
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-9-2023

Rule Mining from Knowledge Bases: Semantics, Queries, and Rule Mining from Knowledge Bases: Semantics, Queries, and

Estimations Estimations

Bhaskar Krishna Gangadhar
bg4437@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Gangadhar, Bhaskar Krishna, "Rule Mining from Knowledge Bases: Semantics, Queries, and Estimations"
(2023). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11439?utm_source=repository.rit.edu%2Ftheses%2F11439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Rule Mining from Knowledge Bases: Semantics, Queries,

and Estimations

by

Bhaskar Krishna Gangadhar

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science

in Computing and Information Sciences

B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology

9th May 2023

Abstract

A knowledge base is a large collection of real-world facts which can be in-
terpreted by both humans and machines. Most of these knowledge bases are
incomplete as some are extracted from natural language sources that con-
tain gaps, while others are manually developed and extended. Rule mining
is the process of discovering rules that succinctly capture the inference pat-
terns present in the knowledge base at hand. These rules can be executed
and new, missing facts can be inferred to complete knowledge bases. The
new rules also help identify errors in the knowledge base and help understand
its content better. This thesis deals with one popular rule mining algorithm,
AMIE. Knowledge bases do not contain negative facts. So, in order to mea-
sure the quality of the mined rules, we need to deduce negative evidence from
the actual (positive) facts present in the knowledge base. In the standard
approach, we assume the knowledge is complete and any missing information
in the knowledge base is considered a negative. However, knowledge bases
operate under the open world assumption, that is, missing information in the
knowledge base is treated as unknown. AMIE introduces a less restrictive
measure where facts are considered either negative or unknown depending on
the positive facts present in the knowledge base. The confidence of a given rule
is measured by counting the number of occurrences of facts in the knowledge
base that fit the rule. A rule contains multiple components, each component
of the rule is matched against the whole knowledge base. This confidence
measure follows Prolog semantics where different components of the rule can
share the same element of the fact. We observed this approach to measuring
confidence does not always obtain the best result. In this thesis, we explore a
new approach using Graph semantics, which restricts different components of
the rule from sharing the same element of a fact, resulting in confidence gain
for certain rules. Our experimental results show that we mined more rules
when we use Graph semantics as a confidence measure compared to Prolog se-
mantics. Confidence measure of certain rules improve with Graph semantics.
AMIE uses the information spread (functionality) around one component of
the rule to dictate how the confidence will be measured. We demonstrate gain
in confidence for certain rules by altering the definition of functionality. In
addition, we propose a new Apriori algorithm for rule mining. We conceptu-
alize rules as graphs and generate unique graph patterns for rules of various
sizes. We then expand these patterns instead of growing rules, which reduces
the number of queries to the knowledge base.

ii

iii

The thesis ”Rule Mining from Knowledge Bases: Semantics, Queries, and Es-
timations” by Bhaskar Krishna Gangadhar has been examined and approved
by the following Examination Committee:

Prof. Carlos R Rivero
Associate Professor
Thesis Committee chair

Signature

Date

Prof. Thomas J. Borrelli
Principal Lecturer

Signature

Date

Prof. Michael Mior
Assistant Professor

Signature

Date

Contents

1 Introduction 1

2 Background 5
2.1 Graphs and Graph Databases 5
2.2 Knowledge base and rules . 8
2.3 Rule mining . 11

3 Approach 19
3.1 Algorithms . 19
3.2 Contributions . 23

4 Experimental results 33
4.1 Knowledge bases . 33
4.2 Experimental setup . 34
4.3 Quantitative results . 34
4.4 Qualitative analysis . 39

5 Conclusions 42
5.1 Conclusion . 42
5.2 Future Work . 43

Appendices 46

A Appendix 47
A.1 Implementation . 47
A.2 Apriori approach . 50

iv

List of Figures

2.1 Undirected simple graph . 5
2.2 Directed graph . 5
2.3 Sample property graph showing relationships between student,

professor and courses . 7
2.4 Example of a knowledge graph showing student, course and

advisor information . 10

3.1 Two graph patterns representing all size 2 closed Horn rules. . 30
3.2 Two step process to grow graph pattern. There are 2 ways to

add a closing edge to the base graph and 4 different ways to
add a new dangling node and it’s connection to the base graph. 31

3.3 Graph pattern representing a possible size 3 closed Horn rule. . 31

v

List of Tables

2.1 Combination of nodes that satisfy the relationship pattern of
the rule [attended(X ,Z)∧ teaches(Y ,Z)⇒ hasAdvisor(X ,Y)]
over Figure 2.4. 11

2.2 All instantiations of the rule [attended(X ,Z)∧teaches(Y ,Z)⇒
hasAdvisor(X ,Y)]. 13

2.3 Facts from the example knowledge base, Figure 2.4, that fit the
rule [hasAdvisor(X ,Y) ⇒ employedBy(X ,Y)]. 16

3.1 Facts from the example knowledge base, Figure 2.4, for the
predicate hasAdvisor . 26

3.2 Facts from the example knowledge base, Figure 2.4, for the
predicate teaches . 26

3.3 Instantiations for the graph pattern in Figure 3.3 29

4.1 Summary of standard knowledge bases 34
4.2 Total number of rules mined by AMIE and our AMIE imple-

mentation under 4 different policies 35
4.3 Qualitative comparison of the rules across different policies. ∩

indicates the rules in common (Intersection). M indicates the
missing rules. A are the additional rules mined. ↑PCA indicates
the rules that gained PCA confidence. 37

4.4 Comparing number of rules mined in each size (2, 3 and 4) by
different policies . 38

4.5 Functionality for hasChild . 39
4.6 Functionality for livesIn . 40
4.7 Rules that gain PCA confidence. 41

vi

LIST OF TABLES vii

4.8 Rules that were additionally mined. 41

A.1 Comparing execution time of our implementations of the AMIE
algorithm with the Apriori algorithm 51

Chapter 1

Introduction

In recent years, we have observed a rise in large knowledge bases (KBs), such
as NELL [3], YAGO [17], DBpedia [9] and Freebase [2]. These knowledge bases
represent real-world facts in the form of entities and their relationships. The
scale of these knowledge bases continues to grow, with some knowledge bases
containing hundreds of millions of facts, and yet they are not complete [15].
Knowledge bases are curated either manually by humans or extracted using
automated data scraping techniques over the Internet, contributing to the
incompleteness of the knowledge bases. Rule mining is a task that helps
complete a knowledge base by discovering frequent inference patterns. These
patterns in the form of rules can be executed and new knowledge discovered.
Rule mining uses only the internal information present in the knowledge base,
i.e., the facts it comprises, to mine rules. There are other approaches to
complete knowledge bases that rely on external sources; however, they are
out of scope of this thesis. AMIE [7] [6] [8] is a popular mining algorithm
that utilizes association rule mining to extract information from RDF-style
knowledge bases. In these knowledge bases, every fact is in the form of a
triple(s, p, o) (also referred to as Atom) with s denoting the subject, p the
predicate or relationship, and o denoting the object. These triples can also
be represented as p(s, o). For example, attended(bhaskar , csci620) is a triple
representing a fact in a knowledge base that a student “bhaskar” has attended
the class “csci620”, and attended(X ,Y) is an abstraction of the fact where
X , Y are variables. A rule is composed of two parts B ⇒ H , where H is
head atom and B is a non-empty set of body atoms that form a conjunction

1

CHAPTER 1. INTRODUCTION 2

(Boolean AND).

Proposal This thesis focuses on the confidence measure defined in the AMIE
paper and extends this confidence computation by introducing new semantics.
The confidence measure helps us judge the quality of the mined rules based
on the information known to the knowledge base. Confidence of a rule is mea-
sured by the ratio of number of facts in the knowledge base that satisfy both
the body atom and the head atom (entire rule), divided by the number of facts
that satisfy just the body of the rule. Each atom of the rule is mapped to facts
in the knowledge base that fits it. This definition of confidence is a standard
way of computing rule quality. AMIE also introduces a new, less restrictive
measurement approach called PCA (Partial completeness assumption) confi-
dence. The PCA confidence of a rule refers to the number of facts that meet
the conditions of the rule, with one component, subject or object, of the head
atom fixed while the other component is left blank. We observe that all these
definitions follow Prolog semantics [4], where different free variables across
atoms can share the element of a triple and contribute to the confidence.

We introduce a Graph semantics approach to confidence computation where
we restrict different free variables from substituting the element of a fact. We
also study the functionality of a rule which decides whether subject or object
should be fixed while computing the PCA confidence of a rule. We present
4 different policies to compute the confidence of a rule as follows: Prolog se-
mantics with functionality, Prolog semantics with best PCA confidence, Graph
semantics with functionality, and Graph semantics with best PCA confidence.
In our experiments, we compare the number of rules mined when each policy
is used. We also discuss the increase in confidence values for several rules as
well as certain rules that are missing from the output and additional rules
that were mined.We present details on how functionality works and show that
certain rules gain confidence when we alter the definition of functionality.

We have implemented the rule mining algorithm using Java, and Neo4j,
a graph database. The implementation allows us to represent any rule in
the form of a Cypher query, Neo4j database querying language. A unique
feature of Cypher is its ability to visually match patterns and relationships. It
accomplishes this through a syntax that resembles ASCII-art, where circular
brackets are used to represent nodes, and arrows denote relationships and their
directions, as in (nodes) − [: ARE CONNECTED TO]− > (otherNodes). A

CHAPTER 1. INTRODUCTION 3

rule is essentially a representation of relationships among various types of
nodes. All the quality measure definitions in the AMIE algorithm can be
represented as Cypher queries, eliminating the need to write code logic. Once
the knowledge base is loaded into the graph database, we can convert a rule to
its Cypher query representation and compute its confidence measures without
the need to mine the rule.

The AMIE algorithm is iterative in exploring the search space while gen-
erating rules. We have explored graph enumeration methods to efficiently
generate rules of a particular size while taking advantage of the fact that the
knowledge base is now represented as a graph. We call this new approach
Apriori, as it mines all possible rules of a particular size before advancing to
mine next size rules. This new approach represents rules as graph patterns
and expands these graph patterns unlike the AMIE’s algorithm, where each
rule is expanded. This reduced the number of database queries required to
mine all the possible rules of a particular size, as there are fixed number of
unique graphs patterns.

The following research questions guide this study:

• Is Graph semantics more adequate than Prolog semantics to measure
quality in knowledge bases?

• Can we gain confidence by independently computing functionality for
each rule?

• Can we optimize the AMIE algorithm to reduce the number of queries
to the knowledge base?

Contributions

• Graph semantics.

• Implementation of rule mining algorithm, AMIE, using Java and Neo4j.

• Four different policies to mine rules.

• Apriori approach to rule mining.

CHAPTER 1. INTRODUCTION 4

The rest of the report is organized as follows. Chapter 2 establishes the
necessary background information required to understand the rule mining pro-
cess. Chapter 3 explains our approach to implementing the rule mining algo-
rithm, Cypher queries used to compute various measures, introduce the Graph
semantics policy, and an Apriori approach to mining rules. In Chapter 4 we
present our experimental results. Chapter 5 summarizes the work and conclu-
sions. The Appendix section contains additional implementation details and
reference to the Git repository hosting the complete implementation.

Chapter 2

Background

This chapter introduces graphs, graph databases, Neo4j, knowledge graphs,
and rule mining.

2.1 Graphs and Graph Databases

A graph is an ordered pair G = (V ,E), where V is a set of vertices (sometimes
referred to as points, junctions, or nodes) and E is a set of edges (also called
relationships or links). Edges can either be directed (directed graph, see Figure
2.1) or undirected (undirected graph, see Figure 2.2).

Graph databases are a type of NoSQL (also known as Non-SQL, non-
relational, and not-only-SQL) databases that use graph structures like nodes,
edges, and properties (of edges) to represent and store data. We are inter-
ested in directed graphs as the direction of the edge is of significance to us.
An edge represents the relationship between two nodes, and the direction of

Figure 2.1: Undirected simple graph Figure 2.2: Directed graph

5

CHAPTER 2. BACKGROUND 6

the edge tells us which node is the subject and the object. There are pri-
marily two graph data models, knowledge graph model and property graph
model. Knowledge graph model stores the data in the form of triples, subject-
predicate-object. Two nodes represent subject and object data entities, and
the edge linking these two nodes indicates the relationship between them. In
property graph model each entity node has capabilities to store properties
which will have details about the entity and relationships. Detailed definition
of property graph model is below.

Our graph database of choice is Neo4j which implements the property
graph model mentioned earlier. It uses Cypher query language [5], which is
a declarative query language that allows for expressive and efficient querying,
updating, and administering of the database. Neo4j allows us to have labels
for nodes and edges, we will store the entity related information within these
labels.

Let L and T be sets of node labels and edge types, respectively. A property
graph is a tuple G = ⟨V ,E , subject , object , ι, λ, τ⟩ [5] where:

• V is a finite set of nodes.

• E : V ×V is a finite set of relationships.

• subject : E → V is a function that maps each edge to its subject node.

• object: E → V is a function that maps each edge to its object node.

• ι : (V ∪E) ×K → V is a function that maps a (node or edge) identifier
and a property key to a value. It is assumed that ι is a total function
but that its “non-null support” is finite: there are only finitely many
j ∈ (V ∪ E) and k ∈ K such that ι(j , k) ̸= null.

• λ : V → 2L is a function that maps each node identifier to a finite
(possibly empty) set of labels.

• τ : R → T is a function that maps each relationship identifier to a
relationship type

Figure 2.3 shows an example property graph where:

• V = {n1,n2,n3,n4}

CHAPTER 2. BACKGROUND 7

Figure 2.3: Sample property graph showing relationships between student,
professor and courses

• E = {p1, p2, p3, p4}

• subject(p1) = n1, subject(p2) = n1, subject(p3) = n2, subject(p4) = n1

• object(p1) = n2, object(p2) = n3, object(p3) = n3, object(p4) = n4

• ι(n1,name) = bhaskar , ι(n2,name) = dr Carlos, ι(n3, id) = csci620,
ι(n3, title) = Introduction to Big Data, ι(n4, id) = csci665,
ι(n4, title) = Foundations of Algorithms

• λ(n1) = {student}, λ(n2) = {professor}, λ(n3) = λ(n4) = {course}

• τ(p2) = τ(p4) = {attended}, τ(p1) = {hasAdvisor}, τ(p3) = {teaches}

The Cypher query language uses the MATCH clause to define patterns of
interest followed by a WHERE expression to filter matches with an optional
relational operation clause, ending with a RETURN statement to output the

CHAPTER 2. BACKGROUND 8

items of interest. Below are some basic query examples to retrieve data from
a graph.

MATCH (n) RETURN n (2.1)

The above query returns all the nodes present in the database as rows,
where each row represents an unique node present in the graph. We can return
items of interest like properties, relationships, predicate types and others.
Each of these items will be returned as their own column.

MATCH ()− [p]− > () RETURN r (2.2)

We can get all the relationships in the graph using the above query. Sim-
ilar to other database query languages, Cypher supports aggregations using
COUNT, AVG, SUM, MIN and MAX. The query below returns the total count
of COURSE nodes which is 2.

MATCH (n : COURSE)

RETURN COUNT (∗)
(2.3)

Cypher includes a WITH clause which is like the RETURN clause and
separates the parts of a query. After the WITH clause, only the returning
columns can be accessed. For example:

MATCH (s)− []− > (o)

WITH DISTINCT s

RETURN s.name

(2.4)

2.2 Knowledge base and rules

Knowledge base is a collections of facts and these facts are stored as directed
graphs. The facts represent entities, relationships, events, concepts, and other
information with many relationships among them. The facts can be repre-
sented in the form of triples (s, p, o), which can be alternatively represented
as p(s, o) that forms a directed edge where s is the subject, p is the predicate,
and o is the object of the fact.

CHAPTER 2. BACKGROUND 9

Moving forward upper case letters will be reserved to indicate variables,
for example, A, B, G, H, M, X, Y, and all the constants will start with lower
case letters, for example, bhaskar, dr Carlos, nari. Figure 2.4 is an example
of a knowledge graph. Notice that there are 13 nodes in the graph, and 4
unique types of predicates (teaches, hasAdvisor, employedBy and attended).
For example, node bhaskar is connected to node csci620 by the predicate type
attended . The triple (bhaskar , hasAdvisor , dr Carlos) represents one fact in
the knowledge graph.

An atom is an expression of the form p(X ,Y), where p is a predicate
and X,Y are variables that are instantiated with facts in the knowledge graph.
For example, hasAdvisor(bhaskar , dr Carlos) is an atom where hasAdvisor
represents the kind of relation between two people, X = bhaskar and Y =
dr Carlos.

A (Horn) rule is a set of atoms of the form B ⇒ H , where B is a set of
body atoms B1 ∧ B2 ∧ · · · ∧ Bn , and H is the head atom [7]. Horn rule One
example of such rule would be:

attended(X ,Z) ∧ teaches(Y ,Z) ⇒ hasAdvisor(X ,Y).

Where atoms attended(X ,Z) and teaches(Y ,Z) form the body of the rule,
and hasAdvisor(X ,Y) is the head. The Cypher query for the rule would have a
MATCH clause for each atom. Subject and object of the atom would translate
to node variables of the MATCH clause, and the predicate would represent
the relationship of the edge between the atoms like shown below.

MATCH (X)− [: ‘attended ‘]→ (Z)

MATCH (Y)− [: ‘teaches‘]→ (Z)

MATCH (X)− [: ‘hasAdvisor ‘]→ (Y)

RETURN DISTINCT X , Z , Y

When we execute (instantiate) this rule over the graph we get 5 different
combinations of nodes (Table 2.1) for X, Z, and Y that MATCH the given
connection of relationships.

A rule is closed if every variable (subject and object) in the rule appears
at least twice [7]. The above example rule is closed, all the variables (X , Y ,

CHAPTER 2. BACKGROUND 10

Figure 2.4: Example of a knowledge graph showing student, course and
advisor information

CHAPTER 2. BACKGROUND 11

Table 2.1: Combination of nodes that satisfy the relationship pattern of the
rule [attended(X ,Z) ∧ teaches(Y ,Z)⇒ hasAdvisor(X ,Y)] over Figure 2.4.

X Z Y

md Towhidul csci723 dr Carlos
nari csci723 dr Carlos
bhaskar csci723 dr Carlos
nari csci620 dr Carlos
bhaskar csci620 dr Carlos

and Z) appear twice. Example of a rule that is not closed is shown below,
where both the variables Y and Z appear only once.

attended(X ,Y) ⇒ hasAdvisor(X ,Z).

2.3 Rule mining

Rule mining is a method for identifying frequent patterns, correlations, asso-
ciations, or causal structures from large data-sets (knowledge bases). There
are various automated approaches to mine a variety of rules. For example,
association rule mining [1] uses transactional data. Logical rule mining [14]
takes advantage of probabilistic graphical models to mine new facts for a rela-
tionship of interest. Expert rule mining [12] requires a domain expert to help
understand the data before rules are mined. Each approach defines their own
methodologies to mine rules. AnyBURL (Anytime botton up rule learner) [10]
proposes a bottom up approach to mine logical rules. The algorithm learns
all the rules of a particular size in a given time span, comparing it with the
previously found rules and repeating the process. AMIE [7] mines Horn rules
by following top down approach and mining all possible rules for a particu-
lar size before increasing the rule size. RLvLR [13] introduces an embedded
model approach to mine rules from knowledge bases. The rules mined in all
the different approaches have to be judged for their quality, for which we will
now introduce various measures.

CHAPTER 2. BACKGROUND 12

Significance

Significance of a rule quantifies the value of the rule over the knowledge graph
at hand. The prediction of a rule is the result of executing the rule over
the graph. A prediction is false if body of the rule is instantiated but the
instantiation of the head atom is not present in the graph, and the prediction
is true if the entire rule is instantiated as a conjunction (body and head atoms).

Support, a significance measure, of a rule R is the number of true predic-
tions [7]. The total number of distinct pairs of subject and object in the head
of all instantiations. For example, consider the rule

hasAdvisor(X ,Y) ⇒ employedBy(X ,Y). (2.5)

According to our example knowledge graph in Figure 2.4, we know that
only one pair of (X ,Y) fits the above rule in equation 2.5 and this is our only
true prediction for the rule so, the support would be 1.

hasAdvisor(bhaskar , dr Carlos) ⇒ employedBy(bhaskar , dr Carlos).

For a different rule, in equation 2.6, 3 distinct combinations of nodes
(X ,Y) in our example knowledge graph from Figure 2.4 fit the head of all
instanitations of the rule. Table 2.2 shows these 3 distinct combinations in
blue color. So the support for this rule in equation 2.6 is 3.

attended(X ,Z) ∧ teaches(Y ,Z) ⇒ hasAdvisor(X ,Y) (2.6)

Algorithm 1, InstantiateAtoms, shows how to instantiate a rule. The re-
cursive algorithm requires the knowledge graph and a rule for input. It outputs
all possible combinations of the subjects and the objects from the knowledge
graph that fit the variables in the rule. Line 1 is the base case to the recur-
sive algorithm. If the base case is satisfied, all possible instantiations have
been found and are added to the set of all instantiations Φ. Otherwise, the
algorithm selects an atom A from A on line 4. The atom is then instantiated
by substituting its variables with nodes present in the knowledge graph. The
algorithm checks if the instantiated atom A is present in the knowledge graph
G on line 23, checking if an edge exists between the nodes picked for the sub-
ject and object variable. If it is, the instantiated variables and it’s mappings

CHAPTER 2. BACKGROUND 13

Table 2.2: All instantiations of the rule
[attended(X ,Z) ∧ teaches(Y ,Z)⇒ hasAdvisor(X ,Y)].

X Z Y

md Towhidul csci723 dr Carlos
nari csci723 dr Carlos
bhaskar csci723 dr Carlos
nari csci620 dr Carlos
bhaskar csci620 dr Carlos

are added to the current instantiation ϕ and the algorithm continues recur-
sively by instantiating the remaining atoms in A, but with the instantiated
variables already added to the current instantiation ϕ. Before proceeding to
the next iteration of the loop, the instantiated variables are removed from the
current instantiation ϕ if they were not present in the original instantiation.
This is to prevent instantiated variables from being carried over to the next
recursive call of the algorithm. When the algorithm terminates the set of all
instantiations can be found in Φ. We will use the algorithm to define different
computation measures below.

The support of a rule B ⇒ H can be computed using the Algorithm 2. In
our implementation the algorithm translates to a Neo4j Cypher query shown in
the below equation 2.7. The first MATCH clause is equivalent to line 1 in the
algorithm. If the rule had multiple body atoms then we would have multiple
MATCH statements as well. The second MATCH clause will compute new
ΦH over the already instantiated pairs of body atoms, line 5 in Algorithm 2.7.
The DISTINCT clause will count the unique instantiations of the head atom
giving us the support.

MATCH (A)− [p1 : ‘hasAdvisor ‘]→ (B)

MATCH (A)− [p2 : ‘employedBy ‘]→ (B)

RETURN COUNT (DISTINCT id(p2) as support)

(2.7)

Head coverage (hc), a significance measure, is the ratio of true predic-
tions in the knowledge base (support) to the total facts of the head predicate.

CHAPTER 2. BACKGROUND 14

Algorithm 1: InstantiateAtoms

input : G = (V ,E) knowledge graph; A set of atoms
input/output: ϕ current instantiation; Φ all instantiations found

1 if A = ∅ then
2 Φ := Φ ∪ {ϕ}
3 else
4 foreach A := p(Vi ,Vj) ∈ A do
5 GroundSubject := false
6 GroundObject := false
7 if Vi ∈ dom ϕ then
8 Subjects := {ϕ(Vi)}
9 GroundSubject := true

10 else
11 Subjects := V
12 end
13 if Vj ∈ dom ϕ then
14 Objects := {ϕ(Vj)}
15 GroundObject := true

16 else
17 Objects := V
18 end
19 foreach s ∈ Subjects do
20 foreach o ∈ Objects do
21 Replace Vi by s in A
22 Replace Vj by o in A
23 if A is in G then
24 ϕ(Vi) := s
25 ϕ(Vj) := o
26 InstantiateAtoms(G ,A \A, ϕ,Φ)
27 if ¬GroundSubject then
28 Remove Vi from ϕ
29 end
30 if ¬GroundObject then
31 Remove Vj from ϕ
32 end

33 end

34 end

35 end

36 end

37 end
38 return Φ

CHAPTER 2. BACKGROUND 15

Algorithm 2: Support

input: G = (V ,E) knowledge graph; B ⇒ p(X ,Y) rule
1 InstantiateAtoms(G ,B , ∅,ΦB)
2 Φ := ∅
3 foreach ϕB ∈ ΦB do
4 Keep only X and Y in ϕB

5 InstantiateAtoms(G , p(X ,Y), ϕB ,ΦH)
6 Φ := Φ ∪ ΦH // It is a set, only retains unique sets.

7 end
8 return |Φ|

For the example rule in (2.5) we know that the support is 1 and from Figure
2.4 we know there is just 1 fact in our knowledge base with employedBy as
head predicate.

hc(hasAdvisor(A,B)⇒ employedBy(A,B)) =
support

count(employedBy)
=

1

1

Now if we add a new fact employedBy(nari ,neo4j) to our knowledge graph,
the above denominator would become 2, reducing the head coverage to 0.5.

We can compute the denominator of head coverage for the rule in equation
2.5 using the Algorithm 1 as shown below.

denominator = |InstantiateAtoms(G , employedBy(A,B), ∅,Φ)|

The Cypher query to compute the denominator would be:

MATCH ()− [: ‘employedBy ‘]→ ()

RETURN COUNT (∗) as denominator
(2.8)

Confidence

Support and head coverage will tell us the significance of a rule. Let us now
understand how the quality of a rule can be measured. In order to measure
the confidence of a rule we need to take into account the false predictions (also

CHAPTER 2. BACKGROUND 16

Table 2.3: Facts from the example knowledge base, Figure 2.4, that fit the
rule [hasAdvisor(X ,Y) ⇒ employedBy(X ,Y)].

hasAdvisor employedBy

(bhaskar, dr Carlos) (bhaskar, dr Carlos)
(nari, dr Carlos)
(md Towhidul, dr Carlos)
(ria, dr Rafique)

known as negatives or counter examples) of the rule.

conf (rule) =
support

positives + negatives

Knowledge bases only contain the information about facts that are true,
the counter examples have to be generated to measure the confidence. The
standard way of computing these false predictions is a very restrictive as-
sumption about the information available in the knowledge base, also known
as closed world assumption (CWA). A prediction that is not present in the
knowledge base is considered to be negative [7].

For the same rule in 2.5 according to our example knowledge graph in
Figure 2.4, we know about the advisors of 4 students but we only know about
the employer of 1 student. In Table 2.3, we only know that student bhaskar
is employed by dr Carlos and the knowledge base does not contain any facts
about the employers of other 3 students. Under CWA, the missing employers
for those 3 students will be considered negatives.

Standard confidence is the ratio of true predictions to false predictions
under the CWA [7].

R : hasAdvisor(X ,Y) ⇒ employedBy(X ,Y)

confstandard (R) =
support

positives + negatives
=

1

1 + 3
= 0.25

A modification to the support computation algorithm, Algorithm 2, en-
ables the computation of standard confidence. To achieve this, line 5 in the
original algorithm is replaced with InstantiateAtoms(G , p(,), ϕB ,ΦH). Once

CHAPTER 2. BACKGROUND 17

we get the instantiations for the body atoms, over these instantiations we will
pass the head atom predicate with blank variables. The Algorithm 1 will then
try all possible nodes in the graph while instantiating. Cypher query to com-
pute the PCA confidence for the example rule (2.5) is shown in Equation 2.9.
Observe the blank nodes in the second MATCH statement in the query, Neo4j
will all pairs of nodes that have the predicate employedBy . Nodes that are
same as X and Y from the first MATCH statement will be counted towards
the positives and any other valid substitution will contribute to the negative,
giving up a total count of both positives and negatives.

MATCH (X)− [: ‘hasAdvisor ‘]→ (Y)

MATCH ()− [: ‘employedBy ‘]→ ()

WITH DISTINCT X , Y RETURN COUNT (∗) as count

(2.9)

In the open world assumption (OWA), a prediction that is not contained
in the knowledge base is just unknown, it is not considered to be false [7].
For the same above rule (2.5), under OWA the missing information about
the employers of those 3 students will be considered unknown. One of the
main contributions of AMIE [7] is a new, less restrictive way of computing
negatives while estimating the confidence of a rule. AMIE generates these
negatives by an assumption called partial completeness assumption (PCA).
The assumption is, if we know a prediction to be true, meaning there exists
an instantiation of the rule, then we know all instantiations of the rule. For
example, for the rule in (2.5) we know from Table 2.3 that student bhaskar is
employedBy dr Carlos. PCA assumes we know all the employers of bhaskar ,
any other employer of bhaskar will become negative. Conversely, the PCA will
not assume anything about the employers of the other 3 students.

PCA confidence is the ratio of true predictions to true and false predic-
tions under PCA assumption. [7].

R : hasAdvisor(X ,Y) ⇒ employedBy(X ,Y)

confPCA(R) =
support

positives + negatives
=

1

1 + 0
= 1

The denominator is 1 as the knowledge base has only 1 true prediction,
employedBy(bhaskar , dr Carlos), and no negatives can be generated with the
known information.

CHAPTER 2. BACKGROUND 18

Algorithm 2 can be modified to compute the denominator for PCA con-
fidence by replacing line 5 with InstantiateAtoms(G , p(X ,), ϕB ,ΦH). The
subject of the head atom will be have a fixed variable while the object will
be left blank. Cypher query to compute the PCA confidence for the example
rule (2.5) is as follows,

MATCH (X)− [: ‘hasAdvisor ‘]→ (Y)

MATCH (X)− [: ‘employedBy ‘]→ ()

WITH DISTINCT X , Y RETURN COUNT (∗) as count

(2.10)

Observe that the last node in the second MATCH statement is left blank.
Cypher will match any node here, giving us both positives and negatives. As
the definition of PCA confidence says, it is support divided by sum of positive
and negative examples. In the original AMIE implementation, computing
PCA is a two-step process, the in-memory database implementation of AMIE
first issues a SELECT query on variable X of the head atom:

SELECT DISTINCT X WHERE r(X ,Y ′) ∧
−→
B

Then, for each instantiation of X , it instantiates the query and issues another
select query on variable Y, adding up the number of instantiations. This can
be done in a single visit to the database in the case of a Cypher query. When
we write MATCH (X)− []→ () Cypher gives us both positives and negatives.

Chapter 3

Approach

In this chapter, we discuss a popular rule mining algorithm, AMIE. We report
our findings on the semantics used by the original algorithm and explain our
approach of using Neo4j to implement the algorithm. We also introduce a new
semantics and showcase how it affects the confidence of the rules.

3.1 Algorithms

In order to mine closed Horn rules AMIE follows an iterative approach (Algo-
rithm 3) by exploring the search space of all possible combinations of subjects,
objects, and predicates. The algorithm takes 4 input arguments, the knowl-
edge base containing all the facts, minimum head coverage, maximum length
of the rules, and minimum confidence. Except for the knowledge base, other
3 arguments will be used to filter the rules. Initially, all the unique predicates
in the knowledge base will be loaded into a queue as size 1 rules, which are
those whose body is empty (line 2). It dequeues each rule from the queue
(line 5), check if it meets the filtering thresholds (line 6), and try to expands
it (line 10). This rule expansion process has been defined as a three stage
operation (line 10 in the algorithm, Refine(r)). Using the example rule (3.1),
we demonstrate each stage with an example.

teaches(Y ,Z) ⇒ hasAdvisor(X ,Y) (3.1)

19

CHAPTER 3. APPROACH 20

Algorithm 3: Rule Mining

1 Function AMIE(Knowledge base, minHC, maxLen, minConf)
2 q ← [p1(X ,Y), p2(X ,Y), . . . , pm(X ,Y)]
3 output ← ⟨⟩
4 while q is not empty do
5 r ← q .dequeue()
6 if AcceptedForOutput(r , out ,minConf) then
7 output .add(r)
8 end
9 if length(r) < maxLen then

10 R(r)← Refine(r)
11 foreach rc ∈ R(r) do
12 if headCoverage(rc) ≥ minHC ∧ rc /∈ q then
13 q .enqueue(rc)
14 end

15 end

16 end

17 end
18 return output

19 end

CHAPTER 3. APPROACH 21

1. Dangling Atom: As part of this operation a new atom is attached to the
body of the rule. The new atom has a fresh variable as subject or object.
The other subject or object is an existing, non-fresh variable.

attended(X ,W) ∧ teaches(Y ,Z) ⇒ hasAdvisor(X ,Y)

The rule in the above equation demonstrates adding a dangling atom to
the example rule in Equation 3.1. The new atom attended shares a variable
X with the existing rule and introduces a new variable W . When we
are adding this new atom we need to make sure the newly formed rule
satisfies the minimum support value. In other words, we only add those
predicates to the rule such that it continues to satisfy the minimum support
threshold. This is achieved in Neo4j by adding a filter condition to the
dangling atom Cypher query, like below. The first MATCH statement in
the Cypher query is responsible for adding the new atom. The query returns
all possible predicates in the knowledge base and the filter support ≥ $k will
ensure adding these predicates will satisfy the necessary support threshold.
Parameter k is the required support threshold.

MATCH (X)− [p]→ (W)

MATCH (Y)− [: ‘teaches‘]→ (Z)

MATCH (X)− [headRel : ‘hasAdvisor ‘]→ (Y)

WITH TYPE (p) as predicate, COUNT (DISTINCT id(headRel)) as support

WHERE support ≥ $k RETURN predicate, support

2. Closing Atom: In this operation we will attach a new atom to the body
of the rule such that both variables of the new atom are shared with the
existing atoms, while making sure that all the variables are repeated at
least twice across the entire rule.

attended(X ,Z) ∧ teaches(Y ,Z) ⇒ hasAdvisor(X ,Y)

Before adding the closing atom attended(X ,Z) the rule was not closed as
both variables X ,Z appeared only once throughout the rule. Now all the

CHAPTER 3. APPROACH 22

variables appear at least twice, making the rule closed. AMIE only out-
puts closed rules, otherwise we would see rules that predict merely the
existance of a fact. For example, attended(X ,Y) ⇒ employedBy(X ,Z),
which is not predicting anything. A valid instantiation of the rule is,
attended(bhaskar ,CSCI 631)⇒ employedBy(bhaskar , dr Carlos), the course
CSCI 631 is not taught by professor dr Carlos. From the example knowl-
edge base in Figure 2.4, an instantiation of the not closed rule is b. Cypher
query to add closing atom is shown below:

MATCH (X)− [p]→ (Z)

MATCH (Y)− [: ‘teaches‘]→ (Z)

MATCH (X)− [headRel : ‘hasAdvisor ‘]→ (Y)

WITH TYPE (p) as predicate, COUNT (DISTINCT id(headRel)) as support

WHERE support ≥ $k RETURN predicate, support

Every rule that meets the filtering thresholds will be marked for output.
The algorithm terminates when the queue is empty, after we have discovered
all the rules with minHC and minConf in the knowledge base of the specified
length. The next (Algorithm 4) determines whether a rule is part of output or
not. Not every rule that was mined by the previous algorithm will be marked
for output. Some of the rules might not be closed, and AMIE mines only closed
rules. Expanding a rule doesn’t guarantee increasing in confidence. When a
rule is expanded and the confidence of the new rule is lower than its smaller
predecessor, it won’t be marked for output as it is worse then the parent rule
in quality. A rule can have multiple predecessors (parents). For example, the
rule attended(X ,Z)∧teaches(Y ,Z) ⇒ hasAdvisor(X ,Y) can be derived by
either adding atom attended(X ,Z) to teaches(Y ,Z) ⇒ hasAdvisor(X ,Y)
or by adding teaches(Y ,Z) to attended(X ,Z) ⇒ hasAdvisor(X ,Y). Line
5 in the Algorithm 4 will return all ancestors of the rule. Rules that are not
marked for output, along with the marked rules will be added to the queue as
we might get better confidence rules with further refinement.

Observation

Below is a list of some important observations that we made while studying
the papers and implementations of AMIE.

CHAPTER 3. APPROACH 23

Algorithm 4: Which rules to output

1 Function AcceptedForOutput(rule r, out, minConf)
2 if r is not closed ∨confpca(r) < minConf then
3 return false
4 end
5 parents ← parentsOfRule(r , out)
6 foreach rp ∈parents do
7 if conf (r) ≤conf(rp) then
8 return false
9 end

10 end
11 return true

12 end

• A queue is used to keep track of all the rules. The algorithm never enqueues
a rule that is already present in the queue. AMIE implements a custom
queue and our implementation uses a priority queue.

• Comparing rules for equality is expensive, so measures like head coverage,
confidence, length are used to check for equality.

• The new predictions are never entered back to the knowledge base.

• Rules with low confidence are retained as they can lead to rules with better
confidence.

• When generating dangling atoms, the variables for new atom are picked
from non-closed variables. If the rule is already closed then all variables are
used.

3.2 Contributions

Neo4j

We have implemented the AMIE rule mining algorithm using the Neo4j graph
database. We have made sure to follow the algorithm as best as we can by

CHAPTER 3. APPROACH 24

replacing in-memory database with Neo4j. Our output rules match the output
of AMIE’s implementation. These results will be presented in the later section.

The choice of using graph concepts and graph databases is to mitigate the
shortcomings of AMIE’s implementation. AMIE implements an in-memory
vanilla database with one index for each subject, predicate, and object per-
mutation. In-memory databases have the advantage of fast access rates due
to the use of RAM, but with the disadvantage of temporary data storage.
If the system crashes while mining the rules, all data is lost and we have to
start over the mining process from step one. Using a graph database gives
us the ability to pause and resume the algorithm at any point. The codebase
of AMIE is large making it impractical to understand the entire codebase to
customize the algorithm to fit our needs. The documentation of the project is
very minimal.

Functionality

If we recall the Cypher query to compute PCA confidence in Equation 2.10, a
valid question to ask is: why not make the object blank? Like Equation 3.3.

MATCH (X)− [: ‘hasAdvisor ‘]→ (Y)

MATCH (X)− [: ‘employedBy ‘]→ ()

WITH DISTINCT X , Y RETURN COUNT (∗) as count

(3.2)

MATCH (X)− [: ‘hasAdvisor ‘]→ (Y)

MATCH ()− [: ‘employedBy ‘]→ (Y)

WITH DISTINCT X , Y RETURN COUNT (∗) as count

(3.3)

AMIE introduces the concept of functionality [16] to decide what should
be blank. Should we fix the subject or object while computing negatives?
Functionality of a predicate is a value between 0 and 1, and it calculated
as the ratio of distinct subjects associated with the predicate relative to the
total number of facts. Similarly, inverse functionality is the ratio of distinct
objects associated with the predicate relative to the total number of facts. We
compare these two ratios and the higher, meaning closer to 1, variable (subject
or object) will be fixed and we make the other blank. Functionality represents

CHAPTER 3. APPROACH 25

how the information in the knowledge base is spread in accordance with the
head atom of the rule.

Φ = (InstantiateAtoms(G , p(X ,Y), ∅,Φ))

functionality(p) =
number of unique mappings of X in Φ

|Φ|

inverse functionality(p) =
number of unique mappings of Y in Φ

|Φ|

For example, for predicate hasAdvisor Table 3.1 shows all the facts in our
example knowledge graph. So, to compute the functionality for the predicate,
we need to count the number of unique subjects, which is 4, and the number
of unique objects, which is 2. In total there are 4 hasAdvisor facts, the ratio
4/4 is greater than 2/4. Therefore, when computing the confidence for rules
with hasAdvisor as the head atom’s predicate, we will always fix the subject
and let object be empty.

Whereas for the predicate teaches, Table 3.2 shows that in our example
knowledge graph, Figure 2.4, there are 2 unique subjects and 4 unique objects.
Making it inverse functional, so every time we compute confidence of rules
containing teaches as the head atom’s predicate we will fix the object and let
the subject be blank.

A Cypher query to compute the functionality of a predicate is as shown
below:

MATCH (S)− [: ‘predicate name‘]→ (O)

RETURN count(DISTINCT S) as unique subject ,

count(DISTINCT O) as unique object

(3.4)

The denominator can be computed using the Cypher query from Equation
2.8. We count the total facts present in the knowledge base with the predicate.

AMIE defines and computes functionality of a rule by considering the head
atom’s predicate. So irrespective of what predicates appear in the body, the
head atom predicate drives the functionality of the rule. We observed that
this doesn’t always give us the best confidence values. We can’t just look at
how the information is spread as regards to the head atom alone. As the rules

CHAPTER 3. APPROACH 26

Table 3.1: Facts from the example knowledge base, Figure 2.4, for the
predicate hasAdvisor

subject object

bhaskar dr Carlos
nari dr Carlos
md Towhidul dr Carlos
ria dr Rafique

Table 3.2: Facts from the example knowledge base, Figure 2.4, for the
predicate teaches

subject object

dr Carlos csci620
dr Carlos csci723
dr Rafique csci652
dr Rafique csci759

grow, we will have intermediate variables in the body atom and they don’t
adhere with the functionality. In few cases we get better confidence values
when we switch the functionality, so we have a policy defined to output both
AMIE’s functional PCA and the best PCA the rule can have.

Graph Semantics for PCA Confidence

All the definitions so far follow Prolog semantics, when instantiating the rules
a variable can be reused. For example consider a knowledge base with just 3
facts:

parent(philip, charles)
parent(elizabethII, charles)
spouse(philip, elizabethII)

Consider the rule, parent(X ,Z)∧parent(Y ,Z) => spouse(X ,Y), to com-
pute the PCA confidence for the rule we need to find the negatives w.r.t the

CHAPTER 3. APPROACH 27

rule. The original implementation instantiates the rule, one possible combina-
tion is, parent(Philip,Charles)∧parent(Philip,Charles)⇒ spouse(Philip,Philip)
according to the PCA this will be counted as a negative because knowledge
base knows that spouse(Philip,ElizabethII) exists. Substituting different free
variables with a the same instantiation does not make sense, as the original
paper follows Prolog semantics these will be allowed. We have incorporated
a different semantics for PCA confidence which does not allow these kind of
repeated fact usage. Let us see how the Cypher query would different under
Graph semantics for the rule 3.4

MATCH (Z)− [: ‘parent ‘]→ (Y),

(X)− [: ‘spouse‘]→ (Z),

(X)− [: ‘parent ‘]→ ()

WITH DISTINCT X , Y RETURN COUNT (∗) as count

(3.5)

The line 24 of the Algorithm 1 shown in the background section will need
only one modification, InstantiateAtoms(G\p⟨s, o⟩,A\A, ϕ,Φ), to instantitate
the atoms using Graph semantics.

In our evaluation of the PCA confidence for rule mining algorithm, we
consider four different policies. The first policy, denoted as RP∧F , follows the
Prolog semantics with functionality, which is similar to the approach proposed
in the AMIE paper. In this policy, the Cypher queries used to compute PCA
confidence will contain a MATCH statement for each atom of the rule. The
functionality of the head predicate determines which variable should be left
blank. The second policy, RP∧B , also follows the Prolog semantics, but uses
the best PCA confidence instead of functionality. In this case, we try both
functional and inverse functional variables and retain the best result. The
third policy, RG∧F , uses Graph semantics with functionality. Here, each atom
in the rule will have a ”, ” separated Cypher query and the blank variable will
be determined by the functionality of the head predicate. Finally, the fourth
policy, RG∧B , also uses Graph semantics, but retains the best PCA confidence
value for the rules.

Apriori approach

AMIE’s algorithm to mine rules involves an iterative approach to grow the
rules. Every rule mined requires database calls to instantiate the rule, and

CHAPTER 3. APPROACH 28

to check its support and head coverage. As we saw in the Algorithm 1 at
each step, we dequeue a rule and by adding either a dangling atom or closed
atom we grow the rule. We want to reduce these database calls, so instead
of growing each rule our idea is to generate all rules of size k . If we imagine
the rules to be a graph, there are only 2 unique valid graph patterns for size 2
closed Horn rules. These are shown in Figure 3.1. In the original algorithm,
each rule was examined and grown further. This new approach will grow the
graphs instead. Similar to Algorithm 1, we start with just the head of a rule
and then use the same 2 step process to grow the graph. First, we will add a
dangling node to the graph by adding a new node and all possible single edge
connections to the graph. For the closing atom step of the original algorithm
we just add a new closing edge to the graph. This is demonstrated in Figure
3.2.

The new approach will start off with a single base graph structures and
instantiate these structures to find all valid rules of size 2. We then grow
each graph structure using the previously mentioned steps and instantiate the
grown graph structure to find all possible rules. The main advantage to this
is the number of database calls. Assume we have 100 size 2 rules in the queue,
the iterative approach will examine all the 100 rules and try to grow them into
size 3 rules. If we make 4 database calls for each rule (one database call to
instantiate the dangling atom, and a second call to compute its confidence and
two more calls to instantiate and find the confidence after adding closed atom
to the rule), in the worst case that’s 400 database calls. The new approach
has a fixed number of unique graph structures for each size for example, there
are 7 unique graph patterns of size 3 rule, a rule describing 3 relationships.
So, regardless of the knowledge base, we will only have to make 7 database
calls to mine all possible rules of size 3.

To instantiate a graph structure we have developed Cypher queries that
will fit all possible relationships for the edges of the graph and return the count
of combinations of nodes that have these relationships. For example, Figure
3.3 is one of 7 possible graph structures for a size 3 closed rule. Equation 3.6
shows the generic Cypher query used to instantiate the graph structure. We
are returning all the nodes and edges in the knowledge base that fit this query
pattern. We can compute the support and confidence using the return values
of the query, eliminating a need to fire a new query to compute the support
and confidence of each resultant rule.

CHAPTER 3. APPROACH 29

Table 3.3: Instantiations for the graph pattern in Figure 3.3

p1 p1 sub p1 obj p2 p2 sub p2 obj headRel A blank

45 Ann UK 38 Alan UK 38 Ann UK
45 Sam UK 38 Henrietta UK 38 Sam England
45 Henrietta England 38 Sam England 38 Henrietta UK
45 Alan UK 38 Ann UK 38 Alan UK
132 Neil London 3 England London 53 Neil London
707 Masud Islamabad 132 PAEC Islamabad 2084 Masud Islamabad
707 Masud Islamabad 132 PAEC Islamabad 2084 Masud Islamabad CT
707 Riazuddin Islamabad 132 PAEC Islamabad 2084 Riazuddin Islamabad
707 Riazuddin Islamabad 132 PAEC Islamabad 2084 Riazuddin Islamabad CT

MATCH (A)− [p1]→ (C)

MATCH (C)− [p2]→ (B)

MATCH (A)− [headRel]→ (blank)

WITH TYPE (p1) as p1, A as p1 sub, B as p1 obj

TYPE (p2) as p2, C as p2 sub, B as p2 obj

TYPE (headRel) as headRel , A, B

RETURN p1, p1 sub, p1 obj , p2, p2 sub, p2 obj headRel , A, blank

(3.6)

The new approach is shown in Algorithm 5. Line 8 is responsible for the
2 step growing process of a graph pattern as described earlier. The result is
a set of graph patterns obtained by adding a new dangling node and closing
edge. The instantiateRules() method in Line 11 is responsible to convert the
graph to a generic Cypher query, as illustrated in Equation 3.6, and return all
the rules that meet thresholds of the minHC and minConf. All the new set of
graph patterns will be added to the map to further grow them.

Table 3.3 shows some of instantiations we get when we execute the Equa-
tion 3.6. The column p1 indicates is the predicate mapped to first relation-
ship in the equation, p2 shows the predicate mapped to second relation, and
headRel is the head atom predicate. The nodes mapped to subject and ob-

CHAPTER 3. APPROACH 30

Figure 3.1: Two graph patterns representing all size 2 closed Horn rules.

jects of the predicate p1 are present in column p1 sub and p1 obj respectively.
Similarly, p2 sub and p2 obj list the nodes mapped to subjcet and object of
the predicate p2 in the Equation 3.6. Three different rules that can be formed
from the result, first 4 rows form the first rule, the 5th row forms the second
rule, and the 6th to 9th row form the last rule. The first rule will describe
a relationship between the predicates 45, 38, and 38 and the second row, in
blue, is a negative for the rule. We process the resulting rows in Java to form
the rules and to compute the support and PCA confidence based on the in-
stantiations. The idea is to keep track of the predicates p 1, p 2, and the
headRel . If the same set of predicates repeat then we check the nodes mapped
to the blank variable and the node mapped to the actual variable (subject or
object), in this example the object is made blank. If the nodes are same then
we increase the support of the rule, otherwise we increase the negative count.
The 1st , 3rd , and 4th rows have the same nodes mapped to blank and p2 obj
contributing to the support. The 2nd row in blue has different nodes mapped
to blank and p2 obj so it’ll counted as a negative.

CHAPTER 3. APPROACH 31

Figure 3.2: Two step process to grow graph pattern. There are 2 ways to
add a closing edge to the base graph and 4 different ways to add a new

dangling node and it’s connection to the base graph.

Figure 3.3: Graph pattern representing a possible size 3 closed Horn rule.

CHAPTER 3. APPROACH 32

Algorithm 5: Rule Mining - Apriori

1 Function AprioriAMIE(Knowledge base, minHC, maxLen, minConf)
2 G ← {g1} // Figure 3.3.
3 output ← ⟨⟩
4 currentRuleSize = 2
5 while currentRuleSze ≤ maxLen do
6 G ′ = {}
7 foreach g ∈ G do
8 foreach gc ∈ Refine(g) do
9 G ′ ← G ′ ∪ {gc}

10 if gc is closed then
11 output .add(instantiateRules(gc))
12 end

13 end

14 end
15 currentRuleSize + = 1
16 G ← G ′

17 end
18 return output

19 end

Chapter 4

Experimental results

To provide a comprehensive overview of the experiments conducted in this
thesis, we will begin by introducing the knowledge bases utilized. Following
this, we will describe the experimental setup in detail and present the corre-
sponding quantitative results. Finally, we will conclude with a presentation of
our qualitative analysis.

4.1 Knowledge bases

As part of this thesis we have implemented the AMIE algorithm using a graph
database. We are using standard knowledge bases like YAGO Sample [17],
FB13, WN11, WN18RR, WN18, and NELL-995 [3] to evaluate our rule min-
ing implementations. WN11, WN18, and WN18RR have been derived from
WordNet [11], which is a large knowledge base of lexical information pertain-
ing to the English language. FB13 and FB15K-237 have been obtained by
extracting information from Freebase [2], a large collaborative knowledge base
that contains a vast collection of structured data on a wide range of topics.
YAGO Sample is a subset of YAGO, built from WordNet, Wikipedia, and
GeoNames. Royal Family is a knowledge base containing information about
the British Royal Family. Table 4.1 provides a summary of the standard
knowledge bases used in the experiments. The table includes information on
the number of nodes, predicates, and facts available in each knowledge base.

33

CHAPTER 4. EXPERIMENTAL RESULTS 34

Table 4.1: Summary of standard knowledge bases

Knowledge base Nodes Predicates Facts

Royal Family 12 3 25

WN11 40,943 11 123,429

WN18RR 40,943 11 93003

WN18 40,943 18 151,442

YAGO Sample 42,946 33 46,654

FB15K237 14541 237 310,116

FB13 75,043 13 345,873

NELL-995 75,492 200 154,213

4.2 Experimental setup

The results will focus on rules mined under 4 different policies. Prolog seman-
tics with functionality (RP∧F), Prolog semantics with best PCA confidence
(RP∧B), Graph semantics with functionality (RG∧F), and Graph semantics
with best PCA confidence (RG∧B). The rules were mined with minimum
PCA confidence of 0.5, meaning the rules mined had to have a PCA confi-
dence of at least 0.5, and minimum head coverage of 1%. To compare our
results, we mined rules using the implementation of AMIE provided by the
authors. It consists of a JAR file that can be executed over a knowledge base
to mine rules of interest.

4.3 Quantitative results

Table 4.2 compares the number of rules mined using different policies. The
columns AMIE and RP∧F in Table 4.2 show that our implementation of the
AMIE algorithm yielded the same number of mined rules as the original im-
plementation of AMIE across all knowledge bases. The rules mined by our
implementation had the same support, head coverage, and PCA confidence
values when compared to the output of AMIE’s original implementation. The
last column, RG∧B , shows increase in number rules mined when we use Pro-
log semantics with best PCA confidence policy. The additional rules that are
mined exist as part of AMIE’s Prolog based output as well, but are lower in
confidence (below 0.5). For example, under YAGO sample knowledge base we

CHAPTER 4. EXPERIMENTAL RESULTS 35

mined 27 more rules having at lease 0.5 PCA confidence. We also observed an
increase in the number of rules mined when we use Graph semantics compared
to Prolog semantics. The combination of Graph semantics and functionality
agnostic policy (best PCA confidence) also results in some rules gaining PCA
confidence, which can be observed in Table 4.2. The results of Table 4.2 indi-
cate that Prolog semantics with functionality yields the least number of rules
and Graph semantics with best PCA confidence results in the most number
of rules mined.

Table 4.2: Total number of rules mined by AMIE and our AMIE
implementation under 4 different policies

Knowledge base AMIE RP∧F RP∧B RG∧F RG∧B
Royal Family 7 7 7 7 7

YAGO Sample 91 91 118 110 131

WN11 158 158 163 165 174

WN18RR 38 38 38 36 39

WN18 244 244 254 252 254

NELL-995 2789 2789 3167 2951 3197

Table 4.3 shows how different policies affect the number of output rules
when compared to original output. The ∩ column has information regarding
how many rules matched including all the measuring metrics. Column M tells
the number of rules that were missing in contrast with AMIE’s output. Col-
umn A indicates the additional rules that were mined with this policy setup.
The table does not include the values of the rules mined using Prolog sematics
with adhering to functionality setup (RP∧F), this is same as AMIE’s output.
For RP∧F our implementation matched the number of rules mined including
all the measuring metrics (support, head coverage and PCA confidence). We
observed that the three new policies mined more rules then the AMIE’s output
and few of the rule gain PCA confidence value.

We also analyzed how different policies behave as the size of the rules
grow. Table 4.4 shows the number of rules mined in each size across all the
knowledge bases. For each policy we recorded how many rules were mined in
sizes 2, 3, and 4. Except for Example KB knowledge base, we observe that
Graph semantics with best PCA confidence policy, RG∧B , mines the most
number of rules. Prolog semantics with functionality policy, RP∧F , tends to

CHAPTER 4. EXPERIMENTAL RESULTS 36

mine the least number of rules.
The Apriori rule mining algorithm has not been fully implemented yet to

match the output of AMIE. We still need to implement theAcceptedForOuput()
method for the new approach. The results can be viewed in the Appendix.

CHAPTER 4. EXPERIMENTAL RESULTS 37

T
ab

le
4.
3:

Q
u
al
it
at
iv
e
co
m
p
ar
is
on

of
th
e
ru
le
s
ac
ro
ss

d
iff
er
en
t
p
ol
ic
ie
s.
∩
in
d
ic
at
es

th
e
ru
le
s
in

co
m
m
on

(I
n
te
rs
ec
ti
on

).
M

in
d
ic
at
es

th
e
m
is
si
n
g
ru
le
s.

A
ar
e
th
e
ad

d
it
io
n
al

ru
le
s
m
in
ed

.
↑ P

C
A
in
d
ic
at
es

th
e
ru
le
s
th
at

ga
in
ed

P
C
A

co
n
fi
d
en

ce
.

R
P
∧
B

R
G
∧
F

R
G
∧
B

∩
M

A
↑ P

C
A

∩
M

A
↑ P

C
A

∩
M

A
↑ P

C
A

Y
A
G
O

S
a
m
p
le

91
0

27
6

91
0

19
2

91
0

8
40

W
N
1
1

15
8

0
5

1
15

3
5

12
7

15
5

3
16

21

W
N
1
8R

R
38

0
1

1
36

2
0

0
36

2
2

1

W
N
1
8

23
8

6
10

2
24

0
4

8
0

23
4

10
10

2

N
E
L
L
-9
95

27
89

5
37

8
7

27
95

4
15

6
12

27
95

8
40

2
14

K
n
o
w
le
d
g
e
b
a
se

CHAPTER 4. EXPERIMENTAL RESULTS 38

T
ab

le
4.
4:

C
om

p
ar
in
g
n
u
m
b
er

of
ru
le
s
m
in
ed

in
ea
ch

si
ze

(2
,
3
an

d
4)

b
y
d
iff
er
en
t
p
ol
ic
ie
s

R
P
∧
F

R
P
∧
B

R
G
∧
F

R
G
∧
B

2
3

4
2

3
4

2
3

4
2

3
4

E
x
am

p
le

K
B

2
6

40
2

6
41

2
6

21
2

6
29

Y
A
G
O

S
am

p
le

1
2

79
34

16
14

10
4

36
81

12
98

26
73

14
11

7
35

57

W
N
11

11
1
47

51
26

11
15

4
68

36
11

15
6

54
19

11
16

5
75

28

W
N
18

R
R

4
34

15
40

4
34

17
41

4
32

16
82

4
35

18
53

W
N
18

18
2
26

66
99

19
23

5
81

57
18

23
2

89
15

19
23

5
86

49

N
E
L
L
-9
95

23
5

25
54

13
98

73
23

7
25

71
14

17
26

23
5

26
39

14
05

14
23

8
31

62
14

24
0
1

K
n
o
w
le
d
g
e
b
a
se

CHAPTER 4. EXPERIMENTAL RESULTS 39

4.4 Qualitative analysis

We will now analyse some rules that gain PCA confidence over different seman-
tics and policies. All the following rules we present belong to YAGO Sample
knowledge base. Observe that in Table 4.2, the number of rules mined with
minimum confidence of 0.5 increase from 91 to 118 if we ignore functionality.
Below is one such rule:

hasChild(Z ,Y) ∧ isKnownFor(Z ,X) ⇒ hasChild(X ,Y).

Table 4.5: Functionality for hasChild

functionality inverse − functionality

0.478070 0.803728

MATCH (G)− [: ‘hasChild ‘]→ (B)

MATCH (G)− [: ‘isKnownFor ‘]→ (A)

MATCH ()− [: ‘hasChild ‘]→ (B)

WITH DISTINCT A, B RETURN COUNT (∗) as pcaDenominator

(4.1)

MATCH (Z)− [: ‘hasChild ‘]→ (Y)

MATCH (Z)− [: ‘isKnownFor ‘]→ (X)

MATCH (X)− [: ‘hasChild ‘]→ ()

WITH DISTINCT X , Y RETURN COUNT (∗) as pcaDenominator

(4.2)

Recalling from the Background section, functionality of a rule is decided
by comparing the values of functionality of the head predicate to it’s inverse
functionality. Table 4.5 indicates that the head predicate hasChild is inverse-
functional, so to compute PCA confidence of the rule we will have to fix the
object and leave the subject blank in the Cypher query, Equation 4.1, which
returns the value 50. We know the support of the rule is 1 so, PCA confidence

CHAPTER 4. EXPERIMENTAL RESULTS 40

will be support/50 which is 1/50. The PCA confidence of the rule considering
the functionality is 0.02. But if we ignore the functionality and fix the subject
while computing the PCA confidence, Equation 4.2, PCA denominator is 1.
So the PCA confidence will be 1/1. The PCA of the rule increased from 0.02
to 1.

Let us look at another such instance where a rule gains PCA confidence
when we ignore the functionality.

hasCapital(Y ,Z) ∧ livesIn(X ,Z) ⇒ livesIn(X ,Y)

Functionality of the head predicate livesIn is shown in Table 4.6. The
predicate is functional so AMIE suggests we fix the subject while computing
PCA and leave the object blank as part of our Cypher query. The Cypher
query for PCA denominator will return 50, support of the rule is 20, making
PCA confindence 20/50 which is 0.392156. If we instead fix the object and
leave the subject blank in the Cypher query we get 36, making the PCA
confidence 20/36, 0.555556.

Table 4.6: Functionality for livesIn

functionality inverse − functionality

0.750529 0.680761

For the same rule, we know the head predicate livesIn is functional (see
table 4.6) and the PCA confidence with Prolog semantics, considering the
functionality, is 0.392156. If we use Graph semantics to compute the PCA
confidence, Cypher query is shown below, we get the PCA denominator to be
30, making the PCA confidence 20/30, 0.666667. Graph semantics prevents
an edge from being revisited, restricting the search space combinations.

MATCH (Y)− [: ‘hasCapital ‘]→ (Z),

(X)− [: ‘livesIn‘]→ (Z),

(X)− [: ‘livesIn‘]→ ()

WITH DISTINCT X , Y RETURN COUNT (∗) as pcaDenominator

CHAPTER 4. EXPERIMENTAL RESULTS 41

Table 4.7 shows few of the rules, their original PCA confidence and the
new increased PCA confidence for YAGO sample datset and Table 4.8 shows
some of the rules that were mined additionally with Prolog semantics and
functionality agnostic policy.

Table 4.7: Rules that gain PCA confidence.

Rule confPCA ↑ confPCA

isKnownFor(W, X) ∧ hasAcademicAdvisor(Y, W) ⇒ influences(X, Y) 0.5 1.0
isLeaderOf(X, W) ∧ livesIn(W, Y) ⇒ diedIn(X, Y) 0.5 1.0
isLeaderOf(X, Y) ∧ livesIn(X, Y) ⇒ wasBornIn(X, Y) 0.5 1.0
hasChild(X, Y) ∧ isMarriedTo(X, Y) ⇒ hasChild(X, Y) 0.6111 0.8461

Table 4.8: Rules that were additionally mined.

isLocatedIn(Y, W) ∧ livesIn(X, W) ⇒ worksAt(X, Y)
isKnownFor(X, Y) ⇒ isCitizenOf(X, Y)
isLocatedIn(X, Y) ⇒ hasCapital(X, Y)

hasChild(W, Y) ∧ isMarriedTo(W, X) ⇒ hasChild(X, Y)
isMarriedTo(X, W) ∧ produced(W, Y) ⇒ produced(X, Y)

Chapter 5

Conclusions

5.1 Conclusion

In this thesis, we have studied the process of rule mining from knowledge
bases. The quality of a rule is measured by computing it’s confidence, which
requires identifying the negative and positive information w.r.t to the rule.
Knowledge base generally does not contain negative triples so we explored
generating these negatives under both closed-world assumption (standard con-
fidence) and partial-completeness assumption (PCA confidence). We observe
that these definitions to compute confidence follows Prolog semantics and a
fixed functionality. But this approach allows different variables across atoms
to share the same node in the knowledge base, reducing the confidence value
for certain rules. We introduce a new, Graph semantics, approach to avoid dif-
ferent variables from sharing the same node and our results show that certain
rules gain confidence. This results in mining better and more rules. Addition-
ally, we demonstrate that using the head atom predicate alone to determine
how to compute the confidence of a rule can result in lower confidence mea-
sures for the mined rules. We have implemented the algorithm using Neo4j, a
graph database, making this approach a declarative one. Any rule can now be
convert to a Cypher query using our implementation and it’s quality measures
can be computed without having to mine the rules. We introduce 4 differ-
ent policies and compare the quantity and quality of the rules mined by each
policy. From the results we can observe that Graph semantics usually mines
more rules, some with better PCA confidence values when compared to Prolog

42

CHAPTER 5. CONCLUSIONS 43

semantics, and to mine the best PCA confidence we sometimes need to ignore
functionality.

5.2 Future Work

The Apriori algorithm to mine closed Horn rules needs to implement the
method AcceptedForOutput() to check the rule against all it’s parents. The
current implementation of this method, for original iterative approach, can’t
be used in the new Apriori approach. The original algorithm grows each rule,
so we can mark it’s parents during it’s creation. In the new approach we just
have graph patterns and multiple rules can fit in a single graph pattern, mak-
ing the older implementation not reusable. In the future, we aim to implement
this method by keeping track of all the rules instantiated by each graph pat-
tern. To find the parents of a rule, we can perform a sub-graph matching for
all smaller size graph patterns against the current graph pattern. If we find a
matching, then we need check for instantiations of the matched graph pattern
to find a rule with same set of predicates. We also aim to provide a mechanism
to pause and resume the rule mining algorithm. We need to develop a way to
store the rules mined, either by encoding this information onto the knowledge
bases it self or by implementing a serialization method for the rules.

Bibliography

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining associ-
ation rules between sets of items in large databases. SIGMOD Rec.,
22(2):207–216, jun 1993.

[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data, pages 1247–1250, 2008.

[3] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
Hruschka, and Tom Mitchell. Toward an architecture for never-ending
language learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 24, 2010.

[4] William F Clocksin and Christopher S Mellish. Programming in PRO-
LOG. Springer Science & Business Media, 2003.

[5] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Martin
Schuster, Petra Selmer, and Andrés Taylor. Formal semantics of the
language cypher. 02 2018.

[6] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
Fast Rule Mining in Ontological Knowledge Bases with AMIE+. The
VLDB Journal, 2015.

[7] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian
Suchanek. Amie: Association rule mining under incomplete evidence
in ontological knowledge bases. In Proceedings of the 22nd International

44

BIBLIOGRAPHY 45

Conference on World Wide Web, WWW ’13, page 413–422, New York,
NY, USA, 2013. Association for Computing Machinery.

[8] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and Exact
Rule Mining with AMIE 3. In ESWC 2020 - 17th International Semantic
Web Conference, pages 36–52, Virtual Event, Greece, May 2020.

[9] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic web, 6(2):167–195,
2015.

[10] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and
Heiner Stuckenschmidt. An introduction to anyburl. In Deutsche
Jahrestagung für Künstliche Intelligenz, 2019.

[11] George A. Miller. Wordnet: A lexical database for english. Commun.
ACM, 38(11):39–41, nov 1995.

[12] Victoria Nebot and Rafael Berlanga. Finding association rules in semantic
web data. Know.-Based Syst., 25(1):51–62, feb 2012.

[13] Pouya Omran, Kewen Wang, and Zhe Wang. Scalable rule learning via
learning representation. pages 2149–2155, 07 2018.

[14] Stefan Schoenmackers, Jesse Davis, Oren Etzioni, and Daniel S. Weld.
Learning first-order horn clauses from web text. In EMNLP, 2010.

[15] Juan F. Sequeda and Daniel Miranker. The challenges of realizing a
large-scale knowledge graph. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages
221–232, New York, NY, USA, 2015. ACM.

[16] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. Paris: Prob-
abilistic alignment of relations, instances, and schema. Proc. VLDB En-
dow., 5(3):157–168, nov 2011.

[17] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In Proceedings of the 16th international conference
on World Wide Web, pages 697–706, 2007.

Appendices

46

Appendix A

Appendix

A.1 Implementation

This section will show case some of the methods implemented for the rule min-
ing algorithm as part of our approach. The complete implementation can be
found in https://github.com/BhaskarKrishnaG/AMIE Git repository. Our
implementation is in Java programming language using Neo4j as the database
to store the knowledge base. We have defined atom as a class containing var-
ious information related to the atom as shown in the below Listing A.1. We
have overridden the equals method to help compare the two atoms. One of
the helper method is to deep copy an atom.

Listing A.1: Outline of Atom class

// Atom.java

public class Atom implements Comparable<Atom>{

public Long predicateId;

public String relationshipName;

public Long subject;

public Long object;

public Atom(Long predicateId, Long subject, Long object, String

name) {

this.predicateId = predicateId;

this.subject = subject;

47

APPENDIX A. APPENDIX 48

this.object = object;

this.relationshipName = name;

}

. . . // Setter, getters and helper methods.

}

We have a class capturing the details of a rule, like shown in Listing A.2.
It’ll in turn store atoms that are associated with the rule. We have various
helper methods in the rule class, for example getOpenVariables() will return
all the variables that occur only once in the rule, Listing A.3

Listing A.2: Outline of Rule class

// Rule.java

public class Rule implements Comparable<Rule>{

Atom headAtom;

List<Atom> bodyAtoms;

Double headCoverage;

Double confPCA;

int support;

int functionalVariable;

. . . // Setters, getters, and helper methods

}

Listing A.3: Method to return all open variables of a rule

public Set<Long> getOpenVariables() {

List<Long> allVariablesList = new ArrayList<>();

Set<Long> allVariablesSet;

allVariablesList.add(headAtom.getSubject());

allVariablesList.add(headAtom.getObject());

for (Atom a: bodyAtoms){

allVariablesList.add(a.getSubject());

allVariablesList.add(a.getObject());

}

allVariablesSet = allVariablesList.stream()

APPENDIX A. APPENDIX 49

.collect(Collectors.groupingBy(

Function.identity(),

Collectors.counting()))

.entrySet()

.stream()

.filter(x -> x.getValue() == 1L)

.map(Map.Entry::getKey).collect(Collectors.toSet());

return allVariablesSet;

}

Recall that the initial set in the rule mining algorithm is to insert all the
unique predicates to a queue of rules. The initializeQueue() method in Listing
A.4 is used to initialise the queue. We are using a priority queue as part of
our implementation. We want to process the rules that have higher PCA
confidence value first. If a rule has PCA confidence of 1, it won’t be refined
any further, not contributing to the queue. The size of queue contributes to
run time efficiency, every rule mined needs to compared against all the existing
rules to ensure it’s not duplicate. So we are using priority queue. Listing A.5
shows the code to compare a rule against all its parents, responsible for Line
6 of Algorithm 4.

Listing A.4: Method to initialise the queue

PriorityQueue<Rule> queue = new

PriorityQueue<>(Collections.reverseOrder());

public void initializeQueue(Session gdb) {

// Get all the unique predicates/relationships these will be our

initial facts.

Result facts = gdb.run("MATCH ()-[r]->() RETURN DISTINCT TYPE(r)

as predicates");

while (facts.hasNext()){

Map<String, Object> triple = facts.next().asMap();

Rule newRule = new Rule();

APPENDIX A. APPENDIX 50

// The subject and object are just variables for the algorithm.

Atom newAtom = new

Atom(Long.parseLong((String)triple.get("predicates")), 0L,

1L,

predicateName.get(Long.parseLong((String)triple.get("predicates"))));

newRule.setHeadAtom(newAtom);

newRule.setFunctionalVariable(metricsAssistant.getFunctionality(gdb,

newRule));

queue.add(newRule);

}

}

Listing A.5: Method to check if a rule is better than its parents

public boolean betterThanParent(Rule r) {

boolean isBetter = true;

for (Rule ancestor : r.getParent()) {

if (ancestor.getLength() > 1 && ancestor.isClosed()

&& r.getConfPCA() <= ancestor.getConfPCA()) {

return false;

}

}

return true;

}

A.2 Apriori approach

Table A.1 compares the execution time of our implementation of the original
AMIE rule mining algorithm with the implementation of Apriori algorithm.
This improvement in evaluation time of the algorithm is due to the reduced
number of database queries as explained in the approach section of the report.

The method shown in Listing A.6 is responsible to initialize the base graph
pattern which will later be exapnded to bigger graph patterns by adding the
closing edge and dangling node with its connection.

APPENDIX A. APPENDIX 51

Table A.1: Comparing execution time of our implementations of the AMIE
algorithm with the Apriori algorithm

Knowledge base Iterative algorithm Apriori algorithm

YAGO Sample 1.41 s 37 s

WN11 5.45 s 3.5 s

WN18RR 1.50 s 1.13 s

WN18 9.47 s 7.04 s

NELL-995 1 h 11 m 52 m

Listing A.6: Method to initialize the base graph patter

public static void initializeQueue() {

Set<DirectedMultigraph<Long, DefaultEdge>> size1Rules = new

HashSet<>();

/*

* (A)---->(B)

*/

DirectedMultigraph<Long, DefaultEdge> baseStructure1 = new

DirectedMultigraph<>(DefaultEdge.class);

baseStructure1.addVertex(0L);

baseStructure1.addVertex(1L);

baseStructure1.addEdge(0L, 1L);

graphStructures.put(1, size1Rules);

}

Listing A.7 and A.8 show our implementation of adding the closing edge
and dangling node and its connection.

Listing A.7: Method to add closing edge

public Set<DirectedMultigraph<Long, DefaultEdge>>

addClosingNode(DirectedMultigraph<Long, DefaultEdge>

currGraph) {

Set<DirectedMultigraph<Long, DefaultEdge>> expandedGraphs =

new HashSet<>();

Set<Long> nodes = currGraph.vertexSet();

APPENDIX A. APPENDIX 52

Set<Set<Long>> combinations = Sets.combinations(nodes, 2);

for (Set<Long> combination: combinations) {

Long[] arr = combination.toArray(new Long[0]);

@SuppressWarnings("unchecked")

DirectedMultigraph<Long, DefaultEdge> expandedGraph1 =

(DirectedMultigraph<Long, DefaultEdge>)

currGraph.clone();

expandedGraph1.addEdge(arr[0], arr[1]);

@SuppressWarnings("unchecked")

DirectedMultigraph<Long, DefaultEdge> expandedGraph2 =

(DirectedMultigraph<Long, DefaultEdge>)

currGraph.clone();

expandedGraph2.addEdge(arr[1], arr[0]);

expandedGraphs.add(expandedGraph1);

expandedGraphs.add(expandedGraph2);

}

return expandedGraphs;

}

Listing A.8: Method to add dangling node and its connection

public Set<DirectedMultigraph<Long, DefaultEdge>>

addDanglingNode(DirectedMultigraph<Long, DefaultEdge> currGraph) {

Set<DirectedMultigraph<Long, DefaultEdge>> expandedGraphs =

new HashSet<>();

Set<Long> nodes = currGraph.vertexSet();

List<Long> sortedNodes = new ArrayList<>(nodes);

sortedNodes.sort(Collections.reverseOrder());

Long newNode = sortedNodes.get(0) + 1L;

// We will add edges in both direction between the nodes.

for (Long node: nodes) {

@SuppressWarnings("unchecked")

DirectedMultigraph<Long, DefaultEdge> expandedGraph1 =

APPENDIX A. APPENDIX 53

(DirectedMultigraph<Long, DefaultEdge>)

currGraph.clone();

expandedGraph1.addVertex(newNode);

expandedGraph1.addEdge(node, newNode);

@SuppressWarnings("unchecked")

DirectedMultigraph<Long, DefaultEdge> expandedGraph2 =

(DirectedMultigraph<Long, DefaultEdge>)

currGraph.clone();

expandedGraph2.addVertex(newNode);

expandedGraph2.addEdge(newNode, node);

expandedGraphs.add(expandedGraph1);

expandedGraphs.add(expandedGraph2);

}

return expandedGraphs;

}

	Rule Mining from Knowledge Bases: Semantics, Queries, and Estimations
	Recommended Citation

	tmp.1684253550.pdf.VXvjK

