
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

4-20-2023

Implementation of Model-Free Sliding Mode Control on a Multi-Implementation of Model-Free Sliding Mode Control on a Multi-

Input Multi-Output System Input Multi-Output System

Walker Hare
wth8798@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hare, Walker, "Implementation of Model-Free Sliding Mode Control on a Multi-Input Multi-Output System"
(2023). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11438?utm_source=repository.rit.edu%2Ftheses%2F11438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

ROCHESTER INSTITUTE OF TECHNOLOGY

Implementation of Model-Free Sliding Mode Control on a Multi-

Input Multi-Output System

By: Walker Hare

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of

Science in Mechanical Engineering

Advisor: Dr. Agamemnon Crassidis

DEPARTMENT OF MECHANICAL ENGINEERING KATE

GLEASON COLLEGE OF ENGINEERING

Rochester, NY

April 20th, 2023

1

Implementation of Model-Free Sliding Mode Control on a Multi-Input Multi-Output

System

By: Walker Hare

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of

Science in Mechanical Engineering

Department of Mechanical Engineering

Kate Gleason College of Engineering

Rochester Institute of Technology

Approved By:

Dr. Agamemnon Crassidis Date

Thesis Advisor

Department of Mechanical Engineering

Dr. Kathleen Lamkin-Kennard Date

Thesis Committee Member

Department of Mechanical Engineering

Dr. Sergey Lyshevski Date

Thesis Committee Member

Department of Electrical Engineering

Dr. Sarilyn Ivancic Date

Department Representative

Department of Mechanical Engineering

2

Abstract

Bioinspired flight serves to balance the advantages of fixed-wing flight as well as traditional rotary

systems. A flapping wing aerial system exhibits high maneuverability at low speeds like a rotary system

and the higher efficiency that fixed-wing systems exhibit in forward flight. A method to actuate a flapping

wing structure is using piezoelectric elements. Using flapping wings to perform aerial maneuvers and

facilitate stable flight will require precise control of the piezoelectric elements and control surfaces. The

focus of the research is the construction of a feedback control platform for the flapping wing aerial system.

For any type of feedback control architecture, an accurate way of estimating the current state of the system

is required for precise tracking control. Since the control system will be implemented in an aerial vehicle,

the system must be lightweight to allow for a larger payload capacity for the aircraft. Nonlinearities arising

from uncertainties and unmodeled environmental effects lead to changes in the system model and a linear

control scheme will exhibit suboptimal performance and instability. The desire of this aircraft to be able to

perform under different flight conditions make determination of an accurate system model a time-

consuming and vast undertaking. These flight conditions include take off, gliding, and landing under

different wind, pressure, temperature, and payload specifications. Sliding Mode Control and Lyapunov-

based methods have been explored extensively due to their capability of handling nonlinear systems

directly while guaranteeing stable tracking control. However, determining an appropriate model to

approximate the system dynamics is difficult and can lead to undesirable results. These variations can be

accounted for by using a model-free control approach. In this work, a model-free controller based on the

Sliding Mode Control method implemented for a flapping wing aerial system is considered. The model-free

control algorithm only requires knowledge of the system parameters such as the order of the system and

state measurements. The algorithm has been implemented successfully in traditional unmanned aerial

systems achieving adequate control of system states. While the goal is for the Model-free algorithm to be

implemented on a flapping-wing unmanned aerial system, at the time of this thesis, the construction is still

in progress. Therefore, an analogous system was built to test the algorithms. A balancing system consisting

of a DC motor and propeller mounted to a servo motor for thrust vectoring was constructed. A linear

controller derived from the system model was compared in simulation and testing to the Model-Free

Sliding Mode Control algorithm.

3

Table of Contents

List of Figures...5

List of Tables...7

Nomenclature..8

1.0 MOTIVATION………….……………..10

2.0 LITERATURE REVIEW..12

 2.1 Previous Flapping Wing Unmanned Aerial Systems...12

 2.2 Sliding Mode Control...13

 2.3 Model-Free Control Methods...13

 2.4 Model-Free Sliding Mode Control...14

 2.5 Model-Free Sliding Mode Control with On-Line Parameter Estimation.............................…....15

3.0 OBJECTIVES OF THE PROPOSED WORK..16

4.0 Model-Free Sliding Mode Control..17

 4.1 Sliding Mode Control…………………………………………………………………….……..17

4.2 Derivation for a Second Order System with Unitary Input Gain……………………………….19

4.3 Model-Free Sliding Mode Control Derivation for a Second Order System with Non-Unitary

Input

Gain..20

4.4 Asymptotic Stability of MFSMC……………………………………………………………….21

4.5 Model-Free Sliding Mode Control Derivation for a Second Order System with Online Parameter

Estimation..22

 4.6 On-Line Parameter Estimation Law..23

 4.7 Model-Free Sliding Mode Control for a MIMO Second Order System.....................................23

 4.8 Model-Free Sliding Mode Control for a 2DOF Model of an Aerial Vehicle…………….........26

5.0 Practical Implementation of Model-Free Sliding Mode Control……………………………...31

4

 5.1 Constrained Tiltrotor Balancing System………………………………………………………31

 5.1.1 System description and equations-of-motion………………………………………..31

 5.1.2 Linear Control Law………………………………………………………………….33

5.1.3 Control Architecture & Changes Made to MFSMC Algorithm…………………….35

5.1.4 Simulation Results…………………………………………………………………..36

5.1.5 IMU Validation……………….…………………………..………………………...39

5.1.6 Baseline Testing Results – LQR…………………………..………………………...41

5.1.7 Baseline Testing Results – MFSMC…………..…………………………………….43

5.1.8 Modified System I Testing Results – LQR…………………………….……………46

5.1.9 Modified System I Testing Results – MFSMC..…………………………….………47

5.1.10 Modified System II Testing Results – LQR…………………………..……………49

5.1.11 Modified System II Testing Results – MFSMC..…………..…………...….………51

5.1.12 Discussion of Results…………………………………………….……….………...53

6.0 Conclusion……………………………………………………………………………….………..55

 6.1 Future Work………………………………………………………………………..…………..56

7.0 BIBLIOGRAPHY…………………………………….…………………………………..………57

8.0 Appendix…………………………………………………………………………………………..59

5

LIST OF FIGURES

Figure 1: SMC with and without the inclusion of the boundary layer……………….……………………..19

Figure 2: Tracking error of states x1 and x2 for a nonlinear MIMO system…………….………………….25

Figure 3: Dynamics of states x1 and x2 for a nonlinear MIMO system………………………...…………..25

Figure 4: Control effort and Boundary Layer dynamics of a nonlinear MIMO system…………...….……25

Figure 5: Switching Gain and Estimated increment to the switching gain for a nonlinear MIMO

system…………………………………………………………………………………………………...…..26

Figure 6: Free Body Diagram of simplified 2DOF model of a flapping wing aerial vehicle…………….…27

Figure 7: Altitude and Roll tracking error for the simplified 2D model………………………..…………..28

Figure 8: Dynamics of states for simplified 2DOF model……………………………………...…………..28

Figure 9: Control effort and boundary layer dynamics of the simplified 2D model………………..………29

Figure 10: Switching Gain and Estimated increment to the switching gain for a nonlinear MIMO

system…………………………………………...29

Figure 11: Image of the Tilt-Rotor System………………………………………………………………….31

Figure 12: FBD of Tilt-Rotor System….……………………………………………………………………32

Figure 13: Thrust-Vector Balance State Dynamics and Control Effort………………………………….....34

Figure 14: Thrust-Vector Balance Tracking Error……………………………………………………….…35

Figure 15: Schematic of the Control Scheme……………………………………………………………….36

Figure 16: Pitch (x1) and Yaw (x2) state tracking errors…………………………………………………….37

Figure 17: Pitch (x1) and Yaw (x2) state dynamics…………………………………….……………..…….38

Figure 18: Boundary Layer Dynamics & Estimated Control Input Gain…………….………..…………...38

Figure 19: Control Effort for MFSMC on the Tilt-Rotor System………………………………...………..39

Figure 20: Measured angular velocity from gyroscope and calculated angular velocity…………………..40

Figure 21: Measured angular velocity with scaling factor from gyroscope and calculated angular

velocity……………………………………………………………………………………………………40

6

Figure 22: Baseline LQR Test – Pitch (x1) and Yaw (x2) state dynamics……………..………………….42

Figure 23: Baseline LQR Test – Pitch (x1) and Yaw (x2) state tracking errors….………………………..42

Figure 24: Baseline LQR Test – Control Effort…………….………………….…………………………43

Figure 25: Baseline MFSMC Test – Pitch (x1) and Yaw (x2) state dynamics…………….……..….…..…44

Figure 26: Baseline MFSMC Test – Pitch (x1) and Yaw (x2) state tracking errors………..….………..….44

Figure 27: Baseline MFSMC Test – Boundary Layer Dynamics & Estimated Control Input Gain……...45

Figure 28: Baseline MFSMC Test – Control Effort………….…………………………………………...45

Figure 29: 80% of Counterweight, LQR – Pitch (x1) and Yaw (x2) state dynamics………………………46

Figure 30: 80% of Counterweight, LQR – Pitch (x1) and Yaw (x2) tracking error……………………......47

Figure 31: 80% of Counterweight, LQR – Control Effort………………………………….………….......47

Figure 32: 80% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) state dynamics……………..…....48

Figure 33: 80% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) tracking error…………..…...…..48

Figure 34: 80% of Counterweight, MFSMC – Boundary layer dynamics and Control input gain

estimation……………………………………………………………………………………………..…...49

Figure 35: 80% of Counterweight, MFSMC – Control Effort……………………………………..……...49

Figure 36: 60% of Counterweight, LQR – Pitch (x1) and Yaw (x2) state dynamics………………………50

Figure 37: 60% of Counterweight, LQR – Pitch (x1) and Yaw (x2) tracking error………………………..50

Figure 38: 60% of Counterweight, LQR – Control Effort…………………………………………………51

Figure 39: 60% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) state dynamics……………..……51

Figure 40: 60% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) tracking error…………..……….52

Figure 41: 60% of Counterweight, MFSMC – Boundary layer dynamics and Control input gain

estimation……………………………………………………………………………………………….…52

Figure 42: 60% of Counterweight, MFSMC – Control Effort………………...……………………….….53

7

LIST OF TABLES

Table 1: Control and estimation parameters used in simulation of a nonlinear MIMO system………….…24

Table 2: RMS of the tracking error of all states for a nonlinear MIMO system……………………………26

Table 3: Mass and Inertial properties of the airframe used in simulation……………………….………….27

Table 4: RMS of the tracking error of all states for

 a 2DOF simplified model…………………..…………30

Table 5: Controller and Estimator Parameters for Thrust-Vector Balance Simulation……….…………….37

Table 6: Comparison of Root Mean Square Error values for the linear controller and Model-Free

controller………………………………………………………………………………………….…………39

Table 7: Comparison of RMS values for simulation and test data for TV-Balance………………………...46

Table 8: Simulation and testing results for the MFSMC algorithm and LQR control law……………..…..54

8

NONMENCLATURE

αu = Control Input Low-Pass Filter Constant

b = Control Input Gain

𝑏̂= Estimate of control input gain

𝛽 = Auxiliary variable for on-line parameter estimation

bu, bl = Upper and lower bounds of the control input gain

η = Increment to the sliding gain (always positive)

𝜂̂ = Estimate of the increment to the switching gain

ε(u) = Input error

𝜀̂(𝑢) = Estimate of the control input error

𝑑

𝑑𝑡
x = First derivative of x

f(x) = Function of system states

𝑓 = Approximation of the function of system states

K = Switching gain

k0 = Pre-specified bound for estimator gain matrix magnitude

λ = Slope of the sliding surface (always positive)

λp = Time-varying forgetting factor for the determination of the estimator gain matrix, P

λ0 = Maximum forgetting factor rate

n = System Order

P = Estimator gain matrix

φ = Boundary Layer

RMS = Root-Mean-Square

s = Time-varying sliding surface

Sat() = Saturation function

9

Sgn() = Signum (relay) function (for s>0, sgn(s)=1, for s<0, sgn(s)=-1)

σl, σu = Upper and lower bounds for control input estimation

u = Control Input

û = Redefined control law

uk-1, uk-2 = Previous and second previous control inputs

x = System state vector

𝑥̇ = First derivative of x

𝑥̃ = Tracking error

𝑥𝑑 = Desired tracking

x(0) = Initial value of “x”

10

1.0 MOTIVATION

Advancements in Unmanned Aircraft Systems (UASs) technology have led to increased prevalence in

the warzone of today in applications such as surveillance and combat capacity. Unfortunately, the

distinguishing profile of traditional UASs and sound signatures limits the effectiveness in operations

where remaining undetected is of utmost importance. The goal of designing a control system is to

achieve desired system performance in response to user inputs as well as achieving fully autonomous

navigation control.

Flapping-wing flight provides advantages over fixed-wing flight under certain operating conditions.

Sachs [1] examined flight in biological systems and found flapping wings potentially offer increased

maneuverability and energy savings compared to fixed-wing flight. However, these advantages are

greatest when the size of the aircraft is small, and the velocity is low [2]. The slower tip speed of the

wings decreases the noise generated in flight [3]. To minimize the complexity and cost, many flapping

wing aerial systems are actuated via electric motors [4]. However, as the size of the motor is decreased,

the overall efficiency decreases as well [4]. Transmitting the power from the motor to the wings

requires the use of gears and linkages. Degradation of the mechanical components within the

transmission system may lead to increased maintenance, shorter lifespan, and increased operational

costs.

O’Rourke [6] developed a second-order linear model using system identification techniques to model

the displacement of the tip of the piezoelectric actuator (PZT). In the work, a nonlinear plant was

constructed in Simscape. The model used the Euler-Bernoulli finite-element method and coupling terms

to consider the electromechanical interaction. By inputting the PZT technical parameters from the

specification documentation, the system outputs for desired inputs and external disturbances were

determined. The second-order approximation outlined in O’Rourke [6] was lacking for proper control

of the PZT most likely due to a linear approximation not accounting for nonlinearities such as

hysteresis and creep within the actuator. In O’Rourke [6], unmodeled dynamics could have led to

discrepancies between the model and test data.

The control law is designed to satisfy parameters such as the settling time given an input, steady-state

error, and overshoot. Linear controllers such as the classical Proportional-Integral-Derivative Controller

(PID) and Linear Quadratic Regulator (LQR) offer adequate results for many classes of linear systems.

For PID Control, time and frequency domain analysis are typically used to derive the controller gains to

achieve the desired system performance. In the design of an LQR Controller, a cost function is

minimized to determine a set of gains ensuring optimal control. However, the LQR performance, when

implemented, is limited to the accuracy of the linear approximation of the dynamics. Therefore,

11

uncertainties in the model parameters lead to decreasing robustness. While many different linear control

laws can be implemented on real systems with reliable results, a majority fall short when attempting to

control higher-order nonlinear systems.

Nonlinear control methods, such as Sliding-Mode Control (SMC), have been implemented to

compensate where linear system model approximations do not yield acceptable closed-loop

performance. SMC is more flexible compared to other types of control laws since direct control of

higher-order nonlinear systems is possible while also providing robustness to parametric uncertainties.

The SMC algorithm is a specific form of a variable structure control method where the control effort

switches from one control structure to another depending on the system state trajectory location in the

state or phase plane [7]. The control law is designed to drive the system trajectory states onto the

desired trajectory where the difference between the current state values and the desired values defines a

Sliding Surface. If the state trajectories are not on the Sliding Surface, a switching control law is used in

the SMC scheme to force the trajectories toward the Sliding Surface (referred to as the Reaching

Phase). Once on the Sliding Surface, the state trajectories “slide” towards the origin, and perfect

tracking performance is theoretically achieved. However, the traditional SMC method has drawbacks in

control chattering or high-frequency switching of the control system since the state trajectories are not

perfectly on the sliding surface due to parametric uncertainties caused by the discontinuous term within

the algorithm. The discontinuous term forces the state trajectories in the proper direction depending on

if the trajectories are below or above the Sliding Surface. Applying boundary layers around the Sliding

Surface is a method to reduce the chattering caused by control law.

The reliance on an accurate system model as well as tuning of control parameters can lead to less-than-

optimal results on hardware implementations leading to the development of a Model-Free Sliding-

Mode Control (MFSMC) algorithm. Crassidis and Mizov [10] developed a MFSMC algorithm applied

to a first-order and second-order linear and nonlinear system and achieved satisfactory tracking

performance with global asymptotic tracking stability guaranteed using the SMC method as a basis for

the MFSMC development. Due to the complex nature of the flapping wing aerial system, control of the

flapping wings under aerodynamic loading and pilot input requires precise control of the actuators.

Using a MFSMC approach may solve the control requirement and is to be considered here.

12

2.0 LITERATURE REVIEW

2.1 Previous Flapping Wing Unmanned Aerial Systems

Sachs [1] compared the power requirement of flapping and fixed-wing aerial vehicles. The flapping wing

induces significantly more drag compared to fixed-wing flight. The higher induced drag results from the

tilting lift vector and the change in magnitude of the vector at different points in the flapping cycle. In

fixed-wing vehicles, the propeller efficiency greatly affects the overall system efficiency. In this paper, it

was determined that the propeller efficiency decreases proportionally as the vehicle size is also decreased.

Concluding that for a smaller aerial vehicle, flapping wings provide higher efficiency flight.

Flapping Wing Micro Air Vehicles (FWMAV) exhibit advantages over traditional aerial vehicles in their

high maneuverability, quick transition between flight modes, robustness to crashes, and smaller profile [2].

The typical mass of a FWMAV is a few grams. De Wagter et Al. created a 20 gram FWMAV that was able

to carry a 4 gram sensor payload. The vehicle features a max velocity of 25 kilometers per hour, a turn rate

of 500 degrees per second, and the ability to perform maneuvers such as flips and high-speed turns while

remaining stable. However, the control design utilized external vision sensing to control the position and

attitude of the vehicle. For an application outside of a laboratory setting, the control system as well as the

state measurement algorithm must be included in the onboard hardware.

Croon et Al. [3] laid a road map for the development of a flapping wing micro aerial vehicle. In 2005, the

DelFly I was designed featuring a wingspan of 35 centimeters and a mass of 21 grams. However, the

DelFly I was not capable of forward flight. The DelFly II, created in 2008, had a reduced wingspan of 28

centimeters but could fly at a forward velocity of 7 meters per second, hover, and fly backward. The work

lays a foundation for the construction of a FWMAV and explores mechanical design and material selection,

electronics and power distribution, actuator selection, wing design and aerodynamics, and experimentation.

While not everything covered in this book will be explored here, it will be used as a reference for the

simulation and experimentation of the FWUAS developed in this paper.

Ning [4] sought to control the position and attitude of a FWMAV. The traditional method of deriving a

system model, linearization, then designing a linear controller would not be suitable due to complexities

due to uncertainty, nonlinearities, and multi-coupled parameters. Quaternion representation was used to

account for gimbal lock within the state feedback structure. An adaptive fuzzy control law and an H∞

control law were derived to estimate the unknown parameters and attenuate external disturbances. An

“idealized” system model was created to test the control laws. However, it was noted this model may not

accurately represent the dynamics due to neglecting the effect of flexible wings on the aerodynamic forces

13

and torques. While the controllers successfully stabilized the system and minimized tracking errors, the

control law was not tested experimentally.

Jafferis et Al. [5] developed the first self-sustained piezoelectrically actuated flight. RoboBee utilized an X-

wing design and weighed less the 500 milligrams with a wingspan of 5 centimeters. Two bimorph actuators

were used but they were controlled by a single driving signal to reduce the weight required by the extra

electrical components. The use of a photovoltaic array eliminated the added weight of batteries but only

provide sufficient power under UV light that was 3x the density of sunlight. The ultra-light weight of this

system prevents onboard sensors and cameras from being implemented.

O’Rourke [6] used experimental and theoretical analysis methods to study the lift and drag effects of a

piezoelectric-driven flapping wing motion. The bending motion of the piezoelectric element negates the

need for a complicated gearing mechanism that is common with motor-driven flapping wing vehicles and is

susceptible to clogging and wear in adverse conditions. The work explored the feasibility of larger, forward

flight systems and develops the framework for the development of a piezoelectrically actuated flapping

wing aerial system. The Python PBA6014-5H200 PZT was used which had a maximum stroke of ~3.04

millimeters and a blocking force of 0.14 Newtons. A diagram of the multi-layered bimorph is shown in

Figure 1. A simple wing using carbon fiber tubes and Mylar was constructed and tested under different

flapping frequencies and phase shifts between the front and back wing spars. Resonance-like behavior was

observed between 14 and 16 Hz producing the maximum lift and thrust. While flapping between 11 and 16

Hz, phase shifts of 30o, 60o, and 90o were found to maximize lift and thrust generation. While the results

indicated the current design would only be able to support a payload of 6 grams, further research into wing

design, actuation mechanism, and control could lead to more desirable flight characteristics.

2.2 Sliding Mode Control

Jing et Al. [7] sought to find a robust control algorithm for the variable speed control of a wind turbine. To

achieve the highest power output, the turbine must perform at peak efficiency at all wind speeds.

Nonlinearities arising from parameter uncertainties, electromechanical coupling, and external disturbances

led to a complex control problem. For this reason, a Quasi-Continuous High-Order Sliding Mode

Controller was developed. While the design of the controller was based on a linearized system model,

robust control of the turbine was achieved while also eliminating the chattering effect on the control input

which is common with SMC techniques. While the approach achieved high robustness compared to a

traditional PID control strategy, the reliance on a linear approximation of the model for control derivation

limits its usefulness.

Slotine and Li [8] eliminated the chattering effect of SMC by including a smoothing boundary layer. The

boundary layer adds a low-pass filter-like structure to the local dynamics around the sliding surface. They

redefined the control law by including a Saturation function instead of the traditional Signum function.

While this approach does not guarantee perfect tracking, the control law significantly reduces chattering.

2.3 Model-Free Control Methods

14

Madadi, Dong, and Soffker [9] evaluated the control of nonlinear systems and the unknown effects that are

to be approximated in parallel with the control law. The criteria for assessing the performance of a Model-

Free Control (MFC) law is in its’ robustness against unknown system parameters and disturbances and the

achieved tracking performance. In [10], two model-free control approaches are summarized and evaluated.

An Intelligent Proportional-Integral Controller (iPI) and a Model-Free Adaptive Control (MFAC) algorithm

are implemented on a three-tank system. The iPI algorithm describes a local model used to approximate

unknown system dynamics in a short time window. The system parameters are updated at every time

interval to provide an accurate estimate of the unknown dynamics. When compared with a fuzzy controller

and a classical PI and PID, the iPI algorithm yielded more accurate and smoother tracking given different

types of input signals. The MFAC algorithm approximates the Pseudo Partial Derivative (PPD) using

online input-output data. The PPD algorithm is used at each time interval to build a working model instead

of identifying the model parameters of a nonlinear plant. One major difference between iPI and MFAC is

iPI uses offline data to build a dynamic model while MFAC uses online data to adapt to variations within

the plant and control system. The iPI controller was also shown to be unaffected by time delays within the

system while MFAC requires additional changes to be made to accommodate the effects. Like SMC, the

iPI algorithm induces a chattering control effect caused by the use of the differentiator within the control

law. The chattering is exacerbated by the fast actuator and sensor dynamics which will be present in the

control of the PZT.

2.4 Model-Free Sliding Mode Control

Crassidis and Mizov [10] applied a control law based on SMC for linear and nonlinear systems that are

grounded in observable measurements of the states of the system and the assumed order of the system. A

switching gain is implemented to achieve stability according to Lyapunov’s Direct Method. The chattering

control effort, which is a common aspect of SMC, was eliminated by implementing a smoothing moving

boundary layer. In real systems, state measurement noise must be accounted for and was determined

outside the scope of this work. While different filtering and differentiation methods can be used, for

application on a real-world system, the control law must be made robust to these elements.

Reis [11] developed a model-free control scheme based on the SMC method. The developed control effort

is a function of the previous control inputs and state measurements. However, knowledge of the system

order and the bounds of the control input gain must be known. To ensure asymptotic tracking stability,

Lyapunov’s stability theorem was used to derive the switching gain. The first case tested utilized a relay

(signum) function to apply the SMC law discontinuous term. The relay function caused high-frequency

“chatter” of the control effort. The chattering caused poor tracking of the higher-order states of the system.

To reduce the chattering, a smoothing boundary layer was introduced in place of the relay function. The

high-frequency chattering was eliminated and closed-loop asymptotic stability was guaranteed. The

MFSMC technique proposed exhibited excellent tracking for both unitary and non-unitary control input

gains. However, in the presence of state measurement noise, the MFSMC parameters chosen led to noisy

state tracking performance. Furthermore, tuning the gain parameters was required to achieve acceptable

tracking results. Additional filters and noise-reduction techniques can be implemented within the control

15

law to reduce the noise. For reliable performance, the bounds of the system uncertainties must be large,

yielding excessive control effort within the system. To close the gap, the control input gain can instead be

approximated by a parameter estimation technique considered here.

Schulken [12], expanded on the work done for MFSMC by simulating different aerial system models and

disturbances such as the effects of discretization and state estimation. The MFSMC law and a linear PID

Control law were examined. The performances were evaluated in terms of the quadratic mean of the

tracking error, implementation complexity, and control law tuning. The MFSMC law exhibited similar

tracking results as the PID controller but without the extensive tuning and testing process. However, both

control laws were deemed unacceptable for real-world applications due to unsatisfactory tracking. The

large tracking errors were attributed to the uncertainty in the state estimation algorithm. For the application

of this algorithm on a real system, improvement in the state estimation process must be considered.

Sreeraj and Raj [13] worked to improve the previous work [12, 13, 14] performed by generalizing the

control law for different classes of unmanned aerial systems. By simulating hardware such as the outputs of

an Inertial Measurement Unit (IMU), operator input, noise, and sensor delays the work strived to develop a

simulation that closely approached that of a real-world application. Improvements for the state estimation

algorithm utilized an IMU placed at the center-of-mass of the aircraft. The full-state feedback required by

the MFSMC lgorithmm was achieved. Calculation of the state derivatives in practical applications

requires discrete smoothing filters. The filter ensures that all signals remain smooth and are twice

differentiable. After the control laws were derived and successfully verified using simulation, they were

implemented on a quadrotor system testbed. The experiment study showed better tracking performance of

the MFSMC law and lower power consumption compared to the linear control law.

Monti [14] worked to expand on the application of a MFSMC law to a quadrotor system. Parameter

uncertainties were examined by performing simulations while varying the mass and inertial properties.

Three simulations were performed: original aircraft parameters, doubled mass, doubled moments of inertia,

and doubled mass and moments of inertia. All of the test cases were simulated using the MFSMC and PID

algorithms. Results of the simulation effort showed the MFSMC law achieved better tracking and lower

power consumption than the linear control law. In this work, the control input gain matrix, B, was derived

using knowledge of the system parameters. However, a scheme to account for not knowing the input gain

must be formulated in achieving a truly model-free approach.

2.5 Model-Free Sliding Mode Control with On-Line Parameter Estimation

Islam [15] expanded the previous MFSMC law by using on-line parameter estimation to approximate the

control input gain and the increment to the switching gain. To avoid gain unboundedness and maintain the

benefits of weighting recent parameter calculations higher than previous values, a bounded forgetting

tuning technique was implemented. The estimator assured the resulting estimated parameter is upper

bounded by terminating the data forgetting if the upper bound is reached. The data-forgetting technique

allowed for time-varying parameters including actuator degradation to be accounted for. Near perfect

tracking was achieved for linear and nonlinear Multi-Input Multi-Output (MIMO) and Single-Input Single-

16

Output (SISO) systems. However, if the initial estimate of the input influence was far from the true value,

the estimation technique was inadequate to achieve stable tracking convergence. The proposed work closes

the previous research gap by estimating the gain parameter within the control law itself resulting in a

parameter convergence including poor initial guess estimates of the input influence gain.

3.0 OBJECTIVES OF THE PROPOSED WORK

1. Compare control performance in terms of the root-mean-square error of the states of the system

between linear control and Model Free Sliding-Mode Control.

2. Develop a Model Free Sliding-Mode Control algorithm for tracking control of a FWUAS.

17

4.0 Model-Free Sliding Mode Control Algorithm

The goal of designing a control system is to optimize the system’s response to a given input in terms of the

speed of response, stability, and accuracy. Classical methods rely on a derived system model to determine a

control law. Most methods, such as a Proportional-Integral-Derivative (PID) controller, compensate the

error between a desired and a measured state of the system. The gains are determined using a linear

approximation of the system. Uncertainties and time-varying parameters within the system lead to

suboptimal performance. More advanced techniques such a Sliding Mode Control (SMC) feature increased

robustness and the ability to control higher-order nonlinear dynamic systems with uncertain conditions.

However, like the classical control method, a reliance on an accurate system model is an inherent

drawback. A model-free control algorithm utilizes a control law derived without the need for a system

model. The only requirements being knowledge of the system order and accurate state estimates of the

system. For a system that is highly nonlinear with many modeling uncertainties, such as a flapping-wing

system, a model-free algorithm will provide more stability and robustness.

4.1 Sliding Mode Control

A single input, single output system is defined [10]:

 𝑥𝑛 = 𝑓(𝑥) + 𝑏(𝑥)𝑢

(4.1)

for the system order n, the state variable x, the control input gain b(x), and f(x), defined as a function of the

system states. The tracking trajectory xd,, where xd (0) = x (0), can be used to determine the tracking error of

the system:

 𝑥̃ = 𝑥 − 𝑥𝑑

(4.2)

The time-varying sliding surface is dependent on the order of the system and characterized by:

𝑠 = (

𝑑

𝑑𝑡
+ 𝜆)𝑛−1𝑥̃

(4.3)

For the system to remain stable, the system must remain on the sliding surface. Thus when the tracking

error is zero, the sliding surface, s, will be driven to zero. To satisfy this condition, a control law, u, is

derived to satisfy the sliding condition [8]:

18

 1

2

𝑑

𝑑𝑡
𝑠2 ≤ −η|𝑠|

(4.4)

where η, is a strictly a positive constant. The control law drives the trajectory onto the sliding surface and

maintains the system within the bounds of the sliding surface.

As a example, consider a second-order system to be controlled as:

 𝑥̈ = 𝑓 + 𝑢

(4.5)

where f is a function dependent on the system states and time. If the bounds are known, a best estimate, 𝑓,

can be approximated.

For a second-order system, the sliding surface is:

 𝑠 = 𝑥̇ − 𝑥̇𝑑 + 𝜆(𝑥 − 𝑥𝑑)

(4.6)

To ensure no movement of the system states on the sliding surface once the state trajectories reach the

sliding surface, the first derivative, 𝑠̇, is set equal to zero.

 𝑠̇ = 𝑥̈ − 𝑥̈𝑑 + 𝜆𝑥̇̃ = 0

(4.7)

From Eq. (5.5) and (5.6), the estimated control, 𝑢̂, is defined:

 𝑢̂ = −𝑓 + 𝑥̈𝑑 − 𝜆𝑥̇̃

(4.8)

In order to satisfy the sliding condition:

𝑠𝑠̇ =

1

2

𝑑

𝑑𝑡
𝑠2 ≤ −η|𝑠|

(4.9)

a discontinuous Signum function, sgn(), is added to the control law. The Signum function outputs a value

of positive or negative one depending on the sign of the input. The updated control law becomes:

 𝑢 = −𝑓 + 𝑥̈𝑑 − 𝜆𝑥̇̃ − 𝐾 ∗ 𝑠𝑔𝑛(𝑠)

(4.10)

To satisfy the sliding condition in the most conservative manner, the minimum value of k is determined for

the largest bound of f by:

 𝐾 ≥ |𝑓 − 𝑓| + η

(4.11)

The control law defined above exhibits chattering or high-frequency switching. Chattering is unsuitable for

applications on real systems which can lead to unsatisfactory performance and actuator degradation. A

time-varying smoothing boundary layer is included in the control law to satisfy the new sliding condition

[8]:

19

|𝑠| ≥ 𝜑 →

1

2

𝑑

𝑑𝑡
𝑠2 ≤ (𝜑 − η)|𝑠|

(4.12)

The K*sgn(s) term is now replaced by(𝐾 − 𝜑̇) ∗ 𝑠𝑎𝑡(
𝑠

𝜑
). The sat() function is defined by:

 𝑠𝑎𝑡(𝑦) = 𝑦 𝑖𝑓 |𝑦| ≤ 1

𝑠𝑎𝑡(𝑦) = 𝑠𝑔𝑛(𝑦) 𝑖𝑓 𝑒𝑙𝑠𝑒

(4.13)

The boundary layer is a first order differential equation:

𝜑̇ = −𝜆𝜑 + 𝐾 = −𝜆𝜑 + |𝑓 − 𝑓| + η; 𝜑(0) =
η

𝜆

(4.14)

Mizov [10] sought to control the following second order nonlinear system:

 𝑥̈ = 𝑓 + 𝑢 (4.15)

where:

 𝑓 = −𝑎(𝑡)𝑥̇2 cos(3𝑥) 𝑎𝑛𝑑

1 ≤ 𝑎(𝑡) ≤ 2

(4.16)

The results below show the effect that boundary layer inclusion has on the effectiveness of the control law.

Figure 2 clearly shows the high-frequency chatter.

Figure 1: Left – SMC without the inclusion of the boundary layer. Right – SMC with the inclusion of the

boundary layer [10]

20

4.2 Model-Free Sliding Mode Control Derivation for a Second Order System with Unitary

Input Gain

For an nth order SISO system, the system can be approximated in the discrete form as:

 𝑥𝑛 ≈ 𝑥𝑛 + 𝑏𝑢 − 𝑏𝑢𝑘−1

(4.17)

where 𝑢𝑘−1 is the previous control input. When a unitary input gain is assumed, b is equal to one, following

the same procedure outlined above, the estimated control law is defined as:

𝑢̂ = − (

𝑑

𝑑𝑡
+ 𝜆)

𝑛

𝑥̃ + 𝑢𝑘−1

(4.18)

and the updated control law with the inclusion of the smoothing boundary layer becomes:

𝑢 = − (

𝑑

𝑑𝑡
+ 𝜆)

𝑛

𝑥̃ + 𝑢𝑘−1 − (𝐾 − 𝜑̇)𝑠𝑎𝑡(
𝑠

𝜑
)

(4.19)

where:

 𝜑̇ = −𝜆𝜑 + 𝜂; 𝜑(0) =
𝜂

𝜆

(4.20)

4.3 Model-Free Sliding Mode Control Derivation for a Second Order System with Non-

Unitary Input Gain

For a non-unitary input gain (𝑏 ≠ 1), an nth order SISO autonomous system can be defined as:

 𝑥𝑛 = 𝑥𝑛 + 𝑏𝑢 − 𝑏𝑢𝑘−1 − 𝑏𝜀(𝑢) (4.21)

where 𝜀(𝑢) is the difference between the previous control input and the current control input.

The upper and lower limits of the control input gain are assumed to be known:

 𝑏𝑙 ≤ 𝑏 ≤ 𝑏𝑢

(4.22)

An estimation of the control input gain can be specified by the following:

 𝑏̂ = √𝑏𝑢𝑏𝑙

(4.23)

and an auxiliary variable, 𝛽, is defined to be used later to simplify equations later.

𝛽 = √
𝑏𝑢

𝑏𝑙

(4.24)

21

In order to avoid an algebraic loop within the control law, an estimate of the control error, 𝜀̂(𝑢) is defined:

 𝜀̂(𝑢) = 𝑢𝑘−2 − 𝑢𝑘−1

(4.25)

While the control input error is unknown, the estimation is assumed bounded between:

 (1 − 𝜎𝑙)𝜀̂(𝑢) ≤ 𝜀(𝑢) ≤ (1 − 𝜎𝑢)𝜀̂(𝑢)

(4.26)

To insure closed-loop asymptotic stability, the following inequality must be satisfied:

 𝑠𝑠̇ ≤ −η|𝑠|

(4.27)

Through Eq. (5.27), the following control law is derived:

𝑢 = 𝑏̂−1 [− (

𝑑

𝑑𝑡
+ 𝜆)

𝑛

𝑥̃ + 𝑢𝑘−1 − (𝐾 − 𝜑̇)𝑠𝑎𝑡(
𝑠

𝜑
)] + 2𝑢𝑘−1 − 𝑢𝑘−2

(4.28)

where the switch gain, K, is characterized by:

 𝐾 = |𝑥̇ − 𝑥̇𝑑||𝛽 − 1| + 𝜆|𝑥 − 𝑥𝑑||𝛽 − 1| + |𝑏̂𝜎𝑢(𝑢𝑘−2 − 𝑢𝑘−1)| + 𝛽𝜂

(4.29)

The boundary layer is also redefined as:

 𝜑̇ = −𝜆𝜑 + |𝑥̇ − 𝑥̇𝑑||𝛽 − 1| + 𝜆|𝑥 − 𝑥𝑑||𝛽 − 1| + |𝑏̂𝜎𝑢(𝑢𝑘−2 − 𝑢𝑘−1)| + 𝛽𝜂;

𝜑(0) =
𝜂

𝜆

(4.30)

4.4 Asymptotic Stability of the Controller

Lyapunov’s Direct method will be applied to controller using a candidate Lyapunov function with the goal

of achieving asymptotic stability during the reaching phase. The basis of Lyapunov’s Direct Method is to

ensure that the total energy of the system dissipates with time. The stability of the system can be evaluated

by studying the energy variation as the system converges to an equilibrium point. An equilibrium point is

determined asymptotically stable if it is both stable and convergent. The Lyapunov function should be

chosen such that it is positive definite in D if the following conditions are satisfied [16]:

0 ∈ 𝐷 𝑎𝑛𝑑 𝑉(0) = 0 (4.31)

𝑉(𝒙) > 0 𝑖𝑛 𝐷 − {0} (4.32)

By differentiating V(x) the systems change in energy with respect to time may be evaluated.

Let x = 0 be an equilibrium point of the system: 𝑥̇ = 𝒇(𝒙) where f : D ➔ Rn, and let V:D ➔ R be a

continuous and differential function such that:

22

𝑉(0) = 0 (4.33)

𝑉(𝒙) > 0 𝑖𝑛 𝐷 − {0} (4.34)

𝑉̇(𝒙) < 0 𝑖𝑛 𝐷 − {0} (4.35)

If the above conditions are satisfied, the equilibrium point is considered asymptotically stable. A candidate

Lyapunov Function is chosen as”

𝑽(𝒙) =
1

2
𝒔𝟐 (4.36)

which is considered positive definite and radially bounded. Differentiating Eq. (##) results in:

𝑉̇(𝒙) = 𝑠̇𝑠 (4.37)

Substituting the control law from Eq. (4.28) into Eq. (4.37) and defining it as strictly negative yields:

𝑉̇(𝒙) = 𝒔(𝑏̂−1 [− (
𝑑

𝑑𝑡
+ 𝜆)

𝑛

𝑥̃ + 𝑢𝑘−1 − (𝐾 − 𝜑̇)𝑠𝑎𝑡(
𝑠

𝜑
)] + 2𝑢𝑘−1 − 𝑢𝑘−2) ≤ 0 (4.38)

After simplification:

𝑉̇(𝒙) = 𝒔[−(𝐾 − 𝜑̇)𝑠𝑎𝑡 (
𝑠

𝜑
)] ≤ 0 (4.39)

The sat function is negative unitary when the sliding surface is negative and positive unitary when the

sliding surface is positive so 𝒔 ∗ 𝑠𝑎𝑡 (
𝑠

𝜑
) can be replaced by |s|.

𝑉̇(𝒙) = −(𝐾 − 𝜑̇)|𝒔| ≤ 0 (4.40)

Concluding the derivative of the Lyapunov function is strictly negative since (𝐾 − 𝜑̇) is strictly positive.

Therefore, the system is considered closed-loop asymptotically stable.

4.5 Model-Free Sliding Mode Control Derivation for a Second Order System with Online

Parameter Estimation

The previously described approach assumed the upper and lower bounds of the input influence gain were

known leading to an approach that is not identically model-free. In Islam [15], a Sliding Mode Model Free

Control algorithm with on-line parameter estimation was derived to estimate the input influence gain based

on satisfying the sliding condition. The approach assumes a non-unitary gain for the input influence

parameter with unknown bounds for the updated control law to be implemented is shown as:

 𝑢̂ = 𝑏̂−1[−𝑥̈̃ − 𝜆𝑥̇̃ − (𝐾 − 𝜑̇)𝑠𝑎𝑡 (
𝒔

𝜑
)] + 2𝑢𝑘−1 − 𝑢𝑘−2

(4.41)

The switching gain, K is defined by:

23

𝐾 = |(𝛽 − 1)𝑥̈̃| + |(𝛽 − 1)𝜆𝑥̇̃| + |𝑏̂𝜎𝑢(𝑢𝑘−2 − 𝑢𝑘−1)| + 𝛽𝜂

(4.42)

where the upper bound of the control input error estimate is represented by 𝜎𝑢.

The ratio of the estimate of the control input gain (which can be constant or as a user-defined function of

time) to the initial guess of the input gain is defined as β.

𝛽 =

𝑏̂

𝑏

(4.43)

4.6 Online Parameter Estimation Law

A least-squares optimization technique is used to estimate the control input gain of the system. The key is

designing an appropriate model that relates the control input to the output of the system. For example, a

linear model is shown below.

𝑦(𝑘) = 𝑏𝑢(𝑘) + 𝑒(𝑘) (4.44)

where y(k) and u(k) are the outputs and inputs of the system at time k, e(k) is the measurement error and b is

the parameter to be estimated. The Least-Squares technique adjusts the unknown parameter vector to

minimize the sum squared error between the actual output and the predicted output. The initial value of the

inverse covariance matrix is chosen as the identity matrix and the initial estimate (i.e., the input influence

gain) is chosen to be between the upper and lower bounds specified by the user.

The Incremental change in the covariance matrix is defined as:

𝑃̃(𝑘) =
𝑃(𝑘−1)∗𝑢(𝑘)∗𝑢(𝑘)∗𝑃(𝑘−1)

1+𝜆∗𝑢(𝑘)∗𝑃(𝑘−1)
 (4.45)

Where λ is the forgetting factor bounded between 0 and 1. The updated covariance matrix is calculated:

𝑃(𝑘) = 𝜆−1 ∗ (𝑃(𝑘 − 1) − 𝑃̃(𝑘)) (4.46)

The estimation error is now determined by:

𝑒(𝑘) = 𝑦(𝑘) − 𝑏̂(𝑘 − 1) ∗ 𝑢(𝑘) (4.47)

The updated control input gain estimate is calculated by:

𝑏̂(𝑘) = 𝑏̂(𝑘 − 1) + 𝑃̃(𝑘) ∗ 𝑒(𝑘) (4.48)

The process is completed during every time step to provide an updated estimate of the control input gain.

24

4.7 Model-Free Sliding Mode Control for a MIMO Second Order System

The MFSMC algorithm was implemented on a second-order MIMO system to evaluate the performance of

the method. The increment to the switching gain was estimated using the On-Line Parameter Estimation in

the previous section assuming unitary input gains for the control law. This initial approach was used to test

the feasibility of implementing On-Line Parameter Estimation algorithms for estimating the non-unitary

input influence parameters in the proposed control law.

 𝑚1𝑥̈1 − 𝑐2(𝑥̇2 − 𝑥̇1)|𝑥̇2 − 𝑥̇1| − 𝑘2(𝑥2 − 𝑥1) + 𝑑2(𝑥2 − 𝑥1)3 + 𝑐1𝑥̇1|𝑥̇1| + 𝑘1𝑥1 − 𝑑1𝑥1
3 = 𝑏1𝑢1 (4.49)

 𝑚2𝑥̈2 + 𝑐2(𝑥̇2 − 𝑥̇1)|𝑥̇2 − 𝑥̇1| + 𝑘2(𝑥2 − 𝑥1) − 𝑑2(𝑥2 − 𝑥1)3 = 𝑏2𝑢2

(4.50)

The reference signals are defined as:

 𝑥1,𝑑(𝑡) = 𝑥2,𝑑(𝑡) = sin (
𝜋

2
𝑡)

(4.51)

The simulation was performed in Simulink using the fixed-step solver, ode5 (Dormand-Prince), with a

sample time of 0.001 seconds for 20 seconds. The control law and parameter estimation algorithm derived

in the previous section were programmed in Simulink. The control parameters are defined below:

Table 1: Control and estimation parameters of nonlinear MIMO system from [15]

25

Figures 2 and 3 show the tracking errors and trajectories of all states. To evaluate the tracking ability of the

control law the root-mean-square (RMS) of the tracking error was determined. The tracking errors are

deemed negligible for all states and outstanding tracking performance is observed.

Figure 2: Tracking error of states x1 and x2 for a nonlinear MIMO system

Figure 3: Dynamics of states x1 and x2 for a nonlinear MIMO system

The control effort and boundary layer dynamics are shown in Figure 4. The sliding surface remains within

the boundary layer for all time. The control effort is shown to be smooth, indicating the effectiveness of the

smoothing boundary layer in eliminating control chattering.

26

Figure 4: Control effort (left) and Boundary Layer dynamics (right) of a nonlinear MIMO system

Figure 5 shows the switching gain and estimated increment to the switching gain. The gains are estimated

to drive the sliding surface back within the boundary layer.

Figure 5: Switching Gain (left) and Estimated increment to the switching gain (right) for a nonlinear

MIMO system

Error

State

RMS Error

State

RMS

𝑥̃1 5.3113E-5 𝑥̃2 1.0541E-4

𝑥̇̃1 9.3655E-5 𝑥̇̃2 1.7033E-4

𝑥̈̃1 0.0110 𝑥̈̃2 0.0014

Table 2: RMS of the tracking error of all states for a nonlinear MIMO system

The results matched those found by Islam [15] and satisfied the tracking and stability requirements.

However, this algorithm was not tested under the influence of state measurement noise. Further tuning of

the control parameters for implementation on a real system. The parameters will be tuned according to the

work done by Reis [11].

4.8 Model-Free Sliding Mode Control for a 2DOF Model of an Aerial Vehicle

27

A simplified model of the dynamics of a 2DOF aircraft in a hovering condition was created. Two linear

second-order equations representing the altitude and roll were derived. The aircraft in the simulation

features two actuators independently controlling a wing on either side of the fuselage. The goal of the

simulation effort is to test the altitude and roll control of the MFSMC algorithm. A simplified free-body-

diagram of the system model is shown in Figure 6.

Figure 6: Free Body Diagram of simplified 2DOF model of a flapping wing aerial vehicle

The equations-of-motion for the 2DOF model are summarized next.

 𝑚𝑧̈ = 𝑇𝑤,1 + 𝑇𝑤,2 − 𝑊 (4.52)

 𝐽𝜃̈ = −𝐿𝑦,𝑐𝑜𝑚𝑇𝑤,1 + 𝐿𝑦,𝑐𝑜𝑚𝑇𝑤,2 (4.53)

The mass and inertial properties were chosen arbitrarily to demonstrate the ability of the control law to

handle parameter uncertainties and are listed in Table 3.

28

Mass of aircraft, m

[kg]

1

Inertia about COM, J

[kg*m2]

1

Table 3: Mass and Inertial properties of the airframe used in simulation

The parameters remain unchanged from the parameters used for the nonlinear MIMO system listed in Table

1. The integration parameters also remain unchanged. The desired reference inputs are:

 𝑧(𝑡) = sin (
𝜋

2
𝑡) (4.54)

 𝜃(𝑡) = 0.05 ∗ sin (
𝜋

2
𝑡)

(4.55)

The tracking error for the states is shown in Figure 7. The tracking is deemed acceptable for all states save

the angular acceleration, 𝜃̈, has a significantly higher RMS than the other states. Further tuning of the

control parameters can improve performance.

Figure 7: Altitude (left) and Roll (right) tracking error for the simplified 2D model

The dynamics of the system are shown in Figure 8. All states follow the desired tracking trajectories for all

time. However, there is a large discrepancy at the start of the simulation for the acceleration states (to be

expected since the states cannot be initialized properly). As time passes, the controller successfully drives

the states to their desired trajectories.

29

Figure 8: Dynamics of states for simplified 2DOF model

The control effort and boundary layer dynamics are shown in Figure 10. The chattering is successfully

eliminated and the sliding surface stays within the boundary layer for all time.

Figure 9: Control effort (left) and boundary layer dynamics (right) of the simplified 2D model

Figure 11 displays the switching gain and estimated increment to the switching gain. The estimate

increment does not change significantly since the sliding condition is satisfied during the time period (see

Figure 10). The gains are estimated to drive the sliding surface back within the boundary layer.

30

Figure 10: Switching Gain (left) and Estimated increment to the switching gain (right) for a nonlinear

MIMO system

Table 5 displays the RMS tracking error for the states and are small save for the acceleration state. The

large error is due initial condition mismatching and should not be observed in application.

Error State RMS Error State RMS

𝑧̃ 6.4697E-5 𝜃̃ 0.0037

𝑧̇̃ 1.5443-5 𝜃̇̃ 0.0095

𝑧̈̃ 0.0733 𝜃̈̃ 3.7994

Table 4: RMS of the tracking error of all states for a 2DOF simplified model

31

5.0 Experimental Implementation of MFSMC

Testing of the MFSMC algorithm was done on a simplified system to evaluate the effectiveness of the

control law. When deciding on a system, one was chosen that would be analogous to the final system.

Thus, a balancing system consisting of a DC motor and propeller mounted to a servo for thrust vectoring

was chosen.

5.1 Constrained Tiltrotor-Balancing System

The system, that the MFSMC law will be tested on, is a constrained tilt-rotor system. The inputs of the

system are the voltage of propeller DC motor (i.e., velocity) and voltage to the servomotor allowing for

thrust vectoring of the propeller. The outputs to be controlled are the pitch and yaw angle of the tilt-rotor

system. To assess the robust nature of the model-free algorithm, a counterweight is placed on the opposite

side and will be varied between tests effectively varying the parameters within the system. A BNO055 IMU

was used for the state feedback with an SG90 servo motor and a hobby 5V DC motor and propeller.

32

Figure 11: Image of the Tilt-Rotor System

5.1.1 System Description and Equations-of-Motion

Pictured below are the free-body diagrams of the system.

33

.

Figure 12: FBD of Tilt-Rotor System

34

The equations-of-motion are derived using Newton’s Second Law for constant mass. The force and the

generated moment exerted by the propeller is represented by Fprop and Mprop, respectively. The servo angle

expressed as α, and the moment arms of the counterweight and actuator assembly are lCW and lACT. The

counterweight and actuator assembly masses are represented by mCW and mACT. Bearing friction is also

accounted for by μ. The mass of the beam is neglected so that:

Σ𝑀𝑦 = 𝐼𝑦𝜃̈ = 𝑚𝐶𝑊𝑔𝑙𝐶𝑊 − 𝑚𝐴𝐶𝑇𝑔𝑙𝐴𝐶𝑇 + 𝐹𝑝𝑟𝑜𝑝 cos(𝛼) 𝑙𝐴𝐶𝑇 − 𝜇𝜃̇ (5.1)

 Σ𝑀𝑧 = 𝐼𝑧𝜓̈ = 𝐹𝑝𝑟𝑜𝑝sin (𝛼)𝑙𝐴𝐶𝑇 − 𝑀𝑝𝑟𝑜𝑝 − 𝜇𝜓̇ (5.2)

𝜃̈ = (
1

𝐼𝑦
) [𝑚𝐶𝑊𝑔𝑙𝐶𝑊 − 𝑚𝐴𝐶𝑇𝑔𝑙𝐴𝐶𝑇 + 𝐹𝑝𝑟𝑜𝑝 cos(𝛼) 𝑙𝐴𝐶𝑇 − 𝜇𝜃̇] (5.3)

𝜓̈ = (
1

𝐼𝑧
) [𝐹𝑝𝑟𝑜𝑝sin (𝛼)𝑙𝐴𝐶𝑇 − 𝑀𝑝𝑟𝑜𝑝 − 𝜇𝜓̇] (5.4)

5.1.2 Linear Control Law

Based on the model derived above, a linear control law was determined to compare against the MFSMC

law. While many different model-based control algorithms would be sufficient for this system, a full-state

feedback control law was chosen due to its high robustness. The first step in deriving the feedback gains is

to linearize the system about a predetermined operating point. After linearization, the system can be

converted into discrete state-space form. To derive the feedback gains, a Linear Quadratic Regulator

scheme was used using Matlab’s “dlqr” function. The function’s input are the matrices from the state-space

model and using the weighting matrices, the solution of the discrete algebraic Riccatti equation is

determined. The states of the system to be controlled:

𝑥 = [𝑥1 𝑥2 … 𝑥8]′ = [𝜃 𝜃̇ 𝜓 𝜓̇ ∫ 𝑒𝜃𝑑𝑡 ∫ 𝑒𝜓𝑑𝑡 𝑒𝜃 𝑒𝜓]′ (5.5)

The discrete state, control, and feedback gain matrix are as follows:

35

Using the fixed step solver, ode5, with a time step of 0.005 seconds, the following results were determined.

A white noise block was also used to simulate the measurement noise from the IMU. Through testing of the

IMU, it was determined that a noise power of 0.0005 sufficiently approximated the sensor dynamics.

Figure 13 illustrates the observed state dynamics as well as the control effort. LQR is a state feedback

control law, therefore the presence of high-frequency noise in the system leads to high-frequency switching

of the control signal. The signal is not acceptable for implementation on a real system due to potential

instability and actuator damage.

Figure 13 Thrust-Vector Balance State Dynamics and Control Effort

While the LQR controller successfully tracked the desired signal, the measurement noise generated a noisy

control signal due to the state feedback nature of the control algorithm. In simulation, high frequency

switching of the control input is not a problem but may lead to system instability during implementation on

the real system.

Figure 14 displays the tracking error of the pitch and yaw states of the system. Velocity and Displacement

errors are successfully minimized.

36

Figure 14: Thrust-Vector Balance Tracking Error

5.1.3 Control Architecture & Changes Made to MFSMC Algorithm

The inputs to the MFSMC algorithm are the pitch and yaw displacement, velocity, and acceleration. When

implementing the MFSMC algorithm onto the real system, it was determined that the calculated control

input was often too aggressive which led to system instability. To remedy this issue, a first-order low-pass

filter was applied to the calculated control input before being fed to the actuator. In testing, an ideal range

of actuator input values was determined. Finally, the filtered control input was mapped to the range of

actuator values and written to the actuators. These two steps significantly increased the stability and

performance of the system.

37

Figure 15: Schematic of the Control Scheme

To implement the 1st-order low-pass filter in discrete form, the following equation was used:

𝑢𝐶𝑜𝑛𝑡𝑟𝑜𝑙 = (𝛼𝑢)𝑢𝑀𝐹𝑆𝑀𝐶,𝑘 + (1 − 𝛼𝑢)𝑢𝑀𝐹𝑆𝑀𝐶,𝑘−1 (5.6)

where k and k-1 are the current and previously calculated control inputs and 𝛼𝑢 is a constant between zero

and one that can be tuned to vary the aggressiveness of the controller. The filter constant was chosen during

testing and varies between different actuators. If the filter constant is closer to one, the controller will be

more aggressive.

5.1.4 Simulation Results

The model-free control parameters are listed in the table below. The discrete solver, ode5, was chosen with

a time step of 0.005. The step time of 5 milliseconds was chosen because that was the highest sampling rate

that was able to be achieved on hardware. Increasing the time-step to 25 milliseconds had the tendency to

cause the system to go unstable when the system was simulated.

38

Controller Estimator

Parameter Value Parameter Value

λ1, λ 2 1, 1.25 𝑏1,0̂, 𝑏2,0̂ 0.8, 0.8

η1, η2 0.225, 0.225 λ0,1, λ0,2 80, 80

σ1, σ2 0.025, 0.025 k1,0, k2,0 500, 500

αu,1, αu,2 0.21, 0.21 Pb1,0, Pb2,0 10, 10

Table 5: Controller and Estimator Parameters for Thrust-Vector Balance Simulation

Below are the simulation results of the MFSMC algorithm on the thrust-vector balancing system.

Figure 16 displays the state dynamics for pitch and yaw. While initially, the states do not track perfectly,

over time they converge to the reference inputs.

Figure 16: Pitch (x1) and Yaw (x2) state dynamics

Figure 17 shows the successful minimization of tracking error for all states. The effect of the state

measurement noise can be seen here.

39

Figure 17: Pitch (x1) and Yaw (x2) state tracking errors

The boundary layer dynamics and estimated control gain are shown below. While the sliding surface does

not remain within the boundary layer for all time, it converges quickly. Further tuning of λ, the slope of the

sliding surface, could improve the convergence dynamic. However, the current value was deemed

satisfactory for the simulation. The control input gain converges quickly to the true value, showing the

effectiveness of the estimating algorithm.

Figure 18: Boundary Layer Dynamics & Estimated Control Input Gain

Figure 19 shows the control effort for the motor and servo. The effect of the additional low-pass filter and

input mapping can be seen here.

40

Figure 19: Control Effort for MFSMC on the Tilt-Rotor System

The root-mean-square of the error was used to evaluate the ability of each controller to track a desired

trajectory. Other methods such as the “integral-square-error” (ISE) and the determination of the settling

time, rise time, and steady state error could have also been used. However, RMS was used for the testing

done here. It can be noted that the MFSMC significantly outperformed the LQR controller for all states.

The insensitivity to measurement noise of the MFSMC law likely contributed significantly to the results

below.

Error State

– Pitch

RMS –

LQR

RMS –

MFSMC

 Error State

– Yaw

RMS –

LQR

RMS –

MFSMC

𝜃̃ 2.3424 1.2467 𝜓̃ 1.0823 0.5672

𝜃̇̃ 1.9900 0.3862 𝜓̇̃ 0.7391 0.1867

𝜃̈̃ 6.6150 0.3804 𝜓̈̃ 2.8460 0.1955

Table 6: Comparison of Root Mean Square Error values for the linear controller and Model-Free controller

5.1.5 IMU Validation

Prior to testing, the measurements from the inertial measurement unit were validated to determine their

accuracy. The Adafruit BNO055 uses an imbedded sensor fusion algorithm to determine its orientation

about each axis. The raw data from the gyroscope can also be read from the sensor and the angular velocity

can be compared to the calculated angular velocity to determine the accuracy of the measurement.

While the IMU was rotated about each axis, the raw data from the gyroscope and estimated orientation

values were taken from the sensor. The orientation values were used to calculate their approximate

41

derivatives using the MATLAB function, diff(). A scaling factor of 0.45 was determined to be used to

correct the difference between the measured and calculated derivative.

Figure 20: Measured angular velocity from gyroscope and calculated angular velocity

Figure 21: Measured angular velocity with scaling factor from gyroscope and calculated angular velocity

42

As stated above, the output of the IMU is a reading of the displacement and velocity states of the system.

However, for MFSMC, the second derivative, acceleration, is also required. There are many different ways

to take derivatives of signals including the use of a dynamic observer and sliding-mode differentiation.

Sliding mode differentiation has excellent noise attenuation properties, however is computationally

expensive and complicated to implement. A dynamic observer also relies on an accurate model of the

system dynamics to approximate the states of the system. For simplicity, a backward difference

approximation was used for testing. This method relies on taking the difference between the current

measurement and the measurement at the previous time step and dividing by the change in time. Using

backwards difference creates a noisy signal so a first order low-pass filter was also used to attenuate the

noise.

5.1.6 Baseline Testing Results – LQR

For testing on the real system, the control gains determined from the system model were not modified in

the implementation. All state measurement filtering was also kept the same for both the implementation of

LQR and MFSMC algorithms. For the “baseline” test, the counterweight’s mass remained unchanged from

the system model. By reducing the mass of the counterweight, a parametric change in the system can be

evaluated for the control laws. For the experimental tests, the mass of the counterweight was reduced by

~20% for each test to evaluate the ability of the respective control laws to handle uncertainty in the system

model. The mass was changed by removing bolts from the counterweight.

The goal of the following tests is to evaluate the ability of the LQR and MFSMC laws to maintain the same

performance in the baseline and modified systems. As the system is changed from the original system of

which the control law was derived, it is expected that the LQR controller’s performance will degrade, while

the MFSMC will maintain a similar level of performance.

A pre-filtered step input of 4 degrees at 1 second and 8 degrees at 7.5 seconds for pitch. For yaw, the goal

was to counteract the propeller’s generated moment and stabilize the system at 0 degrees for all time.

Figure 22 shows the state dynamics for the system. While the states do converge to their desired reference

signals, the rise time of the system is much lower compared to the simulation results. Additional tuning of

the feedback gains would decrease the rise time.

43

Figure 22: Baseline LQR Test - Pitch (x1) and Yaw (x2) state dynamics

The tracking errors for the pitch and yaw states are displayed in Figure 23 for the baseline system. For the

pitch states, the LQR controller was inadequate to track large changes in the reference input but over the

course of the test, was able to successfully minimize the error. Inaccuracies in the system model that relates

propeller velocity to the generated moment may have led to the system’s tendency to yaw away from the

setpoint of 0 degrees.

Figure 23: Baseline LQR Test - Pitch (x1) and Yaw (x2) state tracking errors

The control effort of the LQR controller is shown below. After simulating the control law, a concern was

that state measurement noise would greatly reduce the effectiveness of the controller due to the state

feedback nature of the control law. However, this was not observed in testing.

44

Figure 24: Baseline LQR Test – Control Effort

5.1.7 Baseline Testing Results - MFSMC

For testing, the controller and estimator parameters remain the same as in the simulation. The inputs to the

control algorithm are the measured displacement, velocity, and acceleration states for pitch and yaw. The

sliding surfaces of the system are defined below.

𝑠𝑃𝑖𝑡𝑐ℎ = 𝑥̃1𝜆1 + 𝑥̇̃1 (5.7)

𝑠𝑌𝑎𝑤 = 𝑥̃2𝜆2 + 𝑥̇̃2 (5.8)

where 𝑥̃𝑛 is the tracking error for each respective state. The tracking error is defined as the difference

between the measured state and the desired state.

𝑥̃𝑛 = (𝑥𝑛 − 𝑥𝑛,𝑑) (5.9)

The state dynamics of the system are displayed in Figure 25. A slight overshoot occurs in both

displacement states. During multiple tests, varying the mass of the counterweight, this tendency was

observed. It should be noted, depending on the type of system this algorithm is implemented on, the

overshoot may not be acceptable. Notwithstanding, the states converge to their respective reference inputs.

45

Figure 25: MFSMC Test - Pitch (x1) and Yaw (x2) state dynamics

In the figure below, the state tracking errors for pitch and yaw are shown with the MFSMC active for the

baseline system. While the magnitude of the displacement tracking error was larger than in simulation,

excellent convergence to zero is observed.

Figure 26: Baseline MFSMC Test - Pitch (x1) and Yaw (x2) state tracking errors

The boundary layer dynamics and control input gain estimation are shown below. The sliding surfaces

remain within the boundary layer for nearly all time. The estimator was active when the sliding surfaces

exceeded the boundary limits as shown in Figure 27. It should be noted, the test outperformed the expected

simulation results. The control input gain also converges to nearly the same value as expected in

simulation.

46

Figure 27: Baseline MFSMC Test – Boundary Layer Dynamics & Estimated Control Input Gain

Figure 28 shows the calculated control input as well as the actuator input. A low-pass filter is applied to the

control determined from the MFSMC algorithm and is then mapped to a predetermined range of values for

each respective actuator. No control chattering is observed.

Figure 28: Baseline MFSMC Test – Control Effort

The root-mean-square values for each simulated system and test are shown in Table 7. For all states, the

MFSMC algorithm performed better than the linear controller. The pitch RMS value for the linear

controller was nearly three times that of the MFSMC algorithm. It is observed that the LQR controller

performed significantly better on the real system than it did in simulation. Further adjustments of the LQR

gains could improve the performance for the yaw states. The MFSMC algorithm had better tracking

compared to simulation and previous tests for the yaw states, but both systems performed adequately.

47

Error

State

Simulation Test Error

State

Simulation Test

Pitch LQR MFSMC LQR MFSMC Yaw LQR MFSMC LQR MFSMC

𝜃̃ 2.8529 1.2467 1.4329 0.5381 𝜓̃ 1.3254 0.5672 1.5368 0.4209

𝜃̇̃ 2.4259 0.3862 0.6100 0.3088 𝜓̇̃ 0.9043 0.1867 0.0408 0.2152

𝜃̈̃ 7.9169 0.3804 0.5928 0.6368 𝜓̈̃ 3.1359 0.1955 0.0210 0.1645

Table 7: Comparison of Baseline RMS values for simulation and test data for TV-Balance

5.1.8 Modified System I Test Results – LQR

To evaluate the robustness of the respective control laws, the system parameters were changed. In the

following tests, the mass of the counterweight was reduced by ~20%. Effectively increasing the total

moment the system must raise. The desired setpoints remain the same as the previous tests.

The state dynamics for the system are shown in Figure 29. The response is even slower than observed in

the previous simulation due to the increased load on the motor. The yaw tracking has not changed

significantly between the two tests.

Figure 29: 80% of Counterweight, LQR – Pitch (x1) and Yaw (x2) state dynamics

Figure 30 displays the tracking error for the LQR algorithm. As expected, the controller is slow to respond

for the pitch states due to the inadequate control gains. However, the system remains stable and the errors

do converge to zero.

48

Figure 30: 80% of Counterweight, LQR – Pitch (x1) and Yaw (x2) tracking error

Figure 31 depicts the control effort of the DC motor and the servo. Again, the chattering that was observed

in simulation was not present in testing.

Figure 31: 80% of Counterweight, LQR – Control Effort

5.1.9 Modified System I Test Results - MFSMC

The state dynamics of the modified system are shown in Figure 32. As with previous tests, an overshoot is

observed in the pitch state. The measured states still converge to the desired setpoints.

49

Figure 32: 80% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) state dynamics

The state tracking errors for the MFSMC algorithm are shown in Figure 33. The error was successfully

driven to zero. The baseline and modified systems performed similarly in both cases.

Figure 33: 80% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) tracking error

The boundary layer dynamics and estimated control input gain are depicted below. The sliding surface

remains within the boundary layer for nearly all time for both states. Like the previous test, the large

divergence of the sliding surface that was seen in simulation was not present in the tests on real hardware.

The control input gain for the DC Motor (b1), was estimated to be slightly smaller than in the previous

simulation due to the change in system parameters. Conversely, the control input gain for the servo (b2) was

estimated to be higher than the previous test and simulation.

50

Figure 34: 80% of Counterweight, MFSMC – Boundary layer dynamics and Control input gain estimation

Figure 35 shows the control effort of the servo and DC motor for the modified system. The calculated and

actuator control inputs are shown for each respective actuator. The effect of the control mapping can be

seen.

Figure 35: 80% of Counterweight, MFSMC – Control Effort

5.1.10 Modified System II Testing Results – LQR

For the next set of tests, the mass of the counterbalance was further reduced by a total of 40%. The control

parameters and reference inputs remain the same as previous tests. Figure 34 shows the state dynamics for

the system. Like previous tests, the pitch response has a large rise time compared to previous tests. Small

oscillations are also observed. For yaw, the system tracks the reference inputs better than previous tests.

51

Figure 36: 60% of Counterweight, LQR – Pitch (x1) and Yaw (x2) state dynamics

Figure 37 displays the tracking error for the pitch and yaw states. The error is driven to zero for all states,

but inadequate control gains hinder the system performance.

Figure 37: 60% of Counterweight, LQR – Pitch (x1) and Yaw (x2) tracking error

The control effort of the two actuators is shown in Figure 38. Chatter can be seen in the control signal to

the DC Motor (u1). The chatter caused the oscillations seen in the pitch states.

52

Figure 38: 60% of Counterweight, LQR – Control Effort

5.1.11 Modified System II Testing Results – MFSMC

In the following tests, the mass of the counterweight was reduced by an additional 20%. The parameters for

the MFSMC algorithm remain unchanged from previous tests. The state dynamics are shown in the figure

below. The system has excellent tracking for all states.

Figure 39: 60% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) state dynamics

The state tracking errors are displayed in Figure 40. As observed in previous tests, the state errors all

converge to near-zero with time. However, perfect tracking is never achieved as both pitch and yaw have a

tendency to oscillate with a magnitude of around 2 degrees.

53

Figure 40: 60% of Counterweight, MFSMC – Pitch (x1) and Yaw (x2) tracking error

The boundary layer dynamics and control input gain estimation are shown below. It should be noted that

the estimation is updated when the sliding surface is outside the boundary layer in order to drive the system

to its’ desired state.

Figure 41: 60% of Counterweight, MFSMC – Boundary layer dynamics and Control input gain estimation

The control effort for the system is shown in Figure 42. The effect of the control mapping can be seen for

both the DC motor and servo motor inputs.

54

Figure 42: 60% of Counterweight, MFSMC – Control Effort

5.1.12 Discussion of Results

Table 8 shows the summation of the results from the simulation and testing of the MFSMC and LQR

control laws. The simulation, performed in Simulink, approximated the system dynamics using a nonlinear

model. State measurement noise was approximated by using a random noise generator within the model.

The noise parameters were chosen to closely resemble the values seen during initial testing of the IMU. In

simulation the MFSMC algorithm outperformed the LQR control law for all states.

For the baseline tests, the real system parameters were not modified in from the derived system model.

Both control laws significantly outperformed the simulated tests.

In the next tests, the system parameters were modified. The mass of the counterweight was reduced by

roughly 20% and 40% to evaluate the control laws’ robustness to system uncertainty. By reducing the mass

of the counterweight, the load that the system was required to lift was increased. For the linear control law,

the performance degraded significantly between the baseline and modified system for the pitch states.

Conversely, the MFSMC algorithm performed better than in the baseline and simulation tests. The RMS

value for the LQR control law increased significantly between tests while the MFSMC algorithm’s RMS

value remained nearly the same between all tests. While the LQR control law performed well under the

effects of system uncertainty, the MFSMC algorithm was shown to have increased robustness in simulation

and in testing on real hardware.

55

Error

State

Simulation Baseline

(Same system as in

simulation)

Modified System

(CW reduced by

20%)

Modified System

(CW reduced by

40%)
Pitch LQR MFSMC LQR MFSMC LQR MFSMC LQR MFSMC

𝜃̃ 2.852 1.246 1.432 0.531 1.782 0.546 2.009 0.444

𝜃̇̃ 2.425 0.386 0.610 0.308 1.284 0.738 0.528 0.177

𝜃̈̃ 7.916 0.380 0.592 0.636 1.188 0.772 0.837 0.525

Yaw LQR MFSMC LQR MFSMC LQR MFSMC LQR MFSMC

𝜓̃ 1.325 0.567 1.536 0.420 0.523 0.522 0.748 0.550

𝜓̇̃ 0.904 0.186 0.040 0.215 0.041 0.053 0.243 0.236

𝜓̈̃ 3.135 0.195 0.021 0.164 0.030 0.038 0.189 0.226

Table 8: Simulation and testing results for the MFSMC algorithm and LQR control law

56

6.0 Conclusion

In this work, a model-free control law was implemented on various systems and tested in simulation and

application. Instead of being based on a derived system model, the MFSMC algorithm was based on the

system order, previous control inputs, and state measurements. The control law exhibited near perfect

tracking of all states in simulation which reinforced the results found in previous works. This thesis,

however, emphasized the application of MFSMC to a hardware system.

A tilt-rotor balancing system consisting of a DC motor with a propeller and a servo motor for thrust

vectoring was chosen because it is analogous to a FWUAS. A system model was derived to sufficiently

approximate the system dynamics. Sensor noise was also included in this simulation to replicate the output

from the IMU. A full state feedback controller was derived using this system model which would be tested

in simulation and on hardware. In simulation, the MFSMC algorithm outperformed the linear control law

by a significant margin. Due to the state feedback nature of the linear controller, sensor noise generated a

noisy control signal leading to a degradation in performance.

When implementing the MFSMC law on the system, it was determined that additional changes needed to

be made. The controller was highly aggressive, which led to stability issues when large changes of the

desired reference signals were fed to the system. A first-order low-pass filter was added to the calculated

control input then mapped to a range of actuator values that were predetermined to be sufficient for the

application. The changes significantly improved the performance of the system. The root-mean-square of

the error was used to evaluate the performance of each control law under different conditions.

For the first set of tests, the system remained unchanged from that used in simulation. The linear controller

outperformed the simulated controller significantly while the MFSMC algorithm performed almost

identically. Control chatter, a common problem with the implementation of SMC-based techniques was not

observed in simulation or testing.

The next set of tests involved changing the system parameters to evaluate the robustness of each control

law. The mass of the counterweight was reduced by roughly 20% and 40%. Effectively increasing the load

that the system is required to lift. The RMS of the error increased significantly for the linear controller

while the performance of the MFSMC algorithm remained nearly the same. While both algorithms

performed well under the system uncertainty, in simulation and in testing, the MFSMC law outperformed

the linear control in terms of robustness to uncertainty for all states. The experimentation done in this paper

demonstrated the ability of MFSMC to control systems where the exact parameters of the system model are

unknown.

57

6.1 Future Work

The goal of this work was to evaluate the performance of a MFSMC algorithm on a FWUAS. However,

this was not accomplished. The algorithm outlined in this paper should be applied to the FWUAS when the

construction of the airframe is complete.

MFSMC has demonstrated its’ inherent robustness to system uncertainties on SISO and MIMO systems.

However, both systems tested are considered square systems. A square system is one that has the same

number of inputs as outputs. Further testing would need to be done to determine what changes must be

made to implement MFSMC on a non-square system. Future work may also be performed on scaling the

algorithm to larger systems such as a quadcopter. Previous work on implementation for a quadcopter was

done unsuccessfully. If the low-pass filter and control input mapping improves the performance of the

quadcopter should be a point of emphasis if that route is explored.

58

7.0 Bibliography

 [1] G. Sachs, “Comparison of Power Requirements: Flapping vs. Fixed Wing Vehicles,” Aerospace,

vol. 3, no. 4, p. 31, Sep. 2016, doi: 10.3390/aerospace3040031.

[2] C. De Wagter, S. Tijmons, B. D. Remes, and G. C. de Croon, ““Autonomous flight of a 20- gram

flapping wing mav with a 4-gram onboard stereo vision system,” 2014, pp. 4982–4987.

[3] G. C. H. E. De Croon, M. Percin, B. D. W. Remes, R. Ruijsink, and C. De Wagter, The Delfly:

Design, Aerodynamics, and Artificial Intelligence of a Flapping Wing Robot. Springer, 2016.

[4] Che, Ning. “Attitude and Position Control of Flapping–Wing Micro Aerial Vehicles.” Lakehead

University Library, 2018, https://knowledgecommons.lakeheadu.ca/handle/2453/4485.

[5] N. T. Jafferis, E. F. Helbling, M. Karpelson, and R. J. Wood, “Untethered flight of an insect-sized

flapping-wing microscale aerial vehicle,” Nature, vol. 570, no. 7762, pp. 491–495, 2019.

[6] Q. O’Rourke, “Efficacy of Flapping-wing Flight Via Dual Piezoelectric Actuation,” Rochester

Institute of Technology, Rochester, NY, 2022. [Online]. Available:

https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=12229&context=theses

[7] Jing, Y., Sun, H., Zhang, L. & Zhang, T. (2017). Variable speed control of wind turbines based on

the quasi-continuous high-order sliding mode method. Energies, 10 (10), 1626-1-1626-21

[8] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Upper Saddle River, New Jersey: Prentice

Hall, Inc., 1991.

[9] E. Madadi, Y. Dong, and D. Soffker, “Comparison of Different Model-Free Control Methods

Concerning Real-Time Benchmark,” J. Dyn. Syst. Meas. CONTROL, Aug. 2018, doi: 10.1115/1.4040967.

[10] A. Crassidis and A. Mizov, “A Model-Free Control Algorithm Derived Using the Sliding Mode

Control Method,” Proc. 2 Int. Conf. Control Dyn. Syst. Robot., vol. 166, May 2015.

[11] Mittmann Reis, Raul, "A New Model-Free Sliding Mode Control Method with Estimation of Control

Input Error" (2016). Thesis. Rochester Institute of Technology. Accessed from

https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10164&context=theses

[12] Schulken, Eric, "Investigations of Model-Free Sliding Mode Control Algorithms including

Application to Autonomous Quadrotor Flight" (2017). Thesis. Rochester Institute of Technology. Accessed

from https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10786&context=theses

[13] Kadungoth Sreeraj, Adarsh Raj, "A Model-Free Control Algorithm Based on the Sliding Mode

Control Method with Applications to Unmanned Aircraft Systems" (2019). Thesis. Rochester Institute of

Technology. Accessed from

https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=11198&context=theses

59

[14] Monti, Christian, "Model-Free Control of an Unmanned Aircraft Quadcopter Type System" (2020).

Thesis. Rochester Institute of Technology. Accessed from

https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=11636&context=theses

[15] M. S. Islam, “A Model-Free Control System Based on the Sliding Mode Control with Automatic

Tuning Using as On-Line Parameter Estimation Approach,” Rochester Institute of Technology, Rochester,

NY, 2020.

[16] H. J. Marquez, Nonlinear Control Systems Analysis and Design, Hoboken, New Jersey: Jhon Wiley &

Sons, Inc, 2003

60

8.0 Appendix

MATLAB CODE

%% Model Free Sliding Mode Control Master File
% Walker Hare - 3/30/2023
% Master's Thesis

clear all, clc

%% Second Order MIMO System - Unitary Input Gain
 % "MFSMC_MIMO_Sariful.slx"
clear all, clc
tf = 20;
m1 = 10; %mass
m2 = 20;
c1= 5; %damping coefficient
c2= 8;
k1= 3; %spring constant
k2= 7;
d1= -1.5; %spring stiffness
d2= -3;
x1_0 = [pi/2 0];
x2_0 = [pi/2 0];

b1_real = 3;
b2_real = 2;
b1_up = 8.5;
b1_low = 2.5;
b2_up = 2.5;
b2_low = 1.5;
bhat1 = 1; %sqrt(b1_up*b1_low);
bhat2 = 1; %sqrt(b2_up*b2_low);
bhat = [bhat1 bhat2];
beta1 = 1; %sqrt(b1_up/b1_low);
beta2 = 1; %sqrt(b2_up/b2_low);
beta = [beta1 beta2];
su1 = 0.2;
su2 = 0.2;
su = [su1 su2];
lambda1 = 4;
lambda2 = 3;
lambda = [lambda1 lambda2];
eta1 = 0.0006;
eta2 = 0.00022;
eta = [eta1 eta2];
phi1_0 = eta1/lambda1;
phi2_0 = eta2/lambda2;
phi0 = [phi1_0 phi2_0];
lambda1_0 = 50;
lambda2_0 = 50;
lambda0 = [lambda1_0 lambda2_0];
k1_0 = 500;
k2_0 = 500;

61

k0 = [k1_0 k2_0];
eta1hat0 = eta1;
eta2hat0 = eta2;
etahat0 = [eta1hat0 eta2hat0];
P_eta1_0 = 10;
P_eta2_0 = 10;
P_eta0 = [P_eta1_0 P_eta2_0];

out = sim('MFSMC_MIMO_Sariful.slx');
%Simulink.sdi.view

t = out.tout;
u1 = out.u1;
u2 = out.u2;
phi1 = out.phi1;
phi2 = out.phi2;
K1 = out.K1;
K2 = out.K2;
s1dot = out.s1dot;
s2dot = out.s2dot;
eta1_hat = out.eta1_hat;
eta2_hat = out.eta2_hat;
s1 = out.s1;
s2 = out.s2;
x1_d = out.x1_d;
x1dot_d = out.x1dot_d;
x1ddot_d = out.x1ddot_d;
x2_d = out.x2_d;
x2dot_d = out.x2dot_d;
x2ddot_d = out.x2ddot_d;
x2 = out.x2;
x2dot = out.x2dot;
x2ddot = out.x2ddot;
x1 = out.x1;
x1dot = out.x1dot;
x1ddot = out.x1ddot;
x1_e = out.x1_tilda;
x2_e = out.x2_tilda;
x1dot_e = out.x1dot_tilda;
x2dot_e = out.x2dot_tilda;
x1ddot_e = out.x1ddot_tilda;
x2ddot_e = out.x2ddot_tilda;

%RMS
x1RMS = rms(x1_e);
x1dotRMS = rms(x1dot_e)
x1ddotRMS = rms(x1ddot_e)
x2RMS = rms(x2_e)
x2dotRMS = rms(x2dot_e)
x2ddotRMS = rms(x2ddot_e)

%% Data Logging and Plotting

figure(1), clf

62

sgtitle('State x_1 Tracking Error')
subplot(311)
plot(t,x1_e),grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x1RMS)])
title('Displ. Error, m')
subplot(312)
plot(t,x1dot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-3,['RMS = ' num2str(x1dotRMS)])
title('Velo. Error, m/s')
subplot(313)
plot(t,x1ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.25,['RMS = ' num2str(x1ddotRMS)])
title('Accel. Error, m/s/s')

figure(2), clf
sgtitle('State x_2 Tracking Error')
subplot(311)
plot(t,x2_e),grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x2RMS)])
title('Displ. Error, m')
subplot(312)
plot(t,x2dot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x2dotRMS)])
title('Velo. Error, m/s')
subplot(313)
plot(t,x2ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x2ddotRMS)])
title('Accel. Error, m/s/s')

figure(3), clf
sgtitle('State x_1 Dynamics')
subplot(311)
plot(t,x1_d,t,x1), legend('x_1_,_d','x_1'), legend boxoff, grid on, xlabel('Time, s')
title('Displ., m')
subplot(312)
plot(t,x1dot_d,t,x1dot), legend('x_1dot_d','x_1dot'), legend boxoff, grid on, xlabel('Time,
s')
title('Velo., m/s')
subplot(313)
plot(t,x1ddot_d,t,x1ddot), legend('x_1ddot_d','x_1ddot'), legend boxoff, grid on,
xlabel('Time, s')
title('Accel., m/s/s')

figure(4), clf
sgtitle('State x_2 Dynamics')
subplot(311)
plot(t,x2_d,t,x2), legend('x_2_,_d','x_2'), legend boxoff, grid on, xlabel('Time, s')
title('Displ., m')
subplot(312)
plot(t,x2dot_d,t,x2dot), legend('x_2dot_d','x_2dot'), legend boxoff, grid on, xlabel('Time,
s')
title('Velo., m/s')
subplot(313)
plot(t,x2ddot_d,t,x2ddot), legend('x_2ddot_d','x_2ddot'), legend boxoff, grid on,
xlabel('Time, s')

63

title('Accel., m/s/s')

figure(5), clf
sgtitle('Control Effort')
subplot(211)
plot(t,u1), grid on, xlabel('Time, s')
title('u_1')
subplot(212)
plot(t,u2), grid on, xlabel('Time, s')
title('u_2')

figure(6), clf
sgtitle('Boundary Layer')
subplot(211)
plot(t,s1,t,phi1,t,-phi1), legend('s_1','\phi_1','-\phi_1'), legend boxoff, grid on,
xlabel('Time, s')
title('x_1')
subplot(212)
plot(t,s2,t,phi2,t,-phi2), legend('s_2','\phi_2','-\phi_2'), legend boxoff, grid on,
xlabel('Time, s')
title('x_2')

figure(7), clf
sgtitle('Switching Gain, K')
subplot(211)
plot(t,K1), grid on, xlabel('Time, s')
axis([0 tf -.025 .1])
title('K_1')
subplot(212)
plot(t,K2), grid on, xlabel('Time, s')
title('K_2')

figure(8), clf
sgtitle('Estimated \eta')
subplot(211)
plot(t,eta1_hat), grid on, xlabel('Time, s')
title('\eta_1')
subplot(212)
plot(t,eta2_hat), grid on, xlabel('Time, s')
title('\eta_2')

%% Second Order MIMO System - Control Input Gain Estimation
 % "MFSMC_MIMO_Sariful.slx"
clear all, clc

tf = 10;

%%%Incorporate integral term into sliding surface%%%
% ' = 0' for s = lambda*x~ + xdot~ + int(x~)
% ' = 1' for s = lambda*x~ + xdot~
alt_SlidingSurface = 0;

%%%System Params%%%
m1 = 10; %mass
m2 = 20;

64

c1= 5; %damping coefficient
c2= 8;
k1= 3; %spring constant
k2= 7;
d1= -1.5; %spring stiffness
d2= -3;
x1_0 = [pi/2 0];
x2_0 = [pi/2 0];

su1 = 0.2;
su2 = 0.2;
su = [su1 su2];
lambda1 = 4;
lambda2 = 3;
lambda = [lambda1 lambda2];
eta1 = 0.0006;
eta2 = 0.00022;
eta = [eta1 eta2];
phi1_0 = eta1/lambda1;
phi2_0 = eta2/lambda2;
phi0 = [phi1_0 phi2_0];

b1_real = 3;
b2_real = 2;
b_real = [b1_real b2_real];
b1hat0 = 0.8;
b2hat0 = 0.8;
bhat0 = [b1hat0 b2hat0];
lambda1_0 = 80;
lambda2_0 = 80;
lambda0 = [lambda1_0 lambda2_0];
k1_0 = 500;
k2_0 = 500;
k0 = [k1_0 k2_0];
P_b1_0 = 10;
P_b2_0 = 10;
P_b0 = [P_b1_0 P_b2_0];

out = sim('MFSMC_MIMO_bhat_Sariful.slx');

t = out.tout;
u1 = out.u1;
u2 = out.u2;
phi1 = out.phi1;
phi2 = out.phi2;
K1 = out.K1;
K2 = out.K2;
s1dot = out.s1dot;
s2dot = out.s2dot;
b1hat = out.b1hat;
b2hat = out.b2hat;
b1real = out.b1real;
b2real = out.b2real;
s1 = out.s1;
s2 = out.s2;

65

x1_d = out.x1_d;
x1dot_d = out.x1dot_d;
x1ddot_d = out.x1ddot_d;
x2_d = out.x2_d;
x2dot_d = out.x2dot_d;
x2ddot_d = out.x2ddot_d;
x2 = out.x2;
x2dot = out.x2dot;
x2ddot = out.x2ddot;
x1 = out.x1;
x1dot = out.x1dot;
x1ddot = out.x1ddot;
x1_e = out.x1_tilda;
x2_e = out.x2_tilda;
x1dot_e = out.x1dot_tilda;
x2dot_e = out.x2dot_tilda;
x1ddot_e = out.x1ddot_tilda;
x2ddot_e = out.x2ddot_tilda;

%RMS
x1RMS = rms(x1_e);
x1dotRMS = rms(x1dot_e);
x1ddotRMS = rms(x1ddot_e);
x2RMS = rms(x2_e);
x2dotRMS = rms(x2dot_e);
x2ddotRMS = rms(x2ddot_e);
b1RMS = rms(b1hat-b1real);
b2RMS = rms(b2hat-b2real);
ErrorState_x1 = ["x1~"; "x1dot~"; "x1ddot~"];
ErrorState_x2 = ["x2~"; "x2dot~"; "x2ddot~"];
RMSx1 = [x1RMS; x1dotRMS; x1ddotRMS];
RMSx2 = [x2RMS; x2dotRMS; x2ddotRMS];
StateRMStable = table(ErrorState_x1, RMSx1, ErrorState_x2, RMSx2)
EstParam = ['b_1'; 'b_2'];
RMSb = [b1RMS; b2RMS];
EstRMStable = table(EstParam, RMSb)

%% Data Logging and Plotting

figure(1), clf
sgtitle('State x_1 Tracking Error')
subplot(311)
plot(t,x1_e),grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x1RMS)])
title('Displ. Error, m')
subplot(312)
plot(t,x1dot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-3,['RMS = ' num2str(x1dotRMS)])
title('Velo. Error, m/s')
subplot(313)
plot(t,x1ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.25,['RMS = ' num2str(x1ddotRMS)])
title('Accel. Error, m/s/s')

figure(2), clf

66

sgtitle('State x_2 Tracking Error')
subplot(311)
plot(t,x2_e),grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x2RMS)])
title('Displ. Error, m')
subplot(312)
plot(t,x2dot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x2dotRMS)])
title('Velo. Error, m/s')
subplot(313)
plot(t,x2ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x2ddotRMS)])
title('Accel. Error, m/s/s')

figure(3), clf
sgtitle('State x_1 Dynamics')
subplot(311)
plot(t,x1_d,t,x1), legend('x_1_,_d','x_1'), legend boxoff, grid on, xlabel('Time, s')
title('Displ., m')
subplot(312)
plot(t,x1dot_d,t,x1dot), legend('x_1dot_d','x_1dot'), legend boxoff, grid on, xlabel('Time,
s')
title('Velo., m/s')
subplot(313)
plot(t,x1ddot_d,t,x1ddot), legend('x_1ddot_d','x_1ddot'), legend boxoff, grid on,
xlabel('Time, s')
title('Accel., m/s/s')

figure(4), clf
sgtitle('State x_2 Dynamics')
subplot(311)
plot(t,x2_d,t,x2), legend('x_2_,_d','x_2'), legend boxoff, grid on, xlabel('Time, s')
title('Displ., m')
subplot(312)
plot(t,x2dot_d,t,x2dot), legend('x_2dot_d','x_2dot'), legend boxoff, grid on, xlabel('Time,
s')
title('Velo., m/s')
subplot(313)
plot(t,x2ddot_d,t,x2ddot), legend('x_2ddot_d','x_2ddot'), legend boxoff, grid on,
xlabel('Time, s')
title('Accel., m/s/s')

figure(5), clf
sgtitle('Control Effort')
subplot(211)
plot(t,u1), grid on, xlabel('Time, s')
title('u_1')
subplot(212)
plot(t,u2), grid on, xlabel('Time, s')
title('u_2')

figure(6), clf
sgtitle('Boundary Layer')
subplot(211)

67

plot(t,s1,t,phi1,t,-phi1), legend('s_1','\phi_1','-\phi_1'), legend boxoff, grid on,
xlabel('Time, s')
title('x_1')
subplot(212)
plot(t,s2,t,phi2,t,-phi2), legend('s_2','\phi_2','-\phi_2'), legend boxoff, grid on,
xlabel('Time, s')
title('x_2')

figure(7), clf
sgtitle('Switching Gain, K')
subplot(211)
plot(t,K1), grid on, xlabel('Time, s')
axis([0 tf -.025 .1])
title('K_1')
subplot(212)
plot(t,K2), grid on, xlabel('Time, s')
title('K_2')

figure(8), clf
sgtitle('Estimated Control Input Gain, b')
subplot(211)
plot(t,b1hat), grid on, xlabel('Time, s')
title('b_1'), yline(b1real), axis([0 tf 0 1.1*b1real])
text(.7*tf,.75*b1real,['b_1_,_t_r_u_e = ' num2str(b1real)])
text(.7*tf,.5*b1real,['RMS = ' num2str(b1RMS)])
subplot(212)
plot(t,b2hat), grid on, xlabel('Time, s')
title('b_2'), yline(b2real), axis([0 tf 0 1.1*b2real])
text(.7*tf,.75*b2real,['b_2_,_t_r_u_e = ' num2str(b2real)])
text(.7*tf,.5*b2real,['RMS = ' num2str(b2RMS)])

%% Altitude and Roll Control w/o Actuator Dynamics - Control Input Gain Estimation
 % Actuator Dynamics neglected
 % One thrust source on either side of COM
 % "MFSMC_AltitudeRollControl_b_est.slx"
clear all, clc

tf = 10;

%%%Incorporate integral term into sliding surface%%%
% ' = 0' for s = lambda*x~ + xdot~ + int(x~)
% ' = 1' for s = lambda*x~ + xdot~
alt_SlidingSurface = 0;

%%%Aircraft Params%%%
m = 1; %0.02; %Craft Mass, kg
I = 1; %0.035; %Craft Inertia
L = 1; %0.069; %Craft Moment Arm from COM to Center of Thrust, m

%%%IC%%%
g1 = 1;
g2 = 0.05;
z0 = g1*[pi/2 0]; %Height, m
theta0 = g2*[pi/2 0]; %Roll, rad

68

%%%MFSMC Params%%%
su1 = 0.2;
su2 = 0.2;
su = [su1 su2];
lambda1 = 4;
lambda2 = 3;
lambda = [lambda1 lambda2];
eta1 = 0.0006;
eta2 = 0.00022;
eta = [eta1 eta2];
phi1_0 = eta1/lambda1;
phi2_0 = eta2/lambda2;
phi0 = [phi1_0 phi2_0];

b1_real = 3;
b2_real = 2;
b_real = [b1_real b2_real];
b1hat0 = 0.8;
b2hat0 = 0.8;
bhat0 = [b1hat0 b2hat0];
lambda1_0 = 80;
lambda2_0 = 80;
lambda0 = [lambda1_0 lambda2_0];
k1_0 = 500;
k2_0 = 500;
k0 = [k1_0 k2_0];
P_b1_0 = 10;
P_b2_0 = 10;
P_b0 = [P_b1_0 P_b2_0];

out = sim('MFSMC_AltitudeRollControl_b_est.slx');
%Simulink.sdi.view

t = out.tout;
u1 = out.u1;
u2 = out.u2;
phi1 = out.phi1;
phi2 = out.phi2;
K1 = out.K1;
K2 = out.K2;
s1dot = out.s1dot;
s2dot = out.s2dot;
b1hat = out.b1hat;
b2hat = out.b2hat;
b1real = out.b1real;
b2real = out.b2real;
s1 = out.s1;
s2 = out.s2;
x1_d = out.z_d;
x1dot_d = out.zdot_d;
x1ddot_d = out.zddot_d;
x2_d = out.theta_d*180/pi;
x2dot_d = out.thetadot_d*180/pi;
x2ddot_d = out.thetaddot_d*180/pi;
x2 = out.theta*180/pi;

69

x2dot = out.thetadot*180/pi;
x2ddot = out.thetaddot*180/pi;
x1 = out.z;
x1dot = out.zdot;
x1ddot = out.zddot;
x1_e = out.x1_tilda;
x2_e = out.x2_tilda*180/pi;
x1dot_e = out.x1dot_tilda;
x2dot_e = out.x2dot_tilda*180/pi;
x1ddot_e = out.x1ddot_tilda;
x2ddot_e = out.x2ddot_tilda*180/pi;

%RMS
x1RMS = rms(x1_e);
x1dotRMS = rms(x1dot_e);
x1ddotRMS = rms(x1ddot_e);
x2RMS = rms(x2_e);
x2dotRMS = rms(x2dot_e);
x2ddotRMS = rms(x2ddot_e);
b1RMS = rms(b1hat-b1real);
b2RMS = rms(b2hat-b2real);
ErrorState_Altitude = ["x1~"; "x1dot~"; "x1ddot~"];
ErrorState_Roll = ["x2~"; "x2dot~"; "x2ddot~"];
RMS_Alt = [x1RMS; x1dotRMS; x1ddotRMS];
RMS_Roll = [x2RMS; x2dotRMS; x2ddotRMS];
StateRMStable = table(ErrorState_Altitude, RMS_Alt, ErrorState_Roll, RMS_Roll)
EstParam = ['b_1'; 'b_2'];
RMSb = [b1RMS; b2RMS];
EstRMStable = table(EstParam, RMSb)

%% Data Logging and Plotting

figure(1), clf
sgtitle('Altitude Tracking Error')
subplot(311)
plot(t,x1_e),grid on, xlabel('Time, s')
text(.7*tf,7.5E-5,['RMS = ' num2str(x1RMS)])
title('Displ. Error, m')
subplot(312)
plot(t,x1dot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-3,['RMS = ' num2str(x1dotRMS)])
axis([0 tf -.001 .001])
title('Velo. Error, m/s')
subplot(313)
plot(t,x1ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.5,['RMS = ' num2str(x1ddotRMS)])
axis([0 tf -1 1])
title('Accel. Error, m/s/s')

figure(2), clf
sgtitle('Roll Tracking Error')
subplot(311)
plot(t,x2_e),grid on, xlabel('Time, s')
text(.7*tf,1.5E-3,['RMS = ' num2str(x2RMS)])
title('Displ. Error, deg')

70

subplot(312)
plot(t,x2dot_e), grid on, xlabel('Time, s')
text(.7*tf,-0.025,['RMS = ' num2str(x2dotRMS)])
title('Velo. Error, deg/s')
subplot(313)
plot(t,x2ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.5,['RMS = ' num2str(x2ddotRMS)])
axis([0 tf -1 1])
title('Accel. Error, deg/s/s')

figure(3), clf
sgtitle('Altitude Dynamics')
subplot(311)
plot(t,x1_d,t,x1), legend('z_d','z'), legend boxoff, grid on, xlabel('Time, s')
title('Altitude, m')
subplot(312)
plot(t,x1dot_d,t,x1dot), legend('zdot_d','zdot'), legend boxoff, grid on, xlabel('Time, s')
title('\delta Altitude, m/s')
subplot(313)
plot(t,x1ddot_d,t,x1ddot), legend('zddot_d','zddot'), legend boxoff, grid on, xlabel('Time,
s')
title('\delta^2 Altitude, m/s/s')

figure(4), clf
sgtitle('Roll Dynamics')
subplot(311)
plot(t,x2_d,t,x2), legend('theta_d','theta'), legend boxoff, grid on, xlabel('Time, s')
title('Roll, deg')
subplot(312)
plot(t,x2dot_d,t,x2dot), legend('thetadot_d','thetadot'), legend boxoff, grid on,
xlabel('Time, s')
title('\delta Roll, deg/s')
subplot(313)
plot(t,x2ddot_d,t,x2ddot), legend('thetaddot_d','thetaddot'), legend boxoff, grid on,
xlabel('Time, s')
axis([0 tf -10 10]);
title('\delta^2 Roll, deg/s/s')

figure(5), clf
sgtitle('Control Effort')
subplot(211)
plot(t,u1), grid on, xlabel('Time, s')
title('u_1')
subplot(212)
plot(t,u2), grid on, xlabel('Time, s')
title('u_2')

figure(6), clf
sgtitle('Boundary Layer')
subplot(211)
plot(t,s1,t,phi1,t,-phi1), legend('s_1','\phi_1','-\phi_1'), legend boxoff, grid on,
xlabel('Time, s')
title('Altitude')
subplot(212)

71

plot(t,s2,t,phi2,t,-phi2), legend('s_2','\phi_2','-\phi_2'), legend boxoff, grid on,
xlabel('Time, s')
title('Roll')

figure(7), clf
sgtitle('Switching Gain, K')
subplot(211)
plot(t,K1), grid on, xlabel('Time, s')
title('K_z')
subplot(212)
plot(t,K2), grid on, xlabel('Time, s')
title('K_\theta')

figure(8), clf
sgtitle('Estimated Control Input Gain, b')
subplot(211)
plot(t,b1hat), grid on, xlabel('Time, s')
title('b_1'), yline(b1real), axis([0 tf 0 1.1*b1real])
text(.7*tf,.75*b1real,['b_1_,_t_r_u_e = ' num2str(b1real)])
text(.7*tf,.5*b1real,['RMS = ' num2str(b1RMS)])
subplot(212)
plot(t,b2hat), grid on, xlabel('Time, s')
title('b_2'), yline(b2real), axis([0 tf 0 1.1*b2real])
text(.7*tf,.75*b2real,['b_2_,_t_r_u_e = ' num2str(b2real)])
text(.7*tf,.5*b2real,['RMS = ' num2str(b2RMS)])

%% Altitude and Roll Control w/ State Measurement Noise - Control Input Gain Estimation
 % Actuator Dynamics neglected
 % One thrust source on either side of COM
 % "MFSMC_AltitudeRollControl_b_est_SMN.slx"
clear all, clc

tf = 10;

%%%Incorporate integral term into sliding surface%%%
% ' = 0' for s = lambda*x~ + xdot~ + int(x~)
% ' = 1' for s = lambda*x~ + xdot~
alt_SlidingSurface = 0;

%%%Aircraft Params%%%
m = 1; %0.02; %Craft Mass, kg
I = 1; %0.035; %Craft Inertia
L = 1; %0.069; %Craft Moment Arm from COM to Center of Thrust, m
Vmax = 160; %Max Voltage to Actuator
Vmin = -90; %Min Voltage to Actuator
Voff = 35; %Offset voltage to account for bimorph polarization
Vupper = Vmax-Voff;

%%%Sensor Noise Characteristics%%%
 % Taken from MFSMC_Sreeraj
 % Param - [x_accel y_accel z_accel x_gyro y_gyro z_gyro]
noise_mean = [0.02 0 -9.81 -0.004 0 0.0017];
noise_Vpp = [0.35 0.3 0.4 0.0157 0.0139 0.017];
noise_stddev = [0.0583 0.05 0.06 0.0026 0.0023 0.0029];

72

%%%IC%%%
g1 = 4;
g2 = 0.05;
z0 = g1*[pi/2 0]; %Height, m
theta0 = g2*[pi/2 0]; %Roll, rad

%%%MFSMC Params%%%
n = 2; %system order
su1 = 0.2;
su2 = 0.2;
su = [su1 su2];
lambda1 = 4;
lambda2 = 3;
eta1 = 0.0006;
eta2 = 0.00022;
lambda1_new = (eta1/max(noise_Vpp))^(1/n); %max value
lambda2_new = (eta2/max(noise_Vpp))^(1/n); %max value
lambda = [lambda1_new lambda2_new];
eta1_new = eta1 + (max(noise_stddev)/eta1)*(lambda(1)/2);
eta2_new = eta2 + (max(noise_stddev)/eta2)*(lambda(2)/2);
eta = [eta1_new eta2_new];
phi1_0 = eta1_new/lambda1_new;
phi2_0 = eta2_new/lambda2_new;
phi0 = [phi1_0 phi2_0];

b1_real = 3;
b2_real = 2;
b_real = [b1_real b2_real];
b1hat0 = 0.8;
b2hat0 = 0.8;
bhat0 = [b1hat0 b2hat0];
lambda1_0 = 80;
lambda2_0 = 80;
lambda0 = [lambda1_0 lambda2_0];
k1_0 = 500;
k2_0 = 500;
k0 = [k1_0 k2_0];
P_b1_0 = 10;
P_b2_0 = 10;
P_b0 = [P_b1_0 P_b2_0];

out = sim('MFSMC_AltitudeRollControl_b_est_SMN.slx');
%Simulink.sdi.view

t = out.tout;
u1 = out.u1;
u2 = out.u2;
phi1 = out.phi1;
phi2 = out.phi2;
K1 = out.K1;
K2 = out.K2;
s1dot = out.s1dot;
s2dot = out.s2dot;
b1hat = out.b1hat;

73

b2hat = out.b2hat;
b1real = out.b1real;
b2real = out.b2real;
s1 = out.s1;
s2 = out.s2;
x1_d = out.z_d;
x1dot_d = out.zdot_d;
x1ddot_d = out.zddot_d;
x2_d = out.theta_d*180/pi;
x2dot_d = out.thetadot_d*180/pi;
x2ddot_d = out.thetaddot_d*180/pi;
x2 = out.theta*180/pi;
x2dot = out.thetadot*180/pi;
x2ddot = out.thetaddot*180/pi;
x1 = out.z;
x1dot = out.zdot;
x1ddot = out.zddot;
x1_e = out.x1_tilda;
x2_e = out.x2_tilda*180/pi;
x1dot_e = out.x1dot_tilda;
x2dot_e = out.x2dot_tilda*180/pi;
x1ddot_e = out.x1ddot_tilda;
x2ddot_e = out.x2ddot_tilda*180/pi;

%RMS
x1RMS = rms(x1_e);
x1dotRMS = rms(x1dot_e);
x1ddotRMS = rms(x1ddot_e);
x2RMS = rms(x2_e);
x2dotRMS = rms(x2dot_e);
x2ddotRMS = rms(x2ddot_e);
b1RMS = rms(b1hat-b1real);
b2RMS = rms(b2hat-b2real);
ErrorState_Altitude = ["x1~"; "x1dot~"; "x1ddot~"];
ErrorState_Roll = ["x2~"; "x2dot~"; "x2ddot~"];
RMS_Alt = [x1RMS; x1dotRMS; x1ddotRMS];
RMS_Roll = [x2RMS; x2dotRMS; x2ddotRMS];
StateRMStable = table(ErrorState_Altitude, RMS_Alt, ErrorState_Roll, RMS_Roll)
EstParam = ['b_1'; 'b_2'];
RMSb = [b1RMS; b2RMS];
EstRMStable = table(EstParam, RMSb)

%% Data Logging and Plotting

figure(1), clf
sgtitle('Altitude Tracking Error')
subplot(311)
plot(t,x1_e),grid on, xlabel('Time, s')
text(.7*tf,7.5E-5,['RMS = ' num2str(x1RMS)])
title('Displ. Error, m')
subplot(312)
plot(t,x1dot_e), grid on, xlabel('Time, s')
text(.7*tf,.5E-3,['RMS = ' num2str(x1dotRMS)])
axis([0 tf -.001 .001])
title('Velo. Error, m/s')

74

subplot(313)
plot(t,x1ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.5,['RMS = ' num2str(x1ddotRMS)])
axis([0 tf -1 1])
title('Accel. Error, m/s/s')

figure(2), clf
sgtitle('Roll Tracking Error')
subplot(311)
plot(t,x2_e),grid on, xlabel('Time, s')
text(.7*tf,1.5E-3,['RMS = ' num2str(x2RMS)])
title('Displ. Error, deg')
subplot(312)
plot(t,x2dot_e), grid on, xlabel('Time, s')
text(.7*tf,-0.025,['RMS = ' num2str(x2dotRMS)])
title('Velo. Error, deg/s')
subplot(313)
plot(t,x2ddot_e), grid on, xlabel('Time, s')
text(.7*tf,.5,['RMS = ' num2str(x2ddotRMS)])
axis([0 tf -1 1])
title('Accel. Error, deg/s/s')

figure(3), clf
sgtitle('Altitude Dynamics')
subplot(311)
plot(t,x1_d,t,x1), legend('z_d','z'), legend boxoff, grid on, xlabel('Time, s')
title('Altitude, m')
subplot(312)
plot(t,x1dot_d,t,x1dot), legend('zdot_d','zdot'), legend boxoff, grid on, xlabel('Time, s')
title('\delta Altitude, m/s')
subplot(313)
plot(t,x1ddot_d,t,x1ddot), legend('zddot_d','zddot'), legend boxoff, grid on, xlabel('Time,
s')
title('\delta^2 Altitude, m/s/s')

figure(4), clf
sgtitle('Roll Dynamics')
subplot(311)
plot(t,x2_d,t,x2), legend('theta_d','theta'), legend boxoff, grid on, xlabel('Time, s')
title('Roll, deg')
subplot(312)
plot(t,x2dot_d,t,x2dot), legend('thetadot_d','thetadot'), legend boxoff, grid on,
xlabel('Time, s')
title('\delta Roll, deg/s')
subplot(313)
plot(t,x2ddot_d,t,x2ddot), legend('thetaddot_d','thetaddot'), legend boxoff, grid on,
xlabel('Time, s')
axis([0 tf -10 10]);
title('\delta^2 Roll, deg/s/s')

figure(5), clf
sgtitle('Control Effort')
subplot(211)
plot(t,u1), grid on, xlabel('Time, s')
title('u_1')

75

subplot(212)
plot(t,u2), grid on, xlabel('Time, s')
title('u_2')

figure(6), clf
sgtitle('Boundary Layer')
subplot(211)
plot(t,s1,t,phi1,t,-phi1), legend('s_1','\phi_1','-\phi_1'), legend boxoff, grid on,
xlabel('Time, s')
title('Altitude')
subplot(212)
plot(t,s2,t,phi2,t,-phi2), legend('s_2','\phi_2','-\phi_2'), legend boxoff, grid on,
xlabel('Time, s')
title('Roll')

figure(7), clf
sgtitle('Switching Gain, K')
subplot(211)
plot(t,K1), grid on, xlabel('Time, s')
title('K_z')
subplot(212)
plot(t,K2), grid on, xlabel('Time, s')
title('K_\theta')

figure(8), clf
sgtitle('Estimated Control Input Gain, b')
subplot(211)
plot(t,b1hat), grid on, xlabel('Time, s')
title('b_1'), yline(b1real), axis([0 tf 0 1.1*b1real])
text(.7*tf,.75*b1real,['b_1_,_t_r_u_e = ' num2str(b1real)])
text(.7*tf,.5*b1real,['RMS = ' num2str(b1RMS)])
subplot(212)
plot(t,b2hat), grid on, xlabel('Time, s')
title('b_2'), yline(b2real), axis([0 tf 0 1.1*b2real])
text(.7*tf,.75*b2real,['b_2_,_t_r_u_e = ' num2str(b2real)])
text(.7*tf,.5*b2real,['RMS = ' num2str(b2RMS)])

%% Altitude, Lateral, and Roll Control w/ State Measurement Noise - Control Input Gain
Estimation
 % Actuator Dynamics neglected
 % One thrust source on either side of COM
 % "MFSMC_AltitudeLateralRollControl_b_est_SMN.slx"
clear all, clc

tf = 10;

%%%Incorporate integral term into sliding surface%%%
% ' = 0' for s = lambda*x~ + xdot~ + int(x~)
% ' = 1' for s = lambda*x~ + xdot~
alt_SlidingSurface = 0;

%%%Aircraft Params%%%
m = 1; %0.02; %Craft Mass, kg
I = 1; %0.035; %Craft Inertia
Lyf = 1; %0.069; %Craft Moment Arm from COM to Center of Thrust, m

76

Lyr = 1;
Vmax = 160; %Max Voltage to Actuator
Vmin = -90; %Min Voltage to Actuator
Voff = 35; %Offset voltage to account for bimorph polarization
Vupper = Vmax-Voff;

%%%Sensor Noise Characteristics%%%
 % Taken from MFSMC_Sreeraj
 % Param - [x_accel y_accel z_accel x_gyro y_gyro z_gyro]
noise_mean = [0.02 0 -9.81 -0.004 0 0.0017];
noise_Vpp = [0.35 0.3 0.4 0.0157 0.0139 0.017];
noise_stddev = [0.0583 0.05 0.06 0.0026 0.0023 0.0029];

%%%IC%%%
g1 = 0;
g2 = 0;
g3 = 0;
z0 = g1*[pi/2 0]; %Height, m
theta0 = g2*[pi/2 0]; %Roll, rad
y0 = g3*[pi/2 0];

%%%MFSMC Params%%%
n = 2; %system order
su1 = 0.2;
su2 = 0.2;
su3 = 0.2;
su = diag([su1 su2 su3]);
lambda1 = 4;
lambda2 = 3;
lambda3 = 4;
eta1 = 0.0006;
eta2 = 0.00022;
eta3 = 0.0006;
lambda1_new = lambda1;%(eta1/max(noise_Vpp))^(1/n); %max value
lambda2_new = lambda2;%(eta2/max(noise_Vpp))^(1/n); %max value
lambda3_new = lambda3;%(eta3/max(noise_Vpp))^(1/n); %max value
lambda = diag([lambda1_new lambda2_new lambda3_new]);
eta1_new = eta1;% + (max(noise_stddev)/eta1)*(lambda(1)/2);
eta2_new = eta2;% + (max(noise_stddev)/eta2)*(lambda(2)/2);
eta3_new = eta3;% + (max(noise_stddev)/eta3)*(lambda(3)/2);
eta = [eta1_new eta2_new eta3_new]';
phi1_0 = eta1_new/lambda1_new;
phi2_0 = eta2_new/lambda2_new;
phi3_0 = eta3_new/lambda3_new;
phi0 = [phi1_0 phi2_0 phi3_0]';

%Control Input Gain: Outputs, p=3 & pseudo Inputs, m=3 => [b]:[3x3]
b11_real = 3; b12_real = 1; b13_real = 1;
b21_real = 1; b22_real = 2; b23_real = 1;
b31_real = 1; b32_real = 1; b33_real = 3;
b_real = [b11_real b12_real b13_real;
 b21_real b22_real b23_real;
 b31_real b32_real b33_real];
bhat0 = 0.8;
bhat0 = bhat0*eye(3,3);

77

lambda1_0 = 80;
lambda2_0 = 80;
lambda3_0 = 80;
lambda0 = [lambda1_0 lambda2_0 lambda3_0];
k1_0 = 500;
k2_0 = 500;
k3_0 = 500;
k0 = [k1_0 k2_0 k3_0];
P_b1_0 = 10;
P_b2_0 = 10;
P_b3_0 = 10;
P_b0 = [P_b1_0 P_b2_0 P_b3_0];

out = sim('MFSMC_AltitudeRollControl_b_est_SMN.slx');
%Simulink.sdi.view

t = out.tout;
u1 = out.u1;
u2 = out.u2;
phi1 = out.phi1;
phi2 = out.phi2;
K1 = out.K1;
K2 = out.K2;
s1dot = out.s1dot;
s2dot = out.s2dot;
b1hat = out.b1hat;
b2hat = out.b2hat;
b1real = out.b1real;
b2real = out.b2real;
s1 = out.s1;
s2 = out.s2;
x1_d = out.z_d;
x1dot_d = out.zdot_d;
x1ddot_d = out.zddot_d;
x2_d = out.theta_d*180/pi;
x2dot_d = out.thetadot_d*180/pi;
x2ddot_d = out.thetaddot_d*180/pi;
x2 = out.theta*180/pi;
x2dot = out.thetadot*180/pi;
x2ddot = out.thetaddot*180/pi;
x1 = out.z;
x1dot = out.zdot;
x1ddot = out.zddot;
x1_e = out.x1_tilda;
x2_e = out.x2_tilda*180/pi;
x1dot_e = out.x1dot_tilda;
x2dot_e = out.x2dot_tilda*180/pi;
x1ddot_e = out.x1ddot_tilda;
x2ddot_e = out.x2ddot_tilda*180/pi;

%RMS
x1RMS = rms(x1_e);
x1dotRMS = rms(x1dot_e);
x1ddotRMS = rms(x1ddot_e);

78

x2RMS = rms(x2_e);
x2dotRMS = rms(x2dot_e);
x2ddotRMS = rms(x2ddot_e);
b1RMS = rms(b1hat-b1real);
b2RMS = rms(b2hat-b2real);
ErrorState_Altitude = ["x1~"; "x1dot~"; "x1ddot~"];
ErrorState_Roll = ["x2~"; "x2dot~"; "x2ddot~"];
RMS_Alt = [x1RMS; x1dotRMS; x1ddotRMS];
RMS_Roll = [x2RMS; x2dotRMS; x2ddotRMS];
StateRMStable = table(ErrorState_Altitude, RMS_Alt, ErrorState_Roll, RMS_Roll)
EstParam = ['b_1'; 'b_2'];
RMSb = [b1RMS; b2RMS];
EstRMStable = table(EstParam, RMSb)
%% Thrust Vector Balance - LQR
tf = 15;
Iy = 1;
Iz = 1;
mm = 1.5; % motor mass
lm = 3; % motor moment arm
mc = 1; % counterweight mass
lc = 3; % counterweight moment arm
mu_z = 0.05; % friction constant
mu_y = 0.05; % frinction constant
g = 9.81;
Kt = 5;

syms x1 x2 x3 x4 x5 x6 x7 x8 u1 u2
eqn1 = x2;
eqn2 = (1/Iy)*(mc*g*lc + mm*g*lm + Kt*u1*cos(u2)*lm - mu_y*x2);
eqn3 = x4;
eqn4 = (1/Iz)*(Kt*u1*sin(u2)*lm - mu_z*x4);

A = [diff(eqn1,x1) diff(eqn1,x2) diff(eqn1,x3) diff(eqn1,x4) 0 0 0 0;
 diff(eqn2,x1) diff(eqn2,x2) diff(eqn2,x3) diff(eqn2,x4) 0 0 0 0;
 diff(eqn3,x1) diff(eqn3,x2) diff(eqn3,x3) diff(eqn3,x4) 0 0 0 0;
 diff(eqn4,x1) diff(eqn4,x2) diff(eqn4,x3) diff(eqn4,x4) 0 0 0 0;
 -1 0 0 0 0 0 0 0;
 0 0 -1 0 0 0 0 0;
 -1 0 0 0 0 0 -1 0;
 0 0 -1 0 0 0 0 -1];
B = [diff(eqn1,u1) diff(eqn1,u2);
 diff(eqn2,u1) diff(eqn2,u2);
 diff(eqn3,u1) diff(eqn3,u2);
 diff(eqn4,u1) diff(eqn4,u2);
 0 0;
 0 0;
 0 0;
 0 0];
C = [1 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0; 0 0 1 0 0 0 0 0; 0 0 0 1 0 0 0 0;
 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0];
D = [0];

A = double(A);
B = double(subs(B,[u1 u2],[3 0]));

79

sysC = ss(A,B,C,D);

Ts = 0.005;
sysD = c2d(sysC,Ts);

%%LQR

Q = eye(8,8); R = 1;
[K,S,P] = dlqr(sysD.A,sysD.B,Q,R)

wn_d = 2; zeta_d = 1.2;
data = sim("TVBalance_LQR.slx")

theta = data.simout(:,1);
thetadot = data.simout(:,2);
psi = data.simout(:,3);
psidot = data.simout(:,4);
xe_theta = data.simout(:,5);
xe_psi = data.simout(:,6);
e_theta = data.simout(:,7);
e_psi = data.simout(:,8);
Vdc = data.simout(:,9);
MotorRPM_LQR = (Vdc/5)*(4350/2) + (1/5)*(4350/2);
alpha = data.simout(:,10);
edot_theta = data.simout(:,11);
edot_psi = data.simout(:,12);
r_theta = data.simout(:,13);
r_psi = data.simout(:,14);
t = data.simout(:,15);
eddot_theta = data.simout(:,16);
eddot_psi = data.simout(:,17);

%% Data Logging and Plotting

%RMS
x1RMS = rms(e_theta)
x1dotRMS = rms(edot_theta)
x1ddotRMS = rms(eddot_theta)

x2RMS = rms(e_psi)
x2dotRMS = rms(edot_psi)
x2ddotRMS = rms(eddot_psi)

figure(1), clf
sgtitle('Pitch Tracking Error')
subplot(211)
plot(t,e_theta),grid on, ylabel('deg'), xlabel('Time, s')
title('Displ. Error')
subplot(212)
plot(t,edot_theta), grid on,ylabel('deg/s'), xlabel('Time, s')
title('Velo. Error')

figure(2), clf
sgtitle('Yaw Tracking Error')

80

subplot(211)
plot(t,e_psi),grid on,ylabel('deg'), xlabel('Time, s')
title('Displ. Error')
subplot(212)
plot(t,edot_psi), grid on,ylabel('deg/s'), xlabel('Time, s')
title('Velo. Error')

figure(3), clf
sgtitle('State Dynamics')
subplot(411)
plot(t,theta,t,r_theta), legend('\theta','\theta_d'), legend boxoff, grid on,
ylabel('deg'),xlabel('Time, s')
title('Pitch Displ.')
subplot(412)
plot(t,psi,t,r_psi), legend('\psi','\psi_d'), legend boxoff, grid on, ylabel('deg'),
xlabel('Time, s')
title('Yaw Displ.')
subplot(413)
plot(t,thetadot), legend('\thetadot'), legend boxoff, grid on, ylabel('deg/s'),xlabel('Time,
s')
title('Pitch Velo.')
subplot(414)
plot(t,psidot), legend('\psidot'), legend boxoff, grid on, ylabel('deg/s'), xlabel('Time, s')
title('Yaw Velo.')

figure(4), clf
sgtitle('Control Effort')
subplot(211)
plot(t,MotorRPM_LQR), grid on, ylabel('Volt'), xlabel('Time, s')
title('Motor RPM')
subplot(212)
plot(t,alpha*20), grid on, ylabel('deg'), xlabel('Time, s')
title('Servo Angle')

%% Thrust Vector Balance - MFSMC

Iy = 1;
Iz = 1;
mm = 1.5; % motor mass
lm = 3; % motor moment arm
mc = 1; % counterweight mass
lc = 3; % counterweight moment arm
mu_z = 0.05; % friction constant
mu_y = 0.05; % frinction constant
g = 9.81;
Kt = 5;
alpha = 0.21;

tf = 15;
%IC
theta0 = [0 -1]; % Pitch
psi0 = [0 0]; % Yaw

%Pre-filter Input
wn_d=2; zeta_d=1.2;

81

%Control Input Filter
wn_u=10; zeta_u=.5;

%Incorporate integral term into sliding surface%%%
% ' = 0' for s = lambda*x~ + xdot~ + int(x~)
% ' = 1' for s = lambda*x~ + xdot~
alt_SlidingSurface = 1;

%%%MFSMC Params%%%
su1 = 0.2;
su2 = 0.2;
su = [su1 su2];
lambda1 = 1;
lambda2 = 1.25;
lambda = [lambda1 lambda2];
eta1 = 0.1;
eta2 = 0.1;
sigma = 0.025;
eta = [eta1+(sigma/0.1)*lambda1*0.5 eta2+(sigma/0.1)*lambda1*0.5];
phi1_0 = eta1/lambda1;
phi2_0 = eta2/lambda2;
phi0 = [phi1_0 phi2_0];

b1_real = 1.5;
b2_real = 1;
b_real = [b1_real b2_real];
bup = 2;
blow = 1;
beta0 = [sqrt(bup/blow) sqrt(bup/blow)];
b1hat0 = 0.8;%sqrt(bup*blow);
b2hat0 = 0.8;%sqrt(bup*blow);
bhat0 = [b1hat0 b2hat0];
lambda1_0 = 80;
lambda2_0 = 80;
lambda0 = [lambda1_0 lambda2_0];
k1_0 = 500;
k2_0 = 500;
k0 = [k1_0 k2_0];
P_b1_0 = 10;
P_b2_0 = 10;
P_b0 = [P_b1_0 P_b2_0];

out = sim('ThrustVectorBalance_SM_R21.slx');

t = out.tout;
u1 = out.u1;
u2 = out.u2;
phi1 = out.phi1;
phi2 = out.phi2;
K1 = out.K1;
K2 = out.K2;
s1dot = out.s1dot;
s2dot = out.s2dot;
s1 = out.s1;
s2 = out.s2;

82

x1_d = out.x1_d;
x1dot_d = out.x1dot_d;
x1ddot_d = out.x1ddot_d;
x2_d = out.x2_d;
x2dot_d = out.x2dot_d;
x2ddot_d = out.x2ddot_d;
x2 = out.x2;
x2dot = out.x2dot;
x2ddot = out.x2ddot;
x1 = out.x1;
x1dot = out.x1dot;
x1ddot = out.x1ddot;
x1_e = out.x1_tilda;
x2_e = out.x2_tilda;
x1dot_e = out.x1dot_tilda;
x2dot_e = out.x2dot_tilda;
x1ddot_e = out.x1ddot_tilda;
x2ddot_e = out.x2ddot_tilda;
u1Control = out.u1Control;
u2Control = out.u2Control;
b1hat = out.b1hat;
b2hat = out.b2hat;
MotorRPM = out.MotorRPM;
ServoAngle = out.ServoAngle;

%% Data Logging and Plotting

%RMS
x1RMS = rms(x1_e)
x1dotRMS = rms(x1dot_e)
x1ddotRMS = rms(x1ddot_e)
x2RMS = rms(x2_e)
x2dotRMS = rms(x2dot_e)
x2ddotRMS = rms(x2ddot_e)

figure(1), clf
sgtitle('State x_1 Tracking Error')
subplot(311)
plot(t,x1_e),grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x1RMS)])
title('Displ. Error, deg')
subplot(312)
plot(t,x1dot_e), grid on, xlabel('Time, s')
text(.7*tf,.4,['RMS = ' num2str(x1dotRMS)])
title('Velo. Error, deg/s')
subplot(313)
plot(t,x1ddot_e), grid on, xlabel('Time, s')
text(.7*tf,-1,['RMS = ' num2str(x1ddotRMS)])
title('Accel. Error, deg/s/s')

figure(2), clf
sgtitle('State x_2 Tracking Error')
subplot(311)
plot(t,x2_e),grid on, xlabel('Time, s')
text(.7*tf,-1,['RMS = ' num2str(x2RMS)])

83

title('Displ. Error, deg')
subplot(312)
plot(t,x2dot_e), grid on, xlabel('Time, s')
text(.5*tf,.2,['RMS = ' num2str(x2dotRMS)])
title('Velo. Error, deg/s')
subplot(313)
plot(t,x2ddot_e), grid on, xlabel('Time, s')
text(.5*tf,-.5,['RMS = ' num2str(x2ddotRMS)])
title('Accel. Error, deg/s/s')

figure(3), clf
sgtitle('State x_1 Dynamics')
subplot(311)
plot(t,x1_d,t,x1), legend('x_1_,_d','x_1'), legend boxoff, grid on, xlabel('Time, s')
title('Displ., deg')
subplot(312)
plot(t,x1dot_d,t,x1dot), legend('x_1dot_d','x_1dot'), legend boxoff, grid on, xlabel('Time,
s')
title('Velo., deg/s')
subplot(313)
plot(t,x1ddot_d,t,x1ddot), legend('x_1ddot_d','x_1ddot'), legend boxoff, grid on,
xlabel('Time, s')
title('Accel., deg/s/s')

figure(4), clf
sgtitle('State x_2 Dynamics')
subplot(311)
plot(t,x2_d,t,x2), legend('x_2_,_d','x_2'), legend boxoff, grid on, xlabel('Time, s')
title('Displ., deg')
subplot(312)
plot(t,x2dot_d,t,x2dot), legend('x_2dot_d','x_2dot'), legend boxoff, grid on, xlabel('Time,
s')
title('Velo., deg/s')
subplot(313)
plot(t,x2ddot_d,t,x2ddot), legend('x_2ddot_d','x_2ddot'), legend boxoff, grid on,
xlabel('Time, s')
title('Accel., deg/s/s')

figure(5), clf
sgtitle('Control Effort')
subplot(211)
yyaxis left
plot(t,MotorRPM), grid on, xlabel('Time, s')
ylabel('Motor RPM')
yyaxis right
plot(t,u1)
ylabel('Calc. Control')
legend('Actuator Input','Calc. Control'), legend boxoff
title('u_1')
subplot(212)
yyaxis left
plot(t,ServoAngle), grid on, xlabel('Time, s')
ylabel('Servo Angle, deg')
yyaxis right
plot(t,u2)

84

ylabel('Calc. Control')
legend('Actuator Input','Calc. Control'), legend boxoff
title('u_2')

figure(6), clf
sgtitle('Boundary Layer')
subplot(211)
plot(t,s1,t,phi1,t,-phi1), legend('s_1','\phi_1','-\phi_1'), legend boxoff, grid on,
xlabel('Time, s')
title('x_1')
subplot(212)
plot(t,s2,t,phi2,t,-phi2), legend('s_2','\phi_2','-\phi_2'), legend boxoff, grid on,
xlabel('Time, s')
title('x_2')

figure(7), clf
sgtitle('Switching Gain, K')
subplot(211)
plot(t,K1), grid on, xlabel('Time, s')
title('K_1')
subplot(212)
plot(t,K2), grid on, xlabel('Time, s')
title('K_2')

figure(8), clf
sgtitle('Estimated Control Input Gain')
subplot(211)
plot(t,b1hat), grid on, xlabel('Time, s')
title('b_1')
subplot(212)
plot(t,b2hat), grid on, xlabel('Time, s')
title('b_2')

%% Test Data Analysys

t_test = table2array(TestData1(:,1));
x1_ref_test = table2array(TestData1(:,2));
x1_test = table2array(TestData1(:,3));
x2_ref_test = table2array(TestData1(:,4));
x2_test = table2array(TestData1(:,5));
x1dot_ref_test = table2array(TestData1(:,6));
x1dot_test = table2array(TestData1(:,7));
x2dot_ref_test = table2array(TestData1(:,8));
x2dot_test = table2array(TestData1(:,9));
x1ddot_ref_test = table2array(TestData1(:,10));
x1ddot_test = table2array(TestData1(:,11));
x2ddot_ref_test = table2array(TestData1(:,12));
x2ddot_test = table2array(TestData1(:,13));
u1MFSMC_test = table2array(TestData1(:,14));
u1Control_test = table2array(TestData1(:,15));
u2MFSMC_test = table2array(TestData1(:,16));
u2Control_test = table2array(TestData1(:,17));
xe1_test = table2array(TestData1(:,18));
xe2_test = table2array(TestData1(:,19));
e1_test = table2array(TestData1(:,20));

85

e2_test = table2array(TestData1(:,21));
e1dot_test = table2array(TestData1(:,22));
e2dot_test = table2array(TestData1(:,23));
e1ddot_test = table2array(TestData1(:,24));
e2ddot_test = table2array(TestData1(:,25));
b1hat_test = table2array(TestData1(:,26));
b2hat_test = table2array(TestData1(:,27));
s1dot_test = table2array(TestData1(:,28));
s2dot_test = table2array(TestData1(:,29));
s1_test = table2array(TestData1(:,30));
phi1_test = table2array(TestData1(:,31));
s2_test = table2array(TestData1(:,33));
phi2_test = table2array(TestData1(:,34));
MotorRPM_test = (u1Control_test/255)*(4350/2);
ServoAngle_test = u2Control_test;

t_LQR = table2array(TestDataLQR(1:2999,1));
x1_ref_LQR = table2array(TestDataLQR(1:2999,2)) + 22*ones(2999,1);
x1_LQR = table2array(TestDataLQR(1:2999,3)) + 22*ones(2999,1);
x2_ref_LQR = table2array(TestDataLQR(1:2999,4));
x2_LQR = table2array(TestDataLQR(1:2999,5));
x1dot_ref_LQR = table2array(TestDataLQR(1:2999,6));
x1dot_LQR = table2array(TestDataLQR(1:2999,7));
x2dot_ref_LQR = table2array(TestDataLQR(1:2999,8));
x2dot_LQR = table2array(TestDataLQR(1:2999,9));
x1ddot_ref_LQR = table2array(TestDataLQR(1:2999,10));
x1ddot_LQR = table2array(TestDataLQR(1:2999,11));
x2ddot_ref_LQR = table2array(TestDataLQR(1:2999,12));
x2ddot_LQR = table2array(TestDataLQR(1:2999,13));
u1LQR = table2array(TestDataLQR(1:2999,14));
u1Control_LQR = table2array(TestDataLQR(1:2999,15));
u2LQR = table2array(TestDataLQR(1:2999,16));
u2Control_LQR = table2array(TestDataLQR(1:2999,17));
xe1_LQR = table2array(TestDataLQR(1:2999,18));
xe2_LQR = table2array(TestDataLQR(1:2999,19));
e1_LQR = table2array(TestDataLQR(1:2999,20));
e2_LQR = table2array(TestDataLQR(1:2999,21));
e1dot_LQR = table2array(TestDataLQR(1:2999,22));
e2dot_LQR = table2array(TestDataLQR(1:2999,23));
e1ddot_LQR = table2array(TestDataLQR(1:2999,24));
e2ddot_LQR = table2array(TestDataLQR(1:2999,25));
MotorRPM_LQR = (u1Control_LQR/255)*(4350/2);
ServoAngle_LQR = u2Control_LQR;

%RMS
x1RMS_test = rms(e1_test)
x1dotRMS_test = rms(e1dot_test)
x1ddotRMS_test = rms(e1ddot_test)
x2RMS_test = rms(e2_test)
x2dotRMS_test = rms(e2dot_test)
x2ddotRMS_test = rms(e2ddot_test)
x1RMS_LQR = rms(e1_LQR)
x1dotRMS_LQR = rms(e1dot_LQR)
x1ddotRMS_LQR = rms(e1ddot_LQR)

86

x2RMS_LQR = rms(e2_LQR)
x2dotRMS_LQR = rms(e2dot_LQR)
x2ddotRMS_LQR = rms(e2ddot_LQR)

figure(1), clf
sgtitle('State x_1 Tracking Error - MFSMC')
subplot(311)
plot(t_test,e1_test),grid on, xlabel('Time, s')
text(.7*tf,.5E-4,['RMS = ' num2str(x1RMS_test)])
title('Displ. Error, deg')
subplot(312)
plot(t_test,e1dot_test), grid on, xlabel('Time, s')
text(.7*tf,-1.5,['RMS = ' num2str(x1dotRMS_test)])
title('Velo. Error, deg/s')
subplot(313)
plot(t_test,e1ddot_test), grid on, xlabel('Time, s')
text(.7*tf,-1,['RMS = ' num2str(x1ddotRMS_test)])
title('Accel. Error, deg/s/s')

figure(2), clf
sgtitle('State x_2 Tracking Error - MFSMC')
subplot(311)
plot(t_test,e2_test),grid on, xlabel('Time, s')
text(.7*tf,1,['RMS = ' num2str(x2RMS_test)])
title('Displ. Error, deg')
subplot(312)
plot(t_test,e2dot_test), grid on, xlabel('Time, s')
text(.25*tf,-.3,['RMS = ' num2str(x2dotRMS_test)])
title('Velo. Error, deg/s')
subplot(313)
plot(t_test,e2ddot_test), grid on, xlabel('Time, s')
text(.25*tf,-.25,['RMS = ' num2str(x2ddotRMS_test)])
title('Accel. Error, deg/s/s')

figure(3), clf
sgtitle('State x_1 Dynamics - MFSMC')
subplot(311)
plot(t_test,x1_ref_test,t_test,x1_test), legend('x_1_,_d','x_1'), legend boxoff, grid on,
xlabel('Time, s')
title('Displ., deg')
subplot(312)
plot(t_test,x1dot_ref_test,t_test,x1dot_test), legend('x_1dot_d','x_1dot'), legend boxoff,
grid on, xlabel('Time, s')
title('Velo., deg/s')
subplot(313)
plot(t_test,x1ddot_ref_test,t_test,x1ddot_test), legend('x_1ddot_d','x_1ddot'), legend boxoff,
grid on, xlabel('Time, s')
title('Accel., deg/s/s')

figure(4), clf
sgtitle('State x_2 Dynamics - MFSMC')
subplot(311)
plot(t_test,x2_ref_test,t_test,x2_test), legend('x_2_,_d','x_2'), legend boxoff, grid on,
xlabel('Time, s')
title('Displ., deg')

87

subplot(312)
plot(t_test,x2dot_ref_test,t_test,x2dot_test), legend('x_2dot_d','x_2dot'), legend boxoff,
grid on, xlabel('Time, s')
title('Velo., deg/s')
subplot(313)
plot(t_test,x2ddot_ref_test,t_test,x2ddot_test), legend('x_2ddot_d','x_2ddot'), legend boxoff,
grid on, xlabel('Time, s')
title('Accel., deg/s/s')

figure(5), clf
sgtitle('Control Effort - MFSMC')
subplot(211)
yyaxis left
plot(t_test,MotorRPM_test), grid on, xlabel('Time, s')
ylabel('Motor RPM')
yyaxis right
plot(t_test,u1MFSMC_test)
ylabel('Calc. Control')
legend('Actuator Input','Calc. Control'), legend boxoff
title('u_1')
subplot(212)
yyaxis left
plot(t_test,ServoAngle_test), grid on, xlabel('Time, s')
ylabel('Servo Angle, deg')
yyaxis right
plot(t_test,u2MFSMC_test)
ylabel('Calc. Control')
legend('Actuator Input','Calc. Control'), legend boxoff
title('u_2')

figure(6), clf
sgtitle('Boundary Layer')
subplot(211)
plot(t_test,s1_test,t_test,phi1_test,t_test,-phi1_test), legend('s_1','\phi_1','-\phi_1'),
legend boxoff, grid on, xlabel('Time, s')
title('x_1')
subplot(212)
plot(t_test,s2_test,t_test,phi2_test,t_test,-phi2_test), legend('s_2','\phi_2','-\phi_2'),
legend boxoff, grid on, xlabel('Time, s')
title('x_2')

figure(7), clf
sgtitle('Estimated Control Input Gain')
subplot(211)
plot(t_test,b1hat_test), grid on, xlabel('Time, s')
axis([0 tf 0 2.5])
title('b_1')
subplot(212)
plot(t_test,b2hat_test), grid on, xlabel('Time, s')
axis([0 tf 0 2.5])
title('b_2')

figure(8), clf
sgtitle('State x_1 Tracking Error - LQR')
subplot(311)

88

plot(t_LQR,e1_LQR),grid on, xlabel('Time, s')
text(.7*tf,-10,['RMS = ' num2str(x1RMS_LQR)])
title('Displ. Error, deg')
subplot(312)
plot(t_LQR,e1dot_LQR), grid on, xlabel('Time, s')
text(.7*tf,-5,['RMS = ' num2str(x1dotRMS_LQR)])
title('Velo. Error, deg/s')
subplot(313)
plot(t_LQR,e1ddot_LQR), grid on, xlabel('Time, s')
text(.7*tf,-2.5,['RMS = ' num2str(x1ddotRMS_LQR)])
title('Accel. Error, deg/s/s')

figure(9), clf
sgtitle('State x_2 Tracking Error - LQR')
subplot(311)
plot(t_LQR,e2_LQR),grid on, xlabel('Time, s')
text(.25*tf,-.4,['RMS = ' num2str(x2RMS_LQR)])
title('Displ. Error, deg')
subplot(312)
plot(t_LQR,e2dot_LQR), grid on, xlabel('Time, s')
text(.25*tf,-.15,['RMS = ' num2str(x2dotRMS_LQR)])
title('Velo. Error, deg/s')
subplot(313)
plot(t_LQR,e2ddot_LQR), grid on, xlabel('Time, s')
text(.25*tf,-.1,['RMS = ' num2str(x2ddotRMS_LQR)])
title('Accel. Error, deg/s/s')

figure(10), clf
sgtitle('State x_1 Dynamics - LQR')
subplot(311)
plot(t_LQR,x1_ref_LQR,t_LQR,x1_LQR), legend('x_1_,_d','x_1'), legend boxoff, grid on,
xlabel('Time, s')
title('Displ., deg')
subplot(312)
plot(t_LQR,x1dot_ref_LQR,t_LQR,x1dot_LQR), legend('x_1dot_d','x_1dot'), legend boxoff, grid
on, xlabel('Time, s')
title('Velo., deg/s')
subplot(313)
plot(t_LQR,x1ddot_ref_LQR,t_LQR,x1ddot_LQR), legend('x_1ddot_d','x_1ddot'), legend boxoff,
grid on, xlabel('Time, s')
title('Accel., deg/s/s')

figure(11), clf
sgtitle('State x_2 Dynamics - LQR')
subplot(311)
plot(t_LQR,x2_ref_LQR,t_LQR,x2_LQR), legend('x_2_,_d','x_2'), legend boxoff, grid on,
xlabel('Time, s')
title('Displ., deg')
subplot(312)
plot(t_LQR,x2dot_ref_LQR,t_LQR,x2dot_LQR), legend('x_2dot_d','x_2dot'), legend boxoff, grid
on, xlabel('Time, s')
title('Velo., deg/s')
subplot(313)
plot(t_LQR,x2ddot_ref_LQR,t_LQR,x2ddot_LQR), legend('x_2ddot_d','x_2ddot'), legend boxoff,
grid on, xlabel('Time, s')

89

title('Accel., deg/s/s')

figure(12), clf
sgtitle('Control Effort - LQR')
subplot(211)
plot(t_LQR,MotorRPM_LQR), grid on, xlabel('Time, s')
ylabel('Motor RPM')
title('u_1')
subplot(212)
plot(t_LQR,ServoAngle_LQR), grid on, xlabel('Time, s')
ylabel('Servo Angle, deg')
title('u_2')

Simulink Diagrams

- TV -Balance MFSMC

90

91

92

- TV Balance LQR

Ardiuno Code

/*

 * Model-Free Sliding Mode Control of a DC Motor Balancing System

 * 5V dc motor with a Servo for thrust vectoring

 * MISO System

 * Best Final RSSQ(e) Score =====> Pitch: 65.01 | Yaw: 22.88

 */

#include <BasicLinearAlgebra.h>

#include <ElementStorage.h>

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

93

#include <utility/imumaths.h>

#include <SPI.h>

#include <SD.h>

#include <Servo.h>

File TestFile;

Servo servo1;

Servo servo2;

#define in1_pin 5

#define in2_pin 6

#define EEP 2 //Initialization pin

uint16_t BNO055_SAMPLERATE_DELAY_MS = 5; //how often to read data from the board, milli

Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x28);

double servoOffset[2] = {135, 45};

double dt = BNO055_SAMPLERATE_DELAY_MS, t_prev = 0, t = 0;

int tfinal = 10;

int n = 0, ntotal = 200;

int j = 0;

void setup() {

 Serial.begin(115200);

 /*

 // Open serial communications and wait for port to open:

 while (!Serial) {

 ; // wait for serial port to connecNeeded for native USB port only

 }

 Serial.print("Initializing SD card...");

 if (!SD.begin(4)) {

 Serial.println("initialization failed!");

 while (1);

 }

 Serial.println("initialization done.");

 // open the file. note that only one file can be open at a time,

 // so you have to close this one before opening another.

 TestFile = SD.open("TestFile.txt", FILE_WRITE);

 */

 pinMode(EEP,1);

 pinMode(in1_pin,1);

 pinMode(in2_pin,1);

 servo1.attach(7);

 servo2.attach(8);

94

 servo1.write(servoOffset[0]);

 servo2.write(servoOffset[1]);

 Wire.begin();

 if (!bno.begin())

 {

 Serial.print("No BNO055 detected");

 while (1);

 }

}

void loop(){

 Serial.println("START");

 ////SUGGESTED TUNING PARAMETERS////

 double a_T = 0.1;

 double a_u[2] = {0.21,0.05}; //Lowpass Filter Constant for prop/servo control input (0,1): Higher

=> more aggressive control but prone to oscillations

 double uCP_max = 255, uCP_min = 100; // Max and min PWM Signal

 double uMP_max = 155, uMP_min = 0; // Max and min control law output

 double uCS1_max = 95, uCS1_min = 135; // Max and min Servo1 Angle

 double uMS1_max = 10, uMS1_min = -10; // Max and min control law output

 double uCS2_max = 85, uCS2_min = 45; // Max and min Servo2 Angle

 double uMS2_max = 10, uMS2_min = -10; // Max and min control law output

 double a_r[2] = {0.005,0.005};

 double lambda[2] = {1,.5}; //Slope of Sliding Surface - prop, servo: s = lambda*e + edot

 double uTail = 0, uTail_prev = 0;

 double uControl[3] = {uCP_min,uCS1_min,uCS2_min}, uMFSMC[3], uMFSMC_prev[3] = {0,0,0},

uMFSMC_pprev[3] = {0,0,0};

 double uC_max[3] = {uCP_max,uCS1_max,uCS2_max}, uC_min[3] =

{uCP_min,uCS1_min,uCS2_min}; //Max and Min Actuator Limits {PWM,DEG}

 double uM_max[3] = {uMP_max,uMS1_max,uMS2_max}, uM_min[3] =

{uMP_min,uMS1_min,uMS2_min}; //Max and Min Control Law Outputs {Prop,Servo}

 double a_g = .005, a_e = 0.1;

 double xDPS_prev[2] = {0,0}, xD_prev[2] = {0,0};

 double xD[2], xDPS[2], xDPSS[2], xDPSS_prev[2] = {0,0};

 double xD_ref[2] = {0,0}, xD_refp[2] = {0,0};

 double xDPS_ref[2] = {0,0}, xDPSS_ref[2] = {0,0};

 double xDPS_refp[2] = {0,0}, xDPSS_refp[2] = {0,0};

 double xD_offset[2], xD_offset_total[2], xD_offset_total_prev[2] = {0,0};

 double xD_offset_avg[2];

 double e[2], xe[2], edot[2], eddot[2];

 double e_prev[2] = {0,0}, xe_prev[2] = {0,0}, edot_prev[2] = {0,0}, eddot_prev[2] = {0,0};

95

 double e2total_prev[2] = {0,0}, e2total[2];

 double a_s = 0.05, s_phi[2], sat[2];

 double sigma[2] = {0.025,0.025}; //Noise Mean - 0.0044

 double eta[2], eta0[2] = {0.1,0.1};

 double su[2] = {0.2,0.2}, phi0[2] = {eta0[0]/lambda[0],eta0[1]/lambda[1]}, phi_prev[2] =

{phi0[0],phi0[1]};

 double s[2], s_prev[2] = {0,0}, sdot[2], phi[23], phidot[2], K[2];

 double bup[2] = {5,5}, blow[2] = {1,1}, beta0[2] = {sqrt(bup[0]/blow[0]),sqrt(bup[1]/blow[1])};

 double bhat0[2] = {sqrt(bup[0]*blow[0]),sqrt(bup[1]*blow[1])};

 for (j = 0; j <= 1; j += 1) {

 eta[j] = eta0[j] + (sigma[j]/0.1)*0.5*lambda[j];

 }

 //Estimator

 double lambdaFF = 0.9;

 double P_tilda[2], P[2], P_prev[2] = {2};

 double bhat_prev[2] = {bhat0[0]}, bhat[2] = {bhat0[0], bhat0[1]}, e1[2];

 double a_b = 0.1;

 digitalWrite(EEP,1);

 analogWrite(in1_pin, 0);

 analogWrite(in2_pin,0);

 delay(2000);

 Serial.println("Begin Calibration");

 for (n = 0; n <= ntotal; n +=1){

 //BNO055

 imu::Vector<3> angRate = bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

 imu::Vector<3> angPos = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

 xD_offset[0] = angPos.x();

 if (xD_offset[0] > 180){

 xD_offset[0] = xD_offset[0] - 360;

 }

 xD_offset[1] = -angPos.z();

 for (j = 0; j <= 1; j += 1) {

 xD_offset_total[j] = xD_offset[j] + xD_offset_total_prev[j];

 xD_offset_total_prev[j] = xD_offset_total[j];

 }

 delay(dt);

 }

 for (j = 0; j <= 1; j += 1) {

 xD_offset_avg[j] = xD_offset_total[j] / ntotal;

 }

96

 /* Serial.print(xD_offset_avg[0]);

 Serial.print(" ");

 Serial.println(xD_offset_avg[1]);*/

 Serial.println("Calibration Complete... Begin Stabilization");

 for (t = 1; t <= tfinal*1000; t += dt){

 if (t/1000 < 1) {

 for (j = 0; j <= 1; j += 1) {

 xD_ref[j] = 0;

 xDPS_ref[j] = 0;

 xDPSS_ref[j] = 0;

 }

 }

 if ((t/1000) > 1 && (t/1000) < 7.5) {

 for (j = 0; j <= 1; j += 1) {

 // STEP INPUT

 xD_ref[0] = 0;

 // PRE-FILTER

 xD_ref[0] = a_r[0]*xD_ref[0] + (1-a_r[0])*xD_refp[0];

 // Velo Derivative and Low-Pass Filter

 xDPS_ref[0] = (xD_ref[0] - xD_refp[0]) / (dt/1000);

 xDPS_ref[0] = a_r[0]*xDPS_ref[0] + (1-a_r[0])*xDPS_refp[0];

 // Acc Derivative and Low-Pass Filter

 xDPSS_ref[0] = (xDPS_ref[0] - xDPS_refp[0]) / (dt/1000);

 xDPSS_ref[0] = a_r[0]*xDPS_ref[0] + (1-a_r[0])*xDPSS_refp[0];

 }

 }

 if ((t/1000) > 7.5 && (t/1000) < tfinal) {

 // STEP INPUT

 xD_ref[0] = 0;

 xD_ref[1] = 0;

 // PRE-FILTER

 for (j = 0; j <= 1; j += 1) {

 xD_ref[j] = a_r[j]*xD_ref[j] + (1-a_r[j])*xD_refp[j];

 // Velo Derivative and Low-Pass Filter

 xDPS_ref[j] = (xD_ref[j] - xD_refp[j]) / (dt/1000);

 xDPS_ref[j] = a_r[j]*xDPS_ref[j] + (1-a_r[j])*xDPS_refp[j];

 // Acc Derivative and Low-Pass Filter

 xDPSS_ref[j] = (xDPS_ref[j] - xDPS_refp[j]) / (dt/1000);

 xDPSS_ref[j] = a_r[j]*xDPS_ref[j] + (1-a_r[j])*xDPSS_refp[j];

 }

 }

 //BNO055

97

 imu::Vector<3> angRate = bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

 imu::Vector<3> angPos = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

 xD[0] = angPos.x() - xD_offset_avg[0];

 if (xD[0] > 180){

 xD[0] = xD[0] - 360;

 }

 xDPS[0] = -angRate.z();

 xD[1] = -angPos.z() - xD_offset_avg[1];

 xDPS[1] = angRate.x();

 for (j = 0; j <= 1; j += 1) {

 xDPS[j] = a_g*xDPS[j] + (1-a_g)*xDPS_prev[j];

 xDPSS[j] = (xDPS[j] - xDPS_prev[j]) / (dt/1000);

 xDPSS[j] = a_g*xDPSS[j] + (1-a_g)*xDPSS_prev[j];

 }

// ERROR FCN //

 for (j = 0; j <= 1; j += 1) {

 e[j] = xD[j] - xD_ref[j];

 xe[j] = e[j]*(dt/1000) + xe_prev[j];

 edot[j] = xDPS[j] - xDPS_ref[j];

 // Low Pass Filter

 edot[j] = edot[j]*a_e + (1-a_e)*edot_prev[j];

 eddot[j] = xDPSS[j] - xDPSS_ref[j];

 eddot[j] = eddot[j]*a_e + (1-a_e)*eddot_prev[j];

 }

/////////////////

///// MFSMC /////

 for (j = 0; j <= 1; j += 1) {

 //Switching Gain

 K[j] = abs(edot[j])*abs(beta0[j]-1) + lambda[j]*abs(e[j])*abs(beta0[j]-1) +

abs(bhat[j]*su[j]*(uMFSMC_pprev[j]-uMFSMC_prev[j])) + eta[j]*beta0[j];

 //Boundary Layer

 phidot[j] = - lambda[j]*phi_prev[j] + K[j];

 phi[j] = phidot[j]*(dt/1000) + phi_prev[j];

 //Sliding Surface

 s[j] = (lambda[j]*e[j] + edot[j]);

 sdot[j] = (lambda[j]*edot[j] + eddot[j]);

 //SAT FUNCTION

 s_phi[j] = abs(s[j]/phi[j]);

 if (s_phi[j] > 1) {

 if (s[j]/phi[j] > 0) sat[j] = 1;

 if (s[j]/phi[j] < 0) sat[j] = -1;

 }

98

 if (s_phi[j] <= 1) {

 sat[j] = s[j]/phi[j];

 }

 uMFSMC[j] = (1/bhat[j])*(-sdot[j] - (K[j]-phidot[j])*sat[j]) + (2*uMFSMC_prev[j] -

uMFSMC_pprev[j]);

 }

 uMFSMC[0] = abs(a_u[0]*uMFSMC[0] + (1-a_u[0])*uMFSMC_prev[0]);

 uMFSMC[1] = a_u[1]*uMFSMC[1] + (1-a_u[1])*uMFSMC_prev[1];

 for (j = 0; j <= 1; j += 1) {

 if (uMFSMC[j] > uM_max[j]) {

 uMFSMC[j] = uM_max[j];

 }

 if (uMFSMC[j] < uM_min[j]) {

 uMFSMC[j] = uM_min[j];

 }

 }

 uControl[0] = map(uMFSMC[0],uM_min[0],uM_max[0],uC_min[0],uC_max[0]);

 if (xD[0] > 0) {

 uTail = (1/bhat[0])*(-sdot[0] - (K[0]-phidot[0])*sat[0]) + (2*uMFSMC_prev[0] -

uMFSMC_pprev[0]);

 uTail = a_T*uTail + (1-a_T)*uTail_prev;

 uControl[1] = map(uTail,0,10,uC_min[1],uC_max[1]);// -

map(uMFSMC[1],uM_min[1],uM_max[1],uC_min[1],uC_max[1]);

 uControl[2] = map(uTail,0,10,uC_min[2],uC_max[2]);// +

map(uMFSMC[1],uM_min[1],uM_max[1],uC_min[1],uC_max[1]);

 }

 else {

 uControl[1] = uC_min[1];// - map(uMFSMC[1],uM_min[1],uM_max[1],uC_min[1],uC_max[1]);

 uControl[2] = uC_min[2];// + map(uMFSMC[1],uM_min[1],uM_max[1],uC_min[1],uC_max[1]);

 }

 if (uControl[1] > uC_min[1]) {

 uControl[1] = uC_min[1];

 }

 if (uControl[1] < uC_max[1]) {

 uControl[1] = uC_max[1];

 }

 if (uControl[2] > uC_max[2]) {

 uControl[2] = uC_max[2];

 }

 if (uControl[2] < uC_min[2]) {

99

 uControl[2] = uC_min[2];

 }

////Estimator////

/*

 for (j = 0; j <= 1; j += 1) {

 P_tilda[j] = (P_prev[j]*uMFSMC[j]*uMFSMC[j]*P_prev[j])/(1 +

lambdaFF*uMFSMC[j]*P_prev[j]*uMFSMC[j]);

 P[j] = (1/lambdaFF)*(P_prev[j] - P_tilda[j]);

 if (abs(s[j]) >= phi[j]){

 e1[j] = xDPS[j] - bhat_prev[j]*uMFSMC[j];

 }

 else {

 e1[j] = 0;

 }

 bhat[j] = bhat_prev[j] + P_tilda[j]*uMFSMC[j]*e1[j];

 bhat[j] = a_b*bhat[j] + (1-a_b)*bhat_prev[j];

 if (bhat[j] < 0.1) {

 bhat[j] = 0.1;

 }

 if (bhat[j] > 5) {

 bhat[j] = 5;

 }

 }*/

/////////////////

/////////////////

 //analogWrite(in1_pin, uControl[0]);

 analogWrite(in1_pin, 0);

 analogWrite(in2_pin, 0);

 //servo1.write(uControl[1]);

 //servo2.write(uControl[2]);

 servo1.write(135);

 servo2.write(45);

 for (j = 0; j <= 1; j += 1) {

 if (t/1000 > 2) {

 e2total[j] = e[j]*e[j] + e2total_prev[j];

 }

 else {

 e2total[j] = 0;

 }

 }

/*

 Serial.print(t/1000);

 Serial.print(" | ");

 Serial.print(xD_ref[0] + xD_offset_avg[0]);

100

 Serial.print(' ');

 Serial.print(xD[0]);

 Serial.print(",");

 Serial.print(xD_ref[1] + xD_offset_avg[1]);

 Serial.print(' ');*/

 Serial.print(xD[1]);

 Serial.print(" | ");/*

 Serial.print(xDPS_ref[0]);

 Serial.print(' ');

 Serial.print(xDPS[0]);

 Serial.print(' ');

 Serial.print(xDPS_ref[1]);

 Serial.print(' ');

 Serial.println(xDPS[1]);

 Serial.print(" | ");

 Serial.print(xDPSS_ref[0]);

 Serial.print(' ');

 Serial.print(xDPSS[0]);

 Serial.print(' ');

 Serial.print(xDPSS_ref[1]);

 Serial.print(' ');

 Serial.print(xDPSS[1]);

 Serial.print(' ');

 Serial.print(uMFSMC[0]);

 Serial.print(' ');

 Serial.print(uControl[0]);

 Serial.print(" | ");*/

 Serial.print(uMFSMC[1]);

 Serial.print(" | ");/*

 Serial.print(uTail);

 Serial.print(' ');

 Serial.print(uControl[1]);

 Serial.print(' ');

 Serial.println(uControl[2]);

 Serial.print(" | ");

 Serial.print(xe[0]);

 Serial.print(' ');

 Serial.print(e[0]);

 Serial.print(' ');

 Serial.print(edot[0]);

 Serial.print(' ');

 Serial.print(eddot[0]);

 Serial.print(' ');

 Serial.print(xe[1]);

 Serial.print(' ');

 Serial.print(e[1]);

101

 Serial.print(' ');

 Serial.print(edot[1]);

 Serial.print(' ');

 Serial.print(eddot[1]);

 Serial.print(" | ");

 Serial.print(bhat[0]);

 Serial.print(' ');

 Serial.print(bhat[1]);

 Serial.print(' ');

 Serial.print(sdot[0]);

 Serial.print(' ');*/

 Serial.print(sdot[1]);

 Serial.print(' ');/*

 Serial.print(s[0]);

 Serial.print(' ');

 Serial.print(phi[0]);

 Serial.print(' ');

 Serial.print(-phi[0]);

 Serial.print(' ');*/

 Serial.print(s[1]);

 Serial.print(' ');

 Serial.print(phi[1]);

 Serial.print(' ');/*

 Serial.print(-phi[1]);

 Serial.print(' ');

 Serial.print(K[0]);

 Serial.print(' ');*/

 Serial.println(K[1]);/*

 Serial.print(' ');

 Serial.print(sqrt(e2total[0]));

 Serial.print(' ');

 Serial.print(sqrt(e2total[1]));

 Serial.print(' ');

 Serial.print(e1[0]);

 Serial.print(' ');

 Serial.print(P[0]);

 Serial.print(' ');

 Serial.print(e1[1]);

 Serial.print(' ');

 Serial.println(P[1]);*/

 for (j = 0; j <= 1; j += 1) {

 e2total_prev[j] = e2total[j];

 xDPSS_prev[j] = xDPSS[j];

 xDPSS_refp[j] = xDPSS_ref[j];

 xDPS_refp[j] = xDPS_ref[j];

102

 xD_refp[j] = xD_ref[j];

 xDPS_prev[j] = xDPS[j];

 xD_prev[j] = xD[j];

 e_prev[j] = e[j];

 xe_prev[j] = xe[j];

 edot_prev[j] = edot[j];

 eddot_prev[j] = eddot[j];

 s_prev[j] = s[j];

 phi_prev[j] = phi[j];

 bhat_prev[j] = bhat[j];

 P_prev[j] = P[j];

 uMFSMC_pprev[j] = uMFSMC_prev[j];

 uMFSMC_prev[j] = uMFSMC[j];

 }

 uTail_prev = uTail;

 delay(dt);

 }/*

 if (xD[0] > 30) {

 analogWrite(in1_pin,0);

 analogWrite(in2_pin,0);

 servo1.write(servoOffset[0]);

 servo2.write(servoOffset[1]);

 Serial.println("Kill-Switch Engaged");

 //TestFile.println("Kill-Switch Engaged");

 //TestFile.close();

 delay(dt);

 exit(0);

 }

 if (xD[0] < -30) {

 analogWrite(in1_pin,0);

 analogWrite(in2_pin,0);

 servo1.write(servoOffset[0]);

 servo2.write(servoOffset[1]);

 Serial.println("Kill-Switch Engaged");

 //TestFile.println("Kill-Switch Engaged");

 delay(dt);

 exit(0);

 //TestFile.close();

 }*/

 if (t > tfinal*1000) {

 Serial.print("Test Complete... Final Score: ");

 Serial.print(sqrt(e2total[0]));

 Serial.print(' ');

 Serial.print(sqrt(e2total[1]));

 //TestFile.print("Test Complete... Final Score: ");

 //TestFile.print(sqrt(e2total[0]));

103

 //TestFile.print(' ');

 //TestFile.print(sqrt(e2total[1]));

 //TestFile.print(' ');

 //TestFile.print(sqrt(e2total[2]));

 //TestFile.close();

 delay(dt);

 analogWrite(in1_pin, 0);

 analogWrite(in2_pin, 0);

 servo1.write(servoOffset[0]);

 servo2.write(servoOffset[1]);

 exit(0);

 }

}

////////////////////////

/*

 * LQR Control of a DC Motor Balancing System

 * 5V dc motor with a Servo for thrust vectoring

 * MISO System

 * Best Final RSSQ(e) Score =====> Pitch: 65.01 | Yaw: 22.88

 */

#include <BasicLinearAlgebra.h>

#include <ElementStorage.h>

#include <Servo.h>

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

#include <utility/imumaths.h>

Servo servo;

const int MotorPinA = 4;

const int MotorSpeedPinA = 5;

const int CCW = HIGH;

const int CW = LOW;

uint16_t BNO055_SAMPLERATE_DELAY_MS = 5; //how often to read data from the board, milli

Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x28);

////SUGGESTED TUNING PARAMETERS////

double uCP_max = 235, uCP_min = 125; // Max and min PWM Signal

double uMP_max = 50, uMP_min = 0; // Max and min control law output

double uCS_max = 45, uCS_min = -45; // Max and Min Servo angle

double uMS_max = 80, uMS_min = -80; // Max and min control law output

double a_r[2] = {0.005, 0.001};

104

double ServoOffset = 90;

double uControl[2], uLQR[2];

double uC_max[2] = {uCP_max,uCS_max}, uC_min[2] = {uCP_min,uCS_min}; //Max and Min Actuator

Limits {PWM,DEG}

double uM_max[2] = {uMP_max,uMS_max}, uM_min[2] = {uMP_min,uMS_min}; //Max and Min

Control Law Outputs {Prop,Servo}

double a_g = .005, a_e = 0.1;

double xDPS_prev[2] = {0,0}, xD_prev[2] = {0,0};

double xD[2], xDPS[2], xDPSS[2], xDPSS_prev[2] = {0,0};

double xD_ref[2] = {0,0}, xD_refp[2] = {0,0};

double xDPS_ref[2] = {0,0}, xDPSS_ref[2] = {0,0};

double xDPS_refp[2] = {0,0}, xDPSS_refp[2] = {0,0};

double xD_offset[2], xD_offset_total[2], xD_offset_total_prev[2] = {0,0};

double xDPS_offset[2], xDPS_offset_total[2], xDPS_offset_total_prev[2] = {0,0};

double xD_offset_avg[2], xDPS_offset_avg[2];

double e[2], xe[2], edot[2], eddot[2];

double e_prev[2] = {0,0}, xe_prev[2] = {0,0}, edot_prev[2] = {0,0}, eddot_prev[2] = {0,0};

double dt = BNO055_SAMPLERATE_DELAY_MS, t_prev = 0, t = 0;

const int tfinal = 25;

double e2total_prev[2] = {0,0}, e2total[2];

int n = 0, ntotal = 200;

int j = 0;

void setup() {

 Serial.begin(115200);

 pinMode(MotorPinA, OUTPUT);

 pinMode(MotorSpeedPinA, OUTPUT);

 servo.attach(8);

 servo.write(ServoOffset);

 Wire.begin();

 if (!bno.begin())

 {

 Serial.print("No BNO055 detected");

 while (1);

 }

}

void loop(){

 digitalWrite(MotorPinA, CW);

105

 analogWrite(MotorSpeedPinA, uCP_min);

 delay(2000);

 Serial.println("Begin Calibration");

 for (n = 0; n <= ntotal; n +=1){

 //BNO055

 imu::Vector<3> angRate = bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

 imu::Vector<3> angPos = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

 xD_offset[0] = angPos.z();

 xDPS_offset[0] = -angRate.x();

 xD_offset[1] = angPos.x();

 if (xD_offset[1] > 180){

 xD_offset[1] = xD_offset[1] - 360;

 }

 xDPS_offset[1] = -angRate.z();

 xD_offset_total[0] = xD_offset[0] + xD_offset_total_prev[0];

 xDPS_offset_total[0] = xDPS_offset[0] + xDPS_offset_total_prev[0];

 xD_offset_total[1] = xD_offset[1] + xD_offset_total_prev[1];

 xDPS_offset_total[1] = xDPS_offset[1] + xDPS_offset_total_prev[1];

 xD_offset_total_prev[0] = xD_offset_total[0];

 xDPS_offset_total_prev[0] = xDPS_offset_total[0];

 xD_offset_total_prev[1] = xD_offset_total[1];

 xDPS_offset_total_prev[1] = xDPS_offset_total[1];

 delay(10);

 }

 xD_offset_avg[0] = xD_offset_total[0] / ntotal;

 xDPS_offset_avg[0] = xDPS_offset_total[0] / ntotal;

 xD_offset_avg[1] = xD_offset_total[1] / ntotal;

 xDPS_offset_avg[1] = xDPS_offset_total[1] / ntotal;

 Serial.print(xD_offset_avg[0]);

 Serial.print(" ");

 Serial.print(xDPS_offset_avg[0]);

 Serial.print(" ");

 Serial.print(xD_offset_avg[1]);

 Serial.print(" ");

 Serial.println(xDPS_offset_avg[1]);

 Serial.println("Calibration Complete... Begin Stabilization");

 for (t = 1; t <= tfinal*1000; t += dt){

 digitalWrite(MotorPinA, CW);

 if (t/1000 < 1) {

 //Pitch

 xD_ref[0] = 0;

106

 xDPS_ref[0] = 0;

 xDPSS_ref[0] = 0;

 //Yaw

 xD_ref[1] = 0;

 xDPS_ref[1] = 0;

 xDPSS_ref[1] = 0;

 }

 if ((t/1000) > 1 && (t/1000) < 7.5) {

 // STEP INPUT

 xD_ref[0] = -xD_offset_avg[0];

 xD_ref[1] = 0;

 // PRE-FILTER

 xD_ref[0] = a_r[0]*xD_ref[0] + (1-a_r[0])*xD_refp[0];

 xD_ref[1] = a_r[1]*xD_ref[1] + (1-a_r[1])*xD_refp[1];

 // Velo Derivative and Low-Pass Filter

 xDPS_ref[0] = (xD_ref[0] - xD_refp[0]) / (dt/1000);

 xDPS_ref[0] = a_r[0]*xDPS_ref[0] + (1-a_r[0])*xDPS_refp[0];

 xDPS_ref[1] = (xD_ref[1] - xD_refp[1]) / (dt/1000);

 xDPS_ref[1] = a_r[1]*xDPS_ref[1] + (1-a_r[1])*xDPS_refp[1];

 // Acc Derivative and Low-Pass Filter

 xDPSS_ref[0] = (xDPS_ref[0] - xDPS_refp[0]) / (dt/1000);

 xDPSS_ref[0] = a_r[0]*xDPS_ref[0] + (1-a_r[0])*xDPSS_refp[0];

 xDPSS_ref[1] = (xDPS_ref[1] - xDPS_refp[1]) / (dt/1000);

 xDPSS_ref[1] = a_r[1]*xDPS_ref[1] + (1-a_r[1])*xDPSS_refp[1];

 }

 if ((t/1000) > 7.5 && (t/1000) < tfinal) {

 // STEP INPUT

 xD_ref[0] = -xD_offset_avg[0] + 7.5;

 xD_ref[1] = 0;

 // PRE-FILTER

 xD_ref[0] = a_r[0]*xD_ref[0] + (1-a_r[0])*xD_refp[0];

 xD_ref[1] = a_r[1]*xD_ref[1] + (1-a_r[1])*xD_refp[1];

 // Velo Derivative and Low-Pass Filter

 xDPS_ref[0] = (xD_ref[0] - xD_refp[0]) / (dt/1000);

 xDPS_ref[0] = a_r[0]*xDPS_ref[0] + (1-a_r[0])*xDPS_refp[0];

 xDPS_ref[1] = (xD_ref[1] - xD_refp[1]) / (dt/1000);

 xDPS_ref[1] = a_r[1]*xDPS_ref[1] + (1-a_r[1])*xDPS_refp[1];

 // Acc Derivative and Low-Pass Filter

 xDPSS_ref[0] = (xDPS_ref[0] - xDPS_refp[0]) / (dt/1000);

 xDPSS_ref[0] = a_r[0]*xDPS_ref[0] + (1-a_r[0])*xDPSS_refp[0];

 xDPSS_ref[1] = (xDPS_ref[1] - xDPS_refp[1]) / (dt/1000);

 xDPSS_ref[1] = a_r[1]*xDPS_ref[1] + (1-a_r[1])*xDPSS_refp[1];

 }

 //BNO055

 imu::Vector<3> angRate = bno.getVector(Adafruit_BNO055::VECTOR_GYROSCOPE);

107

 imu::Vector<3> angPos = bno.getVector(Adafruit_BNO055::VECTOR_EULER);

 xD[0] = angPos.z() - xD_offset_avg[0];

 xDPS[0] = -angRate.x();

 xDPS[0] = a_g*xDPS[0] + (1-a_g)*xDPS_prev[0];

 xDPSS[0] = (xDPS[0] - xDPS_prev[0]) / (dt/1000);

 xDPSS[0] = a_g*xDPSS[0] + (1-a_g)*xDPSS_prev[0];

 xD[1] = angPos.x();

 if (xD[1] > 180){

 xD[1] = xD[1] - 360 - xD_offset_avg[1];

 }

 else {

 xD[1] = angPos.x() - xD_offset_avg[1];

 }

 xDPS[1] = -angRate.z();

 xDPS[1] = a_g*xDPS[1] + (1-a_g)*xDPS_prev[1];

 xDPSS[1] = (xDPS[1] - xDPS_prev[1]) / (dt/1000);

 xDPSS[1] = a_g*xDPSS[1] + (1-a_g)*xDPSS_prev[1];

// ERROR FCN //

 for (j = 0; j <= 1; j += 1){

 e[j] = xD[j] - xD_ref[j];

 xe[j] = e[j]*(dt/1000) + xe_prev[j];

 edot[j] = xDPS[j] - xDPS_ref[j];

 // Low Pass Filter

 edot[j] = edot[j]*a_e + (1-a_e)*edot_prev[j];

 eddot[j] = xDPSS[j] - xDPSS_ref[j];

 eddot[j] = eddot[j]*a_e + (1-a_e)*eddot_prev[j];

 }

/////////////////

///// LQR /////

 //{theta, phi, thetadot, phidot, xe_theta, xe_phi, e_theta, e_phi}

 double K1[8] = {1.8031, 1.0737, 0, 0, 0.9591, 0, 0.116, 0};

 double K2[8] = {0 , 0, 1.631, 0.9286, 0, -0.8899, 0, -0.1122};

 uLQR[0] = -(K1[0]*xD[0] + K1[1]*xDPS[0] + K1[2]*xD[1] + K1[3]*xDPS[1] + K1[4]*xe[0] +

K1[5]*xe[1] + K1[6]*e[0] + K1[7]*e[1]);

 uLQR[1] = -(K2[0]*xD[0] + K2[1]*xDPS[0] + K2[2]*xD[1] + K2[3]*xDPS[1] + K2[4]*xe[0] +

K2[5]*xe[1] + K2[6]*e[0] + K2[7]*e[1]);

 uControl[0] = map(uLQR[0],uMP_min,uMP_max,uCP_min,uCP_max);

 uControl[1] = uLQR[1];//map(uLQR[1],uMS_min,uMS_max,uCS_min,uCS_max);

 if (uControl[0] > uC_max[0]) {

 uControl[0] = uC_max[0];

108

 }

 if (uControl[0] < uC_min[0]) {

 uControl[0] = uC_min[0];

 }

 if (uControl[1] > uC_max[1]) {

 uControl[1] = uC_max[1];

 }

 if (uControl[1] < uC_min[1]) {

 uControl[1] = uC_min[1];

 }

/////////////////

/////////////////

 analogWrite(MotorSpeedPinA, uControl[0]);

 servo.write(ServoOffset + uControl[1]);

 for (j = 0; j <= 1; j += 1){

 if (t/1000 > 2) {

 e2total[j] = e[j]*e[j] + e2total_prev[j];

 }

 else {

 e2total[j] = 0;

 }

 }

 Serial.print(t/1000);

 Serial.print(' ');

 Serial.print(xD_ref[0] + xD_offset_avg[0]);

 Serial.print(' ');

 Serial.print(xD[0] + xD_offset_avg[0]);

 Serial.print(' ');

 Serial.print(xD_ref[1]);

 Serial.print(' ');

 Serial.print(xD[1]);

 Serial.print(' ');

 Serial.print(xDPS_ref[0]);

 Serial.print(' ');

 Serial.print(xDPS[0]);

 Serial.print(' ');

 Serial.print(xDPS_ref[1]);

 Serial.print(' ');

 Serial.print(xDPS[1]);

 Serial.print(' ');

 Serial.print(xDPSS_ref[0]);

 Serial.print(' ');

 Serial.print(xDPSS[0]);

109

 Serial.print(' ');

 Serial.print(xDPSS_ref[1]);

 Serial.print(' ');

 Serial.print(xDPSS[1]);

 Serial.print(' ');

 Serial.print(uLQR[0]);

 Serial.print(' ');

 Serial.print(uControl[0]);

 Serial.print(' ');

 Serial.print(uLQR[1]);

 Serial.print(' ');

 Serial.print(uControl[1]);

 Serial.print(' ');

 Serial.print(xe[0]);

 Serial.print(' ');

 Serial.print(xe[1]);

 Serial.print(' ');

 Serial.print(e[0]);

 Serial.print(' ');

 Serial.print(e[1]);

 Serial.print(' ');

 Serial.print(edot[0]);

 Serial.print(' ');

 Serial.print(edot[1]);

 Serial.print(' ');

 Serial.print(eddot[0]);

 Serial.print(' ');

 Serial.print(eddot[1]);

 Serial.print(' ');

 Serial.print(sqrt(e2total[0]));

 Serial.print(' ');

 Serial.println(sqrt(e2total[1]));

 for (j = 0; j <= 1; j += 1) {

 e2total_prev[j] = e2total[j];

 xDPSS_prev[j] = xDPSS[j];

 xDPSS_refp[j] = xDPSS_ref[j];

 xDPS_refp[j] = xDPS_ref[j];

 xD_refp[j] = xD_ref[j];

 xDPS_prev[j] = xDPS[j];

 xD_prev[j] = xD[j];

 e_prev[j] = e[j];

 xe_prev[j] = xe[j];

 edot_prev[j] = edot[j];

 eddot_prev[j] = eddot[j];

110

 }

 delay(dt);

 if (xD[0] > 45 || xD[1] > 25) {

 analogWrite(MotorSpeedPinA,0);

 Serial.println("Kill-Switch Engaged");

 delay(dt);

 exit(0);

 }

 if (xD[0] < -45 || xD[1] < -25) {

 analogWrite(MotorSpeedPinA,0);

 Serial.println("Kill-Switch Engaged");

 delay(dt);

 exit(0);

 }

 }

 Serial.print("Test Complete... Final Score: ");

 Serial.print(sqrt(e2total[0]));

 Serial.print(" ");

 Serial.println(sqrt(e2total[1]));

 delay(dt);

 analogWrite(MotorSpeedPinA, 0);

 servo.write(ServoOffset);

 exit(0);

}

111

	Implementation of Model-Free Sliding Mode Control on a Multi-Input Multi-Output System
	Recommended Citation

	tmp.1684253853.pdf.PA_LB

