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Abstract

Quantization of neural network models is becoming a necessary step in deploying

artificial intelligence (AI) at the edge. The quantization process reduces the precision

of model parameters, thereby lowering memory and computational costs. However, in

doing so, this process also limits the model’s representational capacity, which can alter

both its performance on nominal inputs (clean accuracy) as well as its robustness to

adversarial attacks (adversarial accuracy). Few researchers have explored these two

metrics simultaneously in the context of quantized neural networks, leaving several

open questions about the security and trustworthiness of AI algorithms implemented

on edge devices.

This research explores the effects of different weight quantization schemes on both

clean and adversarial accuracies of neural network models subjected to memory con-

straints. Two models—VGG-16 and a 3-layer multilayer perceptron (MLP)—were

studied with the MNIST and CIFAR-10 image classification datasets. The weights

of the models were quantized during training using the deterministic rounding tech-

nique. The models were either quantized homogeneously, with all weights quantized

to the same precision, or heterogeneously, with weights quantized to different pre-

cisions. Several different bitwidths were used for homogeneous quantization, while

several different probability mass function-based distributions of bitwidths were used

for heterogeneous quantization. To the best of the author’s knowledge, this is the

first work to study adversarial robustness under homogeneous quantization based on

different probability mass functions.

Results show that clean accuracy generally increases when quantized homoge-

neously at higher bitwidths. For the heterogeneously quantized VGG-16, the distri-

butions that contain a higher quantity of low bitwidth weights have worse perfor-

mance than those that did not. The heterogeneously quantized MLP performance,

however, is generally consistent across distributions. Both models perform far better
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on the MNIST dataset than the CIFAR-10. For the MNIST dataset, the VGG-16

model displayed higher levels of adversarial robustness when the quantization of the

model contained a greater quantity of lower bitwidth weights. However, the adver-

sarial robustness of the MLP decreases with larger attack strength for all bitwidths.

Neither model shows convincing levels of adversarial robustness on the CIFAR-10

dataset. Overall, the results of this research show that both clean and adversarial

accuracies have complex dependencies on the total capacity of weight memory and

the distribution of precisions among individual weights.
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Chapter 1

Introduction

As neural networks are being utilized for more intricate tasks with expectations for

consistently high levels of performance, the complexity and size of these networks

continues to grow. High performing neural networks regularly contain hundreds of

billions of parameters and utilize gigabytes of data. Figure 1.1 shows the growth of

neural networks in terms of number of parameters over time.

Figure 1.1: Size of neural networks over time [1].

As seen in the figure above, the number of parameters in neural networks and

machine learning models has been steadily on the rise from 2002 -2021. In earlier

years, models contained around 10000 parameters with large models consisting of
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Chapter 1. Introduction

10 million parameters. Over time with the largest models having between 10 and

100 billion parameters. The computations required by these networks can be quite

numerous which can cause compatibility issues when it comes to implementation on

hardware.

Google (TPU), NVIDIA (Tensor Core), and AMD (CDNA2) have all developed

hardware that is specifically optimized for machine learning processes. The advan-

tages of these hardwares are that they are able to perform the intense computations

required by machine learning operations with considerable speed and efficiency, how-

ever, they consume a substantial amount of energy and memory making them not

generally accessible [4]. This means they cannot be easily used on for computing on

the edge and thus limits the implementation of neural networks on the edge. This is

where quantization comes into play.

Quantization is a set of techniques that can be used to reduce the precision and

therefore size of neural networks. By reducing the size of the networks, less memory

and energy is required for the hardware. Once neural networks are implemented on

hardware, they should be adversarially robust. Adversarial robustness is the ability

of the neural network to not succumb to purposeful manipulation and maintain high

performance. The effect that limiting the precision of neural network parameters

through the process quantization has on adversarial robustness must be investigated.

1.1 Objectives

The overall objective of this research is to study various schemes for quantization

that would enable previously resource intensive neural networks to be implemented on

devices that have resource constraints. However, a common side effect of quantization

is reduced network performance. Thus, this research will attempt to mitigate that

problem by ensuring the quantized network maintains both its network performance

and adversarial robustness.
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Chapter 1. Introduction

There are are two objectives to be accomplished by this research. These objectives

are as follows:

1. Create and analyze the results of a variety of widely usable heterogenous quan-

tization schemes that enable machine learning models to perform to high levels

of accuracy and be robust against adversarial attacks

2. Compare the results of experiments conducted utilizing the quantization schemes

with established results from comparable studies to validate the uniqueness and

effectiveness of the research
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Chapter 2

Background and Related Work

2.1 Quantization Methodologies

Quantization of neural network parameters (weights, activations, and gradients) can

be implemented using several different techniques. These techniques are often split

into 2 different categories: deterministic and stochastic. Deterministic quantization

provides a direct mapping between the real parameter value and the quantized value,

while stochastic quantization relies on discrete distributions from which the quantized

values are drawn [5].

There are three different methodologies used to implement deterministic quanti-

zation. These methods are rounding, vector quantization, and quantization as opti-

mization [5]. Rounding utilizes a function that turns a set of continuous values into

discrete ones. An example of a rounding function established by Courbariaux et al.

in 2015 [6] is shown below.

xb = Sign(x) =


+1, if x ≥ 0

−1, otherwise

(2.1)

In the above function, xb is a binarized version of the variable which is output

depending on x which represents the variable’s input value. However, while this func-

tion works for the forward pass which is when calculations are made moving forward
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Chapter 2. Background and Related Work

through the network, it cannot be applied during the backward pass which is when

calculations are made moving back through the network. The need for the additional

function derives from the fact that error cannot be back-propogated through the sign

function due to the value of the gradient being 0 at most places. This additional func-

tion developed by Hinton et al. in 2012 [7] is called a “straight through estimator”

and is shown below where E is the loss function.

δE

δx
=

δE

δxb
I|x|≤1 (2.2)

The straight through estimator displayed in equation 2.2 provides an estimation

for the gradient of a stochastic network neuron. The development and applications of

rounding functions have been expanded to include the transformation of other forms

of numbers such as floating point to fixed point [8] and real to k-bit integers [9].

Another method, vector quantization, combines model parameter values into sub-

groups and then uses the arithmetic mean of each subgroup as the substitution for the

actual values. An established approach to vector quantization is k-means clustering.

The general idea behind k-means clustering is to cluster the weights into groups and

replace the weights with their centeroid during evaluation [5].

min
m∑
i

j∑
n

k∑
l

||wij − ck||22 (2.3)

Equation 2.3 demonstrates how this would be performed for a weight matrix

W ∈ Rm×n and where ck is the centeroid. Product quantization [10] is an expansion

on vector quantization in which the weight matrix is split up into submatrices and

quantization is applied to each submatrix. Another expansion, residual quantization,

quantizes the vectors such that they are grouped into a number or clusters and then

the residuals are recursively quantized [10]. Product quantization and k-means clus-

tering tend to be effective as quantization techniques, leading to highly compressed
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Chapter 2. Background and Related Work

models with minimal classification accuracy loss while residual quantization does not

work well [10].

The third deterministic quantization approach is to view quantization as an opti-

mization problem. Many authors including Rastegari et al. [11], H.Li et al. [12], and

Zhu et al. [13] have developed optimization problems that incorporate various model

parameters. These optimization problems are then solved to find the best values for

the parameters.

In addition to deterministic quantization, a number of stochastic quantization

techniques have been proposed to reduce model sizes. The first of these techniques

is called random rounding. Random rounding is very similar to the deterministic

technique of rounding except that the quantized value of the model parameter is

assigned probabilistically. An example developed by Courbariaux et al. [6] in 2015 is

shown in equation 2.4.

xb =


+1, with probability p = σ(x)

−1, with probability 1- p

(2.4)

Where σ(x) is equal to the hard sigmoid function defined as follows:

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (2.5)

In equation 2.4, the underlying principle is that if x is a positive value, then

there is a high probability that it will quantize to 1, otherwise it will be quantized

to -1. Other researchers have expanded on random rounding by developing different

quantization equations and sampling different probability distributions in order to

assign values. Random rounding can be used for cases past the binary as well [5].

The second stochastic quantization technique is called probabilistic quantization.

In this technique, the weights of the model are assumed to be discretely distributed

7



Chapter 2. Background and Related Work

and then the parameters are learned and updated based on a selected probability

distribution [5].

Associated with each of these quantization techniques are unique challenges. Round-

ing operations have the potential to cause decreases in performance of the model as

the values are rounded and lose precision. Vector quantization which utilizes compu-

tation of k-means clustering tends to be even more computationally expensive than

rounding[5]. Quantization as an optimization problem suffers from the same increased

complexity and computational resource challenges as vector quantization. While ran-

dom rounding can actually help improve computational efficiency, the estimation

required for the gradients can lead to unstable loss functions. Finally, probabilis-

tic quantization is highly sensitivity to chosen probability distributions and neural

network architectures [5].

It is also important to note that quantization can either take place during the

training process (quantization-aware training) or after the model is fully trained

(post-training quantization). Quantization-aware training often yields higher levels

of accuracy than post-training quantization due to the fact that the model undergoes

re-training. The quantization operation has the potential to inject perturbation into

model parameters that have been already been trained. This can cause the model

to move away from its previous point of convergence. In order to circumvent this,

quantization-aware training quantizes the model parameters after each time the gra-

dient is updated in addition to performing the usual forward and backward pass [2].

Quantization aware training is also more compatible with on-chip training [14].

2.2 Quantization Factors

Division of the values in the real domain, division of values in the quantized domain,

precision of model parameters, and range of the quantization domain are the various

factors that must be considered when constructing a quantization scheme.
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Chapter 2. Background and Related Work

Uniform quantization is when the values in the real domain and the values in the

quantized domain are divided into equal groups. This can be seen in Figure 2.1.

Figure 2.1: Visual representation of uniform quantization [2].

In the figure, r is the real domain while Q is the quantized domain. It can

be seen that the quantized values map discretely to the real model values (yellow

bullets) and both are divided into evenly spaced segments. Conversely, in non-uniform

quantization the quantization domain and real value domains may be split unevenly.

This is displayed in Figure 2.2.

Figure 2.2: Visual representation of non-uniform quantization [2].

9



Chapter 2. Background and Related Work

Again, r is the real domain while Q is the quantized domain. It can be seen in

the figure that the real values are not split into even groups and the quantized values

are not spaced evenly.

The difference in precision of the model parameters is what defines the differ-

ence between homogeneous quantization versus heterogeneous quantization. In a

homogeneous quantization scheme, all model parameters are quantized to the same

precision.Homogeneous quantization has been shown to be effective at reducing model

size while still maintaining accuracy. However, it does not provide much flexibility

when manipulating model parameters and can potentially lead to undesired results if

important values end up being reduced to a very low precision [15].

However, in a heterogeneous quantization scheme, model parameters are quan-

tized to different precisions. There are many different ways that a heterogeneous

quantization scheme can be implemented. One way is when the selection of quantiza-

tion levels for a network in a heterogeneous scheme is based on the distribution of the

model parameters. This ensures that more important model parameters retain higher

levels of precision. Baskin et al. [16] explored a method for bell-shaped distribution.

They add noise to the model during the training process in order to emulate a “k-

quantile quantization” method with balanced (equal probability mass) bins. The two

datasets utilized were CIFAR-10 (60000 color images) [17] and ImageNet-1k (color

images with 1000 different classes) [18]. In conjunction they used several different

neural network topologies: MobileNet [19] and ResNet-18/34/50 [20]. Their findings

showed that they could reach a maximum of 74.84% when they used the ResNet-50

architecture trained on the ImageNet dataset with an 8x decrease in model size as

compared to the baseline.

Another heterogeneous quantization method has been developed by Y.Li et al.

[21] which they term “additive powers of two.” Their method builds on the existing

“Powers-of-two” method implemented by Miyashita et al. [22] and Zhou et al. [23].

10



Chapter 2. Background and Related Work

The Powers-of-two method bounds the quantization level values to either 0 or powers

of 2. The additive powers of two method expands upon this by making each quantiza-

tion level value a sum of a select number of powers-of-two terms. In order to conduct

an evaluation of the method, Y. Li et al. quantized ResNet-20 and ResNet-56 models

and used them in conjunction with the CIFAR-10 dataset. Results showed that they

were able to achieve accuracy values as high as 92.3% with ResNet-20 and 94% with

ResNet-56 when the models were quantized to 4 bits.

Heterogeneous quantization can also be based on a pre-determined rule or trans-

formation. This means the quantization levels differ from one another and increase

according to the rule that is applied to them. An example of this is Miyashita et al.

[22] utilizing a non-uniform logarithmic distribution as the basis for their quantization

in order to lower bitwidth precision while obtaining a negligible classification loss. To

perform an evaluation, they use pre-trained AlexNet [24] and VGG-16 [25] architec-

tures in the ILSVRC-2012 (a challenge based on the ImageNet dataset) and perform

post-training quantization. Their findings showed that when using a base of 2 for

the logarithm calculations, they were able to achieve accuracy values of 70.6% for

AlexNet and 83.5% for VGG-16. However, with a base of
√
2, the accuracy increased

to 75.1% for AlexNet and 89% for VGG-16.

The location of layers in the model can also have an effect on how sensitive the

layers are to the effects of quantization as stated by Rastegari et al. [11]. They found

that the first and last layers of a network are especially sensitive to quantization and

often are not quantized in order to decrease information loss.

2.3 Quantization and Adversarial Robustness

Adversarial robustness is the measure of how a machine learning model behaves when

subjected to conditions that are intended to cause poor performance. These condi-

tions often occur at testing time in the form of structured “adversarial examples”
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Chapter 2. Background and Related Work

which are special inputs designed to cause poor performance in a neural network [26].

White-box and black-box are the two classifications for adversarial examples. White-

box attacks assume the attacker has full access to the model details such as structure

and parameters; while in a black-box attack the attacker does not have access to the

model architecture or parameters [27].

While quantization does provide benefits in terms of reduced resource consump-

tion, it is also imperative to ensure that quantized models maintain high performance

when subjected to adversarial attacks. Adversarial attacks are used to generate the

aforementioned adversarial examples. By injecting noise that is undetectable to hu-

mans into machine learning inputs, adversarial attacks are able to cause misclas-

sification. Bernhard et al. investigate this in their 2019 study entitled “Impact

of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural

Networks” [27]. They trained a model comprised of convolutional, dense, batch nor-

malization, and activation layers in a quantized aware manner. The chosen datasets

were CIFAR-10 and SVHN [28]. The model was subjected to five different attacks.

Three were white-box attacks (FGSM [29], BIM [30], and CWL2 [31]) and two were

black-box (SPSA [32] and ZOO [33]). The results showed that the models in which

weights and activations were quantized were more robust against the FGSM (accu-

racy as high as 66% for CIFAR-10 and 78% for SVHN), BIM (accuracy as high as

66% for CIFAR-10 and 79% for SVHN), and ZOO attacks (maintaining accuracy val-

ues as high as 83% for CIFAR-10 and 94% for SVHN). These models, however, did

not perform well against the SPSA and CWL2 attacks. However, the performance of

models where only the weights but not activations were quantized, was poor against

all types of attacks.

Gui et al. [34] also conducted research into the adversarial robustness of quantized

models in their 2019 study entitled “Model Compression with Adversarial Robustness:

A Unified Optimization Framework”. They attempt to develop an “Adversarially
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Chapter 2. Background and Related Work

Trained Model Compression” framework for CNN networks that combines pruning,

heterogeneous quantization of weights, and low-rank factorization in order to maintain

adversarially robust models. They used the LeNet architecture in conjunction with

the MNIST dataset, the ResNet34 architecture in conjunction with the CIFAR-10

dataset, the ResNet34 architecture in conjunction with the CIFAR-100 architecture,

and the WideResNet [35] architecture in conjunction with the SVHN dataset. They

subject their models to PGD [36], FGSM, and WRM [34] attacks. Their results do

show that the compressed model (at 8 bits) is able to perform decently well against

the attacks. The model maintains accuracy levels of 75% against PGD (perturbation

of 2), 40% against PGD (perturbation of 8), 65% against FGSM, and 80% against

WRM.

Gorsline et al. [14] found that the adversarial robustness of a weight quantized

neural network can depend on the attack strength. A multilayer perceptron network

with 100 hidden nodes was trained and tested on the MNIST dataset and 2 spiral

classification problem. For the MNIST dataset, the results showed that when the

attack strength of the FGSM attack increased, an increased quantization level (higher

precision) only improved model performance to a certain extent. After a certain attack

strength, an increase in precision actually causes a decrease in model performance. For

the 2 spiral classification problem, as the attack strength increases, the performance

of the model drops to close to 0% but then starts to increase again due to the low

dimensionality of the dataset.

In the 2019 paper “Defensive Quantization: When Efficiency meets Robustness”,

Lin et al. [37] attempt to improve the low robustness of quantized models by adjusting

the Lipschitz constant of the network during quantization. They stipulate that error

can actually be amplified in models by the quantization operation. By controlling

the Lipschitz constant, they are able to maintain a small magnitude for the noise in

all layers. A Wide ResNet was used with the CIFAR-10 and SVHN datasets. The
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Chapter 2. Background and Related Work

results showed that for the Wide ResNet tested with CIFAR-10 and subjected to an

FGSM attack, controlling the Lipschitz constant was able to attain a performance

accuracy of 51.8% (at a quantization precision of 5 bits). When combined with other

adversarial defense techniques (such as adversarial training and feature squeezing),

controlling the Lipschitz constant was able to improve model performance against

both white-box and black-box attacks.

Tsai et al.[38] also approach the issue of the low robustness of quantized models.

They do this by analysing the impact of simultaneous model input and weight pertur-

bation and then attempting to apply new regularization functions to make the model

more robust. Neural networks composed of four dense layers and one ReLU layer

were trained and tested on the MNIST dataset. The results show that models that

were only trained with one type of perturbation did not perform that well. However,

the model that was trained with both adversarial training and the new proposed reg-

ularizer function performed 24% better than the model that was just adversarially

trained. Proving the effectiveness of considering non-singular peturbations and the

new regularizer function.

There are several different approaches and factors when it comes to determining

an adversarially robust and high performance scheme for quantization. The method-

ology that will be considered in this paper will focus on an implementation that uses

uniform spacing between quantization levels but heterogeneous precision for model

individual model weights. As discussed above, heterogeneous quantization provides

a level of flexibility and customization not afforded by homogeneous quantization

which can enable the size of models to be greatly reduced while maintaining high

performance. Heterogeneous quantization has also been show to be robust against

adversarial attacks. In this study, an analysis of the most optimal way to distribute

precision among neural network parameters when the total number of bits is limited

is conducted. The novel contribution of this research is both this approach to quanti-
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Chapter 2. Background and Related Work

zation as well as the analysis of its effects on performance and adversarial robustness

of the neural network.
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Chapter 3

Method

3.1 Objective 1

The goal of this objective is to construct various novel heterogeneous quantization

schemes and analyze their performance in terms of average accuracy. The following

method was utilized in order to achieve the objective of constructing and investi-

gating various adversarially robust schemes of heterogeneous quantization that can

be implemented on devices with resource constraints. The novelty of the proposed

method lies in its unique selection of quantization approaches. A deterministic round-

ing method for heterogeneous quantization, of individual model weights, in which the

values of the quantization levels selected from a probability mass function based dis-

tribution has not previously been explored. The incorporation of adversarial attacks

to ensure adversarial robustness and quantization-aware training to enable on-chip

training are also unique components. Heterogeneous quantization of individual model

weights is worthy of exploration because it provides the flexibility of reducing model

size while maintaining high performance due to the combination of weight bitwidths.

The adversarial robustness of the model also benefits from the variance in weight

bitwidths.

Quantization technique and model parameters undergoing quantization were se-

lected first. Due to the factors mentioned in Chapter 1, it is evident that the most
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straightforward and efficient technique for quantization-aware training is rounding.

In this work, only the quantization of model weights will be considered. The equation

(3.1) shows the implementation of the rounding function that was used to quantize

each weight in this work.

x′ =
2

N − 1
∗ round[(N − 1) ∗ clip(x,−1, 1) + 1

2
]− 1 (3.1)

The variable N represents the number of quantization levels. log2N is equal to the

number of bits the input value is quantized to. The range of quantization is between

-1 and 1.

The heterogeneous selection of quantization levels was based on a probability mass

function as shown in equation (3.2).

np.random.choice([a, b, c, d], size = total−number−parameters, p = [a%, b%, c%, d%])

(3.2)

Weights were quantized at levels that were randomly assigned from the created

distribution. The number of elements in the distribution was the same as the number

of weights in the model. The values within the distribution represented the bits in

the range that was used to quantize each of the weights (a, b, c, d). Each distribution

was subject to 2 constraints.

1. The distribution was created by designating probabilities for each bitwidth in

the range (a%, b%, c%, d%). The total of these probabilities must add up to

1. Psuedocode implementation shown in Algorithm 1.

2. The sum of all values in the distribution must be less than or equal to a selected

total value. The selected total value of bits of the distribution was determined

by multiplying the middle number from the range by the total number of weights
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in the model. The selected total value was a representation of the total size of

memory on a theoretical hardware chip so the number of bits in the model had

to be less than this value. Psuedocode implementation shown in Algorithm 2.

The quantization values were then shuffled and an appropriately shaped tensor

with bitwidths from the distribution was passed to each layer so the weights of that

layer could be quantized to the values that were in the passed tensor using the quanti-

zation function displayed in equation (3.1). For homogeneous quantization, the same

method was used with all the bitwidths in the tensor being the same.The models

were constructed of customized layers based on Keras dense and 2D convolutional

layers which included the distribution for quantization as an input parameter and

implemented the quantization function for each weight in the layer. The models were

trained used the Adam optimizer with a learning rate of 1 * 10−5. The loss was cal-

culated using categorical cross entropy and performance was evaluated as the average

accuracy across 5 tests.

Algorithm 1 Determining sum of values in the heterogeneous distribution and en-
suring they are less than the total memory value

1: p = probability mass function based distribution
2: for i in range(length of p) do
3: if count + p[i] > total memory value then
4: p[i] = total memory value - count
5: end if
6: end for
7: count = count + p[i]
8: zeros = number of elements that are 0 in p
9: if zeros ̸= 0 thenexit()
10: end if

Algorithm 2 Assigning quantization values to weights for a given layer

1: shuffle(p)
2: weight distribution = p[number of parameters in layer]
3: weight distribution = reshape(p, shape of layer)
4: model.add(layer(weight distribution))
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VGG-16, Figure 3.1, and MLP, Figure 3.2, models were used in conjunction with

the MNIST and CIFAR-10 datasets. The MNIST dataset is comprised of 60000 28

pixels x 28 pixels grayscale images of handwritten digits from 0-9. The CIFAR-10

dataset is comprised of 60000 32 pixels by 32 pixels colored images from 10 different

classes. The average accuracy of the models when quantized at several different

homogeneous bitwidths and heterogeneous distributions was evaluated. The MLP

architecture was chosen due to the fact that it is not complex and could provide

reliable baseline results.

Figure 3.1: VGG-16 architecture [3]

Figure 3.2: MLP architecture
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The quantization schemes of the models for the experiments that were run are

listed below.

Homogeneous Quantization:

Bitwidth
1 bit
2 bits
3 bits
4 bits
5 bits
8 bits
32 bits

Table 3.1: Homogeneous quantization bitwidths

Heterogeneous quantization with distributions listed in order of decreasing vari-

ance:

Distribution [3 bits, 4 bits, 5 bits, 6 bits]
1 [60%, 0%, 0%, 40%]
2 [40%, 0%, 30%, 30%]
3 [25%, 25%, 25, 25%]
4 [10%, 35%, 35%, 20%]
5 [15%, 35%, 35%, 15%]
6 [10%, 40%, 35%, 15%]
7 [10%, 35%, 40%, 15%]

Table 3.2: Heterogeneous Distributions for bits 3,4,5,6 with total memory 5p, where p is
the number of weights in the model

Distribution [6 bits, 7 bits, 8 bits, 9 bits]
1 [60%, 0%, 0%, 40%]
2 [40%, 0%, 30%, 30%]
3 [25%, 25%, 25, 25%]
4 [10%, 35%, 35%, 20%]
5 [15%, 35%, 35%, 15%]
6 [10%, 40%, 35%, 15%]
7 [10%, 35%, 40%, 15%[

Table 3.3: Heterogeneous Distributions for bits 6,7,8,9 with total memory 8p
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Figure 3.1 shows the relative amounts of each bitwidth present in the seven het-

erogeneous distributions.

Figure 3.3: Heterogeneous Distributions

3.2 Objective 2

Adversarial robustness against an FGSM attack was evaluated for both the VGG-16

and MLP models on both the MNIST and CIFAR-10 datasets under the different

quantization schemes. The attack strengths ranged between 0 and 0.1. The ad-

versarial robustness was evaluated at all values of homogeneous quantization and

heterogeneous quantization distributions 1,3,5, and 7 for both models. These dis-

tributions were selected as a representative sample due to the differences in their

variances. Distribution 1 had the greatest variance and distribution 7 had the lowest

variance. Distributions 3 and 5 were in the middle with the variance of 3 being greater

than the variance of 5. Investigating how to effectively distribute a limited number

of bits among the parameters of a neural network from the context of maintaining
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adversarial robustness is the novelty of this research.

The results of these experiments were compared against the results from other

established studies in order to show improved performance in terms of the metric of

accuracy. Due to the similarities in motivation and methods, results from the het-

erogeneously quantized model created by Coelho Jr. et al. [39] in “Automatic deep

heterogeneous quantization of Deep Neural Networks for ultra low-area, low-latency

inference on the edge at particle colliders” was used as a comparator. The homoge-

neously quantized CNN utilized by Xu et al. in “Deep Neural Network Compression

with Single and Multiple Level Quantization” [40] and Zhou et al. in “Dorefa-Net:

Training Low Bitwidth Convolutional Nueral Networks with Low Bitwidth Gradients

[23] were also used for comparison.

A comparison was also made to the results from “On the Adversarial Robustness

of Quantized Neural Networks” by Gorsline et al. [14] and “Impact of Low-bitwidth

Quantization on the Adversarial Robustness for Embedded Neural Networks” by

Bernhard et al. [27]. Both these papers employ similar architectures and quanti-

zation bitwidths to ones studied in this paper.
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Results

4.1 Objective 1

Two models, a VGG-16 and MLP, were quantized both heterogeneously and homo-

geneously and trained and evaluated on the MNIST and CIFAR-10 datasets. Ten-

sorFlow 2 was used and each model was trained for 500 epochs. Each data point was

obtained by training and evaluating the model five times and then finding the average

and standard deviation of the evaluation accuracies.
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4.1.1 Homogeneous Quantization of VGG-16

Figure 4.1: Homogeneous quantization of VGG-16 on MNIST.

As seen in the Figure 4.1 the VGG-16 model was quantized homogeneously at the

values of 1 bit, 2 bits, 3 bits, 4 bits, 5 bits, 8 bits, and 32 bits and then trained and

evaluated on the MNIST dataset. Quantization of the model to 1 bit and 2 bits re-

sulted in poor performance with average accuracies close to random chance. However,

once the quantization was increased to 3 bits, the model performance jumped up to

an average accuracy around 90%. As the quantization values increased to 4 bits, 8

bits, and 32 bits, it can be seen that the model maintains a high average accuracy.

This test using homogeneous quantization was repeated with the CIFAR-10 dataset.
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Figure 4.2: Homogeneous quantization of VGG-16 on CIFAR-10.

It can be seen in Figure 4.2 that the quantization values of 1,2, and 3 bits resulted

in poor performance. When the quantization value was raised to 4 bits, the average

model accuracy increased to a value of approximately 65% and continued to show a

trend of increasing performance at 5,8,and 32 bits.

4.1.2 Heterogeneous Quantization of VGG-16

The VGG-16 model was quantized heterogeneously using different distributions of

quantization levels while staying under the total memory limit. The distributions

were labeled with numerals ranging from 1-7 in order of decreasing variance.
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Figure 4.3: Heterogeneous quantization of VGG-16 with bitwidth range 3-6 on MNIST.

As shown in Figure 4.3, the model maintained high average accuracies across

distributions with values ranging from ≈ 95% to ≈ 99% when quantized with a

bitwidth range of 3-6 and evaluated on the MNIST dataset. A slight trend of increase

in performance can be seen across distributions 1, 2, 3, and 4 before the accuracy

fluctuates at distributions 5, 6, and 7.

Figure 4.4: Heterogeneous quantization of VGG-16 with bit range 6-9 on MNIST.
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In Figure 4.4, the model was quantized at the same distributions but this time the

bitwidth range was increased to 6-9 bits. Again the model performed well across all

distributions with the average accuracies near 99%. The accuracies slightly increase

and decrease across distributions with no visible trend.

ANOVA and t-tests were conducted on the results for both sets of bitwidth ranges

to determine 1) if there was statistical significance (p-value of less than .05) within

the results of a given bitwidth range and 2) if there was statistical significance (p-

value of less than .05) within the results of a given distribution across the bitwidth

ranges. The outcomes from these tests indicated that the differences in the means

from within the 3-6 bitwidth range were statistically significant while those from

within the 6-9 bitwidth range were not. Additionally, the results from distributions

1,2,and 6 were statistically significant across the two bitwidth ranges while the results

from distributions 3,4,5,and 7 were not.

The performance of the model was evaluated again using the same distributions

on the CIFAR-10 dataset.

Figure 4.5: Heterogeneous quantization of VGG-16 with bitwidth range 3-6 on CIFAR-10.

It can be seen in Figure 4.5 that the performance of the model on the CIFAR-10
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dataset started low at distribution 1 and increased across distributions 2, 3, and 4.

The peak performance is at distribution 4 with an average accuracy value of .706. The

average accuracy decreased from this value slightly at distribution 5 before increasing

again across distributions 6 and 7. The range of the bitwidths was increased to 6-9

and the same tests with the same distributions were repeated.

Figure 4.6: Heterogeneous quantization of VGG-16 with bitwidth range 6-9 on CIFAR-10.

As seen in Figure 4.6, the average accuracy of the model with the increased

bitwidth range remained fairly consistent across distributions at around .7 . Dis-

tribution 3 attained the best performance out of all the distributions with a slightly

higher average accuracy while distribution 2 attained the worst with a slightly lower

average accuracy.

ANOVA and t-tests were performed again on the results for the tests utilizing the

VGG-16 model and CIFAR-10. The outcomes from these tests indicated that the

differences in the means from within the 3-6 bitwidth range and 6-9 bitwidth range

were both statistically significant. In addition, the differences in the means from

distributions 1,2,3, and 5 were statistically significant across the two bitwidth ranges

while distributions 4,6, and 7 were not.
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4.1.3 Homogeneous Quantization of MLP

A MLP model was quantized homogeneously to bit levels 1, 2, 3, 4, 5, 8,and 32 and

trained and evaluated on the MNIST dataset.

Figure 4.7: Homogeneous quantization of MLP on MNIST.

Displayed in Figure 4.7, the performance of the homogeneously quantized model

is consistently high when at any of the bit values. Even at the lowest performance

at a quantization of 1 bit, the model still achieved an average accuracy of .949. As

the quantization value increases, the performance of the model continued to increase

as well. The model was then trained and evaluated on the CIFAR-10 datasets at the

aforementioned quantization values.
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Figure 4.8: Homogeneous quantization of MLP on CIFAR-10.

The performance of the model on the CIFAR-10 dataset was generally low regard-

less of the quantization value. Even at a quantization value of 32 bits, the average

accuracy of the model was about 50%. A trend of increasing average accuracy with

increasing quantization values is shown with the lowest average accuracy being around

19% at a quantization value of 1 bit and increasing from there.

4.1.4 Heterogeneous Quantization of MLP

The MLPmodel was quantized heterogeneously at the same distributions as the VGG-

16. The results of the quantized MLP with a bitwidth range of 3-6 when trained and

evaluated on the MNIST dataset are displayed in Figure 4.9.
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Figure 4.9: Heterogeneous quantization of MLP with bitwidth range 3-6 on MNIST.

The overall performance of the model was consistently high across distributions

ranging from an average accuracy ≈ 96% at distribution 3 to an average accuracy of

≈ 98% at distribution 6. The bitwidth range was increased to 6-9 and the quantized

model was re-trained and evaluated. The results are displayed in Figure 4.10.

Figure 4.10: Heterogeneous quantization of MLP with bitwidth range 3-6 on MNIST.

The overall performance of the model was high across distributions, as seen in
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Figure 4.10 with mean average accuracies consistently between ≈ 97% to ≈ 98% No

visible trend is displayed.

The results from an ANOVA/t-test conducted on the results from the tests with

the MLP and MNIST showed that the difference in means from within the 3-6 bitwidth

range were statistically significant (p-value of less than .05) while those from within

the 6-9 bitwidth range were not. Additionally, the only distributions for which the dif-

ferences were statistically significant across the two bitwidth ranges were distribution

3 and 7. The tests were repeated using the CIFAR-10 dataset.

Figure 4.11: Heterogeneous quantization of MLP with bitwidth range 3-6 on CIFAR-10

As seen in Figure 4.11, the average accuracy of the model quantized at a bitwidth

range of 3-6 ranged from the lowest value of approximately 48% at distribution 1 to

the highest value of approximately 54% at distribution 5. The MLP model was then

quantized with a bit range of 6-9 and evaluated.
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Figure 4.12: Heterogeneous Quantization of MLP with bit range 6-9 on CIFAR-10.

In Figure 4.12, the highest average accuracy of the model is obtained at distri-

bution 6 (≈ 57%). The lowest average accuracy was at distributions 2 and 5 with

a value of ≈ 49%. Once again this range of values indicates mediocre performance

from the model across distributions.

The findings from the ANOVA/t-test conducted on the results on the tests from

the heterogeneously quantized MLP on CIFAR-10 showed that none of the results

either within bitwidth ranges or across them were statistically significant.

4.2 Objective 2

4.2.1 VGG-16 and Adversarial Robustness

In order to evaluate adversarial robustness,the homogeneously and heterogeneously

quantized VGG-16 models were subjected to different strengths of FGSM attack:

.03, .06, .1. The models were evaluated on both the MNIST and CIFAR-10 datasets.

Figure 4.13 shows the adversarial robustness of a homogenously quantized VGG-16

model on MNIST.
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Figure 4.13: Adversarial robustness of homogeneously quantized VGG-16 on MNIST.

Quantization of the model to 1 and 2 bits resulted in poor average accuracies

across attack strengths. At quantization values of 3 and 5 bits, the average model

accuracy remains fairly consistent across attack strengths with substantially increased

values ranging from ≈ 86% to ≈ 92%. When the model was quantized to 8 and

32 bits, a trend of decreasing average accuracy with increasing attack strength is

shown. The VGG-16 model was quantized heterogeneously with a bitwidth range of

3-6 at distributions 1, 3, 5, and 7. The adversarial robustness of the quantized model

evaluated on MNIST is shown in Figure 4.14.
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Figure 4.14: Adversarial robustness of heterogeneously quantized VGG-16 with bitwidth
range 3-6 on MNIST.

Different distributions can clearly be seen to have different performances. Distri-

bution 1 had the best performance with a consistent high average accuracy across

attack strengths. The remaining distributions show a trend of decreasing average

accuracy with increasing attack strength. Overall, distribution 3 outperformed dis-

tribution 5 which outperformed distribution 7. The bitwidth range for the quantized

VGG-16 model was increased to 6-9 and the model was again evaluated for adver-

sarial robustness with the same distributions on MNIST. The results are shown in

Figure 4.15.
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Figure 4.15: Adversarial robustness of heterogeneously quantized VGG-16 with bitwidth
range 6-9 on MNIST.

The model at all distributions starts out fairly robust against the initial attack

of .03 strength and then show a decrease in average accuracy as the attack strength

increases. The tests were repeated using the CIFAR-10 dataset and an increased se-

lection of attack strength: .01, .03, .045, .06, .075, and .1. The adversarial robustness

of a homogeneously quantized VGG-16 is shown in Figure 4.16.
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Figure 4.16: Adversarial robustness of homogeneously quantized VGG-16 on CIFAR-10.

The adversarial robustness of the model when quantized at 1, 2, and 3 bits was

poor across all attack strengths with low average accuracies. When quantized at

5, 8, and 32 bits, the model was not able to defend against attack well, with the

average accuracy dropping immediately at the attack strength of .01 and continuing

to decrease as the attacks strength increases. The model was then heterogeneously

quantized using a bitwidth range of 3-6. Results are shown in Figure 4.17.
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Figure 4.17: Adversarial robustness of heterogeneously quantized VGG-16 with bitwidth
range 3-6 on CIFAR-10.

The performance of all distributions was similar. The average accuracy dropped

immediately at attack strength .01 and continued to decrease to values of less than

10% as the attack strength increased. The bitwidth range of quantization was in-

creased to 6-9 and results are displayed in Figure 4.18.

Figure 4.18: Adversarial robustness of heterogeneously quantized VGG-16 with bitwidth
range 6-9 on CIFAR-10.
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The performance of the model quantized at these distributions was very similar to

the performance at the lower bitwidth heterogeneous quantization. The model had

poor adversarial robustness with the average accuracy dropping at the first attack

strength and then continuing to decrease to 0 for the rest.

4.2.2 MLP and Adversarial Robustness

The adversarial robustness of a homogeneously and heterogeneously quantized MLP

was evaluated in the same manner as the VGG-16 model using different levels of

FGSM attack strength with the MNIST and CIFAR-10 datasets. The adversarial

robustness of a homogeneously quantized MLP on MNIST is show in Figure 4.19.

Figure 4.19: Adversarial robustness of homogeneously quantized MLP on MNIST.

The MLP, when quantized to any quantization value shows a trend of decreas-

ing performance with increasing attack strength. The 1 bit quantized MLP displays

the best performance with a higher average accuracy at each attack strength than

the other quantization values. The test was repeated with a heterogeneously quan-

tized MLP with bitwidth range 3-6 using distributions 1,3,5, and 7. The adversarial

robustness of the quantized model evaluated on MNIST is shown in Figure 4.20
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Figure 4.20: Adversarial robustness of heterogeneously quantized MLP with bitwidth
range 3-6 on MNIST.

In Figure 4.20, it can be seen that for all distributions, the average accuracy

decreases when attack strength increases. Also the average accuracy at each attack

strength is very similar across attack strengths. The bitwidth for the heterogeneous

quantization was increased to 6-9 and the same adversarial robustness of the same

distributions were evaluated on MNIST. The results are shown in Figure 4.21.
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Figure 4.21: Adversarial robustness of heterogeneously quantized MLP with bitwidth
range 6-9 on MNIST.

Once again, as seen in figure 4.21, when the attack strength increases, the average

accuracy decreases for all distributions. The average accuracy is very close in value

at each attack strength across distributions. The adversarial robustness tests were

repeated for the CIFAR-10 dataset. The results from the homogeneously quantized

MLP is displayed in Figure 4.22.
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Figure 4.22: Adversarial robustness of homogeneously quantized MLP on CIFAR-10.

The 1 and 2 bit quantized model had a higher average accuracy at each attack

strength the rest of the rest of the quantization bitwidth. However, the overall per-

formance of the model was poor with the highest average accuracy of approximately

25% achieved by the 2 bit quantized model at an attack strength of .01. The MLP

was heterogeneously quantized with a bitwidth of 3-6. Results of this are shown in

Figure 4.23.
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Figure 4.23: Adversarial robustness of heterogeneously quantized MLP with bitwidth
range 3-6 on CIFAR-10.

The performance all quantization distributions was similar. The average accuracy

of the model dropped low at the attack strength of .01 and continued to decrease to

values close to 0 at each increasing attack strength. The bitwidths were increased

to 6-9 and the adversarial robustness was evaluated again. Results shown in Figure

4.24.

43



Chapter 4. Results

Figure 4.24: Adversarial robustness of heterogeneously quantized MLP with bit range 6-9
on CIFAR-10.

The performance of the model is similar to the performance when heterogeneously

quantized at lower bitwidths. All distributions had similar performances and average

accuracies started low at the attack strength of .01 dropped for all to 0 at the higher

attack strengths. In order to verify whether lower bit quantization could provide a

defense against adversarial attack for the MLP model, the bitwidths were lowered to

values in the range of 1-4. The adversarial robustness of this quantized model is show

in Figue 4.25.
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Figure 4.25: Adversarial robustness of heterogeneously quantized MLP with bitwidth
range 1-4 on MLP.

It can be seen that distribution 1, which has the highest quantity of low bitwidth

weights, performs the best and as the number of low bitwidth weights decreases, so

does the average accuracy of the model at each attack strength.
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Discussion

5.1 Homogeneous Quantization

Table 5.1: Accuracy of Homogeneously Quantized Models

Model Quantized Bitwidths Dataset

1 2 3 5

VGG-16 10.2% 9.0% 90.6% 98.4%
MNIST

MLP 94.9% 96.9% 97.5% 98.1%

VGG-16 13.1% 9.4% 15% 66.2%
CIFAR-10

MLP 18.8% 38.8% 45.6% 49.4%

Homogeneous quantization of the VGG-16 architecture to low bitwidths of 1 and

2 bits resulted in poor performance on both datasets. The complexity of this convolu-

tional architecture makes the model especially susceptible to the performance degrad-

ing effects of quantization. This can be seen when these results are compared to the

results from the simpler 3 layer multilayer perceptron network which performed well

when quantized to low bitwidths. Once the VGG-16 model was quantized to values

of 3 bits or above, the average accuracy increased significantly on the MNIST dataset

indicating that even 3 bits could be enough to achieve satisfactory performance.
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5.2 Heterogeneous Quantization

The heterogeneously quantized VGG-16 with a bit range of 3-6 evaluated on MNIST

showed an increase in average accuracy as the variance of the quantization distri-

bution decreased (figure 4.3). Distributions with smaller variance contained greater

numbers of high value weights. This result combined with the poor performance of

the VGG-16 at the lowest quantization values of 1 and 2 bits, a performance bottle-

neck suggests whereby the performance of the model is constrained by the number of

low precision weights it contains. This is supported by the results from the heteroge-

neously quantized VGG-16 with a bit range of 6-9 (Figure 4.4). The VGG-16 model

performs well regardless of distribution due to the fact that there are no low precision

weights present in the quantization. The results of the t-test conducted showed that

distributions 1, 2, and 6 showed statistically significant results across bit ranges. This

means that changing the values of the weight precision range did have an effect on

the average accuracy further supporting the conclusion that increasing the bit range

resulted in an increased average accuracy.

When evaluated on the CIFAR-10 dataset, the heterogeneously quantized VGG-16

once again showed a trend of increase in average accuracy with a decrease in variance

within the distribution (Figure 4.5). However, when the bit range was increase 6-

9, there was no significant differences in the average accuracy across distributions

demonstrating that the distribution had no effect due to the increased quantity of

high precision weights in all distributions. Distributions 1, 2, and 5 had a statistically

significant difference across the two bit ranges where increasing the bit range resulted

in greater average accuracies.

The performance of the heterogeneously quantized MLP model when evaluated

on MNIST was consistently good across both bit ranges as well as all distributions.

A statistical significance was present between the bit ranges for distributions 3 and
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7. For these distributions, increasing the bit range caused an increase in average

accuracy showing that the MLP performance still was aided by having more high

precision weights.

Even when heterogeneously quantized with a combination of high and low preci-

sion weights, it is apparent that more complex architectures, such as the VGG-16,

are more susceptible to the effects of quantization.

No one distribution had a consistent performance across datasets or models. This

coupled with the differences in model performance across bit ranges when heteroge-

neously quantized and bitwidths when homogeneously quantized, suggests that the

distribution of precisions among individual weights has an effect on accuracy and

thus each weight should be quantized to the appropriate number of bits for optimal

performance.

The overall lower performance of both models on the CIFAR-10 dataset must be

noted. This can be attributed to the lack of data augmentation performed on this

multi-faceted dataset which was done in an effort to keep comparisons between the

two models consistent.

5.3 Adversarial Robustness

When homogeneously quantized to 1 and 2 bits, the VGG-16 model did not achieve

satisfactory levels of performance when evaluated on MNIST at any attack strength.

Based on the very low average accuracies obtained by the VGG-16 model at an attack

strength of 0, it is evident that the VGG-16 model was unable to perform in any

capacity at quantization values this low. At quantization values of 3 and 5 bits, the

VGG-16 model was able to maintain a high average accuracy against attacks at all

tested strengths. During training, the model when quantized to these lower values was

able to learn a more rigid decision boundary. This means the model did not have the

flexibility to overfit the data which allowed it to defend against the adversarial attack.
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At higher values of precision, the proximity of the data to the decision boundary was

very close, making the model highly susceptible to the effects of adversarial attack.

This is evidenced by the accuracy of the VGG-16 model dropping with increasing

attack strength when quantized to 8 and 32 bits.

For the heterogeneously quantized VGG-16 with bit range 3-6 evaluated on MNIST,

distribution 1 had the highest average accuracy at each attack strength. As the vari-

ance of the distribution decreased so did the average accuracy at each attack strength.

The greater number of low precision weights in distributions with greater variance,

once again, allowed the model to be able to learn an non-adaptable decision boundary

to defend against adversarial attack. Once the bit range was increased to 6-9, the

average accuracy for each distribution decreased as the attack strength increased as

no low value bits were present.

The low value quantization defense is somewhat present in the MLP. When ho-

mogeneously quantized and evaluated on MNIST, the 1 bit quantized model had the

best performance at all attack strengths. However, because the quantization did not

have as great as an effect on the MLP, the defense is not apparent in any other ho-

mogeneous quantization nor any heterogeneous quantization distribution with either

bit range.

Due to the complexity issues of the CIFAR-10 dataset discussed previously, neither

model was able to satisfactorily defend against attack.

5.4 Comparison to Established Results

Zhou et al. [23] investigated the effects of low bit-width quantization on the accu-

racy of convolutional neural networks. Their results show that low weight bitwidths

can have a significant effect on the accuracy of the CNN models when evaluated on

complex datasets. Their model was only able to achieve an accuracy .395 on Ima-

geNet when quantized to a bitwidths of 1. This is also reflected in the results of this
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study. The VGG-16 model achieved low average accuracies on the CIFAR-10 dataset

when quantized to low bitwidths as well as when quantized with distributions that

contained greater numbers of low bitwidths.

Cohelo Jr et al. [39] saw accuracies of 72.3% and 72.8% for their two energy-

optimized and bit-optimized heterogeneously quantized models that were trained with

quantization aware training. When performing on MNIST, the VGG-16 and MLP

model used in this study were both able to reach greater level of accuracy of 90%

or higher at each quantization distribution. This difference may be attributed to the

importance of weight-by-weight quantization used in this study versus the layer-wise

quantization used by Cohelo Jr et al. In addition, there were differences in method

due to the implementation of bit and energy quantization that were not explored in

this study.

Bernhard et al.[27] and Gorsline et al. [14] obtained results about the effect

of quantization on the adversarial robustness of various models. Bernhard et al.

homogeneously quantize their model to low bitwidths ranging from 1 to 5 bits and

evaluate their models on the CIFAR-10 dataset as well as checking for adversarial

robustness against an FGSM attack. While the accuracies achieved by their low

bitwidth quantized models were higher than those found in this study, they also found

that none of the quantized models were able to successfully defend against FGSM

attack, which is consistent with the results from this study obtained on the CIFAR-

10 dataset.Gorsline et al. investigated the adversarial robustness of quantized MLP

models on the MNIST dataset against FGSM attack. Their results which showed that

increasing attack strength caused a decrease in test accuracy across quantization bit

levels is consistent with the results obtained in this study. The results from this study

additionally show that low precision weights can help a network maintain adversarial

robustness. A greater number of low precision weights in a model causes the model to

be less likely to overfit the data and therefore less susceptible to adversarial attacks.
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Conclusion and Future Work

This study investigated the performance and adversarial robustness effects of quanti-

zation on two different neural network architectures and two different datasets. The

study was unique due to its analysis of the effect that the distribution of precision

among model weights when the total number of bits is limited had on both clean and

adversarial accuracy. Results showed that for the VGG-16 quantization as low as 3

bits could produce adequately high average accuracies when evaluated on MNIST.

The MLP was able to achieve high average accuracies when evaluated on MNIST

starting at quantization of 1 bit. Results from heterogeneous quantization showed

that higher quantities of high bitwidth weights does lead to better performance, al-

though generally performance was high for both models across distributions. Lower

average accuracies were obtained for both models on the CIFAR-10 dataset but sim-

ilar trends were displayed.

In terms of adversarial robustness, the VGG-16 model when quantized using dis-

tributions that contained a greater number of low bitwidths, was able to perform bet-

ter against adversarial attack than when quantized with distributions that contained

greater numbers of high value bitwidths.The MLP model showed an inclination of the

low bitwidth defense as well due to the fact that it achieved the highest adversarial

accuracy when quantized to very low precision and when using distributions that had

high numbers of very low precision bits. Neither model was able to satisfactorily
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defend against attack on the CIFAR-10 dataset.

These results lead to the conclusion that the total number of bits does have an

effect on the performance of the model. In order to obtain good clean performance, the

performance bottleneck must be overcome by allowing for an adequate total number

of bits which allows for an adequate number of higher precision weights. However,

the total number of bits is also limited by the distribution used for quantization. The

distribution must contain an adequate number of lower precision weights that will

enable the model to be less susceptible to adversarial attack.

Steps for future work include expanding both the neural network architectures

and datasets that are utilized. The effects of quantization was already more apparent

in the more complex architecture of the VGG-16 as compared to the simpler MNIST.

It is likely that an even more complex neural network architecture would be even

more susceptible to the effects of quantization. Additionally, quantization of different

network parameters such as activations and gradients would have an effect on overall

performance. Data augmentation will also be required to understand how the quan-

tized models perform and the results from this study transfer to bigger datasets such

as CIFAR-100 and Tiny ImageNet.

Additionally, considerations for implementation onto hardware must be made.

Potential challenges arise from the usage of bitwidths that are not powers of 2, such

as 3, 6, 5, and 7, since these cannot be easily implemented into hardware. It is possible

that these values could be replaced with powers of 2 values, as long as enough bits

are allocated such that the performance bottleneck is overcome and the low precision

defense is enabled. However, the results of doing so will have to be investigated.

Overall the results and findings of this study, while novel, were consistent when

compared to the results from established studies. The results showed that both clean

accuracies and adversarial robustness are affected by quantization distributions.
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