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Abstract

Image-based patient-specific anatomical models of the heart have the potential to be used

in a variety of clinical scenarios such as diagnosis and prognosis of various cardiovascular

diseases (CVDs), including cardiac resynchronization therapy (CRT), ablation therapy, risk

stratification, and minimally invasive cardiac interventions. Cardiac magnetic resonance imag-

ing (MRI) provides images with high-resolution and superior soft tissue contrast, rendering it

as the gold standard modality for imaging cardiac anatomy.

To obtain meaningful information from such image-based personalized anatomical models

of the heart, it is crucial to combine the geometric models of the cardiac chambers extracted

from cine cardiac MRI and the scar anatomy from the late gadolinium enhanced (LGE) MRI.

There are several challenges to be tackled to generate patient-specific anatomical models of

the heart from the cardiac MRI data. Firstly, accurate and robust automated segmentation of

the cardiac chambers from the cine cardiac MRI data is essential to estimate cardiac function

indices. Secondly, it is important to estimate cardiac motion from 4D cine MRI data to assess
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the kinematic and contractile properties of the myocardium. Thirdly, accurate registration of

the LGE MRI images with their corresponding cine MRI images is crucial to assess myocardial

viability. In addition to the above-mentioned segmentation and registration tasks, it is also

crucial to computationally super-resolve the anisotropic (high in-plane and low through-plane

resolution) cardiac MRI images, while maintaining the structural integrity of the tissues.

With the advent of deep learning, medical image segmentation and registration have im-

mensely benefited. In this work, we present a deep learning-based framework to generate

personalized cardiac anatomical models using cardiac MRI data. Firstly, we segment the car-

diac chambers from an open-source cine cardiac MRI data using an adversarial deep learning

framework. We evaluate the viability of the proposed adversarial framework by assessing

its effect on the clinical cardiac parameters. Secondly, we propose a convolutional neural

network (CNN) based 4D deformable registration algorithm for cardiac motion estimation

from an open-source 4D cine cardiac MRI dataset. We extend this proposed CNN-based

4D deformable registration algorithm to develop dynamic patient-specific geometric models

of the left ventricle (LV) myocardium and right ventricle (RV) endocardium. Thirdly, we

present a deep learning framework for registration of cine and LGE MRI images, and assess

the registration performance of the proposed method on an open source dataset. Finally, we

present a 3D CNN-based framework with structure preserving gradient guidance to generate

super-resolution cardiac MRI images, and assess this proposed super-resolution algorithm on

an open-source LGE MRI dataset. Furthermore, we investigate the effect of the proposed

super-resolution algorithm on downstream segmentation task.

Keywords: Image segmentation; image registration; cine MRI; LGE MRI; deep learning;

convolutional neural network; super-resolution; patient-specific modeling; mesh warping; per-

sonalized cardiac models
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Chapter 1

Introduction, Background, and

Dissertation Overview

This chapter provides a comprehensive review of the clinical background for the proposed work,

and presents the idea of patient-specific anatomical models to serve as clinical decision support

tools. Additionally, a brief review of medical image segmentation, registration and super-

resolution algorithms is provided here, while identifying current clinical challenges. This is

followed by an overview of the dissertation and its contributions.

1.1 Cardiovascular System: The Heart

The human heart is a muscular pump, located within the protective thoracic cavity, occupying

space between the lungs known as mediastinum. It pumps the oxygenated blood collected from

the lungs to all the tissues of the body and pumps the deoxygenated blood collected from the

tissues of the body to the lungs. It is important to note that, other than oxygen, the heart

also delivers nutrient-rich blood to the tissues and carries away waste from them. A healthy

adult human heart beats approximately 100, 000 times a day, pumping around 5.25 liters of

blood per minute throughout the body [1, 2]. It is important to understand the anatomy and

physiology of the heart to comprehend the functioning of the heart.
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1.1.1 The Anatomy and Physiology of the Heart

The human heart, which lies in an oblique position in the thorax, measures approximately

12 cm in length, 8 cm in width and 6 cm in thickness, and weighs 250-350 grams [2]. The

size and weight of the heart varies depending on the sex of the individual, exercise habits,

cardiac pathology, among other factors. It consists of four chambers: right atrium (RA),

left atrium (LA), right ventricle (RV) and left ventricle (LV). The cardiovascular circulation

system consists of two circuits: the pulmonary circuit that transports oxygenated blood from

the lungs to the heart and delivers deoxygenated blood with carbon dioxide to the lungs, and

the systemic circuit that transports oxygenated blood to all the tissues of the body and returns

deoxygenated blood with carbon dioxide back to the heart, which will be sent to the pulmonary

circuit. The RV pumps deoxygenated blood to the pulmonary arteries to transport the blood

to the lungs, where the gas exchange occurs, i.e., carbon dioxide exits and oxygen enters the

blood. The oxygenated blood is transported from the lungs to the LA via pulmonary veins,

which then pumps the blood to the LV. The LV pumps this oxygenated blood to the aorta

and on to the systemic circuit. The deoxygenated blood is returned to the heart through the

superior and inferior vena cava to the RA. The heart consists of four valves to regulate the

amount of blood that enters and exits different chambers. The atrioventricular valves: mitral

valve and tricuspid valve, regulates the blood flow entering the LV and RV, respectively. The

semilunar valves: aortic valve and pulmonary valve, regulates the blood flowing to all the

tissues of the body and to the lungs, respectively [3]. An illustration of internal anatomy of

the heart and the cardiovascular circulation system can be seen in Fig. 1.1.

The heart wall is made up of three layers: the epicardium (outermost layer), the my-

ocardium (middle and thickest layer) and the endocardium (innermost layer) (Fig. 1.2). The

epicardium is the outer protective layer of the heart that is primarily made up of connective

tissues like elastic and adipose tissue. The myocardium is responsible for the contraction of

the heart that pumps the blood. It is made up of cardiac muscle cells called cardiomyocytes.

In order to generate high pressure required to pump blood to all the tissues of the body, the

LV myocardium is thicker than the RV myocardium. The RV requires relatively lower pres-
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Figure 1.1: Illustration of internal anatomy of the heart and the cardiovascular circulation
system [2].

sure to circulate the blood in the pulmonary circuit. The endocardium is the thinnest layer

of the heart wall and is made of endothelial cells. It protects heart valves, plays active role in

regulating the myocardial muscle contraction and acts as a boundary between blood-pool and

myocardium [2].

1.1.2 The Cardiac Cycle

The main purpose of the heart is to pump blood through the body. It does so by coordinated

contraction and relaxation of the heart muscles by electrical signals called the cardiac cycle.

The cardiac cycle refers to the series of events that occur from the beginning of the atrial

contraction to the end of the ventricular relaxation. It includes two phases: diastole and

systole. The diastole refers to the period of relaxation and the systole refers to the period

of contraction. It is paramount that the diastolic and systolic events occur in a regulated

and coordinated manner in the atria and the ventricles to efficiently pump the blood. An
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Figure 1.2: Layers of the heart wall [2].

illustration of the cardiac cycle is shown in Fig. 1.3.

The atria and the ventricles are in the diastole phase at the beginning of the cardiac cycle.

Therefore, the blood flows into the left and right atria. Also, the tricuspid and mitral valve

are open, resulting in an unobstructed flow from the atria to the ventricles. The pulmonary

and the aortic valves are closed and approximately 70-80 percent of ventricles are filled with

blood. Next, atrial contraction occurs resulting in filling the remaining 20-30 percent of the

ventricles. The atrial systole lasts for around 100 ms and is followed by ventricular systole, as

the atria returns to diastole. The ventricular systole is divided into two phases: isovolumetric

contraction phase and ventricular ejection phase, lasting a total of around 270 ms. During the

isovolumetric contraction phase, the blood pressure in the chamber is not high enough to open

the pulmonary and aortic valves, however it increase above the pressure of the atria, which

are now in the diastolic phase. This results in the closing of the tricuspid and mitral valves

by the blood that flows back toward the atria. In the ventricular ejection phase, the blood

pressure in the ventricles increase further and pushes open the pulmonary and aortic valves.

This is followed by ventricular diastole, which is again divided into two phases: isovolumetric



5

Figure 1.3: Illustration of the cardiac cycle [2].

ventricular relaxation phase and late ventricular diastole phase, lasting a total of approximately

430 ms. In the isovolumetric relaxation phase, as the ventricular muscle relaxes, the pulmonary

and aortic valves close due to the backflow of blood from the arteries to the heart. This

prevents further backflow of the blood to the heart. In the late ventricular diastole phase, the

ventricular muscle continues to relax and eventually the blood pressure in the ventricles drop

below that of the atria, pushing open the tricuspid and mitral valves, ensuing blood flow from

the major veins to the atria and the ventricle. This results in the atria and the ventricles in

the diastolic phase, with the atrioventricular valves open, completing one cardiac cycle.
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1.1.3 Cardiovascular Diseases

As described in the previous sections, the heart is a complex and intricate organ that requires

proper functioning of different systems in unison at various levels. As such, problems affecting

the functioning of the heart at any level can result in cardiac health issues. The most common

cardiovascular diseases (CVDs) can be divided into two types: ischemic and non-ischemic

heart diseases.

Ischemic heart diseases, also known as coronary heart diseases (CHD), are the primary

cause of morbidity and mortality worldwide [3]. It is primarily caused due to the decreased

blood flow in the coronary arteries, which occurs because of the accumulation of cholesterol

particles on the walls of these arteries. This accumulation of the cholesterol particles narrows

the coronary arteries, resulting in myocardial ischemia, wherein the heart muscle does not

receive adequate amount of oxygen to function properly, and can ultimately lead to myocardial

infarction (MI). The prolonged myocardial ischemia can lead to myocardial tissue becoming

necrotic, and this myocardial injury can become irreversible [4]. It is important to understand

that the coronary artery occlusion need not necessarily lead to MI. In many cases, the ischemia

leads to dysfunctional, but viable myocardial tissues. Myocardial revascularization therapy is

a procedure that restores blood supply to the viable ischemic myocardial tissues. To this end,

it is important to identify the viable but dysfunctional myocardium and differentiate it from

the necrotic tissue [3, 4].

Non-ischemic heart diseases, also known as non-ischemic cardiomyopathies, includes a

range of myocardial disorders such as, hypertrophic cardiomyopathy (HCM), dilated car-

diomyopathy (DCM), restrictive cardiomyopathy (RCM) and arrhythmogenic cardiomyopathy

(ACM). HCM is mostly a genetic condition that causes thickening of the septum, which is the

muscular wall that divides the left and the right chambers of the heart. This thickening nar-

rows the LV and affects the blood flow to the aorta, reducing the volume of the blood pumped

to the body. DCM, the most common type of cardiomyopathy, is a condition in which the LV

is enlarged and weakened, affecting the ability of the heart to pump blood. RCM is the rarest

form of cardiomyopathy that affects the diastolic function of the ventricles as they become
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abnormally rigid, impairing ventricular filling. ACM, another rare form of cardiomyopathy,

affects the RV muscle. In this case, the heart muscle of the RV is substituted by fat and/or

fibrous tissue, affecting the ability of the RV to expand and contract effectively [5, 6]. These

cardiomyopathies may develop to other heart complications, such as arrhythmia and heart

failure. In order to diagnose, treat and prognosticate these cardiac diseases, it is crucial to

analyze the ventricular structure and function.

1.1.4 Cardiac Function

Cardiac diseases have major impact on the cardiac motion and its pump activity. Therefore,

it is essential to assess the cardiac function in an accurate and reproducible way to diagnose

and plan the treatment. The cardiac function can be broadly classified into two types: global

and regional function parameters.

The assessment of global ventricular function includes myocardial mass, end-diastolic vol-

ume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), heart rate

(HR) and cardiac output (CO). Myocardial mass is computed by multiplying the total volume

of the ventricle with the assumed average density of the myocardium (1.05 g/ml). EDV is the

total amount of blood in the ventricles at end-diastole and ESV is the remaining amount of

blood in the ventricles after ejection. These two parameters can be used to deduce SV, EF

and CO:

SV = EDV − ESV, (1.1)

EF =
SV

EDV
, (1.2)

CO = SV ×HR. (1.3)

In clinical cardiology, the analysis of these global ventricular functional parameters is

crucial for diagnosis of various CVDs, planning therapeutic procedures and prognosis. For

example, LV ESV is one of the major determinant of survival post-MI [7].

In some cases, global ventricular functional parameters such as EF and CO may not cor-

relate with myocardial contractility. For instance, a small imbalance in the oxygen supply as
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a result of narrowing of coronary artery in ischemic heart diseases can result in contractile

dysfunction of the specific area of myocardial tissue [8]. Therefore, the assessment of regional

myocardial function characterized by myocardial wall thickness, myocardial motion, strain and

torsion can help better understand these CVDs. An instance of the clinical application of wall

motion and thickness quantification is the assessment of dysfunctional yet viable myocardium

in ischemic heart diseases. To this end, accurate and consistent computation of these cardiac

function parameters, both global and regional, are of utmost importance.

1.2 Cardiac Imaging

Cardiac imaging enables to capture these global and regional function parameters non-invasively.

In this section, we describe the most common non-invasive cardiac imaging modalities, i.e., ul-

trasound (US) imaging, computed tomography (CT) imaging, and magnetic resonance imaging

(MRI). We briefly outline the advantages and limitations of these clinical imaging modalities,

and explain the reason to focus our research on MRI.

1.2.1 Ultrasound Imaging

Ultrasound (US) imaging is a non-invasive technique that is based on the acoustic pulse-echo

measurement. The US probes, called transducers, transmit sound waves with frequencies

above the human hearing threshold (> 20 KHz), i.e., the US pulse. However, most of the

US transducers operate in the range of 1− 15 MHz, and they also receive the echo signals to

generate images [9]. These US transducers are made up of special ceramic crystal materials

called piezoelectrics. They produce US waves by converting the electric field applied to them,

and conversely produce electric signals when they receive the reflected acoustic signal. The

US waves are partially reflected back to the transducer by the surfaces where the density of

the matter changes (e.g. the boundary between soft tissue and bone) [10].

In clinical cardiology, US imaging has been used to assess both global and regional function

parameters, such as systolic and diastolic ventricular function, myocardial velocities during

systole and diastole, ventricular filling pressure, ventricular dyssynchrony, myocardial defor-
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mation, as well as isovolumetric contraction and relaxation peaks. These parameters can

provide prognostic markers for a number of CVDs. These assessments are enabled by a va-

riety of US imaging techniques like tissue doppler imaging (TDI), strain imaging, contrast

echocardiography and 3D transesophageal echocardiography (TEE) [11, 12].

Some of the advantages associated with US imaging are real-time imaging, low-cost, easily

portable and free of ionizing-radiation. In most cases, it tends to be the initial choice of

imaging modality due to its high accessibility. However, they do suffer from poor image

quality compared to CT and MRI, and trade-off between spatial and temporal resolution.

Additionally, a great deal of expertise is required to capture images of diagnostic significance

and to interpret them.

1.2.2 Computed Tomography Imaging

Computed tomography (CT) imaging produces cross-sectional images of the body using the

established X-ray technology. During a CT scan, the subject lies on a bed that moves axially

through the ring-shaped structure called a gantry, a motorized X-ray source moves around

the gantry, emanating narrow beams of X-rays through the body. The digital X-ray detectors

located opposite to the source picks up the X-ray leaving the patient and transmits it to the

computer. A 2D image slice is reconstructed after each rotation of the X-ray source, and

multiple such 2D slices are stacked to generate a 3D image of the organs [13].

The high spatial and temporal resolution of the CT imaging enables visualization of the

beating heart and in-turn, comprehensively assess the cardiovascular anatomy. Cardiac CT

is routinely used in clinical cardiology to detect coronary calcification from atherosclerosis,

evaluation of coronary stents, calcium scoring, detection of coronary artery stenosis, evaluate

cardiac masses, and other coronary anomalies [14]. Cardiac CT also provides accurate mea-

surements of ventricular volumes, regional wall motion and wall thickening [15]. The primary

disadvantage of CT imaging is the use of ionizing radiation, continuous exposure of which

can have harmful effects on the body [16]. In addition to the ionizing radiation, intravenous

contrast agents are injected into the body to visualize soft tissues better and this can cause
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allergic reactions and/or kidney failure in some cases [13].

1.2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive, ionizing radiation-free imaging technol-

ogy that produces high-resolution, dynamic 3D images of the human anatomy, with superior

soft tissue details. The MRI technology is based on the excitation and detection of the change

in the direction of the rotational axis of the protons in the hydrogen atoms found in the fat

and water that make up most of the human body [17]. The strong magnetic field (1.5 T or 3 T

for clinical use) produced by the powerful magnets in the MRI machines forces the protons in

the human body to align with respect to the applied field, which is followed by pulsing a radio

frequency (RF) current through the area of the body that we want to examine. This stimulates

the protons and causes it to spin out of equilibrium, which is the "resonance" part of the MRI.

The protons are forced to spin at a particular frequency called the Larmour frequency and in

a particular direction against the magnetic field. When the RF pulse is turned off, the protons

release the energy absorbed from the RF pulses as they realign with the magnetic field, and

this energy is picked up by the MRI sensors. This is recorded as k-space data and converted

to images using inverse Fourier transform. The amount of energy released by the protons and

the time it takes to realign with the magnetic field depends on the chemical nature of the

molecules, and these properties are used to distinguish various types of tissues [17, 18].

1.2.3.1 Cardiac MRI

In clinical cardiology, cardiac MRI is the current gold standard to depict cardiac structure,

cardiac function and myocardial viability, due to its high sensitivity to soft tissues [19, 20,

21, 22, 23, 24]. Despite certain shortcomings such as high equipment cost, large equipment

size, operational complexity, slower acquisition speed, patient discomfort during acquisition

(patient must hold their breath for a specified time during image acquisition) and incapability

to image patients with metallic implants, MRI is the preferred modality for imaging the cardiac

structure due to its unparalleled high soft tissue contrast. In particular, the cine cardiac MRI is
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Figure 1.4: Example of (a) cine MRI image with its (b) manual annotations - LV blood-pool
(LV) in blue, LV myocardium (MC) in green and RV blood-pool (RV) in red overlaid on it.

the primary technique used for cardiac function analysis and ventricular volume quantification

[24], the tagged cine MRI is used to evaluate dynamic deformations of the myocardium [25],

and the late gadolinium enhancement (LGE) cardiac MRI is the benchmark for assessing

myocardial viability by detection and quantification of myocardial scar tissues [19]. Therefore,

we utilize cardiac MRI datasets, in particular cine MRI and LGE MRI datasets, made available

publicly, for the research work in this dissertation.

Cine MRI The balanced steady-state free precession (bSSFP) pulse sequence, coupled with

retrospective electrocardiogram (ECG) gating enables the breath-hold cine cardiac MRI ac-

quisition, wherein a sequence of short-axis image slices of the heart throughout the cardiac

cycle are captured. A stack of such short-axis cine cardiac image slices are stacked together

to generate 4D image of the cardiac chambers. Due to the high signal-to-noise ratio (SNR),

contrast-to-noise ratio and acquisition speed enabled by the bSSFP pulse sequence, excellent

contrast between the myocardium and blood-pool is achieved by the cine acquisition protocols

(Fig. 1.4). In a typical cine cardiac MRI acquisition protocol, 20-40 frames of each short-axis

slices are captured, covering the entire cardiac cycle. A typical short-axis slice consists of an

in-plane resolution of 1-2 mm and a through-plane resolution of 5-10 mm [24]. The excellent
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Figure 1.5: Example of (a) LGE MRI image and associated hyper-enhanced regions marked
by red contour with (b) overlaid manual annotations - LV blood-pool (LV), LV myocardium
(MC) and RV blood-pool (RV).

contrast between the myocardium and the blood-pool, and the 4D nature of the acquired

cine cardiac MRI images enable the quantification of ventricular volumes, myocardial wall

thickness, myocardial motion irregularities, and other cardiac function indices.

Late Gadolinium Enhancement MRI The introduction of gadolinium-based contrast

agents in cardiac MRI established late gadolinium enhancement (LGE) cardiac MRI as the

standard clinical practice for assessment of myocardial tissue infarction [19, 26]. LGE is based

on the regional differences in extracellular space of the myocardium, i.e., it is based on the

concept of delayed wash in and wash out of the contrast agent in the infarcted areas of the

myocardial tissue, causing it to appear brighter than the surrounding non-infarcted regions

(Fig. 1.5). In a typical clinical set-up, the gadolinium-based contrast agent is administered

to a patient 10-20 minutes prior to the MRI image acquisition. In addition to assessing the

transmural extent of the infarct to predict the success of recovery of cardiac revascularization

therapy (CRT), LGE MRI can also be used in the diagnosis of myocarditis, cardiac sarcoidosis,

cardiac amyloidosis, DCM and HCM [27].
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1.3 Towards Personalized Models of Cardiac Anatomy

Cardiovascular diseases (CVD) are the most common non-communicable diseases worldwide,

and are associated with substantial morbidity and mortality [28]. According to World Health

Organization (WHO), the number of CVD-related deaths was 17.9 million in 2019, comprising

32% of the total number of deaths, and is expected to reach 22.2 million by 2030. In order to

tackle the adverse effects of CVD, early detection and prediction of the disease progression is

of utmost importance.

The clinical assessment for diagnosis of CVD includes examination of information from

medical history, physical tests, laboratory tests and cardiac imaging. Cardiac imaging, in

particular cardiac MRI, is used to assess the cardiac structure, as well as the global and

regional function indices of the heart, for diagnosis of ischemic and non-ischemic heart diseases

[29, 30]. Cardiac MRI is also routinely used to accurately depict the transmural extent of the

myocardial infarction to guide revascularization therapy [31].

In clinical cardiology, the excellent soft tissue contrast of cine MRI enables accurate and

reproducible delineation of the blood-pool and myocardium. Therefore, cine MRI is the bench-

mark for serial assessments of ventricular function and LV mass in patients who have undergone

various cardiac therapeutic interventions. Cine MRI can also be used to accurately determine

the regional myocardial wall thickness, which can be used in conjunction with LGE MRI to

differentiate between viable and non-viable myocardium in order to salvage the viable my-

ocardium [29].

In traditional clinical practice, crude averages and other statistics of population-based met-

rics are used to diagnose and recommend therapies, serving the "average patient". Although

such approaches have been useful to understand the general behavior of pathologies, substan-

tial inter-subject variation prevails, which can significantly affect the prospect of benefiting

from a therapy or being harmed by the therapy [32]. For instance, it is a common practice

in clinical cardiology to make therapeutic decisions based on surrogate biomarkers, notably

left ventricular ejection fraction (LVEF) [33]. While reduced LVEF identifies patients with

high risk of mortality, a number of patients who die prematurely as a result of ventricular
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tachyarrhythmias after previous myocardial infarction have indicated normal or only mildly

reduced LVEF [34]. This is due to the fact that LVEF reflects changes in LV dimensions

during the cardiac cycle, and not the changes in contractility. With the progress in medical

imaging and computational power in the recent years, personalized image-based computational

models have shown immense clinical potential to provide a more accurate diagnosis, prognosis

prediction and therapy planning tailored to the "individual patient" [35, 36, 37].

To be able to use patient-specific computational models of the heart for clinical decision

support, the model should ideally be a combination of cardiac anatomy, electrophysiology,

biomechanics, and hemodynamics [35, 38, 39, 40]. The personalized anatomical model of the

heart usually includes geometric model of the cardiac chambers extracted from cine MRI,

scar anatomy extracted from LGE MRI and the fiber architecture from diffusion tensor (DT)

MRI [35]. In this dissertation, we focus on developing patient-specific bi-ventricular geomet-

ric models from cine cardiac MRI images, and integrating the scar anatomy from LGE MRI

images with the myocardial anatomy from cine MRI images. To this end, accurate and robust

segmentation of the cardiac chambers from cine MRI images to estimate cardiac function in-

dices, accurate cardiac motion estimation from the cine MRI images to assess the kinematic

and contractile properties of the myocardium and accurate registration of LGE MRI images

with their corresponding cine MRI images to assess myocardial viability are crucial. Further-

more, computationally enhancing the image resolution of anisotropic 3D cardiac MRI images

alleviates the challenges imposed on the segmentation and registration tasks due to the low

through-plane resolution of these cardiac MRI volumes.

1.3.1 Cardiac MRI Segmentation

In order to compute the cardiac structural and functional indices from the short-axis cine MRI

images, it is essential to delineate the boundaries of cardiac chambers from the MRI data.

Although the manual segmentation is the current gold-standard, it can be a very laborious

and time intensive task. Furthermore, manual segmentation is subject to significant intra-

and inter-observer variability. For example, in the inter-observer variability study done by
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some researchers, the limit of agreement for ejection fraction computation obtained by manual

segmentation was in the range of [9.9%-10.3%] [41], [6%-22%] [42] and [10.3%-11.3%] [43].

Similarly, the intra-observer variability in these studies were in the range of 7% [43] and 20%

[44], for left ventricle myocardial mass computation. Hence, there remains an uncertainty

in these manual segmentations, as the computed clinical cardiac function indices from these

segmentations could differ from the clinical fact due to intra- and inter-observer variability.

Therefore, accurate, robust and consistent segmentation of cardiac chambers from cardiac MRI

segmentation is crucial to improve the precision of computation of the clinical cardiac function

indices. To this end, a number of semi-automatic and fully automatic segmentation techniques

have been developed to aid the cardiologists in clinical practice. The popular cardiac MRI

segmentation methodologies can be classified into three categories: (i) segmentation algorithms

with no prior or weak prior, (ii) segmentation algorithms with strong prior, and (iii) deep

learning-based segmentation algorithms [45, 46, 47, 48, 49].

1.3.1.1 Segmentation Algorithms with No Prior or Weak Prior

These segmentation algorithms use little or no prior information about the input image, instead

they rely on the intensity differences between the blood-pool, myocardium and the surrounding

tissues in the cine MRI data. Typical segmentation algorithms with weak or no prior knowledge

include thresholding, region growing, pixel or voxel classification and active contours.

Thresholding and Region Growing Thresholding algorithms usually analyze the inten-

sity histograms of the input MRI image to determine a threshold value and use it to localize

the region of interest (RoI), i.e., the blood-pool and/or myocardium [50, 51, 52]. In region

growing algorithms, one or more seed points are selected in the MRI images (for instance,

one seed point each in blood-pool and myocardium), and the neighboring pixels with simi-

lar features (intensity, texture) are appended to these seed points, growing the region. The

region growing stops when no more neighboring pixels meet the inclusion criteria, resulting

in a segmented image [53, 54]. Often, thresholding is used to distinguish the blood pool,

the myocardium and the surrounding regions, and then followed by region growing to refine
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the segmentation [55, 56, 57]. While these approaches require no prior knowledge and work

fairly well to segment the cardiac chambers in mid-ventricle slices, they often fail in basal and

apical slices, and are affected by obstacles such as papillary muscles. Also, they are prone to

inter-user variability as they require considerable user-intervention.

Pixel or Voxel Classification Here, each pixel or voxel is classified into a particular class

depending on their features (intensity, color, and texture) using unsupervised or supervised

techniques. In cardiac MRI segmentation, unsupervised methods typically include k-means

clustering [58, 59] and Gaussian Mixture Model (GMM) with Expectation-Minimization (EM)

[60]. In k-means clustering, k initial centroids (number of clusters) are chosen and each pixel

is assigned to a cluster according to their distances to the centroids. This is followed by

computation of new centroids and the process is repeated until no change occurs. In cardiac

MRI segmentation, the LV blood-pool is identified by computing the distance to a circle [61].

Fuzzy c-means algorithm [62], a generalization of k-means allows for soft clustering instead of

the hard clustering performed by k-means algorithm, can be used to segment the LV region

[63]. GMM is another generalization of k-means algorithm and is estimated using the EM

algorithm. The EM algorithm is used to find the maximum likelihood estimates of parameters

of a statistical model. This method can model soft, non-spherical clusters to segment the

cardiac chambers like LV blood-pool as well as RV blood-pool [64, 65, 66]. These methods

require some prior knowledge like the geometric assumptions, as they have to compensate for

the minimal spatial information.

In contrast to the clustering methods, supervised classifiers like the support vector machine

(SVM) [67], random forest [68], k-nearest neighbour [69] and neural network [70] need labelled

training data. In cardiac MRI data, each pixel is usually labelled as LV blood-pool, LV

myocardium, RV blood-pool and background. The training data and their corresponding

labels are used to train these classifiers by learning to minimize a cost-function that punishes

misclassification of the training labels [71, 72, 73]. In general, the supervised techniques provide

more accurate segmentation than the unsupervised ones as it uses annotation from the experts

to train the classifier models. However, these supervised classifiers require annotations for
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these training data, does not generalize well if the testing data statistically deviates from the

training data and often ignore the spatial dependencies of the local features [46].

Active Contours or Snakes Active contours [74], or deformable models, have been widely

used in cardiac image segmentation [75, 76, 77, 78]. This method involves iteratively deforming

curves that search for cardiac chamber walls with weak prior knowledge, instead of directly

classifying the pixel/voxel regions. Here, a parameterized spline curve C(s) = (x(s), y(s)),

where s is a free parameter, is deformed locally towards the target boundaries based on the

predefined internal spline energy Eint, and the external image forces Eext. The internal spline

energy aims to maintain the topology and smoothness of the parameterized spline curve and

the external image force pushes the spline curve to the target boundary. The total energy

function is given by:

E =

∫
Eint(C(s)) + Eext(C(s)) + Ec(C(s))ds, (1.4)

where Ec denotes additional constraints that focuses on enhancing convergence or penal-

ising unwanted shape irregularities.

Some of the limitations of the active contour-based methods include user interaction to

initialize the contours, collapse of the snake due to internal spline energy, poor convergence

of boundary concavities, often gets stuck in local minima states, computational complexity,

and longer computation times. To mitigate some of these limitations, many researchers have

proposed various modifications to the energy functions, such as including pressure force ("bal-

loons") [79] normal to the direction of the curve [80], gradient vector flow (GVF) [81] as the

external energy term in the snake formulation [76, 82], and the level set framework [83], where

the curve is implicitly defined as the zero level of a higher dimensional function to handle large

topological changes, i.e., when the the curve has to be morphed significantly [84, 85].
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1.3.1.2 Segmentation Algorithms with Strong Prior

While the segmentation algorithms with weak or no prior knowledge are computationally

efficient, they produce inaccurate segmentation results in the ill-defined regions and require

significant user-interaction to correct them. On the other hand, methods that employ strong

priors, such as graph-cut algorithms, statistical shape models and atlas-based models can

increase the segmentation accuracy and robustness in the ill-defined regions, however, they

require manual building of training set that is representative of the population.

Graph-cut Algorithms In a two-class graph-cut segmentation algorithm [86, 87], a graph

G = (V,E) is defined such that the vertices V represent a set of pixels/voxels/super-pixels

and E represents a set of edges connecting a pair of neighboring vertices. In addition, there

are two special (terminal) vertices, source vertex (representing foreground object in the image)

and sink vertex (representing background object in the image). Also, there are two types of

edges, terminal edges (connects terminal and non-terminal vertices) and non-terminal edges

(connects the non-terminal vertices only). The graph is a flow network, for which there are

efficient algorithms to compute a minimal cut that separates the two terminal vertices, and

this minimal cut defines a segmentation. The idea of the graph-cut algorithm is that that the

minimal cut solution will keep the pixels/voxels with high probabilities (foreground) to belong

to the side of the source vertex and similarly the background pixels/voxels on the other side

of the cut near the sink vertex. Other than the minimal cut criterion as cost function for

image segmentation [88], researchers have proposed normalized cut [89], region cut [90], mean

cut [91] and ratio cut [92]. The graph-cut based algorithms for segmentation of LV and RV

from cardiac MRI usually requires shape priors [93, 94, 95, 96] or context-based information

[97, 98]. These graph-cut algorithms produce accurate segmentation results in the mid-slices

of the 3D MRI images, however, the segmentation is often compromised in the apical/basal

slices as well as in complex cardiac structures, such as papillary and trabecular muscles.

Active Shape and Appearance Models One of the most popular segmentation algorithm

used in medical imaging, active shape model (ASM) [99] learns the pattern of shape variability
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as in the training set of labelled examples, but constrained by the point distribution model,

and iteratively deformed to fit the target shape in a new image. Here, we need the models of

the image appearance around each model point, for instance, a simple model assumes that the

points lie on strong edges. The initial estimate of the pose and shape parameters are iteratively

updated until convergence by repeating these two steps: calculating the adjustments for each

model point (landmark) by looking along normal vector to the surface to find the best local

match for the model of the image appearance for the landmark in question and updating the

model parameters to best fit the model instance by minimizing the squared distances to the

found best positions. The ASM segmentation method exploits the strong prior knowledge

like the specific shape variability of the cardiac chambers to produce accurate and robust

segmentation of these chambers from the cardiac MRI images [100, 101].

An extension of ASM, active appearance model (AAM) [102] includes gray level modeling

and learns both the shape and texture variability from the annotated training set. This

results in a more robust and realistic statistical model. AAM is applied extensively in cardiac

MRI segmentation, and demonstrates clinical potential in quantifying the cardiac function

indices such as ventricular volumes and myocardial mass [103, 104, 105]. However, the AAM

segmentation methods use global contour optimization instead of the local structures, as in

ASM. This has led to hybrid models that combine the strengths of both ASM and AAM

methods such that the AAM is used to model the cardiac chambers and the ASM allows for

position refinement [106, 107, 108].

Regardless, the ASM and AAM segmentation methods are not applicable for widespread

clinical use as they demand annotation of the training sets, the model fitting process can be

computationally expensive and slow, prone to local minima and not generalizable.

Atlas-based Models In the context of cardiac MRI segmentation, an atlas is a reference

cardiac MRI image that describes the different cardiac structures (LV and RV) that needs to be

segmented along with its ground truth segmentation. Given this atlas, a cardiac MRI image

can be segmented via image registration. The atlas-based segmentation technique involves

obtaining an optimum registration transform to register the atlas image to the test image,
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and using this obtained registration transform to deform the ground truth segmentation map

of the atlas to segment the test image. The cardiac atlas can be constructed either using a

single segmented image (single atlas model) [109] or an average obtained from multiple atlases

(probabilistic atlas model) [110, 111] on the same reference coordinate system. While both

these methods require only one registration step, the single atlas model-based segmentation

method produces poor segmentation results due to the large variability in the test images.

This can be overcome using the probabilistic model by incorporating the variability in the

multiple training atlases. Alternatively, multiple atlases can be registered to the test image

and a label fusion strategy can be used to obtain a segmentation map of the test image (multi-

atlas model) [112, 113]. This method is relatively more robust than the single and probabilistic

atlas models, at the cost of increased computational time and resources.

1.3.1.3 Deep Learning-based Segmentation Algorithms

Over the last few years, deep learning [114] algorithms have demonstrated substantial im-

provement in computer vision tasks, including medical image segmentation. The availability

of large number of open-source cardiac MRI datasets with ground truth segmentation maps

[115, 116, 117] and advanced computer hardware for training the deep learning algorithms has

benefited cardiac MRI segmentation immensely, outperforming the previous state-of-the-art

non-deep learning segmentation methods [115, 49, 118, 119].

A standard convolutional neural network (CNN) takes an input image, learns hierarchical

features by passing the image through a stack of convolutional filters, followed by normaliza-

tion layer and non-linear activation function to extract feature maps. The extracted feature

maps are downsampled using pooling layers. These downsampled spatial feature maps are

then passed through fully connected layers to further reduce the dimension of the features and

find the most relevant features for inference. To perform inference, the CNN must be trained

to minimize a cost function and to update the model parameters. This cost function accounts

for the error between the CNN prediction and the ground truth labels during training, and

provides information for the optimizer to update the CNN parameters through backpropaga-
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Figure 1.6: U-Net architecture [120]

tion [121], thereby predicting outputs that is as close as possible to the ground truth. In order

to obtain pixel-wise segmentation of the cardiac chambers from cine cardiac MRI datasets,

fully convolutional neural networks (FCN) [122] and its variants are more commonly used

[123, 124, 125]. FCNs are CNNs that do not have any fully connected layers, instead they

have an encoder-decoder framework that transforms the input image into high-level feature

representation (encoding) and recovers spatial information back to the image space to produce

pixel-wise segmentation maps. A number of variants of FCN have been proposed for medical

image segmentation, the most popular of which is U-Net [120]. The U-Net model consists of

a contracting path, a bottleneck and an expansive path that give it the U-shaped architecture

(Fig. 1.6). Additionally, it employs skip connections between the contracting and expansive

path to allow the network to propagate spatial context information to higher resolution layers.

The U-Net model and its variants have been widely adopted for the segmentation of cardiac

chambers from cardiac MRI datasets with various loss functions [126, 127], as 3D network

[128, 129], as multi-task learning network [130, 131], etc. A more comprehensive review of

deep learning-based algorithms for cardiac MRI segmentation can be found in [49].
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1.3.2 Multimodal Image Registration: Cine MRI and LGE MRI

As mentioned in the Section 1.2.3.1, LGE MRI enhances the infarcted myocardium such that

it appears distinctively brighter than the surrounding healthy myocardial tissue. The precise

localization and quantification of the infarcted regions from these LGE MRI images is critical

for diagnosis and planning therapy. In a clinical set-up, the viability of the myocardium

is visually assessed based on these LGE MRI images, however, manual delineation of the

compromised myocardial tissue is time-consuming and subject to intra- and inter-observer

variations. While automatic segmentation of the scar tissue from LGE MRI [132, 133, 134] is

desired, direct segmentation of these tissues is very challenging due the following reasons: (i)

overlap in the intensity range of different tissues in the LGE MRI images (for example, the

scar tissue can appear identical to the LV blood-pool, and the myocardium can have similar

intensity range as adjacent lung/liver tissues); (ii) heterogeneous intensity of the myocardium

due to the different pathologies associated with the heart; and (iii) inter-subject variations in

the enhancement patterns of the scar tissue such as location, size and shape. These issues

make it difficult to directly segment the infarcted regions from the LGE MRI data without

any prior knowledge [135, 136].

To accurately delineate the scar tissue from the LGE MRI images, integration of prior

shape information of the myocardium would be very useful. Although LGE MRI is useful to

identify scarred myocardium regions, it does not allow for high contrast between the blood-

pool and the myocardium. Therefore, a number of reported methods use the excellent contrast

between myocardium and blood-pool provided by the cine MRI, acquired in the same session

as the LGE MRI, as a priori knowledge [135, 136]. Therefore, accurate registration of the

LGE MRI images with their corresponding cine MRI images enables visualization of all desired

features, i.e., blood pool, myocardium, and scarred regions. The methods in the literature for

multimodal image registration of cine MRI and LGE MRI can be broadly classified into: (i)

rigid registration, (ii) affine registration, and (iii) deformable registration.
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1.3.2.1 Rigid Registration

In rigid image registration, the cine and LGE MRI images are aligned by simply translating

and rotating with respect to each other to achieve correspondence, thus preserving the internal

cardiac structure. The automated rigid registration of cine and LGE MRI can be 2D rigid

registration based on a shift window [137], 3D rigid registration using mutual information as

the similarity measure [138], or rigid registration of the 3D cine volume to each of the 2D LGE

slices to propagate 3D cine contours onto the 2D LGE slices [139]. It is common for the shape

and local deformations to differ in the cine and LGE MRI datasets, which is not accounted

for in the rigid registration methods, and this can have adverse impact on the localization of

the scarred regions in LGE MRI. However, these rigid registration methods can be useful for

initial alignment of the cine and LGE MRI images [140].

1.3.2.2 Affine Registration

In addition to translation and rotation, the affine registration of cine and LGE MRI images can

be used to correct for scaling and shearing differences. A number of affine registration methods

have been proposed to register the LGE MRI images with their corresponding cine MRI images

by using similarity measures based on cross-correlation [141], mutual information [142] and/or

pattern intensity [143]. While the affine registration methods account for the scaling and

shearing differences, it cannot sufficiently correct for the local deformations. However, the

affine registration methods can provide better initial alignment than rigid registration [142].

1.3.2.3 Deformable Registration

Deformable image registration involves warping an image (moving image) to align to the other

image (target image) via a deformation field such that it can account for the differential local

deformations between the two images. The deformable registration step is usually followed

post the initial alignment by rigid or affine registration to fine-tune the registration using trans-

formation models such as B-spline based free form deformation, thin-plate splines, Demons

algorithm, or finite element method-based linear elastic [140, 142, 144, 145]. To summarize,
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these methods employ traditional approaches to iteratively optimize the registration objective

function for a given image pair. An overview of the transformation models and the objective

functions for deformable image registration can be found in [146] and an overview of multi-

modal image registration methods with transformation models and objective functions specific

to cardiac diagnosis and treatment can be found in [147].

With the advent of deep learning and introduction of deep learning-based image registra-

tion algorithm like spatial transformer networks (STN) [148], several researchers proposed the

training of neural network-based image registration algorithms to optimize the registration

cost function for a given pair multimodal medical images [149, 150, 151, 152]. A detailed

review of deep learning-based medical image registration, including multimodal registration

algorithms can be found in [153].

1.3.3 Cardiac Motion Estimation

Cardiac motion estimation is crucial to assess regional cardiac function such as myocardial

wall deformation, strain, torsion and thickness from cardiac MRI images. While tagged MRI

(tMRI) is the current reference modality to obtain regional information on myocardial defor-

mation, a number of researchers showed that it is possible to obtain accurate cardiac motion

estimation from untagged cine cardiac MRI [154, 155, 156].

1.3.3.1 Cardiac Motion Estimation from Tagged MRI

As surgically implanting invasive markers into the myocardium tends to influence the re-

gional motion pattern of the myocardial muscle and are impractical for clinical applications,

MRI tagging [157] was developed to provide non-invasive mathematical markers inside the

myocardium. MRI tagging involves superimposing grid-like structures on the myocardium

by applying special RF pulses called spatial modulation of magnetization (SPAMM). The

grid-like structures (tags) on the images are deformed along with the myocardium, allowing

quantification of deformation and evaluation of the myocardial motion [25] (Fig. 1.7).

Cardiac motion tracking from 3D tMRI sequences can be achieved using harmonic phase
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Figure 1.7: Example of tagged MRI images during diastole (left) and systole (right), with
red lines representing radial strain measurements and green lines representing circumferential
strain measurements [25]

(HARP) technique [158], local sine wave modeling [159], Gabor filter banks [160], deformable

models [161], optical flow methods [162] or non-rigid image registration methods [163]. A

comparative study of the myocardial function quantification techniques using tMRI can be

found in [164]. Although MRI tagging allows for non-invasive mathematical landmarks for

tracking the myocardial wall deformation, it has considerable limitations. Some of the common

issues with tMRI are the fading of the tags through the cardiac cycle, low temporal resolution,

masking the cardiac anatomy, and additional acquisition time. Therefore, cardiac motion

estimation from untagged cine cardiac MRI is gaining popularity as it alleviates most of the

limitations of tMRI.

1.3.3.2 Cardiac Motion Estimation from Untagged Cine MRI

Due to the high soft tissue contrast and high temporal resolution of cine cardiac MRI images,

they can be used for cardiac motion estimation. Cardiac motion estimation methods from cine

cardiac MRI can be mainly classified into (i) incompressible deformable models, (ii) physiome

models, (iii) feature-based tracking methods, and (iv) registration-based methods [155].

The incompressible deformable model strategy is based on a 3-D deformable model that

is incompressible. It is based on the assumptions that myocardium is almost incompress-
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ible and that there is no transmural bending during myocardial movement [165, 166]. The

physiome model involves combining electrophysiology, kinematics, and/or mechanics of the

heart by merging the electrical propagation model, electromechanical coupling model, and/or

biomechanical model, respectively. The myocardial deformation can be recovered by coupling

of these models [167, 168]. The relatively popular feature-based tracking methods involves

segmentation of the myocardial wall from the cine cardiac MRI data, followed by geometrical

and mechanical modeling to extract the displacement field in order to perform cardiac motion

analysis [169, 170, 171]. The registration-based method for cardiac motion estimation from

cine cardiac MRI can be energy-based warping or optical flow techniques.

A number of 4D deformable registration methods based on voxel similarity measures have

been proposed for cardiac motion estimation from 4D cine MRI data [172, 154, 173]. The

main idea behind these methods involves establishing correspondence in both the temporal

and the spatial domains between two 3D cardiac MRI images by employing methods like 4D

spatio-temporal B-spline models [172, 174]. More specifically, registering 3D images acquired

at different phases of the cardiac cycle to each other can estimate cardiac motion. A more

detailed review of non-deep learning cardiac image registration methods can be found in [175].

With increase in popularity of deep learning algorithms for image registration, a number

of deep learning-based 4D deformable registration methods have been proposed for cardiac

motion estimation from cine cardiac MRI [131, 176, 177].

1.3.4 Cardiac MRI Super-Resolution

In clinical cardiac MRI, the 3D volumes obtained usually have high in-plane resolution, but

low through-plane resolution (slice thickness). For example, in a typical cine and LGE cardiac

MRI, the anisotropic cardiac volumes have an in-plane resolution of 1 to 1.5 mm and through-

plane resolution of 5 to 10 mm. This is due to the inherent trade-off in the MRI imaging

protocol between the signal-to-noise ratio, spatial and temporal resolution, and acquisition

time. Therefore, the obtained anisotropic cardiac MRI may impose challenges in downstream

segmentation and registration tasks. In order to overcome this limitation, researchers have
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proposed a number of super-resolution methods to computationally enhance the resolution of

the image [178, 179, 180, 181].

1.3.4.1 Image Interpolation and Non-Deep Learning Super-Resolution Methods

The aim of image interpolation is to improve image resolution by upsampling. Image in-

terpolation methods can be broadly classified into: (i) polynomial-based interpolation and

(ii) edge-directed interpolation methods. A comprehensive review of the both polynomial-

based and edge-directed interpolation methods can be found in [178]. The image interpolation

methods involve only upsampling the low-resolution (LR) image and assume the LR images are

aliased as they are a direct downsampled version of the high-resolution (HR) images. During

the upsampling process of the image interpolation methods, they often exploit this aliasing

property and perform dealiasing of the LR image [182]. However, this leads to a blurry HR

image, as the upsampling does not usually recover high-frequency semantic and structural

information, which is crucial for cardiac MRI images.

In order to address the limitation, researchers proposed super-resolution algorithms as

they involves upsampling, deblurring and denoising. A detailed review of super-resolution

algorithms, prior to deep learning-based methods are described in [178].

1.3.4.2 Deep Learning-based Super-Resolution Methods

In recent years, a number of research efforts proposed deep learning-based super-resolution

methods to computationally enhance the resolution of the image. These deep learning-

based super-resolution algorithms can be classified into recursive learning, residual learning,

dense connection-based learning, multi-scale learning, advanced convolution-based learning

and attention-based learning. A comprehensive review of these deep learning architectures for

image super-resolution can be found in [180].

With the advent of deep learning-based super-resolution methods for natural images, sev-

eral researchers proposed these methods for medical images, especially brain MRI images [181].

However, relatively limited efforts have been made to improve the through-plane resolution of
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cardiac MRI images.

1.3.5 Evaluation Metrics

The following metrics are used to evaluate the various algorithms presented in this manuscript.

1.3.5.1 Intersection of Union and Dice

The intersection of union (IoU) and Dice of two binary segmentation masks, X and Y , are

defined as:

IoU =
|X ∩ Y |
|X ∪ Y |

, Dice =
2|X ∩ Y |
|X|+ |Y |

(1.5)

where, |·| represents the cardinality of each set. Both, the Dice and IoU metrics are defined

such that, the values 1.0 and 0.0 indicate 100% and 0% overlap between the two segmentation

masks, respectively.

1.3.5.2 Average Surface Distance and Hausdorff Distance

The average surface distance (ASD) computes the average distance between the two surfaces

and the Hausdorff distance (HD) computes the largest distance between the two surfaces.

They are defined as:

ASD =
1

2

 1

NX

∑
p∈SX

d(p, SY ) +
1

NY

∑
q∈SY

d(q, SX)

 (1.6)

HD = max

(
max
p∈SX

d(p, SY ) max
q∈SY

d(q, SX)

)
, (1.7)

where, SX and SY (with NX and NY points, respectively) are surfaces corresponding to the

two binary segmentation masks, X and Y , respectively, and d(p, S) is the minimum Euclidean

distance of the point p from the points q ∈ S.
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1.3.5.3 Peak Signal-to-Noise Ratio and Structural Similarity Index

Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [183] are the two

most widely used evaluation metrics for image quality assessment.

The PSNR can be defined using the mean squared error (MSE) such that, for image I

and its noisy approximation J of size mxn with c number of channels, MSE and PSNR are

expressed as:

MSE =
1

i ∗ j ∗ c
∑

(I − J)2 (1.8)

PSNR = 10 · log10
(
MAX2

I

MSE

)
(1.9)

where, MAXI is the maximum possible value for a pixel in the image. The PSNR values

typically range between 15 and 30, where higher value represents closer to approximation of

the image J to image I.

The SSIM metric is based on the comparison between the luminance, contrast and structure

between the two images I and J . It is defined as:

SSIM(I, J) =
(2µIµJ + c1)(2σIJ + c2)

(µ2
I + µ2

J + c1)(σ2
I + σ2

J + c2)
(1.10)

where, c1 = (k1L)
2, c2 = (k2L)

2, µ represents the average, σ2 represents the variance, σIJ

represents the covariance between I and J . Here, L represents the dynamic range of the pixel

values, with k1 and k2 as constants. The SSIM index ranges from 0 to 1, with 0 indicating no

similarity between the two images and 1 indicating perfect similarity.

1.4 Dissertation Contributions

Contributions to Cardiac MRI Segmentation

In our efforts to develop a deep learning pipeline to generate patient-specific computational

models of the heart for clinical decision support, the first specific aim was to obtain accurate
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and robust automated segmentation of the cardiac chambers from cine MRI to estimate cardiac

function indices. In the 2017 automated cardiac diagnosis challenge (ACDC) [115], U-Net in-

spired architectures proved to be the state-of-the-art for the segmentation of cardiac chambers

from the cine MRI data. In order to obtain improved segmentation results, we investigated the

integration of these U-Net inspired architectures into an adversarial framework to segment LV

blood-pool from the ACDC dataset. Subsequently, we evaluated the viability of the proposed

adversarial framework for multi-class segmentation of LV blood-pool, LV myocardium and RV

blood-pool. Furthermore, we show its effect on the clinical cardiac parameters, specifically,

stroke volume, ejection fraction and myocardial mass.

Contributions to Cardiac Motion Estimation

In order to asses the regional heart function, accurate cardiac motion estimation from cine

MRI data is important. Cardiac motion estimation from 4D cine MRI dataset involves finding

an optical flow representation between the consecutive 3D cine cardiac frames. To this end,

we propose a CNN-based 4D deformable registration technique for consistent cardiac motion

estimation from an open-source 4D cine cardiac MRI dataset.

Furthermore, we extend the proposed preliminary, proof of concept, CNN-based 4D de-

formable registration method to develop dynamic patient-specific geometric models of the LV

myocardium across subjects with different pathologies, namely normal, DCM, HCM and sub-

jects with prior myocardial infarctions. We also extend the proposed cardiac motion extraction

method to generate dynamic, deformable models of the RV blood-pool across subjects with

normal and abnormal RV.

Contributions to Cine MRI and LGE MRI Registration

To accurately localize and quantify compromised myocardium, it is crucial to co-register the

cine and LGE MRI images. Several researchers proposed CNN-based unsupervised registration

algorithms using similar cost functions as the traditional unsupervised registration algorithms

to register the cine and LGE MRI data. These unsupervised deep learning-based registration
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methods do not necessarily improve registration accuracy beyond that achieved using tradi-

tional unsupervised approaches as the cost functions used to optimize them are similar. To

overcome these challenges, we propose a regions of interest (RoI) guided registration technique

to improve the registration accuracy beyond the aforementioned unsupervised techniques. This

method relies on the annotations of cardiac structures obtained by manual annotation or by

previously validated automatic segmentation techniques.

While the proposed RoI-guided CNN architecture can be used to reliably register cine and

LGE MRI images, it requires annotations of cardiac structures for large number of training

data. Therefore, we propose a joint deep learning framework for registration of cine and LGE

MRI images, and the segmentation of cardiac chambers from both cine and LGE MRI data.

The aim of this coupling of the segmentation and the registration tasks is to improve the

registration accuracy by sharing the weights learned from the segmentation models, thereby,

using fewer training datasets and reducing the need for large number of manual annotations.

Contributions to Cardiac MRI Super-Resolution

In a typical clinical cardiac MRI acquisition, multiple high resolution short-axis MRI slices

are acquired resulting in anisotropic 3D volumes of the heart that have high in-plane res-

olution (1 to 2 mm) and low through-plane resolution (5 to 10 mm). The anisotropic 3D

cardiac MRI images result in low resolution representation of the cardiac anatomy, which may

impose challenges in previously mentioned segmentation and registration techniques. To ad-

dress this limitation, we propose a self-supervised 2D deep learning framework to compute

super-resolution cardiac MRI images. Additionally, we also propose a 3D CNN-based archi-

tecture with gradient guidance to generate super-resolution cardiac MRI images. The aim

of the gradient guidance is to “pay more attention” to the 3D structure of the tissues in the

cardiac MRI images. We assess the performance of the proposed method on an open source

high-resolution LGE MRI dataset. In addition to training and testing the proposed method

on the open source LGE MRI dataset, we also evaluate the generalization ability of the the

trained models on a completely different dataset. Furthermore, we investigate the effect of the
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proposed super-resolution method on the downsampling segmentation task.

1.5 Dissertation Overview

The dissertation chapters provide a detailed description of the proposed deep learning-based

methods to overcome certain challenges of cardiac MRI segmentation and registration. Chap-

ter 1 of this dissertation serves as an introduction to the cardiovascular system, cardiac imag-

ing, the steps towards personalized models of the cardiac anatomy, and their challenges. The

subsequent chapters describe the proposed deep learning-based methods for the development

of patient-specific models of cardiac anatomy.

Chapter 2

This chapter deals with segmentation of cardiac chambers from cardiac MRI data. It provides

a detailed description of an adversarial network architecture to segment LV blood-pool, LV

myocardium and RV blood-pool from an open-source cine cardiac MRI dataset. Also, the

effect of the proposed segmentation method on the clinical cardiac parameters is investigated.

The materials presented in this chapter are adapted from the manuscripts published in 2019

Function Imaging and Modeling of the Heart (FIMH) conference in Springer’s Lecture Notes

in Computer Science series and 2020 SPIE Medical Imaging conference.

Chapter 3

This chapter deals with motion estimation from 4D cine MRI data. It provides a detailed de-

scription of the proposed CNN-based 4D deformable registration technique to estimate motion

from an open-source 4D cine cardiac MRI dataset. Furthermore, the chapter demonstrates

the use of proposed cardiac motion estimation method to build dynamic patient-specific LV

myocardial models across subjects with different pathologies. Additionally, the proposed CNN-

based motion estimation method is applied for motion extraction of the RV from the open-

source 4D cine cardiac MRI dataset. The materials presented in this chapter are adapted from

the manuscripts published in 2020 Computing in Cardiology (CinC) conference, 2021 FIMH
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conference in Springer’s Lecture Notes in Computer Science series and 2021 International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

Chapter 4

This chapter deals with registration of cine MRI data with their corresponding LGE MRI data.

It provides a detailed description of the proposed CNN-based supervised image registration

method to register cine MRI images to its corresponding LGE MRI images. In addition, an

extension of the proposed method, a joint deep learning framework that enables a multi-task

training of segmentation and registration is described in detail. The materials presented in this

chapter are adapted from the manuscripts published in 2020 Medical Image Understanding

and Analysis (MIUA) conference in Springer’s Lecture Notes in Computer Science series and

2021 SPIE Medical Imaging conference.

Chapter 5

This chapter provides a detailed description of a self supervised 2D CNN-based framework and

a 3D CNN framework with gradient guidance to compute super-resolution LGE cardiac MRI

images. The proposed method is assessed on an open-source high-resolution LGE MRI dataset.

Additionally, the effect of the proposed super-resolution method on downstream segmentation

task is investigated. The materials presented in this chapter are adapted from the manuscripts

published in 2021 CinC conference and 2022 International Conference of the IEEE EMBC.

Chapter 6

This chapter summarizes the contributions of this dissertation with respect to patient-specific

models of the cardiac anatomy and provides some potential future research directions.
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Chapter 2

Automated Segmentation of Cardiac

Chambers from Cine Cardiac MRI

Using an Adversarial Network

Architecture

Cine cardiac magnetic resonance imaging , the current gold standard for cardiac function

analysis, provides images with high spatio-temporal resolution. Computing clinical cardiac pa-

rameters like ventricular blood-pool volumes, ejection fraction and myocardial mass from these

high resolution images is an important step in cardiac disease diagnosis, therapy planning and

monitoring cardiac health. An accurate segmentation of left ventricle blood-pool, myocardium

and right ventricle blood-pool is crucial for computing these clinical cardiac parameters1. U-

Net inspired models are the current state-of-the-art for medical image segmentation. SegAN, a
1This chapter is adapted from:

Upendra R.R. et al., “An Adversarial Network Architecture Using 2D U-Net Models for Segmentation of Left
Ventricle from Cine Cardiac MRI.” In: Coudière Y., Ozenne V., Vigmond E., Zemzemi N. (eds) Functional
Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science, vol 11504. Springer,
Cham.
Upendra R.R. et al., “Automated segmentation of cardiac chambers from cine cardiac MRI using an adver-
sarial network architecture.”, Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, Robotic
Interventions, and Modeling, 113152Y (16 March 2020).
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novel adversarial network architecture with multi-scale loss function, has shown superior seg-

mentation performance over U-Net models with single-scale loss function. Here, we compare

the performance of stand-alone U-Net models and U-Net models in SegAN framework for seg-

mentation of left ventricle blood-pool, myocardium and right ventricle blood-pool from the 2017

automated cardiac diagnosis challenge (ACDC) dataset.

2.1 Introduction

Cardiac magnetic resonance imaging (MRI), a non-invasive and non-ionizing radiation imag-

ing modality, provides high resolution 3D images (parallel short axis slices stacked together)

of the cardiac anatomy with superior soft tissue details. This makes cardiac MRI the current

gold standard for cardiac function analysis [1, 2]. The analysis of the ventricular structure and

function is an important step in cardiac disease diagnosis, treatment and prognosis. Cardiac

function indices like stroke volume, ejection fraction, cardiac output, myocardium thickness

and strain analysis play a crucial role in predicting and planning therapy for diseases like

myocardial infarction, ischemia, arrhythmogenic right ventricular cardiomyopathy, pulmonary

hypertension, dilated and hypertrophic cardiomyopathy [2]. The calculation of these cardiac

function indices requires accurate delineation of the left ventricle (LV) blood-pool, the LV

myocardium and the right ventricle (RV) blood-pool. Therefore, accurate and robust segmen-

tation of these cardiac chambers from the MRI data plays an important role in a large number

of cardiac problems.

Manual segmentation can be a very laborious task prone to significant user variability.

Therefore, semi-automatic or fully automated segmentation methods would be very useful to

cardiologists in the decision making process [3]. The automated segmentation of the cardiac

chambers is challenging due to the fuzzy boundaries of the ventricular cavities, motion artifacts,

banding artifacts, presence of trabeculae and papillary muscles, and shape variation across

phases and pathologies.

Prior to deep learning, a number of automated segmentation algorithms for segmentation of

the cardiac chambers from cine MRI images have been proposed [4, 2]. Traditional algorithms
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such as thresholding, edge detection, region growing, clustering, etc., were proposed initially

[3, 5]. These algorithms work decently for mid-ventricle slices, but often fail in the basal and

apical slices. Also, they require considerable user-intervention. In graph based segmentation

algorithms [6], graphs are created and a cost is assigned to each pixel or node. A minimum

cost path is found using a graph searching algorithm to segment the left ventricle. These meth-

ods fail in complex cardiac structures, like papillary and trabecular muscles (PTMs). Active

shape models (ASM) [7, 8] were proposed to segment the left ventricles using the energy min-

imization of rigidity and elasticity internally, and edges externally. ASM-based segmentation

methods require extensive computational time and perform poorly in segmentation of cardiac

chambers from low contrast images. To summarize, these non-deep learning algorithms re-

quire considerable manual or semi-manual interactions, fail to accurately delineate ventricles

in basal and apical slices, and require extensive computational time. The inadequacies of these

segmentation methods render them unsuitable for clinical applications.

In recent years, deep learning techniques have shown exceptional performance in image

segmentation. With the availability of large number of medical images for supervised training,

convolutional neural networks (CNN) significantly improved the medical image segmentation

performance. The availability of large number of cardiac MRI images enabled the use of deep

learning for segmentation of cardiac chambers. Several international challenges have been

organized in the past few years to develop and evaluate segmentation algorithms for both the

ventricles [9], [10], [11].

The introduction of U-Net by Ronneberger et al.[12], a fully convolutional network with a

downsampling network that captures context information and an upsampling network that en-

ables accurate localization of the annotated objects is currently the most popular method used

for biomedical image segmentation. A majority of the medical image segmentation algorithms

introduced in the past few years are variants of the U-Net model.

Generative adversarial networks (GAN)[13] are a type of adversarial networks in which two

neural networks compete against each other in a min-max game to generate new image which

is as close as possible to the original training image. This inspired algorithms like cycle-GAN
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Figure 2.1: SegAN Architecture Inspired from GAN [15]

for automated segmentation of epithelial tissue from microscopic Drosophilia embryos images

which outperformed the U-Net models [14]. Xue et al. [15] proposed SegAN, an end-to-end

adversarial network architecture that achieved better Dice score than the U-Net models in the

MICCAI BRATS (2013 and 2015) brain tumor segmentation challenge dataset.

Here, we combine U-Net models and its variants with SegAN adversarial architecture to

segment the LV blood-pool on the 2017 ACDC segmentation challenge dataset. We then

extend the work to investigate the viability of SegAN framework for multi-class segmentation

of LV blood-pool, LV myocardium and RV blood-pool simultaneously and show its effect on

clinical cardiac parameters like stroke volume, ejection fraction and myocardial mass.

2.2 Methodology

Inspired by GAN, Xue et al. have come up with SegAN, an adversarial network that has two

networks, segmentor and critic, analagous to generator and discriminator in GAN, respectively.

The segmentor, a fully convolutional neural network, takes in raw images as input and outputs
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a probability label map. The critic network, which is the encoder part of the fully convolutional

neural network needs two inputs - the masked image by the ground truth labels and the masked

image by predicted labels obtained from the segmentor. The aim of the segmentor network

is to minimize the L1 loss function and the aim of critic network is to maximize the L1 loss

function [15].

2.2.1 Conventional GAN Models

In GANs, the loss function is defined as -

min
θG

max
θD

L(θG, θD) = Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))]. (2.1)

In the above equation, θG and θD are the parameters of generator G and discriminator D,

respectively. x and z are real image from unknown distribution Pdata and random input for

G from probability distribution Pz, respectively. The generator G outputs a high dimensional

vector which is the input to the discriminator D. The discriminator D is trained to maximize

the probability of assigning the correct label to the training data and the data generated from

G. The generator G is simultaneously trained to minimize the objective function log(1 −

D(G(z))) to generate images that are difficult to differentiate for D [13]. The aim of the

generator is to produce images that are as similar as possible to the real image and the aim

of the discriminator is to successfully distinguish between the real image and the fake image

produced by the generator.

2.2.2 Loss Function in SegAN

In SegAN, the aim is to solve the mapping between input images and their segmentation

masks. The loss function L for SegAN is given by -

min
θS

max
θC

L(θS , θC) =
1

N

N∑
n=1

lmae(fC(xn ◦ S(xn)), fC(xn ◦ yn)). (2.2)
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In this equation, θS and θC are the parameters of segmentor S and critic C, respectively and

N represents the number of training images. (xn ◦ S(xn)) and (xn ◦ yn) are input images

masked with segmentor predicted label map and ground truth, respectively. fc(x) are the

features extracted from image x by critic and lmae is the mean absolute error (MAE) given by

-

lmae(fC(x), fC(x
′)) =

1

L

L∑
i=1

||f i
C(x)− f i

C(x
′)||1, (2.3)

with L representing the number of layers in the critic network [15].

The segmentor and critic networks are trained alternatively, just like GAN. The difference

between GAN and SegAN is that GAN has two seperate losses for generator and discriminator,

while, the SegAN has only one multi-scale L1 loss funtion for both segmentor and critic.

2.2.3 Segmentor and Critic

We use three different segmentor networks to predict the segmented mask and compare their

results. The first one is the original U-Net [16]. The second one is a U-Net architecture with

skip connection used in [15] (U-Net A). The third segmentor used is a modified version of the

U-Net architecture inspired from [17] (U-Net B). The input to all these three networks are

raw images and the output is a predicted mask.

For the critic network, we used a similar structure to the downsampling part of the corre-

sponding segmentor network to extract hierarchical features from multiple layers of the net-

work. We then concatenated all these features extracted across multiple layers and computed

the overall L1 loss using the concatenated feature vector [15]. The input to the critic network

are two images - input image masked with predicted class map and input image masked with

the ground truth class map; and output is a feature vector.
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2.2.4 Experiments and Implementation Details

2.2.4.1 Binary Segmentation

The focus of our experiment is to compare the results of a stand-alone 2D U-Net architecture

with a SegAN architecture. For example, we obtain segmentation results using U-Net [16]

with cross entropy loss as cost function. Then, we use this U-Net [16] as segmentor and

the downsampling part of the U-Net as critic in the SegAN architecture with multi-scale L1

loss as cost function. The results of these two networks are compared to determine if the

SegAN architecture improves the segmentation results of the U-Net model. Experiments are

performed with three variants of 2D U-Net architectures for the segmentation of LV blood-pool

from the cardiac MRI data - the original U-Net from [16], the encoder-decoder network used

as segmentor in [15] (U-Net A), and a modified U-Net inspired from [17] (U-Net B), the

current state-of-the-art for left ventricle segmentation in the ACDC 2017 dataset.

The segmentor and the critic network are trained alternately using back-propagation and

the loss function. First, the segmentor outputs a predicted class map. Then, the segmentor

is fixed and the critic is trained in the next step using gradients calculated from the loss

function. After that, the critic is fixed and the segmentor is trained using gradients from the

loss function passed to the segmentor from the critic [15]. As explained in GANs, this process

resembles a min-max game, where the segmentor aims to minimize the loss and the critic

tries to maximize it. Provided additional data and more epochs, the segmentor will produce

segmented masks i.e. labelled maps that are similar to the ground truth. For each U-Net

model we use as segmentor, we use the encoder part of that particular U-Net model as critic.

We train the U-Net and SegAN models by resizing each slice to a 224x224 image and

feeding it into the network with a learning rate of 0.0008, a batch size of 8, a decay of 0.5, a

beta value of 0.5, one GPU and 50 epochs.

2.2.4.2 Multi-class Segmentation

The focus of this experiment is to compare the results of a stand-alone 2D U-Net architecture

with a SegAN architecture for multi-class segmentation of LV blood-pool, LV myocardium
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and RV blood-pool. Here, we perform our experiments on two stand-alone U-Net models - the

original U-Net [12] and a modified U-Net (U-Net A) [15].

For stand-alone 2D U-Net model training, the images are resized to 224x224 and fed into

the network in batches of 10. The U-Net model is trained using Adam optimizer with a

learning rate of 0.0001 for 100 epochs.

In SegAN architecture, the input to the segmentor network is a 224x224x1 resized CMR im-

age and the output is a 224x224x3 predicted class probability map, where the three layers cor-

respond to the three different segmented classes - left ventricle blood-pool (LV), myocardium

(MC) and right ventricle blood-pool (RV). Here, we train three different critic networks, one

for each label class. The segmentor network and the three critic networks are trained using

the average loss computed from the three different critic networks. Since we are training four

networks (one segmentor network and three critic networks) per epoch, the images to SegAN

network are fed in batches of two to avoid memory allocation issues. The SegAN network is

trained using Adam optimizer with a learning rate of 0.00001 for 50 epochs. These experi-

ments were performed on a machine equipped with NVIDIA RTX 2080 Ti GPU with 11GB

of memory.

2.2.5 Dataset

The Automated Cardiac Diagnosis Challenge (ACDC) dataset was released during the MIC-

CAI 2017 conference in conjunction with the STACOM workshop. The images were acquired

using two different MRI scanners with different magnetic strength - 1.5 T and 3.0 T. The short

axis slices cover the left ventricle from base to apex such that we get one image every 5 mm

to 10 mm. A complete cardiac cycle is usually covered by 28 to 40 images. Their spatial

resolution is 1.37 to 1.68 mm2/pixel [18]. The training dataset is composed of 100 subjects

and the test dataset is composed of 50 subjects.

The image dataset corresponding to each subject consists of two image volumes, one at

end-diastole and one at end-systole, with each containing 10 slices, therefore leading to a total

of 1, 902 images. Since we do not have the ground truth for the 50 test subjects, we divide the
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training dataset into 80 subjects for training and 20 subjects for validation. The evaluation

metrics in this paper are the result of 5-fold cross validation of the training dataset.

2.3 Results

Table 2.1 summarizes the segmentation performance of the investigated frameworks with and

without the SegAN integration for binary segmentation (LV blood-pool only). We can observe

that the mean Dice scores and mean IoU values of the three SegAN architectures are higher

than their corresponding U-Net models. To compare the performance the three stand-alone

U-Net models with their SegAN frameworks, we conducted a statistical significance (T-test)

test. The mean Dice score showed significant improvement (p < 0.05) from 93.41% (U-Net)

to 94.71% (SegAN + U-Net), (p < 0.1) from 92.62% (U-Net A) to 93.88% (SegAN +

U-Net A) and (p < 0.05) from 94.91% (U-Net B) to 95.87% (SegAN + U-Net B) in

end diastole, and (p < 0.1) from 90.30% (U-Net A) to 91.10% (SegAN + U-Net A) and

(p < 0.1) from 92.72% (U-Net B) to 93.14% (SegAN + U-Net B) in end systole. The

mean IoU values showed significant improvement (p < 0.05) from 87.25% (U-Net) to 89.55%

(SegAN + U-Net) and (p < 0.1) from 91.55% (U-Net B) to 92.94% (SegAN + U-Net

B) in end diastole.

The highest mean Dice score and mean IoU in our experiments are obtained using the

SegAN architecture with U-Net B as its segmentor network and the U-Net B’s encoder as the

critic network. The SegAN + U-Net B outperforms U-Net by 2.46% (Dice) in end diastole

and 1.40% in end systole.

In Fig. 2.2, it can be observed that the segmentation performance of SegAN frameworks

(shown in red) is better than the performance of the corresponding stand-alone U-Net archi-

tectures (shown in blue). When we use these U-Net models as segmentor, we see significant

improvement in both Dice score and IoU, for ED and ES.

Fig. 2.3 shows examples of mid, apical and basal slices of the heart and the corresponding

segmented masks using the six architectures. The white regions represent the overlap between

the ground truth mask and the tested mask. The red and blue regions represent the false
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Table 2.1: Segmentation evaluation, mean (std-dev) for end diastole (ED) and end systole
(ES) left ventricle segmentation in the 2017 ACDC dataset. Statistical significance (T-test)
of the results of SegAn architecture compared against U-Net models are represented by * for
p < 0.1 and ** for p < 0.05. The best Dice values achieved are labeled in bold.

Dice (ED) (%) IoU (ED) (%) Dice (ES) (%) IoU (ES) (%)
U-Net 93.41 (4.23) 87.25 (3.12) 91.75 (2.26) 83.64 (4.01)

SegAN + U-Net 94.71 (1.24)** 89.55 (2.46)** 92.54 (3.89) 84.91 (5.75)
U-Net A 92.62 (2.75) 85.27 (1.81) 90.30 (7.11) 81.58 (5.60)

SegAN + U-Net A 93.88 (2.86)* 88.54 (1.12) 91.10 (4.15)* 82.74 (5.71)
U-Net B 94.91 (2.40) 91.55 (3.23) 92.72 (4.71) 87.44 (3.81)

SegAN + U-Net B 95.87 (1.71)** 92.94 (3.27)* 93.14 (2.56)* 88.94 (3.92)

(a) (b)

Figure 2.2: Comparison of (a) mean Dice scores and (b) mean IoU values of U-Net models
and its corresponding SegAN architecture, for left ventricle segmentation

positive (pixels predicted as left ventricle by the tested algorithm, but not annotated in the

ground truth), and false negative (pixels not predicted as left ventricle by the tested algorithm,

but annotated in the ground truth) regions, respectively.

In Table 2.2, we summarize the segmentation performance of U-Net models with and

without SegAN integration for multi-class segmentation. We can observe that the SegAN

architecture, when integrated with both the variants of U-Net models, achieves better Dice

score for LV blood-pool and RV blood-pool segmentation in both end diastole and end systole

phases. However, in case of LV myocardium segmentation, the Dice scores achieved in the

stand-alone U-Net models training are better or similar to the U-Net models trained in SegAN
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Figure 2.3: Examples of segmentation of the left ventricle in mid, apical and basal slice (top
to bottom). The white, red and blue regions represent true positives, false positives and false
negatives, respectively.

framework. Fig. 2.4 shows examples of the segmented LV blood-pool, LV myocardium and

RV blood-pool in mid, apical and basal slices for the two variants of U-Net models, with and

without SegAN integration.

We also investigate the viability of SegAN framework for multi-class segmentation by eval-

uating the clinical cardiac parameters like LV stroke volume, LV ejection fraction, RV stroke

volume, RV ejection fraction and myocardial mass. In Table 2.3, we show the correlation

coefficient of these clinical cardiac parameters calculated using the segmentation results ob-

tained from the above mentioned U-Net models and its SegAN integrated counterparts with

the clinical cardiac parameters calculated using the ground truth. The correlation coefficient

values of ventricular stroke volume and the ejection fraction computed from the segmentation

results of SegAN framework are higher than the correlation coefficient values of ventricular

stroke volume and the ejection fraction computed from the U-Net models. However, the corre-

lation coefficient values of myocardial mass computed from the segmentation results of SegAN

framework are lower than the correlation coefficient values of myocardial mass computed from

the U-Net models. These observations are in agreement with the Dice score results shown in

Table 2.2, where the segmentation of the myocardial tissue using SegAN integration is not

superior to the segmentation using stand-alone U-Net models, i.e., the myocardial mass esti-
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Table 2.2: Segmentation evaluation, mean Dice score (std-dev) for end diastole (ED) and
end systole (ES) for left ventricle blood-pool (LV), myocardium (MC) and right ventricle
blood-pool (RV) segmentation in the 2017 ACDC dataset. Statistical significance (T-test) of
the results of SegAN architecture compared against U-Net models are represented by * for
p < 0.05 and ** for p < 0.005. The best Dice scores achieved are labeled in bold.

LV Dice LV Dice MC Dice MC Dice RV Dice RV Dice
(ED) (%) (ES) (%) (ED) (%) (ES) (%) (ED) (%) (ES) (%)

U-Net 89.04 88.65 90.62 88.17 88.09 88.80
(1.97) (2.03) (2.72) (3.21) (2.05) 1.92

SegAN + U-Net 91.69 90.29 88.19 88.42 91.55 90.06
(1.49)** (1.61)** (4.21) (5.93) (4.19) (1.74)**

U-Net A 90.14 88.29 91.61 88.89 90.55 87.41
(1.78) (1.55) (2.14) (2.32)** (4.41) (4.78)

SegAN + U-Net A 92.19 91.09 91.18 87.95 92.06 90.05
(1.67)* (2.08)* (3.50) (7.97) (3.41) (2.02)*

Table 2.3: Evaluation of clinical indices - LV stroke volume (SV) correlation coefficient, LV
ejection fraction (EF) correlation coefficient, myocardium mass correlation coefficient, RV
stroke volume correlation coefficient and RV ejection fraction correlation coefficient.

LV SV LV EF MC Mass RV SV RV EF
Correlation Correlation Correlation Correlation Correlation

U-Net 0.923 0.904 0.955 0.899 0.841
SegAN + U-Net 0.941 0.918 0.931 0.944 0.901

U-Net A 0.937 0.957 0.956 0.908 0.882
SegAN + U-Net A 0.974 0.963 0.937 0.935 0.921

mates are affected since they are directly related to uncertainties present in the myocardium

segmentation.

2.4 Discussion

In this work, the integration of U-Net models into the SegAN framework is evaluated on

the 2017 ACDC segmentation challenge dataset. Our goal was to investigate if the SegAN

framework improves the segmentation performance of U-Net models. Our experiments reveal

that U-Net models, when trained in the SegAN framework, produces significantly better seg-
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Figure 2.4: Examples of segmentation of the left ventricle blood-pool (blue), myocardium
(green) and right ventricle blood-pool (red) in mid, apical and basal slices (top to bottom)

mentation results than when trained stand-alone, consistently. The features extracted across

multiple layers of the critic network and concatenated into the feature vector used to compute

the multi-scale L1 loss captures pixel-, low-, mid- and high-level features. This multi-resolution

approach to feature extraction enables the SegAN model to learn the dissimilarities between

the generated and the ground truth segmentation maps across the multiple layers of the critic

network.

We use cross entropy loss as cost function for training U-Net models. We also experi-

mented with training all the U-Net variants with a Dice loss cost function, however the results

indicated a consistently lower performance than that achieved using cross entropy loss. We

also experimented with multi-scale L2 loss as cost function for training the SegAN models,

however, the results were not very consistent. Further investigation with multi-scale L2 loss

as cost function will be conducted, to determine if it can outperform multi-scale L1 loss as

cost function.

To evaluate our method, we used a 5-fold cross-validation strategy, in which we em-

ployed five different combinations of 80 training and 20 testing datasets from the available
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100 datasets. This is a common approach used to validate novel deep learning techniques, as

it enables testing the robustness of the method across different training datasets, while also

removing the bias associated with a single 80 training - 20 testing data split.

The segmentation results of multi-class segmentation are in compliance with the results of

the brain tumor segmentation in BRATS 2015 dataset[15]. The SegAN architecture obtained

better Dice score in segmenting the whole brain tumor region, but had some drawbacks in

segmenting the tumor core and Gd-enhanced tumor core. This is attributed to the fact that

the SegAN architecture extracts features from multiple layers of the critic network and the

segmentation of regions of smaller areas, like the left ventricle myocardium, may require more

concentration at pixel-level features. Therefore, U-Net model with cross entropy loss (pixel-

level loss) could have better segmentation performance than SegAN architecture with multi-

scale L1 loss for segmentation of the left ventricle myocardium.

The major drawback of the SegAN architecture in multi-class segmentation is the com-

putational time and the memory required to train one segmentor network and three critic

networks simultaneously. The computational time required for one epoch for an U-Net model

is around 225 seconds, whereas the U-Net model in SegAN framework requires around 900

seconds (for multi-class segmentation).

2.5 Conclusion and Future Work

In this paper, we demonstrate the use of an adversarial architecture, SegAN with multi-scale

L1 loss function, to segment the LV blood-pool from cine cardiac MR images. Encouraged by

the results, we extended the SegAN framework for multi-class segmentation of LV blood-pool,

LV myocardium and RV blood-pool. This multi-scale L1 loss function captures features at

multiple levels - pixel-level, superpixel-level and patches-level. Our experiments reveal that

this integration of U-Net models in the SegAN framework leads to significant improvement

of LV blood-pool and RV blood-pool segmentation in the 2017 ACDC segmentation challenge

dataset. The adversarial nature of the architecture and the multi-resolution approach enables

the SegAN model to accurately segment the above mentioned heart chambers, which in turn,
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enables accurate computation of critical clinical parameters like ventricular stroke volumes

and ejection fraction.

We observed that the segmentation result of LV myocardium did not improve with the

SegAN integration. An alternative solution to this could be an integration of a weighted cross

entropy loss as cost function along with the multi-scale L1 loss function.
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Chapter 3

CNN-Based Cardiac Motion

Extraction to Generate Deformable

Geometric Ventricular Models from

Cine MRI

Patient-specific left ventricle (LV) myocardial models have the potential to be used in a variety

of clinical scenarios for improved diagnosis and treatment plans. Cine cardiac magnetic reso-

nance (MR) imaging provides high resolution images to reconstruct patient-specific geometric

models of the LV myocardium.1 Here, we propose a deep leaning-based framework for the devel-

opment of patient-specific geometric models of LV myocardium from cine cardiac MR images,

using the Automated Cardiac Diagnosis Challenge (ACDC) dataset. We use the deformation

field estimated from the VoxelMorph-based convolutional neural network (CNN) to propagate
1This chapter is adapted from:

Upendra R.R. et al., “A convolutional neural network-based deformable image registration method for cardiac
motion estimation from cine cardiac MR images.” In 2020 Computing in Cardiology (pp. 1-4). IEEE.
Upendra R.R. et al., “CNN-Based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle
Myocardial Models from Cine MRI.”, In: Ennis D.B., Perotti L.E., Wang V.Y. (eds) Functional Imaging and
Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science, vol 12738. Springer, Cham.
Upendra R.R. et al., “Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using a Deep
Learning-Based Deformable Registration Framework.” In 2021 43rd Annual International Conference of the
IEEE Engineering in Medicine Biology Society (EMBC) (pp. 3795-3799). IEEE.
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the isosurface mesh and volume mesh of the end-diastole (ED) frame to the subsequent frames

of the cardiac cycle. We assess the CNN-based propagated models against segmented models

at each cardiac phase, as well as models propagated using another traditional nonrigid image

registration technique. Additionally, we generate dynamic LV myocardial volume meshes at all

phases of the cardiac cycle using the log barrier-based mesh warping (LBWARP) method and

compare them with the CNN-propagated volume meshes.

Furthermore, we describe the development of dynamic patient-specific right ventricle (RV)

models associated with normal subjects and abnormal RV patients to be subsequently used to

assess RV function based on motion and kinematic analysis. To this end, we first constructed

static RV models using segmentation masks of cardiac chambers generated from our accurate,

memory-efficient deep neural architecture – CondenseUNet – featuring both a learned group

structure and a regularized weight-pruner to estimate the motion of the RV. We then use the

deformation field estimated from the proposed deep learning-based deformable network to prop-

agate the RV isosurface mesh of the ED frame to the subsequent frames of the cardiac cycle.

3.1 Introduction

To reduce the morbidity and mortality associated with cardiovascular diseases (CVDs) [1], and

to improve their treatment, it is crucial to detect and predict the progression of the diseases

at an early stage. In a clinical set-up, population-based metrics, including measurements of

cardiac wall motion, ventricular volumes, cardiac chamber flow patterns, etc., derived from

cardiac imaging are used for diagnosis, prognosis and therapy planning.

In recent years, image-based computational models have been increasingly used to study

ventricular mechanics associated with various cardiac conditions. A comprehensive review of

patient-specific cardiovascular modeling and its applications is described in [2]. Cardiovascular

patient-specific modeling includes a geometric representation of some or all cardiac chambers

of the patient’s anatomy and is derived from different imaging modalities [3].

The construction of patient-specific geometric models entails several steps: clinical imaging,

segmentation and geometry reconstruction, and spatial discretization (i.e., mesh generation)
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[4]. For example, Bello et al. [5] presented a deep learning based framework for human survival

prediction for patients diagnosed with pulmonary hypertension using cine cardiac MR images.

Here, the authors employ a 4D spatio-temporal B-spline image registration method to estimate

the deformation field at each voxel and at each timeframe. The estimated deformation field

was used to propagate the ED surface mesh of the right ventricle (RV), reconstructed from the

segmentation map, to the rest of the timeframes of a particular subject. Qin et al. [6] proposed

a joint deep learning network for cardiac motion estimation and segmentation of 2D cine

cardiac MR images. Qiu et al. [7] compared the performance of supervised and unsupervised

training strategies for cardiac motion estimation using convolutional neural networks (CNN),

performed in the 2D plane. Morales et al. [8] proposed an unsupervised CNN-based 3D

deformable registration method for cardiac motion estimation; however, they do not account

for the out-of-plane motion of the two-dimensional stack of the CMR images that leads to slice

misalignment.

In this work, we propose a deep learning-based pipeline to develop patient-specific geo-

metric models of the LV myocardium from cine cardiac MR images (Fig. 3.1). These models

may be used to conduct various simulations, such as assessing myocardial viability. We in-

troduce a preliminary, proof of concept, CNN-based 4D deformable registration method for

cardiac motion estimation from cine cardiac MR images, using the Automated Cardiac Di-

agnosis Challenge (ACDC) dataset [9]. We then demonstrate the use of the CNN-based 4D

deformable registration technique to build dynamic patient-specific LV myocardial models

across subjects with different pathologies, namely normal, dilated cardiomyopathy (DCM),

hypertrophic cardiomyopathy (HCM) and subjects with prior myocardial infarctions (MINF).

Following segmentation of the ED cardiac frame, we generate both isosurface and volume LV

meshes, which we then propagate through the cardiac cycle using the CNN-based registration

fields. In addition, we demonstrate the generation of dynamic LV volume meshes depicting the

heart at various cardiac phases by warping a patient-specific ED volume mesh based on the

registration-based propagated surface meshes, using the LBWARP method [10]. Lastly, we

compare these meshes to those obtained by directly propagating the ED volume mesh using
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Figure 3.1: Overview of the proposed CNN-based workflow to generate patient-specific LV
myocardial geometric model.

the CNN-based deformation fields.

Although cardiac cine MRI has provided a non-invasive method for studying global and

regional function of the heart, most of these studies have been centered on the LV. In light

of the thin wall structure of the RV and its asymmetric geometry, there have only been very

few research endeavors exploring the kinematics of RV, including the extraction of the RV

motion and generation of patient-specific RV anatomical models. Therefore, we extend our

proposed approach for extracting the RV motion from cine cardiac MR image sequences and

generate deformable endocardial RV models that can be later used to study RV kinematics as

a biomarker for studying RV-related cardiac disease (Fig. 3.2).

Hence, we propose the deep learning-based approach for extracting the frame-to-frame

RV motion from cine cardiac images, and using this motion, along with segmented isosurface

meshes at ED, to generate dynamic, deformable models of the RV. Here, we illustrate the

potential of the CNN-based 4D deformable registration technique to build dynamic patient-

specific RV models across subjects with normal and abnormal RVs. We used the segmented

mask of the RV endocardium at all cardiac frames generated via CondenseUNet [11], which

substitutes the concept of both standard convolution and group convolution (G-Conv) with
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Figure 3.2: Image segmentation and deformable registration pipeline: a) ED frame segmen-
tation and slice misalignment correction; b) deep learning registration framework. The CNN
G(f,m) learns to predict the deformation field and register the moving 3D image to the fixed
3D image to generate the transformed image using the spatial transformation function.

learned group-convolution (LG-Conv). Following segmentation of the ED cardiac frame, we

generate isosurface meshes, which we then propagate through the cardiac cycle using the

CNN-based registration fields. Lastly, we compare these propagated isosurface meshes to

those generated directly from the segmentation masks obtained from CondenseUNet [11].

3.2 Methodology

3.2.1 Cardiac MRI Data

We use the 2017 ACDC dataset that was acquired from real clinical exams. The dataset is

composed of cine cardiac MR images from 150 subjects, divided into five equally-distributed

subgroups: normal, MINF, DCM, HCM and abnormal RV. The MR image acquisitions were

obtained using two different MR scanners of 1.5 T and 3.0 T magnetic strength. These series

of short axis slices cover the LV from base to apex such that one image is captured every 5

mm to 10 mm with a spatial resolution of 1.37 mm2/pixel to 1.68 mm2/pixel.

3.2.2 Image Preprocessing

We first correct for the inherent slice misalignments that occur during the cine cardiac MR

image acquisition by leveraging the slice misalignment correction method presented by Dangi
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(a) (b)

Figure 3.3: (a) Slice misalignment correction and (b) 4D deformable registration workflow.

et al. [12]. We train a modified version of the U-Net model [13] inspired from Isensee et al.

[14], to segment the cardiac chambers (LV blood-pool, LV myocardium and RV blood-pool)

from 2D cine cardiac MR slices. We use these predicted segmentation maps to crop the regions

of interest (RoI) and to identify the centers of the LV blood-pool. The 2D slices are stacked

such that the LV blood-pool centers are collinear, resulting in a slice misalignment corrected

3D CMR image (Fig. 3.3a). The U-Net model is trained on the ED and end-systole (ES)

frames of the CMR data of 80 subjects and validated on 20 subjects.

3.2.3 Deformable Image Registration

3.2.3.1 CNN-based Image Registration.

We employ the VoxelMorph [15] framework to find an optical flow representation between

a sequence of 3D image pairs {(IED, IED+t)}t=1,2,3,...,NT−1 where NT is the total number

of frames, and at each iteration, an image pair (IED, IED+t) is input to the CNN and a

registration field ϕ is output. The registration field is fed to a spatial transformer network

(STN) [16] along with the ED frame, IED, to produce a warped image, IED ◦ ϕ (Fig. 3.3b).

To train the CNN, a loss function consisting of two components is used to optimize the

network:

L = Lsimilarity + λLsmooth, (3.1)

where Lsimilarity is the mean squared error (MSE) between the target frame IED+t and the
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warped ED frame IED ◦ ϕ:

MSE =
1

|Ω|
∑
i∈Ω

(IED+t(i)− [IED ◦ ϕ](i))2 , (3.2)

where Ω is the spatial domain of the images and i ∈ R2 is the position of a point on the frame.

The second term in the loss function (eq. (5.1)) is a smoothing loss function Lsmooth that

spatially smoothes the registration field ϕ and λ is the regularization parameter. In general, a

diffusion regularizer on the spatial gradients of the registration field is used as the smoothing

loss function and is given

Lsmooth =
∑
i∈Ω

||∇ϕ(i)||2. (3.3)

Here we experiment with a Laplacian operator in the smoothing loss function, inspired

from Zhu et al. [17]:

Lsmooth =
∑
i∈Ω

||∆ϕ(i)||2. (3.4)

Unlike the gradient operator, which only considers the local properties of the objective

function y = x2, the Laplacian operator considers the global properties of the function y = x2,

i.e., it considers the slope magnitude and its trends when choosing a direction. [17].

We divide the total 150 MRI dataset into 110 for training, 10 for validation and 30 for

testing. All the cropped input cine MRI frames are resampled to 96 × 96 × 16 voxels with

1.5 mm isotropic resolution. We train the VoxelMorph CNN using the Adam optimizer with

a learning rate of 10−4, halved at every 10th epoch for 50 epochs on a machine equipped with

a NVIDIA RTX 2080 Ti GPU with 11 GB of memory; the regularization parameter λ is set

to 10−3.
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3.2.4 Mesh Generation and Propagation

3.2.4.1 Left Ventricle Myocardium

We use the manual segmentation map of the ED frame to generate isosurface meshes. The

slice thickness of each MRI image slice is 5 mm to 10 mm; however, in order to obtain good

quality meshes, the segmentation maps were resampled to a slice thickness of 1 mm. We

use the Lewiner marching cubes [18] algorithm to generate the meshes from the resampled

segmentation maps of the ED frames, on an Intel(R) Core(TM) i9-9900K CPU, and then sim-

plification techniques, such as r-refinement and edge collapse, were performed using MeshLab

2020.07 [19]. The simplification techniques are repeated multiple times to reduce the number

of vertices until the mesh has been fully decimated while preserving the anatomical integrity

and aspect ratio of the isosurface meshes.

Volume meshes of the initial surface meshes at the ED phases for four patients with various

heart conditions were generated based on the decimated patient-specific surface meshes using

Tetgen 1.6 [20]. In particular, a constrained Delaunay mesh generation algorithm was used

to generate tetrahedral meshes based on the triangulated surface meshes. Steiner points were

added within the boundary of the surface mesh so that the tetrahedra maintained a radius-

edge ratio of 1.01 and a maximum volume of 9 mm3 as needed for generation of valid meshes

[20]. Volume mesh quality improvement was performed using the feasible Newton method in

Mesquite [21]. This method iteratively minimizes the quadratic approximation of a nonlinear

function and converges linearly toward a local minimum while performing an Armijo line

search to ensure feasibility of the elements; feasibility in this case refers to a valid, non-inverted

element. The volume mesh converged to the highest quality indicated by the minimum average

scaled Jacobian of the elements in the mesh.

To demonstrate the VoxelMorph-based motion extraction and propagation to build patient-

specific LV myocardial models, we generate two sets of volume meshes at each cardiac frame

for each patient in each pathology group (Fig. 3.4).

The first set is produced by propagating the volume meshes at the ED frame to all the sub-

sequent frames of the cardiac cycle using the deformation field estimated by the VoxelMorph-
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Figure 3.4: Pipeline to generate dynamic volume meshes (at cardiac frames (ED + k)) by
direct CNN-based propagation, as well as volume mesh warping based on dynamic boundary
meshes.

based registration method. For the second set, the ED volume mesh generated with Tetgen

was used to generate the volume meshes corresponding to the other cardiac phases. We em-

ployed the LBWARP method [10] to deform the ED volume mesh onto the target surface

mesh for the new cardiac phase (Fig. 3.5). The method computes new positions for the inte-

rior vertices in the ED volume mesh, while maintaining the mesh topology and point-to-point

correspondence [10]. The simplification of the ED isosurface meshes, generation of the ED vol-

ume meshes and generation of the volume meshes corresponding to the other cardiac phases

using the LBWARP method were performed on a machine equipped with AMD FX(tm)-6300

Six-Cores processor and a NVIDIA GeForce GTX 1050 Ti graphics card.

Briefly, LBWARP first calculates a set of local weights for each interior vertex in the

initial ED volume mesh based on the relative inverse distances from each of its neighbors.

The projected Newton method is used to solve the strictly convex optimization problems.

For each set of local weights, a sparse system of linear equations is formed specifying the

representation of each interior vertex in terms of its neighbors. Next, the boundary vertices in

the ED surface mesh are mapped onto the new surface boundary. Finally, the interior vertices

in the ED volume mesh are repositioned by solving the original system of linear equations

with new right-hand side vectors to reflect the updated positions of the boundary nodes, while

maintaining edge connectivity and point-to-point correspondence, and ultimately yielding the

volume meshes that correspond to each new cardiac phase.

Baseline Comparisons We compare the performance of the VoxelMorph framework with

that of the B-spline free form deformation (FFD) non-rigid image registration algorithm [22].
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Figure 3.5: Warped volume meshes for a patient with a healthy heart generated using LB-
WARP at three cardiac phases (a) end-diastole; (b) end-systole; and (c) mid-diastole; (d-f)
Long axis cutaway view of volume meshes at the three cardiac phases, respectively; (g-i)
short-axis cutaway view of volume meshes at the three cardiac phases, respectively.

This iterative intensity-based image registration method was implemented using SimpleElastix

[23, 24], which enables a variety of image registration algorithms in different programming

languages. The FFD algorithm was set to use the adaptive stochastic gradient descent method

as the optimizer, MSE as the similarity measure and binding energy as the regularization

function. The FFD-based image registration was optimized in 500 iterations, while sampling
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2048 random points per iteration, on an Intel(R) Core(TM) i9-9900K CPU.

3.2.4.2 Right Ventricle Blood-Pool

To extract RV anatomical information for incorporation into geometric models, we used Con-

denseUNet [11] framework, which substitutes the concept of both standard convolution and

group convolution (G-Conv) with learned group convolution (LG-Conv). Our network learns

the group convolution automatically during training through a multi-stage scheme. The ca-

pability of our network to learn the group structure allows multiple groups to re-use the same

features via condensed connectivity. Moreover, the efficient weight-pruning methods lead to

high computational savings without compromising segmentation accuracy [25].

The surface mesh generation pipeline contains two main tasks: surface mesh generation

and smoothing. The predominant algorithm for isosurface extraction from original 3D data

is marching cubes [18], which produces a triangulation within each cube to approximate the

isosurface by using a look-up table of edge intersections. For this purpose, we used the seg-

mentation map of all the frames in a cardiac cycle generated by our CondenseUNet model.

Since the slice thickness was large and ranged from 5 mm to 10 mm, we re-sampled the dataset

to achieve a 1 mm consistent slice thickness. After extracting the isosurface models using the

Lewiner marching cubes [18] algorithm implemented using the scikit-image library [26] in the

Python programming language, our next task was to remove the surface noise by applying

smoothing operations. In order to smooth the isosurface meshes, we used the joint smoothing

technique in 3D Slicer 4.10.2 [27], with the smoothing factor in the range of 0.15 to 0.2. This

mesh smoothing operation significantly improves mesh appearance as well as shape, by moving

mesh vertices without modifying topology.

Besides the RV isosurface meshes generated from the individual cardiac image frame seg-

mentations following marching cubes and smoothing, which served as ground truth, we gen-

erated three additional sets of meshes by propagating the isosurface mesh at the ED phase

to all the subsequent cardiac frames using the registration field estimated using the proposed

VoxelMorph registration, as well as two traditional nonrigid image registration methods: the
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B-spline free form deformation (FFD) [22] algorithm and the fast symmetric force Demon’s

algorithm [28, 29].

Baseline Comparisons The results obtained using the proposed deep learning registra-

tion framework were compared to those obtained using traditional iterative image registration

methods, including the FFD [22] algorithm and the fast symmetric force Demon’s algorithm

[29]. The FFD registration method was implemented in SimpleElastix [23]. The FFD algo-

rithm was set to use the adaptive stochastic gradient descent method as the optimizer, MSE

as the similarity measure, binding energy as the regularization function, and was optimized

in 500 iterations. The Demon’s algorithm was implemented in SimpleITK [30]. The standard

deviations for the Gaussian smoothing of the total displacement field was set to 1 and opti-

mized in 500 iterations. These algorithms are trained using manually tuned parameters on an

Intel(R) Core(TM) i9-9900K CPU.

3.3 Results

3.3.0.1 Left Ventricle Myocardium

The manual segmentation labels of the LV blood-pool, LV myocardium and RV blood-pool for

ED and ES frames of 100 subjects are provided in the ACDC challenge dataset. To evaluate the

performance of the CNN-based deformable registration algorithm, we warp the segmentation

map of the ED frame to ES frame using the estimated registration field, and compute the

Dice score and Hausdorff distance (HD) between the segmentation map of ES frame and the

warped segmentation map of ED frame. We refer to this as the “gold" standard comparison, as

the segmentation maps used for comparison are manually annotated by experts. We also warp

the segmentation map of the ED frame to all subsequent cardiac frames, and compute the

Dice score and HD between the warped segmentation map of ED frame and the segmentation

maps predicted by the modified U-Net model [14]. We refer to this as the “silver" standard

comparison, as the segmentation masks used as reference were not annotated by experts, but

rather were generated using techniques previously validated against expert annotations.
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In Table 3.1, we show the mean Dice score and mean HD for LV blood-pool, LV myocardium

and RV blood-pool before registration (post misalignment correction) and after registration

on the test dataset, for both “gold" and “silver" standard comparisons. We also compare the

effect of the gradient-based operator and the Laplacian-based operator on the VoxelMorph-

based deformable registration method.

Table 3.1: Mean Dice score and Hausdorff distance (HD) for LV blood-pool (LV), LV my-
ocardium (MC) and RV blood-pool (RV), for both “gold" and “silver" standard comparisons,
for unregistered frames and post registration using VoxelMorph (VM) framework. Statisti-
cally significant differences between the registration metrics before and after registration were
evaluated using the Student t-test and are reported using * for p < 0.05 and ** for p < 0.005.
The best evaluation metrics achieved are labeled in bold.

Dice (%) HD (mm)
LV MC RV LV MC RV

ED to ES Unregistered 87.30 69.15 70.18 7.22 8.93 11.85
(Gold std.) VM (gradient) 92.17** 79.39** 77.58* 5.59* 8.05 11.75

VM (Laplacian) 93.73** 80.59** 79.63* 5.11* 7.98* 11.62
ED to all Before registration 81.29 80.15 77.32 3.13 6.08 8.61

(Silver std.) VM (gradient) 94.67** 84.08** 82.73* 2.51 6.07 8.96
VM (Laplacian) 94.84** 85.22** 84.36** 2.74 5.88* 9.04

Our proposed method achieves a 83.04% Dice score and 8.46 mm HD for all cardiac cham-

bers following registration using the gradient-based smoothing loss function, and a 84.65%

Dice score and 8.23 mm HD following registration using the Laplacian-based smoothing loss

function, for our “gold” standard comparison evaluated at ES frames. Similarly, for our “sil-

ver” standard comparison, conducted across all frames, we report a 87.16% Dice score and 5.84

mm HD following registration using the gradient-based smoothing loss function and a 88.14%

Dice score and 5.88 mm HD following registration using the Laplacian-based smoothing loss

function. Fig. 3.6 shows the cardiac chamber contours propagated using our registration from

ED frame to the other cardiac frames.

Furthermore, the LV isosurface (generated from the ED image segmentation map) is prop-

agated to all the subsequent cardiac frames using the deformation field estimated by FFD and

VoxelMorph. We then compare these isosurfaces to those directly generated by segmenting
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Figure 3.6: Panel 1-1: ES CMR slice with manually annotated segmentation contours of
cardiac chambers overlaid on the slice; Panel 1-2: post registration contours using gradient-
based operator as smoothing loss with segmentation contours of warped ED frame overlaid
on ES frame (Dice: 81.32%, HD: 3.64 mm); Panel 1-3: post registration contours using
Laplacian-based operator as smoothing loss (Dice: 83.56%, HD: 3.48 mm). Panel 2-1: ED +
5th frame CMR slice with segmentation contours obtained from U-Net model; Panel 2-2: post
registration contours using gradient-based operator as smoothing loss (Dice: 92.36%, HD: 4.12
mm); Panel 1-3: post registration contours using Laplacian-based operator as smoothing loss
(Dice: 92.42%, HD: 4.12 mm).

all cardiac image frames using a modified U-Net model [14], which we refer to as the “silver

standard".

Table 3.2 summarizes the performance of the FFD and VoxelMorph registration by assess-

ing the Dice score and mean absolute distance (MAD) between the propagated and directly

segmented (i.e., “silver standard”) isosurfaces.

Fig. 3.7 illustrates the distance between the three sets of isosurfaces (segmented, CNN-

propagated and FFD-propagated) for one patient randomly selected from each pathology.

The MAD between the surfaces is less than 2 mm at all frames, with the CNN-propagated
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Table 3.2: Mean Dice score (%) and mean absolute distance (MAD) (mm) between FFD and
segmentation (FFD-SEG), CNN and segmentation (CNN-SEG), and FFD and CNN (FFD-
CNN) results. Statistically significant differences were evaluated using the t-test (* for p <
0.1 and ** for p < 0.05).

Normal MINF DCM HCM
Dice MAD Dice MAD Dice MAD Dice MAD

FFD-Segmentation 74.80 1.53 77.69 1.09 80.41 0.91 77.39 1.97
CNN-Segmentation 80.41** 1.15 81.21* 0.87 83.39* 0.91 82.46* 1.09

FFD-CNN 77.81 1.13 82.12 0.75 81.67 0.97 77.34 1.77

Figure 3.7: MAD between FFD- and CNN-propagated, and segmented (i.e., “silver standard”)
isosurfaces at all cardiac frames for all patient pathologies.

isosurfaces being closest to the “silver standard” segmented surfaces. Fig. 3.8 illustrates the

model-to-model distance between the FFD-propagated and CNN-propagated isosurface meshes

at end-systole (ES) and mid-diastole frames for subjects from all four pathologies.

Since the CNN-propagated isosurfaces are in closer agreement to the “silver standard”

segmented surfaces compared to the FFD-propagated isosurfaces, we use the CNN-propagation
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Figure 3.8: [
Model-to-model distance between the left ventricle myocardium isosurface meshes generated
from FFD- and the CNN-propagation method at end-systole and mid-diastole frames]Model-
to-model distance between the isosurface meshes generated from FFD- and the CNN-
propagation method for all patient pathologies at end-systole and mid-diastole frames.

Figure 3.9: Mean node-to-node distance at each cardiac frame between the CNN-propagated
and LBWARP-generated volume meshes (left); mean (std-dev) node distance across all frames
for each patient pathology (right).

method to generate the volume meshes at each phase of the cardiac cycle. As mentioned in

Section 3.2.4.1 and shown in Fig. 3.4, we generate two sets of volume meshes at each frame

of the cardiac cycle. Fig. 3.9 shows the mean node distance between the two sets of volume
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meshes across all cardiac frames for one subject in each of the four pathologies. Fig. 3.9 also

shows the mean node distance between the two sets of volume meshes at each frame of the

cardiac cycle for the four subjects. It can be observed that the two sets of volume meshes are

in close agreement with each other, exhibiting a mesh-to-mesh distance within 0.5 mm.

3.3.0.2 Right Ventricle Blood-Pool

To evaluate the registration performance of the FFD, Demon’s and VoxelMorph methods with

respect to RV, the isosurface of the RV generated from the segmentation map in the ED

frame is propagated to all the subsequent cardiac frames using the registration field. We then

compare the registration accuracy by measuring the overlap between the isosurfaces directly

generated by segmenting all cardiac image frames using our CondenseUNet model [11] (i.e.,

“silver standard”) and those propagated by FFD, Demon’s and VoxelMorph using Dice score

and mean absolute distance (MAD).

Table 3.3 summarizes the registration performance between these propagated and “sil-

ver standard” isosurfaces, for both normal and abnormal RV. Fig. 3.10 illustrates the MAD

between the propagated and segmented isosurfaces for one patient each with normal and

abnormal RV. It can be observed that the CNN-propagated isosurfaces are closer to the seg-

mented isosurfaces than the FFD-propagated isosurfaces; they are comparable to the Demon’s-

Table 3.3: RV Endocardium Mean (std-dev) Dice score (%) and mean absolute distance (MAD)
between FFD and segmentation (FFD-SEG), Demon’s and segmentation (Dem-SEG), CNN
and segmentation (CNN-SEG), FFD and CNN (FFD-CNN), and Demon’s and CNN (Dem-
CNN) results. Statistically significant differences were confirmed via t-test between FFD-SEG
and Dem-SEG, and FFD-SEG and CNN-SEG (* p < 0.1 and ** p < 0.05).

Normal RV Abnormal RV
Methods Dice MAD Dice MAD
FFD-SEG 75.47 (5.71) 4.37 (1.23) 81.72 (3.32) 2.39 (0.62)
Dem-SEG 79.49 (4.77)** 3.52 (0.93) 84.54 (4.75)** 2.14 (0.46)
CNN-SEG 79.51 (4.93)** 3.34 (0.82)* 83.61 (4.96)** 2.44 (0.63)
FFD-CNN 80.15 (5.86) 1.69 (1.02) 87.31 (3.45) 1.03 (0.56)
Dem-CNN 84.91 (5.58) 1.08 (0.91) 90.64 (2.55) 0.78 (0.31)
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Figure 3.10: Mean absolute distance (MAD) between FFD-, Demon’s- and CNN-propagated
and segmented (i.e., “silver standard”) masks at all cardiac frames for patients with normal
and abnormal RVs.

Figure 3.11: (NN) distance between FFD-, Demon’s- and CNN-propagated and segmented
(i.e., “silver standard”) isosurface meshes at all cardiac frames for patients with normal and
abnormal RVs.

propagated isosurfaces.

As mentioned in Section 3.2.4.2, we generate four sets of isosurface meshes at each frame of

the cardiac cycle for one patient with a normal RV and one patient with an abnormal RV. Fig.

3.11 shows the mean nearest neighbor (NN) distance between the three sets of the registration-

propagated isosurface meshes and the isosurface meshes generated directly from the segmented

masks at each frame of the cardiac cycle for both the normal and abnormal RV subjects. It

can be observed that the isosurface meshes are in close agreement with one another in the

subjects with both a normal and an abnormal RV. Fig. 3.12 illustrates the model-to-model

distance at the end-systole (ES) frame between the three registration-propagated isosurface

meshes and the isosurface meshes generated directly from the segmented masks for both the

normal and abnormal RV subjects.
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Figure 3.12: Model-to-model distance between the isosurface mesh at end-systole (ES) frame
generated from segmentation and propagated using FFD, Demon’s and CNN-based deformable
registration methods (left to right) for a patient with normal RV (top) and a patient with
abnormal RV (bottom).

3.4 Discussion

We present a deep learning-based 4D deformable registration method for cardiac motion esti-

mation from 3D cine CMR images. The workflow also includes a slice misalignment correction

step that alleviates the challenges associated with out-of-plane motion in the slice stack that

would otherwise impact frame-to-frame image registration and motion extraction. In addition,

we evaluate and compare the effect of the gradient-based operator and the Laplacian-based

operator for smoothing the registration field on the performance of VoxelMorph-based registra-

tion network for cardiac motion estimation. We observe that the Laplacian-based smoothing

loss function regularizes better than the gradient-based smoothing loss function. This can be

attributed to the fact that the gradient operator only considers the local properties of the ob-

jective function y = x2 and the Laplacian operator considers global properties more than the

gradient. We also show our intended application of cardiac motion estimation, wherein the reg-

istration field obtained from our CNN-based 4D deformable registration is used to propagate
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the patient-specific anatomy information from the ED frame to its subsequent frames.

We also briefly investigated the effect of using initial-to-final frame vs. adjacent frame-to-

frame registration to extract the cardiac motion throughout the cycle. Although the sequential

registration method estimates smaller deformation between two consecutive, adjacent image

frames compared to the larger deformations estimated by the initial-to-final frame registration,

their concatenation across several frames accumulates considerable registration errors. As

such, when using these concatenated registration-predicted deformation fields to propagate

the ED isosurfaces and volume meshes to the subsequent cardiac phases, the Dice score and

MAD between the propagated and segmented geometries rapidly deteriorate, along with the

quality of the propagated surface and volume meshes.

Following the generation of the dynamic, multi-phase meshes, we also assessed the quality

of the ES meshes. One set of ES meshes was generated by propagating the ED mesh using

the CNN-based extracted motion, while the other set of ES meshes was generated by warping

the ED volume mesh based on the dynamic boundary meshes via the LBWARP approach.

Unlike the starting ED phase meshes, the ES phase meshes contain some lower quality ele-

ments indicated by the lower minimum scaled Jacobian values, but are still suitable for use in

simulations.

One of the major advantages of the proposed CNN-based framework over the traditional

nonrigid image registration techniques is the significantly faster computing time. For example,

it takes around 40 seconds to propagate the RV isosurface mesh at the ED frame to the

other frames of the cardiac cycle using a trained VoxelMorph model, compared to 135 and

160 seconds using the FFD and Demon’s registration methods, respectively. Similarly, the

advantage of using mesh propagation rather than direct mesh generation from individual

cardiac image frame segmentation is point correspondence across meshes at different frames,

as well as an overall smoother mesh animation over sequential frames, since the individual

frame segmentation is accompanied by inherent uncertainty.

Moreover, although the proposed VoxelMorph-based cardiac motion extraction method can

capture the frame-to-frame motion with sufficient accuracy, as shown in this work, our ongoing
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and future efforts are focused on further improving the algorithm by imposing diffeomorphic

deformations [31]. This improvement will help maintain high mesh quality and prevent mesh

tangling and element degeneration, especially for the systolic phases.

3.5 Conclusion

In this work, we show that the proposed deep learning framework can be used to build LV

myocardial geometric models. The proposed framework is not limited to any pathology and can

be extended to LV and RV blood-pool geometry. Ultimately, we intend to use this technique

to build dynamic patient-specific myocardial models with associated fiber architecture for

biomechanical cardiac simulations.
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Chapter 4

An Image Registration Approach for

Late Gadolinium Enhanced MRI and

Cine Cardiac MRI Using

Convolutional Neural Networks

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging, the current

benchmark for assessment of myocardium viability, enables the identification and quantifica-

tion of the compromised myocardial tissue regions, as they appear hyper-enhanced compared to

the surrounding, healthy myocardium. However, in LGE CMR images, the reduced contrast

between the left ventricle (LV) myocardium and LV blood-pool hampers the accurate delin-

eation of the LV myocardium. On the other hand, the balanced-Steady State Free Precession

(bSSFP) cine CMR imaging provides high resolution images ideal for accurate segmentation of

the cardiac chambers.1 In the interest of generating patient-specific hybrid 3D and 4D anatom-
1This chapter is adapted from:

Upendra R.R. et al., “A supervised image registration approach for late gadolinium enhanced MRI and cine
cardiac MRI using convolutional neural networks.” In: Papież B., Namburete A., Yaqub M., Noble J. (eds)
Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information
Science, vol 1248. Springer, Cham.
Upendra R.R. et al., “Joint deep learning framework for image registration and segmentation of late gadolinium
enhanced MRI and cine cardiac MRI.”, Proc. SPIE 11598, Medical Imaging 2021: Image-Guided Procedures,
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ical models of the heart, to identify and quantify the compromised myocardial tissue regions for

revascularization therapy planning, we present a spatial transformer network (STN) based con-

volutional neural network (CNN) architecture for registration of LGE and bSSFP cine CMR

image datasets made available through the 2019 Multi-Sequence Cardiac Magnetic Resonance

Segmentation Challenge (MS-CMRSeg). We perform a supervised registration by leveraging

the region of interest (RoI) information using the manual annotations of the LV blood-pool,

LV myocardium and right ventricle (RV) blood-pool provided for both the LGE and the bSSFP

cine CMR images. Furthermore, in order to reduce the reliance on the number of manual

annotations for training such network, we extend the proposed architecture to a joint deep

learning framework consisting of three branches: a STN based RoI guided CNN for registration

of LGE and bSSFP cine CMR images, an U-Net model for segmentation of bSSFP cine CMR

images, and an U-Net model for segmentation of LGE CMR images.

4.1 Introduction

Myocardial infarction, cardiomyopathy and myocarditis represent common cardiac conditions

associated with significant morbidity and mortality worldwide [1]. The assessment of my-

ocardium viability for patients who experienced any of these diseases is critical for diagnosis

and planning of optimal therapies. Accurate quantification of the compromised myocardium

is a crucial step in determining the part of the heart that may benefit from therapy [2]. LGE

CMR imaging is the most widely used technique to detect, localize and quantify the diseased

myocardial tissue, also referred to as scar tissue. During the typical LGE CMR image ac-

quisition protocol, a gadolinium-based contrast agent is injected into a patient, and the MR

images are acquired 15-20 minutes post-injection. In the LGE CMR images, the compromised

LV myocardial regions appear much brighter than healthy tissue, due to the trapping and

delayed wash-out of the contrast agent from the diseased tissue regions. As a concrete exam-

ple, in case of myocardial infarction, LGE CMR imaging helps assess the transmural extent

of the infarct, which helps predict the success of recovery following revascularization therapy

Robotic Interventions, and Modeling, 115980F (15 February 2021).
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and also provides additional insights about other potential complications associated with the

disease [3].

In a clinical set-up, radiologists and cardiologists visually assess the viability of the my-

ocardium based on the LGE CMR images. However, the gadolinium-based contrast agent

reduces the contrast between the myocardium and the LV blood-pool. Although useful to

identify scarred myocardium regions, LGE CMR images do not allow accurate delineation

between the LV blood-pool and the LV myocardium. On the other hand, the bSSFP cine

CMR images provide excellent contrast between myocardium and blood-pool (Fig. 4.1), and

can be successfully employed to identify the myocardium and blood-pool, but they cannot

show the scarred regions. Therefore, the LGE and bSFFP CMR images show complementary

information pertaining to the heart, but neither image type, on its own, enables the extraction,

quantification and global visualization of all desired features: LV blood pool, LV myocardium,

and scarred regions.

In the recent 2019 MS-CMRSeg challenge [4, 5], participants were provided with the seg-

mentation labels for LV blood-pool, LV myocardium, and RV blood-pool available for the

bSSFP cine CMR images to segment the same cardiac chambers from the LGE CMR images

of the same patients. Several studies proposed the generation of synthetic LGE CMR images

from the bSSFP cine CMR images using cycleGAN [6], histogram matching [7], shape transfer

GAN [8] or style transfer networks like MUNIT [9]. They use these synthetic LGE CMR

images and the annotations provided for the bSSFP cine CMR images to train various U-Net

architectures to segment LV blood-pool, LV myocardium and RV blood-pool from the actual

LGE CMR images. These methods result in good segmentation performance, however, they

are time consuming, since they rely on a two-step process: training the adversarial networks

to generate synthetic LGE CMR images from the bSSFP cine CMR images, followed by the

training of the U-Net architectures (or its variants) on these synthetic LGE CMR images to

segment the cardiac chambers from the original LGE CMR images.

An alternative approach to “learning” features from one image type and using them to

segment the other image type is to segment the complementary features from the cine MRI
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Figure 4.1: Example of (a) bSSFP cine CMR image with its (b) manual annotations - LV
blood-pool (LV) in blue, LV myocardium (MC) in green and RV blood-pool (RV) in red
overlayed on it and (c) LGE CMR image with its (d) manual annotations overlayed on it.

and LGE MRI images, then co-register the images and use the appropriate registration trans-

formation to propagate the segmentation labels from the cine MRI into the LGE MRI space

or vice versa. Chenoune et al.[10] rigidly register 3D delay-enhanced images with the cine

MRI images using mutual information as the similarity measure. Wei et al. [2] use pattern

intensity as similarity measure leading to accurate affine registration of cine and LGE MRI im-

ages. More recently, Guo et al. [11] proposed employing rigid registration to initially align the

cine CMR images with the multi-contrast late enhanced CMR images, followed by deformable

registration to further refine the alignment. In summary, all these works employ traditional
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approaches to iteratively optimize the registration cost function for a given image pair.

With the advent of deep learning, several groups proposed the utilization of neural net-

works to train image registration algorithms using similarity measures like normalized mutual

information (NMI), normalized cross correlation (NCC), local Pearson correlation coefficient

(LPC), sum of squared intensity difference (SSD) and sum of absolute difference (SAD) [12].

While the cost functions can be optimized by training large datasets using neural networks,

these unsupervised registration methods do not perform significantly better than the tradi-

tional approaches, as the similarity measures used are the same [13]. Hence, while these

unsupervised machine learning-based registration help in speeding up the registration process

compared to the traditional unsupervised registration algorithms, they do not necessarily im-

prove registration accuracy beyond that achieved using traditional unsupervised approaches.

In this paper, we propose a supervised deep learning-based registration approach to reg-

ister bSSFP cine CMR images to its corresponding LGE CMR images using a STN-inspired

CNN. Some literature suggests that supervised registration techniques entail the use of the

displacement field for training [14, 15]. Our proposed method, on the other hand, only uses

several segmentation labels to guide the registration. Hence, here we refer to it as a supervised

registration, although, according to the literature nomenclature mentioned above, it could also

be classified as a segmentation-guided registration.

We train the network on the 2019 MS-CMRSeg challenge dataset using the provided man-

ual annotations (required only during training) of the LV blood-pool, LV myocardium, and RV

blood-pool and compute a dual-loss cost function that combines the benefits of both the Dice

loss and cross-entropy loss. We compare the accuracy of our proposed rigid and affine super-

vised deep learning-based registration to the accuracy of previously disseminated unsupervised

deep learning-based rigid and affine registrations.

Our proposed method aims to address the limitations associated with the aforementioned

methods as follows: (i) we fully exploit the information pertaining to the various regions of in-

terest (RoIs) of the cardiac anatomy (i.e., LV blood-pool, LV myocardium and RV blood-pool)

and devise a robust ROI-guided registration technique that improved registration accuracy be-
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yond the previous unsupervised techniques; (ii) our method requires minimal preprocessing,

specifically it only relies on several segmentation labels that could be obtained using man-

ual annotation or using available and previously validated accurate, automatic segmentation

techniques [16, 17, 18, 19, 20]; and (iii) does not require the need to train additional adver-

sarial networks to generate synthetic LGE-MRI images [6, 7, 8, 9], therefore reducing network

training time without compromising registration accuracy.

In addition to the proposed STN-based RoI-guided CNN, we propose a joint deep learning

framework that consists of three branches - a STN-inspired CNN for supervised registration

of bSSFP cine CMR images and LGE CMR images, an U-Net model [21] for segmentation of

bSSFP cine CMR images and an U-Net model for segmentation of LGE CMR images. Inspired

by Qin et al. [22], we optimize a composite loss function by training all three networks

simultaneously. The aim of the proposed joint deep learning model is to further improve

registration accuracy by sharing the weights learned from the segmentation models and to

reduce the reliance on the number of manual annotations.

4.2 Methodology

4.2.1 Dataset

The dataset used in this paper was made available through the 2019 MS-CMRSeg challenge

[4, 5]. The available data consisted of LGE, T2-weighted, and bSSFP cine MRI images acquired

from 45 patients who had been diagnosed with cardiomyopathy. In this work, we utilize the

LGE and cine MRI images for registration. The manual annotations of the LV blood-pool,

LV myocardium and RV blood-pool were performed by trained personnel and corroborated

by expert cardiologists. Both the cine and LGE MRI images were acquired at end-diastole.

The cine MRI images were acquired using a TR and TE of 2.7 ms and 1.4 ms, respectively,

and consisted of 8-12 slices with an in-plane resolution of 1.25 mm × 1.25 mm and a slice

thickness of 8-13 mm. The LGE MRI images were acquired using a T1-weighted inversion-

recovery gradient-echo pulse sequences with a TR and TE of 3.6 ms and 1.8 ms, respectively,
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and consisted of 10-18 slices featuring an in-plane resolution of 0.75 mm × 0.75 mm and a 5

mm slice thickness.

To account for the differences in slice thickness, image sizes and in-plane image resolution

between the bSSFP cine CMR and LGE CMR images, all the images are resampled to a slice

thickness of 5 mm (using spline interpolation), in-plane image resolution of 0.75 mm × 0.75

mm and then resized to 224× 224 pixels.

4.2.2 Spatial Transformer Network (STN) Architecture

The STN consists of three parts - a localisation network, a parameterised sampling grid (grid

generator) and a differentiable image sampler. The localisation network function floc() can be

any fully connected network or convolutional neural network that takes in an input feature

map I ∈ RW×H×C with width W height H and channels C through a number of hidden layers,

and outputs θ, where θ = floc(I), and contains the parameters of the transformation Tθ.

In an effort to explain the proposed algorithm, let us consider a regular grid G consisting of

a set of points with source coordinates (xsi , y
s
i ). This grid G acts as input to the grid generator

and the transformation Tθ is applied on it i.e. Tθ(G). This operation results in a set of points

with target coordinates (xti, y
t
i) which is altered to translate, scale, rotate, skew etc. the input

image depending on the values of the θ. Depending on the target coordinates (xti, y
t
i), the

differentiable image sampler generates a transformed output feature map O ∈ RW×H×C
′
[23].

4.2.3 STN-based Registration of bSSFP Cine and LGE MRI Images

In our experiments, we concatenate the bSSFP cine CMR image (224 × 224) with its corre-

sponding LGE CMR image (224×224) and input the resulting 224×224×2 tensor into a CNN

which is analogous to the localisation network. For a 2D affine registration transformation,

the output θ of the CNN is a six-dimensional vector that results in the transformation matrix

Tθ,
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Figure 4.2: Overview of supervised registration of bSSFP cine CMR images and LGE CMR
image using STN. In the training network, the GT LGE CMR image is fed into the image
sampler and the dual-loss function is computed using the transformed GT features from the
LGE and bSSFP cine CMR images. In the testing network, the LGE CMR image slice is fed
into the image sampler and the output consists of a spatially transformed LGE CMR image
slice.

Tθ =

θ11 θ12 θ13

θ21 θ22 θ23

 (4.1)

For a rigid registration transformation, the output θ of the CNN is three-dimensional i.e.

θ = [x, y, z] where z is the rotation parameter and (x, y) are the translation parameters. This

results in the transformation matrix Tθ,

Tθ =

 cos(z) sin(z) x

−sin(z) cos(z) y

 (4.2)
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The grid generator outputs a sampling grid Tθ(G) and the differentiable image sampler

transforms the ground truth (GT) map of the LGE CMR image. The Dice loss and cross-

entropy loss are computed using the GT map of the cine CMR image and the transformed GT

map of the LGE CMR image. The computed loss is then used to back-propagate the CNN

(Fig. 4.2).

4.2.4 Joint Deep Learning Model for Registration and Segmentation

As shown in earlier works [24, 25, 22], image registration and segmentation tasks are closely

related and it has been shown that learning features from one task can benefit the other task.

In this work, we explore a joint deep learning model for registration of bSSFP cine CMR and

LGE CMR images, and segmentation of cardiac chambers (LV blood-pool, LV myocardium and

RV blood-pool) from the bSSFP cine CMR and LGE CMR images (Fig. 4.3). The coupling

of these registration and segmentation tasks result in sharing of the weights learnt from the

segmentation task with the registration branch of the network, improving the registration

accuracy.

4.2.5 Experiments and Implementation Details

4.2.5.1 Suervised RoI-based Registration Network

Firstly, we compare the registration accuracy of four different registration methods - unsuper-

vised rigid, unsupervised affine, supervised rigid and supervised affine.

The unsupervised registration methods are trained using the CNN shown in Fig. 4.2, using

NMI as a cost function. Our proposed supervised registration methods, which could also be

classified as segmentation-guided image registration techniques, are trained using the following

dual-loss function:

Ldual−loss = α.Lcross−entropy + (1− α).LDice−loss (4.3)

where Lcross−entropy is the cross-entropy loss, Ldice−loss is the Dice loss and α allows us to

modulate the effect of the Dice loss and cross-entropy loss on the overall dual-loss function.
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Figure 4.3: Schematic architecture of the proposed joint deep learning framework consisting
of three branches - a STN based CNN for registration of bSSFP cine CMR and LGE CMR
images, an U-Net model for segmentation of bSSFP cine CMR images and an U-Net model
for segmentation of LGE CMR images.

In our experiments, of the total 45 bSSFP and LGE MRI datasets, we use 35 datasets for

training, leaving 5 datasets for validation and the remaining 5 datasets for testing. We train

these networks using the Adam optimizer with a learning rate of 1e-5 and a gamma decay of

0.99 every alternate epoch for fine-tuning for 100 epochs on a machine equipped with NVIDIA

RTX 2080 Ti GPU with 11GB of memory.
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4.2.5.2 Joint Deep Learning Network

Secondly, we focus on comparing the registration results of the proposed joint deep learning

model with the stand-alone STN based model [26]. We also compare the results obtained

by training our networks by splitting the available 45 bSSFP cine and LGE MRI datasets to

35 for training, 5 for validation and 5 for testing, and the results obtained by training our

networks by splitting to 25 for training, 15 for validation and 5 for testing.

The three branches of our joint deep learning model are trained using the above-mentioned

dual-loss function (Equation 4.3). The loss function is calculated using the predicted segmenta-

tion maps and their corresponding GT maps for the bSSFP cine and LGE CMR segmentation

networks (Lcine−seg and Llge−seg, respectively). For the supervised RoI-guided registration

network, the dual-loss function is computed using the transformed GT map of the LGE CMR

images and the GT of cine CMR images (Lreg). Therefore, the resulting composite loss func-

tion is given by

L = λ1.Lreg + λ2.Lcine−seg + λ3.Llge−seg (4.4)

where λ1, λ2 and λ3 are the trade-off parameters for the three branches of the joint deep

learning model.

We train all our networks by randomly augmenting both the bSSFP cine CMR and the

LGE CMR images on-the-fly using a series of translation, rotation and gamma correction

operations. In these experiments, the networks are trained using the Adam optimizer with a

learning rate of 10−4 and a gamma decay of 0.99 every alternate epoch for fine-tuning for 100

epochs on a machine equipped with NVIDIA RTX 2080 Ti GPU with 11GB of memory.

4.3 Results

To evaluate our registration, we identify the LV and RV blood-pool centres as the centroid

of the segmentation masks of the LV and RV blood-pool corresponding to both the bSSFP

cine CMR and LGE CMR images. The Euclidean distance between the blood-pool centers i.e.
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center distance (CD) from these two images is compared to the blood-pool CD of the bSSFP

cine CMR image and its corresponding transformed LGE CMR image. We also quantify our

registration accuracy using average surface distance (ASD), a popular evaluation metric for

registration, between the LV blood-pool, LV myocardium and RV blood-pool masks of bSSFP

cine CMR image and its corresponding LGE CMR image, before and after registration.

In Table 4.1, we show the mean CD and mean ASD before registration, after unsupervised

rigid registration, unsupervised affine registration, supervised rigid registration and supervised

affine registration of the test dataset. Fig. 4.4 shows the comparison of CD and ASD of all the

four above-mentioned registration approaches. We can observe that the CD is significantly

reduced in both the supervised registration algorithms (rigid and affine) for LV blood-pool

(p-value < 0.005) and RV blood-pool (Herp-value < 0.05). We can also observe that the ASD

is significantly reduced for the LV blood-pool (p-value < 0.05), LV myocardium (p-value <

0.05) and RV blood-pool (p-value < 0.005) for both the rigid and affine supervised registration

methods. However, the changes in the CD and ASD after unsupervised registration (both rigid

and affine) is not very significant, compared to before registration.

Table 4.1: Summary of registration evaluation for RoI-based supervised registration algorithm.
Mean (std-dev) center-to-center distance (CD) and average surface distance (ASD) for LV
blood-pool (LV), LV myocardium (MC) and RV blood-pool (RV). Statistically significant
differences between the registration metrics before and after registration were evaluated using
the Student t-test and are reported using * for p < 0.05 and ** for p < 0.005. The best
evaluation metrics achieved are labeled in bold.

LV CD LV ASD MC ASD RV CD RV ASD
(mm) (mm) (mm) (mm) (mm)

Before Registration 3.28 2.53 1.78 4.36 2.42
(1.83) (1.23) (0.78) (3.79) (1.20)

Unsupervised Rigid 3.12 2.53 2.17 2.48 2.45
(1.79) (1.13) (1.58) (3.78) (1.26)

Unsupervised Affine 2.78 2.44 1.85 3.87 2.30
(1.65) (1.58) (1.56) (3.75) (1.23)

Supervised Rigid 2.22 2.14 1.42 2.69 1.72
(1.08)** (1.20)* (1.48)* (2.51)* (1.06)**

Supervised Affine 2.27 2.09 1.40 2.52 1.73
(1.38)** (1.14)* (1.12)* (2.66)* (1.02)**



114

(a) (b)

Figure 4.4: Comparison of (a) mean CD and (b) mean ASD values before registration, after
unsupervised rigid registration, unsupervised affine registration, supervised rigid registration
and supervised affine registration

Fig. 4.5 shows an example of the manual annotations of LV blood-pool (green), LV my-

ocardium (blue) and RV blood-pool (yellow) of a bSSFP cine CMR image overlayed on its

corresponding LGE CMR image before registration and on the corresponding transformed

LGE CMR image after unsupervised rigid, unsupervised affine, supervised rigid and super-

vised affine registration. Fig. 4.5 also shows that when the LGE CMR image and its associated

hyper-enhanced regions (marked by the enclosed pink contour) is overlaid onto the bSSFP cine

CMR image and its associated labels, the hyper-enhanced regions erroneously appear as part

of the LV blood-pool, instead of the LV myocardium. Nevertheless, following supervised reg-

istration, the hyper-enhanced regions correctly align with the LV myocardium, where they

truly belong. Lastly, Fig. 4.5 also helps the reader visually appreciate the performance of each

registration algorithm by showing the LV and RV blood-pool center-to-center distance before

and after each registration algorithm is applied.

In Table 4.2, we summarize the registration performance of the stand-alone STN-based

RoI-guided CNN and the proposed joint deep learning model. We compare the mean CD and

mean ASD achieved by both the stand-alone STN based CNN and the joint deep learning

model by training 25 of the 45 available image datasets and by training 35 of the 45 available

image datasets. We can observe that the registration performance of the joint deep learning

model achieved by training only 25 image datasets is comparable to that of the stand-alone

STN based registration when trained using 35 image datasets and significantly better than
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Figure 4.5: Panel 1-1: Unregistered LGE CMR image and associated hyper-enhanced regions
marked by pink contour and LV and RV blood-pool centers marked by red dots; Panel 2-1:
before registration (CD: 2.72 mm, ASD: 2.24 mm); overlaid unregistered LGE CMR image
and features (from Panel 1-1) onto the cine CMR image showing the RV and LV blood-pools
and their centers (marked by blue dots) and the LV myocardium (MC) marked on the cine
CMR image (Note: The hyper-enhanced regions enclosed by pink contour erroneously appear
over the LV blood-pool, not the LV myocardium, where they truly belong); Panel 1-2: overlaid
LGE CMR image onto the cine CMR image following unsupervised rigid registration (CD: 2.56
mm, ASD: 2.20 mm); Panel 2-2: unsupervised affine registration (CD: 2.52 mm, ASD: 2.18
mm); Panel 1-3: supervised rigid registration (CD: 1.56 mm, ASD: 1.64 mm); and Panel 2-3:
supervised affine registration(CD: 1.68 mm, ASD: 1.76 mm). (Note: The accurate overlay of
the hyper-enhanced regions marked by the pink contour over the LV myocardium, as well as
significantly improved LV and RV blood-pool center-to-center distance following supervised
registration in Panel 1-3 and Panel 2-3).

the stand-alone STN based registration when trained using 25 image datasets (p-value < 0.1

for RV blood-pool CD, and LV blood-pool CD and ASD). We can also observe that when the

joint deep learning model is trained using 35 image datasets, the LV blood-pool CD and LV

myocardium ASD is significantly lower than the rest of the models (Fig. 4.6). In Fig. 4.7, we

show an example of the manual annotations of the cardiac chambers of a bSSFP cine CMR

image overlaid on its corresponding LGE CMR image before registration and after registration
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Table 4.2: Summary of registration evaluation for joint deep learning framework. Mean (std-
dev) center-to-center distance (CD) and average surface distance (ASD) for LV blood-pool
(LV), LV myocardium (MC) and RV blood-pool (RV). The best evaluation metrics achieved
are labeled in bold. Statistically significant differences between the registration metrics before
and after registration were evaluated using the Student t-test and are reported using * for p
< 0.05 and ** for p < 0.005.

LV CD LV ASD MC ASD RV CD RV ASD
(mm) (mm) (mm) (mm) (mm)

Before Registration 3.28 2.53 1.78 4.36 2.42
(1.83) (1.23) (0.78) (3.79) (1.20)

Stand-alone STN Model 2.46 2.20 1.52 2.92 1.95
Training: 25 patients (1.31)** (1.23)* (0.84)* (2.18)** (1.02)*

Stand-alone STN Model 2.27 2.09 1.40 2.52 1.73
Training: 35 patients (1.38)** (1.14)** (1.12)* (2.66)** (1.02)**

Joint Model 2.26 1.96 1.41 2.60 1.77
Training: 25 patients (1.34)** (0.93)** (0.71)* (2.02)** (0.84)**

Joint Model 2.18 1.94 1.33 2.53 1.72
Training: 35 patients (1.46)** (0.93)** (0.73)** (2.14)** (0.97)**

(a) (b)

Figure 4.6: Comparison of (a) mean CD and (b) mean ASD values before registration, stand-
alone STN based supervised registration (training data: 25 patients), stand-alone STN based
supervised registration (training data: 35 patients), joint deep learning model (training data:
25 patients) and joint deep learning model (training data: 35 patients)

using both stand-alone STN-based RoI-guided CNN model and the joint deep learning model.
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Figure 4.7: Panel 1-1: LGE CMR image and associated hyper-enhanced regions marked by
pink contour and LV and RV blood-pool centers marked by red dots; Panel 2-1: before regis-
tration (CD: 3.46 mm, ASD: 1.87 mm); overlaid unregistered LGE CMR image and features
(from Panel 1-1) onto the bSFFP image showing the RV blood-pool (yellow) and LV blood-
pool (green) and their centers (marked by blue dots) and the LV myocardium (blue) marked
on the cine CMR image; Panel 1-2: overlaid LGE CMR image onto the cine CMR image
following stand-alone STN model registration using 25 patients for training (CD: 2.77 mm,
ASD: 1.62 mm); Panel 2-2: stand-alone STN model registration using 35 patients for training
(CD: 2.72 mm, ASD: 1.45 mm); Panel 1-3: joint deep learning model registration using 25
patients for training (CD: 2.77 mm, ASD: 1.51 mm); and Panel 2-3: joint deep learning model
registration using 35 patients for training (CD: 2.65 mm, ASD: 1.47 mm).

4.4 Discussion

Primarily, we present a STN inspired CNN architecture to register the bSSFP cine CMR images

to its corresponding LGE CMR images in a supervised manner using a dual-loss (weighted

Dice loss and weighted cross-entropy loss) cost function. Our experiments show a statistically

significant reduction of the CD between the bSSFP cine CMR images and the LGE CMR

images in LV blood-pool from 3.28 mm before registration to 2.22 mm after supervised rigid

registration and 2.27 mm after supervised affine registration, and in RV blood-pool from 4.36

mm before registration to 2.69 mm after supervised rigid registration and 2.52 mm after

supervised affine registration. We also observed a statistically significant improvement in
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the ASD between the bSSFP and LGE MRI images in LV blood-pool from 2.53 mm before

registration to 2.14 mm after supervised rigid registration and 2.09 mm after supervised affine

registration, in LV myocardium from 1.78 mm before registration to 1.42 mm after supervised

rigid registration and 1.40 mm after supervised affine registration, and in RV blood-pool

from 2.42 mm before registration to 1.72 mm after supervised rigid registration and 1.73 mm

after supervised affine registration. These results are achieved with minimal pre-processing

i.e. resampling all the images to a slice thickness of 5 mm (using spline interpolation), pixel

spacing of 0.75 mm × 0.75 mm and then resizing them to a common resolution of 224× 224

pixels. Another major advantage of our proposed method is the time required for training (80

seconds to train each epoch).

Our proposed supervised method outperforms both the unsupervised rigid and unsuper-

vised affine registration methods. The registration results of unsupervised methods are ob-

tained by training our network using NMI as cost-function. We also experimented with struc-

tural similarity image measure (SSIM) loss as a cost function, which yielded similar results.

The manual annotations of LV blood-pool, LV myocardium and RV blood-pool used during

supervised training enables the network to focus on registering the images accurately around

the regions of interest, improving the overall registration accuracy.

We also experimented using only the manual annotations of LV blood-pool and LV my-

ocardium, however the rotational transformation of the registration fails due to the circular

nature of the LV blood-pool and LV myocardium. Hence, one potential drawback is the

need for annotations of cardiac structures for training. While the LV blood-pool, LV my-

ocardium and RV blood-pool labels used here were available through the challenge, there

exist numerous sufficiently accurate and robust cardiac image segmentation methods, such as

[16, 17, 18, 19, 20], that can be leveraged to annotate the desired structures from the bSSFP

CMR images to provide sufficient rotational asymmetry for optimal registration. Lastly, an-

other minor drawback is the possibility of losing certain critical information around the cardiac

structures during image resampling prior to registration, but such challenges have always been

faced in image registration, an example being atlas construction from images featuring different
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in-plane resolution and slice thickness.

We would like to address the insignificant difference between the supervised rigid and

supervised affine registration approach. Note that both the bSSFP cine CMR and the LGE

CMR images are acquired during the same imaging exam, using the same scanner, without

changing the patient position, and while also employing ECG gating for end-diastole image

capture, resulting in similar shapes and sizes of the cardiac structures.

We showed that a STN inspired RoI-guided CNN architecture can be reliably used to

register the bSSFP cine CMR and LGE CMR images. The major drawback of the method

is the need for annotations of cardiac structures for large number of training data. Hence,

we investigate whether the joint deep learning framework is a viable option for registration of

LGE and bSSFP cine CMR images. Our results reveal that the proposed joint deep learning

model leverages the weights learnt from the segmentation task to improve the registration

accuracy and produces reliable registration results using lesser number of training data and

manual annotations.

The mean Dice scores achieved by the segmentation branches of the bSSFP cine CMR

images and LGE CMR images are 84.73% and 71.49%, respectively. The poor results of

the segmentation branches are due to the limited number of the training data, however, the

weights learnt from these segmentation branches improve the registration accuracy in the joint

deep learning model. The computational time required for each epoch for a stand-alone STN

model is around 63 seconds and 67 seconds to train 25 and 35 of the 45 available image

datasets, respectively, whereas the joint deep learning model requires around 110 seconds and

155 seconds to train 25 and 35 of the 45 available image datasets, respectively. It is worth to be

noted that although the stand-alone STN model takes less training time for the registration, it

nevertheless requires manual annotations, while the joint model requires relatively more time

for training, the number of manual annotations needed are fewer.

This study was conducted using LGE and bSSFP cine MRI images from patients diag-

nosed with cardiomyopathy. Nevertheless, the proposed methods are useful for registering any

gadolinium-enhanced and cine MRI images of any patient provided their cardiac conditions
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is visible and appropriate for gadolinium-enhanced imaging during diagnosis. Such conditions

include, but are not limited to, myocarditis or myocardial infarction, or other diseases that

show hyper-enhancement of the compromised myocardial regions.

To further reduce the reliance on manual annotations to conduct the RoI-guided regis-

tration, in our future work we plan to investigate the use of previously validated machine

learning-based segmentation techniques [16, 17, 18, 19, 20] to automatically extract the re-

quired ROI labels (as manual annotated labels are not typically available for large datasets),

then proceed with the registration.

Another area of improvement for our future work is to correct for slice misalignment during

MR image acquisition prior to stacking up the segmented and registered image slices in the

effort to build 3D models that help quantify and visualize the compromised myocardial regions

using 3D maps, leveraging the methods by Dangi et al. [27].

4.5 Conclusion

In this work, we first show that the proposed STN based RoI-guided CNN can be used to

register bSSFP cine CMR sequence and LGE CMR sequence accurately and in a time-efficient

manner. Our proposed method outperforms unsupervised deep learning algorithms trained

using popular similarity metrics such as NMI.

Next, we present a joint deep learning model for registration of LGE and bSSFP cine CMR

images, and the segmentation of cardiac chambers from the LGE CMR and the bSSFP CMR

images. The coupling of the segmentation and the registration tasks enables a multi-task

training and results in obtaining reliable registration results using a lower number of training

datasets, reducing the need for a large number of manual annotations.

As part of our future work, we will be investigating other variants of U-Net architecture

to improve the segmentation performance of the joint deep learning model and these obtained

segmentation masks can be used to further fine-tune the registration in case of sparsely anno-

tated datasets, resulting in a weakly-supervised method for registration. Ultimately, we intend

to build 3D models that help quantify and visualize the compromised myocardial regions.
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Chapter 5

A Deep Learning Framework for

Image Super-Resolution for Late

Gadolinium Enhanced Cardiac MRI

Cardiac magnetic resonance imaging (MRI) provides 3D images with high-resolution in-plane

information, however, they are known to have low through-plane resolution due to the trade-

off between resolution, image acquisition time and signal-to-noise ratio. 1 This results in

anisotropic 3D images which could lead to difficulty in diagnosis, especially in late gadolinium

enhanced (LGE) cardiac MRI, which is the reference imaging modality for locating the extent

of myocardial fibrosis in various cardiovascular diseases like myocardial infarction and atrial

fibrillation. To address this issue, we propose a self-supervised deep learning-based approach to

enhance the through-plane resolution of the LGE MRI images. We train a convolutional neural

network (CNN) model on randomly extracted patches of short-axis LGE MRI images and this

trained CNN model is used to leverage the information learnt from the high-resolution in-plane

data to improve the through-plane resolution. We conducted experiments on LGE MRI dataset
1This chapter is adapted from:

Upendra R.R. et al., “A convolutional neural network-based deformable image registration method for cardiac
motion estimation from cine cardiac MR images.” In 2020 Computing in Cardiology (pp. 1-4). IEEE.
Upendra R.R. et al., “A 3D Convolutional Neural Network with Gradient Guidance for Image Super-Resolution
of Late Gadolinium Enhanced Cardiac MRI.” In 2022 44th Annual International Conference of the IEEE
Engineering in Medicine Biology Society (EMBC) (pp. 1707-1710). IEEE.
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made available through the 2018 atrial segmentation challenge. While the proposed 2D patch-

based method improves the through-plane resolution, they ignore the global context information

that is crucial for accurate segmentation and also, can be inefficient as it requires the use of

patches even during the inference stage leading to inconsistencies during the fusion process.

Additionally, the 2D slice-by-slice training employed by many researchers to train the CNN

does not take advantage of the 3D information provided by the cardiac MRI images.

To that end, we propose a 3D convolutional neural network (CNN) framework with two branches:

a super-resolution branch to learn the mapping between low-resolution and high-resolution

LGE-MRI volumes, and a gradient branch that learns the mapping between the gradient map

of low-resolution LGE-MRI volumes and the gradient map of high-resolution LGE-MRI vol-

umes. The gradient branch provides structural guidance to the CNN-based super-resolution

framework. To assess the performance of the proposed CNN-based framework, we train two

CNN models with and without gradient guidance, namely, dense deep back-projection network

(DBPN) and enhanced deep super-resolution (EDSR) network. We train and evaluate our

method on the 2018 atrial segmentation challenge dataset. Additionally, we also evaluate these

trained models on the left atrial and scar quantification and segmentation challenge (LAS-

carQS) 2022 dataset to assess their generalization ability. Finally, we investigate the effect of

the proposed CNN-based super-resolution framework on the 3D segmentation of the left atrium

(LA) from these cardiac LGE-MRI image volumes.

5.1 Introduction

Cardiac MRI is the current gold standard to assess cardiac function and diagnose various

cardiovascular diseases. MRI images provide dynamic 3D images of the heart with high-

resolution in-plane information. In clinical cardiac MRI, due to the limitations of the maximal

breath-hold time achievable by the patient, high-resolution 2D stacks of images are typically

acquired resulting in anisotropic 3D volumes of the heart. Therefore, these 3D volumes usually

have low through-plane resolution (i.e., slice thickness). For example, in a typical LGE cardiac

MRI, which is widely used to assess the myocardium viability in post-infarct patient and study
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the extent of fibrosis in the atria of patients with atrial fibrillation [1], etc., has a high in-plane

resolution of 1 to 1.5 mm, but a low through-plane resolution of 5 to 10 mm [2]. In order to

localize and quantify LA fibrosis with high precision, high-resolution 3D LGE-MRI images are

necessary. Therefore, the anisotropic 3D LGE-MRI images with poor through-plane resolution

impose challenges on downstream tasks, such as the 3D segmentation of LA cavity and fibrosis

quantification.

Conventional interpolation methods such as bilinear, spline and Lancoz resampling meth-

ods can be used to upsample the low-resolution volumes to high-resolution volumes, how-

ever, these methods often cause artifacts, like blurring, and cannot recover the missing high-

frequency semantic and structural information. In order to address this limitation, several

researchers proposed learning-based super-resolution methods that learn the structural infor-

mation between slices using low- and high-resolution image pairs [3, 4, 5]. In recent years,

increasing research efforts proposed deep learning-based super-resolution algorithms for med-

ical images [6], especially to enhance the through-plane resolution of anisotropic brain MRI

images [7, 8, 9, 10, 11].

Subsequently, these deep learning-based super-resolution techniques have been applied to

alleviate the through-plane resolution degradation in 3D cardiac MRI volumes. In response to

the challenge of acquiring high resolution isotropic images, Steeden et al. [12] demonstrated

the potential of a convolutional neural network (CNN)-based approach for super-resolution

reconstruction of balanced steady state free precession (bSSFP) cardiac MRI images using

synthetic training data. Masutani et al. [13] explored the feasibility of both single frame

and multi-frame CNN models to generate super-resolution bSSFP cine cardiac MRI images.

Basty et al. [14] showed that recurrent neural networks (RNN) can be used to reconstruct

super-resolution cardiac cine MRI long-axis slices from low-resolution acquisitions by using

the temporal recurrence, thereby, using the temporal context to improve the resolution of

cardiac cine MRI volumes. Sander et al. [15] proposed an unsupervised deep learning-based

approach to enhance the through-plane resolution of cine cardiac MRI volumes by leveraging

the latent space interpolation ability of the autoencoders; however, large variations in anatomy
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Figure 5.1: Self-supervised deep learning framework to improve through-plane resolution in
LGE cardiac MRI

between adjacent slices affect the performance of the method. Zhao et al. [16] proposed a 2D

CNN-based super-resolution method that takes advantage of the high-resolution information

from the in-plane data to improve the through plane resolution. They applied this technique

on cine cardiac, neural and tongue MRI images. These methods successfully improve the

through-plane resolution of cine cardiac MRI images, however, limited efforts have been made

to improve the resolution of LGE cardiac MRI images using CNN-based methods.

In order to improve the through-plane resolution of LGE cardiac MRI images to aide

LA segmentation for AF patients, we first propose a 2D CNN-based method to enhance the

through-plane resolution of LGE cardiac MRI images by leveraging the information learnt by

training short-axis 2D patches to learn the mapping from simulated low-resolution in-plane

data and their corresponding high-resolution in-plane data and using this learnt information

to enhance the poor through-plane resolution 5.1.

In addition to the 2D self-supervised deep learning framework to compute super-resolution

LGE MRI images, we developed a 3D CNN-based architecture with gradient guidance to gen-

erate super-resolution cardiac LGE-MRI images [17]. Inspired by the 2D structure-preserving

super-resolution (SPSR) method [18], we extended a 3D gradient branch that guides our 3D

CNN model to “pay more attention” to the 3D structure of the tissues in the LGE-MRI images,

as illustrated in Fig. 5.2. Our main contributions in this work can be summarized as follows:
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Figure 5.2: Framework of the proposed dense DBPN-based super-resolution (SR) method with
gradient guidance.

1. Firstly, to enhance the resolution of 3D cardiac LGE-MRI images, we present a 3D deep

learning-based framework with two branches: a super-resolution branch with 3D dense

deep back-projection network (DBPN) [19] as the backbone of our CNN architecture and

an auxiliary gradient branch. As illustrated in Fig. 5.2, while the super-resolution branch

learns the mapping between the low-resolution input image and its corresponding high-

resolution image, the gradient branch learns the mapping between the gradient map of

the low-resolution input image and the gradient map of its corresponding high-resolution

image. We evaluate the performance of the proposed super-resolution method by training

and testing them on the 2018 atrial segmentation challenge dataset [20].

2. Secondly, we further assess the performance of the proposed gradient guidance method

by replacing the dense DBPN model with the enhanced deep super-resolution (EDSR)

[21] network as the backbone of our deep learning framework.

3. Thirdly, in addition to evaluating our methods by training and testing them on the 2018

atrial segmentation challenge dataset [20], we also evaluate the generalization ability

of our trained models by testing them on an external test set, the left atrial and scar

quantification and segmentation challenge (LAScarQS) 2022 dataset [22, 23, 24].

4. Finally, we investigate the effect of the proposed super-resolution framework on the
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downstream segmentation task, i.e., the segmentation of the LA from these LGE-MRI

volumes.

5.2 Materials and Methods

5.2.1 Data

A set of 154 3D LGR-MRI volumes obtained from 60 patients with AF was available through

the 2018 atrial segmentation challenge [20]. These clinical images were acquired with either a

Siemens 1.5 Tesla Avanto or a 3.0 Tesla Verio scanner. We split the available 154 LGE-MRI

volumes to 80 for training, 20 for validation and 54 for testing.

The spatial dimensions of these LGE-MRI volumes are either 576x576x88 or 640x640x88,

and feature an isotropic voxel spacing of 0.625x0.625x0.625 mm3. In order to train our

CNN models, we need to simulate low-resolution LGE-MRI volumes from the available high-

resolution LGE-MRI volumes. Therefore, we first center-crop the high-resolution images to

224x224x88 and downsample them randomly on-the-fly during training using either Fourier

or Gaussian downsampling, with uniform distribution. In Fourier downsampling, we block the

high frequency information in the w-axis of the Fourier domain by truncating the k-space in

order to simulate the low-resolution data acquisition process in the Fourier domain. In Gaus-

sian downsampling, we simulate low-resolution images using Gaussian blur with a standard

deviation in the range of [0.5, 1.5] and downsample them using linear interpolation in the z-axis

direction, i.e., slice-encoding direction. We downsample the LGE-MRI volumes using a scale

factor of 2, 4, and 8. Subsequently, to train our 3D CNN models, we generate 3D LGE-MRI

patches of size 96x96x44, 96x96x22 and 96x96x11, respectively, with an overlap of 33.33%.

Additionally, to evaluate the generalization ability of our trained models, we use a subset

(only the high-resolution isotropic LGE-MRI data) of the training dataset from the LAScarQS

2022 segmentation challenge dataset [22, 23, 24] as our external test set. These clinical images

feature a spatial resolution of 1.4x1.4x1.4 mm3 and were acquired using a Philips Achieva

1.5 Tesla scanner from patients with AF. We test the models trained on the 2018 atrial
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segmentation challenge [20] dataset on these 30 LGE-MRI volumes from the LAScarQS 2022

segmentation challenge dataset [22, 23, 24]

5.2.2 Self Supervised Super-Resolution Framework

In order to generate low-resolution data for training, we first blur the images in the x-axis

to obtain low-resolution in-plane images. This is done by Fourier downsampling to simulate

data acquisition process in MRI and to ensure no high frequency information on the u-axis in

the Fourier domain. Now, we have the low-resolution in-plane data and their corresponding

high-resolution in-plane data to train the CNN. This CNN model will be trained to learn

the mapping between the low-resolution and the high-resolution data. We also repeat the

Fourier downsampling process in z-axis to obtain low-resolution through-plane data. This

low-resolution through-plane data is used as the test dataset for our experiments.

To train the CNN model, we first extract patches of dimensions 640x88 pixels from the low-

resolution short-axis images in both horizontal and vertical directions. These low-resolution

patches are input to a 2D CNN, an encoder-decoder network with skip connections (U-Net

[25]). The output of the CNN and the corresponding high-resolution patch is used to compute a

L1 loss function to backpropagate the CNN, thereby, learning the mapping from low-resolution

in-plane data to high-resolution in-plane data. This mapping is subsequently applied to long-

axis images to improve the through-plane resolution (Fig. 5.1).

In our experiments, we split the total 154 LGE MRI dataset to 100 for training and 54

for testing in a 3-fold cross-validation strategy. The networks are trained using the Adam

optimizer with a learning rate of 10−4 and a gamma decay of 0.99 every alternate epoch for

fine-tuning, a batch size of 20 patches, for 50 epochs on a machine equipped with NVIDIA

RTX 2080 Ti GPU with 11GB of memory.

5.2.3 3D CNN Super-Resolution Framework with Gradient Guidance

As illustrated in Fig. 5.2, our proposed CNN framework to generate super-resolution cardiac

LGE-MRI volumes consists of two branches: a super-resolution branch and a gradient branch.
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5.2.3.1 Super-Resolution Branch

The super-resolution branch takes in low-resolution images ILR as input and aims to generate

super-resolution images ISR as output, given the high-resolution images IHR as ground-truth.

In our work, we use the dense DBPN [19] model to super-resolve the low-resolution LGE-MRI

volumes. The dense DBPN model illustrated in Fig. 5.2 can be split into three parts: initial

feature extraction, back-projection and reconstruction. In the initial feature extraction stage,

we construct the initial low-resolution feature maps from ILR using 32 filters, which is then

further reduced to 16 filters before entering the back-projection stage. Following the initial

feature extraction step, in the back-projection stage, we have a sequence of three up-projection

and two down-projection blocks, wherein, each block has access to outputs of all the previous

blocks (Fig. 5.2). This enables the generation of effective feature maps [19]. Here, the up-

and down-projection blocks are alternating between the construction of low-resolution and

high-resolution feature maps and the number of filters used in each projection block is set

to 16. Finally, in the reconstruction stage, all the high-resolution feature maps from the up-

projection blocks are concatenated, along with the output of the gradient branch, to generate

ISR as output.

5.2.3.2 Gradient Branch

The target of the gradient branch is to learn the mapping between the gradient map of the

low-resolution images G(ILR) and the gradient map of their corresponding high-resolution

images G(IHR), thereby, reconstructing a super-resolution gradient map ISRgradient. Here, G(·)

stands for the operation that extracts the gradient map of the images, which in our case

is a Sobel filter. Similar to the super-resolution branch, we use a dense DBPN model to

learn the mapping in the gradient branch. As illustrated in Fig. 5.2, the gradient branch

incorporates feature map representations from the super-resolution branch at every level, as

opposed to incorporating features only at the up-projection level, as shown in our earlier work

[17]. The advantage of this step is that it enables the reconstruction of the higher-resolution

gradient map using the rich structural information from the super-resolution branch (strong
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prior) and reduces the number of parameters needed for the gradient branch. Next, the high-

resolution feature maps from the up-projection blocks of the gradient branch are concatenated

and integrated with the super-resolution branch to guide reconstruction of the super-resolution

3D LGE-MRI images. The motivation behind the integration of high-resolution feature maps

from the gradient branch to the super-resolution branch is that it can implicitly echo if the

recovered region should be sharp or smooth, thus preserving the structure of the tissue as the

CNN concentrates more on the spatial relationships of the outlines in the gradient branch.

Meanwhile, the concatenated high-resolution feature maps from the up-projection blocks of

the gradient branch are used to reconstruct super-resolution gradient map ISRgradient.

5.2.3.3 Objective Function

Our proposed CNN model is trained using the following objective function:

L = α.LSR + β.LGradient + γ.LGradientSR
, (5.1)

where LSR is the L1 loss computed between ISR and IHR, LGradient is the L1 loss computed

between ISRgradient and G(IHR), and LGradientSR
denotes L1 loss between G(ISR) and G(IHR).

In Equation (5.1), the α, β and γ represent the scalar weights associated with the LSR,

LGradient and LGradientSR
loss functions, respectively.

5.2.3.4 Experiments

In order to evaluate the effectiveness of our proposed method, three experiments were designed.

In the first experiment, we compare the results of our proposed framework with bicubic

interpolation and dense DBPN model without gradient guidance. Additionally, to assess the

effectiveness of the gradient branch, we use the EDSR model [21] as the back-bone network in

our proposed framework and compare it with the EDSR network without gradient guidance.

Here, we split the 154 LGE-MRI dataset made available through the 2018 atrial segmentation

challenge [20] into 80 datasets for training, 20 datasets for validation and 54 datasets for

testing. We refer to this test set as the internal test set since the training and test sets belong
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to the same dataset. As discussed in Section 5.2.1, we train the models on low-resolution

LGE-MRI volumes obtained by downsampling high-resolution volumes using a scale factor of

2, 4 and 8, respectively. We train these models on a NVIDIA RTX 2080 Ti GPU with 11 GB

memory using the Adam optimizer with a learning rate of 10−4 and a gamma decay of 0.5

every 15 epochs, for 50 epochs.

In the second experiment, we apply the models trained on the 2018 atrial segmentation

challenge [20] to test them on a subset of the LAScarQS 2022 segmentation challenge dataset

[22, 23, 24], which we refer to as the external test set. This is done to assess the generalization

ability of the proposed framework. We test the trained models on 30 LGE-MRI volumes from

the LAScarQS dataset, which is the total number of high-resolution isotropic LGE-MRI data

available in the training set of the LAScarQS dataset.

In our third experiment, we use the super-resolved LGE-MRI volumes generated by each

of the above-mention algorithms to train the U-Net [25] models to segment the LA chamber,

and compare the segmentation results, in order to investigate the effect of the proposed super-

resolution framework on the downstream segmentation tasks. We use the similar split, i.e., 80

for training, 20 for validation and 54 for testing from the 2018 atrial segmentation challenge

[20] dataset to train the U-Net models. The ground-truth LA segmentation masks provided

by the 2018 atrial segmentation challenge dataset [20] were manually annotated by experts

in the field and were used to train the U-Net models. While training, we augment the LGE-

MRI images randomly on-the-fly using translation, rotation and gamma correction operations.

These U-Net models are trained on the NVIDIA RTX 2080 Ti GPU with 11 GB memory using

the Adam optimizer with a learning rate of 10−5 and a gamma decay of 0.99 every alternate

epoch, for 100 epochs.
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(a) (b)

Figure 5.3: Comparison of (a) mean PSNR and (b) mean SSIM values achieved by bicubic
interpolation and the proposed CNN framework

Table 5.1: Mean (std-dev) peak signal-to-noise-ratio (PSNR) and structural similarity index
measure (SSIM) achieved using bicubic interpolation and our proposed self supervised CNN
framework for downsampling scale factor of 2 and 4, respectively. The best evaluation metrics
achieved are labeled in bold. Statistically significant differences were evaluated using the
Student t-test and are reported using * p < 0.005.

Scale Factor: 2 Scale Factor: 4
Methods PSNR SSIM PSNR SSIM
Bicubic 35.04 0.86 33.14 0.81

Interpolation (1.93) (0.03) (2.45) (0.05)
CNN 36.99 0.90 35.92 0.84

(1.91)* (0.04)* (2.73)* (0.03)*

5.3 Results

5.3.1 Evaluation of Self Supervised Super-Resolution Framework

To evaluate our results, we compute the mean PSNR and mean SSIM between the super-

resolution long-axis images obtained from the proposed method and the ground truth high-

resolution long-axis images. We then compare the computed PSNR and SSIM with the results

obtained by bicubic interpolation.

Table 5.1 shows a comparison of the mean PSNR and mean SSIM between our proposed self

supervised CNN method and the bicubic interpolation for low-resolution images simulated by
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(a) (b)

Figure 5.4: (a) Long axis views of LGE cardiac MRI with (A1) ground-truth high-resolution,
(A2) low-resolution with downsampling scale factor 2 (PSNR: 27.34, SSIM: 0.61), (A3) the
LR image upsampled by bicubic interpolation (PSNR: 29.93, SSIM: 0.73) and (A4) the super-
resolution image from CNN model (PSNR: 32.43, SSIM: 0.81); and (b) long axis views of LGE
cardiac MRI with (B1) ground-truth high-resolution, (B2) low-resolution with downsampling
scale factor 4 (PSNR: 23.42, SSIM: 0.48), (B3) the LR image upsampled by bicubic interpo-
lation (PSNR: 28.38, SSIM: 0.69) and (B4) the super-resolution image from self supervised
CNN model (PSNR: 31.04, SSIM: 0.79)

a downsampling scale factor of 2 and 4. We achieved a mean PSNR of 36.99 and 35.92 using

our trained CNN model on images downsampled by a scale factor of 2 and 4, respectively,

compared to 35.04 and 33.14, respectively, using bicubic interpolation alone. Similarly, we

achieved a mean SSIM of 0.9 and 0.84 using our trained CNN model on images downsampled

by a scale factor of 2 and 4, respectively, compared to 0.86 and 0.81, respectively, using bicubic

interpolation alone (Fig. 5.3). We show an example of the improved through-plane resolution

for low-resolution images simulated by a downsampling scale factor of 2 and 4 in Fig. 5.4a

and Fig. 5.4b, respectively.
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5.3.2 Evaluation of 3D CNN Super-Resolution Framework with Gradient

Guidance

5.3.2.1 Validation on Internal Test Set

The performance of the proposed 3D CNN framework is evaluated by computing the mean

peak signal-to-noise ratio (PSNR) and mean structural similarity index (SSIM) between the

super-resolution 3D LGE-MRI volumes and ground-truth high-resolution 3D LGE-MRI vol-

umes. In Table 5.2, we show the super-resolution results of different methods, namely, bicubic

interpolation, EDSR model with and without gradient guidance, and dense DBPN model with

and without gradient guidance, respectively, on the internal test set. The super-resolution

models are trained and tested on simulated low-resolution images downsampled by a scale fac-

tor of 2, 4 and 8, respectively. To compare the performance of the experimented models, we

conducted a statistical significance (Student’s t-test) test. While the CNN models outperform

the bicubic interpolation (p < 0.01) for all the three downsampling scale factors, our exper-

iments show higher PSNR and SSIM for the EDSR and dense DBPN models with gradient

guidance compared to their stand-alone counterparts. In order to show the improvement in

through-plane resolution using the proposed CNN framework, in Fig. 5.5, we show an example

of a Gaussian downsampled low-resolution LGE cardiac MRI slice along the z-axis with its

corresponding high-resolution image slice, and the super-resolution images obtained using the

above-mentioned methods for all three downsampling scale factors.

5.3.2.2 Generalization Testing: Validation on External Test Set

The generalization ability of our method is evaluated using the external test set (Table 5.3).

The 3D CNN models trained on the 2018 atrial segmentation challenge [20] were tested on this

external test set (LAScarQS 2022 dataset [22, 23, 24]). Similar to the internal test set, low-

resolution images were simulated by a downsampling scale factor of 2, 4 and 8, respectively,

in order to compute super-resolution LGE-MRI volumes. The super-resolution results on the

external dataset are analogous to the internal dataset, i.e., the CNN models outperform the

bicubic interpolation results and the PSNR and SSIM achieved by the CNN models with
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Table 5.2: Internal Test Set Evaluation: Mean (std-dev) peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) achieved using bicubic interpolation, EDSR model with and
without gradient guidance, and dense DBPN model with and without gradient guidance for a
downsampling scale factor of 2, 4 and 8, respectively. The best evaluation metrics achieved are
labeled in bold. Statistically significant differences were evaluated between the CNN models
with and without gradient guidance using the Student’s t-test and are reported using * p <
0.05 and ** for p < 0.01.

Scale Factor: 2 Scale Factor: 4 Scale Factor: 8
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 26.55 0.785 22.56 0.613 19.86 0.378

Interpolation (2.04) (0.085) (1.54) (0.083) (1.68) (0.070)
EDSR 29.80 0.881 24.41 0.695 20.69 0.395

(1.60) (0.064) (1.70) (0.071) (1.62) (0.043)
EDSR with 29.97 0.880 25.13 0.740 20.80 0.417

Gradient Guidance (2.04) (0.069) (1.48) (0.065)** (1.51) (0.047)*
Dense DBPN 29.59 0.879 25.36 0.730 20.74 0.395

(1.80) (0.065) (1.55) (0.061) (1.48) (0.046)
Dense DBPN with 30.93 0.916 26.63 0.763 20.81 0.421
Gradient Guidance (1.79)* (0.065)** (1.48)* (0.061)** (1.45) (0.048)

gradient guidance are significantly higher than the stand-alone CNN models. We also show

an example of the improved through-plane resolution on the external dataset in Fig. 5.6.

5.3.2.3 Effect of Super-Resolution on Downstream Segmentation Task

In order to show the effect of super-resolution on downstream segmentation task, we train 3D

U-Net models to segment the LA from LGE-MRI images. Since the dense DBPN models has

resulted in higher PSNR and SSIM values compared to the EDSR models, we train the U-Net

models on the 2018 atrial segmentation challenge [20] dataset by simulating low-resolution

images and upsampling them by dense DBPN model with gradient guidance, and comparing

them with the segmentation results obtained by training U-Net models on images generated

using dense DBPN model without gradient guidance and bicubic interpolation. We summa-

rize the segmentation performance on these upsampled images in Table 5.4 using Dice score.

We can see that the segmentation results obtained by training the images upsampled using

dense DBPN model with gradient guidance is significantly better than bicubic interpolation

(p < 0.01) and dense DBPN model without gradient guidance (p < 0.05), for all the three
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Figure 5.5: Visual assessment of reconstructed super-resolution images from internal dataset.
Row 1: High-resolution (HR) LGE cardiac MRI slice along z-axis and its cropped version
(ground truth). Low-resolution (LR) Gaussian downsampled image with downsampling scale
factor 2 upsampled by bicubic interpolation, the super-resolution image from EDSR model,
super-resolution image from EDSR model with gradient guidane (GG), the super-resolution
image from dense DBPN model, and the super-resolution image from dense DBPN model
with GG, respectively. Row 3: LR with downsampling scale factor 4 upsampled by the
above-mentioned methods. Row 4: LR with downsampling scale factor 8 upsampled by the
above-mentioned methods. The peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) evaluated between each super-resolved image and the original high-resolution
grounds truth image is also labeled for interpretation vis-a-vis visual assessment.

downsampling scale factors.

Ablation Studies

In Table 5.5, we show the results of the ablation studies we performed to understand the con-

tributions of the various components of the loss functions and the network. These studies were

performed using the dataset from 2018 atrial segmentation challenge [20] and downsampling

them by a factor of 4. We show the super-resolution results on the dense DBPN model with

only LSR as a loss function and without gradient guidance, followed by dense DBPN model

with α.LSR + γ.LGradientSR
as loss function and without gradient guidance, where LSR is the

L1 loss computed between the generated super-resolution images, ISR and ground-truth high-

resolution images, IHR, and LGradientSR
denotes L1 loss between G(ISR) and G(IHR), where
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Table 5.3: Generalization Evaluation on External Test Set: Mean (std-dev) peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) achieved using bicubic interpolation,
EDSR model with and without gradient guidance, and dense DBPN model with and without
gradient guidance for a downsampling scale factor of 2, 4 and 8, respectively. The best evalu-
ation metrics achieved are labeled in bold. Statistically significant differences were evaluated
between the CNN models with and without gradient guidance using the Student’s t-test and
are reported using * p < 0.05 and ** for p < 0.01.

Scale Factor: 2 Scale Factor: 4 Scale Factor: 8
Methods PSNR SSIM PSNR SSIM PSNR SSIM
Bicubic 27.60 0.798 22.86 0.629 20.21 0.377

Interpolation (2.21) (0.094) (1.59) (0.089) (1.78) (0.064)
EDSR 30.13 0.868 25.65 0.713 20.94 0.399

(1.51) (0.039) (1.50) (0.047) (1.49) (0.044)
EDSR with 30.44 0.902 25.94 0.760 21.57 0.424

Gradient Guidance (1.49) (0.038)* (1.42) (0.040)** (1.47) (0.045)
Dense DBPN 30.46 0.904 24.69 0.718 20.91 0.421

(1.27) (0.033) (1.68) (0.059) (1.64) (0.056)
Dense DBPN with 31.69 0.925 26.39 0.784 21.03 0.423
Gradient Guidance (1.73)* (0.038)* (1.39)* (0.034)** (1.53) (0.044)

G(·) stands for the gradient map of the images. Next, we show the super-resolution results

of dense DBPN model with gradient guidance at only up-projection levels [17], followed by

dense DBPN model with gradient guidance at all the levels (ours). As evident in Table 5.5,

the dense DBPN model with gradient guidance at all the levels (ours) yields the highest PSNR

and SSIM values across all tested models.

5.4 Discussion

In this paper, we first presented a self supervised CNN-based super-resolution framework

to improve the through-plane resolution of LGE cardiac MRI images without the need for

external training data to train the network. The CNN model is trained to learn the mapping

of simulated short-axis low-resolution patches to their corresponding ground truth short-axis

high-resolution patches. This information learnt from the in-plane data is used to improve

the through-plane resolution. Our experiments show significantly improved PSNR and SSIM

compared to the results obtained from bicubic interpolation. Lastly, the resulting super-
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Figure 5.6: Visual Assessment of reconstructed super-resolution images from external
dataset. Row 1: High-resolution (HR) LGE cardiac MRI slice along z-axis and its cropped
version (ground truth). Low-resolution (LR) Gaussian downsampled image with downsam-
pling scale factor 2 upsampled by bicubic interpolation, the super-resolution image from EDSR
model, super-resolution image from EDSR model with gradient guidance (GG), the super-
resolution image from dense DBPN model, and the super-resolution image from dense DBPN
model with GG, respectively. Row 3: LR with downsampling scale factor 4 upsampled by the
above-mentioned methods. Row 4: LR with downsampling scale factor 8 upsampled by the
above-mentioned methods. The peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) evaluated between each super-resolved image and the original high-resolution
grounds truth image is also labeled for interpretation vis-a-vis visual assessment.

resolution images featured less blurring and information loss than the bicubic interpolated

images. While the proposed 2D patch-based method improves the through-plane resolution,

it ignores the global context information, as well as the 3D information provided by the LGE-

MRI images that is crucial for accurate segmentation; lastly, it also requires the use of 2D

patches during the inference stage, which can lead to inconsistencies during the fusion process.

Therefore, we presented a novel 3D CNN-based framework with gradient guidance for

super-resolution of cardiac LGE-MRI data. There are four major contributions in this work.

First, a 3D deep learning-based architecture with two branches: a super-resolution branch

and a gradient branch is presented, wherein, the dense DBPN model is the backbone of the

CNN architecture. We exploited the structural information learnt by the gradient branch to

provide structural guidance to the super-resolution branch of our CNN, thus preserving the
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Table 5.4: Left atrium segmentation evaluation, mean (std-dev) Dice score (%) using the 2018
atrial segmentation challenge dataset. U-Net models are trained on LGE-MRI volumes down-
sampled by a scale factor of 2, 4 and 8, respectively, and upsampled using bicubic interpolation
and dense DBPN model with and without gradient guidance. Statistically significant differ-
ences were evaluated between the dense DBPN model with and without gradient guidance
using the Student’s t-test and are reported using by * p < 0.05

Scale Factor: 2 Scale Factor: 4 Scale Factor: 8
Methods Dice Score Dice Score Dice Score

Bicubic Interpolation 90.46 (1.98) 88.52 (1.47) 86.58 (2.49)
Dense DBPN 94.60 (3.33) 91.96 (1.47) 91.24 (1.83)

Dense DBPN with
Gradient Guidance 95.43 (2.01)* 93.47 (2.02)* 93.31 (2.07)*

Table 5.5: Ablation Study Results: Mean (std-dev) peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) achieved on the internal test set for a downsampling scale
factor of 4. The best evaluation metrics achieved are labeled in bold.

Scale Factor: 4
Methods PSNR SSIM

Dense DBPN 25.36 0.730
LSR (1.55) (0.061)

Dense DBPN 25.35 0.729
α.LSR + γ.LGradientSR

(1.36) (0.058)
Dense DBPN 25.58 0.740

Gradient Guidance at Up-projection (1.59) (0.065)
Dense DBPN with 26.63 0.763

Gradient Guidance at all levels (Ours) (1.48) (0.061)

3D cardiac structures in the LGE-MRI images. To the best of our knowledge, this is the

first work that presents a 3D CNN-based method to improve the through-plane resolution of

cardiac LGE-MRI data. Second, we established that the presented gradient guidance method

could improve the through-plane resolution of LGE-MRI data using other CNN models, such

as EDSR model, as the backbone of the proposed deep learning framework. Third, we demon-

strated the generalization ability of the proposed method by testing it on an external dataset

that was not used while training our models. Fourth, we investigated and showed the effect of

the proposed super-resolution framework on the downstream segmentation task by training a

vanilla U-Net model to segment the LA from the super-resolved LGE-MRI volumes.

In our first experiment (Table 5.2), we compared the results of bicubic interpolation method
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and the CNN models, with and without gradient guidance on the internal dataset. We can

observe that the results of the CNN models with gradient guidance are significantly better

than their stand-alone counterparts for all the three downsampling scale factors, wherein, the

dense DBPN model with gradient guidance provides the best super-resolution results. This is

more obvious in the SSIM comparison, as it is a combination of three comparison measures:

luminance, contrast and structure [26], and as mentioned earlier, the gradient branch provides

structural guidance to the proposed CNN framework.

In our second experiment (Table 5.3), we evaluated the above-mentioned models on the

external dataset to assess their generalization ability. We can observe that the results are

similar to the results achieved on the internal datasets, where CNN models with gradient

guidance outperform their stand-alone counterparts, thus, generalizing well. It can be observed

that the PSNR and SSIM values of the models when evaluated on the external dataset are

higher than those achieved when the models were evaluated on the internal dataset. This could

be attributed to the fact that the internal dataset features a high isotropic spatial resolution of

0.625x0.625x0.625mm3, whereas the external dataset features a relatively low isotropic spatial

resolution of 1.4x1.4x1.4 mm3. In Fig. 5.5 and 5.6, we show an example of an image slice

along the z-axis from both internal and external dataset, respectively. The super-resolution

images generated using the CNN models with gradient guidance show improved through-plane

resolution; the reconstructed images feature less blurring and look sharper than the images

upsampled using bicubic interpolation and CNN models without gradient guidance. In both

figures, this observation is most obvious for the super-resolution images generated from the

low-resolution images downsampled by a scale factor of 4.

In our final experiment (Table 5.4), we investigated the effect of the super-resolution models

on the downstream segmentation task by training 3D U-Net models to segment LA from the

super-resolved LGE-MRI volumes. Since the dense DBPN models performed better than the

EDSR models in improving the through-plane resolution of LGE-MRI volumes, we used the

super-resolved images obtained using dense DBPN models with and without gradient guidance

to train the U-Net models and compared them. To serve as baseline comparison, we also train
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the U-Net models using the images obtained using bicubic interpolation. We can observe that

the Dice score of the LA segmentation computed by training super-resolved images obtained

from the dense DBPN models with gradient guidance is significantly higher than the Dice

score computed by training super-resolved images obtained from the stand-alone dense DBPN

models and bicubic interpolation methods, for all the three downsampling scale factors, thus,

corroborating our hypothesis that providing structural guidance using the gradient branch to

improve the through-plane resolution of LGE-MRI volumes could improve the segmentation

of cardiac structures.

One of the limitations of our work, as shown in Table 5.2 and 5.3, is that the PSNR and

SSIM values for LGE-MRI volumes downsampled by a scale factor of 8 are poor due to the

immense loss of information by downsampling, however, there is a considerable improvement

in the Dice score for segmentation of LA from the super-resolved images. Another limita-

tion is the use of simulated low through-plane resolution images due to the lack of real-world

high-resolution and low-resolution image pair datasets. Therefore, we could not comprehen-

sively assess our method on real-world low-resolution images. However, we employed two

downsampling methods: Gaussian and Fourier downsampling methods, and demonstrated the

effectiveness of our method to reliably super-resolve the simulated low-resolution images.

5.5 Conclusion

Here, we showed that the proposed self-supervised CNN-based super-resolution framework can

be used to improve the through-plane resolution of LGE cardiac MRI images. Furthermore,

we presented a 3D CNN architecture for image super-resolution and demonstrated that the

proposed method can be used to improve the through-plane resolution of LGE-MRI volumes,

which in turn, enables accurate segmentation of the cardiac chambers. We also demonstrated

the generalization ability of our proposed approach. Our approach takes advantage of the

information learnt from the gradient branch to provide structural guidance to the super-

resolution branch, thereby, generating super-resolution 3D LGE-MRI images while preserving

the cardiac structure information.
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Chapter 6

Discussion, Conclusion, and Future

Research Directions

This chapter revisits the challenges to be tackled to generate patient-specific cardiac anatomical

models from cardiac MRI data and our proposed methods to overcome these challenges. Also,

this chapter provides some of the future directions along with the impact on the field.

6.1 Thesis Motivations, Summary and Contributions

In Chapter 1, we established the importance of image-based patient-specific anatomical mod-

els of the heart for clinical decision support. To this end, the overall aim of this dissertation was

to develop deep learning-based tools and methodologies to generate patient-specific anatomi-

cal models of the heart using cardiac MRI data. Specifically, we focus our efforts on obtaining

accurate and robust segmentation maps of the cardiac chambers from cine MRI images, ac-

curate cardiac motion estimation from 4D cine MRI data, and integrating the scar anatomy

from LGE MRI images with the myocardial anatomy from cine MRI images. In the process

of developing these deep learning frameworks to build patient-specific anatomical models, we

realized that the anisotropic nature of the cardiac MRI images with low through-plane reso-

lution imposes major challenges in achieving accurate segmentation and registration results.

Therefore, we focused our efforts on deep learning-based super-resolution algorithms towards
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the end of this PhD dissertation.

In order to analyze ventricular structure and function from short-axis cine MRI data, it

is essential to compute cardiac structural and functional indices, which requires delineation

of cardiac chambers from the cine MRI images. Manual segmentation can be a arduous and

time-consuming task subjected to intra- and inter-observer variability. Studies have showed

that the intra- and inter-observer variability could lead to substantial difference between the

clinical cardiac function indices computed from the manual segmentation and the true clinical

values of these cardiac function indices. Therefore, a number of automated segmentation algo-

rithms have been proposed and developed to aid cardiologists. In recent years, deep learning

techniques have gained immense popularity in medical image segmentation, including cardiac

MRI segmentation. A majority of the segmentation methods introduced in the past few years

are based on the U-Net model. As presented in Chapter 2, in order to further improve the

segmentation of the cardiac chambers from cine cardiac MRI, we integrated U-Net models in

an adversarial framework called SegAN. We initially employed this method to segment the

LV blood-pool on the 2017 ACDC dataset. Here, we used a multi-scale L1 loss function to

train the SegAN network, which enables the model to learn features at pixel-, low-, mid- and

high-level. We evaluated the LV blood-pool segmentation results of three different U-Net mod-

els in the SegAN framework against the stand-alone U-Net models and obtained significantly

better segmentation results than the stand-alone U-Net models. We then extended the SegAN

framework for multi-class segmentation of LV blood-pool, LV myocardium and RV blood-pool.

Additionally, we showed the effect of the proposed segmentation method on clinical cardiac

parameters, such as ventricular stroke volumes, ejection fraction and myocardial mass. The

adversarial nature of the architecture and the multi-resolution approach resulted in signifi-

cantly improved segmentation of LV and RV blood-pool, which in turn, resulted in a more

accurate computation of critical clinical parameters such as ventricular stroke volumes and

ejection fraction.

In addition to global function parameters like stroke volumes, ejection fraction and my-

ocardial mass, regional myocardial function parameters such as myocardial motion, strain,
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torsion and wall thickness are also paramount to detect and predict the progression of the

cardiovascular diseases. Therefore, accurate cardiac motion estimation from cine MRI images

is important, as it helps assess the kinematic and contractile properties of the myocardium.

In Chapter 3, we proposed and evaluated a VoxelMorph-based 4D deformable registration

technique for consistent motion estimation from 4D cine MRI images. The presented workflow

includes a slice misalignment correction step to alleviate the impact of the out-of-plane motion

in the slice stack on the image registration. We also evaluated and compared the effect of the

Laplacian-based operator versus the gradient-based operator for smoothing the registration

field produced by the VoxelMorph-based registration network. Our experiments revealed that

the Laplacian-based smoothing operator produces significantly better registration results as it

considers global properties of the objective function more than the gradient-based smoothing

operator. Additionally, we illustrated our intended application of the VoxelMorph-based 4D

deformable registration technique, i.e., to build dynamic patient-specific LV myocardial mod-

els across subjects with different pathologies by propagating the LV myocardium isosurface

and volume meshes (generated using the segmentation of end-diastole frame) at end-diastole

cardiac frame to subsequent frames of the cardiac cycle. Lastly, we also demonstrated the

potential of the VoxelMorph-based 4D deformable registration technique to build dynamic

patient-specific RV models.

In order to assess myocardial viability, it is crucial to include scar anatomy in the per-

sonalized anatomical models of the heart. A number of unsupervised deep learning-based

registration algorithms have been proposed to register cine MRI images to their corresponding

LGE MRI images, however, their registration accuracy is limited by the cost function used,

as the similarity measures used are the same as the traditional approaches. An alternative

deep learning-based approach to quantify scar tissue in LGE MRI images is to generate syn-

thetic LGE images with improved soft tissue contrast from cine MRI images using adversarial

networks, and using the generated synthetic images to segment the scar tissues. However,

this is a time-intensive approach as it includes training adversarial networks to generate syn-

thetic LGE MRI images followed by training a segmentation algorithm on the synthetic LGE
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MRI images. In order to address these limitations, we proposed and evaluated a RoI-guided

CNN-based registration approach to register cine MRI images to its corresponding LGE MRI

images, as presented in Chapter 4. Our proposed method fully exploits the RoIs of the

cardiac anatomy (i.e., LV blood-pool, LV myocardium and RV blood-pool) and therefore, out-

performs the unsupervised CNN-based algorithms. It requires minimal preprocessing and does

not necessitate the need to train adversarial networks to generate synthetic LGE MRI images.

Our experiments showed that the proposed RoI-guided CNN-based registration approach can

be reliably used to register the cine MRI and LGE MRI images. The major limitation of the

proposed method is the need for annotations of the RoI for large number of training data.

Hence, we proposed and evaluated a joint deep learning framework that involves coupling of

segmentation and registration tasks by sharing weights. The proposed joint deep learning

model produces reliable registration results using lesser number of training data and man-

ual annotations by leveraging the weights learnt from the segmentation task to improve the

registration accuracy.

Lastly, in Chapter 5, to address the limitation of anisotropic 3D cardiac MRI images (in-

plane resolution of 1 to 1.5 mm and through-plane resolution of 5 to 10 mm), which imposes

challenges in the segmentation and registration models, and therefore in cardiac image visual-

ization, analysis and diagnosis, we first proposed and evaluated a self-supervised 2D deep learn-

ing algorithms to compute super-resolution LGE cardiac MRI images. This proposed method

leverage the information it learns between mapping the simulated low-resolution in-plane data

and its corresponding high-resolution in-plane data to enhance the low through-plane resolu-

tion. However, this proposed self supervised patch-based method does not take advantage of

the 3D information provided in the cardiac MRI images and ignores the global context infor-

mation. Also, since the method requires the use of 2D patches in the inference stage, it can

lead to inconsistencies during the fusion process. Therefore, we presented a 3D CNN-based

super-resolution framework with gradient guidance to compute super-resolution cardiac LGE

MRI images. The proposed 3D CNN framework produces reliable super-resolution results by

taking into advantage of the 3D information in the LGE MRI images and also, the gradient
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guidance ensures the 3D CNN model “pays more attention” to the 3D structure of the tissues

in the LGE MRI images.

6.2 Future Work

Although significant research effort has been put forth in this dissertation to generate patient-

specific anatomical models of the heart using cardiac MRI images, some key challenges still

remain. One such challenge is the application of the developed deep learning-based pipeline

on paediatric cardiac MRI. A comprehensive review and future research directions regrading

the role of deep learning in paediatric cardiac MRI, and how the deep-learning models, such as

the ones developed in this thesis work can be used for automated bi-ventricular segmentation,

automated diagnosis, patient-specific models and precision medicine is explained in [1].

Furthermore, this section will briefly mention some of the future research directions that

could lead to a more accurate personalized anatomical models of the heart.

Cardiac MRI Segmentation

Most of the current deep learning-based cardiac segmentation models are supervised learning,

thereby, requiring ground-truth segmentation masks. One of the major challenges in cardiac

MRI segmentation tasks is the limited availability of clinical image datasets accompanied by

expert annotations. To this end, pre-training and data augmentation are two crucial data-

driven methods that better uses the existing data [2]. Pre-training includes training the model

on a larger dataset before training it on your dataset, to broaden the model’s horizon and

enhance its robustness. While we used spatial and intensity-based data augmentation in all

our deep learning models, it will be interesting to explore adversarial augmentation techniques,

in order to expose the model to higher variability and thereby, increase the model’s robustness.

In this dissertation, we described the various U-Net models used to segment cardiac cham-

bers from cardiac MRI images. Hence, in Chapter2, we proposed an integration of U-Net

models in an adversarial framework to further improve the segmentation of cardiac chambers

from cine cardiac MRI. With the advent of self-attention-based architectures in medical seg-
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mentation, we propose a hybrid U-Net and self-attention-based framework for cardiac MRI

segmentation [3].

Cardiac Motion Estimation

In the past decade, deep learning models have gained increased popularity in medical im-

age registration [4]. In this dissertation, we presented a deep learning-based 4D deformable

registration method for cardiac motion estimation from cine cardiac MRI dataset by lever-

aging the VoxelMorph framework [5]. Additionally, we demonstrated the application of the

VoxelMorph-based cardiac motion estimation method to build dynamic patient-specific left

ventricle (LV) myocardial models across subjects with different pathologies [6]. Although the

CNN-based cardiac motion estimation presented in this work showed promising performance,

the CNN-based approaches usually exhibit limitations in modeling explicit long-range spatial

relations due to the limited receptive fields of convolution operations [7]. Therefore, the large

variations in shape and size of the cardiac chambers can affect the registration performance

of the CNN-based cardiac motion estimation methods.

In recent years, self-attention-based architectures (Transformer-based), due to their great

success in sequence-to-sequence prediction in natural language processing have gained in-

creasing interests in computer vision tasks [8], including medical image segmentation [7] and

registration [9]. These current research studies show that fusing the self-attention mecha-

nism with the CNN models overcome the limitation of the convolution operation in learning

global semantic information, which is critical for the image registration task in cardiac motion

estimation from the cine cardiac MRI images. Therefore, we propose a hybrid CNN-Vision

Transformer architecture for consistent cardiac motion estimation from 4D cine cardiac MRI

images.

Multimodal Registration: Cine MRI and LGE MRI

One of the core challenges in multimodal registration is the use of appropriate similarity

metrics. Mutual information, cross-correlation ratios, and their variants have be successively
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used, including our work in this dissertation. However, mutual information is dependent only

on the intensity distributions of different images and cross-correlation ratio uses the functional

relationship among modalities. In the course of our research on various similarity metrics

for multimodal registration, we hypothesize that a combination of weighted self-similarity

structure vector and texture weight maps that describes the local structure information can

be used for multimodal registration [10].

Cardiac MRI Super-Resolution

The major limitation of cardiac MRI super-resolution is the need for high-resolution (HR)

images while training. In order to overcome this limitation, it is crucial to develop an unsu-

pervised deep learning framework to generate super-resolution images from only low-resolution

(LR) images. To this end, we propose to extend the unsupervised deep learning framework

described in [11] as a means to improve the resolution of both cine and LGE cardiac MRI

images.
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