Time Series.

Time series observations are correlated through time; it’s important to assess the na-
ture of correlation through ACF and PACF plots. Figure 6.2 shows the lag order plot
with a maximum of 25 lags and the strength of correlation between data points. The
ACF plots indicate a slow decline with lags, while PACF plots have few significant
lags. Therefore, Houston’s temperatures are well-suited for a pure auto-regressive
(AR) model. Furthermore, since the time series data is stationary, the plots do not ex-
hibit a significant seasonal component within the data. The ACF and PACF plots of
the other four cities exhibit similar behaviors to Houston’s maximum and minimum
temperatures, leading this thesis to focus on the pure AR model.
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FIGURE 6.2: ACF (top) and PACF (bottom) of Houston’s maximum
(right) and minimum (left) temperatures from 2003 to 2022.

Once the time series observations are split into a training and testing set of 80% to
20%, as mentioned in Section 5.2, an optimization method is developed to determine
the optimal lag length for the AR model of the time series observations by measuring
with AIC (Equation 3.12) and BIC (Equation 3.13). Figure 6.3 illustrates the AIC and
BIC scores where the optimization method runs from lag 1 to lag 110 of the pure AR
model in two different variables of Houston temperatures. The lower the scores of
AIC or BIC, the better the model fits the time series observations.

FIGURE 6.3: Plot of AIC (top) and BIC (bottom) scores with lag or-
der of pure AR model for Houston’s maximum (right) and minimum

(left) temperatures from 2003 to 2022.

Based on Figure 6.3 and Table 6.2, it is evident that the optimal lag order of the pure
AR model ranges from lag 80 to 110 based on the AIC score, for all five cities, except
for San Francisco’s maximum temperatures, which have an optimal lag order of 19.
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Although it may seem unusual for San Francisco to have a lower lag order than other
cities, this is likely due to the unique shape of the maximum temperature data for
San Francisco, as shown in Figure 5.3. This study uses the AIC score as the primary
information criterion for selecting the lag order of the pure AR model.

Variables City p of AIC AIC score p of BIC BIC score

TMAX

Houston 88 3.38 12 20234.66

Chicago 109 4.04 13 24019.23

Boston 108 4.06 15 24151.47

San Francisco 19 3.08 17 18400.89

Miami 100 2.30 18 14255.13

TMIN

Houston 101 3.28 14 19662.43

Chicago 106 3.66 12 21777.16

Boston 108 3.23 10 19492.65

San Francisco 97 1.95 11 12293.25

Miami 106 2.55 12 15539.55

TABLE 6.2: Model Order Selection for pure AR model of Maximum
and Minimum Temperatures among five cities.

The optimal AIC score for Houston’s maximum temperature is at lag 88, while for
Houston’s minimum temperature, it is at lag 101. The AR model with the optimal
lag is used to forecast the maximum temperatures for the next 1,461 days, which is
the length of the testing dataset. Figure 6.4 illustrates the forecasting of the testing
set using the AR model with its optimal lag order. In the figure, the red line repre-
sents the actual values of the testing set, while the blue line represents the forecast
values of the AR model. As discussed in Section 3.6, to evaluate the model’s perfor-
mance, two different statistical methods, RMSE and MAE, are used to measure the
difference between actual values and forecast values of the AR model to determine
the model’s performance.

FIGURE 6.4: Plots of forecasting the maximum (left) and minimum
(right) temperatures of Houston using AR model with its optimal lag

order of 88 and 101.
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Variables Measures Houston Chicago Boston San Francisco Miami

TMAX
RMSE 11.24 16.75 13.74 8.62 5.45

MAE 8.90 14.10 11.33 6.69 4.29

TMIN
RMSE 11.60 16.75 11.59 5.50 6.82

MAE 9.65 12.90 9.43 4.53 5.48

TABLE 6.3: Model Performance Measures for AR Model’s Forecasting
on Maximum and Minimum Temperatures among five cities.

Table 6.3 presents the evaluation results of the pure AR model’s performance with
the optimal lag order using two different statistical approaches. The model’s perfor-
mance across all cities is comparable, with lower RMSE or MAE scores indicating
better performance. Notably, the AR model demonstrated good forecasting perfor-
mance for Miami’s maximum and San Francisco’s minimum temperatures.

6.1.2 Exponential Smoothing

The time series decomposition confirmed the presence of seasonal components in
the maximum and minimum temperatures. Therefore, this thesis focuses on only
one exponential smoothing model: Triple Exponential Smoothing (TES) with no
trend. Since the training set covers 16 years, it implies that there is a period in every
single year. Figure 6.5 illustrates the forecasting of the time series observations of
the testing set, utilizing the TES model with no trend and a periodicity of 16 sea-
sons. Like Figure 6.4, the red line represents the actual observations in the testing
set. However, it might be difficult to see that the blue line within the blue area indi-
cates the forecast values based on the TES model, which is not closely aligned with
the actual observation data.

FIGURE 6.5: Plots of forecasting the maximum (left) and minimum
(right) temperatures of Houston using TES the model.
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Variables Measures Houston Chicago Boston San Francisco Miami

TMAX
RMSE 28.14 30.28 25.54 14.62 7.11

MAE 25.63 25.09 20.87 12.07 5.92

TMIN
RMSE 21.50 23.67 22.52 9.41 7.32

MAE 18.65 19.29 18.48 8.00 5.56

TABLE 6.4: Model Performance Measures for TES Model’s Forecast-
ing on Maximum and Minimum Temperatures among five cities.

While the TES model may not perform as well as the AR model in some cases, it
has shown comparable results to the AR model for San Francisco and Miami. Both
models performed well in forecasting the maximum and minimum temperatures for
these two cities, as indicated by Table 6.4. However, the confidence intervals for the
TES model, shown in Figure 6.5, are considerably larger than those of the AR model,
to the extent that they cover much of the plot.

6.1.3 MLP

In this thesis, the structure of the MLP model consists of three layers as follows:
input layer, hidden layer, and output layer. The input layer includes three input
neurons representing three past observations in a sequence, and the output neuron
is the forecast observation. The hidden layer is established with four hidden neurons
and with an activation function of a rectified linear unit (ReLU). The ReLU activation
function sets any negative values to 0 (Equation 6.1). This function is easy and fast
to compute and provides simple nonlinear transformation.

σ(u) = max(0, u) (6.1)

Prior to training the model, the training set splits into a sequence of three obser-
vations, representing three input neurons for the model. The training and testing
datasets are divided into a batch of 12 samples to update the optimal parameters
within the model. The model is trained for 2,000 epochs to update the optimal pa-
rameters and determine the most minimized losses. Figure 6.6 presents the decrease
in losses through the numbers of epochs, and the lowest loss is recorded in epoch
279 for Houston’s maximum temperatures and epoch 1,441 for Houston’s minimum
temperatures

Figure 6.7 illustrates the MLP model’s forecasting time series observations of the
testing set. In the figure, the actual values (red line) are closely aligned to the fore-
cast values of the MLP model (blue line). According to Table 6.5, the MLP model’s
performance is better than either AR or TES models. Like the other two models, San
Francisco and Miami have better model performance with their time series observa-
tions compared to the other three cities. Additionally, the minimum temperatures
show better model performance than the maximum temperatures.
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FIGURE 6.6: Line plots of losses in training and testing set over
the number of epochs for Houston’s maximum (left) and minimum

(right) temperatures.

FIGURE 6.7: Plots of forecasting the maximum (left) and minimum
(right) temperatures of Houston using MLP.

Variables Measures Houston Chicago Boston San Francisco Miami

TMAX
RMSE 6.09 8.24 8.25 4.99 3.54

MAE 4.42 6.33 6.53 3.81 2.29

TMIN
RMSE 5.71 6.56 5.42 2.81 4.00

MAE 4.02 5.01 4.07 2.13 2.80

TABLE 6.5: Model Performance Measures for MLP Model’s Forecast-
ing on Maximum and Minimum Temperatures among five cities.

6.1.4 Gaussian Processes

Section 3.5 suggests that the kernel composition of

k(Xi, Xj) = kLinear(Xi, Xj) + kPeriodic(Xi, Xj) + kRBF(Xi, Xj) (6.2)
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is the best for weather forecasting. However, in this thesis, the kernel composition
is slightly modified because the time series decomposition reveals that there are no
trend components in the maximum or minimum temperatures. Therefore, the linear
kernel is replaced with a white noise kernel since there are some noises in the time
series decomposition. The kernel composition for this thesis includes:

• a noise kernel with a standard deviation of 1.0

• a periodic kernel with a length scale of 0.0, a standard deviation of 1.0, and a
periodicity of 1.0

• and an RBF kernel with a length scale of 4.0 and standard deviation of 0.0.

The parameter values for each kernel are selected based on several trials and errors
using RMSE as the criterion, as shown in Table 6.6. With this fixed kernel compo-
sition, the GP model runs with a zero mean function since it is the standard mean
function for time series observation data, indicating that the mean is always at zero.

Kernel Composition RMSE Values

N(1) + P(0,1,1) + RBF(4,0) 12.51

N(1) + P(0,1,1) 12.81

P(0,1,1) + RBF(4,0) 12.81

N(1) + P(0,1,2) + RBF(4,0) Failed due to infinite sin values

N(1) + P(0,1,0) + RBF(4,0) Failed due to infinite sin values

N(1) + P(0,1,1) + RBF(2,0) 12.80

N(1) + P(0,1,1) + RBF(5,0) 12.83

N(1) + P(0,1,1) + RBF(4,4) 76

N(1) + P(0,1,0) + RBF(4,4) 76

N(1) + P(0,1,1) + RBF(3,0) 12.86

N(1) + P(1,1,1) + RBF(4,0) Failed due to infinite sin values

TABLE 6.6: Trials and Errors with Values for Kernel in Gaussian Pro-
cess, using Houston’s Maximum Temperatures

Figure 6.8 illustrates the GP model’s forecasting of the time series observations of the
testing set. The model did not perform as well as the MLP model in Figure 6.7, as
the actual values (red line) are not closely aligned with the forecast values (blue line).
The model performance of GP is worse than that of the MLP model, as confirmed
by 6.7. Additionally, the fixed kernel composition of GP has failed for three cities’
maximum and minimum temperatures due to infinite values in the sine function.
GP models are known for their instability and ill-conditioning, which means that
the fixed kernel composition might be ineffective for these cities due to errors in
inverse matrices. Based on the model performance of only two cities, GP appears
to have better performance with the data of maximum temperatures than minimum
temperatures, which is contrary to the results of the other three models.
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FIGURE 6.8: Plots of forecasting the maximum (left) and minimum
(right) temperatures of Houston using GP.

Variables Measures Houston Chicago Boston San Francisco Miami

TMAX
RMSE 12.51 – 17.94 – –

MAE 10.36 – 15.24 – –

TMIN
RMSE 13.77 – 16.36 – –

MAE 11.96 – 13.91 – –

TABLE 6.7: Model Performance Measures for Gaussian Processes
Forecasting on Maximum and Minimum Temperatures among five

cities.

6.1.5 Temperature Projection

According to the figures and the model performance evaluation, the MLP model
outperformed the other three statistical models. Figure 6.9 illustrates the maximum
and minimum temperature projections for Chicago and Boston from 2023 to 2030,
using the MLP model. The linear trend in Chicago indicates a 2.81◦F (1.56◦C) in-
crease in maximum temperatures and a 4.30◦F (2.39◦C) increase in minimum tem-
peratures within 28 years. In other hands, Boston’s trend line indicates a 3.22◦F
(1.79◦C) increase in maximum temperatures and a 3.56◦F (1.98◦C) increase in mini-
mum temperatures within 28 years. The other three cities have smaller increases in
either maximum or minimum temperatures compared to Chicago and Boston.

Although the MLP model performed well, Figure 6.9 indicates that temperature pro-
jections flatten over time, indicating that the model cannot detect extreme tempera-
tures or peaks. Since the maximum and minimum temperatures are increasing over
time, it is more likely that severe storms will occur in the coming years. For instance,
the state of Illinois experienced 82 extreme weather events between 2003 and 2022,
causing overall damages/costs that reached or exceeded $1 billion (Smith, 2023).
Similarly, Massachusetts experienced 20 such events in the same period. Therefore,
the number of extreme weather events is likely to rise in the future as the maximum
and minimum temperatures continue to increase.
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FIGURE 6.9: Projection plots of the maximum (left) and minimum
(right) temperatures of Chicago (top) and Boston (bottom) using MLP

from 2003 to 2030.

6.2 Multivariate Analysis

6.2.1 Stationarity Tests

The stationarity of time series is essential for studying the relationship between cli-
mate and economy or human health. The ADF test is performed to ensure the sta-
tionary of the time series. Since the stationarity test already ran with maximum and
minimum temperatures, Table 6.8 presents the results of the ADF tests with remain-
ing climate variables and the indicators of the economy and human health. It was
found that the snowfall data of San Francisco and Miami had errors when running
the ADF tests due to linear algebra. Nonetheless, the snowfall data is not included
in the VAR analysis since snowfall rarely occurs in either city.
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Variables City Dickey-Fuller Values P-Values Dickey-Fuller Values P-Values

PRCP PRCP SNOW SNOW

Climate

Houston -47.6963 <1e-99 -51.0996 <1e-99

Chicago -48.8002 <1e-99 -41.1644 <1e-99

Boston -49.9515 <1e-99 -41.2793 <1e-99

San Francisco -38.4492 <1e-99 – –

Miami -5.92199 <1e-06 – –

CPI CPI Food-only CPI Food-only CPI

Economy

Houston -4.61125 0.0001 -4.97277 0.0001

Chicago -5.59242 <1e-05 -4.95713 <1e-04

Boston -4.88938 <1e-04 -5.31986 <1e-05

San Francisco -3.64425 0.0050 -4.02376 0.0013

Miami -4.49194 0.0002 -6.37931 <1e-07

Fatalities Fatalities Injuries Injuries

Human
Health

Houston -65.0115 <1e-99 -66.6538 <1e-99

Chicago -65.7422 <1e-99 -66.6735 <1e-99

Boston -66.6852 <1e-99 -66.7065 <1e-99

San Francisco -65.8107 <1e-99 -66.0953 <1e-99

Miami -64.8741 <1e-99 -66.6683 <1e-99

TABLE 6.8: Augmented Dickey-Fuller (ADF) Test for Stationarity of
Multivariate Time Series.

6.2.2 VAR Order Selection and Estimation

Several information criteria, namely AIC, HQ, BIC, and FPE, are used to determine
the optimal lag length of the VAR model, as presented in Table 6.9. Following the
same example of ARIMA models, this thesis uses AIC as the primary information
criterion to select the optimal lag length of the VAR model. Table 6.9 only shows
the results for the VAR model of climate factors with the CPI. As there are four
endogenous variables, besides the climate factors, to analyze each city, the model
order selection is performed for each city’s each endogenous variable. Therefore,
a total of 20 VAR models are computed for all five cities and their economic and
human health variables. Table 6.10 provides the optimal lag length of VAR models
for each endogenous variable of each city.



Chapter 6. Applications 53

p AIC HQ BIC FPE

1 -18.37 -18.20 -17.94 1.06e-08

2 -20.24 -19.92 -19.46 1.63e-09

3 -20.31 -19.85 -19.17 1.52e-09

4 -20.23 -19.63 -18.74 1.64e-09

5 -20.41 -19.67 -18.57 1.37e-09

6 -20.61 -19.72 -18.41 1.13e-09

7 -20.48 -19.45 -17.93 1.29e-09

8 -20.38 -19.21 -17.48 1.43e-09

9 -20.30 -18.99 -17.04 1.56e-09

10 -20.20 -18.75 -16.59 1.74e-09

TABLE 6.9: Order Selection Statistics for VAR Model of Houston’s
climate and CPI dataset.

Variables Houston Chicago Boston San Francisco Miami

CPI 6 6 6 7 6

Food-only CPI 6 9 6 6 6

Fatalities 13 18 15 17 19

Injuries 13 18 15 19 19

TABLE 6.10: Model Order Selection for VAR Models among five cities

6.2.3 Granger Causality

Using the optimal lag length of VAR models, the Granger Causality test determines
the causality between climate variables and the four endogenous variables in each
city. This study uses a significance level of 0.5% to test the null hypothesis, which
states that the combination of climate factors does not Granger-cause an endogenous
variable. The statistical scores presented in Table 6.11 indicate that the null hypoth-
esis is rejected only in a few cases, including Chicago, Boston, and San Francisco,
where there is evidence that the combination of climate factors Granger-causeCPI.
Therefore, there is a causal relationship between climate factors and CPI in these
three cities.

Variable Measures Houston Chicago Boston San Francisco Miami

CPI
F-statistics 1.3116 2.5107 2.032 3.401 1.5945

P-values 0.1441 8.143e-05 0.002388 4.348e-07 0.05485

Food-
only CPI

F-statistics 1.0919 1.5269 1.4473 1.6966 1.7507

P-values 0.3453 0.02509 0.07552 0.03463 0.02693

Fatalities
F-statistics 0.8298 0.96042 0.50976 1.1803 1.0286

P-values 0.804 0.5733 0.9994 0.1773 0.4155

Injuries
F-statistics 1.3124 0.92835 0.44112 1.0229 1.3848

P-values 0.06481 0.6497 0.9999 0.4271 0.02887

TABLE 6.11: Results of Granger Causality Test for Climate Variables.
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6.2.4 Impulse Response Functions

The impulse response function analyzes the effects of climate factors on an endoge-
nous variable over time. With the optimal lag length of the VAR model, the impulse
response traces the impacts of an exogenous shock to an endogenous variable over
a 12-bimonthly period. Figure 6.10 presents the impulse responses of CPI to the cli-
mate factors for the city of Houston. All five subplots within the figure illustrate the
fluctuations of the climate shocks on the CPI. The dynamic relationships of Food-
only CPI and climate factors have similar behavior to the CPI, where climate factors
have fluctuating positive and negative effects on the CPI and Food-only CPI over
time (Appendix A.1). The CPI and Food-only CPI in the other four cities have simi-
lar responses to the effects of climate factors.

FIGURE 6.10: Impulse Response Function of CPI on Climate Factors
of Houston.
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The impulse response tracks the effects of a weather shock on fatalities or injuries
over a 30-day period, and the responses to maximum and minimum temperatures in
6.11 exhibit similar behavior to that observed in Figure 6.10. However, the effects of
precipitation and snowfall depth on fatalities are more complex, with precipitation
having a positive effect within the first two to three days, which then decays to
zero over time, while snowfall depth has an opposite effect, where it has a negative
effect within the first two to three days and then decay to zero. The response of
fatalities to its own instantaneous one standard deviation has an immediate positive
shock and then decays to zero, just like the effect of precipitation and snow. Injuries
show similar dynamic responses to climate factors as fatalities, except for the effect
of snow, which exhibits an immediate positive impact on the sixth day, followed by
a decay to zero (Appendix A.2).

FIGURE 6.11: Impulse Response Function of Fatalities on Climate
Factors of Houston.
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6.2.5 Forecast Error Variance Decomposition

FEVD demonstrates the significance of an exogenous shock in explaining the en-
dogenous variable in the VAR model. With the optimal lag length of the VAR model,
FEVD quantifies the amount of contribution of each exogenous shock to the endoge-
nous variable over a specific period. In the case of economic indicators, FEVD cal-
culates their contributions to the endogenous variable over a period of 12 bi-month
future values, while for human health indicators, it determines the contributions
over a period of 30 days future values. Figure 6.12 illustrates that each endogenous
variable is mainly affected by shocks to itself, contributing approximately 90% to
100% of the variation. The remaining percentage is from the exogenous shocks. For
economic factors, the contribution of its variable decreases over time as other exoge-
nous shocks have more contribution to the endogenous variable. The contribution
of exogenous variables in the other four cities is similar to the pattern presented in
Figure 6.12.

(A) CPI (B) Food-only CPI

(C) Fatalities (D) Injuries

FIGURE 6.12: Forecast Error Variance Decomposition of Houston
Dataset
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Chapter 7

Conclusion

7.1 Summary of Findings

In this thesis, I developed four different statistical models for time series forecast-
ing of temperatures in five cities. Each city has a different range of minimum and
maximum temperatures depending on its location, such as coastal areas or moun-
tain regions. The aspect of temperatures within all cities presents a significance of
seasonal components with no trend. The foundation of these developed time series
methods is based on recent advancements in machine learning and statistical meth-
ods, which provide the optimal framework for each model for weather forecasting.

Based on the statistical measures of RMSE and MAE, the forecasting performance
of the MLP model has the highest accuracy in predicting the maximum and mini-
mum temperatures of all cities. ARIMA comes as the second-best model, followed
by Exponential Smoothing and GP. However, the fixed kernel composition of GP has
failed to compute the maximum and minimum temperatures of three cities. If the
model performance only measures the results of these two cities, the GP model per-
formed better than the exponential smoothing. Among the three methods, excluding
the GP, San Francisco and Miami have the best model performance compared to the
other three cities. One of the potential reasons is that these two cities have a smaller
amplitude of temperature fluctuation compared to Houston, Chicago, and Boston.

The time series analysis of multivariate datasets in climate, economy, and human
health claims that there is a relationship between the CPI and climate factors in sev-
eral cities. For instance, the Granger Causality test confirms the causality between
CPI and climate factors in Chicago, San Francisco, and Miami. The impulse response
function presents the fluctuation in the effects of climate factors on the CPI. How-
ever, the Granger Causality test affirms that the combination of climate factors fails
to Granger-Cause the Food-only CPI, fatalities, and injuries of storm events. The im-
pulse response function also presents the fluctuation in the effects of climate factors
on these variables.

7.2 Limitations

This thesis might state that the MLP model is the best model for time series forecast-
ing of maximum and minimum temperatures. However, there are limitations within
the development of models that need to be considered in the following:

• This thesis limits to one structure of the MLP model, which is one hidden layer
of four hidden neurons with a ReLU activation function. Also, the MLP model
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has the optimization method of Adam, where there are many options of opti-
mization methods to select from. There are many possibilities for selecting the
number of hidden layers, hidden neurons, activation functions, and optimiza-
tion methods to improve the MLP model’s performance.

• This thesis also has a limit of one fixed kernel composition of GP. There are
over 50 potential kernel combinations for forecasting the time series; however,
Julia programming doesn’t have an optimization method to determine the best
kernel composition based on the dataset.

• With the fixed kernel composition, each kernel has a fixed value of standard
deviation and length scale, where each dataset has various standard deviation
and length scales. As mentioned, Julia programming doesn’t contain an op-
timization method to determine the optimal value of standard deviation, and
the length scale of each kernel depends on the dataset.

• Last but not least, the dataset is extremely large, and it can crash the typical
computer if these methods run on the entire dataset. Therefore, this research
only concentrates on a mini-batch of a 20-year dataset instead of a 75-year. If
high-performance computing technology is accessible, these machine learning
techniques might give a better model performance.

Also, this thesis’s multivariate analysis might state that there is only one correlation
between climate factors and CPI. There are limitations within the VAR analysis that
needs to be considered in the following:

• The Storm Events Database only contains the dates of storm events occurrence,
which means the data resolution of the storm event database is mismatched to
the daily resolution of climate factors. In order to match the data resolution of
climate factors, the data resolution of storm events becomes daily observations
where the dates of no occurrence have a value of zero in fatalities and injuries
and the median value of climate factors. Adding zeros to the dataset of storm
events creates biases that might affect the VAR analysis.

• The Storm Events Database only focuses on the variables among the selected
counties. However, some extreme weather events hit several counties at once.
For instance, a tornado usually hits several counties and causes a number of
fatalities and injuries in total. In other words, selecting a specific county might
not provide the full information about the effect of extreme weather on a num-
ber of fatalities and injuries.

7.3 Future Work

Time series analysis contains many more methods that this research has not ex-
plored, and the statistical techniques continue advancing. Also, there are areas to
which research could be extended. For instance, the empirical comparison study
can expand to more machine learning methods for weather time series forecasting,
such as LSTM and CNN.
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Several directions that this research can explore in the foreseeable future:

• Deepen the understanding of the machine learning techniques of Multilayer
Perceptron and Gaussian Processes with climate time series forecasting.

• Develop optimization methods of Gaussian Processes’ kernel compositions for
time series datasets.

• Perform machine learning approaches, such as Support Vector Machines (SVM)
or Decision Trees, to analyze the impact of climate aspects on health conditions,
including cardiovascular and respiratory illness.

• Explore the impact of climate change on the factors that play a role in the qual-
ity of life, such as environment, psychological status, and socioeconomic inter-
actions.

As part of this thesis project, I have created a GitHub repository where all of the code
related to my research is stored. The repository is publicly accessible and intended
to serve as a resource for anyone interested in the work I have done. By making my
code available to the public, I hope to encourage others to build upon my research
and to contribute to the wider community of scholars in this field. You can find the
repository at https://github.com/kamkinast24/Time-Series-Approach.

https://github.com/kamkinast24/Time-Series-Approach
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Appendix A

Additional Graphs

A.1 Impulse Response Functions

FIGURE A.1: Impulse Response Function of Food-only CPI on Cli-
mate Factors of Houston.
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FIGURE A.2: Impulse Response Function of Injuries on Climate Fac-
tors of Houston.

A.2 Forecast Error Variance Decomposition



Appendix A. Additional Graphs 62

(A) CPI (B) Food-only CPI

(C) Fatalities (D) Injuries

FIGURE A.3: Forecast Error Variance Decomposition of Chicago
Dataset

(A) CPI (B) Food-only CPI

(C) Fatalities (D) Injuries

FIGURE A.4: Forecast Error Variance Decomposition of Boston
Dataset
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(A) CPI

(B) Food-only CPI

(C) Fatalities

(D) Injuries

FIGURE A.5: Forecast Error Variance Decomposition of San Francisco
Dataset
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(A) CPI

(B) Food-only CPI

(C) Fatalities

(D) Injuries

FIGURE A.6: Forecast Error Variance Decomposition of Miami
Dataset
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Appendix B

Selected Codes

B.1 Julia

B.1.1 Optimization Function of AR (p) model

using Fo r ec as t

a ic_ar_pred = [ ]
bic_ar_pred = [ ]

f o r i in 1 :110
AR_model = ar ( Vector { F loa t64 } ( y _ t r a i n ) , i )
d = AR_model . i c : : Dic t
a i c _ a r = get ( d , " AIC " , 4 )
b i c _ a r = get ( d , " BIC " , 4 )
push ! ( aic_ar_pred , a i c _ a r )
push ! ( bic_ar_pred , b i c _ a r )

end

p r i n t l n ( findmin ( a ic_ar_pred ) )
p r i n t l n ( findmin ( bic_ar_pred ) )

B.1.2 Forecasting using AR and TES model

using Fo r ec as t ; using StateSpaceModels

ar_temp = ar ( Vector { F loa t64 } ( y _ t r a i n ) , 8 8 )

f c _ a r = Fo re ca s t . f o r e c a s t ( ar_temp , length ( y _ t e s t ) ) ;
p l o t ( f c _ a r )

model_ets = ExponentialSmoothing ( Vector { F loa t64 } ( y _ t r a i n ) ;
trend = f a l s e , seasonal = 16)

StateSpaceModels . f i t ! ( model_ets )

f c _ e t s = StateSpaceModels . f o r e c a s t ( model_ets , length ( y _ t e s t ) )
p l o t ( model_ets , f c _ e t s )
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B.2 Python

B.2.1 Defining MLP’s architecture

import torch
import torch . optim as optim
import torch . nn as nn
import torch . nn . f u n c t i o n a l as F

n_steps = 3
device = ’ cuda ’ i f torch . cuda . i s _ a v a i l a b l e ( ) e l s e ’ cpu ’

c l a s s MLP( nn . Module ) :

def i n i t a l ( s e l f , i n p u t _ s i z e ) :
super (MLP, s e l f ) . i n i t a l ( )
s e l f . l i n e a r 1 = nn . Linear ( input_s ize , 4 )
s e l f . output = nn . Linear ( 4 , 1 )
s e l f . dropout = nn . Dropout ( p = 0 . 2 )

def forward ( s e l f , x ) :
x = s e l f . l i n e a r 1 ( x )
x = F . r e l u ( x )
x = s e l f . dropout ( x )
x = s e l f . output ( x )
re turn x

torch . manual_seed ( 4 2 )

model = MLP( n_steps ) . to ( device )
l o s s _ f n = nn . MSELoss ( )
opt imizer = optim .Adam( model . parameters ( ) , l r = 0 . 0 0 1 )

B.3 R

B.3.1 VAR Model Analysis

l i b r a r y ( ’ vars ’ )
l i b r a r y ( a s t s a )

VARselect ( CPI_df , lag . max = 15 , type = ’ const ’ )
var_model_df <− VAR( CPI_df , p = 6 , type = ’ const ’ )

c a u s a l i t y ( var_model_df , cause=c ( " PRCP" , "SNOW" , "TMAX" , "TMIN " ) )

i r f _ v a r <− i r f ( var_model_df , n . ahead = 30 , response = " i n j u r i e s " ,
ortho = TRUE)

p l o t ( i r f _ v a r )

fevd <− fevd ( var_model_df , n . ahead = 30)
p l o t ( fevd )
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