
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

4-2023

A Survey of Qubit Routing Algorithms A Survey of Qubit Routing Algorithms

Harrison Barnes
hjb2677@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Barnes, Harrison, "A Survey of Qubit Routing Algorithms" (2023). Thesis. Rochester Institute of
Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11428&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11428?utm_source=repository.rit.edu%2Ftheses%2F11428&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

A Survey of Qubit Routing Algorithms

Harrison Barnes

A Survey of Qubit Routing Algorithms
Harrison Barnes

April 2023

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

A Survey of Qubit Routing Algorithms
Harrison Barnes

Committee Approval:

Sonia Lopez Alarcon Advisor Date
Department of Computer Engineering

Michael Zuzak Date
Department of Computer Engineering

Ben Zwickl Date
School of Physics and Astronomy

i

Acknowledgments

I’d like to thank my Advisor, Dr. Sonia Lopez Alarcon, for her assistance in the

research, development, and writing of this thesis. I’d also like to thank my family

and my fiancée for their support throughout my college.

ii

This work is dedicated to my fiancée Anna

iii

Abstract

Before applications actually run on quantum hardware, the design of the quantum

application and its pre-processing take place in the classical environment. Transform-

ing a quantum circuit into a form that is able to run on quantum hardware, known

as transpilation, is a crucial process in performing quantum experiments. Routing

is a particularly important and computationally expensive part of the transpilation

process. The routing process can alter a circuit’s accuracy, execution time, quantum

gate count, and depth. Several routing algorithms exist that aim to optimize some

portion of the routing process. There are many variables to consider when choos-

ing an optimal routing algorithm, such as routing time, circuit accuracy, gate count,

circuit execution time, and more. Identifying what routing algorithm is best for a

given quantum experiment based on various properties can allow researchers to make

informed routing decisions, as well as optimize target aspects of their work. This

thesis draws connections between the properties of circuits, hardware, and routing

algorithms to identify when a specific routing algorithm will outperform the others.

iv

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

1 Introduction 2

1.1 Motivation . 2

1.2 Quantum Routing . 2

1.3 Objective . 4

2 Background 5

2.1 Quantum Computing . 5

2.2 Quantum Compilation . 7

2.3 Error and Noise . 8

2.4 Existing Routing Algorithms . 10

2.4.1 Basic Swap . 11

2.4.2 Lookahead Swap . 11

2.4.3 Stochastic Swap . 11

2.4.4 BIP Mapping . 12

2.4.5 SABRE . 12

2.4.6 High Error Rate Routing . 13

2.5 Existing Research . 13

3 Methodology 15

3.1 Benchmarks and Metrics . 15

v

CONTENTS

3.1.1 Accuracy, Depth, & Timing 15

3.1.2 Hardware characteristics . 17

3.1.3 Circuit Selection . 19

3.2 Experiment Selection . 20

3.2.1 Topology . 20

3.2.2 Occupancy . 21

3.2.3 Quantum Noise . 21

3.3 Limitations . 22

4 BAROQUE 24

4.1 BAROQUE Background . 24

4.1.1 Qiskit Development Environments 25

4.1.2 Qiskit Documentation and Metrics 26

4.2 BAROQUE Design Goals and Targets 26

4.2.1 Generic Quantum Experiment Design Goals 27

4.2.2 Alternative Routing Implementation 29

4.2.3 Strings and Metrics . 30

4.3 Example Implementation . 31

4.4 Usage in Data Collection for Thesis 33

5 Results 34

5.1 Topology . 34

5.2 Occupancy . 38

5.3 Noise Level . 47

5.3.1 Adjusted Noise Level . 47

5.3.2 Bad Links . 49

5.4 Review of Routing Algorithm Performances and Test Conditions . . . 50

5.4.1 Lookahead Swap . 50

vi

CONTENTS

5.4.2 Basic Swap & HERR . 51

5.4.3 Stochastic Swap & SABRE 52

6 Conclusion 53

6.1 Future of Routing Algorithms . 53

6.2 Future Work . 54

6.3 Conclusion . 54

Bibliography 56

vii

List of Figures

2.1 Decomposition of a SWAP Gate into CNOT Gates 6

2.2 Routing a simple circuit on a theoretical 3-Qubit quantum processor

to satisfy two-qubit gate adjacency 8

2.3 Link Errors for IBM Kolkata’s 27-Qubit Falcon r5.11 Quantum Pro-

cessor. Link colors correspond to CNOT link error, where lighter links

have a higher error rate than darker links. 9

2.4 Different errors for different 7-Qubit IBM Falcon r5.11H Quantum Pro-

cessors. Link colors correspond to CNOT link error, where lighter links

have a higher error rate than darker links. 10

3.1 Coupling maps for three IBM quantum computers: Manila, Quito, and

Oslo . 18

3.2 Coupling maps for two IBM quantum computers with hexagon topology 18

4.1 Generic quantum experiment workflow processes. Double vertical lines

indicate optional steps. These processes will allow a script to test a

quantum circuit using Qiskit. 27

4.2 Dependency diagram showcasing BAROQUE’s ability to user’s to eas-

ily add their own metrics. The original Qiskit code (gray) is hidden

from the user, allowing them to make simple additions to their scripts

without directly using Qiskit. 29

5.1 SABRE v. Stochastic - Routing 2-qubit to 127-qubit QFTs onto IBM

Washington. SABRE’s ∆ CNOT scales better than stochastic’s, but

∆ depth is a close race. 40

viii

LIST OF FIGURES

5.2 Examining depth behavior: QFTs routed with SABRE and stochastic

onto IBM Washington. There are noticeable patterns and similarities

between SABRE and stochastic for both 50- and 51-qubit QFTs. The

addition of another qubit shifts where the algorithms route and what

qubits they utilize. 42

5.3 Examining depth behavior: More QFTs routed with SABRE onto IBM

Washington. Similar patterns occur here; the addition of another qubit

shifts SABRE’s routing to a different portion of the hardware. 43

5.4 Layer density for SABRE and Stochastic routing QFTs onto IBM

Washington. Stochastic swap packs CNOTs into layers more efficiently

than SABRE does, resulting in stochastic staying competitive in ∆

depth despite the high ∆ CNOT. 44

5.5 IBM Toronto - Deutsch-Jozsa transpile times. Lookahead swap scales

significantly worse than all other algorithms, quickly becoming orders

of magnitude slower. 46

5.6 Adjusted noise level experiment results. At nominal noise levels, cer-

tain routing algorithms out perform others. However, as the noise

level decreases, the accuracies converge towards 100%, minimizing the

accuracy advantage certain algorithms have. 48

5.7 The bad links experiment results show that the introduction of a bad

link may or may not impact the accuracy of a routed circuit, and that

noise-aware algorithms have the potential to avoid bad links. 49

ix

List of Tables

3.1 IBM quantum computer characteristics 17

3.2 Quantum algorithms selected for testing 19

4.1 Lines of code per program implementation 31

5.1 Topology Quantum Experiment Results - Gates and Depth 35

5.2 Topology Quantum Experiment Results - Accuracy and Timing . . . 37

5.3 Occupancy Quantum Experiment Results - Gates and Depth 39

5.4 Occupancy Quantum Experiment Results - Accuracy 45

1

Chapter 1

Introduction

1.1 Motivation

Quantum computing utilizes properties of quantum mechanics, such as superposi-

tion and entanglement, to perform calculations. Quantum computers can potentially

perform certain algorithms and operations faster than classical computers. Many sci-

entists, researchers, and companies are working in the field of quantum computing to

make advances in various fields. However, quantum computing is inhibited by errors

and small computer sizes. This is known as the Noisy Intermediate-Scale Quantum

(NISQ) era. Efficient mapping, routing, and scheduling of quantum algorithms onto

the NISQ hardware are essential to increasing the efficiency and accuracy of current

devices, as well as planning for future hardware implementations. Knowing which

routing algorithms are best for a particular problem is crucial to both fully utilizing

NISQ devices and preparing for future quantum hardware environments.

1.2 Quantum Routing

Quantum computing is in its early stages, but holds the potential of performing cer-

tain algorithms and computations faster or better than classical computers. Much

research is being done in the field to make advances in various fronts. However,

quantum computing is inhibited by errors and small computer sizes. Efficient tran-

2

Chapter 1. Introduction

spilation steps, including mapping, routing, and scheduling, of quantum algorithms

onto the NISQ hardware are essential to increasing the efficiency and accuracy of

current devices, as well as planning for future hardware implementations.

Routing plays a key role in the efficient implementation of quantum circuits on

specific quantum architectures and layouts. Quantum circuits represent quantum

operations as one-qubit and two-qubit gates. For superconducting qubits like IBM’s

quantum computers, these qubits need to be physically adjacent to be part of the

same two-qubit gate. Therefore, logical qubits used to define the quantum circuit

need to be mapped to a set of physical qubits, and then be routed to adjacent physical

qubits when they are the target of a two-qubit gate. This problem is challenging and

critical for several reasons. First, routing algorithms will add SWAP gates to the

overall circuit, introducing additional error and depth. Optimized routing will aim to

minimize these parameters. When routing is noise-aware, it can help with noise and

error mitigation by routing to less noisy links. Lastly, finding the optimal routing is an

NP-hard problem. Thus, various routing algorithms exist that balance the efficiency

of the routing with the execution time of the routing algorithm, as finding the most

optimal solution is computationally expensive.

Quantum routing algorithms must make compromises by targeting specific metrics

and neglecting others. Several metrics could be the target, including routing time,

the performance of the routed circuit, the amount of qubits used, the amount of

parallelism in the routed circuit, and the error (or accuracy) of the resulting output.

On the other hand, multiple variables play a role in this routing problem, such as the

size and structure of the circuit, the topology of the quantum computer, the number

of qubits used in the circuit, and the noise levels and link quality of the hardware

onto which the circuit is implemented.

Several routing algorithms have been proposed in the past. These algorithms

target SWAP count, circuit depth, noise, etc. However, there is no survey of all of

3

Chapter 1. Introduction

these algorithms, furthermore, no systematic review of the variables and metrics above

has been published. Current experiments target small size circuits due to the reduced

hardware resources and the computational challenges of simulation. Understanding

how these algorithms will scale in future quantum environments is also a desired

insight of this problem. Often times, authors will compare their routing algorithm to

one other benchmark algorithm, rather than a holistic review against the currently

well utilized routing algorithms.

Knowing which routing algorithms are best for a particular problem, or problem

characteristics, is crucial to both fully utilizing NISQ devices and preparing for future

quantum hardware environments with more qubits and less noise. This thesis aims

at providing these insights through the comparison of five routing algorithms, and

systematic variation of problem features and metrics.

1.3 Objective

The objective of this thesis is to determine which routing algorithms are superior

when routing different circuits, hardware configurations, and metrics.

4

Chapter 2

Background

2.1 Quantum Computing

Classical computing utilizes binary bits to perform calculations, where bits are either

ones or zeros. Quantum computing utilizes qubits to perform calculations, which can

be one, zero, or a superposition of both states. A quantum computer is a quantum

system and is a controlled quantum-mechanical evolution from an initial state to a

final state, which is the solution to a computational problem. When in superposition,

the state of the quantum system is unknown. A quantum state can be represented

as a state vector, shown in Equation 2.1.

|Ψ⟩ =



α1

α2

...

αm


(2.1)

The state vector |Ψ⟩ in (2.1) consists of m entries where m = 2n. Note that n is

the number of qubits. Thus, as the number of qubits increases, the state vector grows

exponentially. |Ψ⟩ can also be represented as a linear expression, as seen in Equation

2.2.

|Ψ⟩ = α1 |Ψ1⟩+ α2 |Ψ2⟩+ . . .+ αm |Ψm⟩ (2.2)

5

Chapter 2. Background

|Ψ⟩ in (2.2) is a linear relationship with the basis states, |Ψx⟩. Upon measurement

of the quantum state, this will collapse to one of the basis states, |Ψx⟩, with probabil-

ity P (Ψx) = |α2
x|. Therefore, the act of measuring a qubit collapses the state into sets

of zeros and ones in the computational basis. Information about the superposition

state can be extracted through multiple measurements in the computational basis (or

other bases as needed for quantum tomography). Repeating the quantum circuit and

measuring each run’s final state allows for the construction of a probability distri-

bution of the final states. In an ideal scenario with enough runs, also referred to as

shots, and no noise, the probability of finding |Ψ⟩ in state Ψx will be |α2
x|.

Quantum algorithms are implemented using quantum gates to manipulate one

or more qubits. Gates perform computations by altering the superposition state of

qubits. Many complex gates exist, but quantum computers utilize a set of basis gates

that compose all higher-order quantum gates. Basis gates, also called native gates,

are set by the quantum hardware, not the programmer. To switch states between

two qubits, routing algorithms utilize SWAP gates which are implemented with three

control-not (CNOT) gates, also known as control-x (CX) gates. Figure 2.1 shows the

makeup of a SWAP gate, consisting of three alternating CNOT gates.

CNOT gates invert the state of the target qubit, denoted by the ⊕ symbol, when

the control bit, denoted by the black dot, is in a one state. The SWAP in Figure 2.1

will switch the states of the two qubits x and y. SWAP gates have many applications,

such as checking for equality, swapping states for routing, and are used in various

algorithms.

|x⟩

|y⟩

Figure 2.1: Decomposition of a SWAP Gate into CNOT Gates

6

Chapter 2. Background

2.2 Quantum Compilation

With some parallelism with classical hardware description languages, quantum cir-

cuits must be compiled from code into a hardware implementation. Quantum com-

pilers take the code, which represents a circuit for generic quantum hardware, and

compile it into a circuit that will run on the target quantum hardware. This pro-

cess requires the transformation of the circuit to meet the real hardware constraints

present in the target device. For example, not all basis gates are the same for ev-

ery quantum device. The compiler decomposes the circuit into the basis gates by

breaking high-level gates into their native components. Furthermore, logical qubits,

which exist solely within the code, must be mapped to physical qubits on hardware.

This has two issues: First, if a circuit cannot fit on a device, changes must be made

to the circuit so that it will fit on the device or a larger device must be selected if

available. This limits the size of problems that can be solved on a device, as the

number of qubits is a major limiting factor. Second, qubits can only interact with

physically adjacent qubits. Since almost all quantum algorithms require some form

of a two-qubit gate, routing must occur. Routing places SWAPs between qubits with

the goal of moving qubit states around for interaction. Routing is required when a

gate is applied on non-adjacent qubits, as shown in Figure 2.2.

The quantum circuit in Figure 2.2a shows a CNOT gate acting on qubits x and z.

If the quantum compiler maps the logical qubits to the physical qubits in the 3-qubit

processor shown in Figure 2.2b. When mapped to the processor, the CNOT gate

working on x and z cannot be performed since the corresponding physical qubits Q0

and Q2 are not adjacent. Routing rectifies this issue by adding a SWAP gate between

either x and y, as shown in Figure 2.2c. This allows the CNOT to be performed on

the adjacent qubit pair: Q1 and Q2. Another option is to SWAP y and z and perform

the CNOT on x and y. As circuit complexity increases, the possible routing decisions

7

Chapter 2. Background

also increase, adding to the complexity of routing the circuit for the target hardware.

Efficient routing algorithms are time efficient and or accurate. Since routing is an

NP-complete problem, finding the optimal routing solution is time intensive. Thus,

algorithms utilize different heuristics that balance routing time and accuracy.

|x⟩
|y⟩
|z⟩

(a) Unrouted CNOT Circuit (b) 3-Qubit Processor

|x⟩

|y⟩

|z⟩

(c) Routed CNOT Circuit

Figure 2.2: Routing a simple circuit on a theoretical 3-Qubit quantum processor to satisfy
two-qubit gate adjacency

2.3 Error and Noise

As the name suggests, devices in the NISQ era are noisy. Noise in a quantum system

degrades the accuracy of the operations and results. Essentially, noise creates errors

as the circuit progresses. If enough error is accumulated, the correct results will not

be extractable from the probability distribution. Quantum noise puts a limit on how

deep circuits can go and how many operations can be performed. Circuit depth refers

to the number of layers of gates. Depth is important as physical qubits will begin

to suffer state degradation after a period of time. Gate errors are another source

of error. The application of a gate onto a qubit has a specific error associated with

it. Due to this, the more gates applied, the more error introduced into the system.

Coherence errors and gate errors limit the realistic depth of the circuit.

Two-qubit gate errors are dependent on the topology and noise levels of the target

hardware. Links between qubits have noise associated with them. Applying a gate

on a link is subject to the noise present on that link. Furthermore, not all links have

the same noise rate.

8

Chapter 2. Background

Figure 2.3: Link Errors for IBM Kolkata’s 27-Qubit Falcon r5.11 Quantum Processor.
Link colors correspond to CNOT link error, where lighter links have a higher error rate
than darker links.

Figure 2.3 shows qubit operating frequencies and link errors between qubits for

IBM Kolkata’s 27-Qubit Falcon r5.11 quantum processor [1]. The qubits, represented

as colored circles with qubit numbers in them, are colored based on their operating

frequency. Darker blues represent lower operating frequencies, while lighter colors,

such as purple, represent higher frequencies. However, the more important informa-

tion is the CNOT connection error. IBM defines their link error as the expected error

induced by performing a CNOT operation across a link. In this instance, a darker

color represents a lower error, while a lighter color indicates a higher error. Thus, an

efficient routing algorithm may aim to utilize low-error links as much as possible. This

type of algorithm is known as noise-aware routing. A noise-aware routing algorithm

must be flexible, as not all topologies have the same error rate, as shown in Figure

2.4

9

Chapter 2. Background

(a) IBM Oslo (b) IBM Jakarta

Figure 2.4: Different errors for different 7-Qubit IBM Falcon r5.11H Quantum Processors.
Link colors correspond to CNOT link error, where lighter links have a higher error rate than
darker links.

Figure 2.4 shows the CNOT connector errors for the IBM Oslo and Jakarta 7-qubit

Falcon r5.11H quantum processors, as reported by IBMQ API [1]. The difference

between the devices is noticeable, as no two corresponding links are equivalent across

the devices. For example, the link from Q1 to Q2 has a low CNOT error on IBM Oslo

yet has a high error on IBM Jakarta. A flexible noise-aware routing algorithm must

take into account the error map of the target device. Furthermore, the difference in

topologies between Figure 2.3 and Figure 2.4 requires a routing algorithm to have

flexibility in its decision-making process. Finally, the noise between qubits varies

day-to-day, requiring noise-aware routing algorithms to adapt as noise changes in a

quantum processor.

2.4 Existing Routing Algorithms

IBM Qiskit is an open-source quantum development kit that allows users to develop

quantum circuits, perform quantum compilation, run simulations, and run circuits

on IBM’s quantum hardware [2]. Qiskit’s transpiler translates the quantum circuit

code into a hardware-executable circuit for the target device. The transpiler routes

the circuit for the target hardware, selecting an algorithm based on user specification.

10

Chapter 2. Background

Qiskit comes with five routing algorithms: Basic Swap, Lookahead Swap, Stochastic

Swap, BIP Mapping, and SABRE. An alternative noise-aware routing algorithm will

also be explored.

2.4.1 Basic Swap

Basic Swap is a simple algorithm that trades time efficiency and simplicity for opti-

mization. If a gate is applied to non-adjacent qubits, SWAP gates are added along the

shortest path between the two qubits [3]. This algorithm is computationally cheap,

easy to implement, and works well as a fallback routing method for other complex

methods. However, Basic Swap does not take link noise, SWAP parallelism, and

future SWAPs into account. Thus, the final routing may not be optimal.

2.4.2 Lookahead Swap

Lookahead Swap generates a directed acyclic graph (DAG) for the quantum circuit,

which is then used to create an initial mapping that allows the most reuse of qubits

without SWAPs [4]. Then, Lookahead Swap will select the top N possible SWAPs for

a gate and repeat the analysis M times for each of the N possible SWAPs, where N

and M are search parameters set by the user. Lookahead then selects the best of the

possible SWAPs and moves on. This algorithm attempts to minimize the number of

SWAP gates, which can increase accuracy and lower depth. However, this algorithm

generates NM layouts when analyzing a gate, which is computationally intensive and

may result in high routing times.

2.4.3 Stochastic Swap

Stochastic Swap which generates a DAG that is broken into layers [5]. Random

permutations are used to generate SWAP configurations, which are compared to find

the best SWAP configuration for a particular layer. Optimally solving each DAG

11

Chapter 2. Background

layer increases the accuracy of stochastic at the potential cost of high run times.

Furthermore, restricting the search to a single layer of gates may ignore more optimal

solutions that span multiple layers, such as those found in Lookahead Swap. However,

this allows stochastic the potential to decrease the total depth of the circuit.

2.4.4 BIP Mapping

BIP Mapping converts the circuit to a binary integer programming (BIP) problem [6].

Potential SWAPs are given a weight based on the user-specified algorithm priority.

Different priorities will perform different mathematical operations on the weights in

the BIP problem using Python math libraries. BIP Mapping offers some versatil-

ity through the implementation of algorithm priorities. BIP Mapping defaults to a

balanced priority but can either prioritize the depth or the gate error. Prioritizing

gate error turns BIP Mapping into a noise-aware routing algorithm, as it will utilize

the IBM backend link errors to inform routing decisions. BIP Mapping has some

drawbacks; the number of virtual qubits and physical qubits must match, and the

main libraries struggle with double-digit qubit counts. Furthermore, the complexity

of the algorithm results in high execution times, along with dense, abstract source

code with most of the work hidden in non-Qiskit libraries.

Due to the extremely limiting qubit maximum of BIP Mapping, the algorithm is

not explored further in this work.

2.4.5 SABRE

SABRE generates a DAG for the circuit and breaks it into layers [7]. If the front

layer of gates cannot be applied directly, SABRE Swap will search and add SWAP

gates. A heuristic cost function is used to restrict the pool of potential SWAPs to

locations near the current layer, adding the best one of the generated SWAPs. The

front layer is removed from the DAG when all gates can be applied, and the next

12

Chapter 2. Background

layer becomes the front layer. Qiskit alters the algorithm by doing multiple passes

with different seeds and selecting the best [8]. SABRE Swap does not aim to find

the optimal solution, which can save execution time at the cost of CNOT count and

accuracy. However, by restricting the search to layers near the front, some parallelism

is built into the algorithm, along with the ability to tune the cost function if needed.

2.4.6 High Error Rate Routing

High Error Rate Routing (HERR) is an additional algorithm, not included in the

Qiskit tools, but that will be referred to in this work [9]. HERR is a noise-aware

algorithm that routes around noisy links if the extra SWAPs will yield an overall

lower error [9]. If no such path exists, HERR defaults to the Basic Swap algorithm

by following the shortest path. HERR has the potential to produce more accurate

results at cheaper run times, due to it being a slightly more complex Basic Swap.

However, some of Basic Swaps’ drawbacks carry over to HERR due to its dependency

as a fallback. Furthermore, reliance on low-error links may create bottlenecks in

certain noisy devices. HERR handles layout edits differently than basic does, which

may result in lower accuracy due to the variance in link errors. Finally, the increased

SWAP count may increase the depth, which can harm the efficiency of already deep

circuits.

2.5 Existing Research

HERR was bench marked against four other routing algorithms: Basic Swap, Stochas-

tic Swap, Lookahead Swap, and SABRE [9]. Three benchmark circuits were chosen:

a quantum Fourier transforms (QFT), the Bernstein-Vazirani algorithm (BV), and

the Toffoli gate. All of these benchmarks were routed and performed on one of IBM’s

Falcon r5.11H quantum processors, as well as two theoretical grid maps with four

and eight qubits. HERR’s benchmarking process utilized two random noise models,

13

Chapter 2. Background

1-10% noise for a typical system, and 1-20% noise for a substantially noisy system.

HERR was evaluated on three metrics: accuracy, CNOT count, and routing execu-

tion time. Accuracy measures the percentage of time that the routed circuit produces

the correct result. CNOT count is the number of CNOT gates present in the circuit.

HERR claims that the CNOT count is not as vital as accuracy but includes it as a

metric anyways, as many algorithms use CNOT count as their main evaluation met-

ric. Finally, the execution time measures the speed of the routing algorithm. These

metrics can be used to determine the scalability and feasibility of a routing algorithm

and are used to measure up HERR against other algorithms.

SABRE tests itself against one other algorithm through numerous benchmark

circuits. In terms of metrics, SABRE strictly focuses on CNOT count and execution

time. The authors of SABRE correlate an increased CNOT count with increased

error [7]. Both SABRE and HERR aim for similar goals, but the nature of their

algorithms results in the authors emphasizing different metrics. HERR puts the most

emphasis on increasing accuracy rather than CNOT count, as HERR intentionally

adds CNOTs to decrease noise. Alternatively, SABRE focuses on the CNOT count as

the sole accuracy metric, due to the author’s view that increasing the CNOT count

decreases accuracy. Furthermore, SABRE only compares itself to one other algorithm

[10], and does not mention the noise model used.

14

Chapter 3

Methodology

3.1 Benchmarks and Metrics

A series of experiments were developed to determine the efficiency and usefulness

of routing algorithms under various conditions. The selected routing algorithms for

testing are basic swap (BSC), lookahead swap (LKHD), stochastic swap (STCH),

SABRE, and HERR. The test conditions included evaluation metrics, hardware char-

acteristics, and circuit selection. The selected metrics aim to quantify the accuracy,

parallelism, and speed of the routing process for each routing algorithm. The data

from the metrics was then evaluated for each test scenario corresponding to a specific

set of hardware characteristics and circuits. To reach meaningful conclusions based

on experimental results, a range of metrics, characteristics, and circuits were selected.

3.1.1 Accuracy, Depth, & Timing

The routing algorithms under review are evaluated according to three metrics: accu-

racy of results, depth of the circuit, and the time it takes to transpile the circuit.

Accuracy is not a straightforward metric as there are multiple ways to determine

how accurate a circuit is. In this thesis, two accuracy metrics are utilized. First, the

number of CNOT gates added by the routing algorithm is determined after routing.

This is referred as the delta CNOT, or the change in CNOT count over the original,

15

Chapter 3. Methodology

pre-transpilation circuit. Each CNOT gate introduces additional error into the states

of the relevant qubits. A circuit with more CNOTs will generally have worse accuracy

than a circuit without CNOTs.

Noise-aware routing algorithms have proven that adding additional CNOT gates

may be beneficial, reducing the overall error by avoiding links with large errors [9].

Thus, CNOT delta is not always a definitive measure when comparing the accuracy

of two routing algorithms. Thus a second accuracy metric was implemented. Each

routed circuit would be simulated to obtain a probability distribution. For basis

encoded circuits, the accuracy is defined as the percentage of shots that produced a

correct result. Since routing directly affects the gate count, the same circuit will have

different accuracies after transpilation. For amplitude encoded circuits, calculating

the simulated statevector and comparing it to the expected statevector would provide

usable accuracy metric. The expected statevector is the statevector of the circuit

without any noise. Comparing the simulated and expected statevectors would utilize

Manhattan distance due to its viability with high dimension spaces [11]. However,

due to the high run time and high number of required shots for large QFT circuits,

this metric will not be used in this work. Only basis encoded algorithms will be

examined using % shot accuracy

IBM quantum computers perform quantum operations layers at a time. Thus,

each qubit’s gates act in parallel with other gates on that layer. The number of layers

in a quantum circuit is known as the depth of the circuit. Reducing circuit depth

reduces the number of layers needed to evolve the quantum state from the initial

state to the final state. Furthermore, for circuit simulation, reducing the quantum

depth reduces its memory requirements and run time. Thus, depth delta is measured

for each circuit by calculating the additional number of layers in the circuit’s DAG

compared to the unrouted circuit. This allows for routing algorithms to be compared

in terms of the parallelism of their routed implementation.

16

Chapter 3. Methodology

Performing routing algorithms on large quantum circuits devices takes a significant

amount of time. For each algorithm, the transpile times are measured and recorded.

This metric shows which algorithms perform routing more efficiently on a given hard-

ware with a given circuit. Transpilation time is measured instead of just routing time

since the routing process affects the transpilation process. Measuring only the routing

time does not reflect the routing process’ impact on the decomposition, optimization,

etc. steps of the transpilation process. Measuring the transpilation times allows a

developer to trade off increased accuracy for increased routing times.

3.1.2 Hardware characteristics

IBM offers a wide range of quantum computing hardware architectures. Each device

varies in topology and qubit count. Table 3.1 shows the devices used in this work

and the respective qubit counts and topology.

Table 3.1: IBM quantum computer characteristics

Device # Qubits Topology

Manila 5 5-

Quito 5 5T

Oslo 7 7H

Guadalupe 16 16X

Toronto 27 27X

Washington 127 127X

The devices listed in Table 3.1 are the IBM Quantum Computers utilized in this

thesis. The devices are named after specific cities in the world, making them easily

identifiable. The topology of the five and seven qubit machines differs from that of

higher order computers. Figure 3.1 shows the topology of the Manila, Quito, and

Oslo IBM quantum computers.

17

Chapter 3. Methodology

(a) IBM Manila (b) IBM Quito (c) IBM Oslo

Figure 3.1: Coupling maps for three IBM quantum computers: Manila, Quito, and Oslo

The coupling maps in Figure 3.1 are three IBM quantum computers used during

testing. These are simple coupling maps for simple, low qubit quantum computers

that IBM offers for free to all IBM Quantum users [1]. Figure 3.2 shows the coupling

map for the 16 and 27 qubit devices.

(a) IBM Guadalupe (b) IBM Toronto

Figure 3.2: Coupling maps for two IBM quantum computers with hexagon topology

The quantum systems in Figure 3.2 are part of IBM’s paid program as they are

able to handle larger qubit circuits. Guadalupe and Toronto begin the trend of

IBM’s topology for all computers larger than seven qubits. Guadalupe serves as a

building block for IBM’s hexagon topology, where all subsequent systems use the

hexagon as the basic qubit building block configuration. Toronto, the next largest

quantum computer, utilizes two hexagons. For example, IBM Washington is a 127-

qubit quantum computer consisting of 18 hexagons. IBM Washington will be used

for detailed analysis of trends involving routing’s impact on depth and CNOT count.

18

Chapter 3. Methodology

3.1.3 Circuit Selection

There are two factors that play into circuit selection. Primarily, complex circuits with

more gates and higher depth require more intensive routing and transpilation while

also greatly reducing the accuracy of the evolved statevector. The gate complexity of

the circuit is the big-O complexity of the relationship between the number of two-

qubit gates in the circuit and the number of logical qubits n. Larger gate complexities

are more expensive for routing algorithms. Another major factor is the encoding of

the output state. Two types of encoding exist: basis encoded and amplitude encoded.

Basis encoding algorithms encode their solutions in the most probable basis state, such

as Grover’s algorithm [12]. Amplitude encoding algorithms encode their solutions in

the amplitude of each basis state, such as HLL [13]. Table 3.2 shows the selected

quantum circuits with their gate complexity and state encoding.

Table 3.2: Quantum algorithms selected for testing

Quantum Algorithm # Gate Complexity State Encoding

QFT O(2n) Amplitude

Deutsch–Jozsa O(n) Basis

W-State O(n) Basis

GHZ State O(n) Basis

The quantum circuits listed in Table 3.2 are used with various qubit counts across

different hardware tests. The circuit test set includes quantum fourier transforms

(QFT), Deutsch-Josza (DJ), W-State (WS) and Greenberger–Horne–Zeilinger State

(GHZ). All quantum circuits are obtained from the Munich Quantum Toolkit Bench-

mark Library [14]. These circuits can show how a specific routing algorithm handles

gate complexity and state encoding schemes. QFT covers amplitude encoded algo-

rithms, as well as complex circuits. DJ, WS, and GHZ are all basis encoded with

varying level of complexity. These three were selected to examine how routing al-

19

Chapter 3. Methodology

gorithms handle various complexity of basis encoded circuits. This knowledge can

inform developers which routing algorithm they should use based on their target

quantum algorithm. This circuit set is intentionally small, they are easy to analyze

and form trends, especially for accuracy, a metric that is limited to smaller, simpler

circuits.

3.2 Experiment Selection

Using the selected metrics, hardware, and quantum circuits, a set of quantum exper-

iments can be created to accurately map the efficiency of routing algorithms un-

der various conditions. Three sets of experiments were defined: topology-based,

occupancy-based, and noise-based. Topology-based experiments will focus on how

routing algorithms perform on various IBM quantum architectures. Occupancy-based

experiments will examine how routing algorithms perform at various occupancy levels

on the same topology. A quantum computer’s occupancy is defined as the number

of logical qubits in the quantum circuit divided by the number of physical qubits on

the device. Finally, noise-based experiments will alter the noise map of the quantum

hardware to examine how noise affects the routing algorithms’ performance.

3.2.1 Topology

The various circuit topologies listed in 3.1 were tested with the full suite of circuits

listed in 3.2, and are evaluated using all metrics. All circuits are performed at max

occupancy for the hardware. Thus, only differences in topology should affect the

performance of the routing algorithm. This test is meant to establish a baseline

understanding of the effectiveness of the routing algorithms, as this test encompasses

the most circuits and hardware.

20

Chapter 3. Methodology

3.2.2 Occupancy

Not all circuits will utilize the entire coupling map of a quantum computer. A cir-

cuit with more logical qubits requires more physical qubits to execute. Consequently,

higher occupancy requires more routing while having fewer ancilla qubits for rout-

ing purposes. Occupancy is an important metric as certain routing algorithms may

perform well at certain occupancies but not at others. Thus, occupancy is varied

on larger qubit circuits to determine how routing algorithms deal with ancilla qubit

constraints when performing routing on a quantum circuit. The hexagon topologies

will be used, along with one circuit for each encoding type: QFT and DJ. These cir-

cuits were selected to cover both encoding types, as well as provide a circuit complex

enough such that routing will impact the accuracy of the evolved statevector.

The occupancy test also includes CNOT and depth analysis for routing QFTs onto

IBM Washington. The top algorithms will be selected and compared to determine

how they could perform on future hardware with larger architectures.

3.2.3 Quantum Noise

Quantum computers possess various physical qualities regarding their qubits and

qubit connections. Noise affects the accuracy of circuits by affecting the application

of quantum gates. Routing algorithms are most affected by the CNOT link error,

as SWAP gates are required to perform routing, resulting in a decreased accuracy

(generally). Currently, quantum computers are noisy, but this will improve with

time. Thus, testing how accurate routing algorithms are on a noise-reduced quantum

computer is important. Furthermore, the quality of a link can degrade, resulting in

some links being far less accurate than other links. Testing how a routing algorithm

will perform when a small percentage of links have much higher error than other links

can aid in routing algorithm selection for quantum hardware with bad links in the

system.

21

Chapter 3. Methodology

Quantum noise is tested by using adjusted overall noise and the number bad links.

Adjusted overall noise is a quantum test where the entire noise map is scaled by

a scalar value. For example, testing with an adjusted overall noise of x0.1 would

multiply every link’s CNOT error by 0.1, resulting in lower error. This test will show

how algorithms perform on current noise levels and future reduced noise levels. For

this test, DJ circuits of varying size were routed and simulated on IBM Guadalupe

and Toronto. A bad link quantum experiment is one where a set number of qubit

links are altered to be bad links. A bad link is defined as a link with a CNOT

error > 1.0e − 1. The majority of qubit links on IBM’s newer processors have link

errors ranging from 1.0e − 3 −→ 9.0e − 2 [1]. For simplicity, all bad links will be

set to 2.5e − 1 CNOT error, significantly higher than that of IBM’s nominal noise

range. The bad links experiments were simulated on IBM Toronto using 12-qubit

and 16-qubit DJ circuits, with one to eight bad links for each circuit. The purpose of

this experiment is to test how a link with poor error can be avoided by noise-aware

routing. Future hardware with less noise may have some links that reach current-day

noise, thus becoming a bad link.

3.3 Limitations

All experiments are performed on RIT’s Research Computing (RC) [15]. Despite the

processing power available, quantum simulation is a computationally expensive pro-

cedure, especially for larger qubit simulations. Performing enough shots to determine

accuracy for a basis encoded circuit with minimal solutions is simple. However, for

an amplitude encoded circuit like QFT, the large solution space requires many more

shots to build the probability distribution. As such, DJ is used for all accuracy tests,

as it is basis encoded with one solution. DJ is also in a sweet spot where noise does

affect the output, but not so much so that routing a large DJ circuit cannot improve

the accuracy a meaningful amount. All 27-qubit topology tests will not have accuracy

22

Chapter 3. Methodology

metrics performed due to the high computation requirements for even the simplest

circuits.

23

Chapter 4

BAROQUE

BAROQUE (Blueprint for Assembling the Runtime Operations of Quantum Experi-

ments) is a fancy name for a tool that responds to a simple need: scripting quantum

experiments. As previously discussed, there are various pieces of quantum experi-

ments that are altered to gather data, namely hardware, circuit, metric, etc. Varying

these parameters resulted in hundreds of different experiments, amounting to hun-

dreds of hard-coded lines of code that would require tedious minimal changes from

one to the other.

BAROQUE was originally created by the author to script quantum experiments

for data collection related to this work, but quickly grew to become a modular

blueprint that encapsulates IBM Qiskit functions. This encapsulation solves two

issues. First, some information from IBM is complex to parse into a usable form for

Qiskit. Second, Qiskit’s documentation is lacking in many areas that are critical for

researchers running complex tests beyond the “Qiskit Textbook”.

4.1 BAROQUE Background

BAROQUE is built on, and adds upon Qiskit’s existing functions. Qiskit is an open-

source software development kit (SDK) created and maintained by IBM that provides

tools to work with quantum computers. Developers and researchers can use Qiskit

for simulation and development of pulses, circuits, and other quantum applications

24

Chapter 4. BAROQUE

[2]. Qiskit is widely used in the quantum computing research community due to the

wealth of functionality, ease of use for beginners, and open-source nature. IBM’s

Qiskit allows developers to run programs on both quantum simulators and real quan-

tum hardware. Qiskit also provides users the ability to create quantum circuits,

use common quantum algorithms, and explore various analysis methods. However,

Qiskit has some shortcomings, and tools could not be found to remedy the specific

shortcomings encountered during data collection.

4.1.1 Qiskit Development Environments

IBM provides two browser-based quantum development environments. IBM Quan-

tum Composer [16], provides the user various tools to synthesize a quantum circuit

without knowledge of simulation or transpilation. In fact, the ability to drag and drop

gates onto qubits removes the need to know quantum assembly language or Qiskit

gate operations and functions. Quantum Composer is for entry level developers, those

learning the basics of quantum computing, and developers simulating small circuits

without wanting to set up a full environment or Jupyter Notebook. Due to its sim-

plicity, Quantum Composer is limited in its functionality and range of experiments it

can perform. Quantum Composer is best used for small experiments, or for learning.

IBM’s Quantum Lab is the other browser-based quantum development environ-

ment [17]. Quantum Lab is a Jupyter Notebook environment with access to Qiskit.

A Jupyter Notebook can be scheduled to run on an IBM simulator, IBM quantum

system, or simply run in the Jupyter environment. Quantum Lab does not offer

any user interface development of quantum circuits. However, Quantum Lab allows

the developer to create complex code in an browser-based integrated development

environment (IDE) using Jupyter Notebook.

The Qiskit SDK is also available to download and integrate into an IDE such as

PyCharm. The SDK gives full functionality to developers within an IDE. However,

25

Chapter 4. BAROQUE

developers using Qiskit in an IDE must perform extra steps that would normally be

handled by Quantum Composer or Quantum Lab, such as logging into IBM Quantum.

4.1.2 Qiskit Documentation and Metrics

IBM provides a Qiskit Textbook containing well-documented examples of how to

use Qiskit for various simple tasks, algorithms, and circuits [2]. Gathering niche

information on the fly about quantum compute resources for simulation is not well

documented, nor are there many examples on third party sites such as Github and

Stackoverlow.

In addition, Qiskit relies heavily on string constants that can be hard to track

through its documentation. The three most common string constant groups are back-

ends, quantum gates, and routing algorithms. The first group, backends, refers to

both IBM quantum systems and IBM quantum simulators. The second group refers

to the basis gates IBM systems decompose circuits into. The last group consists of

the different routing algorithms Qiskit has available.

Last, Qiskit does not provide some specific metrics that are important for re-

searchers. For example, the output of a simulation can be collected as a probability

distribution of measurements in the computational basis, but Qiskit does not provide

a simple, readily available metric of the quality of that solution. The researcher will

have to then manipulate this probability distribution to come up with the best metric

of its quality. Here, it is important to note that the best metric may vary depending

on whether the output is basis encoded vs amplitude encoded.

4.2 BAROQUE Design Goals and Targets

BAROQUE was developed with three goals in mind:

• to simplify interfacing with IBM’s Quantum API and quantum systems,

26

Chapter 4. BAROQUE

• to provide commonly used metrics,

• to create a modular program with user modification in mind, and

• to implement alternative routing algorithms for easy use in Qiskit experiments,

particularly HERR

The first three goals required modifying specific parts of the quantum experiment

workflow to simplify, atomize and enhance it without compromising the integrity of

the targeted process.

4.2.1 Generic Quantum Experiment Design Goals

A generic quantum experiment (GQE) is defined as a program that takes a quan-

tum circuit, transpiles it onto the desired backend, and simulates the circuit on that

backend.

Figure 4.1: Generic quantum experiment workflow processes. Double vertical lines in-
dicate optional steps. These processes will allow a script to test a quantum circuit using
Qiskit.

Figure 4.1 shows a program flow diagram for a GQE performed in an IDE. Steps

such as scripting and acquiring metrics are optional thus they are marked in the

flow diagram. This GQE workflow includes processes that almost all experiments

will need to go through, regardless of the specific combination of metrics, circuit and

backend chosen for the experiment. For GQEs, BAROQUE in particular has four

design targets:

27

Chapter 4. BAROQUE

• Simplify the log in process into the IBM’s Quantum API,

• Facilitate the Backend selection, and access to its qubit map and calibration

data,

• Facilitate the simulation of the circuit to obtain final results in the form of a

probability distribution,

• Acquire and report a variety of metrics,

A design target is a part of the GQE that BAROQUE aims to encapsulate, sim-

plify, and provide support for. These processes are either not well documented, consist

of complex yet reusable code, or a mix of both. For example: the configuration and

properties of the backends is well documented for some features but not for others.

Constructing the CX gate error map is complex, but can be reused without changing

the code, for any backend. Thus, BAROQUE targets this step as it removes the need

to read scattered pieces of documentation and provides a reusable code-base for any

backend.

Acquiring metrics for analyzing the probability distribution is an optional step,

yet it is a design goal, and is thus handled by BAROQUE through two means. First,

BAROQUE provides a variety of useful metrics for our research, such as accuracy,

state vector distance, depth, and CX gate count. Second, BAROQUE implements

these main metrics by providing a more generic version of some of them. For ex-

ample, the CX gate count function uses a generic gate count function. This generic

function allows the user to count the standard CX gate, or a different quantum gate,

should the need arise. This flexible feature of BAROQUE is depicted in figure 4.2.

BARROQUE’s metricCountCX is simply modified with the desired gate to count,

without having to access cumbersome IBM’s Qiskit code. Common gate strings are

provided by BAROQUE too, saving the user from locating Qiskit’s list of gate string

representations.

28

Chapter 4. BAROQUE

Figure 4.2: Dependency diagram showcasing BAROQUE’s ability to user’s to easily add
their own metrics. The original Qiskit code (gray) is hidden from the user, allowing them
to make simple additions to their scripts without directly using Qiskit.

The generic CountGate metric shown in Figure 4.2 can be tuned to count the

standard CX gate, or any other gate that the researcher requires. The raw Qiskit

code [18], shown in gray, is never modified by the user/researcher. All the user needs

to do is examine metricCountCX()’s short code and change the gate string to match

their desired gate.

BAROQUE does not treat some parts of the GQE workflow as a design target.

Qiskit provides a function to convert a quantum assembly file, .qasm, to a Quantum-

Circuit object, and the process is well documented. Transpilation is often used in

Qiskit’s Textbook, and the parameters used are not difficult to decode from docu-

mentation. Functions such as these cannot be further encapsulated as Qiskit makes

transpilation and circuit implementation coming from an existing benchmark simple

for the user.

4.2.2 Alternative Routing Implementation

The fourth and final design goal does not satisfy a specific design target of a GQE

workflow. Standard Qiskit’s available routing algorithms are: basic swap, SABRE,

Lookahead, and Stochastic [3, 19, 20, 5]. HERR works alongside with basic swap.

BAROQUE encapsulates HERR and basic swap sections into one routing and tran-

29

Chapter 4. BAROQUE

spiling function. This allows users to use HERR as they would use SABRE, Stochas-

tic, etc., expanding their repertoire of routing algorithms. Through this portion of

the code, users have the possibility of also adding their own routing algorithms when

need be.

4.2.3 Strings and Metrics

Qiskit functions often contain a parameter that requires a specific string chosen from

a set of possible strings. For instance, when selecting a backend system to simulate,

Qiskit requires a string such as “ibm oslo” or “ibmq quito”. These fields that can be

selected from numerous choices are backends, quantum gates, and routing algorithms.

BAROQUE provides a single place that holds commonly used string constants to save

developer time in reading Qiskit documentation to locate the exact string used by

Qiskit.

BAROQUE simplifies the analysis process by providing and encapsulating the

code to common metrics used to analyze a quantum circuit. The more commonly

used metrics include circuit depth, gate count, routing time, and transpilation time.

BAROQUE also includes two accuracy metrics: simulation accuracy and statevec-

tor norm.

Simulation accuracy requires the user to provide a list of basis states that qualify

as an expected correct output, referred to as answers. Simulation accuracy determines

what percent of shots yielded answers, and returns that percentage. Simulation accu-

racy is effective for basis encoded experiments. For amplitude encoded experiments,

statevector norm is used. First, the developer must provide an expected state vector

or generate one. BAROQUE can generate an expected state vector by running the

circuit on a noise-less simulation to obtain the expected state vector, or an exact

state vector can be provided by the user. Once the expected state vector is obtained,

BAROQUE calculates the L1 and L2 norm, returning both in a tuple. This allows

30

Chapter 4. BAROQUE

the user to select their preferred metric for statevector norm when determining the

accuracy of their experiment.

4.3 Example Implementation

To showcase BAROQUE’s ability to simplify code segments, an example implemen-

tation was created. The original source code is a test program used to benchmark

ARA’s accuracy with other routing algorithms executing a QFT circuit. BAROQUE

was used at applicable spots to reduce the lines of code, simplify functions, and make

the program more readable. Lines of code (LOC) will be used as a metric to show the

raw reduction in number of lines. LOC does not include white space or comments.

It does include imports, function definitions, etc.

Table 4.1: Lines of code per program implementation

Implementation Lines of Code

Original 102
Baroque w/ ARA 74

Table 4.1 shows the lines of code for the QFT accuracy benchmark based on

the specific implementation: original, BAROQUE, and BAROQUE with ARA. The

original version consists of 102 LOC, yet BAROQUE simplifies that to 74 LOC. The

majority of these reduced lines are in experiment set up.

The advantages of BAROQUE go beyond the LOC metric. The original imple-

mentation hard-coded the coupling list, coupling map, error map, etc. as shown in

Listing 1 below.

While the original implementation in Listing 1 works without any errors, it is not

reusable nor is it necessary. IBM provides these data fields for every quantum system,

thus creating a generic container for said information, as seen in Listing 2, increases

reusability and readability.

31

Chapter 4. BAROQUE

// L i s t i n g 1 − Or ig ina l s e t up code

prov ide r = IBMQ. load account ()

backend = prov ide r . get backend (’ ibm oslo ’)

b a s i s g a t e s = backend . c on f i g u r a t i on () . b a s i s g a t e s

o s l oCoup l ingL i s t =

[[0 , 1] , [1 , 0] , [1 , 2] , [2 , 1] ,

[1 , 3] , [3 , 1] , [3 , 5] , [5 , 3] ,

[4 , 5] , [5 , 4] , [6 , 5] , [5 , 6]]

osloCouplingMap = CouplingMap (o s l oCoup l i ngL i s t)

Note that the Oslo coupling list is hardcoded as an array in Listing 1. Pulling the

list from IBM would require significantly more LOC, which BAROQUE encapsulates.

// L i s t i n g 2 − BAROQUE IBM conta ine r code

q con ta in e r = IbmInter face . IbmqInter faceConta iner (

ibmq api key , CommConstants .OSLO SYS STR)

The code in Listing 2 is simpler to implement for the user as they do not need to

perform the functions of the original code to parse backend data into a usable form.

Furthermore, changing the backend system from IBM Oslo to another system would

only require the system string to be altered. In the original code listing, the coupling

list would need to be redone to match the new system. Another LOC reduction

comes from the metric calculation. The original program simulates the circuit, gets

32

Chapter 4. BAROQUE

the counts, and performs math to determine the accuracy. BAROQUE does all of

that with a single function call, reducing the complexity of the main code.

When looking at the main program alone for a small experiment, the LOC reduc-

tion is clear. BAROQUE simplifies common processes in a GQE, while promoting

reusability by providing functions to replace processes required to set up a GQE.

This is a simple implementation example, however the general findings show that any

GQE can be simplified due to the common occurrence of the targeted processes. The

reduction of LOC will vary from case to case.

4.4 Usage in Data Collection for Thesis

BAROQUE was originally developed to assist in the collection of data for analyzing

routing algorithms for this thesis. Scripts were made to automate quantum experi-

ments using BAROQUE to assist in:

• Acquiring backend information on the quantum processor simulated for the

experiment

• Simplifying string usage for backends, quantum gates, etc.

• Performing metrics to collect data for future analysis.

BAROQUE does not alter any of the collected data. All collected data is as if

it was collected without BAROQUE. BAROQUE’s sole purpose is to simplify the

collection process and assist in scripting the quantum experiments. This saves time,

allowing for more experiments to be performed and evaluated.

33

Chapter 5

Results

BAROQUE was used to gather the metrics and benchmarks identified in Section 3

by simulating IBM Manila, Quito, Oslo, Guadalupe, Toronto, and Washington. The

5-qubit and 7-qubit devices were simulated using an 11th Gen Intel(R) Core(TM) i7-

11800H @ 2.30GHz 2.30 GHz processor and 8GB of random-access memory (RAM).

The higher qubit devices were simulated using RIT’s Research Computing High Per-

formance Computing Cluster [15].

5.1 Topology

The topology tests involved running circuits on a specific IBM topology at full oc-

cupancy. Then, each metric is evaluated for each test case to determine which al-

gorithm(s) are best for that specific case. The best performing algorithms for each

metric are then listed into a table for analysis. The tests results for the ∆ CNOT

and ∆ depth metrics are compiled into Table 5.1 below.

34

Chapter 5. Results

Table 5.1: Topology Quantum Experiment Results - Gates and Depth

Topology Circuit # Qubits ∆ CNOT ∆ Depth

5- QFT 5 SABRE/LKHD SABRE/LKHD/STCH

5T QFT 5 SABRE/LKHD SABRE/LKHD/STCH

7H QFT 7 SABRE/LKHD STCH

16X QFT 16 SABRE SABRE/STCH

27X QFT 27 SABRE SABRE

5- DJ 5 STCH STCH

5T DJ 5 SABRE/LKHD SABRE/LKHD

7H DJ 7 STCH STCH

16X DJ 16 STCH STCH

27X DJ 27 SABRE SABRE

5- WS 5 Negligible Negligible

5T WS 5 BSC/LKHD/STCH BSC/LKHD/STCH

7H WS 7 BSC/LKHD/STCH BSC/LKHD/STCH

16X WS 16 SABRE/LKHD LKHD

27X WS 27 SABRE LKHD

5- GHZ 5 Negligible Negligible

5T GHZ 5 SABRE/LKHD/STCH SABRE/LKHD/STCH

7H GHZ 7 SABRE/LKHD SABRE/LKHD

16X GHZ 16 SABRE LKHD

27X GHZ 27 SABRE SABRE/LKHD

Table 5.1 shows the experimental results of the topology-based experiments. For

each experiment, the routing algorithm(s) with the lowest ∆ values are listed. If

routing algorithms are very close or equivalent, they are listed together. In general,

basic and HERR add more gates and layers than their more advanced counterparts:

35

Chapter 5. Results

SABRE, lookahead, and stochastic. There are some outliers in simple, small qubit

circuits like GHZ and WS where the selected routing algorithm has no major effect on

the gate count and depth of the routed circuit. Examining the complex circuits (DJ

and QFT), two winning algorithms emerge. SABRE is consistently producing the

least number of CNOT gates, while stochastic consistently reduces the total number

of layer in the topology experiments.

36

Chapter 5. Results

Table 5.2: Topology Quantum Experiment Results - Accuracy and Timing

Topology Circuit # Qubits Accuracy Time

5- QFT 5 - SABRE

5T QFT 5 - SABRE

7H QFT 7 - SABRE

16X QFT 16 - SABRE

27X QFT 27 - SABRE

5- DJ 5 SABRE/LKHD SABRE

5T DJ 5 SABRE/LKHD SABRE

7H DJ 7 SABRE/LKHD SABRE

16X DJ 16 STCH SABRE

27X DJ 27 - SABRE

5- WS 5 Negligible SABRE

5T WS 5 Negligible SABRE

7H WS 7 BSC/LKHD/SABRE SABRE

16X WS 16 SABRE Negligible*

27X WS 27 - Negligible*

5- GHZ 5 Negligible SABRE

5T GHZ 5 SABRE/LKHD/STCH SABRE

7H GHZ 7 SABRE/LKHD SABRE

16X GHZ 16 SABRE/STCH Negligible*

27X GHZ 27 - Negligible*

SABRE dominates the transpilation time category. For QFT and DJ, SABRE

is faster than all other algorithms. For WS and GHZ, the other algorithms even-

tually catch up, as there is not much complexity in these circuits. Lookahead swap

experiences heavy exponential growth in transpilation time, to the point at which it

37

Chapter 5. Results

is orders of magnitude slower than basic swap. Other algorithms are only slightly

slower than SABRE, however. Tests with a result “Negligible*” denote a test where

all algorithms but lookahead were similar, but lookahead was significantly slower.

Tests with a “-” were not performed with the accuracy metric. The more advanced

algorithms, SABRE, stochastic, and lookahead, tend to outperform basic and HERR

in the accuracy metric, although it is often close for WS and GHZ, even negligible at

times. Topology seems to minimally affect accuracy past 5-qubit devices, as the high

noise has much more impact on the accuracy than the shape of the coupling map.

5.2 Occupancy

Occupancy is also important when determining which routing algorithm to select.

There is no rule restricting the number of logical qubits to the number of available

physical qubits on a device. Thus, circuits of each encoding type were selected and

performed on high qubit devices with varying occupancy levels. For each test case,

the best performing routing algorithm according to a specific metric was selected.

The tests results for the ∆ CNOT and ∆ depth metrics are compiled into Table 5.3

below.

38

Chapter 5. Results

Table 5.3: Occupancy Quantum Experiment Results - Gates and Depth

Topology Circuit # Qubits ∆ CNOT ∆ Depth

16X QFT 4 SABRE/LKHD/STCH STCH

16X QFT 8 SABRE STCH

16X QFT 12 SABRE/LKHD STCH

16X QFT 16 SABRE/STCH STCH

27X QFT 7 SABRE/LKHD/STCH SABRE/LKHD/STCH

27X QFT 14 SABRE STCH

27X QFT 21 STCH STCH

27X QFT 27 SABRE STCH

16X DJ 4 SABRE/LKHD/STCH SABRE/LKHD/STCH

16X DJ 8 SABRE STCH

16X DJ 12 STCH STCH

16X DJ 16 SABRE SABRE

27X DJ 7 SABRE STCH

27X DJ 14 STCH STCH

27X DJ 21 SABRE STCH

27X DJ 27 SABRE SABRE

Table 5.3 shows the results for the occupancy quantum experiments. The routing

algorithms that produced the best ∆ values are listed for each experiment. Two

noticeable trends occur that match the results from the topology results. Based on

Table 5.3, SABRE results in a lower CNOT count compared to other algorithms,

while stochastic results in a lower circuit depth. However, the relatively small size

of the Guadalupe and Toronto architectures does not paint the full picture. Thus,

the top two competitor algorithms routed QFTs onto IBM Washington, one of IBM’s

127-qubit processors. Figure 5.1 shows the CNOT and depth data obtained from

39

Chapter 5. Results

simulating QFTs onto IBM Washington.

(a) CNOT - SABRE v. Stochastic

(b) Depth - SABRE v. Stochastic

Figure 5.1: SABRE v. Stochastic - Routing 2-qubit to 127-qubit QFTs onto IBM Wash-
ington. SABRE’s ∆ CNOT scales better than stochastic’s, but ∆ depth is a close race.

Figure 5.1 provides crucial insight into the performance of these routing algo-

rithms. SABRE produces less CNOT gates than stochastic does. This is a product of

SABRE itself, as topology, occupancy, and circuit size do not seem to affect SABRE’s

dominant CNOT reduction, especially as circuit size increases, furthering the gap be-

tween itself and stochastic. Both algorithms show an upward trend in ∆ CNOT as the

number of qubits increases. However, there is variance qubit to qubit, as the CNOT

gatesfor an n-qubit circuit are not necessarily greater than that for an n − 1-qubit

circuit. This causes a small spiking effect that is noticable in both SABRE’s and

stochastic’s data. This effect is amplified by the Figure 5.1b. While SABRE was the

clear winner in CNOT count, ∆ depth is not as clear. SABRE and stochastic both

40

Chapter 5. Results

trend upward in depth as the number of qubits increases, but not always. In fact,

there are many places where depth will significantly decrease as even a single qubit

is added to the circuit. This effect is likely topology and occupancy dependent, not

routing algorithm dependent, as both SABRE and stochastic experience spikes at the

same qubit counts, albeit at various degrees of severity.

It is not immediately clear what causes the large fluctuations in ∆ depth. Since

both SABRE and stochastic experience similar spiking patters, it is possible that the

coupling map itself is the cause of this phenomenon. It is unlikely that all of the spike

patterns are coincidences. To test this theory, a specific spike (50-qubits to 51-qubits)

was examined by comparing the routed circuits. The following features were mapped

for each routed circuit: initially mapped qubits that contained data at measurement

(green), initially mapped qubits that did not contain data at measurement (red), and

ancilla qubits that contained data at measurement (blue). White qubits are ancilla

qubits that were not in the initial or final layout.

41

Chapter 5. Results

(a) 50-qubit QFT - SABRE (b) 51-qubit QFT - SABRE

(c) 50-qubit QFT - Stochastic (d) 51-qubit QFT - Stochastic

Figure 5.2: Examining depth behavior: QFTs routed with SABRE and stochastic onto
IBM Washington. There are noticeable patterns and similarities between SABRE and
stochastic for both 50- and 51-qubit QFTs. The addition of another qubit shifts where the
algorithms route and what qubits they utilize.

Figure 5.2 shows four results for routing a QFT onto IBM Washington. Notice

the striking similarity in the qubit choices for SABRE and stochastic withing initial

qubit mappings and the final mappings. Both algorithms decide to route in the

bottom portion of Washington with the 50-qubit QFT, but route on the top left of

the device for a 51-qubit QFT. The 50-qubit QFT utilizes five hexagon structures,

while the 51-qubit QFT utilizes six. This is increased hexagon usage is a valid starting

hypothesis as to why the depth for both routing algorithms drastically decreases from

50 qubits to 51 qubits. To determine if this hexagon hypothesis is correct, SABRE

42

Chapter 5. Results

routed a 58-qubit and 59-qubit QFT onto Washington, shown in Figure 5.3.

(a) 58-qubit QFT - SABRE (b) 59-qubit QFT - SABRE

Figure 5.3: Examining depth behavior: More QFTs routed with SABRE onto IBM Wash-
ington. Similar patterns occur here; the addition of another qubit shifts SABRE’s routing
to a different portion of the hardware.

Both SABRE and stochastic experience another drastic drop in depth from 58

qubits to 59 qubits. However, Figure 5.3 shows that the number of fully utilized

hexagons is six for both size circuits. Thus, the hexagon hypothesis is not entirely

correct. The underlying reason is much more complex. Some series of qubits must be

more efficient to route in certain configurations onto the quantum hardware, causing

the mapped qubits to switch places from the bottom to the top left, as seen in these

experiments. By changing where routing occurs, depth can be optimized due to

the number of available adjacent qubits and the connectivity of that section. Thus,

there must exist some quantum circuits of size n that are more efficient to route

than a circuit sized n − 1, as seen in Figure 5.1b. Therefore, there must exist some

combination of properties in the target hardware that become utilized by an n-sized

circuit that cannot be utilized by an n−1-sized circuit, such as a full hexagon, a qubit

with high connectivity between hexagons, etc. From this, it can be inferred that a

higher connectivity topology would result in a depth decrease compared to a similarly

sized topology with lower connectivity. This also means that routing algorithms will

43

Chapter 5. Results

avoid sections with low connectivity or high distance from the bulk of the utilized

qubits (such as qubits 9 & 10 in the broken top right hexagon on IBM Washington).

This information can be used to further improve routing and also design topologies

with routing in mind.

SABRE dominated the CNOT category on Washington, outperforming stochastic

on 98.5% of the QFT circuits. Depth was much closer, with SABRE only outper-

forming stochastic on 57.1% of the QFT circuits. This result is intriguing. Stochastic

inserts many more CNOT gates, double the number introduced by SABRE with larger

circuits, yet stochastic rivals SABRE in depth increase. To further explore this odd-

ity, a new metric was produce. The layer density is a theoretical measurement of

the total number of added CNOT gates divided by the total number of added layers.

Layer density measures the average number of new CNOT gates per new layers. Note

that layer density is not the actual average of gates per layer, instead its a theoretical

measurement to estimate how many layers an algorithm will add to support the re-

quired CNOT gates for routing. Figure 5.4 plots the layer density for stochastic and

SABRE for the IBM Washington QFT experiments.

Figure 5.4: Layer density for SABRE and Stochastic routing QFTs onto IBMWashington.
Stochastic swap packs CNOTs into layers more efficiently than SABRE does, resulting in
stochastic staying competitive in ∆ depth despite the high ∆ CNOT.

44

Chapter 5. Results

The layer density measurement provides useful insights into how the algorithms

work. First, the spiking in the data is due to the spiking of the depth and CNOT

data, although it is primarily based on the depth due to the depth’s high variance

qubit-to-qubit. Second, stochastic layer density increases faster than SABRE. If a

larger IBM machine was available to test, it can be inferred from Figure 5.4 that

stochastic would continue to be competitive in depth count as the number of CNOT

gates increase past SABRE. This is crucial, as it can support stochastic’s viability

as a useful routing algorithm for future quantum hardware. This also means that

stochastic is more efficient at implementing same-layer SWAPs compared to SABRE,

which is useful for overall execution time of quantum circuits.

Table 5.4: Occupancy Quantum Experiment Results - Accuracy

Topology Circuit # Qubits Accuracy

16X DJ 4 SABRE

16X DJ 8 SABRE

16X DJ 12 SABRE

16X DJ 16 STCH

27X DJ 7 HERR

27X DJ 14 SABRE/STCH

Table 5.4 shows the results of the accuracy for the DJ occupancy tests. Due

to resource limitations, the 27X topology was not simulated with 21-qubits and 27-

qubits. Ignoring one outlier, stochastic and SABRE produce the highest accuracy

for a given experiment. Transpilation times are not listed, as HERR, basic, SABRE,

and stochastic had negligible differences in their transpilation time. However, in all

experiments, lookahead swap was significantly slower. Figure 5.5 shows timing data

for lookahead swap compared to SABRE and basic swap.

45

Chapter 5. Results

(a) IBM Guadalupe - Deutsch-Jozsa transpile times

(b) IBM Toronto

Figure 5.5: IBM Toronto - Deutsch-Jozsa transpile times. Lookahead swap scales signifi-
cantly worse than all other algorithms, quickly becoming orders of magnitude slower.

By transpiling routed circuits onto Gaudalupe and Toronto, the impact of routing

algorithm on circuit transpilation time can be visualized. In both graphs, it is clear

that as the size of the DJ circuit increases, lookahead becomes orders of magnitude

slower than basic swap and SABRE swap. Note that HERR and stochastic have

similar time tends to basic and SABRE, and are thus left out of the graph for read-

ability. At full occupancy (16 qubits) on Guadalupe, lookahead is over 100x slower

than the competitor algorithms. At 20 qubits on Toronto, lookahead is over 1000x

slower. While lookahead operates in the minutes at this scale, this exponential in-

crease essentially prevent lookahead swap from competing with the other algorithms

due to the vastly inferior time complexity of its routing process.

46

Chapter 5. Results

5.3 Noise Level

Noise level affects the accuracy of the evolved quantum state. Examine how routing

algorithms handle various noise topologies will uncover which algorithms will produce

more accurate results than other algorithms.

5.3.1 Adjusted Noise Level

The adjusted noise level experiments were performed on altered quantum hardware.

The IBM Gaudalupe error map was adjusted by applying a scalar multiplier to every

link in the map. All five routing algorithms were performed for both an 8-qubit and

12-qubit DJ circuit, with the noise scalar changing every time. Figure 5.6 shows the

experiment results.

47

Chapter 5. Results

(a) 8-qubit DJ

(b) 12-qubit DJ

Figure 5.6: Adjusted noise level experiment results. At nominal noise levels, certain
routing algorithms out perform others. However, as the noise level decreases, the accuracies
converge towards 100%, minimizing the accuracy advantage certain algorithms have.

Figure 5.6 shows the accuracy trends of the routing algorithms as the noise map

is scaled. There are two notable trends here. First, complex routing algorithms out-

perform basic swap and HERR in terms of accuracy. Second, and most important, as

noise decreases, the accuracy of each routed circuit approaches 100%. This inference

is crucial as it shows that reducing the noise of quantum computers will lower the

routing algorithm’s impact on the accuracy of the circuit, thus reducing the need for

routing algorithms to specifically target accuracy optimizations.

48

Chapter 5. Results

5.3.2 Bad Links

The bad links experiment alters the noise of specific links by greatly increasing their

noise level. This data can show how a routing algorithm is affected by certain links

introducing irregularly high error into the quantum state. Furthermore, this exper-

iment can be used to test the feasibility of noise aware routing algorithms, such as

HERR. All experiments were performed on the IBM Toronto architecture.

(a) 12-qubit DJ on IBM Toronto

(b) 16-qubit DJ on IBM Toronto

Figure 5.7: The bad links experiment results show that the introduction of a bad link
may or may not impact the accuracy of a routed circuit, and that noise-aware algorithms
have the potential to avoid bad links.

Figure 5.7 reveals helpful trends and limitations for routing algorithms. The

nominal noise map of the quantum computers already introduces significant noise

when performing 12-qubit and 16-qubit DJ circuits. Due to this, a single SWAP

49

Chapter 5. Results

performed on a bad link will not significantly alter the quantum state. However,

performing multiple SWAP gates on one or more bad links can introduce enough noise

to significantly alter the quantum state. This phenomenon can be seen in Figure 5.7a,

specifically in the SABRE data, as well as the large dip in accuracy with two bad links.

The accuracy of the routed circuit is not always altered by the introduction of another

bad link. SABRE’s accuracy does not always dip when another bad link is introduced.

If a bad link is not utilized by the routed circuit, then its noise level does not affect

the circuit’s outcome. However, sometimes a bad link is placed in a critical part of

the circuit. For example, the first bad link is introduced near the edge of the coupling

map. The second bad link is placed at a central intersection between Toronto’s two

hexagons. Another takeaway is that HERR is the most accurate algorithm for the

first three bad link tests in Figure 5.7b

5.4 Review of Routing Algorithm Performances and Test

Conditions

The data collected in the quantum experiments is useful for grading the usefully of

algorithms in general, as well as aid in the identification of target use cases for said

algorithms.

5.4.1 Lookahead Swap

Lookahead swap produces accuracies, ∆ CNOT, and ∆ depth that rival stochastic

swap and SABRE on small qubit circuits. Despite this, lookahead is not feasible for

large circuit routing. By generating many possible layouts for each possible SWAP,

lookahead’s routing and transpilation times become orders of magnitude worse than

stochastic and SABRE. Even worse, lookahead does not improve upon the other

algorithms enough to justify the high routing time. If lookahead was leagues above

50

Chapter 5. Results

SABRE and stochastic, it could be worth the time. Unfortunately, this is not the

case. The inferior time complexity of lookahead swap restricts its feasibility to small

qubit circuits.

5.4.2 Basic Swap & HERR

Basic swap and HERR are not detrimental to the routing process and they offer

little against stochastic and SABRE, save for a few niche cases. Primarily, small

qubit circuits are simple enough that the other routing algorithm’s strengths have

little impact. For example, the difference between SABRE and basic routing a 5-

qubit QFT exists, but is minimal. However, since stochastic and SABRE tend to

outperform basic and HERR in CNOT count, depth, accuracy, and timing, there is

minimal reason to select basic and HERR over stochastic and SABRE in most cases.

Basic and HERR are not entirely useless, nor outclassed by stochastic and SABRE.

Basic swap and HERR work just as well as stochastic and SABRE on simple, small

circuits, such as WS, GHZ, or any circuit with minimal routing required. Basic

swap is a simple algorithm, making it perfect for educating students on the basics of

quantum routing. HERR is relatively weak as a noise-aware routing algorithm due

to its heavy reliance on basic swap. HERR suffers the same shortcomings as basic.

Furthermore, the noisy nature of current hardware means that HERR often fails to

find suitable noise-aware routes. However, HERR is useful as a stepping stone to more

complex noise-aware routing algorithms. Perhaps HERR’s methods could be adapted

to stochastic and SABRE to work on future less-noisy hardware. HERR is limited

by the limited connectivity of IBM’s hexagon architecture. A topology with higher

qubit connectivity could improve the usefulness of noise-aware routing algorithms like

HERR. As a bright spot, HERR is proven to be effective over other algorithms when

a bad link disturbs the accuracies of non-noise-aware algorithms.

51

Chapter 5. Results

5.4.3 Stochastic Swap & SABRE

Stochastic and SABRE frequently outperformed their competitor algorithms in the

vast majority of the quantum experiments. SABRE is often slightly faster than

stochastic, but not by much. However, SABRE and stochastic fill different niches from

each other. SABRE aims to balance CNOT count with routing time. As such, SABRE

is both relatively fast at routing, and consistently produces the lowest CNOT counts

compared to its competitors. The data corroborates this, as SABRE leads in ∆ CNOT

and accuracy metrics. Stochastic swap tries to find the best SWAP configuration per

each layer. By restricting the algorithm to one layer at a time, stochastic can miss

a more optimal solution that spans multiple layers. This is reflected in the data, as

stochastic and SABRE are very close when it comes to depth, yet stochastic is not

nearly as effective at reducing CNOT count. It is also worth noting that stochastic

struggles with very simple circuits, such as GHZ and WS, compared to SABRE, while

this is not true for DJ and QFT.

The data from the quantum experiments shows the two categories of metrics

the algorithms target. SABRE successfully reduces CNOT count while increasing

accuracy. Stochastic decreases the number of additional layers introduced to the

circuit through routing due to its high layer density when routing. If reducing CNOTs

and producing the highest possible accuracy, SABRE is the safe bet. For reducing the

number of layers required to apply a circuit, either SABRE or stochastic will produce

the best result. Since both are very fast algorithms running both and checking their

depth count is a within the realm of feasibility for large circuits on large quantum

processors.

52

Chapter 6

Conclusion

6.1 Future of Routing Algorithms

The future of routing algorithms will be guided by the improvement of the size and

quality of quantum hardware. As quantum computers increase in qubit count, so

will quantum circuits. The increased size will have many affects on routing algorithm

selection. First, slower algorithms, such as lookahead swap, will become obsolete as

their effect on transpilation time grows quickly with increasing scales. Second, routing

will become more complex, resulting in both an increased CNOT count and routed

circuit depth. Thus, routing algorithms that reduce gate count and or circuit depth

will become the default.

As quantum computing technology improves, and as the NISQ era ends, quantum

noise will become less of an issue. In the event this occurs, accuracy becomes less of a

concern when performing quantum circuits on hardware. Furthermore, as more qubits

are introduced, some algorithms may require more shots in order to build the final

probability distribution. The combination of lower noise levels with more complex

circuits will mean that circuit depth will become the key metric for routing algorithms

to target. Less depth requires less time to execute, an effect that compounds as more

shots are required. In the event that two algorithms produce equivalent accuracy

and transpilation time, but one algorithm results in a shallower circuit, the routing

53

Chapter 6. Conclusion

algorithm that reduces the circuit depth will be preferred.

6.2 Future Work

This work opens four paths for future related work. Expanding the test sets into

higher qubit topologies can confirm, alter, or uncover tends that will aid in the de-

velopment of the future’s quantum routing algorithms. IBM’s quantum computers

follow a similar architecture. Performing tests on non-hexagon based topologies,

such as Google’s, can uncover more use cases for the routing algorithms other than

SABRE and stochastic. Testing larger topologies of varying connectivity can alter

which algorithms are better. Second, identifying current routing algorithms that are

promising for routing future hardware is crucial, as those algorithms, such as SABRE

and stochastic swap, can be improved to route more complex circuit on larger quan-

tum hardware. Creating alternate version of SABRE and stochastic that specifically

aim to reduce circuit depth can start the next chapter in the development of quantum

routing algorithms. Third, combining SABRE and stochastic into a routing algorithm

capable of high layer density with less CNOT count than stochastic may prove to be

an effect algorithm for future hardware. Finally, examining the exact cause of the

depth spikes in Figure 5.1b and the mapping behavior in Figures 5.2 and 5.3 can

uncover features that, when implemented, improve the efficiency of the topology or

open avenues for routing algorithms targeting those advantageous features.

6.3 Conclusion

SABRE and Stochastic Swap are two of the best quantum routing algorithms avail-

able. SABRE is fast and effective at reducing CNOT count, this increasing the ac-

curacy of the routed circuit. Stochastic has much higher layer density than SABRE,

staying competitive in depth reduction despite the much higher CNOT gate count.

54

Chapter 6. Conclusion

The future of quantum computing will look for lower circuit depth to reduce circuit

execution times. SABRE and stochastic are stepping stones to improved algorithms

that target depth and advantageous hardware features. For now, SABRE and stochas-

tic outclass their competitor algorithms.

55

Bibliography

[1] IBM, “Ibm quantum compute resources,” 2022, accessed October 2022.
[Online]. Available: https://quantum-computing.ibm.com/services/resources?
tab=systems

[2] Qiskit Development Team, “Open-Source Quantum Development,”
https://qiskit.org.

[3] ——, “Basicswap,” 2021, accessed October 2022. [Online].
Available: https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.
BasicSwap.html#qiskit.transpiler.passes.BasicSwap

[4] S. Jandura, “Improving a quantum compiler,” 2018, ac-
cessed October 2022. [Online]. Available: https://medium.com/qiskit/
improving-a-quantum-compiler-48410d7a7084

[5] Qiskit Development Team, “Stochasticswap,” 2021, accessed October 2022.
[Online]. Available: https://qiskit.org/documentation/stubs/qiskit.transpiler.
passes.StochasticSwap.html#qiskit.transpiler.passes.StochasticSwap

[6] G. Nannicini et al., “Optimal qubit assignment and routing via integer
programming.” 2021, accessed October 2022. [Online]. Available: https:
//arxiv.org/abs/2106.06446

[7] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for
nisq-era quantum devices,” 2019, accessed October 2022. [Online]. Available:
https://arxiv.org/abs/1809.02573

[8] Qiskit Development Team, “Sabreswap,” 2021, accessed October 2022.
[Online]. Available: https://qiskit.org/documentation/stubs/qiskit.transpiler.
passes.SabreSwap.html

[9] S. Bonaventure, “High error rate qubit routing,” 2022.

[10] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for mapping
quantum circuits to the ibm qx architectures,” 2018, accessed November 2022.
[Online]. Available: https://arxiv.org/pdf/1712.04722.pdf

[11] C. C. Aggarwal, A. Hinnebyrg, and D. A. Keim, “On the surprising behavior of
distance metrics in high dimensional space,” 2001.

[12] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing -
STOC 96, 1996.

[13] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear sys-
tems of equations,” Phys. Rev. Lett., vol. 103, p. 150502, 2009.

56

https://quantum-computing.ibm.com/services/resources?tab=systems
https://quantum-computing.ibm.com/services/resources?tab=systems
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.BasicSwap.html#qiskit.transpiler.passes.BasicSwap
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.BasicSwap.html#qiskit.transpiler.passes.BasicSwap
https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084
https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.StochasticSwap.html#qiskit.transpiler.passes.StochasticSwap
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.StochasticSwap.html#qiskit.transpiler.passes.StochasticSwap
https://arxiv.org/abs/2106.06446
https://arxiv.org/abs/2106.06446
https://arxiv.org/abs/1809.02573
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.SabreSwap.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.SabreSwap.html
https://arxiv.org/pdf/1712.04722.pdf

BIBLIOGRAPHY

[14] N. Quetschlich, L. Burgholzer, and R. Wille, “MQT Bench: Benchmarking soft-
ware and design automation tools for quantum computing,” 2022, MQT Bench
is available at https://www.cda.cit.tum.de/mqtbench/.

[15] Rochester Institute of Technology, “Research computing services,” 2022.
[Online]. Available: https://www.rit.edu/researchcomputing/

[16] IBM Quantum, “IBM Quantum Composer,” https://quantum-
computing.ibm.com/composer/docs/iqx.

[17] IBMQuantum, “IBM Quantum Lab,” https://quantum-
computing.ibm.com/lab/docs/iql/.

[18] Qiskit Development Team, “qiskit.circuit.QuantumCircuit.count ops,”
https://qiskit.org/documentation/stubs/qiskit.circuit.Quantum- Cir-
cuit.count ops.htm.

[19] G. Li, Y. Ding, and Y. Xie, “Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices,” May 2019, arXiv:1809.02573 [quant-ph]. [Online].
Available: http://arxiv.org/abs/1809.02573

[20] S. Jandura, “Improving a Quantum Compiler ,”
https://medium.com/qiskit/improving-a-quantum-compiler-48410d7a7084,
2018.

57

https://www.cda.cit.tum.de/mqtbench/
https://www.rit.edu/researchcomputing/
http://arxiv.org/abs/1809.02573

	A Survey of Qubit Routing Algorithms
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Introduction
	Motivation
	Quantum Routing
	Objective

	Background
	Quantum Computing
	Quantum Compilation
	Error and Noise
	Existing Routing Algorithms
	Basic Swap
	Lookahead Swap
	Stochastic Swap
	BIP Mapping
	SABRE
	High Error Rate Routing

	Existing Research

	Methodology
	Benchmarks and Metrics
	Accuracy, Depth, & Timing
	Hardware characteristics
	Circuit Selection

	Experiment Selection
	Topology
	Occupancy
	Quantum Noise

	Limitations

	BAROQUE
	BAROQUE Background
	Qiskit Development Environments
	Qiskit Documentation and Metrics

	BAROQUE Design Goals and Targets
	Generic Quantum Experiment Design Goals
	Alternative Routing Implementation
	Strings and Metrics

	Example Implementation
	Usage in Data Collection for Thesis

	Results
	Topology
	Occupancy
	Noise Level
	Adjusted Noise Level
	Bad Links

	Review of Routing Algorithm Performances and Test Conditions
	Lookahead Swap
	Basic Swap & HERR
	Stochastic Swap & SABRE

	Conclusion
	Future of Routing Algorithms
	Future Work
	Conclusion

	Bibliography

