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Abstract

The inspection of packet contents, Deep Packet Inspection (DPI), is an important component in

network security. However, DPI is provided by complex black-box firewalls which the network

administrator has no choice but to trust. This raises the question: Can network administrators

build their own DPI-capable filter using a standard programmable switch?

The commonly-accepted answer is that standard switches are not powerful enough; the standard

they support (the P4 language) does allow users to specify how to parse packet headers, but not

packet payload fields (e.g. URL), as required by DPI. Even though software-defined networks are

quite capable of handling various tasks, ranging from firewalling to flow analysis, these are all

based on intelligent use of packet headers. DPI tasks, like URL filtering, still require dedicated

middleboxes – or, if we insist on SDN solutions, middleboxes in addition to SDN. If we insist on

developing a solution on the switch itself, we need either custom switch hardware, or heavy support

from the SDN controller or an external firewall.

This dissertation challenges this common consensus. For our first contribution, we demonstrate that

clients send packets with a predictable structure, so a P4 switch can perform some DPI (enough

for URL filtering). We then develop and demonstrate a URL-filtering firewall, DiP, completely in

the data plane, taking no external help from the SDN controller, firewalls, etc. DiP is a proof-

of-concept, but is quite robust, handles multiple protocols (HTTP(S), DNS), and outperforms

standard netfilter firewall by orders of magnitude.

However, DiP is not truly a general firewall: it is very specifically a URL filter, and it depends on

the strong constraint of predictable URL location in a packet, which may not hold in future. Thus

for our final contribution, we present a novel approach that allows general Deep Packet Inspection
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(DPI) – i.e. inspection of the packet payload – in the data plane, using P4 alone. We make use of

the fact that in P4, a switch can clone and recirculate packets. One copy (clone) can be recirculated,

slicing off a byte in each round, and using a finite-state machine to check if a target string has yet

been seen. If the target string is found, the other copy (original packet) is discarded; if not, it is

passed through.

Our approach allows us to build DeeP4R, the first general-purpose application-layer firewall (URL

filter) in the data plane, and to achieve essentially line-rate performance while filtering thousands

of URLs, on a commodity programmable switch. We can therefore argue with assurance that any

platform that supports P4 is powerful enough for Deep Packet Inspection, and in future it may be

possible to use programmable switches for this task, rather than dedicated firewalls.
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Chapter 1

Introduction

This thesis focuses on the use of software-defined network (SDN) switches for deep packet inspection

(DPI). We begin with this introductory chapter, describing what these terms mean, why it might

be important to perform DPI purely in the data plane, and what our contributions are, ending

with a brief summary of the structure of the dissertation.

Software Defined Networks (SDN) are networks with flexible switches. The switches have match-

action tables called flow tables, which allow them to operate on packets, and these tables can

be written to the switch on-the-fly using standard protocols (such as OpenFlow). The ability to

configure flow tables, and thus the logic of packet processing, is decided by a separate machine or

process called the SDN controller. The main value-add of SDN is that the packet processing logic

is flexible, and under the control of the network admin using a standard API (in contrast to closed

switches, which can only be configured using manufacturer-specific configuration languages).

Switches and routers – particularly Software-Defined Network (SDN) switches – have been success-

fully used to implement network-layer firewalls [57], flow analysis [16], and a wide range of other

functions. Part of the reason for this remarkable versatility is that a small number of packet headers

(source IP, source port, destination IP, destination port, protocol, etc.) are key for a variety of

networking tasks. However, more advanced techniques, such as the detection of malicious traffic or

malware signatures, require Deep Packet Inspection (DPI), i.e. the inspection of packet payloads

and not just packet headers. For example, a Network Intrusion Detection System (NIDS) needs

DPI to identify if a packet carries the signature of an attack such as Heartbleed [21].

The current state-of-the-art in DPI is still provided by old-school dedicated middleboxes, such

1



CHAPTER 1. INTRODUCTION 2

as Cisco Firepower Threat Defense [2], SonicWALL TZ/NSA/SuperMassive Series [11], Fortinet

FortiGate [3] , etc. These solutions treat the network administrator as a consumer – the admin

has no option other than to trust the manufacturer for strong security guarantees (i.e. that the

firewall is not itself malicious [14], does not violate user privacy, etc). Further, such middleboxes

are usually on-path rather than in-path [61], and may only inspect a sample of traffic so as not

to become a bottleneck. A comprehensive line-rate filtering solution is very expensive, and even

modest firewalls may be out of the reach of small businesses. Such lack of access was one of the

original motivations for developing Software-Defined Networks [27]. And finally, such firewalls are

not only black boxes taken on trust by the network administrator; they are hard to audit, present

a high-value target for attacks, and compromise many users when they leak.

It is interesting that Deep Packet Inspection is not implemented using programmable switches,

when there already exists a standard language (P4) that allows users to specify packet schemas1.

Naively, this should imply that a programmable switch can parse packets and extract fields from

HTTP, TLS, etc., headers. As soon as a switch can (extract and) filter traffic by, e.g., site URL or

file type, it becomes an application layer firewall. What is the reason that such solutions do not

replace (or at least compete with) black-box firewalls?

In the early days of SDN, researchers did propose such ideas – for example, Sekar’s CoMB archi-

tecture [56] built on the Click modular router [42]). But current SDN platforms are not intended

for Deep Packet Inspection2. The P416 standard makes this explicit [19].

• P4 is not a Turing-complete language; the P4 packet “parser” really just extracts slices of

bits (“slice” meaning, a given length at a given offset). The parser cannot loop, and cannot

properly handle the following cases:

– Fields of variable length.

– Fields which may or may not be present.

– Fields present in random order.

• The above cases are required to parse headers of important application-layer protocols, such

as HTTP. (HTTP has 47 fields, which are mostly optional; important fields for filtering, such

as URL, are variable-length).

1In a P4 program, the user defines the structure of packets of a protocol. A switch loaded with the appropriate

definition can parse headers of novel protocols just like TCP or IP headers, but subject to some restrictions, as we

discuss in detail below.
2Most likely this decision was made to ensure that complex parsers do not slow down packet processing.
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Thus while P4-compatible switches have some flexibility, it is not straightforward to use them for

general DPI. If a network admin wishes to build their own DPI-capable infrastructure, the consensus

is that they must either use specialized platforms – eg. nVidia DPU [7], custom switches with non-

standard extensions (extern logic implemented on NetFPGA), etc – or they can have the switch

outsource some work to an external server [34], and provide enough servers to process traffic at line

rate. This is a very different proposition than adding some off-the-shelf programmable switches to

the network, and it is hardly surprising that the admins of enterprise networks and ISPs prefer to

invest in a standard commercial middlebox.

At this point, we make an important observation. An application-layer firewall can be valuable

even if it only performs a few simple cases of DPI. More involved DPI, such as content censorship

(eg. social media or email) is usually performed with the help of an end-point on the provider or

the client; for the common case in traffic inspection – blocklisting of websites – it is sufficient to

detect the URL. And the URL is usually present in plaintext in HTTP traffic, in HTTPS traffic

(the Server Name Indication field), and in DNS traffic. If it is present at a predictable location in

network packets, then this common case of DPI can indeed be solved.

We now come to our first contribution.

• In chapter 4, we report on our field study, which shows that even for theoretically “free-

form” protocols such as HTTP(S), the header has a predictable structure in actual web

traffic. Hence, these protocols can reliably be parsed in the data-plane, and the domain name

extracted.

In other words, even simple SDN switches (not designed for DPI) can perform URL filtering

in practice, thanks to the predictability of browser clients, and the low rate of adoption of

more-secure protocols such as encrypted SNI and DNS-over-TLS.

Our study shows that even if it is challenging to build a fully general application-layer firewall in

the data plane, it may be possible to build a URL filter for traffic from practical Internet clients.

This immediately raises the question of how such a (limited) firewall can be implemented, and what

its performance would be like. This brings us to our second contribution.

• We develop DPI-in-P4 (DiP), a dataplane firewall capable of simple deep packet inspection,

on a real, cheap, easily-available SDN switch (Netberg Aurora 710) [5] 3. DiP works with

3Our implementation runs on the Intel P4-based Tofino ASIC [4], but it can be ported very simply to another
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multiple protocols – HTTP, HTTPS, and DNS – and to our knowledge, is the first filter to

block URLs directly in the data plane.

In terms of scalability and performance, DiP greatly outperforms a standard software firewall

(Linux netfilter): it works smoothly when filtering 1000 URLs from 10k parallel traffic flows,

with a near-zero packet processing delay (< 0.05ms), and showing no degradation under 10

Gbps cross-traffic load.

DiP matches URLs from various protocols (HTTP, HTTPS, DNS) with line-rate performance, and

could in future be extended to match keywords or other specific strings. It may be considered one

important, specific case of limited DPI, like some others built with P4-programmable platforms

[41, 60]. However, it may be argued that such a solution is still too partial for general use. If we

want DPI in SDN, the choice is still between systems where the switch leaves a portion of the work

to an external server [34], systems that require specialized hardware and are thus implemented

in eg. NetFPGA (not on a standard switch), or our system, which relies on the incidental fact

that real traffic at present satisfies some strong conditions [30]. In other words, even though we

have built a proof-of-concept DPI system in a software-defined network, there is still a need for a

practical DPI-capable firewall that uses only standard functionality (runs on unmodified commodity

SDN switches). This brings us to our final and most important contribution.

- Deep Packet Inspection in P4 using packet recirculation (Deep4R) is a general system to

perform Deep Packet Inspection using only standard SDN switches and the P4 dataplane

programming language. Deep4R is the first firewall to achieve “true Deep Packet Inspection

in P4” (which we define as, DPI without real-time help from a controller or external firewall),

using only standard P4-compatible switches, and without strong assumptions about the traffic

packets.

When a packet arrives, we use P4 functions to clone it, then apply the recirculate-and-

truncate method of pattern matching [35] on the cloned packet. (We loop the packet through

the switch, consuming one byte from it with each pass. A Deterministic Finite Automaton

keeps track if we have seen the target string.)

If the clone is consumed without us seeing the target string (URL), we let the original packet

(which has not been altered) pass through; otherwise, we drop it. Our novel method of

combining packet cloning with recirculate-and-truncate allows us to perform flexible parsing

in P4 and allow non-target traffic to pass through transparently.

platform such as the Broadcom NPL ASIC [6], as we only use standard P4 functionality to parse packets, extract

fields, and trigger actions.
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There are still Deep Packet Inspection tasks, such as inspecting encrypted traffic, that will

defeat DeeP4R; but it is perfectly capable of application-layer firewall tasks such as URL

filtering or matching other strings such as keywords.

In addition to the system design and analysis, we implement, demonstrate, and benchmark the

scalability and performance of both our systems DiP and Deep4R. We are happy to report that

as dataplane programs, they process traffic very efficiently on a real switch. For instance, with

5000 domain names to filter and 10000 parallel flows, the latency on Deep4R on a commodity SDN

switch is under 1 ms while our firewall server (running standard Linux netfilter firewall) takes

over 5 sec. Details are provided in Chapters 8 and 9.

We also note that our implementation is developed and run on the Netberg 710 switch [5], built

around the Intel P4-based Tofino ASIC [4] – a commodity switch with a standard architecture

(market cost roughly $5000). Besides the easy accessibility to small network admins, we note that

our code can be ported very simply to another platform such as the Broadcom NPL ASIC [6], as

we only use standard P4 functionality to parse packets, extract fields, and match values to actions.

Our P4 code (for the Tofino switch) and all related scripts, etc. are all available for future study

or extension, at our repository [8].

This dissertation covers the development of first, a specific (DiP), and later, a general (DeeP4R)

solution to the problem of building the first application-layer firewalls in the data plane (without

external help or custom hardware). In the following Chapters, we cover the necessary background

and related work, our field study of domain name predictability, the DiP and DeeP4R systems and

their experimental evaluation, and finally end with a discussion and some concluding remarks.



Chapter 2

Background: P4 and Programmable

Switches

This chapter is a brief overview of the P4 language and programmable switches that support it.

SDN switches like our Netberg Aurora 710 allow the user (network admin) to specify how the

switch should process network packets, using a standard language (P4). In brief, a P4 program

specifies the schema of packet headers for any desired protocols (the headers can be whatever the

user chooses, so long as it is a consistent chunk of bytes at a consistent position in the packet).

Once the switch has this schema, it is able to extract these header fields from packets, and use them

for routing, load balancing,etc Thus it becomes simple for the user to adapt the switch for new

protocols, such as MPLS or QUIC [45]. Such a switch is said to have a programmable dataplane.

Figure 2.1 shows the existing internal architecture of the Tofino switch ASIC. It is a 4-pipe switch.

Each pipe has its Ingress and egress sub-pipeline. Each sub-pipeline has its Match Action Units

(MAU). Each MAUs has its own TCAM and SRAM memory blocks used for various purposes.

We explain the necessary components below.

• Ingress Parser block: This is the programmable block where the user can specify a schema

for packet parsing. The parser treats the packet as a string and extracts header fields as

sub-strings (of a given length and starting at a given offset). There may be packets of var-

ious protocols in the same traffic; as the parser passes down the packet extracting headers,

the information seen so far determines what headers it expects next. While the parser al-

6
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Figure 2.1: 4 Pipe Tofino ASIC [1]
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lows the user to define a protocol header schema as they choose (hence the full form of P4:

programming protocol-independent packet processors), such a schema does not allow for op-

tional, variable-length, or variable-position fields. This constraint makes it very difficult to

parse application layer protocols, in which the header fields are indeed of variable length and

position.

• Ingress control block: The control block implements user-defined policies for packet classifi-

cation. The control block consists of match-action tables, where keys – fields extracted by

the parser, as well as metadata1 – are used to look up the appropriate action for the packet.

Some ports can be configured as loop back port. Setting egress port value to such ports

recirculate the packet. The other actions can be to drop a packet, to set a target egress port

for output, etc These tables are set by the control plane. There are limited storage and

computing capabilities provided by the Switch ASIC.

• Ingress Deparser block: The deparser re-combines all the bytes of the (possibly modified)

packet headers back into a packet. The user can choose to leave a particular header out of

the reconstituted packet (by setting its validity bit to zero). Packets can also be targeted to

multiple destinations here, i.e. mirrored. To mirror the packet a Mirror extern API call is

made from this block.

• Traffic manager: In between ingress and egress blocks of a switch, there is a traffic manager –

which is not programmable using the P4 language, and schedules which egress port to forward

the packet to.

• Egress Parser: Once the ingress pipeline processes the packet, it enters the egress pipeline.

The first block is the egress parser. Similar to the ingress parser, we can define how to parse

the packet in this block and fill packet headers structures values with it. We can also initialize

user-defined metadata values if we want. The parsing logic here can differ from ingress parsing

logic per packet processing program requirements. We can also carry forwards some data from

the ingress pipeline in egress for further processing.

1Metadata, in a programmable switch, refers to special data structures where a user program can store information

generated during packet processing. It has SRAM and TCAM memory blocks that stores key field values from the

control plane. There are three stateful P4 objects, i.e., registers, counters, and meters which can be used to build

stateful data plane applications. For our Deep4R work, we used a register to store the results of packet analysis.

They also used SRAM to store values in them. Metadata can be intrinsic to the switch or specified by the data plane

program. Some fields such as timestamp, are read-only, others such as egress port, can be modified (eg. to control

where packet should be output).
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• Egress control block: Similar to the ingress control block, here also we can define some tem-

porary variables to carry intermediate results and match-action tables. We can also used

register statefull feature to store some results in them like the way we had in ingress control

block.

• Ingress Deparser block: Finally, all modified headers get united and packet moves out from

QSFP port of switch.

• ePCI bus: This hardware component connects the switch ASIC with onboard small computer.

The server program that intract with switch ASIC runs on it. PCIe bus helps to pass control

instructions to and fro from switch ASIC to control plane server program. That program helps

in control switch ASIC behavior for given data plane program from some remote machine.

This flexibily helps to control multiple switches from a single control plane node.



Chapter 3

Related Work

SDN switches with a programmable data plane have been used in a wide range of network functions

such as load balancing [23, 38, 52], telemetry [40], and for offloading tasks from servers [46]. More

recently, they have also made a substantial impact in network security tasks [15, 26, 29, 39, 43,

44, 48, 49, 51, 53, 63]. In this chapter, we explain how our work fits into the overall research area

of programmable data planes, and especially network security using such programmable switches,

with special attention to the systems that inspired Deep4R and systems offering a complementary

approach.

3.1 Programmable Data Plane and the P4 Platform

In the most general case, data plane programming is not limited to P4, and includes other ap-

proaches such as the Click modular router [42], and Vector Packet Processors [22]. These approaches

apply a directed-graph of transformations, such as header rewrites. P4 however, has become a stan-

dard platform supported by various manufacturers as well as the research community, so we use its

standard PISA programming model [18] as the platform for our work.

P4 was originally standardized as the P414 language, but the more current version is P416 [9, 19].

(We note that Budiu et al [19] is the source of our assertion that the community does not consider P4

to be capable of DPI.) P4 is highly versatile and can run on various target architectures, such as the

basic v1model, PSA and its simplified version SimpleSume [32], and the Tofino Native Architecture

(TNA). Our own work is implemented on a Tofino-based switch, we avoid architecture-specific

10
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features, so our code should work with other switches also.

3.2 Software-Defined Network Security

In recent years, software-defined networks – and P4-compatible platforms – have made a substantial

impact in network security [15, 39, 43, 44, 48, 49, 51, 53, 63]. In particular, we will mention their use

in detecting and protecting against attacks such as port scans and distributed denial-of-service

attacks. However, these contributions are focused on clever manipulation of flow-level information

from packet headers (for instance, a scan would be indicated by many flows in quick succession

with the same source IP but different destination, while for a DDoS attack it is the opposite).

These contributions show the importance of programmable data plane, but do not use Deep Packet

Inspection.

P4-compatible switches have previously been used to build stateful or stateless firewalls in the data

plane [20,37,54,55,59]. In particular, we make note of P4Guard [25], and Gallium [62]. These works

build on the traditional approach, using SDN switches [33] and even traditional switches/routers as

network-layer firewalls [47], through the examination of link-layer, network layer and transport layer

headers. As they do not touch the TCP or UDP payload, they also cannot perform application-layer

firewalling or Deep Packet Inspection, and are therefore complementary to our work.

3.3 Deep Packet Inspection with P4

We now go on to consider the most directly-related papers, i.e. those that study the question of

Deep Packet Inspection in the data plane.

One early example of DPI in the programmable data plane, Meta4 [41], captures packets stats per

domain name. It has a very limited domain-parsing ability (four domain name labels), works only

for DNS packets, and makes use of packet re-cirulation to update statistics in registers. Even so,

this approach may be useful for specific use cases such as IoT device fingerprinting, DNS tunnel

detection, and DNS based denial-of-service attacks.

The other closely-related work we are aware of, P4DNS [60], extracts the domain name from a

DNS query packet, and builds a DNS response packet using the match-action table as a lookup

table. Their solution only parses domain names of limited length, but is a potential complementary
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approach to Deep4R, which works with HTTP(S) traffic.

DeepMatch [34] is perhaps the closest match to our own work: it successfully performs Deep Packet

Inspection (DPI) on packet payloads. The main difference with our work is that DeepMatch is

developed using Micro-C, and targets the Netronome NFP-6000 SmartNIC; in other words, it

requires custom logic to be integrated in the switch and will not run on a standard P4-compatible

platform.

3.4 Immediately Related Work

Finally, we come to the direct ancestor of Deep4R: Jepsen et al’s “Fast String Matching in

PISA” [35], that first introduced the recirculation approach to find keywords in the payload. Their

system is suitable for a “smart fabric” that consumes a packet (carrying a query) and returns the

response directly, but not for a network switch or middlebox. In upcoming chapters, we explain

how this limitation is overcome to build the application-layer firewalls in the data plane.

We ourselves began work in this area in collaboration with the authors of the Fast String Matching

paper. This earlier joint work [58] involved building a standard SDN firewall, in the control plane.

Any new device added to the network sends the SDN controller a config file, carrying the device

manufacturer’s identity and forwarding path information, and the controller then verifies whether

it is secure to route that type of data or not. Based on this analysis, it adds allow or deny rules to

SDN switches, thus implementing an Access Control List for IoT devices on the network.

We came to realize, in the course of our work together, that while the problem of “SDN based access

control in IoT” was interesting, the side-problem of “deep packet inspection with SDN” was more

fundamental and interesting. In the course of the next few years, we performed an in-depth study

of this problem, starting with the demo paper [31],where we first learned that actual traffic may

have characteristics that make it simple to filter (i.e. predictable URL positioning in the packet),

as explained in Chapter 4. In this thesis we build on this work, studying the constraints required

for a solution and demonstrating and benchmarking an actual DPI-capable firewall implementation

in the data plane.



Chapter 4

Domain Name Field Study

(Predictable Internet Clients)

The main challenge in parsing packets to extract URL is that the length and position of the URL

are variable. As discussed in Chapter 2, this poses an issue for the P4 parser. However, this issue

may not be insurmountable. In practice, almost all users access the Web using one of a small

variety of clients [12]. If these clients generate predictably-structured packets, it is possible the

URL is present in a well-defined and predictable location in DNS response, HTTP GET, and TLS

client hello packets. This chapter presents our field study, which gives us the confidence to assert

that (at least at present) this is indeed the case. It also introduces a new challenge to packet parsing

(the tension between parse accuracy and match accuracy), and how we respond to this difficulty.

4.1 Model of Protocol Packets.

Figures 4.1, 4.2, and 4.3 show how we model packets as made up of four parts, of length X, Y, Z

and R respectively.

• X is the length of the packet up to (and including) the layer-4 header.

• Y the length after TCP/UDP header till the start of URL (i.e. the “Host” field in HTTP,

“Server Name Indication (SNI)” in HTTPS, “Query Name (qname)” field in DNS).

• Z is the length of the URL itself.

13
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• R is the length of the remaining packet.

Our study attempts to characterize the starting and ending positions of domain names in the

packets of different protocols, and whether they vary with browser, OS, etc; in other words, we are

concerned only with the variation in Y and Z.1

Figure 4.1: Partition of DNS packet.

Figure 4.2: Partition of HTTP GET packet.

Figure 4.3: Partition of TLS Client Hello Packet.

4.2 Field Study and Observations.

In our field study, we generated and captured traffic to the Alexa top-10k websites, using Google

Chrome, Mozilla Firefox, and Microsoft Edge on Windows 10 and Ubuntu 18.04 LTS OS. Data was

collected and the position of fields was measured using the Python library scapy. (Requests to a

site often resolved into multiple sub-domain requests – e.g. probing qq.com also initiates connection

to images.qq.com. So our analysis actually covered well over 10k domains.)

1X may have some variation caused by optional IP, TCP, etc. fields, but this is handled using varbit fields in the

parser.
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DNS

Firefox Chrome Edge

Windows 13 – 49 13 – 49 13 – 49

Linux 13 – 49 13 – 49 13 – 49

TLS

Firefox Chrome Edge

Windows 125 – 198 125 – 161 101 – 198

Linux 125 – 161 127 – 167 127 – 163

HTTP

Firefox Chrome Edge

Windows 22 – 45 22 – 45 22 – 45

Linux 22 – 53 22 – 53 22 – 53

Table 4.1: URL position in packets, as Min Start – Max End.

Our results appear in Table 4.1. For example, when Firefox, Chrome, and Edge browsers on

Windows 10 OS access Alexa top-10k websites, the generated HTTP GET requests always have

URL between the 22nd and 45th byte after the TCP header.

We see that for DNS, there is no variation of the minimum starting point and maximum ending

point (i.e it remains consistent across OS and browsers for all sites in our study). HTTP shows

minimal variation, and HTTPS shows more, but it is limited enough to cover by case-by-case

enumeration.

4.3 Choosing Start and End Positions.

From the previous section, it is clear that there is a small range of positions where the URL can be

found. More precisely (as per our model): if Y varies in the range Ymin to Ymax and Z from Zmin

to Zmax, for a given protocol, the URL is certain to lie in the range between the earliest possible

start point i.e. Ymin and the last possible end point i.e. Ymax + Zmax. (Section 5.3 explains how

we handle additional non-URL bytes that appear in the slice.)

However, when we naively tried to parse packets using the ranges in Table 4.1, we found an

unexpected challenge. For some packets with short URL, the entire packet ends before the end
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Protocol Start End Parse Acc. Match Acc.

HTTP 22 53 100 100

TLS 125 157 100 99.9

DNS 13 40 99.6 99.7

Table 4.2: Parsing and Pattern-matching Accuracy, Alexa top-10k sites

(using the given start and end positions to extract URL).

position we specified. More precisely: if we try to match a slice that starts at (or before) Ymin, and

ending at (or after) Ymax + Zmax, for some small packets we are asking the parser to fetch a field

that extends past the end of the packet. The parser responds by ignoring the packet entirely.

Our challenge is to choose start and end points such that (1) a high percentage of packets are

successfully parsed (we call this metric parse accuracy), and at the same time, (2) in a high

percentage of parsed packets, the URL lies between our chosen start and end points (we call this

match accuracy) 2.

Table 4.2 shows there is indeed a sweet-spot for the length of field extracted from the packet (32

bytes for HTTPS, 31 bytes for HTTP, and 27 bytes for DNS), such that we successfully parse it

from almost or exactly 100% of the target packets (high parse accuracy), and also expect it to

contain the URL roughly or exactly 100% of the time (high match accuracy). In almost 100% of

cases the given start and end positions ensure that the user-defined field neither overshoots the end

of packet, nor misses the URL in the packet.

2These goals are in tension! To increase parse accuracy we want the slice to be as narrow as possible, but to

increase match accuracy we want it to be wide.



Chapter 5

DiP: Simple In-Switch Deep Packet

Inspection

This chapter presents DPI-in-P4 (DiP), our first generic (multi-protocol) application-layer firewall

in the data plane. We begin with an overview of the simple idea, then mention the challenges we

face and the assumptions we make, and end with a description of how the system works.

5.1 Overview : How DiP Works

Our firewall takes two inputs from the user, i.e. network administrator: a filtering policy i.e. list of

blocklisted URL’s, and a data definition in the P4 language, setting out the fields that the parser

should extract from packets.

• The data definition specifies the position in a packet where the field of interest (i.e. the URL)

is present.

• The switch extracts the URL from this location, using the ingress parser, and matches it

using the match-action table.

• The match-action table triggers the action, drop, if the URL is indeed on the block list.

Otherwise, the packet does not have a URL we are blocking; it is allowed to pass.

17
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Speaking simply, DiP operates exactly like an IP-level filter, but with different fields of interest

(i.e. URL).

In practice, this naive design needs to be modified because of two challenges, which we present

below.

5.2 Challenges : DPI in the Data Plane

5.2.1 Challenge 1. Parsing

The “parsers” in P4 are not full-powered general parsers (defined as able to match any context-free

grammar), or even recursive-descent parsers able to match a regular grammar. They are strictly

limited to extracting bit slices from a packet, i.e. fixed-length header fields from known locations.

This makes it very difficult to extract variable-length domain names, especially as the start location

in the packet is also variable.

• Our first attempt was to use the P4 varbit data type, which the parser can use to extract a

field of variable length (eg. for variable-length IP or TCP headers). This approach failed, as

varbits cannot be used as keys in a match-action table.

• Our next idea was to keep track of the state in the parser. (The P4 parser is stateful: for

example, it keeps track when it removes an Ethernet header, so it can check for IPv4, IPv6,

etc. headers next.) Might it be possible to match an entire URL byte-by-byte, using the

parser as a Finite State Machine? We found that this is very challenging: the number of

parser states is small, and the number of states required for a URL-matching automaton

would be very large for a non-trivial firewall.

• Our final idea was to check the range of bytes in the packet payload that could possibly

contain the domain name. While the protocol definitions for say HTTP are very liberal,

we suggested that in practice, the position of URL in a HTTP(S) or DNS packet is highly

predictable. We then checked this hypothesis with a field study (Chapter 4).

Our study demonstrated that while URL positions in packets were not rigidly predictable –

there was a range of positions for the domain name, in DNS response, HTTP GET, and TLS

client hello packets – the range was small enough to handle using case-by-case enumeration.

This is the approach we actually use for DiP.
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5.2.2 Challenge 2. Platform Constraints

A switch has limited computing power as well as memory. In particular, the ternary content-

addressable memory (TCAM) used for match-action tables is limited, expensive, and enforces a

limit on the length of the key used in rule lookup. This makes programming a real switch different

from an emulator, such as the P4 reference implementation BMV2 [10].

• Our system originally used different match-action tables for HTTP, HTTPS and DNS. While

this worked, it was very inefficient and the number of URL’s filtered by DiP was quite low

(< 200). We considered adding the restriction that DiP can work with multiple protocols,

but with only one at a time, so a substantial number of rules can be implemented on a typical

switch.

• However, we are happy to report that a simple optimization – extracting the URL, i.e match

key, from different protocols with the parser as a slice that always has the same length (32

bytes, whether HTTP, HTTPS, or DNS) – allowed us to implement DiP as a single match-

action table. Luckly, this key size also comes under maximum allowed key size to be matched

in Switch ASIC TCAM Match Action table. With this optimization, we are able to filter over

1000 domains per switch1; details follow in Section 5.3.

5.3 System Design and Implementation

The DiP system depends on the assumption that there are predictable URL starting and

ending points for HTTP GET, TLS client hello, and DNS response packets, as we checked in

our study in Chapter 4. We now explain the system design and the actual setup of the DPI-in-P4

(DiP) system.

5.3.1 Deep Packet Inspection with P4

DiP is a data plane program to filter packets, by matching a given string (URL or SNI) at a

known position in the packet. We make use of the Ternary Content-Addressable Memory (TCAM)

match-action tables, available after the “parser” in the packet pipeline of a P4-compatible switch.

1We add in passing that our switch is a simple Netberg Aurora 710, which is available for $ 5000. A high-end

switch used in an ISP would be far more capable.
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Figure 5.1: DiP: packet parsing and matching in the switch.

First, the packet arrives at the Ingress port. Next, the (ingress) parser separates different headers

(eg. TCP), and particularly the user-defined header containing the URL. Finally, the control block

matches the user-defined header field to see if there is a rule to drop it. On a successful match, the

entire packet is dropped.

As we discuss in Background Section, match-action can be performed both in the ingress and in

the egress pipeline. Our platform (Netberg-710, built with the Tofino ASIC packet processor)

implements a full pipeline (parser, match-action, deparser) for ingress, a Traffic Manager for the

buffer, and another pipeline (parser, match-action, deparser) for egress. However, as the aim of

this research is to develop a dataplane firewall that can work on any P4-compatible architecture,

we use only standard features from the P4 reference behavioral model BMV2 [10]. Our firewall

matches and drops packets using TCAM tables in the ingress pipeline, i.e. immediately after the

first parse.

TCAM allows for constant-time retrieval of records using a ternary key value (i.e. the key can

include don’t-care bits). It is therefore a very useful standard component of switches. For example,

a rule

10.111. ∗ .∗ → 8

allows for a partial match on a packet field (here, destination IP) to look up an action (here, route

out on interface 8). The wildcard * indicates a don’t-care byte.

In our case, the field to match is the URL, and the associated action for a successful match is to

drop the packet. We note that if the HTTP GET, HTTPS ClientHello, or DNS response packets

cannot get through, this is sufficient to prevent a session with the website, and it is effectively

blocked (see Figure 5.1).

Handling variation in URL length.
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We have the challenge that in match-action tables, the key cannot be a varbit, i.e. a field of variable

length. We must, therefore, ask the P4 parser to always give us a slice of the same length, though

we know there is variation in the URL length Z. (In Alexa top-100 sites, URL length ranges from

10, for www.qq.com, to 24 for www.thestartmagazine.com.)

We respond to this challenge by asking the parser for a slice of the greatest expected length; in other

words, when we receive the list of sites to block, we find the longest name (say, length Zmax) and

always ask for the parser to extract a slice of length Zmax after position X + Y.

For all the shorter URLs, we pad the length of the string with don’t-care matches. So for example,

using “*” to represent a don’t-care, we would place a rule matching the pattern

“www.qq.com**************”.

Handling variation in URL start position.

The switch can remove all L2 to L4 headers effectively, so the main challenge is the variation in

Y, the length-to-URL in the remaining packet. Suppose Y varies from say 100 to 102, for a given

protocol. Then for the above example, we need to make adjustments to match “qq com” starting

at position 101, 102, or 103. As the parser will blindly fetch a slice from a constant start to a

constant end position, we need to insert three patterns:

“www.qq.com****************”,

“*www.qq.com***************”,

“**www.qq.com**************”.

So if Y varies over Ymin, Ymax and Z over Zmin, Zmax, we will need to cover the entire range from

Ymin to Ymax + Zmax, as the URL could be located anywhere in this range. Further, as one rule

corresponds to a single position of the URL in the packet, we will have a range of TCAM rules for

a single URL. We discuss how we optimize the amount of TCAM memory, so a switch can handle

a substantial number of URL’s, in Chapter 7.



Chapter 6

DeeP4R: Deep Packet Inspection in

P4 using Packet Recirculation.

The Deep4R system implements a Deterministic Finite-State Automaton (DFA) in the switch, to

match target strings (keywords, URLs) in the packet.1 For example, Figure 6.1 shows a DFA to

match the target URLs evil.com and bad.com.

The DFA makes transitions on characters as we traverse the packet extracting them one by one

(the method of recirculate-and-truncate [35]). The state of the DFA allows us to determine whether

the target string has been seen, so we can match URLs (and potentially other strings or keywords)

found at any position in the packet. But the method is destructive, as it consumes the packet being

matched.2 To use recirculate-and-truncate in a firewall, we clone the packet. One copy can be used

up for matching, and the other is accepted or discarded depending on whether the keyword (URL)

was found. We now present the details of this system design.

6.1.1 Architecture of Deep4R.

Deep4R includes two main methods.

1Note that our DFA state is separate from the parser state or the flow state (OpenState [17], for example, uses a

DFA that makes one transition per packet to track flow state) – our state machine attempts to match a string in the

packet, by making one transition per byte.
2The method was originally meant for applications where the programmable switch is the final handler of the

packet – for example, in a data center fabric that directly processes a query carried in the packet.
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6.1 System Design

Figure 6.1: DFA to match evil.com and bad.com.

Figure 6.2: Life cycle of a packet processed in Deep4R. The supervisor table actions correspond to

the decision blocks, and the DFA table corresponds to the bolded block “update status”.
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1. Recirculation-and-truncation [35] involves looping the packet from egress to ingress (or, in

case of a real switch, from the ingress-section deparser back to the ingress-section parser), so

it passes through the pipeline again – effectively forming a loop. With every pass-through, the

packet is edited, removing the first byte and checking its value to make transitions according

to the DFA.

2. Duplication is our method to keep the original packet intact through the matching process.

The packet is cloned, and the clone is consumed byte-by-byte in the DFA matching process,

while the original remains intact until it is either dropped or allowed to pass.

For these functions, we both need to implement a DFA, and to keep track of the correspondence

between original and cloned packets. (We also need to clean up the state after the packet processing

is over.) Accordingly, we build the Deep4R system with the following components.

• label header. This is a small custom header which we insert into both original and clone

packets just after the TCP header. It is for use as a scratch pad, and if the packet is forwarded

by the switch, this header is deleted.

The Deep4R Finite State machine tracks state using a field of the “label” header in the clone

packet. We also keep track of which clone packet (and which decision) corresponds to which

original packet, by sharing the same unique ID in the “label” header.

• decision register. The other component of state tracked in Deep4R is the decision for a

packet. This is held in a “register” (which in P4 language, simply means an associative array

i.e. a hash table in the switch SRAM memory), named decision.

decision stores the decisions for packets currently being processed in the switch. If a packet

with unique identifier = X is to be discarded, then decision[X] is 1. If it is to be ac-

cepted, then decision[X] is -1. And if no decision is available, then decision[X] is 0.

• DFA transition table. DFA State is updated using a standard match-action table in the

ingress block. The current DFA state is stored in the label header of the clone packet; we

use this state, and the first byte of the packet payload (slice), as the lookup key for the

match-action table. The action looked up in the table, sets the new DFA state, and can also

write to decision when a string is successfully matched.

Table 6.1 is an example of a simple DFA transition table.

• Supervisor table. The supervisor match-action table is responsible for packet classification –

i.e. treating packets differently based on whether they are new or recirculated, original or
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cloned packets, and whether the decision is set or not. It is very small compared to the

DFA table, but it may be considered the “main() function” of the system. Its actions form

the high-level processing flow of Figure 6.2.

state slice action

1 b update state(2)

2 a update state(4)

4 d update state(6)

1 e update state(3)

3 v update state(5)

5 i update state(7)

7 l update state(6)

6 . update state(8)

8 c update state(9)

9 o update state(10)

10 m update state(11, 1)

Table 6.1: Our example DFA, expressed in match-action table rules. 1 is the start state. 11 is the

only accept state i.e it indicates that the URL was seen. Note that the last transition from 10 to

11 not only updates the state in the label header, it also writes to decision – hence the 1 in bold.

6.1.2 Processing of a Packet.

1. When a new packet enters the ingress block the first time, a new header (label) is inserted

between the TCP and application-layer header; next, the whole packet is cloned. The label

header contains the following information: (a) whether the packet is original or cloned; (b)

the current DFA state information (only present in cloned packet, absent in original); (c) a

unique id that uniquely identifies a packet pair (an original packet and its clone).

After the packet is cloned, both original and cloned packets are forwarded to the recirculation

port at egress. From this point, the packets are treated differently,

2. The clone packet, when it arrives at ingress, is sent to the DFA match-action table. The

combination of the current state and slice (first byte of payload) – say, (4, d) – is used as a

key to look up the appropriate action in the match-action table. (slice will later be dropped

by the deparser, just before the packet is recirculated.)
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The transition table either calls the action update state (if the table has an action matching

the lookup key) or reset state (if it does not).

• update state updates the state variable to the new state, and if it reaches an accept

state, sets the flag decision[unique id] to 1 (indicating the original packet should be

dropped) eg.in Table 6.1, this happens when the state reaches 11.

On the next recirculation, if the supervisor table sees that the flag decision[unique id]

is set, it simply drops the clone packet (its job is over).

• reset state is the default action, and restarts the evaluation after a false start, i.e. if

an unexpected character appears. eg. if ‘e’ appears after state 4 in Table 6.1, Deep4R

starts again with the next byte, from state 1.)

3. What if the packet terminates, and no blocked URL has been matched in the entire TCP

payload? P4 catches this case (we fail when trying to extract a slice, and the inbuilt construct

validity bit returns 0). Instead of going to the DFA match-action table, we fall through to the

supervisor table, which carries out the actions (a) set decision[unique id] to -1 (indicating

the original packet should be passed), and (b) drop the current (clone) packet, its job is over.

Otherwise, the supervisor table recirculates the packet, so the cycle continues with the next

byte.

4. When an “original” flagged packet appears at ingress, the supervisor table simply checks the

flag corresponding to its id, decision[unique id]. If it is still 0, it is recirculated to wait

until a decision becomes available.

When the decision is made (packet dropped or forwarded), the supervisor carries it out on the

packet and clears the decision[unique id] to 0 to avoid possible unique id collision with

future packets.

To wrap up this chapter, we once again recapitulate the design goals that inform our system and

how these are met.

• Preserving the original packet. Our primary idea, to use recirculate-and-truncate to

identify strings in a packet, has the weakness that the original packet is consumed. The goal

of our design is to keep an additional copy of the packet, which can be forwarded intact (or

dropped if the target string, i.e. URL is found).
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We solve this issue by cloning the packet with the mirroring feature of standard P4. The

cloned packet is consumed by the analysis, but the original remains (it is recirculated without

truncation, while the clone is being analyzed).

• Associating the clone and original packet. The above design has the problem that the

target string is found in one packet (the clone used for recirculate-and-truncate) while another

packet, the original, is dropped or forwarded. The question follows how the decision made on

one packet can be associated with another.

This issue is addressed using the switch ASIC’s storage space (called registers), which use

SRAM memory to store information. Different packets are processed by different threads,

but any thread has access to any register, so communication is simple. We compute an index

(using the switch’s inbuilt hash function), using packet header fields unique to the packet

(and its copy). Information, such as whether a decision was reached (and what decision it

was), is communicated by the register at the chosen index.



Chapter 7

Experimental Setup.

Our system designs, as explained in previous chapters, raise some important questions which need

to be answered by experimental evaluation.

- Programmable switches are usually restricted in their memory, computational power, etc. Do

the match-action rules (for DiP) or the finite-state machine (for DeeP4R) that we would need,

fit in the memory available for flow tables in a commodity switch? Assuming a reasonable-

sized firewall (say 1000 - 2000 URLs [13]), is there enough room for other match-action tables

(eg. for routing functions)?

- Deep4R matches patterns by recirculating packets. This inevitably introduces some delay in

packet processing, even for packets that are finally accepted. How large is this delay, and does

it cause an unacceptable penalty in performance? For instance, do TCP packets time out

because of the latency introduced by Deep4R?

- Besides latency, network performance also depends on throughput. How do DiP and DeeP4R

compare to the baseline performance of the switch, and to a traditional firewall? How well

can they handle multiple flows and network congestion?

This chapter explains the experimental setup we use to test, and check the performance of, both

our systems for Deep Packet Inspection on P4 (i.e. DiP and Deep4R). It will be followed by the

chapter on experimental results.

28
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7.1 Testbed Layout

Firewall Server
(Netfilter)


ServerClient

Tofino based switch

(DeeP4R)

10 Gbps 

Connection

Figure 7.1: Experimental setup: Client machine fetches HTTP or HTTPS traffic (web pages,

including large files) from Server. In separate runs, we pass identical traffic through our Tofino-

based switch (running Dip / Deep4R), and through a server running Netfilter firewall, for a fair

comparison.

Our test setup includes the following components.

• Client host : An Ubuntu Linux (20.04 LTS) system, that generates requests for traffic. This

can include high or low volume traffic from wget or iperf as well as tailored TCP packets

(to control the packet length).

• Server host : An Ubuntu Linux (20.04 LTS) system set up to respond to requests from

client. The server runs nginx and iperf in server mode.

Both client and server have 10 Gbps Ethernet connections (limited by NIC capacity).

• Management host : The management host converts high-level filtering policies (ie. the list

of URLs to block) into the format required. In case of DiP, this is a simple match-action

table the SDN controller uploads into the switch. In case of DeeP4R, this is a DFA, expressed

in intermediate (barefoot runtime) Python API commands. The SDN controller runs these

commands to set up the switch match-action tables (DFA and supervisor).

This host is not shown in Figure 7.1, as it is not an operational part of Deep4R. It is only

used for a one-time setup of the switch. In theory the management functions could be run
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in the linux computer embedded in the switch, but we used a separate desktop machine for

better performance and to ensure we have enough memory for DFA construction.

• P4-compatible SDN switch: We use a commodity smart switch, the Netberg Aurora 710,

built around a Tofino ASIC. Our switch runs the Open Network Linux (ONL) Operating

System. The ASIC’s ethernet ports (dev ports) are directly connected to the physical switch

QSFP connectors.

P4 studio is used to develop both the data plane P4 program (i.e. the match-action rules

used for filtering, or to implement a DFA on the switch), as well as the control-plane barefoot

runtime python scripts (used to install the match-action rules, and also for other tasks like

checking the data plane traffic statistics, as reported below).

• Controller : In our experiments, the SDN controller is physically located on the Netberg

switch itself.

We note that our build process (with P4 studio) outputs the connectors to allow for the

interaction of control plane with the daemons running on the switch. We can at any time

move to a physically separate controller, or have one controller in charge of multiple switches,

as is common in SDN. In our case, we find a local setup is adequate for our experiments, so

the controller is logically separate but physically run on the same box i.e. the Linux computer

embedded in the switch.

• netfilter firewall server : An Ubuntu 20.04 LTS server, set up to forward packets, using

separate NIC and separate physical ports for ingress and egress. We use the standard Linux

netfilter firewall (kernel process, configured using iptables – our filtering rules are installed

in the filter table and FORWARD chain).

In our experiments, while the switch has QSFP ports (100 GBPS capacity), our client and server

NICs are only 10 Gbps, so this is the limiting factor w.r.t. throughput. To make sure the physical

connections are not a bottleneck, we used QSFP+ breakout cables for all connections.

7.2 Testing Workflow

7.2.1 Switch Setup: DiP

Our first step is to build and deploy DiP on the Tofino switch. The dataplane program compiles to

a tofino.bin file to configures the pipeline, and also two JSON objects i.e. the contract between
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control plane and dataplane. Using this contract, the control plane takes the intermediate BFRT

(Barefoot) policies (that declare packets with the target pattern – say **censored.com**** – should

be dropped), and install these as match-action rules in the switch.

Our rules for different protocols (HTTP, HTTPS, and DNS) are all placed in a single match-action

table, so we can fit as many domain names as possible in the switch blocklist.

This setup raises a practical issue: as per Chapter 4, the values of X, Y and Z (which determine

the length of string to match) are different for different protocols. But at the same time, the key

string for a single match-action table must be a uniform length. Our solution is to select a length

of 32 bytes for the key, as the range for HTTPS is 32 bytes, for HTTP is 31 bytes, and for DNS 27

bytes. For DNS and HTTP, the URL is padded with additional bytes to create a 32-byte key.

The string is converted to ASCII hex representation to create a key for the match-action table.

Finally, a script converts these into filtering rules as per the Tofino Barefoot API (the key triggers

the action DROP, so a match causes the packet to be dropped), and the control plane installs them

as match-action table rules in our switch. (Our SDN controller is a simple python process which

installs our rules in the switch TCAM table, and also extracts statistics for evaluation.)

7.2.2 Switch Setup: DeeP4R

In deploying DeeP4R on the Tofino switch, the workflow is essentially similar, but instead of

installing drop rules in the TCAM match-action tables we install the DFA transition table and

supervisor table. The system design, our main challenges (the cloning and recirculation of packets,

and tracking the relationship i.e. which cloned packet corresponds to which original packet), and

how we address these concerns, are explained in detail in the system design section of Chapter 6.

7.2.3 Traffic source and sink

Our analysis uses mixed traffic, with live client-server connections for HTTP, HTTPS and DNS.

The client machine creates multiple parallel HTTP, HTTPS and DNS connections (for example,

using bash scripts to run curl and dig respectively, or using scapy to generate TCP packets of a

specific length). iperf is used to generate additional requests, i.e. cross traffic.

The server machine runs nginx to respond to both HTTP and HTTPS requests from the client,

and dnsmasq to handle DNS requests. It also runs iperf in server mode, to respond to cross-traffic
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requests from the client.

7.2.4 Routing

Traffic is routed through two separate network interfaces to pass through our Linux firewall or

through our switch running DiP/DeeP4R , as required. For all test websites (Alexa top-1k), we

insert records in the client /etc/hosts file to redirect them to the appropriate server IP for the

test (i.e. 10.0.0.2 for the NIC connected to the switch, and 10.0.3.1 for the NIC connected to the

firewall). We also ensure the routing tables on client, server, firewall, and switch are all set up for

correct forwarding of packets.

7.2.5 Firewall Setup

The netfilter firewall is deployed on a Ubuntu 20.04 LTS server, set up to filter the traffic it forwards

from ingress to egress port. We ensure no other rules are installed besides our URL filters (blocking

the Alexa top-1k websites, for HTTP / HTTPS / DNS as needed for the test).

7.2.6 Measurement Collection

To benchmark our switch and firewall, we collect packet captures (pcap) from the ingress and egress

ports – i.e., the client-side and server-side network interfaces, respectively – on the switch and on

the firewall server, and note the difference in timestamp.



Chapter 8

DPI-in-P4 (DiP): Experimental

Results.

8.1 Evaluation

This section covers our experimental evaluation of DiP (or more precisely, of our implementation of

DiP on the P4-compatible Netberg Aurora 710 switch, with the Intel Tofino ASIC). We assess its

performance w.r.t several metrics: packet processing time and queue occupancy, throughput, and

impact of packet size. To provide a baseline we use the standard Netfilter firewall (Nffw), using the

same filtering rules in DiP and Nffw. Our experiments use the setup described in Section 7.

Packet processing time

Our first metric of interest is packet processing time, which we define as the average-case difference

between the egress time and the ingress time for a packet passing through the switch.

We generate test traffic using standard clients (browsers and curl) to access web pages hosted

on our web server/DNS server machine, using both HTTP and HTTPS protocols. DNS traffic is

generated using the client dig.

Figure 8.1 shows the average response time over 10 webpage accesses, for (1) DNS queries (2) HTTP

GET requests and (3) TLS client hello packets. As we add more rules, the packet processing time

33
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Figure 8.1: Packet processing time: Avg time a packet spends within firewall.

Figure 8.2: Packet processing time (log scale): With 10k flows through firewall.
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Figure 8.3: Queue occupancy: Under heavy cross-traffic (i.e. 10k flows), increasing firewall rules

do not impact queue occupancy.

of Nffw increases steadily, but DiP has nearly constant processing time (.02− .04 ms) as expected

from a TCAM implementation.

To further assess the impact of cross-traffic, we generated 10k parallel web connections through the

P4 switch and Nffw separately. As Figure 8.2 shows, even with 1000 filtering rules DiP does not have

an appreciable impact on the packet-processing time of the switch. This graph is semi-logarithmic:

with traffic filtering rules for 1000 domains, the average packet processing time is ≈ 1.4 sec for

Nffw, and ≈ 0.02 ms with DiP (i.e. a speedup of 7 × 104 times). We conclude that with a large

number of firewall rules, Nffw performs poorly compared to DiP . Further, the difference increases

under heavy cross-traffic.

We note that our experiment focuses on the average-case performance. Is it possible that a few

worst-case packets get arbitrarily delayed, or perhaps a queue in the switch is slowly filling up (so

performance would degrade after a few hours or days)? To answer this question, we check the queue

occupancy inside the switch. As Figure 8.3 shows, there is no such backlog of packets accumulating

within the switch, even with 10k parallel flows, and even with large filter lists (1000 URLs).
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Figure 8.4: Impact of packet size on packet processing time.

Impact of packet size

Different applications generate packets of different sizes. Could applications generating larger

packets cause congestion at the P4 switch running DiP? To answer this concern, we generated

traffic with varying packet sizes (with random bytes inserted), and recorded the packet processing

time with the firewalls (Nffw and DiP) configured to filter 500 domains, and then again for 1000

domains.

Figure 8.4 illustrates that for both 500 and 1000 domains, DiP not only consistently outperforms

Nffw, but also does not lose performance with increasing packet size.

Throughput

Our final metric of interest is throughput, which determines the rate at which a user can access

bulk content (streaming, downloads). We use iperf to measure throughput and how it varies as
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Figure 8.5: Throughput (log scale): Impact of increasing firewall rules.

we increase the number of filtered domains (and thus firewall rules).

As Figure 8.5 shows, adding firewall rules adversely impacts Nffw, but DiP shows no measurable

impact. With no filtering rules, iperf reports nearly 10 Gbps throughput for both Nffw and DiP.

However, with rules for 100 domains, Nffw reduces the throughput by 100×, while DiP shows no

decrease at all.

Overall, our experimental evaluation confirms that DiP not only outperforms a netfilter firewall by

orders of magnitude, we also see the difference steadily increases as we increase the test load.
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Deep4R: Experimental Results.

9.1 Experimental Results

Our first observation is that even the largest DFA we test (5000 URLs), uses a very small fraction

of the available switch memory (of the order of 0.02%). Our experiments are limited by the time

and memory required for the offline pre-computation of the DFA; once computed, it took little

space. A natural follow-up question is, what is the maximum size of policy that the system can

support? – this depends on the switch used (and its memory capacity), and also on the specific

URLs used (hence the size of the DFA). While exact details of the memory layout in Tofino or

Tofino 2 are confidential, our current best estimate is that even in the worst case (combinatorial

explosion), assuming URLs of length 10, we can support a policy of approximately 70 000 URLs.

Our focus in these experiments is to check performance with a policy of reasonable size, but we

intend to stress-test the system with maximum-size policies in future work.

We now discuss the performance of Deep4R, as measured in terms of latency for single and multiple

flows (experiment 1 and 2), as well as throughput and packets dropped (experiment 3).

Experiment 1. Latency for a Single Flow.

Our first experiment was to measure the average end-to-end latency experienced by network ap-

plications, with a single flow passing through Deep4R, and to compare it with the latency of our

firewall server (running netfilter).

We define end-to-end application-layer latency as the time difference between sending the request
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packet, and receiving the corresponding response packet. It is measured from the timestamps seen

in packet captures at the client. We measure how this latency varies as we increase the number

of domains filtered by Deep4R as well as netfilter. (The domain names used for our test are

the top URLs from Alexa. eg. when testing for 5 URLs we filter for google.com, youtube.com,

facebook.com, baidu.com and wikipedia.org.)

Figure 9.1: E2E Delay vs Filtered Domains.

As seen in Figure 9.1, we find that the performance of Deep4R was consistent for all our tested

policies (varying the number of filtered URL’s from 1 to 5000). The delay was roughly 8.5 ms, which

is the same as the delay seen with our firewall server for very small policies; for larger policies the

server performance degrades steadily (67.3 ms for 5000 rules). We note that the baseline delay of

8.5 ms includes client, server, etc. delays, so rather than the absolute values we focus on the fact

that even with thousands of rules, Deep4R adds no more latency than a single-rule server firewall.

We now have the question of how much of the end-to-end delay was directly caused by Deep4R, or

by the netfilter firewall. Accordingly, we measured the average device delay – the time taken by

a packet of interest (i.e., a packet carrying TLS ClientHello or HTTP GET request) to pass from

ingress port to egress port in the switch or the firewall.

Figure 9.2 shows our results. Deep4R consistently introduces a delay of 0.2 ms, while we vary the
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Figure 9.2: Device Delay vs Number of Filtered Domains.

number of domains from 1 to 5000. The server firewall starts with almost the same delay (0.1 ms

for 1 or 10 rules), but increases to 2.5 ms at 1000 and 10.2 ms at 5000 rules. This is consistent

with our position that, within the limits of noise in measurement, Deep4R with up to thousands of

rules adds no more delay than a server firewall with 1–10 rules.

Experiment 2. Latency with Parallel Flows.

In our second experiment, we essentially repeat the measurement of end-to-end application-layer

delay and device delay, but at the same time introduce parallel connections to evaluate the impact

of cross traffic. The number of parallel connections was varied as 1, 10, 100, 1000 and 10000.

As seen in Figure 9.3 and 9.4, end-to-end delay and device delay are both consistently lower for

Deep4R.

• With 1000 domain names in the filter, Deep4R end-to-end delay starts at 8.5 ms for one flow

(as seen in Experiment 1) and gradually increases to 257 ms for 10k flows. The firewall server

starts at 28.9 ms for one flow – already worse than in Experiment 1 – and increases to 6893

ms for 10k flows.
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Figure 9.3: E2E Delay vs Parallel Flows.

Figure 9.4: Device Delay vs Parallel Flows.

Of this, in Deep4R the device delay is only 0.2 ms for one flow and rises to 0.8 ms for 10k
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Figure 9.5: Dropped Packets vs Parallel Flows.

flows. The firewall server starts at 2.5 ms device delay for one flow and rises to 1329 ms for

10k flows.

• With 5000 domain names in filter, Deep4R shows almost the same performance: 8.8 ms end-

to-end delay for one flow, rising to 220 ms for 10k flows. The netfilter server degrades

sharply, from 74.7 ms for a single flow rising to 37795 ms for 10k flows (almost 40 seconds).

Of this, in Deep4R the device delay is still 0.2 ms for one flow rising to 0.86 ms for 10k flows.

The netfilter server starts at 10.8 ms for one flow and rises to 5139 ms for 10k flows – 6000

X slower than Deep4R.

As an additional experiment, we also observed how many packets were dropped owing to congestion

as we increased the load (number of parallel flows). Figure 9.5 shows that Deep4R, running on a

switch which is not worked at full capacity, drops no packets at all until 100 flows and only 114

packets for 10k parallel flows. The firewall server started out with 3 dropped packets for a single

flow, and at 10k parallel flows dropped 117733 packets over the duration of the test (38 sec).
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Figure 9.6: Impact of increasing firewall rules on Throughput.

Experiment 3. Throughput

For our final experiment, we consider that network performance depends not only on packet latency

but also on throughput. Accordingly, we measured the connection’s throughput using the standard

tool iperf, setting it to send traffic on the ports of interest (80, 443).

As Figure 9.6 shows, Deep4R achieves excellent throughput (about 9.3 Gbps, close to the theoretical

value of 10 Gbps) and this does not degrade for our tests with up to 5000 URLs. The netfilter

server performance degrades much more rapidly.
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Discussion: DiP and DeeP4R.

This chapter first presents the separate analysis and limitations for our two systems, DiP and

DeeP4R. We then add a short discussion on their separate merits and how they may be brought

together in a comprehensive solution. Finally, we consider our entire contribution in the context of

existing systems as well as community needs, and conclude with a small discussion of future work.

10.1 DiP : Analysis and Limitations

In this section, we discuss a few points of interest regarding DiP including analysis, possible signif-

icance, and some issues (that may be addressed in future work).

DiP runs on a switch with very limited computational power. Will it work at Enter-

prise or Internet scale?

DiP is a proof-of-concept system, and its primary purpose is to show that DPI is possible using

P4-programmable switches. At the same time, we note that even as a proof of concept, it clearly

works at a non-trivial scale.

Our results in Section 8.1 demonstrate that a switch can easily filter substantial traffic without any

increase in latency or packet loss. The limiting factor is TCAM memory: it is indeed a concern

when firewall rules fill up the memory and leave it unable to perform other functions such as packet

routing. This concern is compounded by the fact that a single domain can translate to multiple
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firewall rules; for instance, we require 21 rules to filter censored.com (see Section 5.3).

Our experiments demonstrate that we were able to create filtering rules for Alexa top-1k domains,

using a standard cheap switch (Netberg 710). In fact, as we utilized ≈ 80% of the switch’s TCAM

memory, even this low-end switch had the capacity for additional functions (routing, etc,) Hence

while URL filtering is of the order of 100x less efficient than simple IP blocking (our switch could

handle ≈ 147.5k IPv4 addresses using the same TCAM memory we used to block 1k URLs), a

small standard switch is capable of implementing DiP with a decent number of URLs. A proper

ISP-scale switch would of course have much higher capacity.

If actually used as a firewall, we do not recommend the switch running DiP be used for other tasks.

An actual ISP or even enterprise admin would certainly use other switches for other required SDN

applications, such as load balancing. If we DiP is run on a single smart switch – say, as the

“gateway” providing Network Address Translation (NAT), IP-based Access Control (ACL), and

URL filtering at the same time, eg. in a campus network – in such a case the blacklist would also

be small, and there would be enough capacity to carry out these functions.

DiP can only perform specific cases of DPI. In future, will it handle encrypted traffic,

as proposed by secure modern protocols?

Like most firewalls and IDS, DiP cannot by itself filter encrypted traffic. This power is only enjoyed

by bump-in-the-wire firewalls, which (i) require all users of the network to install a new Certificate

Authority so their TLS sessions can be compromised, and (ii) can thus perform Man-in-the-Middle

attacks on encrypted connections to inspect traffic. A standard programmable switch is not able

to perform encryption/decryption without additional logic, so DiP is limited to simple DPI tasks

that do not involve decryption.

However, we contend that even with this limited power DiP is quite effective. Besides providing

data security for any websites that use HTTP without TLS, in case of HTTPS, the URL is revealed

by the Server Name Indication (SNI) in a TLS client Hello message. TLS 1.3 can also encrypt the

Client Hello message, including an encrypted SNI; however, in our study in Section 5.3, we did not

see a single use of this feature, and indeed found that modern browsers still use TLS 1.2 (at least

for our sample, i.e. Alexa Top 10k websites).

The case of DNS is similar. DiP cannot handle encrypted DNS packets, as in the DNS-over-TLS

(DoT) or DNS-over-HTTPS (DoH) protocols [28]. But the percentage of DNS packets making
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use of such encryption is quite negligible: Kim et al [41] report a figure of 0.09%. It will take

considerable time for DNS-over-HTTPS to become popular enough to threaten firewalls.

Hybrid solutions (i.e. firewalls where DiP is paired with a middlebox, specifically to handle en-

crypted traffic) can be an interesting area of future work.

How robust is DiP to adversarial traffic? Can it handle short or fragmented packets?

While DiP is a proof-of-concept, it is surprisingly robust to adversarial traffic.

First, we mention small packets. Legitimate small packets were never an issue in our tests with

HTTP(S), but some DNS queries were indeed too short (and were skipped by the parser); we

addressed this problem by focusing on DNS responses rather than queries. In future we may divide

the packets into groups by length, and send them to different switches (with different filter settings)

for DiP inspection.

when a URL is split across multiple packets, it does not show up as a single string in any one

packet and the firewall can be bypassed. We currently defeat this attack simply by dropping such

fragmented packets; honest HTTP GET, TLS ClientHello, or DNS responses are generally not large

enough to be spread over multiple packets. A more nuanced approach would be, to delay them

using the P4 technique of recirculation (looping from egress back to ingress) until all fragments are

received, then reassemble the packet, and then match URL. This is a direction of planned future

work.

Is DiP resistant to attacks that defeat current state-of-the-art middleboxes, eg. HTTP

GET request with multiple URLs?

DiP is a proof-of-concept; it does not aim to resist attacks that can cause leaks in current firewalls.

In practice, it does resist some of these attacks, such as sending multiple URLs in HTTP GET

request separated by ’\r\n’ (because the active URL is the first one in the string, and will still be

in the position matched by the TCAM table). It will not resist other attacks like mixed-case URL

(GooGle.Com) unless we are willing to create a large number of rules to handle every possibility

for a given URL.

With DiP, our aim is to demonstrate that a simple SDN switch can act as a DPI-capable firewall,

and blacklist URLs in the data plane (and as a bonus, our tests show it can do this with excellent
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performance). But if it is actually used as a firewall, there do exist known firewall exploits that

would defeat DiP. Whether we can make a system resistant to these exploits using simple off-the-

shelf switches and similar components is a promising open question for future work.

Why is DiP tested against netfilter, rather than a Next-Generation Firewall device

(Fortigate, etc.)?

DiP is currently a proof of concept. Our contribution is not focused on its performance – it is that

we demonstrate how (limited) DPI can be performed in the data plane, using only standard P4,

even though P4 was not designed for such use [9].

We compare our implementation of DiP against netfilter as it is a standard (software) firewall [36,

50]. It is true that DiP wins the comparison; however, before DiP can actually be deployed as a

solution at Enterprise or Internet scale, additional work remains to be done. In particular, while DiP

can perform URL (and IP) filtering, it does not support advanced features like Keyword filtering,

DoS or scan detection, etc. (which full-scale hardware firewalls do support). Future work could

explore the development of a more comprehensive firewall solution, able to support such advanced

features, and competent to be considered a full-featured firewall.

10.2 DeeP4R: Analysis and Limitations

In this section, we discuss the limitations, further work, and general comments about our more

general Deep Packet Inspection system, DeeP4R.

DeeP4R is more general than DiP, and does not make strong assumptions regarding

the location of URL in packet. But DiP works with DNS – can DeeP4R do the same?

There is no reason the same approach would not work with DNS traffic, but one complication is

that URL’s in DNS are expressed differently – the dot separator between labels is replaced with

the length of the label (“www.google.com” becomes “3www6google3com”). We will therefore need

multiple DFA’s to handle packets of different protocols. We intend to compare this approach to

existing DNS-in-P4 solutions such as P4DNS [60], in future work.

We note in passing that while domain names are usually made of ASCII-coded characters, which

neatly map into one character per byte, IDN registrations can have non-ASCII characters. This is



CHAPTER 10. DISCUSSION: DIP AND DEEP4R. 48

not a problem for DeeP4R: it simply handles such cases as requiring two transitions instead of one

to match a single character. But this does leave the possibility of collateral damage, where (say) a

character that is encoded as θ uses two bytes with the exact same bits as the ASCII representation

of “ab” – so blocking θ.com ends up blocking ab.com as well. This is also an issue we are currently

studying.

DeeP4R scales well with increasing number of flows and number of filtered domains.

What other factors affect performance, and how does it do?

Though this is a factor that shows limited variation, payload size in the packet can also affect

performance. A larger number of recirculations will cause the delay to increase.

In practice, for normal sized packets, this effect is small. Studying packets of size varying from 250

to 1250 bytes, we note the DeeP4R performance was the exact same for 1000 or for 5000 domains

filtered (device delay slowly rising from 0.2 ms to 0.85 ms as packet size increases). Interestingly,

netfilter also slowed down – from 1.5 ms to 5.7 ms for 1000 rules, and from 6.8 ms to 27.2 ms for

5000 rules. (The slowdown was slightly less than linear with packet length, for both DeeP4R and

for netfilter.)

Figure 10.1: Device Delay vs Packet Size.
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A comprehensive study of the effect of packet size, DFA size, etc. involves deep knowledge of the

architecture of our switch – its memory capacity, a method to count the number of recirculations,

and so on. We also intend to check if it is possible to further improve performance by taking “larger

steps” – taking slices of multiple bytes in length, rather than a single byte, every time a packet

passes through the switch. These questions remain open, and are good candidate problems for

future work.

Deep Packet Inspection is not limited to URL matching. Can DeeP4R be used to

match other patterns, such as Snort signatures?

The mechanism used in DeeP4R can match any string, or indeed any regular expression; it is not

limited to URLs. DeeP4R can therefore be used to match known keywords and other patterns (so

long as they are contained in a single packet). However, there are two constraints we must mention.

The first constraint is that the target string must be available in plaintext in a single traffic packet.

Owing to the popularity of HTTPS, most Web traffic is now encrypted. We note that over the

past decade, firewalls and Network Intrusion Detection Systems (Snort, Zeek) have become more

constrained in their DPI capabilities because of the lack of plaintext traffic; this issue affects

DeeP4R as well. As a partial solution, some firewalls man-in-the-middle TLS connections to be

able to inspect their traffic. At present, this “bump-in-the-wire” approach is not a design goal of

DeeP4R, so we suggest it is best used for DPI with unencrypted traffic (HTTP) or for strings that

are available in plain text even in HTTPS (server name indication in the ClientHello, etc.).

The second constraint is more subtle. Snort – and UNIX tools in general – offer a syntax called

“Perl compatible regular expressions” (PCRE), rather than true regular expressions that corre-

spond to DFA. PCRE extend regular expressions with features such as backlinks, that make them

strictly more powerful ; as a result they cannot always be matched by DFA and require a top-down

parser [24]. As Snort allows PCRE expressions, we cannot state that DeeP4R can be extended to

match all patterns matched by Snort, but only those that are (formally) regular expressions.

10.3 DiP and DeeP4R: working together?

We wrap up our discussion considering how DiP and DeeP4R relate to each other. Both are

solutions to the problem of Deep Packet Inspection in the data plane; also, DeeP4R does not

require the strong assumption of predictable location of URL string. How do our two systems

relate to each other? Is DeeP4R clearly a better solution “in all ways”?
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The answer is somewhat more nuanced. DiP is fast, as it extracts all possible bytes which could

potentially contain the target string (domain name), and matches these extracted bytes against the

list of domain names using a single match-action table lookup. In other words, it uses the switch

primitives as they were meant to be used, and hardly causes any traffic slowdown at all. On the

other hand, it has significant limitations: first, in the amount of bytes that can be extracted (to

be matched as TCAM key), and second, in whether the key is long enough to contain even long

domain names but short enough not to cause packet parsing to fail for short ones, as detailed in

Chapter 4.

DeeP4R is a relatively slow system. It requires packets to be circulated through the standard P4

mechanism of recirculation; this induces latency, and as the target pattern has to be matched in

all packets, it affects all traffic rather than simply the packets which are filtered. The positive

of this method is that the entire payload is inspected, and further, it is not restricted to a given

application-layer header such as domain name. This approach allows for the general detection of

any pattern, and at any position in the packet.

A possible important direction of future work would be to build a “telescoping” system, where

DiP is used to give a quick guess if the target pattern is present (maybe with a high rate of false

positives), and then the specific packets it flags are passed to DeeP4R for more thorough inspection.

Such a solution can be thorough without incurring a substantial slowdown. However, this system

would still be reliant on the predictable structure of application-layer headers, to detect that packets

are of interest in the first place.

10.4 Our Work In Context

10.4.1 P4-based Network Security, DiP and DeeP4R.

The main limitation of SDN-based security solutions, is that they focus on smart analysis of packet

headers and flows. While there have been several interesting systems to detect, say, port scans [53]

and Denial-of-Service attacks [15, 44, 63], very few systems have explored Deep Packet Inspection;

indeed, the P4 standard itself states that it is not suitable for such uses [19]. However, in fact

some Deep Packet Inspection can be performed in the data plane, and the work in this dissertation

advances the boundary of this new area.

One major direction of research in dataplane programming focuses on special cases, mainly involving
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the DNS protocol (which has a relatively predictable structure, URL always starts after 13 bytes,

etc.). For instance, in Rexford et al’s tool Meta4 [41], authors parse DNS headers to collect

packet stats per domain name. However, even here the model of parsing is highly restricted, as it

depends on parser state (the URL can have only up to four labels, each being up to 15 letters long;

nationalgeographic.com or studiotwentyeight.com cannot be parsed). Similar restrictions apply for

systems like P4DNS [60], which serve DNS responses from on-chip memory: there is only limited

support for DNS, and none at all for more flexible protocols such as HTTP. Our work is much more

general, and while we focus on URL detection, can be used to match any pattern in any traffic, so

long as the pattern is present in plaintext in a packet.

The other approach to Deep Packet Inspection involves the use of specialized hardware, such

as network processing units (NPU). A state-of-the-art system in this regard is DeepMatch [34],

which not only performs DPI but is able to match patterns across multiple packets. However, the

limitation of this approach is that it requires special hardware, which is not only expensive but is

limited in the rate of processing. Specifically DeepMatch achieved 40 Gbps for simple matching,

dropping to 10 Gbps when some packets were reordered, using a Netronome N6000. Our work is

complementary as it uses standard switches (making it possible to do filtering or intrusion detection

in a network and not just the edge), and may also scale to high line rates.

Finally, we consider the PPS approach [35] which first introduces the idea of matching patterns

through recirculating packets. This algorithm is a direct predecessor to our own work, and may

be considered part of the same family. Our contributions were, firstly, to pioneer the method of

packet cloning so packets were not consumed during processing, and secondly, to use this approach

to build a simple application-layer firewall (currently focused on URL filtering). We also made use

of the unexpected regularity of real traffic to implement a simpler system for direct filtering (DiP).

10.4.2 DiP and DeeP4R: Impact.

The existence of our systems, DiP and DeeP4R, immediately makes it clear that it is indeed possible

to perform Deep Packet Inspection in the data plane. Further, our results indicate that while the

algorithm is likely quite inefficient (involving the recirculation of the entire packet, to create a loop),

the overall system is quite performant. Indeed, we note that under the constraints of our testbed,

we found almost no detectable delay or loss of throughput, even with large filter policies.

We note that this is a limitation of our testing. In reality, while DiP actually performs as expected

(a simple TCAM match is expected to take only constant time, and the limitation is the small size
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of policy it can accommodate), DeeP4R does suffer from delays and costs which are not apparent

from our evaluation. First, as packets take longer to process they continue to take up space in the

switch buffers, which is further increased by the need to make a clone copy for each packet. But

more importantly, recirculation comes at a cost. Each recirculation of the packet takes some time,

and impacts the bandwidth of the pipeline; total bandwidth reduction depends on the number of

times a packet must be recirculated (and this affects all packets passing through the switch).

The reason why in spite of these costs, DeeP4R apparently introduces no delay or throughput loss,

is the very high performance of our switch – it is able to handle 100 Gbps at each port, so the

maximum of 10 Gbps we could test with from our client-server setup did not stress the system.

Our tests were sufficient for our goals (proving that the system works), but we have not tested its

limits. For the present we conclude that the high performance of the switch easily compensates

for the inefficiency of the algorithm, and it handily outperforms a server-based solution; but stress

testing the system remains a problem for future research.

In addition to the immediate usefulness of our algorithms (DiP, DeeP4R) as in-path middleboxes

that can perform URL filtering in multiple protocols, we note that they greatly lower the barrier

to entry for network security under the control of network administrators themselves. Rather than

relying on the black-box functionality of a large enterprise firewall, the admin can verify the packet

processing functionality from our source code and modify it as needed. Thus, we hope that in

addition to the intellectual merit of our work, we make a contribution to more transparent and

accessible network security for enterprise, data center, and small networks.



Chapter 11

Concluding Remarks.

In this dissertation, we have designed and demonstrated DiP and DeeP4R, two new systems that

show how Deep Packet Inspection can be performed in the programmable data plane. Both our

systems succeed in their target task – filtering network traffic to blacklisted URLs – with excellent

performance: in our tests, they perform DPI at line rate, without appreciably impacting the per-

formance of other (non-blocked) traffic. In this concluding chapter, we mention the importance of

each system, and how, moving forward, they can provide the foundation for future work.

Our first system, DPI-in-P4 (DiP), is a simple URL-filter in the dataplane. The main advantage

of DiP is that it makes use of only standard P4 (as supported by the PISA platform), so our

test implementation on a standard switch (Netberg Aurora 710) can be trivially ported to any

P4-compliant packet processor. Thus, DiP proved for the first time that standard P4-compliant

switches can perform limited DPI, without extern hardware (implemented using NetFPGA etc.),

and without external help from firewalls. Indeed, DiP performs simple Deep Packet Inspection (i.e.

URL detection) across multiple application-layer protocols, and scales to a substantial number of

domains (1000) while outperforming the standard Linux firewall, Netfilter, by three to four orders

of magnitude.

As it stands, our implementation of DiP is adequate for small network admins to blacklist e.g.

malware domains, so it could be directly useful as a firewall for small business or campus networks.

However, DiP is limited in its power, as it relies heavily on the observation (from Chapter 4 that

practical traffic has packets with the URL field at a consistent location. It is possible that as DiP

runs on programmable switches, it can be updated with extensions and patches as necessary (i.e.

if browsers decide to change the position of URL in a packet, the code could be easily updated to

53
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adapt the firewall to its new requirements), but this would lead to a constant game of cat-and-

mouse between the user and the network admin. Accordingly, we go on to build a more robust

system, DeeP4R.

Our second system, DeeP4R, shows a general method how DPI can be performed in the pro-

grammable data plane – making it possible to build an application-layer firewall on SDN switches.

As expected for a data plane program, it is able to filter thousands of URLs at line rate, without

loss of performance for non-blocked traffic. Further, DeeP4R is also built using only standard P4,

and is easily portable to any standard switch. However, as DeeP4R works by recirculating packets,

we can predict that at a large enough scale it may run into performance issues. Our results show

it works much better than standard netfilter firewall on a server, but it may still have problems

with line-rate filtering in an ISP. Perhaps in future, it may be possible to build a hybrid approach

(using DiP to rapidly screen packets, then send only packets of interest to be deeply analyzed using

DeeP4R).

In addition to proving our hypothesis – that Deep Packet Inspection can indeed be performed in

the data plane – we have also made our implementation code publicly available at [8]. We expect

that our work, as presented in this dissertation, will draw attention to the fact that P4 can provide

quite sophisticated filtering and is not limited to screening packets by their header fields. It also

raises several new open problems, such as building a DiP-DeeP4R hybrid, scaling to very large

Access Control Lists (eg. the Great Firewall of China has 350 k blocked sites), and on-path rather

than in-path filtering, all of which will lay the foundation for our group’s future work. In future,

such a data-plane solution may become a very useful option for data center or enterprise network

security.
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