
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-2023 

Online Fourier Analysis of Time-Varying Signals in a Real-Time Online Fourier Analysis of Time-Varying Signals in a Real-Time 

Embedded Environment Embedded Environment 

Ty Freeman 
tkf1604@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Freeman, Ty, "Online Fourier Analysis of Time-Varying Signals in a Real-Time Embedded Environment" 
(2023). Thesis. Rochester Institute of Technology. Accessed from 

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please 
contact repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11423&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11423?utm_source=repository.rit.edu%2Ftheses%2F11423&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


ONLINE FOURIER ANALYSIS OF TIME-VARYING SIGNALS IN A REAL-TIME EMBEDDED

ENVIRONMENT

by

TY FREEMAN

GRADUATE PAPER

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE

in Electrical Engineering

Approved by:

Mr. Mark A. Indovina, Senior Lecturer
Graduate Research Advisor, Department of Electrical and Microelectronic Engineering

Dr. Ferat Sahin, Professor
Department Head, Department of Electrical and Microelectronic Engineering

DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING

KATE GLEASON COLLEGE OF ENGINEERING

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

MAY, 2023



Dedication

I dedicate this work to my closest engineering friends: Ben Bellantoni, Sophie Buckwalter,

Alissa Mann, and Cameron Villone, who helped keep me honest and on track. In addition,

I must thank my mother, father, brother, and sister, who always knew I would make it here,

and my partner Carly Strohl for keeping me as sane as possible. Finally, I would be remiss

if I did not especially thank Mark Indovina, Jason Hoople, and the other professors who have

supported and challenged me in earning this degree over the last five years.

Ty Freeman



Declaration

I hereby declare that except where specific reference is made to the work of others, that all

content of this Graduate Paper are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other University. This

Graduate Project is the result of my own work and includes nothing which is the outcome of

work done in collaboration, except where specifically indicated in the text.

Ty Freeman

May, 2023



Acknowledgements

I would like to thank my advisor Professor Mark A. Indovina for his support, guidance, feed-

back, and encouragement from the very start of my academic career as an electrical engineer

to the completion of this research project.

Ty Freeman



Abstract

A software-based, constant-flow implementation of the radix-2 Cooley-Tukey fast Fourier

transform (FFT) algorithm is presented in this paper. The program is built within a real-time

embedded environment running FreeRTOS. The system is used for the online frequency anal-

ysis of time-varying, one-dimensional signals of an arbitrary length. The system’s design is

validated through testing to produce results accurately on signals within specific boundaries.

The proposed system has a maximum transform size of 256 samples due to the memory limita-

tions on the development board. The hardware in use is an STM32L476 Nucleo development

board which simulates the lightweight, low power, and limited resource design of IoT (internet

of things) processors in the modern world. Memory is the primary constraint of the program,

as the number of samples dictates the functional bandwidth of signals that can be analyzed.

The system performs several validation tests that prove its effectiveness within the discovered

bounds and verify the possibility of project expansion for a more robust implementation in

future iterations.



Contents

Contents v

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Bibliographical Research 4

2.1 A brief history of the FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 FFT Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 DFT Derivation for N = 4 . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Pattern Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2.1 Relating to the values of xt . . . . . . . . . . . . . . . . . 11

2.2.2.2 Relating to the Roots of Unity . . . . . . . . . . . . . . . . 12

2.2.2.3 Putting the Patterns Together . . . . . . . . . . . . . . . . 13

2.2.3 FFT for N = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



Contents vi

2.3 Alternate FFT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Continuous Flow FFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Windowing Continuous Flow FFT’s . . . . . . . . . . . . . . . . . . 20

2.5 Real-Time Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.1 Modern RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Problems with an RTOS . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.3 Use of an RTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Program Architectures 27

3.1 Data Path Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 read_Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Top of Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 End of Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 End of Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 UART Rx Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.5 UART Tx Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 adc_Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 ADC Main Functionality . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Ending Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 ADC Conversion Callback . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 txm_Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 ansys_Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 FFT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Global Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Contents vii

3.8 C Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8.1 FFT Results Manipulation . . . . . . . . . . . . . . . . . . . . . . . 54

4 Experimental Results 57

4.1 MATLAB Validation Environment . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Test Program Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Single Frequency Signal . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1.1 Calculated Signal Validation Tests . . . . . . . . . . . . . 61

4.2.1.2 ADC Signal Validation Tests . . . . . . . . . . . . . . . . 64

4.2.2 Dual-Tone Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2.1 Calculated Signal Validation Tests . . . . . . . . . . . . . 67

4.2.2.2 ADC Signal Validation Tests . . . . . . . . . . . . . . . . 69

4.2.3 Multi-tonal Musical Signals . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3.1 Calculated Signal Validation Tests . . . . . . . . . . . . . 73

4.2.3.2 ADC Signal Validation Tests . . . . . . . . . . . . . . . . 76

4.3 Main Program Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Data Path Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Terminal Printing Validation . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Time-Varying Signal Analysis . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusion 94

5.1 Project Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References 98



Contents viii

I Source Code I-1

I.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1

I.2 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-26

I.3 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-35

I.4 Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-41

I.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-47

I.6 Global Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-52

I.7 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-55

I.8 FFT Test Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-60

I.9 MATLAB Simulation and Comparison Environment . . . . . . . . . . . . . I-85



List of Figures

2.1 N = 2 Butterfly Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 N = 8 Butterfly Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Rectangular Filter in Time and Frequency Domain . . . . . . . . . . . . . . 21

2.4 Hanning Window in Time Domain and Frequency Domain . . . . . . . . . . 23

3.1 Program Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 read_Task Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Start of read_Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 End of read_Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 End of Program Statistics Printing . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 UART Rx Callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 UART Tx Callback Function . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Signal Flowchart of adc_Task . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 adc_Task Main Functionality Block . . . . . . . . . . . . . . . . . . . . . . 38

3.10 adc_Task Wrap-up Portion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 ADC Conversion Callback Function . . . . . . . . . . . . . . . . . . . . . . 40

3.12 Transform Task Initialization Phase . . . . . . . . . . . . . . . . . . . . . . 41

3.13 stats_t Typedef Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Figures x

3.14 Transform Task Main Functionality . . . . . . . . . . . . . . . . . . . . . . 43

3.15 Signal Flowchart for txm_task . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.16 ansys_Task Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . 46

3.17 Analysis Task Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.18 User Defined Function for Calculating Magnitude of Complex Numbers . . . 48

3.19 Butterfly Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.20 Results Buffer Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.21 Bit Reversal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.22 log2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.23 Test Program Signal Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.24 Test Program Results Manipulation . . . . . . . . . . . . . . . . . . . . . . . 55

3.25 Test Program Ending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 MATLAB Environment Variables . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 MATLAB Generated Data Importing . . . . . . . . . . . . . . . . . . . . . . 59

4.3 MATLAB Math and Data Plotting . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Terminal Output for 200 Hz Single Frequency Test Validation . . . . . . . . 62

4.5 200 Hz Windowed Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 MATLAB and Test Program 200 Hz Results . . . . . . . . . . . . . . . . . . 63

4.7 MATLAB and Test Program 200 Hz Results with 4096 Data Points . . . . . . 64

4.8 MATLAB and Test Program 200 Hz Real Signal . . . . . . . . . . . . . . . 65

4.9 MATLAB and Test Program 200 Hz Real Signal, N = 4096 . . . . . . . . . . 66

4.10 200 Hz Windowed Sine Waveform . . . . . . . . . . . . . . . . . . . . . . . 67

4.11 MATLAB and Test Program Dual-Tone Results . . . . . . . . . . . . . . . . 68

4.12 MATLAB and Test Program Dual-Tone Results, N = 4096 . . . . . . . . . . 69



List of Figures xi

4.13 MATLAB and Test Program Dual-Tone Real Signal Results . . . . . . . . . 70

4.14 MATLAB and Test Program Dual-Tone Real Signal Results, N = 4096 . . . . 71

4.15 Real Dual-Tone Signal from Signal Generator . . . . . . . . . . . . . . . . . 72

4.16 MATLAB Generated Dual-Tone Signal . . . . . . . . . . . . . . . . . . . . 72

4.17 C Chord Triad Test Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.18 MATLAB and Test Program Triad Results . . . . . . . . . . . . . . . . . . 74

4.19 MATLAB and Test Program Triad Results, N = 4096 . . . . . . . . . . . . . 75

4.20 FFT of Triad Signal, N = 256, Fs = 44.1k . . . . . . . . . . . . . . . . . . . 75

4.21 FFT of Triad Signal, N = 4096, Fs = 44.1k . . . . . . . . . . . . . . . . . . . 76

4.22 Frequency Content of Audio File, N = 256 . . . . . . . . . . . . . . . . . . . 77

4.23 Frequency Content of Vocal Audio File . . . . . . . . . . . . . . . . . . . . 78

4.24 Frequency Content of Audio File Using Full File . . . . . . . . . . . . . . . 79

4.25 Data Path Validation Test 1: Limit = 5 . . . . . . . . . . . . . . . . . . . . . 81

4.26 Data Path Validation Test 2: Limit = 35 . . . . . . . . . . . . . . . . . . . . 82

4.27 Data Path Validation Test 3: Limit = 150 . . . . . . . . . . . . . . . . . . . . 82

4.28 Data Path Validation Test 1: Limit = 5, N = 128 . . . . . . . . . . . . . . . . 83

4.29 Data Path Validation Test 1: Limit = 35, N = 128 . . . . . . . . . . . . . . . 83

4.30 Data Path Validation Test 1: Limit = 150, N = 128 . . . . . . . . . . . . . . . 84

4.31 Terminal Printing Results, Limit = 4 . . . . . . . . . . . . . . . . . . . . . . 85

4.32 Terminal Printing Results, Limit = 4 . . . . . . . . . . . . . . . . . . . . . . 85

4.33 Program Statistics for Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.34 C Program Spectrogram of 50Hz-2kHz Sweep in 500 ms . . . . . . . . . . . 87

4.35 MATLAB Spectrogram of 50Hz-2kHz Sweep in 500 ms . . . . . . . . . . . 87

4.36 C Program Spectrogram of 50Hz-2kHz Sweep in 5s with 500 mV offset . . . 89

4.37 MATLAB Spectrogram of 50Hz-2kHz Sweep in 5s with 500 mV offset . . . 89



List of Figures xii

4.38 Program Statistics for Test 3 Before Adjustment . . . . . . . . . . . . . . . 90

4.39 Program Statistics for Test 3 After Adjustment . . . . . . . . . . . . . . . . 90

4.40 C Program Spectrogram of 1Hz-200Hz Sweep with 500 mV offset . . . . . . 91

4.41 MATLAB Spectrogram of 1Hz-200Hz Sweep with 500 mV offset . . . . . . 92

4.42 C Program Spectrogram of 1Hz-200Hz Sweep in 5s with 500 mV offset . . . 93

4.43 MATLAB Spectrogram of 1Hz-200Hz Sweep with 500 mV offset . . . . . . 93



List of Tables

2.1 Enumeration of Eq. (2.8) in Base 10 Truth Table Form . . . . . . . . . . . . 9

2.2 Enumeration of Eq. (2.9) in Base 10 Truth Table Representation . . . . . . . 10

2.3 Rearranged Tbl. 2.1 Without Primary m Values . . . . . . . . . . . . . . . . 11

2.4 Revision of Tbl. 2.3 using Eq. 2.10 . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Revision of Tbl. 2.2 using Eq. 2.10 . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Relative Efficiencies of Varying Radix FFT’s . . . . . . . . . . . . . . . . . 19



Chapter 1

Introduction

Embedded systems are utilized in almost every technical industry and many facets of everyday

life around the world today. The rapid development and adoption of the Internet of Things

(IoT) has surrounded us with more wirelessly communicating systems than ever before; objects

like toothbrushes, mirrors, and fridges are now capable of recording/analyzing user statistics

and wirelessly communicating this data to other IoT devices. Light bulbs can now receive over-

the-air updates or be synchronized with other light bulbs in the same room wirelessly; their

colors and schedules are infinitely reprogrammable, and some even sport the ability to act as

Bluetooth speakers. There are very few limitations to the amount and type of information that

can be remotely accessed, recorded, or manipulated as technology has evolved to be smaller,

cheaper, and more precise.

The Fast Fourier Transform (FFT) has been central in this wireless communication and

technology development. Some form of the algorithm can be found in almost every embed-

ded system requiring frequency analysis. The importance of the FFT comes from the savings

it creates in complex computations and time when transforming a signal into the frequency

domain. For example, a standard Discrete Fourier Transform can perform a single transform



1.1 Research Goals 2

of length N in N2 computations while the FFT performs the same transform in Nlog(N) com-

putations, so the savings increase with N. These savings, and the many uses of the Fourier

Transform, have made the FFT one of the most important algorithms of the last century, if not

ever. For example, mathematicians can solve complex partial differential equations in record

times; images can be compressed to save memory space in a digital computer; and videos are

compressed, transmitted, received, and uncompressed fast enough to stream from a phone or

TV seamlessly, all using the FFT.

This paper presents a software implementation of the FFT algorithm in a real-time environ-

ment that simultaneously records samples and processes them for a continuous transformation

of the input signal. The microcontroller is a NUCLEO-STML476 running FreeRTOS, an

open-source operating system. The algorithm is a one-dimensional radix-2 implementation of

the original Cooley-Tukey Algorithm [1]. This program can calculate FFTs of large sample

sizes in smaller time windows by sampling smaller sections of a continuously filling buffer.

In performing this windowed transform over long continuous signals, the frequency content

can be exported along with a timescale based on the number of transforms performed and the

known sampling frequency. Other output forms could include raw data with real and imaginary

components or the signal’s power spectral density.

1.1 Research Goals

The goal of this research is the development of a real-time embedded sliding window FFT

algorithm capable of continuous signal analysis over signals multiple times the length of the

transform buffer. The research focused on the mathematical basis of the FFT algorithm and

techniques for performing windowed, short time Fourier Transforms (STFT). Research was

also performed to manipulate the algorithm and techniques used to conserve memory space



1.2 Contributions 3

and computation time on the microcontroller.

1.2 Contributions

The significant contributions to the projected are listed below.:

1. Development of a software based radix-2 FFT.

2. The implementation of the FFT into a real-time embedded system.

3. Development of variable sample sliding window FFT in real time system.

4. The tracking of operating statistics during signal analysis.

5. Comparable results to proven implementations from MATLAB.

1.3 Organization

The structure of the thesis is as follows:

• Chapter 2: Provides background information with references to the FFT algorithm and

its use in signal analysis as well as a brief on real-time operating systems.

• Chapter 3: Explains the proposed program architecture and implementation.

• Chapter 4: Experimental results and procedures.

• Chapter 5: Project conclusions and directions for future work



Chapter 2

Bibliographical Research

The following chapter is a literature survey to provide background information on the major

topics covered within this paper. The first few sections will discuss the history of the FFT,

a derivation of the Cooley-Tukey FFT algorithm, and a brief of other implementations of the

FFT. Following sections will discuss real-time operating systems and the differences between

certain open-source versions as well as some of the research currently taking place in the field.

2.1 A brief history of the FFT

The history of the FFT started long before it was first published by James Cooley (1926-

2016) and John Tukey (1915-2000) in 1965. Estimates made by Heideman et al. [2] in their

investigation of the origins of the FFT place the original discovery of the algorithm in 1805,

which is two years before even Jean Baptiste Joseph Fourier first published his theories on

heat propagation [3]. Carl Friedrich Gauss (1777-1855) is credited with this initial discovery

by building on and generalizing previous research on trigonometric series by mathematicians

Alexis-Claude Clairaut (1713-1765) and Joseph Louis Lagrange (1736-1813). The former



2.1 A brief history of the FFT 5

mathematician, Clairaut, published a formula for a cosine-only series which is held to be the

earliest discrete Fourier transform (DFT) representation. Lagrange then went on to define a

sine-only series in a similar vane for interpolating the orbits and analyzing orbit mechanics

of celestial bodies based on finite and periodic observations. Gauss’ work extended beyond

definitively odd or even trigonometric functions, generalizing instead to periodic functions in

the form

f (x) =
m

∑
k=0

ak cos(2πkx)+
m

∑
k=0

bk sin(2πkx) (2.1)

where m = (N − 1)/2 if the sample size, N, is odd and m = N/2 is even. By dividing N

into two subgroups such that N = n1n2, Gauss first calculates the coefficients ak and bk for n2

sets of n1 samples and then again calculating the coefficients for n1 sets of length n2 which

come from the n2 sets of coefficients. Comparing the results of these coefficient calculations

to the intermediate steps of the Cooley-Tukey algorithm, one can see that they are equivalent

with even the same N log(N) computation complexity. However, Newtonian physics became

a much more popular method for celestial observations, and thus Gauss left his algorithm

unpublished in a series of treatises on interpolation. The work was posthumously published in

[4], but his use of neo-Latin and strange notations such as the symbol \pi for N made the work

hard to understand without involved translations.

In [1], Cooley and Tukey only refer to the work of Good in [5] during the development

of their elegant algorithm. After the publication of [1], Rudnick [6] described a similar com-

puter program with the same complexity as Cooley and Tukey’s version based on the work of

Danielson and Lanczos [7]. Cooley, Tukey, and Peter D. Welch began an investigation into

the history of the FFT algorithm [8], where they determined that the work seen in [5] is not

equivalent to the FFT algorithm that they proposed; it has since been classified as one of the



2.2 FFT Derivation 6

prime factor algorithms (PFA’s) which is a different method for calculating the DFT of a sig-

nal. Another example of a PFA can be seen in work from Thomas [9], and so it is sometimes

referred to as the Good-Thomas FFT. This transform only works with factors of N that are

mutually prime, so it is less generalized than the algorithm presented in [1]. Cooley et al. [8]

did not trace the FFT back to Gauss as this connection was made later by H. Goldstine [10]

and then later verified in [2].

2.2 FFT Derivation

For the development of the FFT algorithm it will be easiest to begin with a modified DFT of

size N = 4 to extract certain patterns which can be used to describe a generalized algorithm.

The radix-2 Cooley-Tukey algorithm, which serves as the basis for the FFT presented in this

paper, can be performed for any sample size of N = 2m or, by zero padding the sample array,

any arbitrary sample size.

2.2.1 DFT Derivation for N = 4

As the FFT is only an alternative method for calculating the DFT of a signal it would be

beneficial to first define the standard DFT as the starting point in the derivation of the FFT

algorithm,

X(n) =
N−1

∑
k=0

x(k)W nk, n = 0,1, · · · ,N −1 (2.2)

ejθ = cos(θ)+ j sin(θ) (2.3)

where W represents the Nth complex root of unity: ej2π/N . This complex term is also



2.2 FFT Derivation 7

known as the twiddle factor as coined in [1]. From Euler’s formula (2.3), both sinusoidal

components found in Gauss’ original DFT equation (2.1) are accounted for with the single

complex exponential. This standard DFT definition requires N2 complex operations where an

operation, as defined in [1], is a complex multiplication followed by a complex addition. By

assuming N = 4, both k and n can be represented by two-bit binary numbers as suggested in

[11]:

k = (k1,k0) = 00,01,10,11

n = (n1,n0) = 00,01,10,11

where k1, k0, n1, n0 can only be either 0 or 1. A mathematical representation of the real

values of k and n can be defined as

k = 2k1 + k0 n = 2n1 +n0 (2.4)

Applying these assumptions and Eq. (2.4) to Eq. (2.2) it can be rewritten as a double

summation over the terms of k in the form of

X(n1,n0) =
1

∑
k1=0

1

∑
k0=0

x0(k1,k0)W (2n1+n0)(2k1+k0) (2.5)

Where x0 is the sampled signal and k represents the sample index. By the product rule of

exponents where ax+y = axay the new twiddle factor in Eq. (2.5) can be simplified for terms

k1and k0 to



2.2 FFT Derivation 8

W (2n1+n0)(2k1+k0) =W (2n1+n0)(2k1)W (2n1+n0)(k0) =W (4n1k1)W (2k1n0)W (2n1+n0)(k0)

Notice that the highest powered term in equation above can be simplified to 1 since

[W 4]n1k1 = [e j2π4/4]n1k1 = 1n1k1 = 1

This reduction of the complex twiddle factor then forms the following equation:

X(n1,n0) =
1

∑
k1=0

[
1

∑
k0=0

x0(k1,k0)W (2k1n0)

]
W (2n1+n0)(k0) (2.6)

and

x1(n0,k0) =
1

∑
k0=0

x0(k1,k0)W (2k1n0) (2.7)

Focusing only on Eq. (2.7), the innermost summation of Eq. (2.6), it should be noted that

this portion is only dependent on terms n0 and k0. The following equations are created by

enumerating Eq. (2.7). These summations are found in Tbl. 2.1 in a base ten representation.

Notice that the first term in the summation will always be multiplied by unity sincek1 is zero.

In contrast, the second term in the summation is multiplied by some principal root of unity W m

where m = 2k1n0. Summation enumerations will be represented in base ten truth tables for

readability, making it easier to visualize the underlying patterns that generalize the equation.



2.2 FFT Derivation 9

x1(0,0) = x0(0,0)W 0 + x0(1,0)W 0

x1(0,1) = x0(0,1)W 0 + x0(1,1)W 0

x1(1,0) = x0(0,0)W 0 + x0(1,0)W 2

x1(1,1) = x0(0,1)W 0 + x0(1,1)W 2 (2.8)

Table 2.1: Enumeration of Eq. (2.8) in Base 10 Truth Table Form

k1 = 0 k1 = 1

x1(n0,k0) x0(k1,k0) m x0(k1,k0) m

0 0 0 2 0

1 1 0 3 0

2 0 0 2 2

3 1 0 3 2

x2(n0,n1) =
1

∑
k0=0

x1(n0,k0)W (2n1+n0)(k0) (2.9)

This outer summation is now dependent on the values of n0and n1though the indexing of

x2is bit reversed which will become important later for accurately ordering the FFT output.

For now, the enumeration of Eq. (2.9) is shown in Tbl. 2.2.



2.2 FFT Derivation 10

Table 2.2: Enumeration of Eq. (2.9) in Base 10 Truth Table Representation

k0 = 0 k0 = 1

x2(n0,n1) x1(n0,k0) m x1(n0,k0) m

0 0 0 1 0

1 0 0 1 2

2 2 0 3 1

3 2 0 3 3

Both summations are now accounted for, and a calculation of the DFT is theoretically

complete, though the bit reversal mentioned earlier means that x2(n) ̸= X(n). So instead, a

final step must be undertaken to reorder the calculated values to present the FFT output in the

correct order accurately. Luckily the reordering only requires the bit reversal of the indices, as

seen below.

X(0,0) = X(0) = x2(0) = x2(0,0)

X(0,1) = X(1) = x2(2) = x2(1,0)

X(1,0) = X(2) = x2(1) = x2(0,1)

X(1,1) = X(3) = x2(3) = x2(1,1)

Both summations required two complex multiplications and a complex addition for a sin-

gle value of x(n), compounding to N operations for a single frequency domain value X(n).

Therefore, calculating the total DFT of an N-sized signal would require N2 operations. A few

patterns, however, could be seen, which will lead to the impressive computation savings of the



2.2 FFT Derivation 11

FFT.

2.2.2 Pattern Extraction

2.2.2.1 Relating to the values of xt

There is a repeating pattern seen in Tbl.2.1 where the x0 indices can be divided into odd and

even pairings. Several patterns are gleaned from this division into separate sets. In Tbl. 2.1

the even indices of x1correspond to the even indices of x0 and these even indices of x0 remain

the same between x1(0) and x1(2) the only difference between the summations of these two x1

values is actually the twiddle factor scaling the secondary x0 term. The same holds for the odd

set of x1 indices. Rearranging Tbl. 2.1 it can be seen that every N
2 indices repeat each other.

The locations that share their input values are dual-node pairs [11]. In Tbl. 2.3 the twiddle

factors scaling the primary x0 term have been removed as they remain constant.

Table 2.3: Rearranged Tbl. 2.1 Without Primary m Values

k1 = 0 k1 = 1

x1(n0,k0) x0(k1,k0) x0(k1,k0) m

0 0 2 0

2 0 2 2

1 1 3 0

3 1 3 2

The index values of x0within a given summation also have a constant difference of N
2 for

both the odd and even sets.



2.2 FFT Derivation 12

Similar patterns can also be seen in Tbl. 2.2. The values of x1, are repeated at different

indices of x2 though the difference factor which was N
2 in the expansion of the first summations

has now reduced to N
4 . These dual-node pairs are now adjacent to each other within Tbl. 2.2

and the difference of the x1indices in individual summations holds the same difference factor

as the distance between the dual-node pairs.

2.2.2.2 Relating to the Roots of Unity

Since it has been shown that half of each summation reuses the same x values one could start

to see the redundancies of the general DFT calculation. Due to the differing complex scaling

factor, W amongst these almost redundant operations though there is nothing yet suggesting

any sort of short cuts that can be taken. However, thanks to the symmetrical nature of the roots

of unity it can be proven that there exists a relationship such that

W m =−W (N
2 )m (2.10)

. This can be proven for the case of m = 2 from Tbl. 2.1 and Eq. (2.8):

W 2 = ej2π(2)/4 = e jπ =−1 =−W 0

Taking advantage of this relationship finally removes the DFT calculations of many of its

redundancies. Observe that the twiddle factor scaling the secondary x term of the latter of the

dual node pair always takes the value m such that (N
2 )m1 = m2 therefore, Eq. (2.10) applies to

each dual-node pair. Tbl. 2.4 and Tbl. 2.5 replace all of the m2 values using Eq. (2.10) and

accounts for the new sign of W . From these tables, it can be seen that the dual-node pairs can

now share complex scaling factor W as well as long as the change in sign is accounted for.



2.2 FFT Derivation 13

Table 2.4: Revision of Tbl. 2.3 using Eq. 2.10

k1 = 0 k1 = 1

x1(n0,k0) x0(k1,k0) x0(k1,k0) Sign of W m

0 0 2 + 0

2 0 2 - 0

1 1 3 + 0

3 1 3 - 0

Table 2.5: Revision of Tbl. 2.2 using Eq. 2.10

k0 = 0 k0 = 1

x2(n0,n1) x1(n0,k0) x1(n0,k0) Sign of W m

0 0 1 + 0

1 0 1 - 0

2 2 3 + 1

3 2 3 - 1

2.2.2.3 Putting the Patterns Together

The dual-node pairs have been defined, their distances are known, and the changes across

summations can be accounted for. Using Eq. (2.10), the dual node pairs now share almost

all the same values except that the latter term has a negated secondary x term. Using these



2.2 FFT Derivation 14

two patterns, calculating two x terms of the following summation requires a single complex

multiplication and two complex additions. A general form of the calculation can be made by

defining γ as the current summation or stage indexed from 0:

xt+1(n) = xt(n)+ xt(n+a)W m (2.11)

xt+1(n+a) = xt(n)− xt(n+a)W m (2.12)

where a = N
(2γ ) . Notice that Eqns. (2.11) and (2.12) only differ in a single sign and thus re-

quire no extraneous computations other than a second addition to account for the sign. This set

of equations encompass the elegance of the FFT algorithm and account for the computational

savings that have made it so important.

2.2.3 FFT for N = 8

Starting again at Eq. (2.2), the values of n and k will be assigned to three bit binary represen-

tations as

k = (k2,k1,k0) = 000,001,010,011,100,101,110,111

n = (n2,n1,n0) = 000,001,010,011,100,101,110,111

In this binary representation the values of k and n can be redefined as

k = 4k2 +2k1 + k0 n = 4n2 +2n1 +n0 (2.13)

Using Eq. (2.13) the expansion of W nklooks like



2.2 FFT Derivation 15

W (4n2+2n1+n0)4k2W (4n2+2n1+n0)2k1W (4n2+2n1+n0)k0

[
W 16n2k2W 8n1k2W 8n2k1

]
W 4n0k2W 4n1k1W 2n0k1W (4n2+2n1+n0)k0 (2.14)

The bracketed terms of Eq. (2.14) are all equivalent to one and can be dropped. Accounting

for these changes, Eq. (2.2) can be rewritten in the form

X(n2,n1,n0) =
1

∑
k0=0

1

∑
k2=0

1

∑
k2=0

x0(k2,k1,k0)W 4n0k2W 4n1k1W 2n0k1W (4n2+2n1+n0)k0 (2.15)

Notice there are now three summations, or intermediate steps, to compute the full DFT.

Because this is a radix-2 algorithm, the number of intermediate steps required to perform the

DFT is equal to γ = log2(N). The steps can be separated and seen below.

x1(n0,k1,k0) =
1

∑
k2=0

x0(k2,k1,k0)W 4n0k2 (2.16)

x2(n0,n1,k0) =
1

∑
k1=0

x1(n0,k1,k0)W 4n1k1+2n0k1 (2.17)

x3(n0,n1,n2) =
1

∑
k0=0

x1(n0,n1,k0)W (4n2+2n1+n0)k0 (2.18)

A signal flow diagram in Fig. 2.2 represents the calculation of the N = 8 case. These

signal flow diagrams graphically display the FFT process and are known as butterfly diagrams

for how the signals intersect. A base, N = 2 example of a butterfly diagram is seen in Fig.

2.1. Where the arrows meet at the node of the following stages, a summation occurs between

the two signals. A scaling W term can be seen below the signals before the summations. In



2.2 FFT Derivation 16

Fig. 2.1, this case has only a single stage but notice that both of the x1 terms are dependent on

the same x0 terms making them a dual-node pair. The other patterns discussed in the previous

section can be obtained even for this simple case. The distance between the dual-node pair is

equal to N
2 indices, one in this particular case, and the scaling terms have the same power, but

the term is negated for the x1(1) term.

Figure 2.1: N = 2 Butterfly Diagram

In Fig. 2.2 the spacing between the dual-node pairs changes as defined in the section

above. The distance, defined as a begins in stage 0 as N
2 = 4, N

4 = 2 in stage 1, and then in

the final stage both members of the pair are adjacent to each other only N
8 = 1 index apart. It

is also worth noting that the second and third stages, γ = 1 and γ = 2 respectively, in Fig. 2.2

encompass the entirety of the N = 4 case. Following terms x1(0)− x1(3) through to the end

of γ = 2 will net the same calculations with the same dual-node pairs as the N = 4 the only

difference being the reordering required at the end of the process for getting the correct output.



2.3 Alternate FFT Algorithms 17

Figure 2.2: N = 8 Butterfly Diagram

2.3 Alternate FFT Algorithms

Today’s most popular FFT algorithm is the radix-2 Cooley-Tukey algorithm [12–14] explored

in the above section. Though, even Cooley and Tukey tried different radices to find the most

useful for modern computations in [1]. The efficiencies calculated by Cooley and Tukey in



2.3 Alternate FFT Algorithms 18

[1] can be found in Tbl. 2.6. Radix-3 is the most efficient of all radices tested by Cooley and

Tukey. However, the radix-2 is popular because the values can be split into pairs without any

losses, and it offers advantages when using binary arithmetic, as most modern hardware relies

on. It is stated in [1] that highly composite values of N would produce the most savings when

performing the algorithm. However, the advantages and simplicity of the radix-2 have allowed

it to be the most prolific.

Duhamel and Hollmann introduced a split-radix FFT algorithm [15] which utilizes a radix-

2 index mapping for the even-indexed terms and a radix-4 mapping for the odd-indexed terms.

This does not decrease the number of multiplications necessary to carry out the complete

transform but does decrease the number of additions. Multiple implementations of the split-

radix approach have since touted improved complexity over the original and the Cooley-Tukey

algorithm [16–19]. Fixed radix implementations of the FFT have also been a heavy research

focus in finding the most savings using the largest factors of highly composite sample sizes

[20]. Headway in this field has allowed for algorithms with lower arithmetic complexities than

the small-radix ones without sacrificing structural complexity, which can create a throughput

bottleneck.



2.4 Continuous Flow FFTs 19

Table 2.6: Relative Efficiencies of Varying Radix FFT’s

r r
log2r

2 2

3 1.88

4 2

5 2.15

6 2.31

7 2.49

8 2.67

9 2.82

10 3.01

Additionally, the Winograd-type FFTs [21] do not take a divide-and-conquer approach like

the Cooley-Tukey algorithm. Instead, the Winograd FFT is similar to the Good-Thomas im-

plementation based on prime factors of the sample size. Utilizing recursive multi-dimensional

convolution techniques, the Winograd FFT can attain much fewer multiplication operations,

which comes at the cost of more additions. As a result, the Winograd and Good-Thomas

implementations are often combined to break a large transform into smaller sizes, where the

Winograd FFT has more advantages [22].

2.4 Continuous Flow FFTs

The FFT is great for analyzing stationary signals whose frequency content does not vary much

over time. However, most applications of the FFT require on-line or continuous monitoring



2.4 Continuous Flow FFTs 20

of some incoming signal which is non-stationary. The FFT can still be utilized for such ap-

plications but must be slightly adjusted. The Short Time Fourier Transform (STFT) applies a

rectangular time window to the incoming signal so that, within each window, the signal ap-

pears to be stationary. This window can then “slide” down the signal taking consecutive FFTs

over this shorter time window, producing individual spectrum’s all over the same frequency

range [23, 24]. The time associated with a calculated spectrum corresponds to the time defined

as t = N
2 ∗T , where T is the inverse of the sampling frequency. A three-dimensional plot of the

spectrum amplitudes, frequency range, and timescale can be used to analyze how the frequency

content of a signal changes over time and is known as a spectrogram. Spectrograms can also

be displayed in two dimensions using a spatial heat map format. The x-axis represents time,

the y-axis represents frequency, and the color value represents the magnitudes/amplitudes of

the signal’s frequency content.

When deciding the length of the desired time window, it is essential to remember that

time and frequency resolution have an inverse relationship. A longer time window (i.e., more

samples) gives a higher frequency resolution. However, it may be more challenging to differ-

entiate the frequency content of a rapidly changing signal. In contrast, a smaller window can

have the opposite effect holding that the sampling frequency remains constant. The window

size selection ultimately depends on the spectrogram’s application and the input signal.

2.4.1 Windowing Continuous Flow FFT’s

As discussed above, the frequency analysis of continuous, non-stationary signals entails taking

the FFT of a windowed signal portion. The DFT of a signal assumes that the input signal is pe-

riodic, and an integer number of these periods are transformed in each sample window. Unfor-

tunately, chunking a continuous signal usually produces partial cycles of the incoming signal,

especially if the signal is non-stationary. These aperiodic portions create discontinuities in the



2.4 Continuous Flow FFTs 21

measured signal, translating into frequencies that usually span across multiple frequency bins

or between frequency bins [25]. The energy of these frequencies then becomes shared across

bins causing inaccurate results and a spectrum that looks “smeared”; this is known as spec-

tral leakage. One of the most prevalent ways to combat spectral leakage is using windowing

functions with varying frequency domain characteristics.

The STFT naturally applies a rectangular window to the signal; in the frequency domain,

the rectangular window appears as a sinc function where the energy of a frequency component

at the center of a bin at the result of the FFT fits inside of the main lobe and the energy of

adjacent frequencies or those falsely created by discontinuities are spread into the adjacent

side lobes. The plots in Fig. 2.3 show a rectangular window’s time and frequency domain

characteristics. Notice the relatively narrow main lobe and low side lobe attenuation across the

right plot.

Figure 2.3: Rectangular Filter in Time and Frequency Domain



2.4 Continuous Flow FFTs 22

The window utilized in this paper is a Hanning window which is defined as:

h(n) = 0.5∗ (1− cos(2π
n
N
)), n = 0, ...,N −1 (2.19)

The resulting window and its frequency response can be seen in Fig. 2.4; however, this is

far from the only window in use today. All windows aim to eliminate discontinuities in sample

chunks by attenuating either end of the sampled signal to zero. The window choice largely

depends on the type of signal being monitored and the application of spectral information.

The main lobe width of the windows frequency response defines the spectral resolution of

each bin, so distinguishing between two frequency components close together would require

a window with a narrow main lobe; however, if there is a strong interfering frequency near

the desired frequencies, a low maximum lobe level, and quick side lobe roll-off will attenuate

this interference. The Hanning window is very commonly used as its frequency characteristics

lie in the middle of the road. It is often recommended to begin analysis using the Hanning

window and changing to a more suitable window if needed [26].



2.5 Real-Time Operating Systems 23

Figure 2.4: Hanning Window in Time Domain and Frequency Domain

2.5 Real-Time Operating Systems

This section aims to discuss very generally the idea of real-time operating systems (RTOS)

in their current uses and in relating to on-line analysis in specific. A real-time operating sys-

tem uses a scheduling kernel to complete tasks in a timely manner. These tasks are able to

effectively run in parallel with each other, known as multi-threading, and certain priorities can

be defined between tasks to guarantee the timeliness of the most important functions within a

real-time environment.

2.5.1 Modern RTOS

In computing, it is given that the resulting output of a system should be accurate according

to the theory behind the development of the said system. Bare-metal embedded systems are



2.5 Real-Time Operating Systems 24

designed to produce the correct response consistently, but besides the on-board timers, there is

no consideration for when the result is seen. This is okay and even preferred for some applica-

tions, as the absence of a full OS makes for a small and less expensive program. As embedded

processors have matured, however, using real-time operating systems can now guarantee not

only the system output’s accuracy but the output’s timing as well [27].

Other than the scheduler, RTOS provides several useful features for developers. For exam-

ple, mutexes and semaphores allow developers to lock away a resource while a task within the

program is using it. These key/lock systems provide more control over the system’s resources,

especially since multiple threads run simultaneously within a real-time system. Queues also

allow for precise data movement and handling across tasks and a way for tasks to block them-

selves while waiting to receive data or access a shared resource.

2.5.2 Problems with an RTOS

As mentioned above, bare-metal environments offer certain advantages, especially when deal-

ing with devices with limited memory capacity. One of the most significant bottlenecks of

an embedded system is the memory requirement, as usually, everything remains on board.

External memory is sometimes added to alleviate some of the burdens and free up space on

the controller itself [27]. However, the more precise the timing required, the larger and more

complex the scheduling algorithms will be, and ultimately, the more memory the RTOS will

require in the system. The ultimate balancing act of cost and functionality depends on system

application; functions pertaining to the health and well-being of individuals, such as running a

pacemaker, will prioritize the system’s timeliness over the cost of memory.

Of the many RTOS implementations available, the main difference between them is the

amount of jitter, which is the variability associated with accepting and completing a real-time

task. The amount of jitter separates RTOSs into two categories: soft and hard. A soft RTOS



2.5 Real-Time Operating Systems 25

will have more jitter but can still usually meet a required deadline, while hard RTOSs can

deterministically meet their required deadlines [#open_source_RTOS]. IEEE released a set of

standards for RTOS in small-scale embedded systems [28] with typical IoT edge devices in

mind. [28] Defines a kernel with a minimal footprint for single-chip MCUs and systems with

limited memory while retaining the functionality and purpose of real-time OSs. Every task

in an RTOS system is provided its own stack partition at a developer-defined depth. It must

be large enough to encompass all task variables and the system state saved during context

switching. When a kernel switches tasks, it saves the whole system state and dumps it into

the stack. When the scheduler returns to this task, it must unload the saved system state

before resuming functionality. Thus the more significant the allocated stack, the longer it

may take to dump and reapply the system state, ultimately affecting the system’s operation

as a whole. The complex nature of the kernel/scheduler algorithms also limits the amount

of modeling that developers can accomplish and hinders the debugging process, which could

increase development time in some cases. Research has been conducted to try and develop

modeling techniques for RTOSs though it is not widely used [29].

2.5.3 Use of an RTOS

The effectiveness of an RTOS has prompted much research into the issues stated above. Across

the vast number of available RTOS implementations, almost always one version or another can

accomplish the necessary functions of an embedded program while fitting within the problem

constraints. Extensive analysis of RTOS timing has shown that even softer RTOS implemen-

tations remain useful in completing necessary functions within a timely manner while main-

taining a small enough footprint not to hinder the performance of small microcontrollers or

processors [30–32]. Many uses for RTOS include actively monitoring systems of all shapes

and sizes. On-line monitoring, as it is known, performs its checks in real-time while the moni-



2.5 Real-Time Operating Systems 26

tored device is running instead of collecting data for analysis afterward (off-line analysis). The

immediate benefits of using an RTOS while actively monitoring a device are easy to see, espe-

cially in detecting faults as they occur. If a fault is detected, it must be dealt with immediately

before propagation through the rest of the system occurs. A controller using an RTOS should

be able to make all necessary measurements and checks before the monitored process com-

pletes and perform any fault handling necessary as long as the system is designed correctly. A

significant factor for an on-line monitoring system is the amount of data that needs processing.

The increase in memory requirements could cause a loss of real-time features or even a system

failure in the event of a stack overflow.



Chapter 3

Program Architectures

The principal continuous flow program comprises four real-time (RT) tasks that handle data

acquisition, manipulation, analysis, and communication. The following sections in this chap-

ter will cover the program’s architecture in detail, followed by a bare-metal test program de-

veloped parallel to the continuous flow program. This chapter will begin with a high-level

overview of the data path before delving into an explanation of each task and its functionality.

The FFT implemented in this program is discussed in detail at the end of this chapter, before

the discussion of the test program, as it is separate from any of the individual tasks.

3.1 Data Path Overview

The program begins its initialization in the main.c file I.1. On startup, all peripherals are

initialized before creating three RT queues and three of the four tasks. The queues act as data

mailboxes between the tasks. The task responsible for reading and writing to the UART, called

the read_Task, is created first as it also acts as a controller for the rest of the program; both the

transform task (txm_Task), which windows the captured data and begins the transform and the



3.1 Data Path Overview 28

analysis task (ansys_Task) are created immediately afterward. These three tasks remain idle

until the user inputs a start command. Since this command comes through the UART interface,

the UART task functions as the data path’s start just after the initialization. Upon observing

the go command, the UART task spins up a thread to control the ADC peripheral. This task

starts the ADC and associated timer before filling the raw data buffer. Once the buffer is full,

it is sent through the buffer queue (buf_mbx), and the package ready flag is set to signal the

transform task that the data is ready for a transformation.

The transform task calls the FFT function and returns a double-sided DFT of the data sent

from the ADC task; this results buffer, along with the operation stats, are packaged into a

struct and delivered through the stats queue (stats_mbx). The analysis task begins by pulling

data from the stats queue and preparing it for output by performing mathematical operations.

When the data is packaged and sent through the results queue (res_mbx), it has been converted

to a single-sided buffer of size N/2+ 1 full of amplitude values in units of Vrms. Finally, the

data path ends in the UART task, which converts the data from floating point values to packets

of 10-byte strings formatted for transmission over UART. The conversion allows for efficient

transmission and the use of the Direct Memory Access (DMA) controller so the CPU can

remain attentive to the continuous flow of data until the program ends.

Two different conditions can cause the program to end. First, the user can set a limit before

signaling for the program to begin. This limit is set in units of data packets processed through

the program and subsequently passed to the terminal or in terms of seconds if the user sets the

designated flag. If an infinitely long signal is fed to the device, the program will run until the

specified limit is reached, at which point it will cut the data output and print the stats collected

during runtime. If the signal stops and the buffers being processed contain zeros or pure noise

for three consecutive seconds, the program will automatically end and print the runtime stats.

This end condition can trigger even if a user’s specified limit has yet to be reached. A graphical



3.2 read_Task 29

representation of the program can be seen in Fig. 3.1.

Figure 3.1: Program Flowchart

3.2 read_Task

The read_Task serves as a program manager through its terminal operation. In order to protect

the UART peripheral without blocking any other tasks during the runtime of a program, only



3.2 read_Task 30

read_Task can read from or write to it. Therefore, it can be split into three parts designated by

the active control flags. A signal flow diagram of the full read_Task can be seen in Fig. 3.2.



3.2 read_Task 31

Figure 3.2: read_Task Signal Flow Diagram



3.2 read_Task 32

Figure 3.3: Start of read_Task

3.2.1 Top of Program

The top part of the program, seen in Fig. 3.3, begins before the while(1) forever loop with

the initialization of a data reception buffer fft_res and a UART transmission buffer TxBuf. The

initialization phase ends by sending a caret through the UART, signaling the user that the

program is ready to receive a start command. Within the infinite loop, the UART receive line

is started in DMA mode and then the task idles until the cr_flg is set in the UART callback

function seen in Fig. 3.6. A further exploration of the UART Callback is done in section 3.2.4.

After the read_Task sees the cr_flg set, it will clear it and then read the number buffer

(nbuf) as seen on line 132 in Fig. 3.3. The buffer is then cleared, and the limit is calculated if

specified in seconds. The read_Task then creates an instance of the task responsible for data



3.2 read_Task 33

acquisition, the adc_Task.

3.2.2 End of Data Path

The read_Task sits idle again after beginning the adc_Task instance. At this point, the bufRdy_flg

is set to true as a part of the program initialization but will remain idle until the data manip-

ulation is completed within the analysis task and a set of results is found within the results

mailbox. The bufRdy_flg signals when the UART Tx line is being used or free. It is signaled

within the UART Tx callback function (Fig. 3.7), which is discussed in Section 3.2.5. The

xQueueReceive function seen within the if-statement at line 139 in Fig. 3.4 returns false if no

objects are waiting in the res_mbx queue.

Figure 3.4: End of read_Task

The cleared flags signal that the mailbox should be empty, and the UART Tx line is now

in use with the new data. The for loop formats the incoming floating point data into a 10-



3.2 read_Task 34

byte string. The if-else ladder checks the magnitude and appropriately assigns decimal point

precision to keep the string 10 bytes long with the trailing comma and null terminator. Finally,

the formatted strings are assigned a spot in the TxBuf buffer and transmitted over DMA as seen

in Fig.3.7. The bufRdy_flg is reset after each DMA transmission is complete, so this process

repeats every time both flags are set unless the program end conditions have been met.

3.2.3 End of Program

If the PROG_END flag has been set within the UART Tx callback function (Section 3.2.5)

then all data has been transmitted and the bufRdy_flg should not be set. The program will

fall into this final if-statement. The average number of complex multiplications and additions

per transform is then calculated on lines 167 and 168 in Fig. 3.5. The total number of data

transmission or reception failures are tallied on lines 170 and 171, respectively. Then all stats

collected during the program’s runtime are printed to the console.

Figure 3.5: End of Program Statistics Printing



3.2 read_Task 35

Figure 3.6: UART Rx Callback

3.2.4 UART Rx Callback

The UART Rx DMA (Fig. 3.6) is set only to receive a single character at a time. This character

is analyzed in an if-else ladder to set the corresponding flags. The user can enter capital or

lowercase letters s and g, and up to 5 numbers feed directly into their own buffer. This buffer

is read as the user-set program limit. If an s is entered before or after the number, the program

will interpret this number in units of seconds; otherwise, the limit is set as processed data

packets. Entering a g sets a preliminary starting flag, and pressing enter will set the cr_flg to

start the program.



3.3 adc_Task 36

3.2.5 UART Tx Callback

The UART Tx callback is much simpler than the Rx callback function as it only tracks how

many packages have been transmitted through the pkgs_sent counter and then checks ending

conditions. For example, if the analysis task has signaled it has completed its functionality

through the ansyDone_flg and all data has been removed from the results mailbox, the UART

transmission is turned off, and then the end of the program is signaled with the PROG_END

flag.

Figure 3.7: UART Tx Callback Function

3.3 adc_Task

Like the uart_Task, the adc_Task divides neatly into two separate sections. A primary func-

tionality block handles the data collected by the ADC, and then a second section begins the

ending phase of the whole program. The initialization portion of the task immediately starts

the ADC in interrupt mode and the associated timer, configured with a 1 MHz clock in up-

counting PWM mode. The generated PWM pulse is tied to the ADC external trigger source

and precisely controls the program’s sampling frequency through the macro FS I.6. Both these

peripherals are started to begin collecting data. An LED on the development board is toggled,



3.3 adc_Task 37

and the program limits are extracted from the parameters passed to the task during its creation.

A signal flow diagram of the full adc_Task can be seen in Fig. 3.8.

Figure 3.8: Signal Flowchart of adc_Task

3.3.1 ADC Main Functionality



3.3 adc_Task 38

Figure 3.9: adc_Task Main Functionality Block

The task remains idle until the full flag is set within the ADC conversion callback function (Fig.

3.11) when the input buffer has been filled. The task then creates a new array named package

and copies the newly acquired data to it. The second half of the raw data buffer, RWM, is

then shifted down to occupy the first half to create a window overlap of 50%. The indexing

of this overlap is handled in the callback function and discussed in Section 3.3.3. SMP_2 is

a macro defined in the global.h file, I.6, as half of the number of samples within a window.

The package of data is loaded into the raw data queue, buf_mbx, the number of packages that

have been transmitted is updated, and then the pkgRdy_flg is set to signal the transform task to



3.3 adc_Task 39

begin its operation. Since the data has been sent and the raw data buffer has been shifted, it

is no longer considered full, so the flag is cleared. Finally, the dynamically allocated package

buffer is freed (Fig. 3.3.3).

3.3.2 Ending Conditions

Suppose a limit has been set, which is decided during task initialization (Fig. 3.3.3). In that

case, the central portion of the task will continuously check this limit every time a new package

has been sent through; if the package count matches that of the limit, then the limit reached

flag, lim_flg is set so that the task can enter its ending conditions. Another signal can trigger

this secondary state but is set within the transform task and will be discussed in Section3.4.

This section begins with the setting of the adcDone_flg, which provides the “time to end”

signal to the rest of the program. Then, if the program is ending because the signal stopped,

those empty buffers are removed from the total package count so as not to skew the final

operation calculations seen in Fig. 3.5. Next, several of the control flags are cleared, and then

the task deletes itself to free memory for the rest of the program to operate on the final data

buffer traveling through the system.

Figure 3.10: adc_Task Wrap-up Portion



3.4 txm_Task 40

3.3.3 ADC Conversion Callback

This is another very simple callback which mostly keeps track of the current index for the raw

data buffer. The index is represented by the integer variable idx. It is simply incremented after

every pass, until it reaches the maximum buffer index, SAMPLES−1. When the buffer is full

it sets the flag and then resets the index variable to the halfway point of the buffer represented

as SMP_2. This handles the overlap indexing discussed in Section 3.3.1 so this function should

never write the lower half of the buffer after the initial pass.

Figure 3.11: ADC Conversion Callback Function

3.4 txm_Task

Unlike the previous two tasks, the transform task, txm_task, only has a single section besides

its initialization. The initialization (Fig. 3.12) is responsible for calculating the number of

empty packages that must be seen before deciding whether the signal has ended. Lines 57-

59 in Fig. 3.12 show these calculations with quiet_cnt representing the counter used in the

transform task to track the number of empty packages seen. The num_emptyBuf variable is



3.4 txm_Task 41

used by adc_Task to remove the empty buffer counts from the count of total packages. The

initialization also creates a struct named res_fft at line 55. The struct type definition is found

in the global.h file I.6 and can be seen in Fig. 3.13. This struct contains and transports data

and information/statistics collected as it progresses through the transform and analysis tasks.

Figure 3.12: Transform Task Initialization Phase

Figure 3.13: stats_t Typedef Definition

The main functionality, however, can be seen in Fig. 3.14, starting with extracting the new

package’s associated number and creating a receiving buffer in the correct data type. Data

from the ADC is a 12-bit unsigned integer, but the buffer meant to hold data within the stats

struct is of type complex float. Therefore, some manipulation is required to convert the data



3.4 txm_Task 42

types. The rec buffer is a temporary intermediate container created for this conversion process.

The data moves from the queue to the new buffer, and the pkgRdy_flg is cleared. Then, the

data is converted in the following for loop. Each iteration calculates a new Hanning window

coefficient to properly window the current data sample. The following line, 78, shows the

conversion. The current data value is multiplied by the Hanning window coefficient and a

conversion factor defined as TOREAL. This macro converts ADC digital values from 0-4096

to a voltage equivalent between 0V and 3.21V. Adding 0∗ I typecasts the whole value as a float

complex to fit inside the res_buf buffer within the res_fft struct properly.

After converting all data values, the receiving buffer is no longer necessary and freed before

the FFT function is called. Since the FFT algorithm is calculated in place, the struct is passed

by reference into the function. The zCnt element of the res_fft struct counts the number of

empty values seen after FFT calculation. If this number exceeds 95% of the total samples, the

whole package is considered empty, and the quiet_cnt is decremented before checking if it has

reached 0. If so, the sigDone_flg is set, and the end of the program will begin once the adc_Task

observes it. If the buffer is not empty, the quiet counter is reset, so the condition remains 3

seconds worth of consecutively empty packages. The task then sends the entire struct through

the statistics mailbox, stats_mbx, for the analysis task. Once the adcDone_flg has been seen by

the transform task and all data has been pulled from buf_mbx, the txmDone_flg is set, and the

task suspends itself to preserve resources in the rest of the program and stops task functionality

since no more data is coming through. A signal flow diagram of the full read_Task can be seen

in Fig. 3.15.



3.4 txm_Task 43

Figure 3.14: Transform Task Main Functionality



3.4 txm_Task 44

Figure 3.15: Signal Flowchart for txm_task



3.5 ansys_Task 45

3.5 ansys_Task

The final data manipulation stage along the data path is the analysis task, named ansys_Task in

the program. There is very little in the way of initialization, as it instead does all the math once

data has been sent through the res_mbx. The flag is cleared before a new temporary buffer is

created for storing the manipulated data. Part of the manipulation sees the second half of the

buffer being dropped since this system was built with real-valued signals in mind. For real-

valued signals, this second half contains the same information as the first half, and as such, a

conversion to a single-sided result preserves all the calculations at half the size. This is why the

temp_buf is only half plus one sample large, the plus one accounting for the DC component

bucket at index zero within the results buffer. A complete flowchart of the ansys_Task can be

found in Fig. 3.16.



3.5 ansys_Task 46

Figure 3.16: ansys_Task Signal Flow Diagram



3.5 ansys_Task 47

The fft_res variable, which receives data from the stats mailbox, is a struct of the typedef

stats_t defined in Fig. 3.13. This is the receptacle for data from the stats mailbox queue at line

54 within Fig. 3.17. The for loop immediately following this converts the data to a single-sided

amplitude spectrum in units of rms (root-mean squared) volts. Conversion is carried out using

the following equations:

For DC component:

AV rms(i) =
magnitude(FFT (i))

N
, i = 0; (3.1)

For non-DC components:

AV rms(i) =
√

2∗ magnitude(FFT (i))
N

, i = 1,2,3, ...,
N
2
+1; (3.2)

These equations are suggested in [26], and the power spectrum of this result can be easily

calculated by squaring each element in the resulting array. Doing so, in the program, produced

values that were too small to fit within the 10-byte character string, and as such, only the

amplitude spectrum is computed. The mag function in lines 63 and 67 is defined in the same

analysis.c file (I.5) and can be seen in Fig. 3.18. After the completion of this for-loop, the data

is finished being processed and sent into the results mailbox queue, res_mbx. With the data

being sent away, the temporary buffer is freed. Once the ansys_Task sees the txmDone_flg is

set and it processed all data that was passed to it, the analysis task signals it has finished with

the ansyDone_flg and suspends itself to limit the context switching occurring during the final

print statements.



3.5 ansys_Task 48

Figure 3.17: Analysis Task Function

Figure 3.18: User Defined Function for Calculating Magnitude of Complex Numbers



3.6 FFT Implementation 49

3.6 FFT Implementation

A transformation begins in Fig. 3.19 with nested for-loops that perform the FFT’s butterfly

operations. Each iteration of the outer loop represents a stage of the transformation, with the

number of stages defined as log2(N). The inner loop performs the math within each stage,

iterating through each sample within the buffer. The if-statement in the inner loop accounts

for the dual-node pairs so that the second term, xm(k + a), is not operated on twice. This

distance, a, is updated at the end of every stage; in the implementation, it is bit-shifted right

which functionally divides the value in half without performing an actual division operation.

The bit_reverse() function found in Fig. 3.19 is a helper function that is discussed in Section

3.6.1, but as its name implies, this function returns the bit-reversed value of the integer passed

to it. In line 45, this function takes in the index of the sample currently being operated on to

calculate p, the power of the twiddle factor. This algorithm for calculating the power of the

twiddle factor is recommended by Brigham [11, pg. 140]. The variable twexp is defined at

the top of the fft.c file (I.7) as 2πIN the constant part of every twiddle factor exponent. This

is then multiplied by the calculated p-value and passed to the complex exponential C function

of the complex library. Notice that variable x is not altered, but the twiddle factor scales x1

before being used in Eqns. (2.11) and (2.12). The number of operations are then counted in

their respective data variables.



3.6 FFT Implementation 50

Figure 3.19: Butterfly Loops

The for-loop in Fig. (3.20) shows the index reordering algorithm. The loop iterates over

every sample within the buffer, in each iteration the current buffer index is bit reversed and

then the value at the current index and the bit reversed index are swapped. The if-statement

keeps the already bit reversed values from being double counted.



3.6 FFT Implementation 51

Figure 3.20: Results Buffer Reordering

3.6.1 Helper Functions

Two FFT helper functions are also defined within the fft.c file, the first of which is the bit

reversal algorithm (Fig. 3.21) which takes two parameters: sz, is the number of bits that the

second parameter, index must be reversed within. The sz in this program is always the number

of bits needed to represent the size of the transform, saved as stages in the FFT function 3.19.

A for-loop iterates through each bit and compares it with the index value; if a match is found,

then the temporary variable p is filled with a high bit and left-shifted i positions. Since i begins

at zero, but the bit checking begins at sz, i will reflect the inverse bit position of the match

found in the if-statement.



3.6 FFT Implementation 52

Figure 3.21: Bit Reversal Algorithm

The second helper function is an implementation of the log2() function using no multipli-

cation or division operations. The function, seen in Fig. (3.22), takes in a single integer value

which is shifted right over every iteration of a while-loop. With each iteration, a counter is

incremented keeping track of how many bits are in the value. Once all bits have been shifted

out, the loop ends and the counter value is decremented to account for the extra increment after

the last bit is shifted out.



3.7 Global Header 53

Figure 3.22: log2 Function

3.7 Global Header

Many of the important program signals are defined or shared through a header file named

global.h I-52. This contains definitions of various macros used throughout the program as

well as the control flags that are shared across all the files within the program. The priority

enum defines the task priorities used when creating a new task and then finally there is the

definition of the stats_t typedef.

3.8 C Test Program

The bare-metal designation of the test program means that no operating system is running on

the board and, consequently, no real-time features. This environment borrows much of the

same code implemented for the continuous flow program but runs only a single conversion



3.8 C Test Program 54

before it ends. The lack of an operating system provides much more memory in this program.

As a result, the number of samples per DFT calculation can increase from 256, the maximum

for the continuous flow program, to 4096. This dramatically increases frequency resolution and

thus increases the practical sampling frequency maximum achievable in this test environment.

The small profile of the test program fits within just the main.c file (I.1) where a signal is

created or read from the ADC and then windowed in the same manner as seen at the start of

the transform task described in Section 3.4. Fig. 3.23 illustrates the signal creation portion. In

the current configuration, the ADC reads a signal before converting it from the ADC integer

representation to the real-valued voltage value and applying the same Hanning window as

seen in the continuous flow program. Since this program only computes a single conversion

on a signal with non-varying frequency content, the window is unnecessary to prevent spectral

leakage. However, it is still applied to verify an accurate implementation compared to the built-

in Hanning window MATLAB function. The commented-out lines from 156-158 represent

other tests that produce an arbitrary signal using C’s math library. Using a synthetic signal this

way would require the commenting of lines 149 and 150 since the ADC will not be needed

and additionally the commenting of line 159 since the RWM buffer will remain empty if the

ADC is not used.

3.8.1 FFT Results Manipulation

The following section of the test program combines the analysis task and the end of data path

section of the read_Task discussed in Section 3.2.2. The for loop beginning at line 172 in

Fig. 3.24 converts the double-sided complex FFT result into a single-sided real-valued buffer

of length N
2 + 1. After that, starting at line 182, the if-else ladder is pulled directly from



3.8 C Test Program 55

Figure 3.23: Test Program Signal Creation

the read_Task and similarly formats the results into 10-byte strings for transmission out of the

UART Tx line using the DMA controller. The callbacks for the UART Tx and ADC peripherals

are the same as shown in Figs. 3.7 and 3.11, respectively, so they will not be rehashed in this

chapter. The only difference is that the UART Tx callback does not have to check finishing

conditions as this is a single-pass program.

Figure 3.24: Test Program Results Manipulation



3.8 C Test Program 56

The program’s end is similarly pulled directly from the read_Task without any of the data

flow statistics. The done flag is set in the UART callback after the data is transmitted, and

then the program statistics are printed to the terminal. These are not averages as seen before.

Instead they are the raw statistics collected during the FFT calculation. The time per transform

is calculated in microseconds units as the timer has a tick frequency of 80 MHz.

Figure 3.25: Test Program Ending



Chapter 4

Experimental Results

The following chapter will discuss the validation of the proposed program. It begins with a

description of the MATLAB validation environments and how they are used to compare with

the results of the test and main programs. Results of the test program’s validation tests will be

presented after this explanation and then the chapter will conclude with a presentation of the

main program’s validation results.

4.1 MATLAB Validation Environment

Each test is validated using a MATLAB script designed to simulate the conditions defined

within the program, such as the sampling frequency and number of samples per DFT. Built-in

MATLAB functions are used in the script to see that the proposed implementation achieves

the same results. The environment setup is seen in Fig. 4.1; this setup is meant to mimic

the system settings found in the global.h file I.6. These settings must be manually adjusted

to match those found within global.h and the t and f arrays represent the time and frequency

scales for the calculated signals, which are shared amongst the MATLAB and C results. The



4.1 MATLAB Validation Environment 58

fc, fg, and fe variables are the frequencies of musical notes C4,G5, and E5, respectively, in the

A4 = 440 Hz tuning. This triad forms the standard C chord used in one of the validation tests

discussed in Section 4.2.3.

Figure 4.1: MATLAB Environment Variables

Notice in Fig. 4.1 the built-in hann() function for generating a 256-point Hanning window

which scales the calculated test signal. A function for loading the C Program data follows

in Fig. 4.2, which can extract only the data portion of the logged terminal output and none

of the statistics directly into a MATLAB-compatible datatype. After the program-under-test

(PUT) data is imported to the validation environment, the test signal is generated in MATLAB,

with x undergoing the same operations found in the PUT. Lines 28-30 of Fig. 4.3 encompass

this data manipulation starting with the built-in fft() MATLAB function of the signal before

taking the signal’s magnitude and normalizing it against the number of samples, N. The second

half of the results are then dropped, and the non-DC components are converted to amplitude



4.1 MATLAB Validation Environment 59

values of V rms. Following the math portion of the script is when all of the relevant data is

plotted in separate figures. Four different plots are generated with every run of the validation

environment. The first shows the test signal without the applied window in the time domain,

and the second is the then windowed signal, again in the time domain. The third and fourth,

however, share a figure broken into two subplots. The top subplot displays the MATLAB

simulation results, and the bottom plot shows the PUT results..

Figure 4.2: MATLAB Generated Data Importing



4.1 MATLAB Validation Environment 60

Figure 4.3: MATLAB Math and Data Plotting



4.2 Test Program Validation 61

4.2 Test Program Validation

Six validation tests for the test program are split between two sets of three test signals. The first

time each signal is tested, it is generated onboard at the program’s start using the sin() math

function in the C math library. Theoretically, these signals are “perfect” in that there is no

additive noise on them, their frequencies are precisely as defined in the equation, and there are

no quantization errors from the DAC of the signal generator or the ADC of the microcontroller.

The same signal equations are used in the MATLAB validation environment. Any errors in the

algorithm will show since the inputs to the test program and validation environment should be

identical.

The second set of validation tests uses two of the same signals and a third that simulates

more real-world signal analysis. This second set of input signals is generated by an Analog

Discovery 2, a portable USB-powered instrumentation system with an onboard dual-channel

DAC with a 14-bit resolution. These signals were read in via one of the STM32 ADCs, and

results from these signals are affected by noise and quantization errors that are not seen in the

MATLAB results as they remain the same simulated noise-free signals from the previous set

of validation tests. Therefore, every test for this program has two sample sets: those gener-

ated with 256-point DFTs and another generated with 4096-point DFTs. The 256-point DFT

sample sets will simulate the kind of frequency resolution that will be expected from the main

program.

4.2.1 Single Frequency Signal

4.2.1.1 Calculated Signal Validation Tests

The first validation test for the test program has a single-frequency sinusoidal input signal with

a frequency of 200 Hz. For this first test, the sampling frequency is 500 Hz, and the sample size



4.2 Test Program Validation 62

is 256 samples with frequency bins about 2 Hz wide at the result. Fig. 4.4 shows the output at

the test program’s terminal. The total transform timing and operations statistics are below the

data output. This terminal output is automatically logged into a .csv file and imported into the

MATLAB test environment, as shown in Fig. 4.2. The resulting plots of this first 200 Hz test

signal can be seen in Figs. 4.5 and 4.6 with Fig. 4.6 showing a direct comparison between the

MATLAB and C test environments. Notice that both datasets result in an identical plot save

for rounding errors on the order of less than a single micro-volt rms; both plots peak at the

same frequency value, less than 1 Hz difference from the known frequency of the input signal.

Figure 4.4: Terminal Output for 200 Hz Single Frequency Test Validation



4.2 Test Program Validation 63

Figure 4.5: 200 Hz Windowed Test Signal

Figure 4.6: MATLAB and Test Program 200 Hz Results



4.2 Test Program Validation 64

Another test was run with the same test signal, trying to improve the accuracy of the re-

sulting frequency spike. The number of samples is raised to the program max of 4096 while

the sampling frequency remains 500 Hz. The results of this test can be seen in Fig. 4.7. The

frequency spike is only minimally closer to the correct frequency at 199.951 Hz vs. the previ-

ous 199.219 Hz. However, for the added computation costs, thanks to the added sample size,

it does not seem necessary for this low sampling frequency.

Figure 4.7: MATLAB and Test Program 200 Hz Results with 4096 Data Points

4.2.1.2 ADC Signal Validation Tests

Only a single channel of the signal generator was necessary for generating the 200 Hz signal,

and the wire from the generator was connected directly to the input pin of the ADC. The results

(Fig. 4.8) show a slightly more significant difference between the two results than was seen

with the pure mathematical signals. The amplitudes vary by a few tenths of a volt rms, but



4.2 Test Program Validation 65

minimal signal distortion or noise is seen anywhere else in the test program signal, which is

promising for future real-signaled tests.

Figure 4.8: MATLAB and Test Program 200 Hz Real Signal

When bumping the number of samples up to the max, similar results to the mathemat-

ical signal can be seen in that the added samples do not make much of a difference in the

accuracy of the frequency detected (Fig. 4.9). It is interesting that at 256 samples the cal-

culated frequency of the ADC and mathematical signals match exactly but at 4096 samples

the real-valued frequency does not match that of the pure signal test. This could reflect the

imperfections of the signal generator as the signal is not guaranteed to be an exact 200 Hz as

the pure signal is.



4.2 Test Program Validation 66

Figure 4.9: MATLAB and Test Program 200 Hz Real Signal, N = 4096

4.2.2 Dual-Tone Signal

The second test signal is a combination of two sinusoidal signals of different frequencies,

amplitudes, DC components, and phases. The waveform can be represented as the following

equation:

x = (sin(2π ∗1000)+1)+0.5∗ (cos(2π ∗200)+1) (4.1)

The higher frequency content of the signal required an increased sampling frequency for the

whole validation environment. In the following tests, the sampling frequency has been set to 5

kHz to remain above the Nyquist rate. In addition, the number of samples for this first iteration

has been reduced to the original 256 samples, so each element of the output array is roughly 20

Hz wide; for a signal such as this with a significant frequency separation, the lower resolution



4.2 Test Program Validation 67

should not interfere with the results as long as there is not much noise in the signal.

4.2.2.1 Calculated Signal Validation Tests

Eq. (4.1) is implemented in both the MATLAB environment and in the program. Fig. 4.10

displays the dual-tone signal after application of the Hann window.

Figure 4.10: 200 Hz Windowed Sine Waveform



4.2 Test Program Validation 68

Figure 4.11: MATLAB and Test Program Dual-Tone Results

Comparing the subplots of Fig. 4.11, the test program and MATLAB results are incredibly

close, only slightly varying in amplitude. A shift of only 4 Hz in the detected frequency spikes

for the given frequency resolution is still reliably accurate for most applications. However,

at 4096 samples, the results have an almost negligible amount of amplitude variance, and the

frequency spikes’ accuracy is much closer to the known signal components (Fig. 4.12). The

increased accuracy makes sense due to the much higher frequency resolution with frequency

bins slightly over 1 Hz wide.



4.2 Test Program Validation 69

Figure 4.12: MATLAB and Test Program Dual-Tone Results, N = 4096

4.2.2.2 ADC Signal Validation Tests

Creating this signal with the signal generator required both channels with one of the frequency

components on each. These signals were mixed in a breadboard, and a third wire carried the

mixed signal to the ADC input pin. Introducing the breadboard into the system is another

source of error, noise, and reflections that could distort the incoming signal. Thankfully, when

looking at Figs. 4.13 and 4.14 it does not appear to be much noise, but there do appear to be

more frequency spikes in the real-valued signal than there are frequency components in the

signal.



4.2 Test Program Validation 70

Figure 4.13: MATLAB and Test Program Dual-Tone Real Signal Results

Since these spikes appear at relatively the same frequencies, it is not a coincidence or ran-

dom noise distortion. These spikes also did not appear when run with the pure signal in Fig.

4.11 or 4.12. The most significant spikes still appear at 1 kHz and 200 Hz, the target fre-

quencies. The fact that the extraneous spikes appear at integer multiples of the low-frequency

component of the signal around the high-frequency component illustrates that these may be

harmonics introduced from how the input signal is mixed before entering the ADC.



4.2 Test Program Validation 71

Figure 4.14: MATLAB and Test Program Dual-Tone Real Signal Results, N = 4096

For further inspection, the mixed signal was fed back into an oscilloscope to see how

accurate the signal generator’s reproduction of Eq. (4.1) is. Comparing Figures 4.15 and 4.16

it is clear that the signal seen by the ADC and the MATLAB environment are not the same

though they carry the same frequency components. The signal appears distorted as it only

reaches about half the amplitude created in MATLAB. This distortion is most likely the cause

of the harmonics seen in the test program results.



4.2 Test Program Validation 72

Figure 4.15: Real Dual-Tone Signal from Signal Generator

Figure 4.16: MATLAB Generated Dual-Tone Signal



4.2 Test Program Validation 73

4.2.3 Multi-tonal Musical Signals

The final set of tests differ in input signals as the three-tone signal used in the pure mathemati-

cal signal tests could not be recreated with a two-channel signal generator. The signal, instead

read by the ADC, is a wav file of a chord in the key of C. The signal generator can playback

waveforms from audio files through individual channels. These tests even negated the need

for the breadboard and passive signal mixing that caused harmonics in the dual-tone validation

tests. A windowed version of the pure mathematical signal used in the below tests can be seen

in Fig. 4.17.

Figure 4.17: C Chord Triad Test Signal

4.2.3.1 Calculated Signal Validation Tests

The three-tone signal used for these tests consists of the frequencies for the notes C4,E5, and

G5 or 261.63, 659.25, and 783.99 Hz, respectively, which together form a standard C Major

triad. The frequencies of the E and G notes are relatively close together when compared to

the previous test signals used in this paper. Therefore, these signals can blend at low enough



4.2 Test Program Validation 74

frequency resolutions, and some information will be lost. An example of this can be seen in

Fig. 4.20, where only 256 samples are used in the DFT calculation, but the sampling frequency

is 44.1 kHz which is a standard audio sampling frequency. This ratio creates frequency bins

that are 172 Hz wide. This is why the signal’s frequency components get cannibalized within

almost a single lobe.

Figure 4.18: MATLAB and Test Program Triad Results

The total 44.1k sampling frequency is not necessary for this signal because of the relatively

low-frequency content, but the simulation of real-world signal analysis begins in these valida-

tion tests. The results in Fig. 4.18. Of course, the results shown in Fig. 4.19 speak volumes

about the importance of sample counts. The frequency spikes are close to representing perfect

impulse spikes, so the ability to differentiate very close frequency components within an input

signal is very high. The frequency positions are also highly accurate, only missing the exact

frequencies by less than a full hertz.



4.2 Test Program Validation 75

Figure 4.19: MATLAB and Test Program Triad Results, N = 4096

Figure 4.20: FFT of Triad Signal, N = 256, Fs = 44.1k



4.2 Test Program Validation 76

The total 44.1k sampling frequency is not necessary for this signal because of the relatively

low-frequency content, but the simulation of real-world signal analysis begins in these valida-

tion tests. The results in Fig. 4.20 are not promising for the main program. If it is to be used

to sample high-resolution audio signals, much of the frequency content will be too distorted

to identify correctly. Using 4096 samples instead of only 256 did provide much better results.

The frequency resolution is only 10 Hz, and the plot in Fig. 4.21 is much more comparable to

the results found in Fig. 4.18.

Figure 4.21: FFT of Triad Signal, N = 4096, Fs = 44.1k

4.2.3.2 ADC Signal Validation Tests

As mentioned above, the triad signal used for the test in Section 4.2.3.1 could not be recreated

with the dual channels provided by the waveform. Instead, a wav file containing a minute

of audio is played directly from channel 1 of the signal generator into the ADC input pin.



4.2 Test Program Validation 77

The segment of the signal seen by the ADC can be imported into MATLAB to compare the

results between both programs. The signal’s frequency content is only known as multiple tones

forming a chord in the key of C, but the exact frequencies of these tones are unknown. Because

the audio file is sampled at 44.1 kHz, using a lower sampling frequency to calculate the DFT

resulted in an inaccurate spectrum. Therefore, using 256 points in the DFT ended in similar

results to those seen in Fig. 4.20. The plots shown in Fig. 4.22 support this. Interestingly, a

secondary peak is detected in the test program though it is hard to say what exactly the test

program might be detected with as much information is lost.

Figure 4.22: Frequency Content of Audio File, N = 256

Using 4096 samples provided some results that may help deduce the signal’s frequency

components. The program results contain many more points than the MATLAB signal. These

points could be harmonics, as seen in earlier tests introduced from the signal generator’s and

ADC’s imperfections. All of the components found in the top plot of Fig. 4.23 can be found



4.2 Test Program Validation 78

as spikes in the results from the test program though they may not be as accurate as is the case

with the smaller peak at 322 Hz from the MATLAB results. The spike at 333 Hz in the test

program results corresponds to this frequency though it seems to have shifted, possibly due

to side lobe components introduced by the Hann window. There is also a DC component in

the real-valued signal, which does not appear in the MATLAB environment; this will cause

the rest of the frequency peaks in the spectrum to have lower amplitudes since this energy is

shared across another component.

Figure 4.23: Frequency Content of Vocal Audio File

Fig. 4.24 shows the spectrum plot of the entire waveform of 470400 points. This super

high-resolution FFT presents the frequency content of the entire signal instead of a small time

window of the signal. Observing the spectrum shows many smaller spikes on either side

of the major frequency components, which must come from slight variations within a note’s

frequency over time. It can be seen, however, that four main notes compose the chord. These



4.3 Main Program Validation 79

spikes correspond to the notes of C4,E4,G4, and C5, so they form a C major chord using the

same three notes as the signal in the triad chord just different octaves of these notes. The

E and G notes in this chord are lower frequency than those used in the triad chord of the

previous tests, and the second C5 note included at the top of the chord is a whole eight steps

and, therefore, almost 300 Hz above the C4 note at the bottom of the chord.

Figure 4.24: Frequency Content of Audio File Using Full File

4.3 Main Program Validation

The results of the previous section are meant to inform what might be seen in the tests of the

main program, especially the final multi-tone signal validation tests that were completed for

the test program. Because of the memory constraints of the main program, only a max of 256

samples are possible for each time window. However, before the main program produces any



4.3 Main Program Validation 80

spectrograms, the system timing and data path must be verified to ensure that all collected

data is successfully processed and printed to the terminal for collection. Dropped data packets

between tasks would be a significant issue as whole spectra could be lost during the run time

of a program. After the validation of the data path, the continuous flow program will be tested

using several frequency sweeps, which should produce linear results in a spectrogram.

4.3.1 Data Path Validation

In order to first check that all packets make it through the program, several counters are added

throughout the program. Each task receives a new counter which is incremented every time

a package arrives or leaves the task through one of the queues. The adc_Task does not need

another counter as it already keeps the master count of how many samples windows have

been captured by the ADC, and the task only sends data out to the other tasks. Both the

transform and analysis tasks should increment their counters twice since they both send and

receive packages through the queues, and the uart_Task will also only increment its counter

once since it only receives data. However, there is another counter found in the uart.c file I.2,

which is incremented in the UART Tx Callback Function to track how many packages have

been printed to the terminal as the final leg of the data path. This test calls for running the

program with ever-increasing package limits.



4.3 Main Program Validation 81

Figure 4.25: Data Path Validation Test 1: Limit = 5

Using only 5 packages it can be seen in Fig. 4.25 that there are no failures in delivering

the data between tasks. The analysis and transform tasks send and receive five packages, but

the program’s bottleneck is noticeable even from this limited number of packages. There were

only a total of four packages sent to the terminal, which is a consistent pattern across all data

path validation tests (Figs. 4.26 and 4.27). At 35 packages, only a single package is still

missing from the output. However, with 150 packages sent through the program at the highest

test, two were missing at the output. Therefore, this issue scales as the requested number of

packages increases. The number of samples per package was reduced to 128, and the results

show that reducing the number of samples can effectively reduce bottlenecks made by printing

to the terminal.



4.3 Main Program Validation 82

Figure 4.26: Data Path Validation Test 2: Limit = 35

Figure 4.27: Data Path Validation Test 3: Limit = 150

Observing the same tests performed for N = 256 Fig 4.28 shows that all requested packages

can be reliably transmitted over UART by reducing the sample count. Though, by looking at

Figs. 4.29 and 4.30 , the printing is done so quickly that some spectra are printed twice to the

terminal screen. The UART task does not see these extras because the packages sent counter

is incremented in the UART Tx Callback function. Because the UART DMA is running in



4.3 Main Program Validation 83

circular mode, it will automatically begin re-sending the data it just finished sending until

another request or update is triggered. An attempt to operate the UART Tx line in Normal

DMA mode was made but substantially slowed the program so much that only two packages

were sent over UART of the five requested.

Figure 4.28: Data Path Validation Test 1: Limit = 5, N = 128

Figure 4.29: Data Path Validation Test 1: Limit = 35, N = 128



4.3 Main Program Validation 84

Figure 4.30: Data Path Validation Test 1: Limit = 150, N = 128

4.3.2 Terminal Printing Validation

Knowing that all the packages can make it through the system, the following tests ensure that

each data point within a package is correctly sent without corruption or overlap. All math

sections of the code are commented out, and instead of a raw ADC value, the RWM buffer

is filled with the current index value. These index values are transferred through the program

and printed at the output. Only two tests are performed for the index checking, a request for

four packages and a request for 12 packages. The resulting prints are plotted in Excel and

form a saw-tooth waveform. It can be seen that there are no inconsistencies in the index values

that were printed. No data was overwritten or corrupted though this test does not account for

doubled packages since the index values constantly repeat. These tests are run with the max

256 sample buffers as they had the issue with missing data packages. The results for each test

are seen in Figs. 4.31 and 4.32.



4.3 Main Program Validation 85

Figure 4.31: Terminal Printing Results, Limit = 4

Figure 4.32: Terminal Printing Results, Limit = 4

4.3.3 Time-Varying Signal Analysis

Two different signals are under test in the following section; both signals contain linearly

varying frequencies, with the first starting at 50 Hz and climbing to a peak of 2 kHz before

starting over, and then the second is a low-frequency signal which begins at 1 Hz and reaches a



4.3 Main Program Validation 86

max of 200 Hz. Several factors are changed throughout the tests presented below, most notably

the speed at which these frequency changes occur.

The first test sees the program configured with windows of 256 samples and a sampling

frequency of 5 kHz to remain above Nyquist. The program is asked to process 35 windows of

the signal as it reads through the ADC. The data path results of this request can be seen in Fig.

4.33; notice that only a single package is dropped somewhere between the analysis and the

read_Task. However, the resulting spectrogram can be seen in Fig. 4.34, which has three axes:

time, frequency, and Power Spectral Density (PSD) in V rms2/Hz. The plot has been reversed

to better show the resulting linearly increasing frequency pattern. Otherwise, it is hidden

behind the wall representing a constant DC component on the signal. The patterns seen in the

spectrogram are interesting as the frequency spectrums are moving, but there are more sweeps

than should be possible given the timescale, and they are not in the correct direction. The same

signal read through the ADC is also exported to MATLAB, and the resulting spectrogram

computed by MATLAB can be seen in Fig. 4.35, which does not have a DC component since

one was not defined in the signal generator.

Figure 4.33: Program Statistics for Test 1



4.3 Main Program Validation 87

Figure 4.34: C Program Spectrogram of 50Hz-2kHz Sweep in 500 ms

Figure 4.35: MATLAB Spectrogram of 50Hz-2kHz Sweep in 500 ms

This begs a fascinating question about where the DC component of the C Program results

originates. If there is no specified DC offset to the signal, as seen by the MATLAB results,



4.3 Main Program Validation 88

then it is most likely a symptom of the ADC converting all values into unsigned integers. This

would mean that any signal that crosses the x-axis will not be accurately converted and produce

inaccurate results. This may also explain the extra sweeps in Fig. 4.34. As can be seen in Fig.

4.35 there should only be two resulting sweeps in a second long timescale, each running from

50 Hz to 2 kHz.

The signal generator is reconfigured to produce the same sweep but now with an amplitude

of 500 mV with a 500 mV offset to investigate the effect of the DC offset. The signal is

also stretched so that a full sweep across the signal’s frequency range takes five seconds. The

spectrogram of this signal from the C Program can be seen in Fig. 4.36, where the analysis

began part-way through a sweep. It can be seen that the signal frequency climbs to around 2

kHz, stopping somewhere closer to 2050 Hz, before starting again at 50 Hz, and the frequency

increases linearly until the time window ends. The mesh around all frequency peaks is almost

flat meaning there was very little noise on the signal, and the program has created an accurate-

looking spectrogram. In a weird twist, Fig. 4.37 shows MATLAB’s attempt at processing this

signal, and there are no discernable frequency peaks or patterns.



4.3 Main Program Validation 89

Figure 4.36: C Program Spectrogram of 50Hz-2kHz Sweep in 5s with 500 mV offset

Figure 4.37: MATLAB Spectrogram of 50Hz-2kHz Sweep in 5s with 500 mV offset

Since including a DC offset improved the accuracy of the program, the next set of tests

using the smaller frequency range also uses the same 500 mV offset and amplitude. The



4.3 Main Program Validation 90

lower frequency range allows the program sampling frequency to be reduced to 500 Hz, so

each calculated spectrum has frequency bins of roughly 2 Hz in width. Unfortunately, the

lower sampling frequency also meant data acquisition took longer, and the program had to

be adjusted. Fig. 4.38 shows that the circular DMA implementation printed over double the

number of user-requested packages. Adjusting the callback so that the DMA process is stopped

each time the function is called, halting the excess printing without causing any data path errors

(Fig. 4.39). This method is kept for the remainder of the tests.

Figure 4.38: Program Statistics for Test 3 Before Adjustment

Figure 4.39: Program Statistics for Test 3 After Adjustment



4.3 Main Program Validation 91

The spectrogram created by the C Program is seen in Fig. 4.40 with results that do not

have any clear frequency peaks or frequency change patterns. Similar to the plot in Fig. 4.34

when testing the last signal varying in 500 ms. The lack of accuracy may be due to the speed at

which the signal varies. There is a very noticeable difference when compared to the MATLAB-

produced results of the same signal (Fig. 4.41) . However, even the MATLAB-produced

spectrogram does not cover the entirety of the frequency range, with the sweep seeming to

restart after climbing to only around 50 Hz.

Figure 4.40: C Program Spectrogram of 1Hz-200Hz Sweep with 500 mV offset



4.3 Main Program Validation 92

Figure 4.41: MATLAB Spectrogram of 1Hz-200Hz Sweep with 500 mV offset

As with the wider band signal from the first tests, this signal was elongated so a full sweep

across the frequency range would take 5 seconds. The output plots seen from this change seem

to point to the speed of the frequency changes being the culprit in the inaccurate results in Figs.

4.34 and 4.40. A clean spectrogram can be seen in Fig. 4.42 starting near 1 Hz and ending

just shy of 200 Hz before starting over. All spectrums have a single peak which vary with the

x and y-axis. A very similar plot is seen in Fig. 4.43 so both programs seem to be affected by

the frequency change speeds.



4.3 Main Program Validation 93

Figure 4.42: C Program Spectrogram of 1Hz-200Hz Sweep in 5s with 500 mV offset

Figure 4.43: MATLAB Spectrogram of 1Hz-200Hz Sweep with 500 mV offset



Chapter 5

Conclusion

From the experimental results in Chapter 4, both sets of programs have been validated to work

within certain conditions. The FFT algorithm implementation is accurate when compared to

MATLAB’s built-in functions, and real-valued signals, as well as purely mathematical signals,

are capable of being analyzed. Without the RTOS, the FFT program can operate with 4096

samples in a transform. This allows for functional transformations at sampling frequencies up

to at least 44.1 kHz, though signals composed of tightly clustered frequencies may start to see

some degradation in the resulting spectrum.

Unfortunately, using an RTOS on such a small system creates a distinct lack of memory

availability. This limitation caps the type of signals that the system can analyze effectively,

with only 256 samples maximum per transform. As a result, analyzing any audio signals re-

sults in very low-quality spectrum’s with almost no separation of frequency content. Through

experimentation, it was seen that signals which vary too quickly do not produce accurate re-

sults, which may come down to the configured sampling rate. Further testing will need to be

done to establish the bounds of frequency change speed. However, it has been proven that this

system can do online analysis for slow-moving signals.



5.1 Project Conclusion 95

Having only a single core also to store, manipulate, analyze, and print values causes a

bottleneck at the end of the data path since the maximum baud rate of the system is 115200

bits/second. However, if this system were embedded somewhere where UART communication

in the data pipeline was unnecessary, the results could be more quickly sent over another

communication interface such as SPI. This would remove the significant throughput bottleneck

seen at the end of the program and could also free up memory space since the arrays necessary

for the float-to-string conversions would not be necessary. Additionally, a dual-core system

could split the work and have the printing process offloaded to operate in the background so all

packages can be better guaranteed to be sent through the terminal. An additional core would

allow for more sophisticated analysis and processing techniques with the added benefit of more

memory. The additional memory would significantly increase the capabilities of the system

and the types of signals that could be accurately analyzed.

5.1 Project Conclusion

The FFT is one of the most important algorithms ever discovered. Its applications are far-

reaching, while its implementation is relatively straightforward. In this paper, an online signal

analysis system was built utilizing the original radix-2 Cooley-Tukey algorithm and a Real-

Time embedded environment. This system was shown to work within specific boundary con-

ditions through parallel verification with a MATLAB testing environment. Data is transferred

through a pipeline-like path with only a single throughput bottleneck at the very end when the

results must be communicated to the testing environment.

This project has provided a deep dive into the history and theory behind Fourier Analysis

and the FFT algorithm while providing a chance to apply it directly and find its uses and draw-

backs. The memory requirements needed for complex computations do not lend themselves to



5.2 Future Work 96

embedded systems which are often limited in memory. Including a real-time operating system

in the project allowed for the further development of critical embedded skills and improved

the reliability of the system’s data path.

Through testing of the currently proposed system, even with its minimal memory al-

lowance, it can accurately analyze time-varying signals at up to 5 kHz. Furthermore, the

analysis results can be cleanly exported with a resolution of 1 µV and easily imported into any

data analysis software in .csv format. Furthermore, non-continuous analysis using the same

algorithms is proven effective up to 44.1 kHz, meaning that this system has the potential to

analyze sound signals with alterations.

5.2 Future Work

Future work will improve the Fourier analysis of the system through different FFT implemen-

tations and eventually increase the system’s effective bandwidth to support audio sampling

frequencies. This work will begin with characterizing signals that the system can accurately

analyze. By clearly defining the bounds of the system, future iterations could offer more tar-

geted improvements in enhancing and expanding its capabilities. The system would greatly

benefit from being implemented into a system that utilizes another communication method,

even though a UART is convenient for testing. If a UART continues to be necessary, perhaps

moving to a dual-core system would significantly improve its use since software running on a

processor core is directly involved in feeding data to the UART. The board being used is one

of the cheapest on offer by STM, with only 96 kB of RAM available to the program. At 256

samples, the program utilizes 90% of this memory space. Moving to a larger MCU could sig-

nificantly increase the system’s capabilities. Even just 512 kB of RAM is a 5-fold increase in

memory size and would allow for many more samples per transform to increase the adequate



5.2 Future Work 97

bandwidth.

The system should also be refactored to be more easily configurable by the user without

reflashing the system to change any program features. The benefit of using a software-based

FFT system is the ability to make quick and easy modifications. However, the current code-

base only allows for a little user configuration. Attempts to improve the FFT implementation

should also be made by incorporating other algorithms or experimenting with new techniques

to reduce operational complexity. Allowing for a multi-dimensional FFT could also expand

this project from just a signal analyzer to also being a partial differential equation solver.



References

[1] J. Cooley and J. Tukey, “An algorithm for the machine calculation of complex

Fourier series,” 1965. [Online]. Available: https://www.semanticscholar.org/paper/

0e6beb95b5150ce99b108acdefabf70ccd3fee30

[2] M. Heideman, D. Johnson, and C. Burrus, “Gauss and the history of the fast fourier

transform,” IEEE ASSP Magazine, vol. 1, no. 4, pp. 14–21, 1984.

[3] A. DomÃnguez, “Highlights in the History of the Fourier Transform [Retrospectro-

scope],” IEEE Pulse, vol. 7, no. 1, pp. 53–61, 2016.

[4] C. F. Gauss, “Nachlass: Theoria interpolationis methodo nova tractata,” Carl Friedrich

Gauss Werke, vol. 3, pp. 265–327, 1866.

[5] I. J. Good, “The interaction algorithm and practical Fourier analysis: an addendum,”

Journal of the Royal Statistical Society. Series B, vol. 22, pp. 372–375, 1960.

[6] P. Rudnick, “Note on the calculation of Fourier series,” Mathematics of Computation,

vol. 20, no. 95, pp. 429–430, 1966.

[7] G. C. Danielson and C. Lanczos, “Some improvements in practical Fourier analysis and

their application to X-ray scattering from liquids,” Journal of the Franklin Institute, vol.

233, no. 5, pp. 435–452, 1942.

https://www.semanticscholar.org/paper/0e6beb95b5150ce99b108acdefabf70ccd3fee30
https://www.semanticscholar.org/paper/0e6beb95b5150ce99b108acdefabf70ccd3fee30


References 99

[8] J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast Fourier transform,” IEEE

Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 76–79, 1967.

[9] L. H. Thomas, “Using a computer to solve problems in physics,” Applications of digital

computers, pp. 44–45, 1963.

[10] H. H. Goldstine, “A History of Numerical Analysis from the 16th through the 19th Cen-

tury.” 1976, pp. 249–253.

[11] E. Brigham, The fast Fourier transform and its applications, G. Szyferblatt,

Ed. Prentice Hall, feb 1988, vol. 26, no. 06. [Online]. Available: https:

//www.semanticscholar.org/paper/70b187ac64e899219660684f25f1df1c78497ab8

[12] C. Yang, Y.-z. Xie, L. Chen, H. Chen, and Y. Deng, “Design of a configurable fixed-point

FFT processor,” in IET International Radar Conference 2015, 2015, pp. 1–4.

[13] R. Rathore and N. Kaur, “Comparison Study of DIT and DIF Radix-2 FFT Algorithm,”

International Journal of Computer Applications, vol. 150, pp. 25–28, 2016.

[14] P. ERGUL, H. F. UGURDAG, and D. DAVUTOGLU, “HC-FFT: highly configurable and

efficient FFT implementation on FPGA,” vol. 29, pp. 3150–3164, 2021.

[15] P. Duhamel and H. Hollmann, “‘Split radix’ FFT algorithm,” 1984. [Online]. Available:

https://www.semanticscholar.org/paper/3e410714fe55078a5072aaa952e2cfe16b0a0b45

[16] S. V. Bhavaraju, M. V. Munot, L. P. Patil, and S. Prabhukumar, “Implementation of Split-

radix Fast Fourier Transform : A Survey,” 2015.

[17] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A General Class of Split-Radix FFT

Algorithms for the Computation of the DFT of Length-2m,” IEEE Transactions on Signal

Processing, vol. 55, no. 8, pp. 4127–4138, 2007.

https://www.semanticscholar.org/paper/70b187ac64e899219660684f25f1df1c78497ab8
https://www.semanticscholar.org/paper/70b187ac64e899219660684f25f1df1c78497ab8
https://www.semanticscholar.org/paper/3e410714fe55078a5072aaa952e2cfe16b0a0b45


References 100

[18] S. G. Johnson and M. Frigo, “A Modified Split-Radix FFT With Fewer Arithmetic Oper-

ations,” IEEE Transactions on Signal Processing, vol. 55, no. 1, pp. 111–119, 2007.

[19] R. Stasinski, “Fast Discrete Fourier Transform algorithms requiring less than 0(NlogN)

multiplications,” Mar. 2023.

[20] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “An Alternate Approach for De-

veloping Higher Radix FFT Algorithms,” in APCCAS 2006 - 2006 IEEE Asia Pacific

Conference on Circuits and Systems, 2006, pp. 227–230.

[21] S. Winograd, “On computing the Discrete Fourier Transform.” Proceedings of the Na-

tional Academy of Sciences of the United States of America, vol. 73, no. 4, pp. 1005–6,

Apr. 1976.

[22] D. Kolba and T. Parks, “A prime factor FFT algorithm using high-speed convolution,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25, no. 4, pp. 281–

294, 1977.

[23] S. Peng, J. Yang, J. Li, J. Deng, X. Li, J. Jin, and T. Wang, “The on-Line Monitoring of

Time-Varying Amplitude and Frequency Characteristic of Sub-Synchronous Oscillation

Based on Sliding Window FFT,” in 2018 China International Conference on Electricity

Distribution (CICED), 2018, pp. 1625–1630.

[24] T. Hiyama, N. Suzuki, and T. Funakoshi, “On-line identification of power system oscil-

lation modes by using real time FFT,” in 2000 IEEE Power Engineering Society Winter

Meeting. Conference Proceedings (Cat. No.00CH37077), vol. 2, 2000, pp. 1521–1526

vol.2.

[25] F. Xu, “Algorithm to Remove Spectral Leakage, Close-in Noise, and Its Application to



References 101

Converter Test,” in 2006 IEEE Instrumentation and Measurement Technology Conference

Proceedings, 2006, pp. 1038–1042.

[26] A. F. Harvey and M. Cerna, “The Fundamentals of FFT-Based Signal Analysis and Mea-

surement in LabVIEW and LabWindows,” 1993.

[27] A. Kaliszan and P. Zwierzykowski, “Application of Real Time Operating System in the

Internet of Things,” in 2016 10th International Symposium on Communication Systems,

Networks and Digital Signal Processing (CSNDSP), 2016, pp. 1–6.

[28] “IEEE Standard for a Real-Time Operating System (RTOS) for Small-Scale Embedded

Systems,” IEEE Std 2050-2018, pp. 1–333, 2018.

[29] Katcher, Kettler, and Strosnider, “Modeling DSP operating systems for multimedia ap-

plications,” in 1994 Proceedings Real-Time Systems Symposium, 1994, pp. 287–291.

[30] M. Balasubramanian and N. S. Usha, “Studies on open source real time operating sys-

tems: For vehicle suspension control,” in 2017 International Conference on Information

Communication and Embedded Systems (ICICES), 2017, pp. 1–3.

[31] P. Kumar and K. Sharma, “A novel task scheduling algorithm for real time systems,”

in 2013 International Conference on Communication and Signal Processing, 2013, pp.

995–998.

[32] K. V. Prashanth, P. S. Akram, and T. A. Reddy, “Real-time issues in embedded system

design,” in 2015 International Conference on Signal Processing and Communication

Engineering Systems, 2015, pp. 167–171.



Appendix I

Source Code

I.1 Main

1 /* USER CODE BEGIN Header */

2 /**

3 ******************************************************************************

4 * @file : main.c

5 * @brief : Task , queue , peripheral initialization

and starting of RTOS scheduler

6 ******************************************************************************

7 * @attention

8 *

9 * Copyright (c) 2022 STMicroelectronics.

10 * All rights reserved.



I.1 Main I-2

11 *

12 * This software is licensed under terms that can be found

in the LICENSE file

13 * in the root directory of this software component.

14 * If no LICENSE file comes with this software , it is

provided AS-IS.

15 *

16 ******************************************************************************

17 */

18 /* USER CODE END Header */

19 /* Includes

------------------------------------------------------------------

*/

20 #include "main.h"

21

22 /* Private includes

----------------------------------------------------------

*/

23 /* USER CODE BEGIN Includes */

24

25 // System Includes

26 #include "FreeRTOS.h"

27 #include "timers.h"

28 #include "queue.h"



I.1 Main I-3

29 #include "semphr.h"

30 #include "event_groups.h"

31 #include "task.h"

32

33 // General Includes

34 #include <stdlib.h>

35 #include <stdio.h>

36 #include <complex.h>

37 #include "math.h"

38

39 // File Specific Includes

40 #include "global.h"

41 #include "transform.h"

42 #include "analysis.h"

43 #include "uart.h"

44 #include "adc.h"

45 /* USER CODE END Includes */

46

47 /* Private typedef

-----------------------------------------------------------

*/

48 /* USER CODE BEGIN PTD */

49

50 /* USER CODE END PTD */

51



I.1 Main I-4

52 /* Private define

------------------------------------------------------------

*/

53 /* USER CODE BEGIN PD */

54 #define TIM_PERIOD 1e6/FS

55 /* USER CODE END PD */

56

57 /* Private macro

-------------------------------------------------------------

*/

58 /* USER CODE BEGIN PM */

59

60 /* USER CODE END PM */

61

62 /* Private variables

---------------------------------------------------------

*/

63 ADC_HandleTypeDef hadc1;

64

65 TIM_HandleTypeDef htim3;

66 TIM_HandleTypeDef htim6;

67

68 UART_HandleTypeDef huart2;

69 DMA_HandleTypeDef hdma_usart2_rx;

70 DMA_HandleTypeDef hdma_usart2_tx;



I.1 Main I-5

71 /* USER CODE BEGIN PV */

72 TaskHandle_t rdr;

73 TaskHandle_t adc;

74 TaskHandle_t tf;

75 TaskHandle_t ansys;

76

77 QueueHandle_t stats_mbx;

78 QueueHandle_t buffer_mbx;

79 QueueHandle_t res_mbx;

80

81 /* USER CODE END PV */

82

83 /* Private function prototypes

-----------------------------------------------*/

84 void SystemClock_Config(void);

85 static void MX_GPIO_Init(void);

86 static void MX_DMA_Init(void);

87 static void MX_USART2_UART_Init(void);

88 static void MX_ADC1_Init(void);

89 static void MX_TIM6_Init(void);

90 static void MX_TIM3_Init(void);

91

92 /* USER CODE BEGIN PFP */

93

94 /* USER CODE END PFP */



I.1 Main I-6

95

96 /* Private user code

---------------------------------------------------------

*/

97 /* USER CODE BEGIN 0 */

98

99 /* USER CODE END 0 */

100

101 /**

102 * @brief The application entry point.

103 * @retval int

104 */

105 int main(void)

106 {

107 /* USER CODE BEGIN 1 */

108

109

110 /* USER CODE END 1 */

111

112 /* MCU Configuration

--------------------------------------------------------

*/

113

114 /* Reset of all peripherals , Initializes the Flash

interface and the Systick. */



I.1 Main I-7

115 HAL_Init ();

116

117 /* USER CODE BEGIN Init */

118

119 /* USER CODE END Init */

120

121 /* Configure the system clock */

122 SystemClock_Config ();

123

124 /* USER CODE BEGIN SysInit */

125

126 /* USER CODE END SysInit */

127

128 /* Initialize all configured peripherals */

129 MX_GPIO_Init ();

130 MX_DMA_Init ();

131 MX_USART2_UART_Init ();

132 MX_ADC1_Init ();

133 MX_TIM6_Init ();

134 MX_TIM3_Init ();

135 /* USER CODE BEGIN 2 */

136 HAL_ADCEx_Calibration_Start (&hadc1 , ADC_SINGLE_ENDED); //

Calibrate ADC on startup

137 /* USER CODE END 2 */

138



I.1 Main I-8

139 /* USER CODE BEGIN RTOS_MUTEX */

140 /* add mutexes , ... */

141 /* USER CODE END RTOS_MUTEX */

142

143 /* USER CODE BEGIN RTOS_SEMAPHORES */

144 /* add semaphores , ... */

145 /* USER CODE END RTOS_SEMAPHORES */

146

147 /* USER CODE BEGIN RTOS_TIMERS */

148 /* start timers , add new ones , ... */

149 /* USER CODE END RTOS_TIMERS */

150

151 /* USER CODE BEGIN RTOS_QUEUES */

152 stats_mbx = xQueueCreate (5, sizeof(stats_t));

153 if(stats_mbx == NULL)

154 {

155 printf("Could not build stats mailbox\n\r");

156 exit (1);

157 }

158

159 buffer_mbx = xQueueCreate (2, SAMPLES*sizeof(uint16_t));

160 if(buffer_mbx == NULL)

161 {

162 printf("Could not build buffer mailbox\n\r");

163 exit (1);



I.1 Main I-9

164 }

165

166 res_mbx = xQueueCreate (20, (SMP_2 +1)*sizeof(float));

167 if(res_mbx == NULL)

168 {

169 printf("Could not build results mailbox\n\r");

170 exit (1);

171 }

172 /* USER CODE END RTOS_QUEUES */

173

174 /* Create the thread(s) */

175 /* USER CODE BEGIN RTOS_THREADS */

176 xTaskCreate(read_Task , "rdr", 1024, NULL , PriorityNormal ,

&rdr);

177 xTaskCreate(txm_Task , "tf", 10000 , NULL , PriorityHigh , &tf

);

178 xTaskCreate(ansys_Task , "ansys", 2048, NULL ,

PriorityNormal , &ansys);

179

180 /* USER CODE END RTOS_THREADS */

181

182 /* Start scheduler */

183 /* Infinite loop */

184 /* USER CODE BEGIN WHILE */

185



I.1 Main I-10

186 vTaskStartScheduler ();

187

188 while (1)

189 {

190 /* USER CODE END WHILE */

191

192 /* USER CODE BEGIN 3 */

193 }

194 /* USER CODE END 3 */

195 }

196

197 /**

198 * @brief System Clock Configuration

199 * @retval None

200 */

201 void SystemClock_Config(void)

202 {

203 RCC_OscInitTypeDef RCC_OscInitStruct = {0};

204 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

205

206 /** Configure the main internal regulator output voltage

207 */

208 if (HAL_PWREx_ControlVoltageScaling(

PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)

209 {



I.1 Main I-11

210 Error_Handler ();

211 }

212

213 /** Initializes the RCC Oscillators according to the

specified parameters

214 * in the RCC_OscInitTypeDef structure.

215 */

216 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

217 RCC_OscInitStruct.HSIState = RCC_HSI_ON;

218 RCC_OscInitStruct.HSICalibrationValue =

RCC_HSICALIBRATION_DEFAULT;

219 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

220 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;

221 RCC_OscInitStruct.PLL.PLLM = 1;

222 RCC_OscInitStruct.PLL.PLLN = 10;

223 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;

224 RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;

225 RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;

226 if (HAL_RCC_OscConfig (& RCC_OscInitStruct) != HAL_OK)

227 {

228 Error_Handler ();

229 }

230

231 /** Initializes the CPU , AHB and APB buses clocks

232 */



I.1 Main I-12

233 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|

RCC_CLOCKTYPE_SYSCLK

234 |RCC_CLOCKTYPE_PCLK1|

RCC_CLOCKTYPE_PCLK2;

235 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

236 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

237 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

238 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

239

240 if (HAL_RCC_ClockConfig (& RCC_ClkInitStruct ,

FLASH_LATENCY_4) != HAL_OK)

241 {

242 Error_Handler ();

243 }

244 }

245

246 /**

247 * @brief ADC1 Initialization Function

248 * @param None

249 * @retval None

250 */

251 static void MX_ADC1_Init(void)

252 {

253

254 /* USER CODE BEGIN ADC1_Init 0 */



I.1 Main I-13

255

256 /* USER CODE END ADC1_Init 0 */

257

258 ADC_MultiModeTypeDef multimode = {0};

259 ADC_ChannelConfTypeDef sConfig = {0};

260

261 /* USER CODE BEGIN ADC1_Init 1 */

262

263 /* USER CODE END ADC1_Init 1 */

264

265 /** Common config

266 */

267 hadc1.Instance = ADC1;

268 hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;

269 hadc1.Init.Resolution = ADC_RESOLUTION_12B;

270 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

271 hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

272 hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;

273 hadc1.Init.LowPowerAutoWait = DISABLE;

274 hadc1.Init.ContinuousConvMode = DISABLE;

275 hadc1.Init.NbrOfConversion = 1;

276 hadc1.Init.DiscontinuousConvMode = DISABLE;

277 hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T3_TRGO;

278 hadc1.Init.ExternalTrigConvEdge =

ADC_EXTERNALTRIGCONVEDGE_RISING;



I.1 Main I-14

279 hadc1.Init.DMAContinuousRequests = DISABLE;

280 hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;

281 hadc1.Init.OversamplingMode = DISABLE;

282 if (HAL_ADC_Init (&hadc1) != HAL_OK)

283 {

284 Error_Handler ();

285 }

286

287 /** Configure the ADC multi -mode

288 */

289 multimode.Mode = ADC_MODE_INDEPENDENT;

290 if (HAL_ADCEx_MultiModeConfigChannel (&hadc1 , &multimode)

!= HAL_OK)

291 {

292 Error_Handler ();

293 }

294

295 /** Configure Regular Channel

296 */

297 sConfig.Channel = ADC_CHANNEL_1;

298 sConfig.Rank = ADC_REGULAR_RANK_1;

299 sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;

300 sConfig.SingleDiff = ADC_SINGLE_ENDED;

301 sConfig.OffsetNumber = ADC_OFFSET_NONE;

302 sConfig.Offset = 0;



I.1 Main I-15

303 if (HAL_ADC_ConfigChannel (&hadc1 , &sConfig) != HAL_OK)

304 {

305 Error_Handler ();

306 }

307 /* USER CODE BEGIN ADC1_Init 2 */

308

309 /* USER CODE END ADC1_Init 2 */

310

311 }

312

313 /**

314 * @brief TIM3 Initialization Function

315 * @param None

316 * @retval None

317 */

318 static void MX_TIM3_Init(void)

319 {

320

321 /* USER CODE BEGIN TIM3_Init 0 */

322

323 /* USER CODE END TIM3_Init 0 */

324

325 TIM_ClockConfigTypeDef sClockSourceConfig = {0};

326 TIM_MasterConfigTypeDef sMasterConfig = {0};

327 TIM_OC_InitTypeDef sConfigOC = {0};



I.1 Main I-16

328

329 /* USER CODE BEGIN TIM3_Init 1 */

330

331 /* USER CODE END TIM3_Init 1 */

332 htim3.Instance = TIM3;

333 htim3.Init.Prescaler = 80 - 1;

334 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

335 htim3.Init.Period = (int) floor(TIM_PERIOD);

336 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

337 htim3.Init.AutoReloadPreload =

TIM_AUTORELOAD_PRELOAD_DISABLE;

338 if (HAL_TIM_Base_Init (&htim3) != HAL_OK)

339 {

340 Error_Handler ();

341 }

342 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

343 if (HAL_TIM_ConfigClockSource (&htim3 , &sClockSourceConfig)

!= HAL_OK)

344 {

345 Error_Handler ();

346 }

347 if (HAL_TIM_PWM_Init (&htim3) != HAL_OK)

348 {

349 Error_Handler ();

350 }



I.1 Main I-17

351 sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

352 sMasterConfig.MasterSlaveMode =

TIM_MASTERSLAVEMODE_DISABLE;

353 if (HAL_TIMEx_MasterConfigSynchronization (&htim3 , &

sMasterConfig) != HAL_OK)

354 {

355 Error_Handler ();

356 }

357 sConfigOC.OCMode = TIM_OCMODE_PWM1;

358 sConfigOC.Pulse = 0;

359 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

360 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

361 if (HAL_TIM_PWM_ConfigChannel (&htim3 , &sConfigOC ,

TIM_CHANNEL_1) != HAL_OK)

362 {

363 Error_Handler ();

364 }

365 /* USER CODE BEGIN TIM3_Init 2 */

366

367 /* USER CODE END TIM3_Init 2 */

368

369 }

370

371 /**

372 * @brief TIM6 Initialization Function



I.1 Main I-18

373 * @param None

374 * @retval None

375 */

376 static void MX_TIM6_Init(void)

377 {

378

379 /* USER CODE BEGIN TIM6_Init 0 */

380

381 /* USER CODE END TIM6_Init 0 */

382

383 TIM_MasterConfigTypeDef sMasterConfig = {0};

384

385 /* USER CODE BEGIN TIM6_Init 1 */

386 // Used for timing transformations at uSecond precision

387 /* USER CODE END TIM6_Init 1 */

388 htim6.Instance = TIM6;

389 htim6.Init.Prescaler = 80 - 1;

390 htim6.Init.CounterMode = TIM_COUNTERMODE_UP;

391 htim6.Init.Period = 65535;

392 htim6.Init.AutoReloadPreload =

TIM_AUTORELOAD_PRELOAD_DISABLE;

393 if (HAL_TIM_Base_Init (&htim6) != HAL_OK)

394 {

395 Error_Handler ();

396 }



I.1 Main I-19

397 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

398 sMasterConfig.MasterSlaveMode =

TIM_MASTERSLAVEMODE_DISABLE;

399 if (HAL_TIMEx_MasterConfigSynchronization (&htim6 , &

sMasterConfig) != HAL_OK)

400 {

401 Error_Handler ();

402 }

403 /* USER CODE BEGIN TIM6_Init 2 */

404

405 /* USER CODE END TIM6_Init 2 */

406

407 }

408

409 /**

410 * @brief USART2 Initialization Function

411 * @param None

412 * @retval None

413 */

414 static void MX_USART2_UART_Init(void)

415 {

416

417 /* USER CODE BEGIN USART2_Init 0 */

418

419 /* USER CODE END USART2_Init 0 */



I.1 Main I-20

420

421 /* USER CODE BEGIN USART2_Init 1 */

422

423 /* USER CODE END USART2_Init 1 */

424 huart2.Instance = USART2;

425 huart2.Init.BaudRate = 115200;

426 huart2.Init.WordLength = UART_WORDLENGTH_8B;

427 huart2.Init.StopBits = UART_STOPBITS_1;

428 huart2.Init.Parity = UART_PARITY_NONE;

429 huart2.Init.Mode = UART_MODE_TX_RX;

430 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;

431 huart2.Init.OverSampling = UART_OVERSAMPLING_16;

432 huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;

433 huart2.AdvancedInit.AdvFeatureInit =

UART_ADVFEATURE_NO_INIT;

434 if (HAL_UART_Init (& huart2) != HAL_OK)

435 {

436 Error_Handler ();

437 }

438 /* USER CODE BEGIN USART2_Init 2 */

439

440 /* USER CODE END USART2_Init 2 */

441

442 }

443



I.1 Main I-21

444 /**

445 * Enable DMA controller clock

446 */

447 static void MX_DMA_Init(void)

448 {

449

450 /* DMA controller clock enable */

451 __HAL_RCC_DMA1_CLK_ENABLE ();

452

453 /* DMA interrupt init */

454 /* DMA1_Channel6_IRQn interrupt configuration */

455 HAL_NVIC_SetPriority(DMA1_Channel6_IRQn , 5, 0);

456 HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);

457 /* DMA1_Channel7_IRQn interrupt configuration */

458 HAL_NVIC_SetPriority(DMA1_Channel7_IRQn , 5, 0);

459 HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);

460

461 }

462

463 /**

464 * @brief GPIO Initialization Function

465 * @param None

466 * @retval None

467 */

468 static void MX_GPIO_Init(void)



I.1 Main I-22

469 {

470 GPIO_InitTypeDef GPIO_InitStruct = {0};

471 /* USER CODE BEGIN MX_GPIO_Init_1 */

472 /* USER CODE END MX_GPIO_Init_1 */

473

474 /* GPIO Ports Clock Enable */

475 __HAL_RCC_GPIOC_CLK_ENABLE ();

476 __HAL_RCC_GPIOH_CLK_ENABLE ();

477 __HAL_RCC_GPIOA_CLK_ENABLE ();

478 __HAL_RCC_GPIOB_CLK_ENABLE ();

479

480 /* Configure GPIO pin Output Level */

481 HAL_GPIO_WritePin(LD2_GPIO_Port , LD2_Pin , GPIO_PIN_RESET);

482

483 /* Configure GPIO pin : B1_Pin */

484 GPIO_InitStruct.Pin = B1_Pin;

485 GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;

486 GPIO_InitStruct.Pull = GPIO_NOPULL;

487 HAL_GPIO_Init(B1_GPIO_Port , &GPIO_InitStruct);

488

489 /* Configure GPIO pin : LD2_Pin */

490 GPIO_InitStruct.Pin = LD2_Pin;

491 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

492 GPIO_InitStruct.Pull = GPIO_NOPULL;

493 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;



I.1 Main I-23

494 HAL_GPIO_Init(LD2_GPIO_Port , &GPIO_InitStruct);

495

496 /* USER CODE BEGIN MX_GPIO_Init_2 */

497 /* USER CODE END MX_GPIO_Init_2 */

498 }

499

500 /* USER CODE BEGIN 4 */

501

502 /* USER CODE END 4 */

503 /**

504 * @brief Period elapsed callback in non blocking mode

505 * @note This function is called when TIM1 interrupt

took place , inside

506 * HAL_TIM_IRQHandler (). It makes a direct call to

HAL_IncTick () to increment

507 * a global variable "uwTick" used as application time base

.

508 * @param htim : TIM handle

509 * @retval None

510 */

511 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

512 {

513 /* USER CODE BEGIN Callback 0 */

514

515 /* USER CODE END Callback 0 */



I.1 Main I-24

516 if (htim ->Instance == TIM1) {

517 HAL_IncTick ();

518 }

519 /* USER CODE BEGIN Callback 1 */

520

521 /* USER CODE END Callback 1 */

522 }

523

524 /**

525 * @brief This function is executed in case of error

occurrence.

526 * @retval None

527 */

528 void Error_Handler(void)

529 {

530 /* USER CODE BEGIN Error_Handler_Debug */

531 /* User can add his own implementation to report the HAL

error return state */

532 __disable_irq ();

533 while (1)

534 {

535 }

536 /* USER CODE END Error_Handler_Debug */

537 }

538



I.1 Main I-25

539 #ifdef USE_FULL_ASSERT

540 /**

541 * @brief Reports the name of the source file and the

source line number

542 * where the assert_param error has occurred.

543 * @param file: pointer to the source file name

544 * @param line: assert_param error line source number

545 * @retval None

546 */

547 void assert_failed(uint8_t *file , uint32_t line)

548 {

549 /* USER CODE BEGIN 6 */

550 /* User can add his own implementation to report the file

name and line number ,

551 ex: printf ("Wrong parameters value: file %s on line %d\

r\n", file , line) */

552 /* USER CODE END 6 */

553 }

554 #endif /* USE_FULL_ASSERT */



I.2 UART I-26

I.2 UART

1 /*

2 * uart.c

3 *

4 * Created on: Nov 10, 2022

5 * Author: Ty Freeman

6 */

7 #include "FreeRTOS.h"

8 #include "task.h"

9 #include "queue.h"

10 #include "semphr.h"

11 #include "event_groups.h"

12 #include "stm32l4xx_hal.h"

13

14 #include <stdlib.h>

15 #include <stdio.h>

16 #include "string.h"

17 #include "math.h"

18

19 #include "global.h"

20 #include "uart.h"

21 #include "adc.h"

22

23 #define STR_SZ 10



I.2 UART I-27

24

25 extern TaskHandle_t adc;

26 extern TaskHandle_t rdr;

27 extern TaskHandle_t tf;

28 extern TaskHandle_t ansys;

29 extern QueueHandle_t res_mbx;

30 extern UART_HandleTypeDef huart2;

31 extern DMA_HandleTypeDef hdma_usart2_rx;

32 extern ADC_HandleTypeDef hadc1;

33

34 extern unsigned long int Total_mult;

35 extern unsigned long int Total_add;

36 extern unsigned int pkg_cnt;

37 extern float tm2full;

38

39 uint8_t rxbuf = ’\0’;

40

41 unsigned char caret[] = "\n\r> ";

42 unsigned char cr[] = "\n\r";

43 unsigned char bkspc[] = "\b\0";

44 unsigned char clr = ’\0’;

45

46 _Bool cr_flg = 0;

47 _Bool rd_flg = 0;

48 _Bool timLim_flg = 0;



I.2 UART I-28

49 _Bool bufRdy_flg = 1;

50 _Bool PROG_END = 0;

51 extern _Bool ansyDone_flg;

52

53 int Tx_fails = 0;

54 int Rx_fails = 0;

55 char nbuf [5];

56

57 int ttl_pkgs = 0;

58 int pkgs_sent = 0;

59 int uart_pkgs = 0;

60

61 /* Callback for UART receiver. Every 1 character triggers

this callback function which does light processing of

value*/

62 void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart ,

uint16_t size)

63 {

64 static int index = 0;

65

66 HAL_UART_Transmit (&huart2 , &rxbuf , 1, 2); //Echo character

67

68 if(! cr_flg)

69 {

70 if(( rxbuf == ’\n’ || rxbuf == ’\r’) && rd_flg) //If



I.2 UART I-29

enter key has been hit

71 {

72 cr_flg = 1; // Set the flag which is checked in the

reader task below

73 rd_flg = 0; // Clear trigger flag

74 index = 0;

75 HAL_UART_Transmit (&huart2 , cr , sizeof(cr), 2); // Echo

character

76 }

77 else if(( rxbuf == ’g’ || rxbuf == ’G’) && !rd_flg) // g

or G for Go

78 {

79 rd_flg = 1; // Ready for read task

80 }

81 else if(rxbuf > 47 && rxbuf < 58 && index < 5)

82 {

83 nbuf[index] = rxbuf; // Collect up to 5 numbers in

this buffer

84 index ++; // Increment buffer index

85 }

86 else if(rxbuf == ’s’ || rxbuf == ’S’) // s or S for

seconds

87 {

88 timLim_flg = 1; // User specified time limit

89 }



I.2 UART I-30

90 else if(rxbuf != ’ ’) // If not acceptable letter

91 {

92 HAL_UART_Transmit (&huart2 , bkspc , sizeof(bkspc), 2);

// Auto backspace

93 }

94 }

95 }

96

97 void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) //

UART Tx DMA transfer complete callback

98 {

99 pkgs_sent ++; // Keep track of packages sent

100 if(ansyDone_flg && uxQueueMessagesWaitingFromISR(res_mbx)

== 0) // Need adc done and all data sent

101 {

102 PROG_END = 1; // Signal program end

103 HAL_UART_AbortTransmit(huart); // Turn off continuous

printing

104 }

105 else

106 bufRdy_flg = 1; // Signal buffer ready for new data

107 }

108

109 void read_Task(void * pvParameters)

110 {



I.2 UART I-31

111

112 TickType_t lastWake = 0;

113 TickType_t Period = pdMS_TO_TICKS (5);

114

115 float fft_res[SMP_2 +1];

116 char TxBuf[(SMP_2 +1)*STR_SZ ];

117

118 int avg_MC = 0;

119 int avg_AC = 0;

120

121 HAL_UART_Transmit (&huart2 , caret , sizeof(caret), 2); //

Print starting CMD caret

122

123 while (1)

124 {

125 HAL_UARTEx_ReceiveToIdle_DMA (&huart2 , &rxbuf , 1); //

Begin DMA

126 __HAL_DMA_DISABLE_IT (& hdma_usart2_rx , DMA_IT_HT);

127

128

129 if(cr_flg)

130 {

131 cr_flg = 0; // Clear carriage return flag

132 ttl_pkgs = atoi(nbuf); // Extract user set limit

133 memset(nbuf ,0,sizeof(nbuf)); // Clear number buffer



I.2 UART I-32

134 if(timLim_flg) ttl_pkgs = (int) floor(ttl_pkgs/tm2full

); // Calculate number of packages needed

135 HAL_UART_Transmit (&huart2 , cr , sizeof(cr), 2);

136 xTaskCreate(adc_Task , "adc", 1024,( void *) &ttl_pkgs ,

PriorityNormal , &adc);

137 }

138

139 if(xQueueReceive(res_mbx , fft_res , 0) && bufRdy_flg) //

Results ready and Tx buffer clear

140 {

141

142 uart_pkgs ++;

143

144 for(int i=0; i<SMP_2 +1; i++)

145 {

146 /* Maintain standard 10 bytes of data after sprintf

*/

147 if(fft_res[i] > 9 && fft_res[i] < 100)

148 sprintf(TxBuf+i*STR_SZ , "%.5f,", fft_res[i]);

149

150 else if(fft_res[i] > 99)

151 sprintf(TxBuf+i*STR_SZ , "%.4f,", fft_res[i]);

152

153 else

154 sprintf(TxBuf+i*STR_SZ , "%.6f,", fft_res[i]);



I.2 UART I-33

155

156 }

157

158 HAL_UART_Transmit_DMA (&huart2 , (unsigned *) TxBuf ,

sizeof(TxBuf)); // Start DMA

159 bufRdy_flg = 0; // Tx buffer being used by new data

160

161 }

162

163

164 if(PROG_END) // All data printed and ADC done

165 {

166 PROG_END = 0; // Clr flag

167 avg_MC = ceil((float) Total_mult/pkg_cnt); //

Calculate average number of multiplications per

transform

168 avg_AC = ceil((float) Total_add/pkg_cnt); // Calculate

average number of additions per transform

169

170 Tx_fails = trans_tx_fail + ansy_tx_fail + adc_tx_fail;

171 Rx_fails = trans_rx_fail + ansy_rx_fail;

172

173 /* Print Stats Message Block */

174 printf("\n\n\r***** STATS *****\n\n\r");

175 printf("Average Mult Ops per transform :\t%d\n\r",



I.2 UART I-34

avg_MC);

176 printf("Average Add Ops transform :\t%d\n\n\r", avg_AC)

;

177

178 printf("Number of Rx Failures: %d\n\r", Rx_fails);

179 printf("Number of Tx Failures: %d\n\n\r", Tx_fails);

180 printf("Packages seen by Task:\n\r");

181 printf("\t\tADC\t%d\n\r", pkg_cnt);

182 printf("\t\tTXM\t%d\n\r", txm_pkgs);

183 printf("\t\tANSY\t%d\n\r", ansys_pkgs);

184 printf("\t\tUART\t%d\n\r", uart_pkgs);

185 printf("\t\tSENT\t%d\n\r", pkgs_sent);

186 }

187

188

189 lastWake = xTaskGetTickCount ();

190 vTaskDelayUntil (&lastWake , Period);

191 }

192 }



I.3 ADC I-35

I.3 ADC

1 /*

2 * adc.c

3 *

4 * Created on: Nov 21, 2022

5 * Author: Ty Freeman

6 */

7

8 /* System Includes */

9 #include "FreeRTOS.h"

10 #include "queue.h"

11 #include "task.h"

12 #include "stm32l4xx_hal.h"

13

14 /* Lib Includes */

15 #include <stdio.h>

16 #include <stdlib.h>

17 #include "math.h"

18 #include "string.h"

19

20 /* User -Created Includes */

21 #include "global.h"

22 #include "adc.h"

23



I.3 ADC I-36

24 extern ADC_HandleTypeDef hadc1;

25 extern TIM_HandleTypeDef htim3;

26 extern DMA_HandleTypeDef hdma_adc1;

27 extern QueueHandle_t buffer_mbx;

28 extern int num_emptyBuf;

29 extern unsigned int quiet_cnt;

30

31 uint16_t RWM[SAMPLES ]; // Capture buffer

32

33 /* Control Flags */

34 _Bool full = 0;

35 _Bool pkgRdy_flg = 0;

36 _Bool lim_flg = 0;

37 _Bool adcDone_flg = 0;

38

39 /* Counters */

40 unsigned int pkg_cnt = 0;

41 int idx = 0;

42 int adc_tx_fail = 0;

43

44

45 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) //

ADC callback function

46 {

47 RWM[idx] = HAL_ADC_GetValue (&hadc1); // Acquire ADC



I.3 ADC I-37

value

48 HAL_GPIO_TogglePin(GPIOA , GPIO_PIN_5); // Toggle LED

49 if(idx == SAMPLES -1) // Check index value. Restart?

50 {

51 full = 1;

52 idx = SMP_2; // Only saving half of samples for window

overlapping

53 }

54 else

55 idx ++;

56 }

57

58 void adc_Task(void * pvParameters)

59 {

60 TickType_t lastwake = 0;

61

62 HAL_ADC_Start_IT (&hadc1); // Start ADC

63 HAL_TIM_PWM_Start (&htim3 , TIM_CHANNEL_1); // Start ADC

trigger timer

64

65 HAL_GPIO_WritePin(GPIOA , GPIO_PIN_5 , 1); // Turn on LED to

signal ADC start

66

67

68 uint16_t *package = NULL;



I.3 ADC I-38

69 pkg_cnt = 0; // Reset for repeat trials

70 quiet_cnt = num_emptyBuf; // Reset quiet cnt number at

start of ADC task

71

72 /* User Set Limit Signals */

73 _Bool lim_set = 0;

74 int *pkg_lim = (int *) pvParameters;

75 if(* pkg_lim > 0) // Pull pkg limit from parameter

76 {

77 lim_set = 1;

78 }

79

80 while (1)

81 {

82 if(full)

83 {

84 package = (uint16_t *) malloc(SAMPLES*sizeof(uint16_t))

; // Create package buffer

85 memcpy(package , RWM , SAMPLES*sizeof(uint16_t)); //

Move values from capture to package buffer

86 memmove(RWM , RWM+SMP_2 , SMP_2*sizeof(uint16_t)); //

Shift capture buffer values down for window overlap

87

88

89 if(xQueueSend(buffer_mbx , package , 1)) // Send package



I.3 ADC I-39

to transform task for processing

90 {

91 pkg_cnt ++; // Count number of packages processed

92 pkgRdy_flg = 1; // Data package in mailbox ready for

transform

93 }

94

95 else adc_tx_fail += 1; // If failed to post , keep

track of failure

96

97 if(lim_set && pkg_cnt == *pkg_lim) lim_flg = 1; //

Signal time to stop

98

99 full = 0; // Reset full flg

100

101 free(package); // Release package space

102

103 if(lim_flg || sigDone_flg) // Two possible ending

conditions

104 {

105 /* Turn off Timer and ADC before deleting the adc

task */

106 HAL_TIM_PWM_Stop (&htim3 , TIM_CHANNEL_1);

107 HAL_ADC_Stop_IT (&hadc1);

108



I.3 ADC I-40

109 adcDone_flg = 1; // Signal program that adc is done

110 if(sigDone_flg) pkg_cnt -= num_emptyBuf; // Remove

empty buffers from total count

111

112 sigDone_flg = 0; // Clear signal flag

113 lim_flg = 0; // Clear limit flag

114

115 vTaskDelete(NULL);

116 }

117 }

118

119

120 lastwake = xTaskGetTickCount ();

121 vTaskDelayUntil (&lastwake , pdMS_TO_TICKS (30)); // Task

suspension for 30 ms

122 }

123 }



I.4 Transform I-41

I.4 Transform

1 /*

2 * transform.c

3 *

4 * Created on: Feb 20, 2023

5 * Author: Ty Freeman

6 */

7

8

9 /* System Includes */

10 #include "FreeRTOS.h"

11 #include "queue.h"

12 #include "task.h"

13 #include "stm32l4xx_hal.h"

14

15 /* Lib Includes */

16 #include <stdio.h>

17 #include <stdlib.h>

18 #include <transform.h>

19 #include "string.h"

20 #include "math.h"

21

22 /* User -Created Includes */

23 #include "global.h"



I.4 Transform I-42

24 #include "fft.h"

25

26 #define TOREAL 3.3/4096

27 #define TODIG 4096/3.3

28

29 extern QueueHandle_t buffer_mbx;

30 extern QueueHandle_t stats_mbx;

31

32 /* Data Transmission Failure Flags */

33 int trans_tx_fail = 0;

34 int trans_rx_fail = 0;

35

36 /* Program Control Flags */

37 _Bool ansy_flg = 0;

38 _Bool sigDone_flg = 0;

39 _Bool txmDone_flg = 0;

40

41 /* Program Ending Variables */

42 float tm2full;

43 unsigned int quiet_cnt;

44 int num_emptyBuf;

45

46 int txm_pkgs = 0;

47

48 void txm_Task(void * pvParameters)



I.4 Transform I-43

49 {

50 TickType_t lastWake = 0;

51 TickType_t Period = pdMS_TO_TICKS (20);

52

53 uint16_t *rec = NULL;

54

55 stats_t res_fft;

56

57 tm2full = (float) SAMPLES/FS; // Time it takes to fill one

buffer worth of samples

58 quiet_cnt = (int) floor (3/ tm2full); // 3 seconds of

silence signals end of incoming signal

59 num_emptyBuf = quiet_cnt;

60

61 while (1)

62 {

63 if(pkgRdy_flg)

64 {

65 res_fft.pkg_num = pkg_cnt; // Find current package

number

66 rec = (uint16_t *) malloc(SAMPLES*sizeof(uint16_t)); //

Create reception buffer

67

68 if(xQueueReceive(buffer_mbx , rec , 0) != pdTRUE)

trans_rx_fail ++; // Receive data buffer from mailbox



I.4 Transform I-44

69

70 else

71 {

72 txm_pkgs ++;

73 pkgRdy_flg = 0; // Reset pkgRdy flag

74

75 for(int i = 0; i < SAMPLES; i++)

76 {

77 float hann = 0.5 -0.5* cos(2*PI*i/SAMPLES); //

Calculate Hanning window coefficient

78 res_fft.res_buf[i] = (float)rec[i]*hann*TOREAL +

0*I; // Apply Hanning window and convert to

complex number

79 }

80

81 free(rec); // Free temporary transfer buffer

82 FFT(& res_fft); // Run FFT

83

84 float perEmpty = (float) res_fft.zCnt/SAMPLES;

85 if(perEmpty >= 0.95) // If 85% of buffer is zero ,

consider it empty

86 {

87 quiet_cnt --; // Keep track of empty captures

88

89 if(quiet_cnt == 0)



I.4 Transform I-45

90 {

91 sigDone_flg = 1; // Signal finished , adc no

longer needed

92 }

93 }

94 else // Reset quiet count

95 quiet_cnt = num_emptyBuf; // Reset quiet_cnt

96

97 if(xQueueSend(stats_mbx , &res_fft , 0)) txm_pkgs ++;

98

99 else trans_tx_fail ++;

100

101 if(adcDone_flg && uxQueueMessagesWaiting(buffer_mbx)

== 0)

102 {

103 txmDone_flg = 1;

104 vTaskSuspend(NULL); // Suspend if ADC done and no

more data to process

105 }

106 }

107

108 }

109

110

111 lastWake = xTaskGetTickCount ();



I.4 Transform I-46

112 vTaskDelayUntil (&lastWake , Period);

113 }

114 }



I.5 Analysis I-47

I.5 Analysis

1 /*

2 * analysis.c

3 *

4 * Created on: Apr 5, 2023

5 * Author: Ty Freeman

6 */

7

8 /* System Includes */

9 #include "FreeRTOS.h"

10 #include "queue.h"

11 #include "task.h"

12 #include "stm32l4xx_hal.h"

13

14 /* Lib Includes */

15 #include <stdio.h>

16 #include <stdlib.h>

17 #include "string.h"

18 #include "math.h"

19

20 /* User -Created Includes */

21 #include "global.h"

22 #include "transform.h"

23 #include "analysis.h"



I.5 Analysis I-48

24

25 #define wErr 2 // Window error correction factor

26 #define NPBw 1.5 // Noise Power BW for Hann window

27 #define T FS/SAMPLES // Time Step

28

29 extern QueueHandle_t stats_mbx;

30 extern QueueHandle_t res_mbx;

31

32 int ansy_tx_fail = 0;

33 int ansy_rx_fail = 0;

34

35 unsigned long Total_mult = 0;

36 unsigned long Total_add = 0;

37

38 int ansys_pkgs = 0;

39

40 extern _Bool txmDone_flg;

41 _Bool ansyDone_flg = 0;

42

43

44 void ansys_Task(void * pvParameters)

45 {

46 TickType_t lastWake = 0;

47 TickType_t Period = pdMS_TO_TICKS (10);

48 stats_t fft_res;



I.5 Analysis I-49

49

50 float *temp_buf = NULL;

51

52 while (1)

53 {

54 if(xQueueReceive(stats_mbx , &fft_res , Period)) // If

analysis has been triggered

55 {

56 temp_buf = malloc ((SMP_2 +1)*sizeof(float)); // N/2+1

buffer for calculations

57

58 ansys_pkgs ++;

59 for(int i = 0; i < SMP_2 +1; i++) // Convert to single

sided

60 {

61 if(i==0)

62 {

63 fft_res.res_buf[i] = mag(fft_res.res_buf[i])/

SAMPLES; // Normalize magnitude of DC component

64 }

65 else

66 {

67 fft_res.res_buf[i] = sqrt (2)*mag(fft_res.res_buf[i

])/SAMPLES; // Convert to Amplitude rms value

68 }



I.5 Analysis I-50

69

70 temp_buf[i] = creal(fft_res.res_buf[i])*wErr; //

Correct windowed amplitude and transfer to smaller

buffer

71 }

72

73 if(xQueueSend(res_mbx , temp_buf , 0)) ansys_pkgs ++;//

Send smaller buffer for printing

74

75 else ansy_tx_fail ++;

76

77 free(temp_buf);

78

79 /* For averages at end of the program */

80 Total_mult += fft_res.mult_cnt;

81 Total_add += fft_res.add_cnt;

82

83 if(txmDone_flg && uxQueueMessagesWaiting(stats_mbx) ==

0)

84 {

85 ansyDone_flg = 1;

86 vTaskSuspend(NULL);

87 }

88 }

89



I.5 Analysis I-51

90 lastWake = xTaskGetTickCount ();

91 vTaskDelayUntil (&lastWake , Period);

92

93 }

94 }

95

96

97

98

99

100 /**

101 * @brief Magnitude calculation of complex number

102 * @param N Complex number

103 * @retval None complex floating point number

104 */

105 float mag(float complex N)

106 {

107 float r2 = creal(N)*creal(N);

108 float i2 = cimag(N)*cimag(N);

109

110 return sqrt(r2 + i2);

111 }



I.6 Global Header I-52

I.6 Global Header

1 /*

2 * global.h

3 *

4 * Created on: Jan 31, 2023

5 * Author: Ty Freeman

6 */

7

8 #ifndef INC_GLOBAL_H_

9 #define INC_GLOBAL_H_

10

11 #include "complex.h"

12

13 #define PI 3.14159265358979323846

14 #define SYS_FREQ 80000000

15 #define SAMPLES 256

16 #define FS 5000

17 #define dt 1/FS

18 #define SMPx2 SAMPLES *2

19 #define SMP_2 SAMPLES /2

20

21 extern unsigned int pkg_cnt;

22 extern int txm_pkgs;

23 extern int ansys_pkgs;



I.6 Global Header I-53

24

25 /* Control Flags */

26 extern _Bool ansy_flg;

27 extern _Bool pkgRdy_flg;

28 extern _Bool adcDone_flg;

29 extern _Bool sigDone_flg;

30 extern _Bool bufEmpty_flg;

31 extern _Bool resRdy_flg;

32

33 /* Fail Counters */

34 extern int adc_tx_fail;

35 extern int trans_tx_fail;

36 extern int trans_rx_fail;

37 extern int ansy_tx_fail;

38 extern int ansy_rx_fail;

39

40 extern double step;

41

42 enum Priority{

43 PriorityIdle , ///< priority: idle (lowest)

44 PriorityLow , ///< priority: low

45 PriorityBelowNormal , ///< priority: below normal

46 PriorityNormal , ///< priority: normal (default)

47 PriorityAboveNormal , ///< priority: above normal

48 PriorityHigh , ///< priority: high



I.6 Global Header I-54

49 PriorityRealtime , ///< priority: realtime (

highest)

50 PriorityError = 0x84 ///< system cannot determine

priority or thread has illegal priority

51 };

52

53 typedef struct stats{

54 unsigned int pkg_num;

55 unsigned long mult_cnt;

56 unsigned long add_cnt;

57 int zCnt;

58 float complex res_buf[SAMPLES ];

59 }stats_t;

60

61

62 #endif /* INC_GLOBAL_H_ */



I.7 FFT I-55

I.7 FFT

1 /*

2 * fft.c

3 *

4 * Created on: Nov 7, 2022

5 * Author: Ty Freeman

6 */

7

8 /* System Includes */

9 #include <fft.h>

10 #include "FreeRTOS.h"

11 #include "task.h"

12 #include "stm32l4xx_hal.h"

13

14 /* lib Includes */

15 #include <stdio.h>

16 #include <stdlib.h>

17 #include <string.h>

18 #include "math.h"

19

20 /* User -Created Includes */

21

22 float complex twexp = 2*PI*I/SAMPLES; // Twiddle exponent e

^(2 PIj/N)



I.7 FFT I-56

23

24 void FFT(stats_t *results)

25 {

26 int a = SMP_2; // Dual -Node distance factor

27 int m = 0; // Twiddle power

28

29 float complex x = 0; // Primary summation term

30 float complex xp = 0; // Secondary summation term

31

32 results ->mult_cnt = 0; // Reset operations counter

33 results ->add_cnt = 0;

34

35 int stages = log_2(SAMPLES); // Calculate number of stages

necessary

36

37 for(int j = 1; j <= stages; j++)

38 {

39 for(int k = 0; k < SAMPLES; k++)

40 {

41 if(!(k & a)) // Remove redundant computations

42 {

43 m = bit_reverse(stages , k >> (stages - j)); //

Calculate twiddle power

44 x = results ->res_buf[k];

45 xp = cexp(twexp*m)*results ->res_buf[k+a];



I.7 FFT I-57

46

47 results ->res_buf[k] = x + xp;

48 results ->res_buf[k + a] = x - xp;

49 results ->mult_cnt += 1; // One complex

multiplication

50 results ->add_cnt += 2; // Two complex additions

51 }

52 }

53

54 a >>= 1; // Change Dual -Node distance

55 }

56

57 /* In Place Array Re-Indexing */

58 for(int i = 0; i < SAMPLES; i++)

59 {

60 int p = bit_reverse(stages , i);

61

62 if(i < p) // Only swap elements once

63 {

64 float complex n = results ->res_buf[i];

65 results ->res_buf[i] = results ->res_buf[p];

66 results ->res_buf[p] = n;

67 }

68

69 if(creal(results ->res_buf[i]) == 0)



I.7 FFT I-58

70 results ->zCnt ++;

71 }

72 }

73

74 /**

75 * @brief Bit reversal algorithm

76 * @param sz Number of bits in number

77 * @param index Current index value to be reversed

78 * @retval int Bit reversed index

79 */

80 int bit_reverse(int sz, int index)

81 {

82 int p = 0;

83

84 for(int i = 0; i <= sz; i++)

85 {

86 if(index & (1 << (sz - i)))

87 {

88 p |= 1 << (i - 1);

89 }

90 }

91

92 return p;

93 }

94



I.7 FFT I-59

95 /**

96 * @brief Base -2 logarithm

97 * @param N Number

98 * @retval int Number of bits in N

99 */

100 int log_2(unsigned int N)

101 {

102 int pow = 0;

103

104 while(N)

105 {

106 N >>= 1;

107 pow ++;

108 }

109

110 return pow - 1;

111 }



I.8 FFT Test Main I-60

I.8 FFT Test Main

1 /* USER CODE BEGIN Header */

2 /**

3 ******************************************************************************

4 * @file : main.c

5 * @brief : Main program body

6 ******************************************************************************

7 * @attention

8 *

9 * Copyright (c) 2023 STMicroelectronics.

10 * All rights reserved.

11 *

12 * This software is licensed under terms that can be found

in the LICENSE file

13 * in the root directory of this software component.

14 * If no LICENSE file comes with this software , it is

provided AS-IS.

15 *

16 ******************************************************************************

17 */

18 /* USER CODE END Header */



I.8 FFT Test Main I-61

19 /* Includes

------------------------------------------------------------------

*/

20 #include "main.h"

21

22 /* Private includes

----------------------------------------------------------

*/

23 /* USER CODE BEGIN Includes */

24 #include "stdio.h"

25 #include "stdlib.h"

26 #include "fft.h"

27 #include "math.h"

28 #include <inttypes.h>

29 /* USER CODE END Includes */

30

31 /* Private typedef

-----------------------------------------------------------

*/

32 /* USER CODE BEGIN PTD */

33

34 /* USER CODE END PTD */

35

36 /* Private define

------------------------------------------------------------



I.8 FFT Test Main I-62

*/

37 /* USER CODE BEGIN PD */

38 #define STR_SZ 10

39 #define fc 261.63

40 #define fg 783.99

41 #define fe 659.25

42 #define TOREAL 3.21/4096

43 #define TIM_PERIOD 1e6/FS

44 /* USER CODE END PD */

45

46 /* Private macro

-------------------------------------------------------------

*/

47 /* USER CODE BEGIN PM */

48

49 /* USER CODE END PM */

50

51 /* Private variables

---------------------------------------------------------

*/

52 ADC_HandleTypeDef hadc1;

53

54 TIM_HandleTypeDef htim3;

55 TIM_HandleTypeDef htim6;

56



I.8 FFT Test Main I-63

57 UART_HandleTypeDef huart2;

58 DMA_HandleTypeDef hdma_usart2_tx;

59

60 /* USER CODE BEGIN PV */

61 _Bool full = 0;

62 _Bool done = 0;

63 uint8_t tim_turnover = 0;

64 stats_t fft_res;

65 uint16_t RWM[SAMPLES ]; // Capture buffer

66 /* USER CODE END PV */

67

68 /* Private function prototypes

-----------------------------------------------*/

69 void SystemClock_Config(void);

70 static void MX_GPIO_Init(void);

71 static void MX_DMA_Init(void);

72 static void MX_USART2_UART_Init(void);

73 static void MX_TIM6_Init(void);

74 static void MX_ADC1_Init(void);

75 static void MX_TIM3_Init(void);

76 /* USER CODE BEGIN PFP */

77

78 /* USER CODE END PFP */

79

80 /* Private user code



I.8 FFT Test Main I-64

---------------------------------------------------------

*/

81 /* USER CODE BEGIN 0 */

82 void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)

83 {

84 HAL_GPIO_TogglePin(GPIOA , GPIO_PIN_5);

85 HAL_UART_DMAStop(huart);

86 done = 1;

87 }

88

89 void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) //

ADC callback function

90 {

91 static int idx = 0;

92 RWM[idx] = HAL_ADC_GetValue(hadc); // Acquire ADC value

93 if(idx == SAMPLES -1) // Check index value. Restart?

94 {

95 full = 1;

96 HAL_TIM_PWM_Stop (&htim3 , TIM_CHANNEL_1);

97 }

98 else

99 idx ++;

100 }

101 /* USER CODE END 0 */

102



I.8 FFT Test Main I-65

103 /**

104 * @brief The application entry point.

105 * @retval int

106 */

107 int main(void)

108 {

109 /* USER CODE BEGIN 1 */

110 unsigned char dblSpace [] = "\n\n\r";

111 /* USER CODE END 1 */

112

113 /* MCU Configuration

--------------------------------------------------------

*/

114

115 /* Reset of all peripherals , Initializes the Flash

interface and the Systick. */

116 HAL_Init ();

117

118 /* USER CODE BEGIN Init */

119

120 /* USER CODE END Init */

121

122 /* Configure the system clock */

123 SystemClock_Config ();

124



I.8 FFT Test Main I-66

125 /* USER CODE BEGIN SysInit */

126

127 /* USER CODE END SysInit */

128

129 /* Initialize all configured peripherals */

130 MX_GPIO_Init ();

131 MX_DMA_Init ();

132 MX_USART2_UART_Init ();

133 MX_TIM6_Init ();

134 MX_ADC1_Init ();

135 MX_TIM3_Init ();

136 /* USER CODE BEGIN 2 */

137 HAL_UART_Transmit (&huart2 , dblSpace , sizeof(dblSpace), 2);

138 HAL_ADC_Start_IT (&hadc1); // Start ADC

139 HAL_TIM_PWM_Start (&htim3 , TIM_CHANNEL_1); // Start ADC

trigger timer

140

141 /* USER CODE END 2 */

142

143 /* Infinite loop */

144 /* USER CODE BEGIN WHILE */

145 while (1)

146 {

147 if(full)

148 {



I.8 FFT Test Main I-67

149 HAL_ADC_Stop_IT (&hadc1);

150 float *temp_buf = NULL;

151 char pBuf[(SMP_2 +1)*STR_SZ ];

152

153 for(int i = 0; i < SAMPLES; i++)

154 {

155 float hann = 0.5 -0.5* cos(2*PI*i/SAMPLES); //

Calculate Hanning window coefficient

156 // fft_res.res_buf[i] = sin (2*PI*200*i/FS); // Single

-Tone 200 Hz

157 // fft_res.res_buf[i] = (sin(2*PI *1000*i/FS)+1) +

0.5*( cos(2*PI*200*i/FS)+1); // Dual -Tone 200 Hz and 1 kHz

158 // fft_res.res_buf[i] = ((sin(2*PI*fc*i/FS)) + (sin

(2*PI*fg*i/FS)) + (sin(2*PI*fe*i/FS))); // C Chord triad

159 fft_res.res_buf[i] = TOREAL *(RWM[i]); // ADC

Implementation

160 fft_res.res_buf[i] *= hann; // Apply Hanning window

and convert to complex number

161 }

162

163

164 classic_FFT (& fft_res);

165

166 full = 0;

167



I.8 FFT Test Main I-68

168 temp_buf = malloc ((SMP_2 +1)*sizeof(float));

169

170 for(int i = 0; i < (SMP_2 +1); i++)

171 {

172 if(i==0)

173 {

174 fft_res.res_buf[i] = mag(fft_res.res_buf[i])/

SAMPLES; // Normalize magnitude of DC component

175 }

176 else

177 {

178 fft_res.res_buf[i] = sqrt (2)*mag(fft_res.res_buf[i

])/SAMPLES; // Convert to Amplitude rms value

179 }

180 temp_buf[i] = creal(fft_res.res_buf[i])*2; //

Correct windowed amplitude and transfer to smaller

buffer

181

182 if(temp_buf[i] > 9 && temp_buf[i] < 100)

183 sprintf(pBuf+i*STR_SZ , "%.5f,", temp_buf[i]);

184

185 else if(temp_buf[i] > 99)

186 sprintf(pBuf+i*STR_SZ , "%.4f,", temp_buf[i]);

187

188 else



I.8 FFT Test Main I-69

189 sprintf(pBuf+i*STR_SZ , "%.6f,", temp_buf[i]);

190

191 HAL_UART_Transmit_DMA (&huart2 , pBuf , sizeof(pBuf));

192 }

193

194 free(temp_buf);

195

196 }

197

198 if(done)

199 {

200 HAL_UART_Abort (& huart2);

201 printf("\n\n\r***** STATS *****\n\r");;

202 printf("Time per transform :\t%f uS\n\r", (float)

fft_res.time /80);

203 printf("Mult Ops per transform :\t%d\n\r", fft_res.

mult_cnt);

204 printf("Add Ops per transform :\t%d\n\n\r", fft_res.

add_cnt);

205 exit (1);

206 }

207 /* USER CODE END WHILE */

208

209 /* USER CODE BEGIN 3 */

210 }



I.8 FFT Test Main I-70

211 /* USER CODE END 3 */

212 }

213

214 /**

215 * @brief System Clock Configuration

216 * @retval None

217 */

218 void SystemClock_Config(void)

219 {

220 RCC_OscInitTypeDef RCC_OscInitStruct = {0};

221 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

222

223 /** Configure the main internal regulator output voltage

224 */

225 if (HAL_PWREx_ControlVoltageScaling(

PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)

226 {

227 Error_Handler ();

228 }

229

230 /** Initializes the RCC Oscillators according to the

specified parameters

231 * in the RCC_OscInitTypeDef structure.

232 */

233 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;



I.8 FFT Test Main I-71

234 RCC_OscInitStruct.HSIState = RCC_HSI_ON;

235 RCC_OscInitStruct.HSICalibrationValue =

RCC_HSICALIBRATION_DEFAULT;

236 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

237 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;

238 RCC_OscInitStruct.PLL.PLLM = 1;

239 RCC_OscInitStruct.PLL.PLLN = 10;

240 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;

241 RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;

242 RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;

243 if (HAL_RCC_OscConfig (& RCC_OscInitStruct) != HAL_OK)

244 {

245 Error_Handler ();

246 }

247

248 /** Initializes the CPU , AHB and APB buses clocks

249 */

250 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|

RCC_CLOCKTYPE_SYSCLK

251 |RCC_CLOCKTYPE_PCLK1|

RCC_CLOCKTYPE_PCLK2;

252 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

253 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

254 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

255 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;



I.8 FFT Test Main I-72

256

257 if (HAL_RCC_ClockConfig (& RCC_ClkInitStruct ,

FLASH_LATENCY_4) != HAL_OK)

258 {

259 Error_Handler ();

260 }

261 }

262

263 /**

264 * @brief ADC1 Initialization Function

265 * @param None

266 * @retval None

267 */

268 static void MX_ADC1_Init(void)

269 {

270

271 /* USER CODE BEGIN ADC1_Init 0 */

272

273 /* USER CODE END ADC1_Init 0 */

274

275 ADC_MultiModeTypeDef multimode = {0};

276 ADC_ChannelConfTypeDef sConfig = {0};

277

278 /* USER CODE BEGIN ADC1_Init 1 */

279



I.8 FFT Test Main I-73

280 /* USER CODE END ADC1_Init 1 */

281

282 /** Common config

283 */

284 hadc1.Instance = ADC1;

285 hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;

286 hadc1.Init.Resolution = ADC_RESOLUTION_12B;

287 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

288 hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;

289 hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;

290 hadc1.Init.LowPowerAutoWait = DISABLE;

291 hadc1.Init.ContinuousConvMode = DISABLE;

292 hadc1.Init.NbrOfConversion = 1;

293 hadc1.Init.DiscontinuousConvMode = DISABLE;

294 hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T3_TRGO;

295 hadc1.Init.ExternalTrigConvEdge =

ADC_EXTERNALTRIGCONVEDGE_RISING;

296 hadc1.Init.DMAContinuousRequests = DISABLE;

297 hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;

298 hadc1.Init.OversamplingMode = DISABLE;

299 if (HAL_ADC_Init (&hadc1) != HAL_OK)

300 {

301 Error_Handler ();

302 }

303



I.8 FFT Test Main I-74

304 /** Configure the ADC multi -mode

305 */

306 multimode.Mode = ADC_MODE_INDEPENDENT;

307 if (HAL_ADCEx_MultiModeConfigChannel (&hadc1 , &multimode)

!= HAL_OK)

308 {

309 Error_Handler ();

310 }

311

312 /** Configure Regular Channel

313 */

314 sConfig.Channel = ADC_CHANNEL_1;

315 sConfig.Rank = ADC_REGULAR_RANK_1;

316 sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5;

317 sConfig.SingleDiff = ADC_SINGLE_ENDED;

318 sConfig.OffsetNumber = ADC_OFFSET_NONE;

319 sConfig.Offset = 0;

320 if (HAL_ADC_ConfigChannel (&hadc1 , &sConfig) != HAL_OK)

321 {

322 Error_Handler ();

323 }

324 /* USER CODE BEGIN ADC1_Init 2 */

325

326 /* USER CODE END ADC1_Init 2 */

327



I.8 FFT Test Main I-75

328 }

329

330 /**

331 * @brief TIM3 Initialization Function

332 * @param None

333 * @retval None

334 */

335 static void MX_TIM3_Init(void)

336 {

337

338 /* USER CODE BEGIN TIM3_Init 0 */

339

340 /* USER CODE END TIM3_Init 0 */

341

342 TIM_ClockConfigTypeDef sClockSourceConfig = {0};

343 TIM_MasterConfigTypeDef sMasterConfig = {0};

344 TIM_OC_InitTypeDef sConfigOC = {0};

345

346 /* USER CODE BEGIN TIM3_Init 1 */

347

348 /* USER CODE END TIM3_Init 1 */

349 htim3.Instance = TIM3;

350 htim3.Init.Prescaler = 80 - 1;

351 htim3.Init.CounterMode = TIM_COUNTERMODE_UP;

352 htim3.Init.Period = (int) floor(TIM_PERIOD);



I.8 FFT Test Main I-76

353 htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

354 htim3.Init.AutoReloadPreload =

TIM_AUTORELOAD_PRELOAD_DISABLE;

355 if (HAL_TIM_Base_Init (&htim3) != HAL_OK)

356 {

357 Error_Handler ();

358 }

359 sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;

360 if (HAL_TIM_ConfigClockSource (&htim3 , &sClockSourceConfig)

!= HAL_OK)

361 {

362 Error_Handler ();

363 }

364 if (HAL_TIM_PWM_Init (&htim3) != HAL_OK)

365 {

366 Error_Handler ();

367 }

368 sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;

369 sMasterConfig.MasterSlaveMode =

TIM_MASTERSLAVEMODE_DISABLE;

370 if (HAL_TIMEx_MasterConfigSynchronization (&htim3 , &

sMasterConfig) != HAL_OK)

371 {

372 Error_Handler ();

373 }



I.8 FFT Test Main I-77

374 sConfigOC.OCMode = TIM_OCMODE_PWM1;

375 sConfigOC.Pulse = 65535;

376 sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;

377 sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;

378 if (HAL_TIM_PWM_ConfigChannel (&htim3 , &sConfigOC ,

TIM_CHANNEL_1) != HAL_OK)

379 {

380 Error_Handler ();

381 }

382 /* USER CODE BEGIN TIM3_Init 2 */

383

384 /* USER CODE END TIM3_Init 2 */

385 HAL_TIM_MspPostInit (&htim3);

386

387 }

388

389 /**

390 * @brief TIM6 Initialization Function

391 * @param None

392 * @retval None

393 */

394 static void MX_TIM6_Init(void)

395 {

396

397 /* USER CODE BEGIN TIM6_Init 0 */



I.8 FFT Test Main I-78

398

399 /* USER CODE END TIM6_Init 0 */

400

401 TIM_MasterConfigTypeDef sMasterConfig = {0};

402

403 /* USER CODE BEGIN TIM6_Init 1 */

404

405 /* USER CODE END TIM6_Init 1 */

406 htim6.Instance = TIM6;

407 htim6.Init.Prescaler = 0;

408 htim6.Init.CounterMode = TIM_COUNTERMODE_UP;

409 htim6.Init.Period = 65535;

410 htim6.Init.AutoReloadPreload =

TIM_AUTORELOAD_PRELOAD_DISABLE;

411 if (HAL_TIM_Base_Init (&htim6) != HAL_OK)

412 {

413 Error_Handler ();

414 }

415 sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;

416 sMasterConfig.MasterSlaveMode =

TIM_MASTERSLAVEMODE_DISABLE;

417 if (HAL_TIMEx_MasterConfigSynchronization (&htim6 , &

sMasterConfig) != HAL_OK)

418 {

419 Error_Handler ();



I.8 FFT Test Main I-79

420 }

421 /* USER CODE BEGIN TIM6_Init 2 */

422

423 /* USER CODE END TIM6_Init 2 */

424

425 }

426

427 /**

428 * @brief USART2 Initialization Function

429 * @param None

430 * @retval None

431 */

432 static void MX_USART2_UART_Init(void)

433 {

434

435 /* USER CODE BEGIN USART2_Init 0 */

436

437 /* USER CODE END USART2_Init 0 */

438

439 /* USER CODE BEGIN USART2_Init 1 */

440

441 /* USER CODE END USART2_Init 1 */

442 huart2.Instance = USART2;

443 huart2.Init.BaudRate = 115200;

444 huart2.Init.WordLength = UART_WORDLENGTH_8B;



I.8 FFT Test Main I-80

445 huart2.Init.StopBits = UART_STOPBITS_1;

446 huart2.Init.Parity = UART_PARITY_NONE;

447 huart2.Init.Mode = UART_MODE_TX_RX;

448 huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;

449 huart2.Init.OverSampling = UART_OVERSAMPLING_16;

450 huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;

451 huart2.AdvancedInit.AdvFeatureInit =

UART_ADVFEATURE_NO_INIT;

452 if (HAL_UART_Init (& huart2) != HAL_OK)

453 {

454 Error_Handler ();

455 }

456 /* USER CODE BEGIN USART2_Init 2 */

457

458 /* USER CODE END USART2_Init 2 */

459

460 }

461

462 /**

463 * Enable DMA controller clock

464 */

465 static void MX_DMA_Init(void)

466 {

467

468 /* DMA controller clock enable */



I.8 FFT Test Main I-81

469 __HAL_RCC_DMA1_CLK_ENABLE ();

470

471 /* DMA interrupt init */

472 /* DMA1_Channel7_IRQn interrupt configuration */

473 HAL_NVIC_SetPriority(DMA1_Channel7_IRQn , 0, 0);

474 HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);

475

476 }

477

478 /**

479 * @brief GPIO Initialization Function

480 * @param None

481 * @retval None

482 */

483 static void MX_GPIO_Init(void)

484 {

485 GPIO_InitTypeDef GPIO_InitStruct = {0};

486 /* USER CODE BEGIN MX_GPIO_Init_1 */

487 /* USER CODE END MX_GPIO_Init_1 */

488

489 /* GPIO Ports Clock Enable */

490 __HAL_RCC_GPIOC_CLK_ENABLE ();

491 __HAL_RCC_GPIOH_CLK_ENABLE ();

492 __HAL_RCC_GPIOA_CLK_ENABLE ();

493 __HAL_RCC_GPIOB_CLK_ENABLE ();



I.8 FFT Test Main I-82

494

495 /* Configure GPIO pin Output Level */

496 HAL_GPIO_WritePin(GPIOA , GPIO_PIN_0|LD2_Pin ,

GPIO_PIN_RESET);

497

498 /* Configure GPIO pin : B1_Pin */

499 GPIO_InitStruct.Pin = B1_Pin;

500 GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;

501 GPIO_InitStruct.Pull = GPIO_NOPULL;

502 HAL_GPIO_Init(B1_GPIO_Port , &GPIO_InitStruct);

503

504 /* Configure GPIO pins : PA0 LD2_Pin */

505 GPIO_InitStruct.Pin = GPIO_PIN_0|LD2_Pin;

506 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

507 GPIO_InitStruct.Pull = GPIO_NOPULL;

508 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

509 HAL_GPIO_Init(GPIOA , &GPIO_InitStruct);

510

511 /* USER CODE BEGIN MX_GPIO_Init_2 */

512 /* USER CODE END MX_GPIO_Init_2 */

513 }

514

515 /* USER CODE BEGIN 4 */

516 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)

517 {



I.8 FFT Test Main I-83

518 /* USER CODE BEGIN Callback 1 */

519 if (htim ->Instance == TIM6)

520 {

521 tim_turnover ++;

522 }

523 /* USER CODE END Callback 1 */

524 }

525 /* USER CODE END 4 */

526

527 /**

528 * @brief This function is executed in case of error

occurrence.

529 * @retval None

530 */

531 void Error_Handler(void)

532 {

533 /* USER CODE BEGIN Error_Handler_Debug */

534 /* User can add his own implementation to report the HAL

error return state */

535 __disable_irq ();

536 while (1)

537 {

538 }

539 /* USER CODE END Error_Handler_Debug */

540 }



I.8 FFT Test Main I-84

541

542 #ifdef USE_FULL_ASSERT

543 /**

544 * @brief Reports the name of the source file and the

source line number

545 * where the assert_param error has occurred.

546 * @param file: pointer to the source file name

547 * @param line: assert_param error line source number

548 * @retval None

549 */

550 void assert_failed(uint8_t *file , uint32_t line)

551 {

552 /* USER CODE BEGIN 6 */

553 /* User can add his own implementation to report the file

name and line number ,

554 ex: printf ("Wrong parameters value: file %s on line %d\

r\n", file , line) */

555 /* USER CODE END 6 */

556 }

557 #endif /* USE_FULL_ASSERT */



I.9 MATLAB Simulation and Comparison Environment I-85

I.9 MATLAB Simulation and Comparison Environment

1 clear

2 close all

3 clc

4

5 %% Environment Variables

6 N = 4096;

7 sz = N/2+1;

8 fs = 5000;

9 fc = 261.63;

10 fg = 783.99;

11 fe = 659.25;

12 dt = 1/fs;

13 t = 0:dt:(N-1)*dt;

14 i = 0:N-1;

15 f = linspace(0,fs/2,N/2+1);

16 h = hann(N)’;

17

18 %% Signal Generation

19 % x = sin(2*pi *200*t) + 1;

20 x = (sin (2*pi *1000*t)+1) + 0.5*( cos (2*pi*200*t)+1);

21 % x = (sin (2*pi*fc*t) + sin(2*pi*fg*t) + sin (2*pi*fe*t)); %

Create C Chord Sinusoid

22



I.9 MATLAB Simulation and Comparison Environment I-86

23 T = load_data (" Data_Files\SR_Real\SR_ADC -1k-200 _4096.csv",

sz);

24

25 xUnwin = x;

26 x = h.*x; % Apply Hanning Window

27

28 X = abs(fft(x,N))/N; % Normalized Magnitude of fft output

29 X = X(1:N/2+1); % Single -sided conversion

30 X(2:end -1) = sqrt (2).*X(2:end -1); % Amplitude Vrms for non -

DC components

31 % X = 2*X; % Window Amplitude Correction Factor

32

33 %% Results plotting

34 figure

35 plot(t,xUnwin);

36 title(" Unwindowed Signal in Time Domain ")

37 xlabel ("Time (s)")

38 ylabel (" Amplitude (V)")

39

40 figure

41 plot(t,x);

42 title(" Windowed Signal in Time Domain ")

43 xlabel ("Time (s)")

44 ylabel (" Amplitude (V)")

45



I.9 MATLAB Simulation and Comparison Environment I-87

46 figure

47 subplot (2,1,1)

48 plot(f,X);

49 title(" MATLAB FFT Results ")

50 xlim([-1 fs/2])

51 xlabel (" Frequency (Hz)")

52 ylabel (" Amplitude (Vrms)")

53

54 subplot (2,1,2)

55 plot(f, T);

56 title("CTP FFT Results ")

57 xlim([-1 fs/2])

58 xlabel (" Frequency (Hz)")

59 ylabel (" Amplitude (Vrms)")

60

61 function C = load_data(CDataPath , CN)

62

63 %% Import Data From C Program

64 opts = delimitedTextImportOptions (" NumVariables", CN);

65

66 % Specify range and delimiter

67 opts.DataLines = [3, 3];

68 opts.Delimiter = ",";

69 [vartypes{1, 1:CN}] = deal(’double ’);

70 opts.VariableTypes = vartypes;



I.9 MATLAB Simulation and Comparison Environment I-88

71

72 % Specify file level properties

73 opts.ExtraColumnsRule = "ignore ";

74 opts.EmptyLineRule = "read";

75 opts.ConsecutiveDelimitersRule = "join";

76

77 % Import the data

78 C = readmatrix(CDataPath , opts);

79

80 % Clear temporary variables

81 clear opts

82 end


	Online Fourier Analysis of Time-Varying Signals in a Real-Time Embedded Environment
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Goals
	1.2 Contributions
	1.3 Organization

	2 Bibliographical Research
	2.1 A brief history of the FFT
	2.2 FFT Derivation
	2.2.1 DFT Derivation for N=4
	2.2.2 Pattern Extraction
	2.2.2.1 Relating to the values of xt
	2.2.2.2 Relating to the Roots of Unity
	2.2.2.3 Putting the Patterns Together

	2.2.3 FFT for N=8

	2.3 Alternate FFT Algorithms
	2.4 Continuous Flow FFTs
	2.4.1 Windowing Continuous Flow FFT's

	2.5 Real-Time Operating Systems
	2.5.1 Modern RTOS
	2.5.2 Problems with an RTOS
	2.5.3 Use of an RTOS


	3 Program Architectures
	3.1 Data Path Overview
	3.2 read_Task
	3.2.1 Top of Program
	3.2.2 End of Data Path
	3.2.3 End of Program
	3.2.4 UART Rx Callback
	3.2.5 UART Tx Callback

	3.3 adc_Task
	3.3.1 ADC Main Functionality
	3.3.2 Ending Conditions
	3.3.3 ADC Conversion Callback

	3.4 txm_Task
	3.5 ansys_Task
	3.6 FFT Implementation
	3.6.1 Helper Functions

	3.7 Global Header
	3.8 C Test Program
	3.8.1 FFT Results Manipulation


	4 Experimental Results
	4.1 MATLAB Validation Environment
	4.2 Test Program Validation
	4.2.1 Single Frequency Signal
	4.2.1.1 Calculated Signal Validation Tests
	4.2.1.2 ADC Signal Validation Tests

	4.2.2 Dual-Tone Signal
	4.2.2.1 Calculated Signal Validation Tests
	4.2.2.2 ADC Signal Validation Tests

	4.2.3 Multi-tonal Musical Signals
	4.2.3.1 Calculated Signal Validation Tests
	4.2.3.2 ADC Signal Validation Tests


	4.3 Main Program Validation
	4.3.1 Data Path Validation
	4.3.2 Terminal Printing Validation
	4.3.3 Time-Varying Signal Analysis


	5 Conclusion
	5.1 Project Conclusion
	5.2 Future Work

	References
	I Source Code
	I.1 Main
	I.2 UART
	I.3 ADC
	I.4 Transform
	I.5 Analysis
	I.6 Global Header
	I.7 FFT
	I.8 FFT Test Main
	I.9 MATLAB Simulation and Comparison Environment


