
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2023

Memory Protection with Cached Authentication Trees Memory Protection with Cached Authentication Trees

Andy Belle-Isle
atb1317@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Belle-Isle, Andy, "Memory Protection with Cached Authentication Trees" (2023). Thesis. Rochester
Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11427?utm_source=repository.rit.edu%2Ftheses%2F11427&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Memory Protection with
Cached Authentication Trees

Andy Belle-Isle

Memory Protection with
Cached Authentication Trees

Andy Belle-Isle
May 2023

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

Memory Protection with
Cached Authentication Trees

Andy Belle-Isle

Committee Approval:

Dr. Marcin Lukowiak Advisor Date
Department of Computer Engineering

Dr. Cory Merkel Date
Department of Computer Engineering

Dr. Stanis law Radziszowski Date
Department of Computer Science

i

Abstract

The use of embedded systems and the amount of data they process is rapidly growing

in the modern information age. Given physical access to a device, an attacker can

monitor the signals between the CPU and Memory to intercept, and possibly even

inject new data into the system. A variety of attacks are possible including, replay,

spoofing, and splicing attacks, each one threatening the safety of the system. Ensuring

this data is intact is imperative, and as physical protection is difficult, data protection

hardware is a must.

Protecting memory was researched in the past, and there are several methods

of achieving it, with techniques such as memory encryption, memory hashes, and

message authentication codes. While these achieve the desired effect, they do it

at the cost of performance, memory usage, and additional hardware. To overcome

these concerns, authentication tree designs have been proposed to protect memory

with reduced overhead. For example, static tree designs such as TEC-Trees have

been proven effective in the past, but have limited performance in certain access

patterns (workloads). Most recently proposed dynamically balanced trees provide an

additional solution with improved performance in certain workloads, however; with

its own additional limitations. This research built on the top of the dynamic tree

design by integrating tree node caches and evaluating the improved viability of the

dynamic authentication tree (DAT) approach.

The design was implemented on a Xilinx Zynq-7000 SoC that used a hard process-

ing system core to communicate with the fabric-based memory protection controller.

The addition of caches to the dynamic authentication tree design increased the per-

formance enough to perform similarly to TEC-Trees. As expected, in certain memory

access patterns, such as those that repeatedly accessed a group of common memory

locations, the cache-added DAT was able to outperform both the original design, and

TEC-Tree based designs.

ii

Contents

Signature Sheet i

Abstract ii

Table of Contents iii

List of Figures vi

List of Tables vii

List of Listings viii

Acronyms ix

1 Introduction 2

1.1 Motivation . 2

1.2 Objective . 4

2 Background 5

2.1 Physical Memory Attacks . 5

2.1.1 Replay Attacks . 5

2.1.2 Spoofing Attacks . 6

2.1.3 Splicing Attacks . 6

2.2 Memory Protection . 6

2.2.1 Hashing . 7

2.2.2 Message Authentication Codes 7

2.2.3 Authenticated Encryption with Associated Data 7

2.2.4 Block-Level AREA Authentication 8

2.3 Authentication Trees . 8

2.3.1 Data Authentication Methods 9

2.3.2 Authentication Tree Performance 9

2.3.3 TEC-Tree . 10

2.3.4 Dynamic Authentication Trees 12

2.4 Authentication Method Comparison 19

2.5 Authenticated Memory Controller . 20

iii

CONTENTS

3 Cached Authentication Trees 23

3.1 Authentication Tree Caching . 23

3.1.1 Memory Caching . 23

3.1.2 Keystream Caching . 24

3.2 Cache Reasoning . 26

3.2.1 Dynamic Authentication Tree Caching 27

3.3 Cache Architecture . 27

3.3.1 Caching Indexing . 28

3.3.2 Cache Read Architecture . 30

3.3.3 Cache Write Architecture . 31

3.4 DAT Cache Architecture . 32

3.4.1 DAT Cache Refilling Example 33

3.4.2 DAT Cache Addressing . 37

3.4.3 DAT Cache Population . 38

3.4.4 DAT Cache State Machine . 38

3.4.5 DAT Cache Implementation Decisions 39

3.5 Additional Performance Improvements 40

3.5.1 Request burst wrapping . 40

4 Memory Controller Framework 46

4.1 Memory Controller Security Model 46

4.1.1 Memory Controller Encryption Model 48

4.1.2 AMBA AXI4 Interface Protocol 49

4.2 Memory Controller Pipeline . 50

4.2.1 Memory Encryption Pipeline 50

4.2.2 Authentication Pipeline . 52

4.3 Hardware Testing Framework . 53

4.3.1 FSBL Modifications . 54

4.3.2 PL Binary Loading . 57

4.4 Results . 58

4.4.1 Authentication Tree Hardware Cost 58

4.4.2 Authentication Tree Performance 62

4.4.3 Summary . 68

5 Conclusion and Future Work 71

5.1 Future Work . 71

5.1.1 Tree Arity . 71

iv

CONTENTS

5.1.2 Compiler Assisted Rebalancing 72

5.1.3 Running Linux within Protected Memory 73

5.2 Conclusion . 74

Bibliography 75

v

List of Figures

2.1 TEC-Tree Architecture [1] . 10

2.2 TEC-Tree Node Indexing [1] . 12

2.3 DAT Node Metadata [2] . 13

2.4 DAT Example Layout . 13

2.5 DAT Unordered Restructuring Method 14

2.6 Restructuring Method 1 [2] . 15

2.7 Restructuring Method 2 [2] . 16

2.8 Restructuring Method 3 [2] . 17

2.9 DAT Memory Layout . 18

2.10 Memory Encryption Pipeline [3] . 21

2.11 Memory Pipeline with Dynamic Authentication Tree [3] 21

3.1 Keystream Caching Architecture [4] 24

3.2 Cached TEC-Tree Pipeline . 25

3.3 Tree-node Cache Ports . 28

3.4 Tree-node Cache Indexing Scheme . 30

3.5 DAT Cache Architecture . 32

3.6 DAT Example Layout - Balanced . 34

3.7 DAT Example Layout - Unbalanced 35

3.8 DAT Node Cache Read State Machine 39

3.9 Burst request with incorrect wrap parameters 41

4.1 Memory Authentication Pipeline Hardware Design 47

4.2 Cipher Block Chaining CTS Mode [5] 48

4.3 Memory Controller Encryption Pipeline 51

4.4 Encryption and Authentication Pipeline 52

4.5 FSBL State Machines . 55

4.6 Sequential Memory Access Performance 65

4.7 Random Memory Access Performance 66

4.8 Memory Hotspot Access Performance 68

vi

List of Tables

2.1 Memory Authentication Hardware Comparison 20

2.2 Authentication Tree NONCE sizes . 20

3.1 DAT Cache Refill Node Access Numbers 36

4.1 Zynq XC7Z020 Memory Map . 53

4.2 APSoC Resource Comparison . 59

4.3 Synthesis Utilization Reports . 59

4.4 Implementation Utilization Reports 61

4.5 XC7Z020 Resource Utilization Percentages 61

4.6 Simulation Parameters . 63

4.7 Summary of Timing Results (µs) . 69

vii

List of Listings

4.1 Original FSBL Load Address Checking 57

4.2 Modified FSBL Load Address Checking 57

viii

Acronyms

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

APSoC All Programmable System-on-Chip

DAT Dynamic Authentication Tree

DDR Double Data Rate SDRAM

DMA Direct Memory Access

DSP Digital Signal Processing

FF Flip-Flop

FPGA Field-Programmable Gate Array

FSBL First Stage Bootloader

IOT Internet of Things

LUT Look up table

MAC Message Authentication Code

NONCE Number-used-once

OCM On-Chip Memory

PL Programmable Logic

PS Processing Subsystem

ix

Acronyms

RAM Random Access Memory

SDRAM Synchronous Dynamic Random-Access Memory

SoC System-on-Chip

TEC-Tree Tamper Evident Counter Tree

XOR Exclusive OR Operation

1

Chapter 1

Introduction

1.1 Motivation

With the continuous expansion of ”smart-devices”, the amount of user data pro-

cessed in non-secure locations has been growing rapidly. These small, low powered,

devices are generally known as embedded systems. Their purpose is to fulfill a set

of tasks quickly and easily without wasting either space, power, or money. They are

used everywhere in today’s computing industry: cameras, dishwashers, cars, wireless

door locking systems, etc... Many of these deployments, while simple, are operation

critical, and may contain sensitive data, meaning the security of which is of utmost

importance. Generally, the software implementations are hardened for this reason,

and many of the devices use proprietary communication protocols without access to

the internet, making it difficult to illegitimately obtain the information processed on

the device. However, given physical access to the device, obtaining data may become

feasible.

Many of the implementations that make use of embedded systems are based on

a system on a chip. A system on a chip (SoC) is an electronic component that

implements a large portion of a computers typical components on a single chip. These

components may include: processor, memory, I/O (input and output) and hardware

acceleration support for data streams like: video, audio, or encryption. This work will

2

Chapter 1. Introduction

utilize as a case study an SoC that contains both a traditional processor-based setup,

but also a reconfigurable hardware portion. In many implementations the SoC may

interface with external storage and/or memory. Since these storage resources are not

within the SoC, buses are used to transmit the data between the SoC and external

memory. Since this data is transmitted to an off-chip location via a physically exposed

bus, the data being transferred can be susceptible to either theft or tampering.

At the moment, some embedded system devices use encrypted flash to protect

the device’s code and persistent storage. This is a fairly trivial task given that flash

access occurs infrequently, as well as the fact that many SoCs/FPGA devices sup-

port hardware-based flash encryption. Where these designs fall short are the lack of

encryption for the device’s random access memory (RAM). RAM is usually left unen-

crypted due to the nature of its function: fast, temporary data storage. Additionally,

RAM is typically clocked slower than CPUs and is located off-die. This means that

accessing data within memory already incurs a performance penalty, even before there

is additional hardware used for encrypting data-in-motion. Placing dedicated encryp-

tion hardware directly within the memory controller adds protection against a variety

of memory attacks; however, it introduces additional overhead, both design and tim-

ing based, neither of which are desirable for small, low-powered SoC-based devices.

In an attempt to increase memory security, there has been research into methods of

memory encryption that have a lesser performance overhead [6, 7].

While there has been research exploring the encryption of data-at-rest in memory,

the topic of tampered data is another issue entirely. Exposed memory busses, or

memory attacks such as rowhammer [8], can allow attackers to modify/corrupt the

data within memory, to no knowledge of the SoC or the software running on it. A

method to minimize such an attack vector is authenticating all data that travels

to/from the memory. By authenticating all sensitive data-in-motion, both the CPU

and memory are aware of any tampering that may have occurred while the data was

3

Chapter 1. Introduction

either in-motion or at-rest. Several memory authentication methods [3, 9, 10, 1] have

been used in the past, but these implementations are neither simple to implement

nor minimally adverse on performance.

1.2 Objective

The goal of this research was to provide a method of securing memory, both at-rest

and in-motion, that is simple to use and makes use of commonly used interfaces. To

achieve this, the work done built on top of previous research into dynamically bal-

anced memory authentication trees (DAT) [2]. The primary goal was to improve the

performance of DAT’s by caching entries of the authentication tree. To evaluate the

effectiveness of these improvements, both the FPGA resource utilization and perfor-

mance impact of the design was compared to not only the dynamic authentication

tree the design is improving, but also other implementations seeking to solve the same

problem. Similarly to the dynamic authentication tree design this was based on, the

improved design takes advantage of the AXI-4 protocol for interfacing with the pro-

cessor and memory controller. The design was benchmarked using timing-accurate

simulations, and verified using a Zynq-7020 SoC, which provided both the ARM CPU

for running real-world workflows and the FPGA fabric that was used to create the

cached dynamic authentication tree.

4

Chapter 2

Background

2.1 Physical Memory Attacks

Physical attacks are a more prevalent issue with embedded systems than traditional

software-based approaches used in both enterprise and desktop software. This is

because the software used in embedded systems is simpler and presents fewer attack

vectors. Also, given that embedded systems may be deployed in unsecured locations,

it makes them very susceptible to physical access/attacks. Once given physical access,

the effort required to perform a physical memory attack can be substantially reduced

in certain cases. For example, an attacker can monitor the CPU’s memory bus lines

to access the raw information being transferred to/from memory[6]. While there are

memory encryption schemes that exist to prevent unencrypted memory access, they

do not prevent the injection of malformed data into the CPU or memory[11, 4]. Not

authenticating the data traveling on the CPU’s memory bus can allow a potential

attack to send any set of data to either the CPU or memory.

2.1.1 Replay Attacks

Memory replay attacks occur when an attacker observes the memory bus and records

a subset of the transactions occurring. At a later time, the attack can use this

information to ”replay” data back over the bus to either overwrite it or remotely re-

5

Chapter 2. Background

execute specific parts of the system’s firmware. Preventing this attack is very difficult

and requires memory blocks to contain a one-use signature that can be authenticated

on each read/write to ensure that the memory block wasn’t replayed[12].

2.1.2 Spoofing Attacks

Spoofing memory is when an attacker attempts to disrupt the execution of the system

by sending modified or malformed memory blocks back to the CPU or memory. If

undetected, the CPU’s execution may get disrupted or even cause a fault if the mal-

formed memory presents an invalid instruction to the CPU. While there are methods

to detect this type of fault, memory authentication would prevent the memory con-

troller from forwarding the false data to the CPU at all [13].

2.1.3 Splicing Attacks

A memory splice attack is a combination of both a replay and a spoofing attack.

The attacker will exploit the system memory by reading valid data blocks during a

memory write event, and will later rewrite this same data to a different address within

memory. Detecting and preventing this attack is done by authenticating a memory

block based on both the contents of the block and the block’s address within memory.

2.2 Memory Protection

Encrypting the contents of memory is a common method for protecting against unau-

thorized memory reads [3]. With plain encryption; however, memory isn’t protected

from the physical memory attacks listed above. Protecting against replay, spoofing,

or splicing attacks requires memory authentication to verify the integrity of data. On

their own, many plain encryption schemes don’t provide memory authentication un-

less paired with an authentication scheme. As the focus of this research is on complete

memory protection, memory contents must be both encrypted and authenticated.

6

Chapter 2. Background

2.2.1 Hashing

One method of verifying the integrity of data is via the use of hashing. Hashing

algorithms generate a constant length hash of a variable length data input. The

advantage of data hashing is the flexibility of the data it can operate on. Hashing can

occur on either cryptographically secure or plaintext data. Given the variable length

input, it can be configured to authenticate the most efficient data block size for either

the hardware or software targets. A memory controller can stream data-in-motion

through a hashing algorithm to generate a data block hash and compare it to the

one stored securely on chip. The downside of this method is the large on-chip storage

required for storing data block hashes.

2.2.2 Message Authentication Codes

Similar to a hash, a message authentication code is a unique, constant length, tag,

generated from a variable length message. A cryptographic MAC primary differs from

a hash function in that it also uses a secret key for tag generation. As the value of

the tag depends on both the secret key and the plaintext, the generated tag can be

stored alongside the corresponding message as long as the key is kept secret. The

advantage this provides for hardware-based implementations is that only the key(s)

have to be stored within trusted on-chip memory. Compared to hashing functions,

this reduces the on-chip storage requirements by a large magnitude.

2.2.3 Authenticated Encryption with Associated Data

Authenticated Encryption with Associated Data (AEAD) is a subset of authenticated

encryption in which both the data itself and the location of the data is authenticated.

Verifying both the data and its location protects not the validity of the data, but it

also ensures that it hasn’t been duplicated. Both associated data (AD) and location

information is bound to the target ciphertext to provide these protections. The

7

Chapter 2. Background

associated data is only authenticated and is not encrypted. AEAD ensures that two

messages with identical plaintext will not yield the same ciphertext, increasing the

diffusion properties of the secured data.

2.2.4 Block-Level AREA Authentication

Block-Level AREA Authentication provides block-based data encryption and authen-

tication by applying the AREA technique [14] to a block of data. The AREA tech-

nique specifies a method for authenticating data through the use of the diffusion

property of block-ciphers. As an alternative to implementing authentication features,

data authentication can be performed given the cipher mode used to protect the target

data block possesses infinite error propagation, such as CBC (cipher block chaining).

The AREA technique operates as follows: an authentication tag L is appended to

the end of plaintext message P . Once encrypted, L is prepended to the beginning

of the ciphertext C. If the message both begins and ends with identical blocks of L

after the decryption process is complete, the integrity of the message is intact. The

benefit of using the AREA technique over small data blocks is simplified hardware,

because the only thing required is an encryption engine. No additional hardware is

required to implement an additional authentication scheme to the underlying encryp-

tion, AES-GCM for example. This can also provide better performance since the

authentication is done through error propagation instead of through the generation

of an authentication tag or hash.

2.3 Authentication Trees

Of the previous authentication methods discussed, each one has a common detriment

to its hardware implementation: on-chip storage cost. Each of these methods requires

trusted storage (on-chip) for at least one associated string or key per block. While

the size of each block can be increased to decrease the total number of tags required,

8

Chapter 2. Background

this can cause large performance degradation as the entirety of each block must be

read or written for authentication purposes. The on-chip storage cost can be reduced

while retaining smaller data block sizes by allowing multiple blocks to share a single

trusted element. With this technique, only the trusted element must be stored within

trusted memory. To increase the cryptographic strength of the data, each block must

use a unique tag, or NONCE, derived from a parent tag. These tags can be arranged

in a tree-like fashion, with the trusted element being the root of the tree.

2.3.1 Data Authentication Methods

Many authentication tree implementations contain two types of nodes: counter nodes

and data nodes [15, 2, 1, 16]. Data nodes are the (encrypted) blocks of data being

stored in memory, and counter nodes are used to store tree ”metadata”. Metadata

contains the structural information of the tree, including access counts, address maps,

and authentication information. In these trees, the authentication and encryption is

performed using the Block-Level AREA Technique. The entire plaintext and NONCE

block is encrypted. Upon decryption, the integrity of the data can be verified by exam-

ining the value of the decrypted NONCE. If the value of the NONCE has remained

the same through the encryption/decryption process, then the data has not been

modified in any way.

2.3.2 Authentication Tree Performance

The plus-side of authentication trees is that they have a low hardware overhead,

reducing the complexities of CPU hardware implementation. Conversely, one of the

largest downsides is the high off-chip overhead created by authentication trees. This

cost comes from the amount of extra metadata that must be stored in memory to

keep track of the tree’s state. The performance overhead of the tree is not negligent.

Despite the tree structure allowing for efficient node access, there is an additional

9

Chapter 2. Background

overhead gained from generating tree node requests and navigating the tree that raw

memory access does not have.

2.3.3 TEC-Tree

One of the authentication tree’s this research was based on, and used for bench-

marking purposes, was tamper-evident counter (TEC) trees. TEC-trees are statically

arranged trees of a configuration arity. TEC-Trees are made up of the two standard

node types used in authentication trees: counter and data nodes. Counter nodes

contain access counts for all the children nodes, which may be either data or counter

nodes. As TEC-trees are statically arranged, accessing a node is efficient, as its po-

sition will always be static in memory and does not require tree traversal to locate.

Data nodes in TEC-trees are authenticated by appending NONCE’s to the end of

each data node. If the decrypted plaintext NONCE of a node matches the NONCE

expected by its parent, there are no memory errors present. The architecture of a

TEC-Tree is displayed in Figure 2.1.

Figure 2.1: TEC-Tree Architecture [1]

10

Chapter 2. Background

2.3.3.1 TEC-Tree Cryptographic Properties

The TEC-Tree performs its authentication by verifying the integrity of the NONCE

stored alongside each tree node. The NONCE stored with each node is generated

using both the address of the data node and the access count of the current node.

This allows the parent node to authenticate the child node using a similar technique

to that in subsection 2.2.4. The exception to this authentication structure is the root

of the tree, which is stored as a single counter on-chip. As the root node is considered

trusted, it does not require associated data to authenticate against.

2.3.3.2 TEC-Tree Performance

TEC-Trees provide numerous benefits over purely authenticated memory data. Since

each tree root is able to protect multiple data blocks, only a very small portion of on-

chip memory is required to authenticate a single tree. Therefore, multiple trees can be

used to protect larger portions of memory. Not only does this increase performance

by reducing tree depth, but it allows for multiple simultaneous tree accesses across

different trees. Space complexity wise, TEC-Trees scale using Equation 2.1.

OTEC =
lp + nA

lp(A− 1)
(2.1)

The space overhead required for a single TEC-Tree is somewhat minimal as each

data node, lp bytes long, only requires a single configurable sized (n bytes) NONCE.

Each counter contains A (tree arity) counters as well as a NONCE of the same size as

previously configured. Since the tree is statically arranged, each node does not need

to store any structural information regarding node locations as they can be calculated

on the fly. The indexing of TEC-Tree nodes as depicted for a 4-ary tree in Figure 2.2

is done by numbering the root node as ‘0’, and increasing counts across each tree

level.

11

Chapter 2. Background

Figure 2.2: TEC-Tree Node Indexing [1]

The index of a parent node can be calculated by subtracting one from the index

of the current node and dividing by the tree arity. Given that the arity of the tree is

a power of two, this can be performed efficiently in hardware using bitwise shifting. If

the parent node is calculated to have a negative index, the root of the tree has been

reached, and child node authentication must happen using the root counter from

trusted memory.

The downside of this approach however, is related to the static arrangement of

the trees. The guarantee that each data block must exist at the lowest level of the

tree requires full tree traversal for every data access.

2.3.4 Dynamic Authentication Trees

An authentication tree design that attempts to improve the performance of the TEC-

Tree is the dynamic authentication tree (DAT). As the name implies, the dynamic

authentication tree employs methods of tree re-balancing in order to place more fre-

quently accessed nodes towards the top, or root, of the tree. This change reduces

the performance overhead of balanced trees by offering a dynamically re-constructed

tree to reduce tree traversal time. This is done by comparing the access counters of

nearby nodes to determine which has been accessed the most. Each counter node

also contains three counters of its own. The first counter is used to track the amount

of accesses this counter node has. The second and third counters are left and right

counters, these keep track of the access counts to the left and right child nodes respec-

tively. Figures 2.3 and 2.4 show the layout of both the counter and the data nodes

12

Chapter 2. Background

for the dynamic authentication tree, as well as how they are arranged in an example

tree.

Figure 2.3: DAT Node Metadata [2]

Figure 2.4: DAT Example Layout

DAT nodes are highly flexible and configurable. The size of each counter or parent

node index can be configured to require the least amount of memory space required for

proper operation. The memory location where each node is stored is static; therefore,

rebalancing doesn’t modify the physical memory address of data blocks or counter

nodes. All rebalancing happens virtually, with modifications happening to the parent

or sibling index fields of node metadata. This allows tree rebalancing to occur without

data copies.

13

Chapter 2. Background

2.3.4.1 Unordered DAT Rebalancing

Dynamic authentication trees have two methods for rebalancing trees. The Huffman

encoding scheme is used for the first rebalancing method. Huffman generates an

optimal binary tree based on the weights of the leaf nodes in the tree. This also means

that when weights are updated (node writes), the same algorithm can be rerun to

reorganize the tree into an optimal layout. Huffman encoding doesn’t guarantee the

retention of node orders though, so any re-ordering using this algorithm may cause the

nodes to become unordered. Nodes becoming unordered may cause non-optimal tree

architectures. An example of an unordered rebalancing operation is demonstrated in

Figure 2.5.

Figure 2.5: DAT Unordered Restructuring Method

Rebalancing nodes in an unordered tree is done by comparing the weights, or

access counts, of a node and its uncle. If the access count of a node is higher than

that of its uncle, the two nodes are swapped logically. Logically swapping nodes only

updates the metadata of the two swapped nodes, their siblings, and their parents. The

updated metadata points to the new parent and sibling nodes, as well as the updated

access counts of the new relatives. Swapping two nodes also swaps their children since

the metadata of the children still point to the unique node ID of the parent, which is

not updated. Performing logical swaps also means the physical location of each node

within memory remains the same during the reordering process.

14

Chapter 2. Background

2.3.4.2 Ordered DAT Rebalancing

The second method for rebalancing generates ordered trees. The data nodes within an

ordered tree must always remain in the same order, even after rebalancing. Retaining

the order of a tree’s leaf nodes means a higher chance of the tree being optimal.

Optimal trees are typically easier to traverse, as the positions of leaf nodes relative

to each other is always constant. The dynamic authentication tree presents three

different methods for rearranging ordered trees for performance efficiency.

Method 1 - The first rebalancing method uses the Parent, Sibling, Uncle, and cur-

rent nodes for rebalancing the tree. Rebalancing is performed when the current

node’s weight is greater than that of the Uncle node. When this happens, the

current node is shifted up to the same level of its own Parent node, and the

Uncle replaces the current node under the Parent. Figure 2.6 shows the tree

movements that make this occur.

Figure 2.6: Restructuring Method 1 [2]

The issue with this restructuring method is that it does not modify the case

in which the left or right relation to the Parent of Uncle and current nodes do

not match. This causes the order of the leaf nodes to be invalid, requiring the

implementation of a second method for handling this situation.

Method 2 - The second method uses the same data as the first, but it adds the

weights of the Grand Uncle and Grand Parent into the restructuring calculation.

15

Chapter 2. Background

This method of restructuring occurs when the current node and its Uncle share

the same weight, but the weight of the current node and its Grand Uncle do

not match. When these conditions are met, the current node is moved upwards

and becomes a Sibling of its Uncle. Following this, the Parent node moves

upwards to replace the Grand Uncle, and the Grand Uncle replaces the current

node under the Parent. The visualization of this restructuring is shown in

Figure 2.7.

Figure 2.7: Restructuring Method 2 [2]

Restructuring using this method fixes the problem specified in the previous

method; however, it creates a fresh problem in the case that the current node’s

weight is equal to both its Uncle’s and Grand Uncle’s weight. In this situation,

the leaf node order is not retained, so a third restructuring method is needed

to fix this case.

Method 3 - The final method for restructuring the tree is similar to that of method

2; however, it occurs when the current node’s weight is equal to that of the Uncle

and Grand Uncle. This method does not modify the current node itself, but

it does move the parent up in the tree to replace the Grand Parent’s location.

Following this, the Grand Parent is moved over to replace the Grand Uncle,

which becomes a child of the Grand Parent, as well as the Uncle. This movement

is demonstrated in Figure 2.8.

These restructuring methods are run dynamically during the execution of the

16

Chapter 2. Background

Figure 2.8: Restructuring Method 3 [2]

memory controller pipeline. Performing these checks and rebalances during execu-

tion provides an automatic performance boost to the code execution without the

programmer needing to perform any special actions for memory structuring. The

negative result of performing restructuring live, is the performance hits that occur

during the restructuring itself. While restructuring the tree nodes, the memory con-

troller is halted and cannot perform tree accesses until the rebalancing is completed.

2.3.4.3 DAT Memory Layout

DAT Nodes are stored sequentially in memory, with both the payload and metadata

stored together. Data nodes are stored starting at the beginning of the protected

memory region. The storage scheme for memory protected by two trees, each with

four data nodes, is illustrated in Figure 2.9.

The node groupings for each tree are stored sequentially, similarly to the individual

nodes within. The grouped data nodes make up the protected memory area. Due

to the related metadata, the total space used to store data nodes is larger than the

protected memory area they represent; however, only the payload itself is accessible

via the virtual address space. Tree metadata, or counter nodes, are stored following

the end of the protected memory region, and are not mapped in the virtual memory

space; therefore, cannot be accessed by the host system.

Figure 2.9 also demonstrates the node indexing scheme of DAT nodes (via the

17

Chapter 2. Background

Figure 2.9: DAT Memory Layout

NONCE indexes). The indexing scheme used is identical to that of the TEC-Tree;

however, given the dynamic nature of the tree, the position of each index relative to

the root is not guaranteed to remain the same.

2.3.4.4 DAT Cryptographic Properties

Authentication within DATs are similar to that of TEC-Tree. The access counter of

a node is compared to that of its parent; however, the tree structure must be taken

into account. As it is possible for child nodes to be swapped during rebalancing,

each child contains a field denoting its relation to the parent: LR. LR is a single bit

field that specifies if the node is either left, value of ‘1’, or right, value of ‘0’, of the

parent. After reading the value of the child’s LR field, the parent will compare the

corresponding counter with the child’s counter and report the authentication result.

18

Chapter 2. Background

2.3.4.5 DAT Performance

As opposed to statically arranged trees, like TEC-Trees, DATs require tree structure

information to be stored within each node’s metadata. This causes a variety of is-

sues for the hardware design. Not only does this increase storage complexity of DAT

designs, but it also increases the design complexity, and therefore fabric utilization.

Additionally, it mandates the parsing of all tree nodes and the traversal of additional

states related to rebalancing. These states are used for determining whether a rebal-

ance is needed and/or rebalancing the tree if required. The space complexity required

for DATs can be calculated from Equation 2.2.

ODAT =
lp + n · 2
lp(2− 1)

(2.2)

This equation is identical to that of the TEC-Tree; however, the arity of the DAT is

locked at 2, and the size of each NONCE is significantly larger as it contains tree data.

A comparison of the NONCE sizes for each tree can be found in Table 2.2. Given

the binary nature of the rebalancing methods used, only 2-ary DATs are supported.

Reducing the amount of children each parent node can have increases the depth of

the tree, creating a performance bottleneck as the average node depth will be deeper.

2.4 Authentication Method Comparison

Given the previous knowledge regarding memory authentication methods, Table 2.1

compares the hardware impacts of each one.

Providing full memory protection requires both memory encryption and authen-

tication. Of the option’s discussion in section 2.2, the only solution that provides full

memory protection without severely impacting performance is authentication trees.

These equations demonstrate the additional overhead required to store tree infor-

mation within the metadata of DAT nodes. DAT node metadata requires the storage

19

Chapter 2. Background

Table 2.1: Memory Authentication Hardware Comparison

Pe
rfo
rm
an
ce
O
ve
rh
ea
d

M
em
or
y
O
ve
rh
ea
d

O
n-
ch
ip
O
ve
rh
ea
d

A
ut
he
nt
ica
te
d

En
cr
yp
te
d

Block Encryption Medium None None No Yes
Hashes High None High Yes No
MACs High High High Yes No
AEAD High Medium Low Yes Yes
AREA High Medium Low Yes Yes

Authentication Trees Medium High Low Yes Yes

Table 2.2: Authentication Tree NONCE sizes

Tree Type Memory Overhead NONCE Size Average Node Depth

TEC lp+n·A
lp(A−1)

c+ log2D logA D

DAT lp+n·2
lp(2−1)

c+ 3 · log2D < log2D

of three node indexes as opposed to the single index required for TEC-Trees. The

advantage of the dynamic authentication tree comes with the average node depth.

Since more frequently used nodes are placed near the top of the tree, the average

node depth is much higher in the tree than that of the TEC tree.

2.5 Authenticated Memory Controller

Many previous implementations of memory authentication and encryption used a

custom memory controller to perform these actions that were capable of interfacing

with widely used memory busses (e.g. DDR3). [3, 2]

Figure 2.10 depicts the architecture of a memory controller that implements mem-

ory encryption [3].

The design of this memory controller was the base design of the Dynamic Memory

Authentication tree. The benefits of a controller similar to the one in Figure 2.10 is

20

Chapter 2. Background

Figure 2.10: Memory Encryption Pipeline [3]

the seamless memory encryption and decryption that is completely obscured from

the CPU. Obscuring this from the CPU keeps the CPU memory stage execution fast,

but it can still provide the necessary security. Since this controller implements en-

cryption and decryption, the basis for authentication is already implemented, making

authentication tree implementation easier.

The modified design that implements the Dynamic Authentication tree is shown

in Figure 2.11.

Figure 2.11: Memory Pipeline with Dynamic Authentication Tree [3]

The modifications made to the controller are shown with dotted outlines around

both existing and new blocks. The most notable changes include the addition of a tree

request generator and a tree initializer. These new blocks are used to generate memory

address locations and decryption information for the decryption engine. These tree

request blocks are where the subject of this research takes place. While adding these

tree request blocks was necessary for the implementation, they introduce a major

performance penalty for certain memory accesses.

As previously mentioned, the Dynamic Authentication Tree is able to restructure

21

Chapter 2. Background

the tree during execution on its own. Given that this happens during memory ac-

cess cycles, it delays memory access and causes extra CPU stalls. The tree request

generator also causes a performance hit. When given a memory request, the tree

request generator is the pipeline stage that calculates the address of both the tree

and data node containing the target data, as well as the corresponding NONCEs used

to authenticate them.

This request generator may cause a stall in the controller’s AXI pipeline as it

needs to traverse through the tree in order to authenticate the requested data node.

While the dynamically structured tree helps mitigate this issue, it will always be

unavoidable for the access of certain nodes, namely those further down the tree. This

is solely based on the mechanics of a tree-based data structure. To shorten the delay

caused by tree traversal and reduce the length or number of pipeline stalls, a cache

can be used to store tree node information to avoid traversing through the entire tree

structure.

22

Chapter 3

Cached Authentication Trees

3.1 Authentication Tree Caching

Previous encrypted memory implementations took advantage of a small local cache

to store encryption data, such as keystreams or authentication data (counter nodes,

NONCEs, etc...) [9, 4]. The goal of these caches was not to store the data blocks

themselves, but to store cryptography related data as a means of reducing the per-

formance impact of cryptographic operations.

3.1.1 Memory Caching

The Von Neumann, or Princeton, Architecture is a commonly used design for com-

puting systems. The design principals specify a singular memory used for both in-

struction and data that resides as a separate unit from the CPU. The shared data bus

that exists between the CPU and memory limits the maximum possible performance

of the CPU. This design only allows for either an instruction fetch or data operation,

not both at the same time. The off-chip memory has both a relatively slow clock

speed and a long bus length, so accessing data off-chip incurs a heavy latency. This

latency can be prevented by caching memory data directly on the CPU die. CPU

caches, while small compared to off-chip memory, are high speed and are considered

trustworthy in the scope of this research.

23

Chapter 3. Cached Authentication Trees

The issue of memory latency with Von Neumann architectures are only exacer-

bated by the addition of cryptographic engines directly into the memory controller.

The same logic for the addition of CPU caches can be applied to the use of caches for

storing cryptographic primitives within memory controllers containing cryptographic

hardware. An on-chip cache used for encryption/decryption metadata would not vi-

olate the integrity of the underlying algorithm because the purely on-chip location is

considered trustworthy.

3.1.2 Keystream Caching

Caching encryption data provides an elegant way to increase the performance of an

encrypted memory architecture without losing any of the security features. Figure

3.1 demonstrates a memory architecture used for implementing a keystream caching

mechanism [4]. Using an architecture similar to this allows for such a large speedup

because each encryption operation is reduced to a singular XOR operation.

Figure 3.1: Keystream Caching Architecture [4]

This concept can be extended further for authentication tree architectures. The

counter nodes used for authentication can also be used as the counter (CTR) input

if the authentication tree implements a block cipher using counter mode. Caching

24

Chapter 3. Cached Authentication Trees

the keystream for each tree root or counter node would reduce each memory encryp-

tion/decryption operation into a singular XOR operation.

3.1.2.1 TEC-Tree Caches

As a method of improving performance, TEC-Trees can implement node caches to

prevent off-chip memory access for authentication data. Data caches are stored on-

chip, and therefore are trusted, so the node data can be stored in plaintext. Not only

does this prevent off-chip data access, but it also bypasses the deployed cryptography

scheme, increasing performance benefits.

Figure 3.2: Cached TEC-Tree Pipeline

The TEC-Tree implementation in Figure 3.2 that was studied for this research

implemented a NONCE cache. The NONCE cache improved the read performance of

the TEC-Tree pipeline as it bypassed the need to fetch node NONCEs. Storing only

NONCEs within the on-chip cache provided a higher node coverage rate compared to

a metadata cache as every node within a TEC-Tree contains a NONCE. The cache

accessing scheme used in the specific TEC-Tree implementation studied was a directly

mapped cache, using the lowest significant bits from the NONCE’s RAM address as

the cache index.

The NONCE cache being placed directly within the pipeline provides the following

benefits:

1. Tree generation blocks remain unmodified and don’t have to be aware of the

cache existing.

25

Chapter 3. Cached Authentication Trees

2. Cache access uses the same memory requests as standard memory access. This

means the cryptographic engine used won’t need to be changed.

However, since these caches are not write-through, they do not improve write

performance of the TEC-Tree pipeline. This can be done by decreasing the amount

of writes that occur per data node access. TEC-Trees have a configurable tree arity

(subsection 2.3.3), which when configured to a higher number, will reduce the total

depth of the tree. This reduces the number of nodes that must be written to during

the write-back stage of the authentication process.

As this research focuses on the introduction of caches into authentication tree

architectures, a cached TEC-Tree implementation provides a benchmark for the before

and after effects of caches on authentication trees performance.

3.2 Cache Reasoning

As mentioned previously (section 2.4), authentication trees have improved perfor-

mance over pure data authentication and encryption and uses less on-chip memory.

However, this performance highly depends on the configuration of the tree, such as

data block size, tree arity, and tree depth. This thesis focuses on an authentication

framework that is flexible enough to fit a variety of use cases in which full memory

security is desirable. This allows the structure of the tree to be configured to perform

optimally for either the specific hardware or software workload used. However, the

configuration chosen may introduce severe performance penalties in abnormal access

patterns or large data transfers. Caching tree nodes lessens the performance impacts

in these situations. The relatively low on-chip cost of authentication trees leaves

a large enough overhead of on-chip memory for implementing node caches without

sacrificing other portions of the design.

26

Chapter 3. Cached Authentication Trees

3.2.1 Dynamic Authentication Tree Caching

Dynamic access trees traverse the tree from the bottom up. Since data blocks are

statically located within physical memory, their location can be calculated using the

target virtual address. Authenticating data blocks is done by first reading the target

data block and its metadata. The block’s metadata contains the index number of

the parent nodes. Using this information, the address of both the parent and sibling

nodes can be calculated. However, only the parent node is used for authentication.

DAT architecture specifies that leaf nodes are always data nodes, and internal

nodes are always counter nodes. This scheme guarantees that the parent node of any

node is going to be a counter node. Since authentication is done by recursively reading

every parent node until the root of the tree is reached, the latency of counter node

reads are highly influential on the overall read/write latency of the tree. Therefore,

reducing the access time of counter nodes provides a performance improvement during

the authentication process.

To improve the access times of counter nodes (parent nodes), the value of these

nodes can be cached within the memory controller hardware. This performs two

functions, improving performance and avoiding the security implications of accessing

off-chip data, the very action this research is securing.

3.3 Cache Architecture

The cache implemented for these authentication trees is a dual port, direct-mapped

cache. Since the implementation uses a statically sized HDL array, synthesis tools will

commonly place the cache entries into BRAM. Placing the cache in BRAM allows a

larger cache size than one implemented within configurable fabric, but it still allows

single cycle data access [17].

The cache is configured to use the BRAM’s TDP (True Dual Port) mode. Using

27

Chapter 3. Cached Authentication Trees

the BRAM’s TDP mode limits the maximum width of both the address and data

ports, but it allows for reads and writes to operate independently of each other [17].

Figure 3.3 displays the cache ports and their directions assuming that the size of each

counter node is 192 bits long, with a memory address width of 32-bits.

Figure 3.3: Tree-node Cache Ports

The tree-node cache is built up of three elements. First, the tree request generator

generates the cache requests for accessing counter nodes. The second element is the

node cache interface, which performs two functions: properly sizing cache addresses,

and padding cache data with entry metadata. Finally, the last element is the TDP

BRAM interface. This is a ram block that is designed to synthesize into on-chip

BRAM in TDP mode. The description of the RAM port signals is described in the

next few sections.

3.3.1 Caching Indexing

Since cache space is limited, the size of addressing required to index all entries is

much smaller than the addressing used for main memory. For all implementations

of this cache, the address width has been 32 bits. For the sake of consistency, this

section will assume the cache in question uses a 32-bit address width, with 1024

28

Chapter 3. Cached Authentication Trees

cache entries, each with an entry size of 64 bits. In this scenario, only 10 bits of the

address can be used for indexing the cache 210 = 1024 (Equation 3.1a). This leaves

22 bits of precision lost (Equation 3.1b). Using this 10-bit indexing scheme, there

can be 222 = 4194304 different possible addresses represented by a single 10-bit index.

Assuming all 32 bits of address space are used during operation, this means any cache

index only has a 1
222

= 2.38× 10−5 % chance of containing the correct data.

Cache sizing equations where:

S#: is the number of entries within cache

Si: is the width (in bits) of a cache index

St: is the width (in bits) of a cache tag

Se: is the width (in bits) of a cache entry

ca: is the width (in bits) of the counter node address

c: is the width (in bits) of each counter node

Si = log2 S# (3.1a)

St = ca − Si (3.1b)

Se = 1 + c+ St (3.1c)

To mitigate these cache index conflicts, the 22-bit address tag is appended to the

most-significant side of the cache entry. This means each 64-bit cache entry has a 22-

bit tag overhead (and a single bit for validity), using a total of 87 bits (Equation 3.1c).

The cache tagging, indexing, and data storage scheme are demonstrated in Figure 3.4.

The lowest N-bits of an address are used to generate cache indexes to make cache

”hits” more common. Two addresses in memory located within close proximity have

a higher chance to share address bits on the lower end of the address word, and fewer

29

Chapter 3. Cached Authentication Trees

Figure 3.4: Tree-node Cache Indexing Scheme

bits on the higher end. Building the cache index from these lower bits leads counter

nodes with close proximity, like those within the same or nearby trees, to be cached

at the same time. This is beneficial for memory workloads that operate on either a

single region of memory or access data sequentially.

The most significant bit of the data stored is the ‘valid’ bit. This bit is set to ‘1’

when the data in that index is populated. Otherwise, it’s ‘0’ to denote the lack of

data in that entry.

3.3.2 Cache Read Architecture

Since counter nodes are modified during every write operation, a ‘delete’ signal was

added to the cache read ports. In tree architectures that allow for node restructuring,

cache lines should be deleted before all restructure operations. When set high, the

‘delete’ signal informs the cache to mark an entry as empty if that specific entry was

considered a ‘hit’ on a read access. A cache ‘hit’ refers to an entry in cache for which

both of the following are true. Both the query address and original write address

much match, and the data contained within the entry must be valid. The ‘delete’ line

is always set high when a write operation is sent through the memory authentication

30

Chapter 3. Cached Authentication Trees

pipeline. Since each write operation guarantees a counter accumulation on each parent

connecting the target data node to the root, clearing an entry on read access ensures

the data won’t be outdated on the next read.

Port ‘a’ of the block RAM’s dual ports is used for read operations. Only the

lowest log2(#entries) bits of the address are used for cache indexing, while the rest are

stored as a cache tag. As the BRAM hardware itself doesn’t report ‘valid’ or ‘invalid’

signals related to the queried data, the ‘hit’ condition for cache data is calculated in

the node cache interface. A hit condition is detected by using the request to entry

process shown in Figure 3.4. If the ‘valid’ bit within the read entry is high, and

both the tag and index of the entry and request match, the requested entry is a hit.

Conversely, deleting data from cache is done using a clever trick with the BRAM’s

dual port architecture. While port ‘a’ is only used for cache reads, Figure 3.3 shows

that a vector of all zeros is routed into the data in bus for port ‘a’. If an entry deletion

is required, setting port ‘a’s write enable (wea) pin high will clear the entry cache

entry, including the valid bit.

3.3.3 Cache Write Architecture

As opposed to cache reads, all cache writes happen using the BRAM’s second port,

‘b’. Again, the same cache indexing scheme shown in Figure 3.4 is used within the

node cache interface to convert write data to properly formatted and indexable cache

entries. All cache writes are “write-back”, meaning that all write operations to the

cache are confined strictly to the cache and are not passed through to the primary

computer memory. This ensures that all cache write operations are fast, since they

do not require acknowledgment signals from the system’s primary memory. However,

the downside to this approach is that the off-chip memory may not contain up-to-date

counter node entries.

If a memory controller pipeline would benefit from a “write-through” cache design,

31

Chapter 3. Cached Authentication Trees

implementing it is possible as the cache uses request lines separate from the rest of

the pipeline.

3.4 DAT Cache Architecture

Since DATs only supports a tree arity of two in the current implementation, the size

of the memory protected by each tree and the depth of the tree directly correlate.

While it is possible to increase the number of tree roots, increasing the number of

roots also increases the amount of BRAM used for the secure root module. Adding

a counter-node cache provides a method for possibly preventing tree depth from

crippling performance of authentication trees with DAT architecture.

Figure 3.5: DAT Cache Architecture

As a means to maximize the performance gain of the counter node cache, the

DAT request generator directly issues cache requests as opposed to issuing cache

requests via the pipeline. The advantage to this architecture is the reduction in

cache access bandwidth. Issuing cache requests through the pipeline allows the tree

request generator to avoid the separation of request types, effectively allowing the

cache to operate like a pass-through entity. All requests passing through the cache

blocks would query the cache while in-motion, providing the ability to skip later

blocks, such as memory access blocks. This implementation strategy would also have

the smallest impact on resource utilization as it would take advantage of an already

32

Chapter 3. Cached Authentication Trees

existing request and handshake system and would operate inline with the rest of the

memory pipeline.

The tree-node cache is implemented to store the value of counter nodes. Storing

only the counter nodes within the DAT’s tree-node cache allows a larger region of

memory to be effectively cached than caching the data nodes themselves. In this

instance, the tree-node cache acts as an intermediary step between the CPU’s high-

est level cache, and the external memory. As the CPU cache is extremely effective

at storing blocks of data, that does not need to be done within the DAT memory

controller. Instead, the DAT’s tree-node cache should reduce the amount of time

required to refill CPU cache lines, by reducing latency. One of the structural char-

acteristics of dynamic authentication trees is the static location of nodes in physical

memory. Given that the address of each node is used as the cache access tag, the tags

can remain in cache even after a tree rebalance. Since the DAT architecture ensures

the write-back of all nodes after modification, a rebalance would modify the existing

nodes in cache without leaving dirty nodes behind at old addresses.

3.4.1 DAT Cache Refilling Example

A standard CPU cache will always read, write, evict, etc... data to/from memory in

blocks. CPU cache lines can vary in size, anywhere from 16 B to 2 KB [18]. Reading

a single byte from memory will copy a block of memory matching the size of a cache

line that contains the byte into cache. Since a single DAT counter node is responsible

for protecting an entire data block beneath it, the same counter node will be access

multiple times in succession during the sequential reads used for cache refilling.

Given a dynamic authentication tree that protects 16 KB of memory with 32

trees and a data bus width of 64 bits, data blocks 64 bytes wide means each tree is

protecting 8 data blocks. Eight data blocks in the tree means there are seven counter

nodes and a single root node. This gives a total tree depth of at most seven. Assuming

33

Chapter 3. Cached Authentication Trees

the tree is perfectly balanced, the tree is will only be three levels deep. Figure 3.6

and Figure 3.7 demonstrate the layout of the example tree and the two extreme

configurations (balanced and unbalanced). In this example, it will also assume that

the CPU is fetching 256 bytes of data at a time since each cache line is 256 bytes

long.

Figure 3.6: DAT Example Layout - Balanced

Using this example, a 64-byte block of memory can have all parent nodes cached

using at most 7 cache entries and as little as 3 entries (the root node is stored securely

in the secure root). Requests from the CPU cache for an additional 256-byte line

would be split into 32, 64-bit transactions (Equation 3.2a), as the entire line can not be

sent over the 64-bit bus. These 32 transactions are split across 4 separate data blocks

34

Chapter 3. Cached Authentication Trees

Figure 3.7: DAT Example Layout - Unbalanced

35

Chapter 3. Cached Authentication Trees

Table 3.1: DAT Cache Refill Node Access Numbers

Balanced Tree Unbalanced Tree

Average Node Depth 3 3.5 = (2·8)+(3·8)+(4·8)+(5·8)
32

Total Counter Node Reads 96 = 3 · 32 112 = 3.5 · 32

Unique Counter Node Reads 6 5

Cached Node Reads 90 = 96− 6 107 = 112− 5

Percent Cached Reads 93.75% = 90÷ 96 95.54% = 107÷ 112

(Equation 3.2b). Each of these 32 transactions would require decryption and data

authentication of each counter node leading to the root of the tree (Equation 3.2c),

with Ddepth referring the number of counter nodes between the data node and the

root.

DAT Cache node access equations where:

C#: is the number of counter node reads that occur

2048 bits÷ 64
bits

request
= 32 requests (3.2a)

2048 bits÷ 512
bits

block
= 4 blocks (3.2b)

C# = 32 requests ·Ddepth (3.2c)

512
bits

block
÷ 64

bits

request
= 8

requests

block
(3.2d)

As each data node is read 8 times in total (Equation 3.2d), the total number of

parent node reads is very large. Table 3.1 demonstrates a comparison regarding the

node caching results of the two tree layouts shown in Figure 3.6 and Figure 3.7.

Assuming the node cache is blank when the read process begins, the first time a

unique counter node is accessed, it is written into the node cache. This results in each

unique counter node being read from memory a single time. The following counter

node reads for the following requests would happen straight out of node cache. In

36

Chapter 3. Cached Authentication Trees

this example, counter nodes are read from cache at least 93% of the time, regardless

of tree layout.

3.4.2 DAT Cache Addressing

DAT allows for configurable sized counter nodes, and each counter node is stored

packed in memory (zero bits between each entry). Counter nodes being packed in

memory ensures that the address offset of each counter node is a multiple of the

counter node size in bytes. As it is guaranteed that each counter node will be larger

than a single byte, a few of the least significant bits of the node address will remain

unused. These unused bits reduce the effective address width. In order to fully utilize

the address space of the cache, each counter node address must be shifted right by the

number of unused bits. The value of this shift can be calculated using Equation 3.3.

AddrShift = log2(AddrWidth & (AddrWidth − 1)) (3.3)

3.4.2.1 DAT Cache Addressing Example

Assuming DAT uses 192-bit counter nodes (24 bytes), and each counter node is stored

packed in memory (zero bits between each entry), the cache addresses can be reduced

in size to improve cache hit percentages. Since each DAT counter node is 24 bits in

length, represented as 110002 in binary and 0x1816 in hexadecimal, the rightmost 3

bits in the address will always be zero. The counter node addresses in cache can be

shifted right three bits. With a 10-bit cache address width (log2 1024), a non-shifted

address only allows 128 entries to be accessed since the 3 least significant bits will

always be zero, making the address effectively 7 bits in width. However, shifting the

address right by 3 bits allows all 1024 entries in the cache to be accessed.

37

Chapter 3. Cached Authentication Trees

3.4.3 DAT Cache Population

The DAT cache operates in a write-through style. During the write-back stage of the

DAT, all counter node writes are also simultaneously sent to the cache. Writing to

the cache at the same time as memory avoids an additional stall while waiting for the

cache handshake. Performing all counter node writes as write-through also ensures

that both the cache and memory are constantly up-to-date.

To improve read performance, counter nodes read from memory (those non-

existent in cache) are written to the node cache directly after read. This mechanism

provides the option for future reads to take advantage of cached counter nodes instead

of relying on write operations to populate the cache.

3.4.4 DAT Cache State Machine

To improve performance, the dynamic access tree’s cache operates semi-asynchronously

from the tree’s primary state machine. Figure 3.8 shows the DAT cache’s read state

machine.

The DAT cache state machine performs cache pre-fetching based on the state of

the primary DAT state. Whenever the tree either reads a data node or moves up

a level in the tree, the current nodes parent node is read. Since the parent node is

always a counter node, it is guaranteed to possibly exist in the cache. If the parent

node exists in cache and the CPU is requesting a data write, the current node’s uncle

node is read from cache as well. However, if the parent node does not exist in cache,

the uncle node is not read. The parent and uncle nodes are read from cache before

the master state machine requests parent or uncle reads from primary memory.

This asynchronous, pre-fetched read does not inhibit the master state machine by

forcing it to wait for cache reads to complete. When parent or uncle nodes are needed

by the primary DAT module, it can nearly instantly check for locally registered parent

or uncle node values before issuing memory reads for the same nodes. Not only does

38

Chapter 3. Cached Authentication Trees

CACHE IDLE

start

READ PARENT READ UNCLE

s = OTHER

s = MOVE UP LEVEL

or
s = READ DATA NODE

cc = 0
cc = 1 cv = 1

cv = 0

r = 0

r = 1

cc = 0

cc = 1

s: DAT State

cc: Cache Read Done

cv: Cache Read Valid

r: Read Request?

Figure 3.8: DAT Node Cache Read State Machine

this improve performance, but it reduces the overall impact of adding the node cache

to the already-complicated DAT module.

To signal the master state machine whether the cached nodes have been read is

done using two signals, {parent/uncle} cache read and {parent/uncle} cache-

valid. Upon moving up a level in the tree, both of these signals are set to ‘0’.

When the cache asserts a cache read valid signal, the corresponding cache read

signal is set high. The cache valid signal is always set to the same value as the

cache read port’s hit, signal. The corresponding read and valid signals are held at

that value until the tree either moves up a level, or ends the current transaction.

3.4.5 DAT Cache Implementation Decisions

Various cache behaviors and architectures were examined during the design process.

The decision regarding the finalized implementation was based on various levels of

empirical testing using synthetic benchmarks. The choice to read uncle nodes from

cache only if its sibling (target node’s parent node) was present in cache is an exam-

39

Chapter 3. Cached Authentication Trees

ple of this process. Fetching the uncle node from cache only happens during write

operations as part of the rebalancing process. If the parent node exists in cache,

the cached node can be fetched and immediately used to calculate the uncle node’s

address. If the parent node does not exist in cache however; the cache read state

machine must first wait for the memory read operation to complete before calculat-

ing the uncle node’s address. The delayed uncle node cache request then causes a

stall in the primary pipeline while the cache request is propagated through the cache

controller. When this stall was observed, the likelihood of the uncle node also not

existing in cache was extremely high. In this situation, the pipeline stall was wasted

time in which the memory read process could have started. Since parent and uncle

nodes are always read together during write operations, they are both written into

cache together as well. The cache addressing (subsection 3.3.1) policy and their prox-

imity in memory lessens the probability of only one of the two getting overwritten.

These two aspects of the design lead to reduced performance if a cache read request

for the uncle node was attempted after reading its non-cached sibling from memory.

This reduction in performance drove the decision to only attempt reading the uncle

node from the cache if its sibling was also existent within cache.

3.5 Additional Performance Improvements

3.5.1 Request burst wrapping

To improve performance, many bus protocols allow for burst transfers (section 4.1.2).

Due to hardware addressing, these burst are limited to either certain address spaces

or boundaries. During DAT initialization upon writes or data-block reading, large,

contiguous chunks of memory are read from memory at once. AXI-4 for example, has

4 KB aligned wrap boundaries (section 4.1.2.1). It is not guaranteed that either a

data-block or tree metadata will not cross a 4 KB memory boundary, and purposefully

40

Chapter 3. Cached Authentication Trees

preventing it wastes memory due to padding.

In the instance that a burst request crosses a burst boundary imposed by the

bus protocol, the offending request must be split into multiple requests that avoid

crossing the burst boundary. Figure 3.9 demonstrates an example of an incorrect

burst request that crosses a 4 KB burst boundary.

Figure 3.9: Burst request with incorrect wrap parameters

As the burst starts at 0x3FC0 and has a length of 10 beats, each with a length of

64 bits (8 bytes), the burst will end at address 0x4010, crossing the 4 KB boundary

at 0x4000. One potential solution to this issue is to split the 10 different beats across

10 different requests. This would prevent the burst from crossing the 4 KB boundary.

The downside to this approach; however, is that the pipeline must perform 10 full

read/write handshakes, each one creating additional memory access latency. This

issue presents the ideal solution to the problem mentioned above, creating multiple

burst transfers, each maintaining proper burst boundary rules.

41

Chapter 3. Cached Authentication Trees

3.5.1.1 Write burst wrapping

Due to the tree’s separate read/write pipeline behavior (Figure 2.11), separate burst

wrapping blocks were required for read and write requests. DAT-based controllers

only generate burst write requests during tree initialization while writing the initial

counter values for the current tree. During tree initialization, the “Tree Initializer”

block is responsible for taking write initializer burst requests and generating multiple

independent beats, each with the proper initialization data. This process is seen in

Algorithm 1.

Algorithm 1: Dynamic Tree Initialization Routine [2]

Data: N [T] : Array of nodes of size T
Result: Dynamic tree nodes initialized
struct {

parent;
sibling;
LR;
ID;
count;

} Node;
for i← 0→ T − 0 do

N [i].ID← i;
N [i].LR← ¬(i(mod 2));
N [i].parent← ((i+ 1)/2)− 1;
if N [i].LR = 0 then

N [i].sibling← i+ 1;
else

N [i].sibling← i− 1;
end
N [i].count← 0;

end

Since each request may contain unique data, separate beats must be generated to

populate the data field of counter location. As separate beats are generated creating

burst wraps is trivial. Using the example provided above (Figure 3.9), generating

wrapped burst beats is as simple as subtracting the extra burst lengths from the

42

Chapter 3. Cached Authentication Trees

request’s burst length. The original initialization write request contained a burst

length of 10, so 10 individual requests are created one for each beat. The burst

length reported within each beat request is the amount of remaining beats after the

current one. The first beat has a burst length of 9, then 8, 7, etc... These burst

lengths are used to notify later tree blocks, like the memory writer port, how many

more requests are remaining, as well as the total burst length to place on the bus. In

this initialization request example, the master interface of the memory controller will

inform the memory that the following write sequence is a burst of 10 beats.

To correct the burst lengths of initialization write requests, the burst wrapper

block calculates the start address and the ending address of that burst boundary.

For efficient hardware implementation, this is done using bitwise operations and a

single addition operation. The equations used to calculate these values are shown in

Equation 3.4 and 3.6.

AddrBoundStart = (AddrStart | 0x0FFF16) + 0x000116 (3.4)

AddrEnd = AddrStart + BurstLenBytes (3.5)

AddrBoundEnd = (AddrEnd | 0x0FFF16) + 0x000116 (3.6)

The variable AddrBoundStart denotes the 4 KB boundary that cannot be passed

given the bursts starting address. AddrBoundEnd is the 4 KB burst boundary that

connect be passed of the burst end address. If these values are the same, the burst

will not wrap over a burst boundary. However, if they differ, the burst will pass over

the burst boundary and must be corrected. Calculating the correct length of the

current burst can be done using Equation 3.9.

43

Chapter 3. Cached Authentication Trees

BurstLenWrappedBytes = AddrEnd − AddrBoundEnd (3.7)

WrapsBool = AddrBoundStart ≡ AddrBoundEnd (3.8)

BurstLenBytes = WrapsBool


BurstLenBytes True

BurstLenWrappedBytes False

(3.9)

The correct burst length of each of these beats is now calculated using Equa-

tion 3.9. Since each beat contains the amount of beats left in the burst, the beats

will report burst lengths of 7, 6, 5, etc... down to 0; however, as there are still two

beats left, Equation 3.9 will wrap the final two beats burst lengths back to 1, then 0.

Correcting the burst lengths of each beat creates two bursts over the course of 10

beats, a burst of 8 beats, followed by a burst of 2 beats starting at the burst boundary.

3.5.1.2 Read burst wrapping

Burst requests are used within the controller’s read pipeline as well; however, com-

pared to the write pipeline, the burst requests are not split into individual beat

requests. Since the burst requests are not split into individual beats, only a single

request is sent down the pipeline. Wrapping the single request not only requires the

same burst length correction from Equation 3.9, but it also requires the generation of

a second burst request using the remaining burst length. When the adjusted request

has a remaining beat count of zero, the second request is created by generating a beat

with a size denoted by the total number of remaining beats in the transaction. Then,

on each request handshake, the address of the returned request will be incremented

by the size of the data, and the beat counter will be reduced until there are no more

outstanding beats in the transaction.

The original burst request (Figure 3.9), is updated to a burst length of 8, followed

44

Chapter 3. Cached Authentication Trees

by the generation of a second request with a burst length of 2. The second request

also has both the block and virtual addresses incremented by 64 (8 previous bursts,

each with a size of 8 bytes), so the new burst leaves off where the other began. After

all beats are accounted for by the burst wrapper, it sends a ready signal to accept

the next read request.

45

Chapter 4

Memory Controller Framework

4.1 Memory Controller Security Model

The architecture of many embedded systems places large amounts of memory off-chip.

A variety of protocols are used to access said off-chip memory, such as SPI, Quad-SPI,

DDR, etc... This research focuses on the use of external DDR memory. To evaluate

the cached designs, an Avnet ZedBoard with a Xilinx Zynq series AP SoC and 512

MB of external DDR3 memory was used as the target device.

Figure 4.1 displays how the memory authentication controller integrates into the

hardware.

Since external memory is accessed very frequently during operation by the main

CPU, it is imperative that both the bandwidth and latency of memory is maxi-

mized/minimized respectively. Implementing the memory controller within the Zynq’s

PL allows the memory controller to take advantage of specialized hardware and higher

performance than a software based protection method.

Implementing the memory controller within the PL does not just offer higher

performance, but also lower level access. As the Zynq’s ARM CPU has direct access

to the PL fabric, it can send and receive data to the memory controller. The AXI-4

protocol and bus is used as the interface between the PS and PL portions of the Zynq.

46

Chapter 4. Memory Controller Framework

Figure 4.1: Memory Authentication Pipeline Hardware Design

47

Chapter 4. Memory Controller Framework

4.1.1 Memory Controller Encryption Model

The memory authentication trees used within this thesis used the block-level AREA

authentication model (subsection 2.2.4). One of the requirements for this authentica-

tion to properly detect data tampering is the requirement for the use of either a stream

cipher, or block cipher mode that propagates errors between blocks. A block cipher

mode of operation that exhibits this property is Cipher Block Chaining (CBC) mode.

The memory controller presented in this thesis uses a hardware implementation of

AES that operates in the CBC mode to fulfill this requirement.

Plaintext data is fed into the encryption engine directly, meaning that the length

of each plaintext must be 128-bits in length. To meet this requirement, the payload of

multiple requests contained within a burst are concatenated together until they reach

a length of 128-bits. After the encryption/decryption process, the output data is once

again split up and linked with the original request. Given the flexible nature of the

pipeline architecture however, it is not guaranteed that the burst will have a total

data length that is a multiple of 128-bits. To support these cases, the modification

shown in Figure 4.2 was made to the CBC algorithm to allow for non-perfect data

lengths to be encrypted/decrypted.

Figure 4.2: Cipher Block Chaining CTS Mode [5]

CTS, or ciphertext stealing, is a method for reusing the ciphertext of the last

encrypted block to allow for the encryption of a plaintext block that is not aligned to

128 bit boundaries. By appending part of the previous ciphertext to the end of the

48

Chapter 4. Memory Controller Framework

plaintext block that is shorter, the plaintext can then be encrypted using the standard

encryption process. The appended length can be thrown out after the operation. The

same procedure can be replayed while decrypting the data, negating the requirement

for storing the additional padding in memory, thus reducing memory overhead.

4.1.2 AMBA AXI4 Interface Protocol

The AMBA (Advanced Microcontroller Bus Architecture) AXI-4 (Advanced eXten-

sible Interface 4) interface protocol is a flexible bus protocol developed by ARM for

use by on-chip busses [19]. To communicate with the programmable logic, Zynq pro-

cessors use full-speed AXI-4 interfaces. The transaction handshake system used by

AXI-4 is composed of two signals, ‘valid’, ‘ready’. The following handshake conven-

tion is used: the subordinate interface sets a ‘valid’ line high when the bus lines are

set and ready for the next transaction. The manager interface then performs the

transaction and sends a ‘ready’ signal back to the subordinate to let it know the

transaction has been completed. In an effort to support a wide-variety of use cases,

AXI deploys extra signals to denote special transaction types, such as user vs kernel

transactions, large data transfers through a single request, DMA, etc... Additionally,

AXI is an open standard, allowing any architecture to implement it royalty-free. As

a result, AXI-4 was chosen as the communication protocol for the memory controller

due to its versatility, speed, and prominent use in embedded systems.

On resource constrained system or low-bandwidth IPs, AXI can be used in either

AXI-Lite or AXI-Stream mode to either ease the design challenges, or reduce PL

utilization.

4.1.2.1 AXI Addressing Scheme

AXI-4 uses an addressing granularity of 4 KB, meaning that each AXI interface must

begin at a 4 KB boundary in virtual memory. The flexible nature of the AXI protocol

49

Chapter 4. Memory Controller Framework

lends itself well for use in a variety of hardware IP categories, such as GPIO controller,

Ethernet, or even memory controllers. To support this wide variety of use cases,

there are two addressing modes: register-based and memory addressing. Nothing

differs between the two either physically or at the protocol level. The addressing

mode of an AXI subordinate interface is reported by the IP definition containing

the interface, and is used by software tools to determine how the IP can be used.

Register-based addressing is similar to that of a memory-mapped peripheral on a

microcontroller, where each control register is bound to a virtual memory address.

The register addresses are both defined and handled within the IP in whatever way it

chooses. The second addressing mode is memory-based. Using this mode, no registers

are defined for the IP. The address range instead maps to a block of data, whether it

be physically or virtually represented.

The IP defined within this thesis presents itself as a memory mapped AXI IP.

This allows vendor tools, such as Xilinx’s Vitis, to generate linker scripts that place

either code or data within the memory range of the AXI IP.

4.2 Memory Controller Pipeline

4.2.1 Memory Encryption Pipeline

While the AXI-4 protocol was used for both CPU and memory transactions, inter-

system communication within the memory controller used an interface independent

request system. The architecture of the request system used was highly influenced

by AXI however; as the handshake system uses the same ‘valid’, ‘ready’ scheme as

AXI, and the requests contain the same transaction burst and data length metadata

as AXI. Figure 4.3 displays the architecture of the memory controller pipeline, with

the different bus types annotated.

At any point in which the internal request system is translated to/from the ex-

50

Chapter 4. Memory Controller Framework

Figure 4.3: Memory Controller Encryption Pipeline

ternal communication bus, in this instance AXI, a bus de-serialization block is used.

Keeping the internal request system independent of the processor/memory bus pro-

vides the opportunity for the memory controller to be implemented with relatively

little change on a variety of memory bus types.

The encryption pipeline follows a read-modify-write approach. As the entire con-

tents of memory in encrypted, any memory access must first be read into the pipeline,

decrypted, then modified before write-back. As a bonus, the read-modify-write ar-

chitecture provides a strong base for adding memory authentication to the pipeline.

Since memory authentication relies on NONCE’s linked to each data block for authen-

tication, the read-modify-write approach can be configured to read the corresponding

NONCE along-side the data at the specified address.

To improve performance of the design, the pipeline also includes burst support

for the AXI protocol. AXI bursts allow multiple sequential memory read/writes to

be made using a single request, reducing the amount of time spent generating and

sending requests.

As discussed in subsection 2.2.4, the use of Block-Level AREA requires the entire

data block (including metadata) to be read from/written to when any subset of data

contained within is accessed. As the size of data blocks are somewhere in the tune of

64 bytes in length (at least), burst reads and writes are used to transfer the data to

51

Chapter 4. Memory Controller Framework

and from memory without generating a multitude of individual read or write requests.

4.2.2 Authentication Pipeline

The most significant modification to the pipeline, illustrated in Figure 4.4, was the

addition of the tree request generation block. The tree request generator is responsible

for the following tasks:

1. Converting virtual memory addresses to physical memory addresses

2. Generating memory requests

3. Authenticating tree nodes

Figure 4.4: Encryption and Authentication Pipeline

To support both authentication and encryption, the pipeline was modified to

return decrypted tree metadata back to the tree controller block for authentication.

If a given node fails its authentication test, the tree request generator will create

a read response request to inform the CPU of the failed authentication. Given the

tree’s ability to restructure leaf and counter nodes based on access frequency, it is

required to examine, and copy all nodes in transit to determine the access patterns of

each node. The request generator is able to determine the best possible restructuring

method of the current working tree and generate additional requests to restructure

the tree.

52

Chapter 4. Memory Controller Framework

4.3 Hardware Testing Framework

As laid out in Figure 4.1, the memory authentication controller was able to access

system memory by taking advantage of the Zynq’s AXI subordinate port. The AXI

subordinate port on the Zynq is translated to DDR requests the Zynq forwards to the

off-chip DDR memory. This allows the PL to access the static system memory. For

traditional IP that relies on the CPU for control and instructions, this architecture

is very flexible and provides low level access to memory, with additional benefits/fea-

tures such as speed and DMA (direct memory access). DMA is a hardware feature

that allows hardware subsystems to access system memory independently of the CPU.

DMA improves memory bandwidth to peripherals by reducing CPU utilization since

it no longer acts as a middleman.

What separates this hardware design from traditional AXI-based IP designs is

that both the memory controller and CPU depend on each other. As the point of

this memory controller is to provide full memory protection or both the data and

instructions, the CPU must be able to perform all memory accesses through the PL.

The Zynq XC7Z020 has a memory map shown in Table 4.1.

Table 4.1: Zynq XC7Z020 Memory Map

Start Address Size (MB) Description
0x0000 0000 1,024 DDR DRAM and on-chip memory (OCM)
0x4000 0000 1,024 PL AXI subordinate port #0
0x8000 0000 1,024 PL AXI subordinate port #1
0xE000 0000 256 IOP devices
0xF000 0000 128 Reserved
0xF800 0000 32 Programmable registers access via AMBA

APB bus
0xFA00 0000 32 Reserved
0xFC00 0000 64 MB - 256 KB Quad-SPI linear address base address (ex-

cept top 256 KB which is in OCM), 64 MB
reserved, only 32 MB is currently supported

0xFFFC 0000 256 KB OCM when mapped to high address space

53

Chapter 4. Memory Controller Framework

As AXI memory addresses are mapped within the PL range, the PL must be

initialized before any data can be read or written to the memory controller. Using

Xilinx’s standard first-stage bootloader (FSBL), this is not possible because it restricts

program loading to the DDR address range, not the entire available address space.

4.3.1 FSBL Modifications

The FSBL is responsible for handling the initialization and boot process of the hard-

ware. The default FSBL behavior is to load a ‘BOOT.BIN’ file off of either an SD

card or flash memory. This ‘BOOT.BIN’ file contains the boot information for the

FSBL, the PL bitstream, and as the primary program binary. The FSBL performs

this action by reading each “sector” of the ‘BOOT.BIN’ file in order, directly copying

the data from the ROM to the corresponding memory address stored within the sec-

tor. During the FSBL program loading phase, the DDR memory is not yet initialized,

so the FSBL is loaded directly onto the Zynq’s PS OCM. The OCM is large enough

to store the FSBL and a small buffer of data, and its location within the PS makes

it more difficult to exploit with physical attacks.

The modified FSBL behavior (shown in Figure 4.5), loads the FSBL and bitstream

as normal; however, it initializes the hardware in a different order. As the memory

controller both encrypts and authenticates all data passing through it, the format and

organization of data within physical memory is handled by the tree. Bypassing the

memory controller and writing the program binary directly to RAM would lead to

hardware panics, as the required tree metadata would be missing for authentication.

This would cause memory authentication errors to be thrown on the first data access.

There are two solutions to this issue:

1. Use a software implementation of the deployed authentication tree to create a

modified version of the program binary. This would both encrypt and format

the binary’s data in a way that contains the required tree metadata as it would

54

Chapter 4. Memory Controller Framework

BSP PS Init

start

Read SD Card
FSBL

Handoff

PL InitLoad PL
Load

Bootloader

Load PS

Binary

Load Prot.

Memory

Fill Prot.

Mem. Buffer

Write Buf.

data to AXI

pt = BL

rb < ps

rb ≥ ps

pt = PS

rb < ps

rb ≥ ps

pt = PL

rb < ps

rb ≥ ps

pl en = 1

pl en = 0

p
a
≥
ME
MS
EC

BA
SE

rb < ps

rb ≥ ps

pt = END

pt: Partition Type

ps: Partition Size (Bytes)

pa: Partition Address

rb: Bytes Read

Figure 4.5: FSBL State Machines

55

Chapter 4. Memory Controller Framework

exist in memory.

2. Keep the original program binary format and use the FSBL to load it into

memory through the authentication tree.

The first solution would require the least amount of hardware effort; however,

it would also reduce hardware flexibility. The hardware implementations explored

by this research are very flexible, as they allow developers to configure the IP to

fit their needs the most. Since the memory controller lives in PL, it also means that

software can be written and compiled to a single binary then run on any configuration

of the IP. Reformatting the binary to include metadata for the authentication tree

would require a different binary for every single configuration of hardware, not just

for different host processor architectures.

The second solution requires more engineering on the hardware/driver side. To

make sure the program binary is encrypted and authenticated properly for any con-

figuration of the memory controller, it can be fed through the controller to be placed

in RAM with the correct associated metadata and formatting. Since the PL must

be initialized for the authenticated memory controller to function, the PL must be

initialized before the program binary is loaded into it. This presents a problem as

the Xilinx provided FSBL doesn’t initialize the PL until after all binaries have been

loaded, and directly before transferring execution to the program binary.

To allow the program memory to be loaded onto RAM through the authenticated

memory controller, three modifications of the FSBL were made (shown in Figure 4.5).

1. Allow loading binaries into memory locations outside DDR

2. Modify the binary copying code to support AXI-based transactions

3. Initialize the PL immediately after loading it to support PL use during FSBL

56

Chapter 4. Memory Controller Framework

4.3.2 PL Binary Loading

The FSBL’s ‘BOOT.BIN’ file contains multiple partitions. Each partition stores a

binary with a different purpose. The partition header specifies information about each

sector, including what it is, and what address it should be written to. By default, the

FSBL will reject any partition that has a destination outside the Zynq’s DDR range

(Listing 4.1).

if (PSPartitionFlag && (PartitionLoadAddr > DDR_END_ADDR)) {

fsbl_printf(DEBUG_GENERAL,

"INVALID_LOAD_ADDRESS_FAIL\r\n");

OutputStatus(INVALID_LOAD_ADDRESS_FAIL);

FsblFallback();

}

Listing 4.1: Original FSBL Load Address Checking

To allow loading memory in PL, the code in Listing 4.1 was updated (Listing 4.2)

to allow code to be loaded if and only if it existed within the memory range of the

MEMSEC block. The MEMSEC block addressing is defined as XPAR MEMSEC 1 (BASE/HIGH)ADDR

because the IP is named memsec 1 within the hardware block design.

if (PSPartitionFlag && (PartitionLoadAddr > DDR_END_ADDR)) {

if ((PartitionLoadAddr >= XPAR_MEMSEC_1_BASEADDR) &&

(PartitionLoadAddr < XPAR_MEMSEC_1_HIGHADDR)) {

fsbl_printf(DEBUG_GENERAL, "PL_LOAD_ADDRESS\r\n");

} else {

fsbl_printf(DEBUG_GENERAL,

"INVALID_LOAD_ADDRESS_FAIL\r\n");

OutputStatus(INVALID_LOAD_ADDRESS_FAIL);

FsblFallback();

}

}

Listing 4.2: Modified FSBL Load Address Checking

This code provides flexibility as the addressing of the MEMSEC block is not hard-

coded, allowing the hardware designer to map the AXI addressing of the memory

57

Chapter 4. Memory Controller Framework

controller to whatever range fits the needs of the design. This change only allows PL

writes within the MEMSEC data block because writing to an uninitialized AXI address

will cause the CPU to hang while waiting for an AXI response.

In order for this change to work properly, the code to initialize the PL was moved

from directly before the program handoff to the callback function called directly after

loading the PL binary: FsblHookAfterBitstreamDload().

4.4 Results

As the primary goal of this research is to discover the viability of dynamically weighted

authentication trees with node caches, it must be compared to similar designs in terms

of both performance and hardware costs. Given that the design of the cached DAT

was based upon the original implementation of an unordered DAT [2], the two were

compared to measure the performance improvements brought by the node cache. The

unordered DAT was chosen as the basis of the cache design over the ordered DAT

because the unordered design utilized significantly less FPGA resources with nearly

identical performance [2]. Additionally, the design of the DAT was heavily influenced

by that of the TEC-Tree, which uses a similar AXI-based memory pipeline to both

the cached and uncached DAT implementations, allowed for the use of a unified test

suite.

4.4.1 Authentication Tree Hardware Cost

It is important to consider the physical implementation of the researched trees while

addressing viability concerns. The hardware target, a Xilinx Zynq XC7Z020, imposed

a fabric clock timing constraint of 50 MHz due to design routing [3]. The available

programmable logic resources of both the target hardware and similar devices are

displayed in Table 4.2.

58

Chapter 4. Memory Controller Framework

Table 4.2: APSoC Resource Comparison

Zynq-7007S Zynq-7020 Zynq-7100

Logic Cells 23k 85k 444k
LUTs 14400 53200 277400
Flip Flops 23800 106400 554800
DSP Slices 66 220 2020
36Kb Block Ram 50 140 755

4.4.1.1 Synthesis Results

Each design was synthesized using Vivado v2021.1. The same parameters were used

to synthesize the TEC-Tree, cached DAT, and original DAT implementations. The

trees were configured to use 64-byte data blocks with 8 tree roots, and 128 node cache

entries. As it is important to gauge the hardware utilization of each tree’s “full suite

of features”, the trees were each synthesized twice: once with the encryption engine

enabled, and again with it disabled. This is done for two reasons: one being that

the encryption engine used between the two tree classes differs (DAT uses AES-128,

and TEC-Trees use ASCON-128), and the other being that the encryption engine

contributes to a large portion of the fabric utilization, as demonstrated in Table 4.3.

Table 4.3: Synthesis Utilization Reports

TEC-Tree Cached DAT DAT

Encryption
LUTs 9240 13816 10857
Flip Flops 4416 7296 5743
DSP 0 15 15
BRAM Tiles 2.5 7.5 1

No Encryption
LUTs 4846 11369 8233
Flip Flops 3429 6643 5095
DSP 0 15 15
BRAM Tiles 2.5 6.5 0

Comparing the resource utilization between the two tree types displays the sig-

59

Chapter 4. Memory Controller Framework

nificant resource savings that can be achieved by using a TEC-Tree based design.

This was the expected outcome given that the TEC-Tree architecture is inherently

simpler than that of the DAT. The static arrangement of both counter and data

nodes make TEC-Trees very efficient to implement since the leaf node depth and

position is known at compile time. DAT on the other hand, requires a large state

machine to track the current position in the tree, as well as support for comparing

node counts, issuing reorder requests, and authenticating the reordered nodes. This

additional logic requires roughly 1.7 and 1.5 times the amount of LUTs and FFs as

the TEC-Tree design, respectively. Adding the node cache logic on top of this brings

the additional LUT and FF usage to 2.5 and 1.9 times respectively.

Something else important to note is the additional use of digital signal processing

(DSP) units for the DAT. DSP blocks are used to perform logic-heavy mathematic

operations, such as multiplication, with minimal latency by taking advantage of ded-

icated arithmetic hardware separate from the PL’s logic slices. Within DAT, DSP

blocks are used for the calculation of node write-back addresses. If the use of DSPs is

either desired or required, due to lack of physical DSP blocks in target fabric for ex-

ample, they can be either omitted through the use of synthesis flags, or block sizes can

be changed to allow for simple bitwise operations for write-back address calculations.

4.4.1.2 Implementation Results

The synthesized design was sent through Vivado’s (version 2021.1) implementation

engine with default optimization and routing settings targeting the Zynq XC7Z020.

The resulting utilization report is contained in Table 4.4.

As expected, running the synthesized designs through Vivado’s implementation

engine reduced the resource utilization of the designs by a small margin. Something

to note is the introduction of an additional row in the table, LUTs used for memory.

In the case of TEC-Tree, the secure root module was written such that the root values

60

Chapter 4. Memory Controller Framework

Table 4.4: Implementation Utilization Reports

TEC-Tree Cached DAT DAT

Encryption
LUTs 9029 13736 10780
Flip Flops 4395 7279 5725
DSP 0 15 15
BRAM Tiles 2.5 7.5 1
LUT (Mem) 44 0 0

No Encryption
LUTs 4771 11283 8188
Flip Flops 3409 6624 5082
DSP 0 15 15
BRAM Tiles 2.5 6.5 0
LUT (Mem) 44 0 0

of each tree were actually stored within the fabric itself instead of BRAM. Another

thing to mention is the higher BRAM usage for DAT caches over TEC-Tree caches.

This is solely because of the extra metadata required within DAT counter nodes. This

does limit the maximum number of DAT node cache entries more than it does the

TEC-Tree, however; observing Table 4.5, shows that neither design is close to hitting

the entry limit with the current configuration.

Table 4.5: XC7Z020 Resource Utilization Percentages

TEC-Tree Cached DAT DAT

Encryption
LUTs 16.97% 25.82% 20.26%
Flip Flops 4.13% 6.84% 5.38%
DSP 0.00% 6.82% 6.82%
BRAM Tiles 1.79% 5.36% 0.71%
LUT (Mem) 0.08% 0.00% 0.00%

No Encryption
LUTs 8.97% 21.21% 15.39%
Flip Flops 3.20% 6.23% 4.73%
DSP 0.00% 6.82% 6.82%
BRAM Tiles 1.79% 4.64% 0.00%
LUT (Mem) 0.08% 0.00% 0.00%

61

Chapter 4. Memory Controller Framework

The percent of utilized resources proves the efficiency of the designs in hardware.

Even with encryption enabled, the largest usage of any individual component is the

use of LUTS, at just over 25% when implementing the cached DAT. The efficiency

of the designs keep a large enough collection of resources free that other components

can be implemented in the same fabric. As previously mentioned, while the extra

size required for DAT counter nodes reduces the maximum node cache size, 128

cache entries only utilize 4.64% of the onboard BRAM. This points to a maximum

potential DAT node cache size of 2700 entries using the same hardware. If more node

cache entries or a higher clock speed is desired, the designs can be implemented onto

higher end parts with newer manufacturing processes. This would yield both more

BRAM and a faster fabric clock as the overall routing delay would be reduced.

4.4.2 Authentication Tree Performance

The three methods of memory authentication were run through a set of identical

synthetic benchmarks for an accurate account of performance across different work-

loads. Both clock frequency and bus widths were chosen based on constraints set by

the host SoC. The Zynq XC7Z020 used for implementing the design was only able to

route the designs in such a way that the maximum clock speed for the fabric was 50

MHz. The XC7Z020 has a manager AXI interface that uses a 32-bit (4-byte) data

width, clocking the fabric at 50 MHz provides a maximum throughput of 200 MB

per second. Table 4.6 lists the hardware configuration used to test the authentication

tree performance.

While the cache line size of the ZedBoard’s host CPU is 32 bytes in width, a

block size of 64 bytes was chosen because it was found to be more performant for

authentication trees in previous research [3]. It is also important to note that, if

the target CPU has a configurable cache line size, matching the data block size to

the width of a cache line will result in lower latency memory access through the

62

Chapter 4. Memory Controller Framework

Table 4.6: Simulation Parameters

Value
Protected Memory Size 16 KB

Manager Data Bus Width 32 bits
Subordinate Data Bus Width 64 bits

Address Bus Width 32 bits
Data Block Size 64 Bytes

Tree Roots 8
Tree Arity 2

Cache Entries 128
Sequential Memory Read/Write 8 KB
Random Memory Read/Write 1024 Beats
Memory Hotspot Reads/Writes 2400 Beats

authentication tree. Larger data blocks will not only reduce the depth of the tree,

but they will also reduce the relative storage overhead of tree metadata.

The specific version of ASCON integrated into the TEC-Tree pipeline had a la-

tency of 6 cycles with 64-bit blocks, and the AES implementation used for DAT had

a latency of 12 cycles with 128-bit blocks. The differing cryptographic engines be-

tween the TEC-Tree and two DAT methods tested were standardized by replacing the

cryptographic logic with registers for the testing process. The flexible nature of the

pipeline allows for the use of a variety of block ciphers, as long as they can operate

in a stream mode with error propagation. The trees were configured to protect 256

MB of memory; however, the benchmarks assumed the protected memory size was 16

KB. This was an artificial limitation imposed solely by physical memory limitations

of the host performing the simulations.

Authentication trees require some form of initialization to create the nodes in

memory. The actual method of initializing nodes is tree dependent, but as a general

rule, it happens when either a leaf node in a tree is modified, or when any node

is modified for the first time and has an uninitialized parent. These tree creation

procedures are time-consuming and only need to happen once after the system is

powered on. Typically, this happens in the bootloader when the data and instruction

63

Chapter 4. Memory Controller Framework

sections of the executable are loaded into the tree. To simulate this behavior, a

mock bootloader ran before any other test during the simulation process. The mock

bootloader forced all tree nodes to get initialized by writing the first word of each

data block in protected memory. Ensuring that all nodes were initialized before the

benchmarks began provided the most accurate metrics as execution time was not

spent initializing tree nodes.

Synthetic benchmarks were performed using the Vivado v2021.1 Simulator. Three

different types benchmarks were used to validate the performance of the trees in

different scenarios. As a means of simulating the cost of accessing off-chip memory,

an artificial memory access delay of 35 cycles was added to the testbench. Each

benchmark consisted of memory writes, followed by the same number of memory

read beats.

4.4.2.1 Sequential Memory Access

Whether it be uploading system crash reports, logs, or applying firmware updates,

embedded systems commonly access large regions of memory sequentially. While it

does not perfectly replicate real behavior, this benchmark (results shown in Figure 4.6)

simulates these access patterns. Specifically, the 8 KB region of memory is broken

into 2048 different beats, each one the native data bus size of 32 bits.

Sequential memory access under and authentication tree generates a series of

similar tree traversal requests. With 64-byte data blocks and 32-bit requests, each

set of 16 sequential beats accesses the same data block. These 16 specific accesses

traverse the tree using the same path. Caching all-of the parent nodes during the

first traversal will prevent any further memory reads outside the original data request.

The simulation results demonstrate the latency improvements the node cache provide

DAT architectures. While the original DAT had read latency roughly 2.8 times longer

than that of the TEC-Tree, the cached DAT only had a read latency 1.2 times, or

64

Chapter 4. Memory Controller Framework

Figure 4.6: Sequential Memory Access Performance

TEC-Tree DAT (Cached) DAT (Original)
0

10

20

30

40

50

60

70

28.81

45.17

64.43

11.8
14.16

33.41

L
at
en
cy

(µ
s)

Write
Read

20% longer. This shows a 2.36 times speed up over the original DAT implementation.

Write performance, on the other hand, improved by a factor of nearly 30%.

While the dynamic authentication tree read performance improves dramatically

with node caches, the performance of write operations is hindered for two reasons:

the write-through architecture of the node cache (subsection 3.3.3), and the rebal-

ancing that occurs within the tree. The improved write performance introduced by

caches stems from the cached reads of nearby nodes that occur during the rebalanc-

ing process. Despite the fact that each data node will be accessed an equal amount,

the DAT is not able to predict this access pattern and will assume otherwise. This

is what limits the maximum write performance of DAT’s during sequential access.

Nodes are rebalanced towards the top of the tree during access; however, when the

sibling node is accessed a few beats later, it too is moved towards the top of the tree.

This process happens continuously, causing issues with write latency.

65

Chapter 4. Memory Controller Framework

4.4.2.2 Random Memory Access

While also not a realistic representation of memory access, accessing completely ran-

dom words within memory demonstrates the worst case performance for reads. Ran-

dom data block access guarantees a higher rate of node cache miss penalties because

of the lack of frequent, similar, tree traversal paths. This is shown in Figure 4.7.

Figure 4.7: Random Memory Access Performance

TEC-Tree DAT (Cached) DAT (Original)
0

10

20

30

40

50

28.79

42.5

52.23

22.17 21.33

33.64

L
at
en
cy

(µ
s)

Write
Read

Compared to the 2.36 times improvement to read speeds for sequential access,

the DAT node cache only improves random access read latency by 1.5 times (36.6%

speedup). The DAT node cache improved the performance of memory reads enough

to be competitive with 2-ary TEC-Trees. The random read performance of the cached

DAT was 3.8% faster than that of the TEC-Tree; however, given the random selection

of memory addresses, this speed is within the margin of error to consider the two trees

of equal speed. Similar to the sequential access benchmark, write speeds of the cached

DAT still lag behind that of the 2-ary TEC-Tree because of the rebalancing overhead.

66

Chapter 4. Memory Controller Framework

4.4.2.3 Memory Hotspot Access

A more realistic memory access pattern was created that simulates the existence

of memory hotspots. The firmware running on many embedded systems frequently

accesses a subset of the variables in the system. If the system is being managed by

an RTOS (real time operating system), every context switch will update the task

control block of the current task. Context switching is an expensive process on an

embedded device; therefore, moving the data blocks containing either the top of the

task stack or task control block to the top of the tree will reduce the overall latency

of a task switch. This is something DAT-based designs can help mitigate, as they

move commonly accessed blocks towards the top of the tree.

This behavior was simulated by generating a set of randomly sized “structs” (re-

ferring to C structures) within protected memory. Each “struct” ranged in size any-

where from 4 to 128 bytes. These structures were randomly and uniformly distributed

throughout protected memory. The entirety of each of these structures was read from

and written to a random number of times until there were 2400 beats both read

and written. Figure 4.8 shows the access latency of all three trees using this access

pattern. It is important to note that the placement, size, and access order of each

structure was determined ahead of time and used for all three tree methods.

The rebalancing of dynamic authentication trees provides a sizeable decrease in

write latency with workflows that have heavily “hot-spotted” memory. DAT rebal-

ancing will place frequently used nodes closer to the top of the tree. This reduces

the number of nodes that need to be authenticated, and also reduces the number of

write-backs that occur on the “path to root” counter node updates. In other workflow

scenarios, the rebalancing methods caused slowdowns during write operations. Given

that rebalancing moves the most frequently accessed blocks towards the root, the

rebalancing algorithm does not have to be run on every write. Once the target data

block is already at the highest possible location in the tree, rebalancing calculations

67

Chapter 4. Memory Controller Framework

Figure 4.8: Memory Hotspot Access Performance

TEC-Tree DAT (Cached) DAT (Original)
0

5

10

15

20

25

30 28.5

17.97

22.62

11.63
12.94

17.63

L
at
en
cy

(µ
s)

Write
Read

no longer have to be performed while accessing this node. This is demonstrated by

the fact that both the cached and non-cached DAT have lower write latency than

the 2-ary TEC-Tree, with speedups of 1.56 and 1.26 times, respectively. Memory

hotspots also improve the read latency of DAT data nodes. The original DAT im-

plementation without cache had a read latency improvement of 47.6%. The cached

dynamic authentication tree on the other hand had a relatively small read latency

improvement of 8.6%. The latency of the TEC-Tree is nearly identical to that of its

sequential performance since, while randomly distributed throughout memory, the

“structs” themselves are read from memory sequentially.

4.4.3 Summary

The addition of a node cache to DAT designs proved to be an effective method of

reducing both the read and write latency of data in protected memory (Table 4.7).

The largest speedup occurred during sequential reads and writes with 2.36 and 1.43

times latency reduction, respectively, over the non-cached alternative. Compared to

2-ary TEC-Trees, the added node cache brings the DAT-based designs into a nearly

identical performance space for memory reads, with reads being at worst 20% slower,

68

Chapter 4. Memory Controller Framework

and in certain scenarios, a little (3.8%) faster than the TEC-Tree.

Table 4.7: Summary of Timing Results (µs)

TEC-Tree DAT (Cached) DAT (Original)
Access Pattern

Write Read Write Read Write Read
Sequential 28.81 11.80 45.17 14.16 64.43 33.41
Random 28.79 22.17 42.50 21.33 52.23 33.64
Hotspot 28.59 11.63 17.97 12.94 22.62 17.63

Despite vastly improving write speeds, the speed of node reads were not able to

catch up to that of the TEC-Tree because of the extra storage overhead required for

DAT counter nodes. As discussed previously, Table 2.2 explains that the counter

nodes used in the DAT architecture require 3 additional fields on top of the TEC-

Tree counter nodes due to the extra required metadata. Each node cache miss in

a DAT design requires extra read beats to read the additional metadata, and since

this NONCE is also appended onto data nodes, data nodes within DAT protected

memory require extra read beats as well. This limits the maximum read performance

of DAT’s even while bypassing memory reads through the use of caches.

Overall, node caches helped improve the performance of DAT-based designs sig-

nificantly. The improved architecture explored in this thesis still lags behind similar

architectures such as TEC-Trees in some scenarios, such as random access and se-

quential access. However, a more “real world accurate” memory access pattern that

favors frequent access of specific regions are much more efficient using DAT designs.

The continuously reordering design of DAT’s inherently caps the maximum write

performance of the tree. Limiting the frequency of both performing and calculat-

ing rebalances could reduce the performance impact while still allowing for improved

performance on heavily trafficked data nodes. On systems deploying authentication

trees over a large region of physical memory, the design is likely to be limited by

the amount of BRAM available to the reconfigurable fabric. In these instances, a

trade-off has to be made between the size of the node cache, and the number of trees

69

Chapter 4. Memory Controller Framework

to split the data across. The more memory stored under a single tree, the larger

the number of leaf nodes. Trees spanning a larger portion of memory with a greater

number of tree nodes would benefit from a dynamically restructuring design as the

average depth of commonly used data nodes would be reduced.

70

Chapter 5

Conclusion and Future Work

5.1 Future Work

While this thesis contains a complete implementation of multiple memory protection

mechanisms, many improvements can be made to both the designs and the toolchain

used to deploy them.

5.1.1 Tree Arity

The largest limiting performance factor of dynamic authentication trees is the limit

to 2-ary trees. Only having binary tree support increases the depth of the tree,

making both reads and writes much slower. Increasing the arity of the tree provides

a few benefits. It can be used to reduce the average depth of a tree, or retain the

same tree depth while reducing the number of tree roots. In a resource constrained

environment, reducing the number of tree roots could increase the viability of the use

of authentication trees.

The greatest challenge with implementing flexible tree arity in DATs is the hard-

coded binary design and re-ordering algorithm. The current DAT design uses a hard-

coded navigation system that assumes a single sibling, uncle, and grand uncle node.

Supporting flexible tree arity would require these node types to be indexable instead

of assuming there is only a single sibling, uncle, etc... It would also require the modi-

71

Chapter 5. Conclusion and Future Work

fication of the node encoding algorithm to use an n-ary Huffman, or similar, encoding

scheme. Supporting increase arity would present a few drawbacks too.

Increased arity also requires a larger memory footprint to support the additional

node relationships within node metadata, and rebalancing would be more costly, both

in resource utilization and processing time. Comparing against multiple sibling and

uncle nodes for rebalancing would slow write operations considerably. A possible

option for negating this additional cost is reducing the frequency of rebalance checks.

5.1.2 Compiler Assisted Rebalancing

To maximize the possible performance of specialized programs, modern CPU ISAs

implement cache prefetch instructions for preloading soon-to-be used data into cache

to prevent cache misses from stalling the CPU’s execution pipeline. If a chunk of data

is processed within a loop, the data processed in future iterations may be prefetched a

few loop cycles early. A similar mechanism can be adopted for dynamic authentication

trees. A control interface can be added to the memory controller for providing direct

instructions to the tree’s request generation block. Giving the CPU control, or even

allowing it to issue restructuring suggestions to the tree, could maximize the possible

bandwidth of the protected memory. For example, during an operating system context

switch, the compiler could generate tree reordering instructions that would reorder

the data block containing the top of the next task’s stack, closer to the top of its tree.

With the top of its stack near to root of the tree, the currently executing task would

have much better performance than if it was placed at the bottom of a statically

allocated tree.

A more basic approach could be used that splits the protected memory region

into different segments, each one beginning at the start of a tree. These segments

could be used by the linker to spread data across memory, using all the configured

trees equally. This could improve the performance of dynamically balanced trees as

72

Chapter 5. Conclusion and Future Work

a modified linker could spread access probability such that each tree was accessed

an equal number of times. If trees are accessed equally, that could possibly indicate

that highly trafficked data structures are spread across memory such that each tree

contains one, or at most, a couple. Data nodes containing these highly accessed

locations would be balanced towards the top of the tree, improving performance.

Spreading highly accessed structures across trees prevents them being contained in

a small memory region under a single tree, reducing the likelihood of two nodes

“fighting” for better placement within the parent tree.

5.1.3 Running Linux within Protected Memory

As part of this research, a hardware toolchain was developed for deploying memory

authentication onto hardware devices. The toolchain handles the memory protection

designs all the way from code, to the creation of a bootloader and hardware bitstreams

with as little as a single command. The hardware bitstream and FSBL can be im-

ported into Vitis to create a bare metal program running both data and instructions

through protected memory. However, this limits the total scope of the memory pro-

tection hardware. The Zynq device targeted in this research, the XC7Z020, contains

an integrated dual-core ARM Application processor.

Application processors integrate memory-management units (MMU) for the con-

version of virtual to physical memory address mapping. This increases the security

and flexibility of both the software and the hardware it runs on by segmenting mem-

ory on a per-application basis. An MMU is also required, in most cases, to run an

advanced operating system on a processor. Specifically, Linux requires an MMU to

be present on the target CPU to run. The extra utilities and libraries provided by

Linux make it an ideal step-up over a bare-metal RTOS system for many embedded

hardware targets.

While it is possible to deploy the hardware developed during in this research onto

73

Chapter 5. Conclusion and Future Work

bare metal targets, running Linux within the protected memory is not possible at the

moment. Xilinx’s embedded Linux flavor, PetaLinux, was run on the target system;

however, it was not run within the protected memory region. Running Linux within

the protected memory region requires modifications to both the Linux bootloader,

U-Boot, and the kernel itself. It is also likely that the device-tree definition of the

ZedBoard will have to be updated to remove the address map of the off-chip DDR.

Only the address space of the protected memory controller will be listed as valid

system memory.

Running Linux within protected memory will not just allow for stronger physical

memory security, but it will also increase software security because of the kernel’s

permission system.

5.2 Conclusion

As the number of embedded systems rapidly grows in a world becoming increasingly

interconnected, the importance of physical hardware security grows along with it.

The work presented in this thesis introduced the use of caches into existing memory

authentication methods as a means of improving performance. The introduced caches

proved to be an effective method for improving the viability of existing memory

authentication schemes in certain workloads. As an addition to the performance

enhancements made, a toolchain suite was developed and provided that assist in the

creation and deploying of memory authenticated hardware. A user is able to use

this toolchain to integrate the design seamlessly into both their hardware and their

software stack without needing to learn the specifics of the underlying implementation.

74

Bibliography

[1] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and P. Guillemin,
“Tec-tree: A low-cost, parallelizable tree for efficient defense against memory re-
play attacks,” in Cryptographic Hardware and Embedded Systems - CHES 2007,
P. Paillier and I. Verbauwhede, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 289–302.

[2] M. Millar and M. Lukowiak, “Dynamic authentication trees,” in RIT Academic
Thesis, 08 2021.

[3] M. Werner, T. Unterluggauer, R. Schilling, D. Schaffenrath, and S. Mangard,
“Transparent memory encryption and authentication,” in 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications (FPL), 2017,
pp. 1–6.

[4] M. Kurdziel, M. Lukowiak, and M. Sanfilippo, “Minimizing performance over-
head in memory encryption,” Journal of Cryptographic Engineering, vol. 3, 06
2013.

[5] P. Rogaway, M. Wooding, and H. Zhang, “The security of ciphertext stealing,”
in Fast Software Encryption. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 180–195.

[6] R. Vaslin, G. Gogniat, J.-P. Diguet, E. Netto, R. Tessier, and W. Burleson, “A
security approach for off-chip memory in embedded microprocessor systems,”
Microprocessors and Microsystems, vol. 33, pp. 37–45, 02 2009.

[7] V. Nagarajan, R. Gupta, and A. Krishnaswamy, “Compiler-assisted memory
encryption for embedded processors,” in High Performance Embedded Architec-
tures and Compilers, K. De Bosschere, D. Kaeli, P. Stenström, D. Whalley, and
T. Ungerer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
7–22.

[8] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutli, “Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors,” in IEEE, 2014, p. 12.

[9] B. Gassend, D. Clarke, M. van Dijk, S. Devadas, and E. Suh, “Caches and merkle
trees for efficient memory authentication,” in High Performance Computer Ar-
chitecture Symposium, 09 2002.

[10] T. Unterluggauer, M. Werner, and S. Mangard, “Meas: Memory encryption
and authentication secure against side-channel attacks,” in Springer Journal of
Cryptographic Engineering, 01 2018, p. 22.

75

BIBLIOGRAPHY

[11] J. Schaad, “Use of the advanced encryption standard (aes) encryption algorithm
in cryptographic message syntax (cms),” RFC3565, USA, Tech. Rep., 2003.

[12] L. HARS, “Security against memory replay attacks in computing systems,” US
Patent US201 414 340 294 20 140 724, 2016.

[13] E. Leontie, O. Gelbart, B. Narahari, and R. Simha, “Detecting memory spoofing
in secure embedded systems using cache-aware fpga guards,” in 2010 Sixth Inter-
national Conference on Information Assurance and Security, 2010, pp. 125–130.

[14] C. Fruhwirth, “New methods in hard disk encryption,” in Institute for Computer
Languages Theory and Logic Group, 2005, p. 116.

[15] S. Vig, G. Jiang, and S. Lam, “Dynamic skewed tree for fast memory integrity
verification,” in 2018 Design, Automation Test in Europe Conference Exhibition,
2018, pp. 642–647.

[16] W. E. Hall and C. S. Jutla, “Parallelizable authentication trees,” in Selected
Areas in Cryptography, B. Preneel and S. Tavares, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 95–109.

[17] Zynq-7000 SoC Data Sheet: Overview, Xilinx.

[18] ARM Reference Manual: ARMv7-A and ARMv7-R edition, ARM Limited, 110
Fulbourn Road, Cambridge, England CB1 9NJ.

[19] AMBA AXI and ACE Protocol Specification, ARM Limited.

76

	Memory Protection with Cached Authentication Trees
	Recommended Citation

	Signature Sheet
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Motivation
	Objective

	Background
	Physical Memory Attacks
	Replay Attacks
	Spoofing Attacks
	Splicing Attacks

	Memory Protection
	Hashing
	Message Authentication Codes
	Authenticated Encryption with Associated Data
	Block-Level AREA Authentication

	Authentication Trees
	Data Authentication Methods
	Authentication Tree Performance
	TEC-Tree
	Dynamic Authentication Trees

	Authentication Method Comparison
	Authenticated Memory Controller

	Cached Authentication Trees
	Authentication Tree Caching
	Memory Caching
	Keystream Caching

	Cache Reasoning
	Dynamic Authentication Tree Caching

	Cache Architecture
	Caching Indexing
	Cache Read Architecture
	Cache Write Architecture

	DAT Cache Architecture
	DAT Cache Refilling Example
	DAT Cache Addressing
	DAT Cache Population
	DAT Cache State Machine
	DAT Cache Implementation Decisions

	Additional Performance Improvements
	Request burst wrapping

	Memory Controller Framework
	Memory Controller Security Model
	Memory Controller Encryption Model
	AMBA AXI4 Interface Protocol

	Memory Controller Pipeline
	Memory Encryption Pipeline
	Authentication Pipeline

	Hardware Testing Framework
	FSBL Modifications
	PL Binary Loading

	Results
	Authentication Tree Hardware Cost
	Authentication Tree Performance
	Summary

	Conclusion and Future Work
	Future Work
	Tree Arity
	Compiler Assisted Rebalancing
	Running Linux within Protected Memory

	Conclusion

	Bibliography

