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Abstract

Through proofs and small scale implementations, quantum computing has shown po-

tential to provide significant speedups in certain applications such as searches and

matrix calculations. Recent library developments have introduced the concept of hy-

brid quantum-classical compute models where quantum processor units could be used

as additional hardware accelerators by classical computers. While these developments

have opened the prospect of applying quantum computing to machine learning tasks,

there are still many limitations of near and midterm quantum computing. If imple-

mented carefully, the advantages of quantum algorithms could be used to accelerate

current machine learning models. In this work, a hybrid quantum-classical model is

designed to solve a gradient descent problem. The quantum HHL algorithm is used

to solve a system of linear equations. The quantum swap test circuit is then used to

extract the Euclidean distance between a test point and the quantum solution. The

Euclidean distance is then passed to a classical gradient descent algorithm to reduce

the number of iterations required by the gradient descent algorithm to converge on a

solution.
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Chapter 1

Introduction

1.1 Motivation

Advancements in machine learning and the more powerful subsection of deep learning

models has allowed for more in depth analysis of data than ever before. Deep learning

models allow for computers to classify and detect features in data sets that humans

cannot. Currently, specialized devices such as GPUs (graphics processing units) and

TPUs (tensor processing units) are used to accelerate machine learning models by

computing matrix functions using highly parallel processing techniques. However,

while computer hardware continues to advance, deep learning models have become

extremely computationally intensive, often taking days to train advanced models.

The relatively new field of quantum computing has shown potential to accelerate

searching problems, integer factorization, and quantum simulation. This is possible

by applying the quantum properties of superposition and entanglement which allow

qubits to affect other qubits. This allows for algorithms not possible using classical

computers. One such algorithm, the HHL algorithm, developed by Harrow, Has-

sidim, and Lloyd aims to solve a system of linear equations [5]. Systems of linear

equations are common in machine learning algorithms, especially those that include

backpropagation.

Currently there are still many limitations on the amount of noise, accuracy, and
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Chapter 1. Introduction

computational size of quantum circuits. However, by composing a hybrid system of

both classical computers and quantum computers, quantum algorithms could be used

as an accelerator for machine learning models while classical computers could ease

the limitations of quantum computers.

1.2 Objective

The use of quantum mechanics allows quantum computers to apply unique algorithms

not possible on classical computers. Great interest in quantum computing began when

Peter Shor proved that the use of quantum mechanics could be used to factor integers

in 1994. Since 1994, quantum factoring and search algorithms have been mathemat-

ically proven to have better time complexities than their classical counterparts [6].

However, designing quantum algorithms with better mathematical time complexity

is not enough to declare quantum supremacy as quantum hardware must be able to

implement the algorithms.

Quantum computers are not able to take full advantage of these quantum algo-

rithms as creating and maintaining a quantum environment is extremely difficult.

IBM’s state-of-the-art quantum computer has 433 qubits and has further limita-

tions on how many gates can be applied before noise renders the qubits unusable

[7]. Limitations of hardware size and high error rates have created the term Noisy

Intermediate-scale Quantum (NISQ) computers. Currently there is a great interest

in utilizing NISQ computers to their greatest extent. One common idea is to utilize

quantum computers as an additional computational unit or accelerator in a larger sys-

tem, similar to how graphics cards have been incorporated in classical computing in

addition to CPUs. Proposed hybrid quantum-classical systems would run computa-

tions with classical computers and delegate computations that have an advantageous

quantum algorithm to a quantum processor.

By researching quantum-classical hybrid systems, advances could be made to both

3



Chapter 1. Introduction

deep learning and quantum computing. Quantum computers are not currently ca-

pable of computing an entire neural network, and may never be optimized for such

general tasks. Instead, this quantum computing research will focus on accelerating a

classical neural network by gaining insight to the solution using a quantum proces-

sor. Hybrid training of a neural network aims to use quantum algorithms to aid in

optimization of the neural network’s weights.

Solving for a neural network’s ideal weights includes solving a system of linear

equations. This can be done using a quantum circuit, but the full solution cannot be

extracted. Instead, other information can be extracted from the solution embedded

in superposition. This extracted information can aid the linear regression performed

in the classical portion of training a neural network. To further the goal of hybrid

quantum-classical machine learning models, this research aims to achieve the follow-

ing. First, the quantum HHL circuit will be implemented, and the capabilities of the

HHL algorithm will be tested. Next, a quantum circuit to extract information from

the HHL solution state will be designed utilizing a SWAP test circuit. The extracted

information will then be used to aid a classical linear regression method.

4



Chapter 2

Background

2.1 Single Layer Neural Networks

Machine learning aims to build models that can predict an outcome based on a new

input. These predictions are made based on samples or training data with known

outputs. In essence, machine learning models aim to find a relationship between

inputs and outputs that can be used to predict the result of a new input. The

process of finding a relationship between the training data and its outputs to predict

continuous outcomes is called regression.

Linear regression is a form of regression where the relationship between the inputs

and outputs is linear. In the case of a single layer neural network, the training of

parameters can be modeled as a linear regression problem.

2.1.1 Gradient Descent

Gradient descent is a popular optimization algorithm used in machine learning. In

machine learning, gradient descent is used to train neural networks. It uses an itera-

tive approach to solve for ideal parameters that minimize error. In general, gradient

descent utilizes a cost or loss function to determine the error between an estimation

for the solution and the true solution. The model for making estimations is then

updated using a learning rate that determines how much to update the model [8].
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Chapter 2. Background

Stochastic gradient descent is a modification of regular gradient descent. Unlike

gradient descent, which updates it’s parameters by calculating an error based on the

entire data set, stochastic gradient descent updates the parameters after calculating

an error of a single randomly selected data point or random subset of data points.

One important hyperparameter, a variable to modify the response of a machine

learning algorithm, is the learning rate. The learning rate in gradient descent deter-

mines how much the estimation is updated in each iteration. This affects how fast the

descent converges but a learning rate that is too large can miss the solution. Adaptive

learning rates aim to achieve the fastest learning by changing the learning rate as the

gradient descent iterates [8].
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Chapter 2. Background

2.2 Quantum Computing

A quantum computer is a quantum system that applies a controlled quantum mechan-

ical evolution from an initial quantum state to a final quantum state. This controlled

evolution is used to solve a computational problem.

The quantum property of superposition is core to quantum computing. Superpo-

sition means that unlike a classical computer where a bit is either 0 or 1, a quantum

bit or qubit can have many states. The state of a qubit is represented using the Bloch

sphere as seen in Figure 2.1.

Figure 2.1: Bloch Sphere

The Bloch sphere is used to represent the spin of a qubit. The north and south

poles of the Bloch sphere represent |0⟩ and |1⟩ which are similar to the classical bit

representations of 0 and 1. However, the other states on the Bloch sphere represent

a qubit in superposition: a combination of the states |0⟩ and |1⟩ where each can have

a complex number as its coefficient [3].

Each axis of the Bloch sphere represents a different basis. The two orthogonal

z-axis states, |0⟩ and |1⟩, are referred to as the computational basis. By default

qubits are assumed to be initialized to |0⟩ and measured in the computational basis.

Therefore, the mathematical representations of algorithms are usually written using

7



Chapter 2. Background

the computational basis. The x-axis is the Hadamard basis:

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

(2.1)

The y-axis is referred to as |R⟩ and |L⟩ for Right and Left (other times referred to as

|i⟩ and | − i⟩) where

|R⟩ = |i⟩ = |0⟩+ i|1⟩√
2

|L⟩ = | − i⟩ = |0⟩ − i|1⟩√
2

(2.2)

Qubits can also be represented as column vectors which is useful to interact with

matrix operators [3]. The vector notation of basis states is presented in Table 2.1.

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
|+⟩ = 1√

2

[
1
1

]
|−⟩ = 1√

2

[
1
−1

]
|R⟩ = |i⟩ = 1√

2

[
1
i

]
|L⟩ = | − i⟩ = 1√

2

[
1
−i

]
Table 2.1: Column vector representation of basis states

Another quantum property key to the power of quantum computing is quantum

entanglement. Quantum entanglement means qubits can interact with one another

and, when entangled, acting on one qubit can affect the other qubit.

2.2.1 Quantum Gates and Circuits

Quantum gates act on qubits and can apply the principles of entanglement and su-

perposition. They are a building block for quantum circuits, like classical logic gates

are for classical circuits. Just as classical logic gates can be combined to create more

complex circuits, quantum gates can be combined to create more complex quantum

circuits. Quantum gates are represented by a matrix that describes its operation.

These matrices algebraically describe the effect of the quantum gate on the quantum

8



Chapter 2. Background

state of the qubits it operates on. The Hadamard gate is an extremely important

single qubit gate that puts a qubit in uniform superposition. The Hadamard gate is

represented by the matrix:

H =
1√
2

1 1

1 −1

 (2.3)

The effect of quantum gates can be manually calculated using linear algebra. For

example, the mathematical equation of applying a Hadamard gate to a qubit and

multiple representations of the result are described as:

H|0⟩ = 1√
2

1 1

1 −1


1
0

 =
1√
2

1
1

 = |+⟩ = |0⟩+ |1⟩√
2

(2.4)

Pauli gates are common single qubit gates that act on a single qubit’s phase. There

are three Pauli gates that change a qubit’s phase by rotating around the Bloch sphere

in either the x, y or z axis.

Quantum gates are reversible, unlike classical logic gates, which are irreversible.

This means that, unlike classical logic gates, a quantum gate can be ”undone” by

applying the inverse of the gate. This is because quantum gates can be represented

by a matrix that is unitary. A unitary matrix can be defined as one where UU † =

U †U = I [3]. Reversible gates are powerful in quantum computing because they allow

operations and algorithms to be reversed.

While qubits cannot be copied, due to the no-cloning theorem, qubits can be

moved. A swap gate will swap the position of two qubits in a circuit. More complex

circuits can be created using multi-qubit gates. Controlled gates apply a gate on a

qubit with a second qubit controlling the operation.

A quantum circuits connect a series of qubits, quantum gates, and measurements

to perform a larger task. An example of a quantum circuit with single qubit gates,

two qubit gates, and measurement can be seen in Figure 2.2. A group of qubits, often

9



Chapter 2. Background

Figure 2.2: Quantum Circuit Example

being used to represent a single data vector, can be grouped together as a quantum

register.

Because quantum systems are closed systems, once a qubit is measured, its state

collapses. Measurement is a destructive task and thus usually occurs at the end of

a circuit to measure a final result. A qubit in superposition can collapse to multiple

values under measurement. Therefore, quantum circuits are measured many times

to create a probability distribution representing the solution. The number of times a

circuit is run and measured to create the probability distribution is referred to as the

number of shots. The solution of a quantum circuit generally contains either one or

multiple solutions. When a single or few solutions are represented, the largest state

in the measurement probability distribution represents the solution. For example, in

Grover’s algorithm for searching a list, the element being searched for will have the

largest amplitude in the resulting probability distribution. Alternatively, algorithms

with many solutions can encode a solution in every state of the probability distri-

bution. The HHL algorithm encodes a solution vector where each amplitude in the

resulting probability distribution represents an element of the solution vector.

2.2.2 Encoding Data

An important aspect of quantum computing and quantum algorithms is the ability

to encode data into qubits. Quantum encoding is the process of embedding classical

information into quantum properties and is vital to applying quantum algorithms.

10



Chapter 2. Background

There are several ways to encode information into qubits. A simple quantum encoding

method is basis encoding. Basis encoding performs a one-to-one translation of a

binary string to a computational basis state [9]. An n-bit string of binary values will

be encoded into an n-qubit state:

|x⟩ = |ix⟩ (2.5)

where |ix⟩ is a computational basis state. For example, a binary string x = 1101 will

be encoded as |1101⟩.

Amplitude encoding is a commonly used method often used to encode vectors or

algorithm solutions. In amplitude encoding each value of an N length vector x is

encoded into the amplitude of a qubit:

|x⟩ =
N∑
i

xi|i⟩ (2.6)

where |i⟩ is the i-th computational basis state. Amplitude encoding is more powerful

than basis encoding because an N length vector can be encoded into n qubits where

n = log2(N) [10]. Additionally, the encoded values are not restricted to binary or

even integer values. However, because the amplitudes of a quantum state must be

equal to one, the encoded vector x must be normalized so that |x|2 = 1.

Another method of quantum encoding is phase encoding. A value x is encoded

by rotating a qubit’s phase such that:

|x⟩ =
n⊗

i=1

cos(xi)|0⟩+ sin(xi)|1⟩ (2.7)

Similar to basis encoding, phase encoding maps each value to one qubit however phase

encoding is not limited to binary values. Similar to amplitude encoding, the values

must be normalized in [0, 2π] because the encoding is applied to a qubit’s quantum

11



Chapter 2. Background

properties. However, preparing a qubit using phase encoding is very efficient as single

qubit rotations are easy to implement in quantum circuits [10].

2.2.3 Quantum Fourier Transform

The quantum Fourier transform (QFT) is a quantum algorithm that aims to compute

the classical discrete Fourier transform algorithm but on qubits. It is of significance

because it is a building block for many other algorithms including quantum phase

estimation. The classical discrete Fourier transform uses the formula:

yk =
1√
N

N−1∑
j=0

xje
i2πjk
N (2.8)

to map a vector, x, of N complex numbers to another vector, y, of N complex

numbers. Similarly, the quantum Fourier transform maps |x⟩ to another quantum

state such that:

|j⟩ 7→ 1√
N

N−1∑
k=0

e
i2πjk
N |k⟩ (2.9)

The QFT can also be described using a product representation [11] as:

QFTN |x⟩ =
1√
N

(
|0⟩+ e

2πi
2

x|1⟩
)
⊗
(
|0⟩+ e

2πi
22

x|1⟩
)
⊗ . . .

⊗
(
|0⟩+ e

2πi
2n−1 x|1⟩

)
⊗
(
|0⟩+ e

2πi
2n

x|1⟩
) (2.10)

Similar to how the classical Fourier transform is a conversion from time domain to

frequency domain, the quantum Fourier transform can be thought of as a conversion

from the computational basis to a Fourier basis. This is similar to how the Hadamard

gate converts from the computation basis to the Hadamard basis.

A n-qubit implementation of the QFT is shown in Figure 2.3.

12



Chapter 2. Background

Figure 2.3: n-qubit QFT Circuit [2]

The QFT circuit begins by applying a Hadamard gate on the first qubit:

H|x1x2...xn⟩ =
1√
2

[
|0⟩+ exp

(
2πi

2
x1

)
|1⟩
]
⊗ |x2x3...xn⟩ (2.11)

Next, a two qubit controlled rotation gate CROTk is applied to the first qubit

with the second qubit being the control. CROTk can be represented as CROTk =I 0

0 UROTk

 where UROTk =

1 0

0 e
2πi

2k

 [11]. After applying CROTk, the circuit

state is:

1√
2

[
|0⟩+ exp

(
2πi

22
x2 +

2πi

2
x1

)
|1⟩
]
⊗ |x2x3 . . . xn⟩ (2.12)

A further n-1 CROTk gates are applied to the first qubit controlled by a consecutive

qubit. The resulting state can be represented as:

1√
2

[
|0⟩+ exp

(
2πi

2n
x

)
|1⟩
]
⊗ |x2x3 . . . xn⟩

where x = 2n−1x1 + 2n−2x2 + . . .+ 21xn−1 + 20xn

(2.13)

This application of the Hadamard gate followed by CROTk gates controlled by the

qubits below is repeated for the remaining qubits. The final circuit state is the same

as seen in Equation 2.10.

As mentioned in Section 2.2.1, quantum circuits can be reversed. This means to

convert from the Fourier basis to the computational basis one can simply apply a

13



Chapter 2. Background

reversed version of the quantum Fourier transform circuit. This is referred to as the

inverse quantum Fourier transform.

2.2.4 Quantum Phase Estimation

One key quantum algorithm is the quantum phase estimation algorithm (QPE).

Quantum phase estimation aims to estimate the phase or eigenvalue of a eigenvector.

More specifically, QPE aims to estimate θ in:

U |ψ⟩ = e2πiθ|ψ⟩ (2.14)

where U is a unitary operator, |ψ⟩ is an eigenvector and e2πiθ is its eigenvalue. QPE

is an important quantum algorithm as it is commonly used in other algorithms such

as Shor’s algorithm and HHL as covered in Section 2.3.

The circuit implementing the quantum phase estimation algorithm is shown in

Figure 2.4.

Figure 2.4: Generic Quantum Phase Estimation Circuit [3]

First the eigenvector |ψ⟩ is encoded into a quantum register. A second quantum

register, the counting register, of n-qubits is setup to store θ initializing the circuit to

14



Chapter 2. Background

the state:

|0⟩⊗n|ψ⟩ (2.15)

Next, Hadamard gates are applied to the counting register:

1

2
n
2

(|0⟩+ |1⟩)⊗n|ψ⟩ (2.16)

The unitary from Equation 2.14 must then be applied as a controlled unitary gate,

CU . This will apply U to the target qubit if the control bit is |1⟩. This can be done

by applying CU2j where U2j |ψ⟩ = e2πi2
jθ|ψ⟩ and 0 ≤ j ≤ n − 1. The controlled

unitary gates are applied n-times to the eigenvector where each qubit in the counting

register is used as a control bit [11]. After applying the controlled unitary gates, the

circuit is in the state:

1

2
n
2

(
|0⟩+ e2πiθ2n−1|1⟩

)
⊗ · · · ⊗

(
|0⟩+ e2πiθ21|1⟩

)
⊗
(
|0⟩+ e2πiθ20|1⟩

)
⊗ |ψ⟩

=
1

2
n
2

2n−1∑
k=0

e2πiθk|k⟩ ⊗ |ψ⟩

(2.17)

Now an inverse quantum Fourier transform can be applied to the counting register.

This is done because the circuit state above is in the Fourier basis. Applying the

inverse quantum Fourier transform results in:

1

2n

2n−1∑
x=0

2n−1∑
k=0

e−
2πik
2n

(x−2nθ)|x⟩ ⊗ |ψ⟩ (2.18)

The inverse quantum Fourier transform converts from the Fourier basis into the com-

putational basis and leaves the counting register with a n-bit estimation of |θ⟩. This

register can then be further used or measured.
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Chapter 2. Background

2.3 HHL Algorithm

One of the most important algorithms for quantum machine learning is HHL, named

after the authors of the algorithm Harrow, Hassidim, and Lloyd. The aim of HHL is

to solve a system of linear equations, a common calculation across machine learning.

HHL presents a quantum algorithm that can solve a system of linear equations with

a runtime of O(log(N)s2κ2/ϵ) [5] when the input matrix A is s-sparse and Hermi-

tian. Classically, a system of linear equations can be directly solved using Gaussian

elimination with a time complexity of O(N3), a much worse time complexity than

the quantum algorithm. Classical iterative methods aim to solve systems of linear

equations much quicker by converging an initial condition. The conjugate gradient

method, with the same restrictions as the quantum algorithm, a s-sparse and Hermi-

tian matrix, can be solved with a time complexity of O(Nsκlog(1/ϵ)). The extreme

reduction in complexity over direct methods, roughly a factor of N3 versus log(N),

and still large reduction over iterative methods, roughly N versus log(N), has drawn

great interest to the HHL algorithm and quantum computing.

The steps of HHL can be broken down into four sections: matrix setup and vector

encoding, quantum phase estimation, eigenvalue inversion, and inverse quantum phase

estimation. The general circuit design for HHL with these steps is presented in Figure

2.5.

2.3.1 Setup and Encoding

Specifically, the HHL algorithm attempts to solve for |x⟩ given an input matrix A

and input vector |b⟩ where A|x⟩ = |b⟩. Because A is an Hermitian matrix, A can

be represented by its eigenvalues and eigenvectors as A =
∑N−1

j=0 λj|uj⟩⟨uj| where

λj are the eigenvalues of A and |uj⟩ are the eigenvectors of A [11]. The Hermitian

properties of A also mean A has an orthogonal basis of eigenvectors. This allows |b⟩ to
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nb : load|b⟩

QPE QPE†

nl :

1/x

ancilla :

Figure 2.5: General HHL Circuit Design in Stages

be rewritten in the eigenbasis of A as |b⟩ =
∑N−1

j=0 bj|uj⟩. Since A can be represented

by its eigenvalues and eigenvectors, then A−1 =
∑N−1

j=0 λ
−1
j |uj⟩⟨uj|. Therefore, the

solution to the system of linear equations can also be written as:

|x⟩ = A−1|b⟩ =
N−1∑
j=0

λ−1
i bj|uj⟩ (2.19)

The first step of HHL is to ensure the input matrix A is a Hermitian matrix. If

A is not Hermitian, the problem can be easily redefined using a Hermitian matrix

where  0 A

A† 0


0
x

 =

b
0

 (2.20)

However, this will double the size of the matrix and thus increase the amount qubits

needed.

Next, the input vector |b⟩nb
must be encoded into a register of qubits. The sub-

script, nb, indicates which register the input is in. This step is usually performed

using amplitude encoding.
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2.3.2 Quantum Phase Estimation

Next, quantum phase estimation is applied to |b⟩nb
. Recalling from Section 2.2.4, the

quantum phase estimation algorithm estimates θ in U |ψ⟩ = e2πiθ|ψ⟩. If QPE were

treated as a function, the inputs would be a unitary gate U and the state |0⟩|ψ⟩, an

empty register and a register consisting of an eigenvector. The returned state would

be |θ̃⟩|ψ⟩ where θ̃ is the estimated value of θ.

For HHL, the unitary when applying QPE is defined as:

U = eiAt =
N−1∑
j=0

eiλjt|uj⟩⟨uj| (2.21)

Therefore, the result of QPE with the eigenvector |uj⟩ and its eigenvalue eiλjt is

|λ̃j⟩|uj⟩ where |λ̃j⟩ is the estimated value of
λjt

2π
. QPE can then be applied to |b⟩

which in the eigenbasis of A with the added |0⟩nl
register is |b⟩ =

∑N−1
j=0 bj|0⟩nl

|uj⟩nb
.

The result of which is:
N−1∑
j=0

bj|λ̃j⟩nl
|uj⟩nb

(2.22)

which now contains the eigenvalues in register nl and the eigenvectors in register nb

[3]. The eigenvalues are encoded in register nl using basis encoding as explained in

Section 2.2.2.

2.3.3 Eigenvalue Inversion

The next step of HHL is to apply a rotation often called the eigenvalue inversion step.

This step adds the inverted eigenvalues to an ancilla qubit. To do this an auxiliary

qubit is added and is rotated conditioned on A’s eigenvalues resulting in:

N−1∑
j=0

bj|λ̃j⟩nl
|uj⟩nb

(√
1− C2

λ̃2j
|0⟩+ C

λ̃j
|1⟩

)
(2.23)
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where C is a constant such that |C| ≤ λmin [12]. The ancilla qubit is now measured.

While the constant C must be less than the smallest eigenvalue, it should also be as

large as possible. The larger the constant C is, the larger the probability the ancilla

qubit will be measured as |1⟩ which indicates the solution was calculated successfully

[13].

2.3.4 Inverse Quantum Phase Estimation

Next, the inverse quantum phase estimation is applied to undo the eigenvalue com-

putation. This removes the eigenvalue computed earlier leaving register nl empty:

N−1∑
j=0

bj|0⟩nl
|uj⟩nb

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
(2.24)

If the ancilla qubit measured in the previous step is |1⟩ [5], then the solution

remains as: √
1∑N−1

j=0 C
2|bj|2/|λj|2

N−1∑
j=0

Cλ−1
j bj|0⟩nl

|uj⟩nb
(2.25)

which matches the solution in Equation 2.19 but with a normalization factor. Ad-

ditionally, the norm of the solution |x⟩ is the probability of measuring |1⟩ in the

previous step:

P (|1⟩) = ||x||2 (2.26)

2.3.5 Limitations

While the HHL algorithm has potential to show a quantum speedup, HHL has several

limitations preventing its real world use. The first challenge of implementing HHL

is that quantum computers are still very limited in their size and accuracy. Generic

HHL implementations require too many qubits and quantum gates to run on current

quantum computers. Reduced circuit versions of HHL have been implemented [14] but

have significant disadvantages. The reduced circuits are custom made for a specific
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size of input matrix and have limitations on the values in the input matrix. Another

inherent limitation of HHL is the output state. The result of the HHL algorithm

is a quantum state with the result encoded as amplitudes. Measuring each value

would require N measurements, thus breaking the advantage of HHL. This means

to effectively use HHL, the result cannot be used directly but rather as a means

to measure a specific observable value or trait [15]. The result can also be used as

verification step using the swap test to compare to a known value.
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2.4 SWAP Test

The SWAP gate is a two qubit gate that swaps the states of two qubits. The controlled

swap (CSWAP) gate, or Fredkin gate, adds a control qubit to enable the swap gate.

If the control qubit is in the |0⟩ state, then the two target qubits are not affected.

However, if the control qubit is in the |1⟩ state, then the swap gate is enabled and the

two target qubits swap states. The SWAP test circuit, Figure 2.6, utilizes a SWAP

gate and Hadamard gates to determine the distance between two quantum states.

control : H • H

a : ×
b : ×

Figure 2.6: SWAP Test Circuit

In the SWAP test, the control qubit is put in superposition using a Hadamard gate

before applying the controlled swap gate. This puts the control qubit in a uniform

superposition and the overall circuit in a state:

|+ ab⟩ = |0ab⟩+ |1ab⟩√
2

(2.27)

Next, the CSWAP gate is applied. Because the control qubit is in a uniform su-

perposition, the SWAP half occurs swapping |a⟩ and |b⟩ in only the |1⟩ half of the

superposition:

|0ab⟩+ |1ba⟩√
2

(2.28)

The second Hadamard gate is then applied to the control qubit leaving the circuit

state as:

1√
2

(
|0ab⟩+ |1ba⟩√

2
+

|0ab⟩ − |1ba⟩√
2

)
=

1

2
(|0⟩(|ab⟩+ |ba⟩) + |1⟩(|ab⟩ − |ba⟩)) (2.29)
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Finally, the control qubit can be measured. The resulting probability of measuring

|0⟩ is:

P (0) =
1 + |⟨a|b⟩|2

2
(2.30)

This means if |a⟩ = |b⟩ then the control qubit will have a 100% probability of mea-

suring |0⟩ [6]. The inner product of |a⟩ and |b⟩ can then be derived as:

|⟨a|b⟩| =
√

2P (0)− 1 (2.31)

2.4.1 SWAP Test Application

Many quantum algorithms encode their result in a quantum state, such as in the

HHL algorithm where the solution vector is encoded in a qubit’s amplitudes. This

can make extracting an exact answer difficult. This creates a need for quantum

verification to ensure quantum algorithms are functioning properly. One method to

verify a result encoded in a quantum state is to use the swap test. Here the swap

test is used to determine if two qubit states are equivalent [16]. By applying the

swap test, it can be determined if two qubits contain the same quantum state. To

verify a quantum algorithm, a known solution is encoded into a qubit. The algorithm

can then be performed, and a swap test can be applied to compare the result to the

known solution. The swap test will result in a 100% probability of measuring |0⟩ if

the algorithm’s result matches the known solution. This is a valuable technique as it

can verify that quantum algorithms are correct when using regular measurement is

not possible such as the HHL algorithm [14].
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2.5 Related Works

2.5.1 HHL Read the Fine Print

Aaronson [15] identifies the limitations of the HHL algorithm. The paper explains

that without quantum memory, utilizing HHL is not practical as loading in the val-

ues would be extremely slow. Even with quantum memory, the values would have to

remain fairly uniform. However, the paper does acknowledge that the values could be

relatively quickly prepared if they can be described by a formula. The author then

points out that unitary transformations must be applied which grows the complexity

linearly with the sparsity of the input matrix. This is mentioned to remind that ap-

plying the unitary transforms must not take exponential time or the speedup of HHL

disappears. The next potential flaw of HHL explained is that the input matrix must

be robustly invertible. Similar to the sparsity of the matrix, the ratio in magnitude

of the input matrices largest and smallest eigenvalues must not grow exponentially

for a speedup to remain.

Additionally, the paper describes HHL not as an algorithm to solve for a system

of linear equations but rather an algorithm to gain insight into a system of equations.

This description is given due to the limitation that reading out every value of the

solution vector would require an additional n steps, breaking any advantage of HHL.

However, Aaronson does not aim to dismiss the HHL algorithm. Instead, HHL al-

gorithm is described as ”a template for other quantum algorithms” [15] which could

use HHL as a means to speedup an application as long as the limitations of HHL are

addressed.

2.5.2 Bayesian Neural Networks

Zhao et al. [14] introduce a quantum-classical hybrid model that takes advantage of

the HHL algorithm while attempting to avoiding some of its drawbacks. The paper
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aims to improve upon Bayesian deep learning, a classically computationally difficult

approach to deep learning, through the use of quantum matrix inversion. The hybrid

model developed is designed to learn a Gaussian process while avoiding nonexistent

quantum technologies. The model avoids the need for quantum memory in a multi-

layer case during training by having multiple copies of the encoded covariance matrix.

Additionally, the feasibility of quantum matrix inversion is explored. A circuit

is designed to implement the HHL algorithm to solve a 2 by 2 matrix. The circuit

is then optimized to solve a specific 2 by 2 matrix. While this does add restrictions

to the input matrix, the optimized circuit can be run on current quantum hardware

while non-optimized circuits can only be simulated. The optimized circuit uses a

swap test to verify the circuit returns the correct solution.

2.5.3 An Introduction to Quantum Machine Learning

Schuld et. al. [6] discuss several potential approaches to applying quantum computing

to machine learning problems. One of the possible avenues discussed is quantum

versions of the k-nearest neighbor algorithm. The k-nearest neighbor algorithm is a

early classification method that classifies an object based on the most frequent class

occupied by the k objects closest to the new object. This approach assumes that

objects with features close to each other will be similar classes. The first step in a

k-nearest neighbors algorithm is to determine the distances to the new object. This

is often done using the Euclidean distance.

The authors propose that a quantum processor could be used to calculate the

distances between objects. The swap test circuit is proposed as an efficient way of

determining the distance between two objects. The use of quantum computing for

k-nearest neighbors could prove to be advantageous because the swap test procedure

is more efficient than the classical procedure that has a polynomial runtime.
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2.5.4 Accelerating the training of single-layer binary neural networks

In a previous work [17], the idea of using the SWAP test to extract information from

the HHL algorithm was explored. Since a system of linear equations can be used

to represent single layer neural network, the HHL algorithm could be used to find

the optimal weights. With the ideal weights in a quantum state, it is suggested that

the SWAP test be performed against several fixed reference states. The information

obtained can then be used to reduce the computational complexity of the classical

search for the optimal set of weights.

To demonstrate how the test states could be used, experiments were performed

on the MNIST data set. A single layer binary neural network was used to classify the

digits in the MNIST data set into two classes. The binary neural network’s weights

were rounded using the reduced search space created from select test points. The

results indicate that using a reduced search space during training can decrease the

number of iterations required for convergence.
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Experiments and Design

3.1 Design

As explained in Section 2.3, HHL is a powerful and important quantum algorithm,

however, it also has significant limitations. One limitation is that the algorithm

leaves the solution in a quantum state such that the full solution cannot be extracted

without ruining the potential speedup advantages. However, while this limits the

algorithm’s use cases, the resulting quantum state can still be operated on to make

interpretations based on the result. Section 2.4 explained how a SWAP test circuit

can be used to determine the inner product between two quantum states. The SWAP

test can be applied to the HHL circuit to determine the inner product between the

quantum solution state of a system of linear equations and a pre-selected test point.

Because the quantum states are normalized when encoded, the Euclidean distance

between the two state can be calculated from the inner product.

The previous work [17], gives a framework for how the Euclidean distance can

be used to reduce the search space of a classical regression algorithm to improve a

neural networks ability to find ideal weights. The work utilizes the Euclidean dis-

tance between the solution and well selected test points to restrict the search space

to a smaller radius hyper-sphere of solutions. In this work, the Euclidean distance

is implemented in a classical regression algorithm. A full circuit implementation is
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designed and simulated to combine the HHL algorithm and SWAP test to determine

the Euclidean distance between the solution to a system of linear equations and a se-

lected test point. The Euclidean distance is then used to speedup a classical regression

algorithm to improve a neural networks ability to find ideal weights. This is done by

incorporating the quantum circuit between iterations of a classical gradient descent

algorithm. As the classical gradient descent algorithm iterates towards a estimate of

the true solution, the quantum circuit measures the Euclidean distance between the

true solution and the gradient descent’s estimated solution. The Euclidean distance

between the true solution and current estimated solution is then used to adjust the

gradient descent’s learning rate. This quantum adaptive learning rate allows for a

larger initial learning rate that is reduced as the estimated solution approaches the

true solution. The quantum adaptive learning rate improves the convergence speed

of the gradient descent algorithm.

3.1.1 Qiskit

Qiskit was used to develop and simulate quantum circuits. Qiskit is an open-source

development kit that enables designing quantum circuits using Python [18]. Founded

by IBM, Qiskit allows users to run their quantum circuits on both quantum simulators

and state-of-the-art IBM quantum computers. The Python environment Qiskit exe-

cutes in is extremely powerful because it inherently enables hybrid quantum-classical

computing. Quantum circuits in Qiskit can be simulated or passed to a quantum pro-

cessor which will return measurement results. The measurement results can then be

analyzed or further processed classically in Python. This process can be repeated en-

abling algorithms that pass computations between classical and quantum processors

multiple times.
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3.1.2 Quantum Circuit Design

Before creating the HHL circuit, the input matrix A is verified to be Hermitian. If

the matrix is not Hermitian, the matrix and input vector are modified such that:

 0 A

A† 0


0
x

 =

b
0

 (3.1)

which ensures A is Hermitian.

Another approach to setting up the input matrix is to transform the system of

linear equations to

ATA|x⟩ = AT |b⟩ (3.2)

Modifying the input matrix to be ATAmeans the input matrix will always be a square

matrix, which is a requirement for the HHL algorithm. This is useful for machine

learning datasets which usually have many more rows, or data entries, than columns,

or features. However, this method will increase the range of the matrix entries and

increase the complexity of the eigenvalues. This will require the quantum phase

estimation step of the HHL algorithm to use more qubits to represent the matrix’s

eigenvalues.

The Qiskit library includes an implementation of the HHL algorithm. The in-

cluded function creates a quantum circuit that implements the HHL algorithm for

given a matrix and a vector. This function was used because of its powerful implemen-

tation of the HHL algorithm. This version of the HHL algorithm includes eigenvalue

scaling. A scaling factor is applied as a time evolution to the input matrix to make

the eigenvalues simpler to encode in the quantum phase estimation stage. This is

used to reduce the number of qubits used and reduce the error in the quantum phase

estimation stage. For example, if both eigenvalues are a factor of 1
3
, the eigenvalues

can be scaled to integers. This reduces error and qubits because integers can be easily
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encoded using basis encoding while a fraction, especially those with many decimal

places, cannot be encoded without error.

The SWAP test circuit was then designed to compare two quantum states with

a generic number of qubits: the test point state and the solution state. The circuit

begins by normalizing and encoding a given test point. The swap test circuit is

then implemented as outlined in Section 2.4. Each qubit in the encoded test point

is swapped with a qubit in the solution state. This implements a single or multi-

qubit SWAP test that can determine the inner product for states that encode across

multiple qubits.

Additionally, the SWAP test circuit can be modified to use a controlled-not and

Toffoli gate instead of a traditional swap gate as seen in Figure 3.1b.

control : H • H

a : •
b : • •

(a) Deconstructed SWAP Test Circuit

control : H • H

a : •
b : •

(b) Reduced Gate SWAP Test Circuit

Figure 3.1: SWAP Test Circuit Variations

This can be done because the decomposition of the controlled-SWAP gate nor-

mally used in the SWAP test is a controlled-not gate followed by a Toffoli gate and

another controlled-not gate [16]. However, the final controlled-not gate does not have

an impact on the control qubit used in the SWAP test circuit. This means only the

first controlled-not gate and Toffoli gate are required to determine the inner product

of the two test states. This will reduce the number of gates by one controlled-not

gate but will not retain the test and solution states. The missing final controlled-not

gate means the test and solution states are not returned to their original state. This

reduces the number of gates in the overall circuit if the test and solution states are

no longer needed after the SWAP test. Finally, a measurement gate is added to the
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control qubit in the SWAP test. The result from measurement represents the inner

product of the two states.

Because the Qiskit implementation of HHL simply returns the quantum circuit

to perform the algorithm, further additions can be made to the circuit. First, a

measurement gate must be added to the ancilla qubit. Then, the SWAP test circuit

can be combined with the HHL circuit. The complete circuit for a four-by-four matrix

is shown in Figure 3.2. The qubits of SWAP test circuit implementing the control

nb0 :
|b⟩

0

QPE

5

QPE†

5 ×
nb1 :

1 6 6 ×
nl0 :

0

1/x

4 0

nl1 :
1 3 1

nl2 :
2 2 2

nl3 :
3 1 3

nl4 :
4 0 4

ancilla :
5

swap0 :
|test⟩

1 ×
swap1 :

0 ×
swap2 : H • • H

a : /2
0

��
1

��

Figure 3.2: Complete HHL and SWAP Circuit Implementation

and test state are appended to qubits not used in the HHL circuit. The qubits of

the SWAP test circuit that are being swapped with the solution state are mapped to

the top qubits of the HHL circuit. This will swap the prepared test state with the

solution state computed by the HHL circuit.

3.1.3 Measurement

After simulating the circuit, the results will return a distribution of four possibilities.

These results are called counts and the total number of counts is equal to the number
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of shots simulated. During a single shot, each measurement gate in a quantum circuit

will return one bit indicating if the measurement gate measured a |0⟩ or |1⟩. Since

there are two measurements being made, each shot will return two bits. One bit

represents the measurement result of the ancilla qubit, and the other bit indicates

the measurement result of the SWAP test.

If enough shots are used, the normalization factor applied during the eigenvalue

rotation stage of the HHL algorithm can be determined by measuting the ancilla

qubit. The normalization factor will be equal to:

normalizationfactor =

√
Pa(|1⟩)

total shots
(3.3)

where Pa(|1⟩) is the number of times the ancilla qubit was measured as |1⟩.

After performing the HHL portion of the circuit, the ancilla qubit is measured.

The HHL result is only valid when the ancilla qubit is measured as |1⟩. Therefore,

when the inner product between the test state and solution state is calculated, the

SWAP test measurement results are only used if the ancilla qubit is measured as |1⟩.

Using the equation derived in Section 2.4, the inner product of the solution, |s⟩, and

test vector, |t⟩, resulting from the swap test is:

⟨s|t⟩ =

√
2 · Ps(|0⟩)

Ps(|0⟩) + Ps(|1⟩)
− 1 (3.4)

where Ps is the number of times the SWAP test measurement gate is measured as |0⟩

or |1⟩.

Next, the Euclidean distance between the solution and test state is determined.

The Euclidean distance of two vectors can be represented as:

Ed2 = |a|2 + |b|2 − 2⟨a, b⟩ (3.5)
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If the vectors a and b are normalized to 1, then the Euclidean distance can be reduced

to:

Ed2 = 2− 2⟨a, b⟩ (3.6)

Since the vectors used in the swap test are normalized, the Euclidean distance between

the solution and test point can be defined as:

|Ed| =
√
2− 2⟨s|t⟩ (3.7)

3.1.4 Accelerating Neural Networks: Quantum Adaptive Learning Rate

For a system of linear equations, linear regression converges on a solution for the

vector x⃗ where Ax⃗ = b⃗. A simple gradient descent algorithm was implemented to

perform the linear regression on a linear system of equations. This iterative process

updates the solution by calculating the error between b⃗ and Ax⃗∗, where x⃗∗ is the

current estimation of the true solution x⃗. The estimated solution is updated using

the equation below in each iteration:

x⃗∗ = x⃗∗ − lr ∗ AT (Ax⃗∗ − b⃗) (3.8)

where lr is the learning rate, a hyperparameter in gradient descent. Over many

iterations, x⃗∗ converges to a value close to the true solution x⃗. The linear regression

function finishes when the mean squared error between b⃗ and Ax⃗∗ is below a threshold,

ε.

To aid the gradient descent, the SWAP test distance between the estimation x⃗∗

and the HHL solution is performed. The result from the swap test is the Euclidean

distance between the normalized vector of the current iteration’s estimation and the

normalized true solution to the system of linear equations. The Euclidean distance

across iterations is then used as a metric to adjust the gradient descent’s learning rate.
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The distance indicates how near the linear regression is to the correct solution. Even

though this distance is normalized and not the true distance between the solution and

test point, the distance can indicate if large steps can be used or if finer iterations

are required to obtain a correct estimate. The learning rate, lr, is updated to:

lr =
lr

1 + (1− Ed√
2
) ∗ β

(3.9)

where Ed is the Euclidean distance determined by the SWAP test and β is a user

modifiable hyperparameter. The hyperparameter β can be increased so the Euclidean

distance has a larger impact on the learning rate or reduced to make the impact on

the learning rate more gradual. This formula works similar to adaptive learning rates

using time based decay. The Euclidean distance is divided by the square root of

two to set the range between zero and one. This value is then subtracted to one so

that the denominator increases as the Euclidean distance decreases. The result is an

adaptive learning rate that decreases as the Euclidean distance decreases. To reduce

the number of SWAP tests used, the learning rate can be updated periodically instead

of every iteration. Figure 3.3 illustrates the hybrid model and which operations are

performed on a classical processor or on a quantum processor.

Figure 3.3: Hybrid Quantum-Classical Model for Gradient Descent
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While other methods of variable learning rates exist such as learning rate schedul-

ing and adaptive learning rates, these methods use estimates and pre-defined schedules

to adjust the learning rate. This quantum method adjusts the learning rate using a

true metric of how close the estimate is to the true solution. This means the learning

rate can be heavily modified without overshooting the solution.
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3.2 Experiments

All experiments were simulated using Qiskit’s Aer simulator without noise. While

this is not a realistic representation of current quantum hardware, it is necessary as

current quantum hardware cannot run the full, generic implementation of the HHL

algorithm. Others [19, 14] have implemented optimized versions of the HHL algo-

rithm that can be performed on current quantum hardware, however, these reduced

circuits add additional restrictions to the input matrices. This work aims to explore

the attributes of the HHL algorithm and potential applications in hope that future

quantum hardware will be capable of computing larger quantum circuits. Since quan-

tum circuit results are represented as a probability distribution, a quantum circuit

must be run many times to create an accurate distribution of the results. Each run

is called a shot, and all simulations in this work used 20,000 shots.

When simulating experiments, the full HHL solution was extracted as well. This

would not normally be done as it breaks the computational advantage of the HHL

algorithm and can only be done in simulation. However, extracting the full solution

allows for better verification of the HHL solution and allows the error between the

expected and HHL solution to be calculated. This was done by saving the statevector

of the circuit after the HHL algorithm was simulated. The HHL solution can then be

extracted from the statevector and normalized.
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3.2.1 Model under Ideal Conditions

To demonstrate the combined HHL and SWAP test circuit, the following simple

system was tested:

1

4



15 9 5 −3

9 15 3 −5

5 3 15 −9

−3 −5 −9 15


x⃗ =

1

2



3

2

1

0


(3.10)

This system of linear equations was selected because it is an ideal system to test the

HHL algorithm. The eigenvalues of the matrix are 8, 4, 1, and 2, which are easy to

encode in the QPE stage of HHL [19]. This reduces error in the HHL algorithm and

will demonstrate the model’s capabilities under ideal conditions. Two test vectors

were used and the error was recorded in Table 3.1. The statevector error is the L2

error between the normalized true solution and the extracted statevector solution.

The SWAP error is the L2 error between the measured Euclidean distance from the

SWAP test and the true Euclidean distance between the normalized solution and test

point.

Table 3.1: Ideal Matrix Statevector and Swap Test Euclidean Distance Error

Test Vector Statevector Error SWAP Error
[0.5,0.5,0.5,0.5] 0.0 0.00565

[0.85896 0.23426 0.23426 0.39043] 0.0 0.0

The results in Table 3.1 show little error. This is because the matrix’s eigenval-

ues can be perfectly represented in the QPE stage of the HHL algorithm. In ideal

circumstances the SWAP test can be used to gain an accurate measurement of the

Euclidean distance between a test point and the solution of a system of linear equa-

tions. While the experiment was an ideal case, the circuit used 16 qubits and had a

depth of 888. Since this is far too large a circuit to run on current quantum hardware,

all experiments were run in simulation.
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3.2.2 Quantum Phase Estimation Counting Qubits

One significant source of error in the HHL algorithm is in the quantum phase es-

timation stage. In this circuit stage, the eigenvalues are estimated and stored in a

quantum register. Since this stage performs an estimation of the eigenvalues and not

an exact calculation, there will likely be error. However, the amount of error in this

stage can vary depending on the size of the quantum register being used to represent

the calculated eigenvalues. Selecting the size of this quantum register can greatly

change the amount of error caused by expressing an eigenvalues with a limited num-

ber of qubits. The size of the quantum register will have further implications on the

number of qubits and quantum gates used in the quantum phase estimation stage.

This will increase the depth of the circuit and increase the run time or simulation

time of the circuit.

The standard implementation of the HHL algorithm automatically selects the size

of the quantum phase estimation stage based on the input matrix’s condition number.

To manually test the impact of register size, the quantum phase estimation stage of

the circuit was modified so the size of the quantum register could be manually selected.

Experiments using different sizes of quantum registers were simulated to determine

the effect of the register size on the error of the HHL result and the error on the

SWAP test distance.

Two simple matrices were tested to see the impact of the register size:

A1 =

1.25 0

0 1

A2 =

1.125 0

0 1

 (3.11)

The eigenvalues of A1 are 1.25 and 1, and the eigenvalues of A2 are 1.125 and 1. The

L2 error between the true Euclidean distance and SWAP test Euclidean distance,

and the L2 error between the true solution and statevector solution were recorded in
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Table 3.2.

Table 3.2: Error vs Register Size

Matrix A1 Matrix A2

Register
Size

SWAP Error
Statevector

Error
SWAP Error

Statevector
Error

3 0.2936 0.0963 0.1904 0.0161
4 0.1645 0.0236 0.1995 0.0696
5 0.0 0.0 0.2314 0.0854
6 0.0 0.0 0.2147 0.0605
7 not tested not tested 0.0 0.0
8 not tested not tested 0.0 0.0

As expected, unless there are enough qubits to perfectly represent the matrix’s

eigenvalues using basis encoding, there will be error. Once the number of qubits is

increased such that the eigenvalues can be exactly ecoded, there is no longer error

caused by the HHL circuit. Additionally, if extra, unnecessary qubits are added there

is no negative effect on the result.

To test the impact of the register size when the decimals cannot be exactly rep-

resented, the following system of equations was used

2.5 3

1 4

 x⃗ =

1
1

 (3.12)

which was modified to be Hermitian. This matrix was selected due to its complex

eigenvalues of

λ = [5.53637,−5.53637, 1.26437,−1.264371]

These eigenvalues are difficult to encode because they cannot be exactly encoded

with a reasonable amount of qubits. The HHL algorithm used a scaling factor on the

38



Chapter 3. Experiments and Design

eigenvalues of s = 1.26436 which resulted in post scaling eigenvalues equal to

λ

s
= [4.37877,−4.37877, 1,−1]

Eigenvalue scaling was enabled to increase the accuracy of experiment as seen in

Section 3.2.3. Even post scaling, an extreme number of qubits would be required to

perfectly represent the eigenvalues in this experiment. Experiments were run increas-

ing the number of qubits used in the counting register during the quantum phase

estimation stage of the HHL algorithm. The true solution was used as the test vector

in the SWAP test so the expected Euclidean distance would be zero. The L2 error

between the true solution and the statevector solution, and the L2 error in the SWAP

test were recorded in Table 3.3.

Table 3.3: Error vs QPE Register Size

Register Size SWAP Error Statevector Error
4 0.3931 0.00031
5 0.1817 0.0001
6 0.2944 0.0188
7 0.2991 0.0063
8 0.0 0.0001
9 0.0 0.001

Table 3.3 indicates that increasing the number of qubits in the quantum phase

estimation stage can reduce the error in the final HHL solution even if the eigenvalues

are not exactly represented. However, the relationship between error and register size

is not linear. Adding qubits can aid in reducing error because this allows for the

encoded eigenvalues to be better represented in a limited number of qubits. However,

the reduction in error will not be linear because an additional qubit will not always

better represent a value. For example, the number 0.625 can be perfectly represented

with four binary digits: 0.101. However, if fewer binary digits are used, the estimation

will remain the same with two or three binary digits: 0.1 and 0.10 both estimate 0.625
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to 0.5. With enough qubits the error drops significantly. This indicates that even if

the eigenvalues are not exactly represented by the quantum phase estimation, a high

enough accuracy can be achieved for an accurate SWAP test result. One must note

that while increasing the register size may improve the results, the complexity of the

circuit will increase. This means selecting the size of the quantum phase estimation

register is not a trivial step in utilizing the HHL algorithm.

3.2.3 Scaling Eigenvalues

The Iris data set was used for this experiment [20]. The Iris data set is a simple data

set often used to test classification in machine learning.

Figure 3.4: Iris Data Set Visualization [4]

The data set consists of three classes and four features. The three classes represent

three distinct iris plant species. The four features are the sepal length, sepal width,

petal length, and petal width of an iris flower. This data set is strong candidate

for testing the HHL algorithm because it is a simple, widely used, and tangible data

set. The following system of linear equations was created by randomly selecting four
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samples from the Iris data set



5.2 6.6 5.8 6.3

2.7 2.9 2.8 2.9

3.9 4.6 5.1 5.6

1.4 1.3 2.4 1.8


x⃗ =



1

1

2

2


(3.13)

which was altered to be Hermitian as explained in Section 3.1.2 before performing

the HHL algorithm. The resulting matrix used was an eight by eight matrix with the

eigenvalues

λ = [16.75792,−16.75792, 1.07088,−1.07088, 0.48816, 0.23879,−0.23879,−0.48816]

Two experiments were run with this system of linear equations, one with eigenvalue

scaling enabled and one without scaling. The first experiment with eigenvalue scaling

used a scaling factor of s = 0.23879 resulting in post scaled eigenvalues of

λ

s
= [70.17819,−70.17819, 4.48461,−4.48461, 2.04429, 1,−1,−2.04429]

Both experiments used the default HHL implementation which used eight qubits for

the QPE counting register to represent the eigenvalues. This resulted in a quantum

circuit with a depth of 34200 and used a total of 16 qubits: three to encode the input

vector, eight for the QPE stage, one ancilla qubit, three to encode the test vector,

and one control qubit for the SWAP test.

Table 3.4: Error With and Without Eigenvalue Scaling

SWAP Error Statevector Error
Scaling Enabled 0.3645 0.0122
Scaling Disabled 0.5815 0.5371

The results in Table 3.4 show that scaling the eigenvalues has a positive impact
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on the accuracy of the HHL algorithm. Because of the significant reduction in error

after scaling the smallest eigenvalues to one, it indicates that the minimum eigenvalue

contributes greatly to the system of equations. When using the same number of

qubits, scaling is an effective way of reducing error. However, in practice it would not

be realistic to scale the eigenvalues of the matrix to exact integers because it would

require prior knowledge of the matrix’s eigenvalues. One can assume, as seen Section

3.2.2, that if enough qubits were available, scaling would not be necessary as the error

could instead be reduced by increasing the number of qubits used. However, due to

a lack of available qubits and limitations on simulating quantum circuits, scaling is

used in this research achieve more accurate results with fewer qubits.

3.2.4 Aiding Gradient Descent

Both the ideal matrix, Equation 3.10, and Iris matrix, Equation 3.13, were tested in

fully simulated experiments executing the full hybrid gradient descent model. Clas-

sical gradient descent was performed on the ideal matrix with a learning rate of

lr = 0.01 and lr = 0.03. The hybrid model was performed with an initial learning

rate of lr = 0.03 and β = 0.3. The learning rate was updated using the SWAP

test every 10 iterations. By only updating the learning rate every 10 iterations, the

number of SWAP tests required is reduced. If implemented into a larger regression

model, the learning rate could be updated every epoch similar to step decay learning

rates. The learning rate and loss were recorded in Figure 3.5.

As expected the learning rate is updated similar to a step decay adaptive learning

rate. Across the 100 iterations of gradient descent, 11 SWAP tests were performed.

Compared to the true Euclidean distance between the true solution and gradient

descent estimation, the 11 SWAP tests had an average L2 error of 0.01211. Compared

to the constant learning rate, the quantum adaptive learning rate (QALR) achieves

a lower loss and quicker descent. This means with the quantum adaptive learning
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Figure 3.5: Learning Rate and Loss vs Iterations (Ideal Matrix)

rate the same loss is reached in fewer iterations than the constant learning rate. The

loss with a constant learning rate of lr = 0.01 does near the loss seen in the quantum

adaptive learning rate toward the final iterations, and the constant learning rate of

lr = 0.03 surpasses the adaptive learning rate around 60 iterations. This is because

the quantum adaptive learning rate becomes increasingly small causing its loss to

slow during later iterations. The constant learning rate of lr = 0.01 and quantum

adaptive learning rate would intersect to have the same loss around iteration 110.

For the Iris matrix, the classical gradient descent was performed with a constant

learning rate of lr = 0.001 and lr = 0.003. An initial learning rate of lr = 0.003 and

β = 0.5 were used for the hybrid gradient descent. Due to the amount of error seen

in Table 3.4, even with scaling enabled, the number of qubits used in the QPE stage

was increased from 8 to 12.

The results in Figure 3.6 resemble those in the previous experiment. The loss

drops lower and faster than the constant learning rate meaning a lower loss can
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Figure 3.6: Learning Rate and Loss vs Iterations (Iris Matrix)

be achieved in fewer iterations. However, the gap between the quantum adaptive

learning rate and constant learning rate of lr = 0.003 is not as wide. Again, the loss

of the constant learning rate of lr = 0.001 begins to approach the quantum adaptive

learning rate as the adaptive learning rate nears zero. The constant learning rate

and quantum adaptive learning rate would intersect to have the same loss after about

45000 iterations. The learning rate was updated every 5000 iterations and performed

the SWAP test nine times. The Euclidean distance determined by the SWAP test

had an average L2 error of 0.03233 compared to the true Euclidean distance.

While both experiments had little error, it is worth noting that the SWAP test

returned an Euclidean distance of zero for the last few updates. Small distances,

approximately less than 0.05 in these examples, returned an Euclidean distance of

zero. Increasing the number of shots would improve the precision of the Euclidean

distance from the SWAP test. However, this increases the circuit execution time and

was deemed not necessary as the extremely small distances towards the end of the
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experiment have minimal impact on the learning rate. This indicates that as the

distance between the estimated and true solution becomes increasingly small, the

quantum approach becomes less impactful. A more efficient algorithm could switch

to a classical adaptive learning rate once the Euclidean distance from the SWAP test

becomes minimal.

By incorporating the quantum adaptive learning rate into classical gradient de-

scent, the training process of a linear regression problem is improved. The loss is

reduced quicker than a constant learning rate indicating that the quantum adap-

tive learning rate improves the speed at which a gradient descent converges on ideal

weights.

While the focus of this work was to implement a proof-of-concept model, some

research was made into the runtime and speedup of this model. The HHL circuit

is kept from previous works such that the HHL portion of the circuit would scale

the same. Since the true solution does not change during gradient descent, the HHL

portion of the model should only need to be performed once. A previous work [17]

explored the cost of the SWAP test. Experiments demonstrated that with a carefully

selected test point, the SWAP test was not computationally expensive. Foulds et.

al. [16] indicates that the SWAP test can have better performance than quantum

state tomography especially when the two states compared are more entangled. Even

though the SWAP test is not computationally expensive, efforts must be made to

mitigate the number of SWAP test. This was explored in this work by limiting the

SWAP test to select iterations during gradient descent and the possibility of using a

reduced SWAP test when the quantum states are no longer needed.
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Conclusion

4.1 Future Work

Based on the experiments performed in this work, additional research could be done

to best utilize the Euclidean distance in the quantum adaptive learning rate. While

this work did integrate the Euclidean distance into an adaptive learning rate, the

implementation was based on classical learning rate decay methods. If the quan-

tum Euclidean distance could be incorporated in a more advanced optimizer, further

improvements could be made to learning regression.

Additionally, any future improvements made to the HHL algorithm could improve

the near term feasibility of this model. Further research could be made into quantum

tomography to improve the SWAP test precision, especially with small decimals.

Finally, a robust method of selecting the size of the quantum phase estimation register

size would be greatly beneficial to the HHL algorithm. Good register size selection

would reduce the error of the HHL algorithm while keeping the circuit size as small as

possible which is extremely important for near term and noisy quantum processors.

4.2 Conclusion

Through this work, the abilities of the HHL algorithm and SWAP test were explored.

By testing the HHL circuit, the importance of the input matrix’s eigenvalues were
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determined. The quantum phase estimation stage of HHL has a great impact on

the circuit’s performance because this stage estimates the eigenvalues of the input

matrix. By applying a time evolution to the input matrix and scaling the matrix’s

smallest eigenvalues, the error occurred during the quantum phase estimation could be

greatly reduced. The error occurred in this stage could also be reduced by increasing

the register size used to represent the eigenvalues. By increasing the register size, the

error occurred could be minimized to acceptable amounts. However, increasing the

register size does not have linear relationship to a reduction in error, so selecting the

size is not a trivial task.

When the HHL circuit was correctly designed, the SWAP test could accurately

determine the inner product between the solution to a system of linear equations

determined by the HHL circuit and a prepared test point. Based on the inner product,

the Euclidean distance between the solution and test point can be calculated. In

cases with ideal eigenvalues and complex eigenvalues, if enough qubits were used for

the QPE register, the SWAP test was able to successfully determine the Euclidean

distance with minimal error.

The combined HHL and SWAP test circuit was then incorporated into a classical

gradient descent algorithm. The combined quantum circuit was able to calculate

the Euclidean distance between the normalized solution and the gradient descent

algorithm’s current estimate for the solution. This normalized Euclidean distance

was incorporated into the gradient descent algorithm as a quantum adaptive learning

rate. The quantum adaptive learning rate was able to reduce the loss occurred in the

gradient descent algorithm better and quicker than a constant learning rate.

While current noise rate in quantum hardware limit the ability to run this complete

model on current quantum hardware, this model presents a blueprint for incorporating

quantum computing in regression algorithms. The hybrid nature of the model explores

the use of future quantum processors as accelerators in classical computing systems.
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