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Abstract 
 

Invasive Lonicera maackii (L. maackii) is one of the highly successful and problematic 

bush honeysuckles found in the central and eastern of United States of America, which has been 

reported to pose a threat to native ecosystems by decreasing biodiversity. The mechanism by which 

L. maackii negatively impact environments is typically through either the direct effect of increased 

dominance or the indirect effect of territory modification. Numerous studies have documented the 

negative effects of L. maackii on native biota and the key traits such as seed dispersal, phenology, 

resistance to herbivory, rapid growth and environmental plasticity that contribute to invasion of L. 

maackii. In past decades, the studies mainly focused on negative effects and management of L. 

maackii invasion, and little was done to explore the genetic traits contributing to devastate the 

native ecosystem. Chloroplast-based genomic and chemical diversity in L. maackii has been 

reported. However, the whole genomic diversity in L. maackii has not been reported due to the 

availability of whole genome sequence of L. maackii. The advances in whole genome sequencing 

technologies and bioinformatic tools allow for studying the genomic diversity of L. maackii at the 

whole genome level. Genome duplication is a key evolutionary mechanism providing new genetic 

materials and new gene functions for plants, which play important roles in speciation and 

adaptation to biotic/abiotic stress. Given the fact that L. maackii is closely related to L. japonica, 

and whole genome duplication of Lonicera japonica (L. japonica) has been reported (Pu et al., 

2020; Yu et al., 2022), we hypothesize that a whole genome duplication is present in L. maackii. 

In this study, we aim to investigate whether there is a genome duplication in L. maackii with the 

purpose of exploring the genomic diversity in L. maackii. We also conducted a comparison of 
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genome duplication among the species in Lonicera genus. With the completion of whole genome 

assembly of L. maackii (Kesel et al., 2022),  we conducted the gene prediction using Exonerate 

and gene duplications analysis using MCScanX in L. maackii. As a result, we predicted 32,642 

genes and identified 5,668 genes, 24,911 genes, 703 genes, 902 genes, and 458 genes deriving 

from Singleton, Dispersed, Proximal, Tandem, and WGD modes, respectively. To our knowledge, 

this is the first genome duplication analysis that has been reported in L. maackii. Compared to L. 

japonica, a higher prevalence of Singleton and Dispersed modes of gene duplication was observed 

in L. maackii. The different genome duplication patterns between L. maackii and L. japonica may 

result from the difference of whole genome assembly format. The future directions should focus 

on improving the chromosome-scale genome assembly and whole genome annotation, promoting 

our understanding on the genome diversity and evolutionary traits in L. maackii and controlling 

the expansion of L. maackii.  
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Introduction 

Invasive Lonicera maackii 

Lonicera maackii (L. maackii) and other several species of bush honeysuckles found in 

central and eastern of North America (Figure 1) are characterized as one of the most problematic 

invasive species (Kang et al., 2018), which can cause harm to environment, the economy and 

human health (Kumar Rai and Singh, 2020). The global trade was one of important causes that 

introduced invasive plants into a new environment where they become established and their 

negative effects will likely accelerate in the future (Oswalt CM et al., 2015). Invasive plants have 

been a problem in the United States for years. A study report found that invasive plants are more 

widely distributed than non-invasive plants across the continental United States (Bradley et al., 

2015).  Another recent study estimated that the economic losses resulting from biological invasion 

reaches 26.8 billion US dollars per year in the United States (Fantle-Lepczyk et al., 2022). Invasive 

plants have intrinsic advantages, broader climate tolerances and stronger competitive abilities, to 

out-compete native plant species. Of the invasive plants, invasive shrubs are a particular threat to 

eastern forests in North America (Webster et al., 2006).  Unlike plants in North America, it was 

reported that shrubs originating from East Asia did not experience thousands of years of shortened 

growing seasons and are better able to utilize shoulder seasons during the longer growing season 

of the Holocene (Fridley, 2012), which contributes to the invasion of these shrubs when introduced 

into North America. 
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L. maackii ([Rupr.] Herder, Caprifoliaceae), also known as Amur Honeysuckle with white 

to yellow flowers (Figure 2), is a large, upright shrub native to China, Japan, and Korea (Rocha 

et al., 2014). This species of honeysuckles was first imported into North America as soil 

stabilization and as a food source for wildlife. However, L. maackii was proven to be less effective 

for either purpose due to its shallow roots and low-nutrition berry fruit. After introduction into 

North America, this species proves excellent at escaping and expanding its range. 

L. maackii is a highly successful invasive shrub (McNeish and McEwan, 2016). Plenty of 

work has been conducted aiming to address the invasiveness of L. maackii. A previous report 

stated that the phenotype traits of L. maackii contribute to their invasion (McNeish and McEwan, 

Figure 1. Distribution of L. maackii by state in North America. (Source: EDDMapS) 



 
 

14 
 

2016). Its rapid growth and plasticity in response to changing environmental conditions contribute 

to successful colonization in new habitats. 

 

 

 

 

 

 

L. maackii also has a highly competitive growth pattern. It grows faster than native plant species 

and can overtake the habitat by forming a dense shrub layer that crowds and shades out native 

plant species (McNeish et al., 2017; Mounger et al., 2021). Seeds and fruit traits (Figure 2) can be 

relevant for invasiveness since they are related to L. maackii dispersal, germination, and fitness. It 

was documented that L. maackii is a plant of long-distance dispersal and abundant propagule 

production (McNeish and McEwan, 2016). The seeds of L. maackii can germinate in various light, 

temperature, and soil condition. Consumption of L. maackii berries by birds, white-tailed deer, and 

possibly small mammals promotes the long-distance dispersal of its seeds. L. maackii also has a 

longer growing season. The development and expansion of its leaves take place 2 to 3 weeks earlier 

than native plants and its leaves are resistant to cold condition and the leaf abscission is later than 

Figure 2. L. maackii flower (left) and fruit (right). (Source: New York Invasive Species Information) 
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native species. The accumulated studies have demonstrated that L. maackii can exhibit 

biochemical effects on predators through production of allelochemicals. Its leaf extracts contain 

two main allelopathic chemicals – luteolin and apigenin derivatives. Its root and shoot extracts 

were shown to reduce germination of several native herbaceous plants.  

How does the ecosystem respond to L. maackii invasion? Upon the successful invasion, L. 

maackii produce negative effects on native plants, ecosystem, and human health (McNeish and 

McEwan, 2016). Numerous studies demonstrated that L. maackii can outcompete native species 

by its ability acquire nutrients, grow, and reproduce resulting in decreased biodiversity. The dense 

shrub and berries provide poor habitats and food to birds and other insects, resulting in an 

ecological trap that can reduce avian success.   The carotenoid (rhodoxanthin) pigment (Jones et 

al., 2010) identified from non-native L. morrowii and L. tatarica berries can brighten and redden 

the color of birds’ feather, which caused plumage in Yellow-breasted Chat, Kentucky Warbler, 

White-throated Sparrow, Baltimore Oriole and Northern Flicker (Hudon and Mulvihill, 2017). 

Genome annotation (Kesel, 2021) suggested that L. maackii may produce rhodoxanthin. Putative 

carotenoid cleavage proteins were detected by using BLAST and exonerate annotation methods. 

Therefore, further study using such as genome annotation and biochemical methods may 

contribute to answer whether L maackii can produce rhodoxanthin and influence bird plumage 

color. There is other evidence indicating L. maackii invasion can affect the abundance and survival 

of birds and amphibians. For example, a study led by Packett and Dunning found a positive 

correlation between bird density and Amur Honeysuckle density (Packett and Dunning, 2009). 
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Furthermore, another study found that sites dominated by Amur Honeysuckle had higher density 

of understory birds and lower density of canopy birds compared to sites that contained native shrub 

and saplings. In human, L. maackii has negative consequences on human-related disease vectors 

such as mosquito (Gardner et al., 2017; Shewhart et al., 2014). 

Prevention and rapid response are the most effective attitude to control invasive species 

from establishing in the first place. Once established, control effort could become less effective. 

Currently, the prevention and control methods are mostly mechanical and chemical methods. Hand 

removal of Amur Honeysuckle seedlings and young plants is a regular option where the population 

are at lower level. Systemic herbicides can be employed if the shrub grow in full sun, or the bush 

honeysuckle population is large. Glyphosate and triclopyr have been used to control L. maackii 

population. It is also suggested that prescribed burning is an option to control L. maackii growing 

in open habitats. Given the fact that L. maackii can spread rapidly through birds eating seeds and 

guanos containing eaten seeds, control of L. maackii can be not only expensive but also time-

consuming, and sometimes inefficient.  It is suggested that effective control of L. maackii should 

be started in late summer or early fall before the seeds are ready for dispersal (McNeish and 

McEwan, 2016). Herbicides application is an example of chemical methods for controlling L. 

maackii. Foliar, stem injection, and cut stump application of herbicides are the common practices. 

Basal bark herbicide treatment of L. maackii was reported (Kleiman et al., 2018). A recent study 

on exploring the application of Glyphosate and an herbicide adjuvant derived from fungi on 

controlling L. maackii was reported (Rivera et al., 2022). However, the effectiveness of herbicide 
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applications depends on the size and distribution of L. maackii (Rathfon and Ruble, 2007). 

Combination of chemical and mechanical methods could be more effective in removal of L. 

maackii. Like the presence of resistance to antibiotic, invasive plants can develop resistance to 

herbicides. Biological controls could be an opportunity to manage L. maackii population. Classical 

biological controls are characterized using herbivores or pathogens to reduce or maintain densities 

of target plants below some threshold levels, and biological control of invasive plants were 

reported (Seastedt, 2015). However, there are still concerns about the biological controls. So far, 

there are no known biological controls of Lonicera spp. 

Genetic analysis of invasive plants and its applications 

Genetic analysis of invasive species is of great interest to study its success in new habitat, 

which could provide insight into mechanism of invasions. Previous studies suggested that the 

invasion success might depend more heavily on the ability of invasive species to response to 

natural selection (EunmiLee, 2002). The founder effect explains that invasive species have a low 

intra-population genetic diversity but have a high inter-population differentiation in introduced 

ranges compared to those of the region of its origin (Maebara et al., 2020). But the degree of 

genetic diversity and differentiation of introduced populations varies for each invasion event. 

Some populations of invasive species lose genetic diversity during invasion through founder 

effects (Dlugosch and Parker, 2008), but many have higher genetic diversity outside their native 

range (Wilson et al., 2009), which could result from interbreeding among divergent source 

populations (Rius and Darling, 2014), hybridization (Parepa et al., 2014), rapid mutation 
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(Exposito-Alonso et al., 2018), and exposure of cryptic genetic variation (Dlugosch et al., 2015). 

Such increases in genetic diversity can enhance colonization success and adaptive potential in 

invasive species. Genetic analysis of invasive plant populations has many applications such as 

predicting population response to biological or chemical control measurement based on diversity 

levels, identifying source populations, tracking introduction routes, and elucidating mechanisms 

of local spread and adaptation. This information can be used to develop more effective target 

strategies for managing existing plant invasions and preventing new ones (Teem et al., 2020). 

Rapid evolution could also contribute to invasions (Molina-Montenegro et al., 2018). 

Based on Darwin’s theory of natural selection, the individuals with heritable traits better suited to 

the environment will survive. Consequences of natural selection differ depending biologically on 

genetic structure. Many invasive species rely on rapid evolutionary change to adapt to their 

environments, which is accompanied by mechanisms like hybridization and polyploidy. 

Interspecific hybridization results in new genetic combinations that can be acted upon by natural 

selection and is a well-used mechanism of adaptive rapid evolution, especially in invasive plants. 

Hybridization increases genetic diversity and overall fitness through the generation of novel 

phenotypes. Polyploidy, also known as WGD, resulting in more than two sets of chromosomes in 

the genome, is a common phenomenon in plants, suggesting evolutionary advantage. In plants, it 

is usually associated with tolerance to a broad range of ecological conditions and has also been 

linked to higher levels of asexual reproduction, an increased resistance to pathogens, and changes 
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to seed germination and dormancy. These characteristics, along with an increase in genetic 

diversity, can greatly influence the fitness of polyploid invaders. 

 In addition, a third possible explanation for plant invasion is related with a high pre-

existing genetic diversity in the native range and the later filtering of genotypes that could be 

locally pre-adapted in the new range. Whole genome sequencing contributes to understand the 

complete gene information, the regulatory elements that control the functions of genes, genetic 

diversity within and between species, and identification and tracking of genetic variants. 

Protein-coding gene prediction 

Rapid and cost-effective next-generation sequencing (NGS) technologies provide large 

volumes of DNA sequencing data. Generating an assembly for a plant species is merely the first 

step in the elucidation of the genome. In order to better study the genome diversity for a given 

species, genome annotation is essentially important in identifying the functional elements from 

whole genome. The prediction of protein-coding genes is one of the most critical steps in genome 

annotations. Dozens of tools or pipelines have been developed for gene prediction. So far, three 

gene prediction methods (ab initio gene prediction, homology-based gene prediction, and 

transcriptome-based prediction) have been documented (Ejigu and Jung, 2020; Keilwagen et al., 

2018; Scalzitti et al., 2020). 

Ab initio gene prediction is an intrinsic method that utilizes the properties of DNA 

sequences alone to predict locations of genes, which relies on two types of sensors: signal and 
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content sensors (Wang et al., 2004). Signal sensors refer to short sequence motifs, such as splice 

sites, branch points, polypyrimidine tracts, start codons and stop codons. Content sensors exploit 

the coding versus non-coding sequence features, such as exon or intron lengths or nucleotide 

composition. Ab initio methods usually use statistical models, such as Support Vector Machines, 

hidden Markov models or Neural Network (Scalzitti et al., 2020). Ab initio gene predictors such 

as Genscan (Burge and Karlin, 1997), GlimmerHMM (Salzberg et al., 1999), Augustus (Stanke 

and Waack, 2003), and GeneMark-ES (Lomsadze et al., 2005) can be used to identify previously 

unknown genes or genes that have evolved beyond the limits of similarity-based approaches. 

However, Automatic ab initio gene prediction algorithms often make substantial errors and result 

in inaccurate subsequent analyses such as functional annotations, identification of genes involved 

in important biological process, evolutionary studies. This is especially true in the case of large 

“draft” genomes, where the researcher is generally faced with an incomplete genome assembly, 

low coverage, low quality, and high complexity of the gene structures. Other important challenges 

that have attracted interest recently include the prediction of small proteins/peptides coded by short 

open reading frames (sORFs) or the identification of events such as stop codon recoding (Scalzitti 

et al., 2020). These atypical proteins are often overlooked by the standard gene prediction 

pipelines, and their annotation requires dedicated methods or manual curation. 

Based on molecular evolution principle, gene sequences that are useful for survival and 

other crucial functions are conserved, especially in closely related species (Ejigu and Jung, 2020). 

Homology-based gene prediction exploits this fact to predict genes or transcripts in a newly 



 
 

21 
 

sequenced target genomes by identifying significant matches (similarity to known genes) from 

reference genomes, typically the well annotated genomes by using alignment tools such as 

BLAST. But, increased evolutionary distance between the target species of interest and the 

reference species reduces the accuracy of homology-based gene finding. Furthermore, BLAST 

does not explicitly account for the exon–intron structure of genes. Searching for proteins or coding 

sequences in complete genomes, long and variable introns might be a problem for BLAST. To 

circumvent this problem, several approaches have been proposed for combining smaller, local hits 

of high similarity to parts of a given gene into larger, complete gene models. Exonerate (Slater and 

Birney, 2005), Genewise (Birney and Durbin, 2000), GeneMapper (Chatterji and Pachter, 2006) 

and GeMoMa (Keilwagen et al., 2019) are tools developed for homology-based gene prediction. 

Exonerate is a highly complete generic tool for pairwise sequence comparison as well as exon 

prediction. It can use various alignment models, exhaustive dynamic programming, or a variety of 

heuristics, depending on data types. For example, the protein2genome model allows alignment of 

a protein sequence to genomic DNA, which is similar to those used by Genewise. All models 

contain a built-in intron model to account for the spliced introns in the alignments. 

Apart from ab initio and homology-based methods, transcriptome-based gene prediction is 

another useful method for gene prediction by using RNA-seq technology (Grandaubert et al., 

2015). The expression data, in the form of ESTs and cDNAs, represents the sequences of spliced 

mRNAs found in the living cells. After mapping the RNA-seq data to the genome of interest via 

established tools, such as HISAT2 or Stringtie, the resulting matched RNA-seq reads can be used 
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to identify genes by a gene finder. Tools utilizing transcriptome tend to be among the most accurate 

gene finder. However, transcriptome-based methods suffer from some practical problems. For 

example, due to the length of RNA-seq reads, they usually cover only a portion of a gene. 

Assembling the matched overlapping reads may result in false positive gene predictions that are 

not present in the transcriptome.  

In summary, gene prediction suffers from several challenges, such as the sequencing errors 

in raw data, the quality of the assembled sequence, overlapping genes, or handling short reads. 

Combination of three methods may produce more accurate predicted genes. 

Gene duplications and detection methods 

Unlike other eukaryotic genomes, plant genome structure is complex and contains many 

types of sequences including non-coding sequences that may have important roles in genome 

functions and regulations. Moreover, plant genomes tend to evolve at higher rate, leading to higher 

genome diversity and creation of genetic novelties that contribute to evolve and adapt to changing 

environment. Gene duplications is one type of genomic changes that can lead to evolutionary 

novelties and development of new functions in plants. For example, gene duplication has been 

reported to play important roles in nutrient transport under stress conditions, in protection against 

heat, cold, or salty environments, in the resistance to drugs and pesticides, but also in the adaptation 

to domestication. 
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In a genome, duplicated genes can be generated by various mechanisms. So far, five types 

of duplications are documented based on mechanisms from previous studies. In the first 

mechanism, duplicated genes arise from whole genome duplication (WGD), leading to two copies 

of each gene from the genome. This type of duplication has been well documented in plants and 

defined as polyploidization, which is an essential source of genetic novelty that can lead to 

evolutionary innovations (Panchy et al., 2016; Qiao et al., 2019). Plants are especially prone to 

experience polyploidization. It was estimated that several WGD events took place during the 

evolution of plant species. The consequence of polyploidization is the large genome size in plants. 

Tandem duplication occurring at a smaller scale is the second mechanism, which creates an 

additional copy of a gene next to it producing tandemly arrayed genes (TAGs). The molecular 

mechanism of tandem duplications is unequal crossing over, which can produce regions containing 

one or more several genes. These unequal crossing overs result from homologous recombination 

between sequences non-homologous recombination by replication-dependent chromosome 

breakage. When multiple unequal crossing overs happen, it might lead to the increase or decrease 

of copy numbers in gene families. Transposable elements (TEs)-mediated duplication is the third 

mechanism. TEs are repeated sequences with the ability to move from one position to another 

along and across the chromosome. There are two TE-mediated mechanisms promoting the 

generation of duplicated genes: the retro-position and the trans-duplication. The retro-position 

mechanism consists of the reverse transcription of a messenger RNA from a host gene into a cDNA 

then inserted in another location of the genome by the action of the enzymes of a retrotransposon. 

The trans-duplication happens when DNA transposons incorporate un-spliced fragments of 
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different genes-, although the true mechanism is still unknown. Segmental duplication is defined 

as long stretches of duplicated sequences that can span between 1 to 200 kb and share a sequence 

identity higher than 95%. The segmental duplications result from the replicative transpositions of 

small portion of chromosomes. However, the exact mechanism is still unclear. 

After their formation, duplicated genes are subjected to different fates. Some duplicated 

genes might not be essential to cell function and will degenerate to pseudogenes or complete 

deletion. The pseudogenes can be conserved in genomes. For example, Arabidopsis thaliana and 

the rice contain many pseudogenes in their genomes. While some duplicated genes may evolve 

novel functions via neo-functionalization, or sub-functionalization. Mutations can provide a new 

allele giving rise to new functions for the genes. If these functions are beneficial, they will be 

subjected to fixation in the population through distinct selection pressures, which is a process 

termed neo-functionalization. A wide transcriptomic analysis in maize estimated that 13% of all 

gene pairs generated by WGD have been submitted to regulatory neo-functionalization in leaves. 

In addition to pseudogenes and neo-functionalization, the duplicated genes are also subjected to 

sub-functionalization. In this process, the subdivision of the ancestral gene function among the 

duplicated genes results in the different expression patterns. Although the mechanisms that form 

duplicated genes affect the fates of duplicated genes, gene function is a vital factor that determine 

the fate of the duplicated gene. In plants, most duplicated genes were derived from WGD and 

tandem duplication. Moreover, the mechanisms and fates of duplicated genes make bioinformatic 

identification of duplicated genes more difficult. 
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Given the importance of duplicated genes in evolution and adaptation of plants, many 

bioinformatic tools have been developed for identification of duplications within and between 

genomes. There are many variations among these tools ranging from the aims, computation costs 

to use of these tools. In summary, there is no stand-alone tool that can solve all the problems and 

the use of these tools depends on computer skills but also on the genomes being compared and the 

biological questions being asked. So far, 3 types of algorithms used by duplication detection tools 

are reported: paralog detection, detection of syntenic blocks, and detection of tandem arrayed 

genes. Many bioinformatic tools have been developed for this purpose and these approaches can 

be used for different aims and computation cost (Lallemand et al., 2020). For example, some of 

them are more suitable to identify a particular duplication event, some of them are more optimized 

for large genome, which can handle multiple genomes or deal with genome that has undergone 

multiple duplication and rearrangement events. The more details about the duplication detection 

tools can be found from a review paper (Lallemand et al., 2020). MCScanX is one of the most 

used tools aiming at searching syntenic blocks. Plant Duplicate Gene Database (plantDGD, 

http://pdgd.njau.edu.cn:8080) contains the types of gene duplications in 141 sequenced plant 

species including Arabidopsis thaliana and Solanum lycopersicum. 

The MCScanX algorithm (Wang et al., 2012) containing 3 core programs and 12 

downstream programs was developed from MCScan (Tang et al., 2008). Whole-genome BLASTP 

results are used to compute collinear blocks for all possible pairs of chromosomes and scaffolds. 

The analysis occurs in three main steps. The first step uses the results of an all-against-all 

http://pdgd.njau.edu.cn:8080/
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comparison using BLASTP to find collinear blocks. BLASTP matches are sorted based on their 

genomic position. To handle tandem regions, all consecutive genes with a BLASTP match that are 

separated by less than five genes, are collapsed into a single representative. Then, the highest 

scoring chains of collinear gene pairs are searched for using dynamic programming. Non-

overlapping chains involving at least five collinear gene pairs are saved. In a pair of collinear 

blocks, two distinct genomic locations with aligned collinear genes are assigned as anchors. The 

second step is to determine the modes of gene duplications, all genes are first assigned to the 

singleton mode. Genes with BLASTP hits to other genes are assigned to the dispersed duplicates 

mode. If the hits are close enough, they are assigned to the proximal duplicate mode. If the hits are 

neighboring, they are assigned to the tandem duplicate mode. To finish, anchored genes are 

assigned to the WGD/segmental mode. In the last step, twelve downstream analyses can be 

performed using different scripts and correspond to the computation of the nonsynonymous and 

synonymous rates (Ka and Ks), the generation of various plots, the construction of gene families 

with associated analyses, the detection of collinear tandem arrays, the computation of the number 

of intra- and inter-species collinear blocks at each locus of reference genomes, and the display of 

statistics on gene numbers at different duplication depths. MCScanX was widely used, and tool 

based on MCScanX algorithm was reported (Qiao et al., 2019). 

Gene copy number variations and detection 

 The gene copy number is the number of copies of a particular gene in the genotype of an 

individual. In the plant genome, copy numbers of specific genes may vary because of deletions or 
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duplications, which is a universal biological phenomenon named copy number variation (CNV). 

CNV is genomic rearrangements resulting from deletion, insertion, and duplication at specific 

regions on certain chromosome. The defined minimum length of a CNV is typically 1 kb, although 

many studies include smaller variants of as few as 50 base pairs (bps). Several mechanisms have 

been postulated to explain the formation of CNVs. The first mechanism is known as non-

homologous end joining (NHEJ). NHEJ requires very low level of sequence similarity at the 

breakpoints and results from aberrant repair of uneven double-stranded breaks produced by DNA 

damage (Dolatabadian et al., 2017). The second proposed mechanism is non-allelic homologous 

recombination (NAHR) between DNA segments. Unlike NHEJ, NAHR requires high sequence 

similarity at the breakpoints (Dolatabadian et al., 2017). The third mechanism is fork stalling and 

template switching (FoSTeS) that is caused by DNA replication errors (Zmienko et al., 2014). 

FoSTeS events may generate insertions, deletions, and more complex rearrangements.  Other 

mechanisms such as single-strand annealing, transposable elements and polyploidization were 

reported to produce CNVs (Hastings et al., 2009). CNV was first studied in human followed by 

animals and has been reported to play important roles in many human disorders and promoting 

tumorigenesis and resistance to drugs (Dolatabadian et al., 2017; Shlien and Malkin, 2009; Zhang 

et al., 2009). In contrast, CNVs in plants have not been so thoroughly studied. However, the 

massive genomic data suggests the existence of CNV and highlighted the contribution of CNV to 

natural diversity on the genomic level. CNVs are generally thought to be deleterious. Deletion 

CNVs can lead to loss of function (LOF), whereas duplication CNVs affecting entire protein-

coding genes can be deleterious if they affect dosage-sensitive genes. On the other side, CNVs 
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also appear to be an important driver that can enable adaptation under the natural selection 

pressure. One of the well-known examples is herbicide-resistance glyphosate identified in Palmer 

amaranth (Zmienko et al., 2014). Increased copy number of EPSPS (5-enolpyruvylshikimate3-

phosphate synthase) gene was found to associate with increased EPSPS transcript and protein 

levels as well as increased glyphosate dose survival rate. The higher production of EPSPS enzyme 

due to the increased gene copy number enables those plants to overcome the inhibitory effect of 

glyphosate, most likely by providing enough enzyme molecules to bind the physiological substrate 

PEP, even in presence of glyphosate. Another example is that CNVs have been found to be 

associated with nucleotide binding leucine-rich repeat (NB-LRR) genes and receptor-like kinase 

(RLK) genes, known to be involved in plant defense-related mechanisms (Dolatabadian et al., 

2017). Over the years, accumulating studies have demonstrated that CNV was involved in control 

of reproduction, insect/disease resistance, RNA interference, responses to environmental stress 

(Lye and Purugganan, 2019; Zmienko et al., 2014). These discoveries shed light on modern 

agriculture, as they can potentially provide guidance for plant genetic modifications. 

At present, several methods have been developed for detect CNVs (Dolatabadian et al., 

2017; Mounger et al., 2021): quantitative and digital PCR, in situ fluorescent hybridization, the 

paralogue ratio test, multiplex amplifiable probe hybridization, and multiplex ligation-dependent 

probe amplification. Most of these methods are capable of high-throughput genotyping of a 

particular variant in multiple DNA samples. However, they are not suitable for a genome-scale 

analysis and have limited use in CNVs discovery. NGS data provide an opportunity for a genome-
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wide study of CNVs in plants. Two genome-scale methods, array-based comparative genome 

hybridization (CGH) and reference genome-based NGS, were widely reported. CGH is based on 

the comparison of fluorescence signals of a test and reference sample hybridized to a microarray 

of tiled probes covering an entire genome. The use of smaller probes increases the specificity of 

CNV detection in this method. However, CGH is more accurate in detecting deletions than 

duplications. NGS-based methods allow for the detection of CNVs using short read sequencing 

data. Three NGS-based approaches are commonly used in CNV detection: the read depth (RD) 

approach, the read pair (RP) approach, and the split read (SR) approach (Lye and Purugganan, 

2019). RD methods detect CNVs by comparing normalized read depth from short-read sequence 

data aligned to a reference genome. Low or zero RD is interpreted as a deletion and increased RD 

is interpreted as an increase in copy number. RP methods are based on the idea that read pairs 

should map to a reference separated by approximately the same distances as the insert size. If read-

pairs map farther away from each other than expected, a deletion is detected; if they are too close 

together, an insertion is detected. SR methods use pair end reads and detect CNVs by aberrant 

mapping to a reference genome. For example, when only half of a read-pair maps to a genome, a 

CNV breakpoint is identified. Each method comes with a different set of biases. RP methods are 

less effective in repetitive regions and their accuracy is dependent on the size of the insert. SR 

methods are biased to detect smaller CNVs. RD methods typically have higher false positive rates 

and are biased towards detecting large variants. The common steps behind the most of 

computational methods available include pre-processing the sequence reads, mapping reads to 

reference, and CNVs calling. 
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The effectiveness of these methods is also dependent on sample read depth. Previous 

studies demonstrated that current CNV calling tools showed a high portion of false-positive rate. 

Due to the lack of a gold standard CNV set, the results are limited and incomparable. Moreover, 

certain programming skills are required for users to use some of these software. Due to these 

shortcomings, CNV studies using NGS data typically combine multiple computational approaches 

to minimize false positives. However, detection of CNVs from NGS data is still challenging due 

to the GC-content bias and the short-read lengths resulting from the NGS technology.  

Hecaton is a framework specifically designed for plant genomes that detects CNVs using 

short paired-end Illumina reads (Wijfjes et al., 2019). CNVs are called by integrating existing 

structural variant callers through a machine-learning model and several custom post-processing 

scripts. In general, Hecaton includes the following steps (Figure 3): aligning reads to a reference 

genome using bwa mem; calling CNVs using the structural variants caller Delly, GRODSS, 

LUMPY, and Manta; post-processing each set of CNVs to remove false positives; merging all sets 

of CNVs into one large set; classifying CNVs in this large set as true or false positives using a 

random forest model; and last optional filtering of CNVs based on read depth using duphold and 

the presence of nearby gaps. Hecaton can be installed locally or can be run through a Docker 

image. However, Hecaton can only be installed on Linux systems and requires git, gawk, python-

dev, python3-dev, and Anaconda/Miniconda (Python 3.6+) to be installed on the system. Hecaton 

was developed to identify CNVs such as deletion, insertion, tandem duplications, and dispersed 
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duplications. But the performance of detecting CNVs larger than 1Mb was not documented. Yet, 

Hecaton can only work with Illumina paired end reads.  

 

 

 

 

Project purpose 

Due to the advanced development of sequencing technology, especially the next generation 

sequencing, and the availability of computational tools, whole genome-wide analysis of invasive 

plants become feasible, which provides a valuable tool to further study invasive plants and their 

response to environment stress and biocontrol of invasive plants. L. maackii is a problematic 

invasive plant widely distributed in central and eastern USA. An investigation report from 

Maryland Department of Agriculture in 2016 concluded that the weed risk assessment for L. 

Figure 1. Overview of Hecaton pipeline. 
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maackii was High Risk. Its invasiveness and the outcomes resulting from its expansion in USA is 

likely to cause economic, ecological, environmental harm and harm to human health. It is time-

consuming and costly to control L. maackii.  Genetic traits such as gene duplication and copy 

number variation have been reported to associated with invasion of invasive species (Smith et al., 

2020) and genetic biocontrol strategies have been proposed to invasive species control (Teem et 

al., 2020).  Distinct from other species, plant genome was prone to evolve at a higher rate (Panchy 

et al., 2016), resulting in higher genome diversity. Recently, the whole genome duplication was 

reported in L. japonica (Pu et al., 2020; Yu et al., 2022), and the whole genome assembly of L. 

maackii was completed (Kesel et al., 2022). Given that L. maackii and L. japonica are closely 

related species, we hypothesize that a genome duplication is also present in L. maackii. Through 

this study, we aim to detect the genome duplication in L. maackii with the purpose to explore the 

genomic diversity in L. maackii in North America and to compare the genome duplications 

between L. maackii and L. japonica. 
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Methods and Materials 

Testing datasets for evaluating the performance of MCScanX 

Three publicly available datasets (Table 1) were selected to evaluate the performance of 

MCScanX in identifying gene duplications from whole proteome. Arabidopsis thaliana (A. 

thaliana) is a widely used plant model for genomic study (Arabidopsis Genome, 2000). Vitis 

vinifera (V. vinifera) and Solanum lycopersicum (S. lycopersicum) are also common domestic plant 

species (Jaillon et al., 2007; Tomato Genome, 2012). The gene duplication information about these 

3 plant species can be found in PlantDGD 

            Table 1. Testing datasets used for evaluating MCScanX performance. 

 

 

 

Testing datasets for evaluating the performance of Hecaton 

To evaluate the performance of Hecaton on detection of CNVs, we used publicly available 

short read datasets of A. thaliana. Table 2 provided the NCBI Short Read Archive accession 

numbers for the datasets used in this study. The genomic assembly and annotations of A. thaliana 

(version TAIR10) can be found from Phytozome 11. 

Species Version Source 

A. thaliana TAIR10 Phytozome 11 

S. lycopersicum iTAGv2.3 Phytozome 11 

V. vinifera Genoscope.12X Phytozome 11 
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                                 Table 2. Testing datasets used for evaluating Hecaton. 

Species SRA Accession Number 

A. thaliana SRR1946567 

A. thaliana SRR1946568 

A. thaliana SRR1946569 

A. thaliana SRR17867641 

A. thaliana ERR2173372 

A. thaliana ERR8666067 

 

Whole genome assembly of L. maackii and L. japonica 

The invasive species of L. maackii, and two publicly available datasets of L. japonica-

Lj1017428 (Pu et al., 2020), L. japonica-Sijihua (Yu et al., 2022) were included in this study 

(Table 3). The whole genome assembly of L. maackii (Kesel et al., 2022) can be found at NCBI-

assembly (GenBank assembly accession: GCA_023512865.1). The assembled genome and gene 

annotation of L. japonica-Lj1017428 can be found from the Genome Warehouse in National 

Genomics Data Center with the BioProject ID (PRJCA001719) at https://bigd.big.ac.cn/gwh. The 

genome assembly of L. japonica-Sijihua can be collected from GenBank with the accession 

number SAMN24662184, and the proteome can be freely available at figShare 

(https://doi.org/10.6084/m9.figshare.18092708.v6). The gene annotation of L. japonica-

Lj1017428 and L. japonica-Sijihua were also used as reference proteome to predict protein-coding 

genes in L. maackii. 

https://bigd.big.ac.cn/gwh
https://doi.org/10.6084/m9.figshare.18092708.v6
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           Table 3. Geographical information about the plant species in this study. 

 

 

 

Protein coding genes prediction using Exonerate 

To prepare protein data as input files for MCScanX, protein-coding genes within the 

assemble genome were identified using Exonerate, a tool for pairwise alignment, by annotating 

the assembled contigs with reference proteomes, Helianthus annuus (UniProt proteome ID 

UP000215914) and Lonicera japonica (Table 4).  

Table 4. Reference proteomes used in this study. 

Reference Proteome Number of genes reference 

Helianthus annuus 51,240 (Badouin et al., 2017) 

Lonicera japonica-   Lj10107428 33,961 (Pu et al., 2020) 

Lonicera japonica- Sijihua 39,320 (Yu et al., 2022) 

 

The protein2genome model was used to perform pairwise alignment between the reference 

proteomes as the query and the assembled contigs as the target. This alignment model considers 

gaps and frameshifts when performing the alignment, allowing for the prediction of gene location, 

coding regions, introns, and exon boundaries. The --showtargetgff flag was used to convert the 

alignments to GFF format. The flag --showalignment was set to ‘no’ to reduce the size of the 

Species Location 

L. maackii New York, USA 

L. japonica-Lj1017428 Beijing, China 

L. japonica-Sijihua Shandong, China 
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output file. The parameter --fsmmemory was set to 500 to supply 0.5 GB of memory for the finite 

state machine’s heuristic analyses. The parameter --seedrepeat was set to 100. However, the value 

of –seedrepeat parameter can be adjusted based on the exonerate output. The gene information 

(mRNA attribute) was then extracted from the Exonerate output file.  Here are the commands for 

running exonerate locally. 

 

 

 

 

 

Removal of identical genes and merging the overlapping genes 

To clean and remove the genes with identical or overlapping nucleotide sequences (Figure 

4). A C++ program (Appendix A_1) was developed to remove duplicated genes and merge the 

genes with overlapping regions to form a new gene (remove_clean_gff.cpp). First, the genes 

originating from the positive strand ("+”) and the negative strand (“-”) were separated and 

subsequently subjected to remove the identical genes or merge the overlapping genes. Finally, the 

predicted genes were stored in a BED file containing 6 columns (contig, gene_start_position, 

gene_end_position, gene_name, score, and strand). 

#Run exonerate in local mode 

#-q option for reference proteome input 

exonerate –-model protein2genome -q 

reference_proteome.fasta -t Lmaackii_assembly.fasta –-

showalignment no –-showtargetgff yes –fsmemory 500 –

seedrepeat 100 > exonerate_gene_predict.out 

 

#Extract predicted genes from exonerate output 

cat exonerate_gene_predict.out | grep -E -w mRNA > 

gene_position_info.gff 
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Extraction of gene nucleotide sequence using bedtools 

The nucleotide sequence of predicted genes was extract from L. maackii genome using 

bedtools. The L. maackii genome assembly and BED file containing the gene information were 

used as input files. If the feature of a predicted gene is negative strand, the nucleotide sequence 

was reversely complemented by using -s option. The command for running bedtools was described 

as below: 

 

 

 

#Extracting the nucleotide sequences of predicted genes 

using bedtools 

bedtools getfasta -fi Lmaackii-genome_assembly.fasta -bed 

gene_position_info.bed -fo genes_seq.fasta -s 

Figure 2. The approach to merge overlapping predicted genes in L. maackii. 
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Protein sequences extraction using Exonerate 

The Exonerate was used to generate the protein sequences of predicted genes based on the 

gene nucleotide sequence. Protein sequences from 3 reading frames were subjected to comparison 

to identify the “best” protein sequence using a C++ script (Appendix A_2). The “best” protein 

was defined by having the least number of stop codons in the protein sequences. The command 

for extracting protein sequence from nucleotide sequence using Exonerate tool was provided 

below: 

 

 

 

 

 
 

Identification of gene duplication by MCScanX 

The MCScanX package can be installed using the command below: 

 

 

#Download MCScanX package from Github 

unzip MCscanX.zip 

cd MCScanx 

make 

#The first reading frame 

fastatranslate -F 1 genes_seq.fasta > 

genes_prot_seq_1stFrame.fasta 

#The second reading frame 

fastatranslate -F 2 genes_seq.fasta > 

genes_prot_seq_2ndFrame.fasta 

#The third reading frame 

fastatranslate -F 3 genes_seq.fasta > 

genes_prot_seq_3rdFrame.fasta 

 

 



 
 

39 
 

Pre-computed BLAST results (Lmaackii.blast) and gene location information 

(Lmaackii.gff) are required for running MCScanX successfully. The Lmaackii.gff file was 

prepared containing the gene location information: contig_id, gene_id, gene_start_position, and 

gene_end_position (tab separated) and was extracted from the BED file. The L. maackii protein 

sequences were used to create the BLAST database and the all-versus-all local BLASTP 

(E value < 1 × 10−10, top five matches) was used to generate the blast file. The Lmaackii.blast file 

was produced by running the commands below: 

 

 

 

 

 

When the input files are ready, the MCScanX package is run using default setting (Table 

5) and the command below: 

 

 

 

#Preparation of the protein database for blastp 

makeblastdb -in Lmaackii-protein.fasta -dbtype prot title 

Lmaackii-proteinDB -parse_seqids -out Lmaackii-proteinDB 

#run blastp 

blastp -query Lmaackii-protein.fasta -db Lmaackii-

proteinDB -num_thread 6 -evalue 1e-10 -max_target_seqs 5 

-outfmt 6 -out Lmaackii.blast 

 

#run MCScanX 

./MCScanX Lmaackii 

#run Duplicate_gene_classifier 

./duplicate_gene_classifier Lmaackii 
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                 Table 5. MCScanX parameters. 

-k  MATCH_SCORE,  

Final_score=MATCH_SCORE+NUM_GAPS*GAP_PENALTY     

(default: 50) 

-g  GAP_PENALTY, gap penalty (default: -1 

-s  MATCH_SIZE, number of genes required to call synteny (default: 5) 

-e  E_VALUE, alignment significance (default: 1e-05) 

-u UNIT_DIST, average intergenic distance (default: 10000) 

-m  
MAX_GAPS, maximum gaps (one gap=UNIT_DIST) allowed (default: 

20) 

-a  only builds the pairwise blocks (.synteny file) 

-b  
patterns of syntenic blocks. 0: intra- and inter-species (default); 1: intra-

species; 2: inter-species 

-h  print this help page 

 

Identification of CNVs by Hecaton 

Hecaton was run locally on Linux system in this study. All the prerequisites were installed 

except Nextflow. Since all steps of Hecaton are run using the Nextflow workflow language, we 

installed Nextflow using the command below: 

 

 

 

#Download and install Nextflow 

wget -qO- https://get.nextflow.io | bash 

 

#Add Nextflow to $PATH 
export PATH=$PATH:directory/to/nextflow 
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After Nextflow was installed, Hecaton can be installed through a bash script (Appendix 

A_3). Hecaton also requires dependencies (grids, picard, speedseq) to be installed separately, 

which was achieved by running another bash script (Appendix A_4). Before running Hecaton 

(Appendix A_5), a bash script (Appendix A_6) should be executed to ensure that Hecaton can be 

run correctly. The parameters for running Hecaton were listed in Table 6. In this study, whole 

genome assembly and annotation of A. thaliana (version TAIR10) was used as the reference 

genome, and 6 NGS datasets were used to test the performance of Hecaton on identifying CNVs. 

Here, the default cutoff value of 0.7 was used because of the good balance of sensitivity and 

precision. The cutoff can be changed through –cutoff parameter. 

   Table 6. The specific parameters for running Hecaton. 

Required parameters 

--genome_file reference genome (processed by preprocess.sh) in FASTA format 

--reads location of a set of paired end reads in FASTQ format 

--manta_config config file that will be passed to the Manta tool 

--output_dir  output directory to which all results will be written 

--model_file  random forest model that will be used to filter CNVs. 

Optional parameters 

-w the working directory to which intermediate results will be written 

-resume to resume the task from the point of failure 
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Results 

Evaluation of MCScanX on identification of gene duplications 

We first evaluate the performance of MCScanX on identification of gene duplications 

using 3 testing datasets (A. thaliana, V. vinifera and S. lycopersicum).  The MCScanX tool can 

identify and count the number of genes originating from each type of duplications (Singleton, 

Dispersed, Proximal, Tandem and WGD or Segmental). The tandem duplication type was selected 

to evaluate the performance of MCScanX. Among the 3 test datasets, 3584 genes were identified 

as tandem duplications in A. thaliana, 3448 tandem duplicated genes were found in V. vinifera, 

and 4143 tandem duplications were detected in S. lycopersicum (Table 7). At PlantDGD, there are 

3525 tandem duplicated genes in A. thaliana, 3439 tandem duplicated genes in V. vinifera, and 

4075 tandem duplicated genes in S. lycopersicum (Table 7) 

                  Table 7. Number of tandem duplications were found in testing datasets. 

Species Total genes PlantDGD MCScanX 

A. thaliana 27,416 3,525 3,584 

V. vinifera 26,346 3,439 3,448 

S. lycopersicum 34,727 4,075 4,143 

 

To calculate the specificity and sensitivity of MCScanX performance, the tandem 

duplicated genes that are present in both PlantDGD and MCScanX output are defined as true 

positive (TP). The tandem duplicated genes that are present only in PlantDGD are defined as false 
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negative (FN). The tandem duplicated genes that are present only in MCScanX output are defined 

as false positive (FP). The genes that are not detected as tandem duplications by both PlantDGD 

and MCScanX are defined as true negative (TN). The performance metrics are computed: 

sensitivity defined as TP/(TP + FN), specificity defined as TN/(TN + FP), positive predictive value 

(PPV) defined as TP/(TP + FP), negative predictive value (NPV) defined as TN/(TN + FN), false 

negative rate (FNR) defined as FN/(FN + TP), false positive rate (FPR) defined as FP/(FP + TN). 

The computing parameters are listed in Table 8. 

           Table 8. Comparison of number of tandem duplicated gene found by MCScanX and PlantDGD.  
            TP, true positive; FP, false positive; FN, false negative; TN, true negative. 

Species TP FP FN TN 

A. thaliana 3,507 77 18 23,814 

V. vinifera 3,393 55 46 30,562 

S. lycopersicum 4,053 90 22 22,852 

 

By computing the sensitivity and specificity of MCXcanX on identifying the tandem 

duplicated genes, we found that MCXcanX can detect the tandem duplications with high 

sensitivity (>98%) and specificity (>99%) as shown in Table 9. 

           Table 9. Performance of MCScanX on detection of tandem duplications using test datasets. 

               PPV, positive predictive value; NPV, negative predictive value; FPR, false positive rate; FNR, 
false negative rate. 

Species Sensitivity Specificity PPV NPV FPR FNR 

A. thaliana 0.9949 0.9968 0.9785 0.9992 0.0032 0.0051 

V. vinifera 0.9866 0.9982 0.9840 0.9985 0.0018 0.0134 

S. lycopersicum 0.9946 0.9981 0.9784 0.9990 0.0039 0.0054 
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              We next analyze the performance of MCScanX on detection of tandem pairs in 3 testing 

datasets. Among the 3 datasets, 2097 tandem pairs in A. thaliana, 2035 tandem pairs in V. vinifera, 

and 2445 tandem-pairs in S. lycopersicum were identified with MCScanX (Table 10). At 

PlantDGD, there are 2063 tandem-pairs in A. thaliana, 2034 tandem-pairs in V. vinifera, and 2408 

tandem-pairs in S. lycopersicum (Table 10). 

            Table 10. Comparison the number of tandem duplication pairs in PlantDGD and MCScanX. 

Species genes chromosome gene pairs PlantDGD MCScanX 

A. thaliana 27,416 7 27,409 2,063 2,097 

V. vinifera 26,346 19 26,327 2034 2,035 

S. lycopersicum 34,727 12 34,715 2,408 2,445 

 

By analysis, there are 2047 matched tandem-pairs in A. thaliana, 1998 matched tandem-

pairs in V. vinifera, and 2387 matched tandem pairs in S. lycopersicum between PlantDGD 

database and MCScanX output (Table 11). By computing the evaluation metrics, MCScanX 

resulted in more than 98% sensitivity and 97% PPV (Table 11). Given the larger number of gene 

pairs (Table 10), it is reasonable to estimate that higher specificity of MCScanX on identifying 

tandem duplication pairs was observed using testing datasets. 

Conclusively, the results of evaluating the performance of MCScanX using testing datasets 

suggested that MCScanX is an accurate tool for detection of gene duplications in L. maackii. 
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               Table 11. Evaluation of MCScanX on identifying tandem duplication pairs. 

                TP, true   positive; FP, false positive; FN, false negative; PPV, positive predictive value. 
Species TP FP FN Sensitivity PPV 

A. thaliana 2,047 50 16 0.9922 0.9762 

V. vinifera 1,998 37 36 0.9823 0.9818 

S. lycopersicum 2,387 58 21 0.9913 0.9763 

 

Evaluation of Hecaton on detection of CNVs 

The default cutoff used by the random forest model of Hecaton (0.7) resulted in a good 

balance of sensitivity and precision: Hecaton attained at least 80 % precision for all the different 

types of CNVs (Wijfjes et al., 2019). We used the default cutoff value in our testing datasets. For 

the Hecaton output, we manually parsed the VCF files and picked the tandem duplication as the 

factor to evaluate the performance of Hecaton on detection of CNVs. 

The reason we chose tandem duplication as the factor to test Hecaton was that we chose 

the tandem duplications from PlantDGD as the positive control.  As shown in Figure 5, The 

number of tandem duplications identified from testing datasets was far lower than the number in 

PlantDGD, and the number of tandem duplications identified varies among testing datasets. 

However, it should be noted that the sequencing depth and coverage varies among testing datasets. 

Ideally, the sequencing reads were equally distributed along the reference genome. However, it 

was not the situation in a real world. Additionally, the tandem duplications in PlantDGD were 

detected by using protein. By using Hecaton, the tandem duplication was identified directly from 
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NGS data. For a given plant, Hecaton cannot be used to identify all the tandem duplication based 

on one set of NGS data. 

In conclusion, we decided not to use Hecaton detect CNVs in L. maackii. 

 

Figure 3. Comparison of the tandem duplication identified in testing datasets. 

 

Protein-coding gene prediction in L. maackii 

Prediction of protein-coding genes was based on homology-based prediction. Exonerate 

was used to predict genes using amino acid sequences from H. annuus (UniProt proteome ID 

UP000215914), L. japonica-Lj10107428, L. japonica-Sijihua as reference proteomes. We chose 

H. annuus as a reference proteome because it is closely related to L. maackii, and its genome is 
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well annotated. L. japonica and L. maackii belong to the same genus of Lonicera, and the whole 

genomes of L. japonica were recently published (Pu et al., 2020; Yu et al., 2022). To better predict 

the protein-coding genes, two values (75, 100) of –seadrepeat parameter was used. Increasing 

value of –seedrepeat can speed up searches and result in lower number of predicted genes. Based 

on the nucleotide position of predicted genes, duplicated genes were removed and overlapping 

genes were merge into new genes. The results were listed in Table 12. Given the number of genes 

found in L. japonica, it is estimated that the number of predicted genes in L. maackii ranges 

between 30,000 and 40,000. We found that the possible number of predicted genes resulted from 

two sources: L. japonica-Lj10107428 –seedrepeat 75 and L. japonica-Sijihua –seedrepeat 100. 

           Table 12. The number of predicted genes using exonerate in this study. 

Reference proteome --seedrepeat Number of predicted genes 

H. annuus 75 8,268 

L. japonica-Lj10107428 75 32,642 

L. japonica-Sijihua 75 56,881 

H. annuus 100 4,261 

L. japonica-Lj10107428 100 20,925 

L. japonica-Sijihua 100 37,429 

 

Protein sequences of predicted genes in L. maackii 

The nucleotide sequences of predicted genes were extract from the L. maackii genome 

assembly using the bedtools. Three reading frames of protein sequences of each gene were 
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translated using exonerate tool. For a given gene, we next parsed the protein sequence of each 

reading frame, the protein sequence was selected based on the number of stop codon found in the 

protein sequence. For a “perfect” protein sequence, there was zero stop codon in the protein except 

the end of a protein sequence. We parsed the protein sequences and found that using L. japonica 

(Lj10107428) as reference proteome and setting the value of –seedrepeat to 75 produced the best 

results (Table 13). 

 

Table 13. Comparison of gene prediction among different reference proteomes and parameters. 

Reference Proteome --seedrepeat Total protein Perfect protein Ratio 

H. annuus 75 8,268 6,575 0.795 

L. japonica-Lj10107428 75 32,642 29,070 0.891 

L. japonica-Sijihua 75 56,881 39,293 0.670 

H. annuus 100 4,261 3,530 0.828 

L. japonica-Lj10107428 100 20,925 18,893 0.903 

L. japonica-Sijihua 100 37,429 25,665 0.686 
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       Figure 4. Duplicated genes identified in L. maackii. WGD: whole genome duplication. 

 

Genome-wide identification of different modes of gene duplication  

The local all-against-all BLASTP algorithm-based detection of collinear blocks was 

conducted using protein sequences (32,642) to search populations of potential duplicated genes. 

The gene duplication pool contained 32,642 genes (100% of all genes). We attempted to search 

the five modes of duplicated genes, respectively, derived from WGD/segmental, singleton, 

dispersed, proximal, and tandem. As a result, we successfully identified 5,668 genes, 24,911 genes, 

703 genes, 902 genes, and 458 genes deriving from Singleton, Dispersed, Proximal, Tandem, and 

WGD modes, respectively (Figure 6).  

By comparison, we also analyzed the gene duplication in L. japonica-Lj10107428 and L. 

japonica-Sijihua. As shown in Figure 7, the number of genes derived from different origins varies 

5668

24911

703 902 458
0

5000

10000

15000

20000

25000

30000

Singletons Dispersed Proximal Tandem WGD

Modes of gene duplication 

N
um

be
r o

f g
en

es
 



 
 

50 
 

among the 2 species. Compared to L. japonica, we noted that a higher number of genes derived 

from Singleton and Dispersed modes, respectively, was observed in L. maackii. On the contrary, 

a higher number of genes derived from Proximal, Tandem, and WGD modes, respectively, was 

found in L. japonica. Although the duplicate genes from 5 modes differed in L. japonica-

Lj10107428 and L. japonica-Sijihua, the difference was not obvious compared with the results in 

L. maackii. We suspected that the whole genome assembly resulted in the difference among L. 

maackii, L. japonica-Lj10107428 and L. japonica-Sijihua. The whole genome of L. maackii is 

contig-scale genome assembly. The whole genome of L. japonica-Lj10107428 and L. japonica-

Sijihua are chromosome-scale genome assembly. Compared to contig, chromosome is a much 

longer assembly. In addition, the special feature of MCScanX is that each chromosome (contig) is 

used as a reference. In a word, the difference of genome assembly and MCScanX algorithm may 

explain the difference of gene duplications observed in L. maackii, L. japonica-Lj10107428 and 

L. japonica-Sijihua. Furthermore, the different results observed in L. japonica-Lj10107428 and L. 

japonica-Sijihua suggested that the genome annotation also affect the result of MCScanX software 

package. 
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     Figure 5. Comparison of gene duplications in L. maackii and L. japonica. WGD: whole genome 
duplication. 
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Discussion and Future Direction 

Here we performed protein-coding gene prediction and gene duplication analysis in L. 

maackii. By using homology-based approach, we predicted 32,642 protein-coding genes from L. 

maackii contig-scaled assembly, and detected 5,668 genes, 24,911 genes, 703 genes, 902 genes, 

and 458 genes deriving from Singleton, Dispersed, Proximal, Tandem, and WGD modes, 

respectively. We also performed the comparison of gene duplication between L. maackii and L. 

japonica, we found that the gene duplications in L. maackii differ from that in L. japonica. Higher 

populations of Singleton and Dispersed duplications were observed in L. maackii. The genes 

derived from modes of Proximal, Tandem, and WGD duplication were much less in L. maackii.  

Genome size and complexity, transposable elements, heterozygosity, polyploidy, gene 

content and gene families, non-coding RNAs, and widely distributed repetitive sequences are the 

factors that make plant genome assembly challenging. (Li and Harkess, 2018). Over the past 20 

years, the sequences of over 1000 plant genomes have been reported (Sun et al., 2022). Most of 

the genome assemblies available from the NCBI were generated predominantly using short-read 

sequencing technology. Short-read sequencing can yield draft assemblies sufficient for estimates 

of gene space and repeat content, but of limited utility for investigations of chromosomal 

organization. The assembly of plant genomes with large number of repetitive sequences is much 

more difficult with only short read sequences. Repetitive sequences are abundant in species with 

larger genomes and have always been a major challenge for genome assemblies. Repeats longer 
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than read length would lead to gaps in the genome assembly due to uncertainty in assembly of 

these regions. This would break down the genome into pieces, leading to the loss of linkage 

information among genetic markers. In addition, repeats may also be led to mis-assembly where 

two unlinked regions were joined together and resulted in higher than usual read coverages. In the 

case of repetitive sequences containing genes, such as tandemly duplicated genes and retrogenes, 

such mis-assembly would reduce the gene copy number estimation. These missing genes not only 

make it challenging to account for all the genes in a genome but also create problems for functional 

genomic studies by impacting gene expression level estimates or loss-of-function studies. With the 

development of sequencing technologies, the addition of long-read data can improve the contiguity 

of assemblies based on the value of short-read genome assemblies. Advanced scaffolding 

strategies can also simplify genome assembly, enabling access to more chromosome-scale 

assemblies of plant species with increasing genome complexity and size. The combination of short 

read sequencing and long read sequencing has resulted in the recent reporting of many high-quality 

chromosome-level genome sequences. In this study, the L. maackii genome assembly was 

generated by using short read sequencing. Although the quality of assembly is good, our results 

suggested that the contig-level assembly affected the downstream analysis of gene duplications 

compared to chromosome-level assemblies of L. japonica. For the future work, the long read 

sequencing can be employed to generate a chromosome-level assembly. 

Whole genome annotation is highly important to study L. maackii. Here, the gene 

prediction in this study was performed using a reference proteome. We selected L. japonica 
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proteome that is the most closely related species to L. maackii as the reference proteome. The 

limitation is that the reference proteome was recently reported, which might introduce bias in gene 

prediction study for L. maackii. To improve the genome annotation, combination of ab initio gene 

prediction, homology-based gene prediction, and the transcriptome sequencing (short-read/long-

read RNA-seq technology) can be used. 

Gene duplication that is the source of genetic variation in invasive plants has been widely 

studied as an important factor in evolution for a long time, which is closely associated with 

adaptive evolution, such as the genes related to immunity, development, and reproduction. Some 

populations of invasive species lose genetic diversity during invasion through founder effects. But 

many have higher genetic diversity outside their native range. In plants, WGD can produce 

thousands of duplicated genes. The fate of those duplicated genes is determined by several factors 

such as the mode of duplication, functions of duplicated genes, and protein interactions. Some of 

those duplicated genes were lost during evolution and some were maintained. From evolutionary 

perspective, the duplicated genes that contributed to adapt to environmental stresses would be kept. 

A recent study (2019) conducting gene duplication analysis on 141 sequenced plants genomes 

suggested that WGD genes were more conserved and tandem and proximal duplicated genes were 

prone to develop new functions (Qiao et al., 2019). The GO enrichment analysis to investigate the 

functional roles of tandem and proximal genes in model plant A. thaliana was conducted. The 

results indicated that tandem and proximal duplicated genes shared several enriched GO terms 

such as defense response, drug binding, endomembrane system, monooxygenase activity, 
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oxidoreductase activity, and oxygen binding. However, proximal duplicates are enriched in GO 

terms associated with apoptotic processes, cell death, programmed cell death, immune response, 

and signaling receptor activity. Tandem duplicated genes are enriched in GO terms involved in 

“binding,” such as tetrapyrrole binding, iron ion binding, heme binding, and cofactor binding, and 

“activity” such as transferase activity, hydrolase activity, electron transfer activity, and catalytic 

activity. Investigation of gene duplications in L. maackii would promote our understanding on 

genetic responses to new environment and/or the evolution after introduction into North America. 

In this study, we conducted the analysis on gene duplication in L. maackii. However, we did not 

perform gene functional annotation. For future work, we can align the predicted protein-coding 

gene sequences against public functional databases such as GO and KEGG using BLAST, which 

could help us identify genes that contribute to invasiveness of L. maackii and/or genes that could 

be targets for controlling L. maackii. Given the fact that there is no publicly available data about 

native L. maackii, we performed the comparison of gene duplication between invasive L. maackii 

and native L. japonica. However, the results might be biased due the difference in whole genome 

assemblies in L. maackii and L. japonica. 

Although accurate detection of gene duplications is still difficult, different computational 

approached and pipelines have been developed to identify gene duplications at whole-genome 

level. In this study, we employed MCScanX software package to perform genome-wide 

identification of gene duplications in L. maackii. MCScanX was developed to detect gene 

duplication in whole genome at protein level by using dynamic programming algorithm. The 
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special feature and strength of MCScanX is that each chromosome is used as a reference. 

Furthermore, compared to DNA, proteins are more conserved during the evolution. Therefore, the 

gene duplications by using MCScanX software package are biased by the whole genome assembly 

and the quality of available genome annotation. In our study, the first version of genome annotation 

of L. maackii was generated by suing homology-based approach, which suggested that 

improvements of genome annotation and genome assembly were needed to produce less biased 

gene duplications in L. maackii.  

Our findings here were only a start. The future work should aim to generate a chromosome-

level genome assembly, improve the protein-coding gene prediction, and conduct gene functional 

analysis, which might promote our control on L. maackii invasiveness.  
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Appendix 

 

 

 

                                        Scripts and Programs 
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SCRIPT/PROGRAM NAME: 

remove_clean_gff.cpp 

 

PURPOSE: 

To remove duplicated predicted genes and parse the overlapped predicted genes to form new 

gene. 

 

APPLICATION IN THIS PROJECT: 

By using exonerate to predict genes, there are plenty of duplicated genes or overlapped genes based 

on the nucleotide position of the predicted gene. This C++ program was used to remove the 

duplicated genes and merge the overlapped gene to form a new gene. The output was a GFF file 

containing the gene information. 
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###########################A_1 remove_clean_gff.cpp############################# 

#include <iostream> 

#include <string> 

#include <fstream> 

#include <algorithm> 

#include <vector> 

#include <sstream> 

using namespace std; 

 

int main() 

{ 

    ifstream infile; 

    ofstream outfile; 

    string line, line2; 

    vector<string> contigName; 

    vector<string> geneInfo; 

 

    infile.open("Ljaponica_seedrepeat75_PosStrand.txt"); 

                 while (getline(infile, line)) 

{ 

        geneInfo.push_back(line); 

        stringstream ss(line); 

        string seqid, strand, attribute; 

        int start_pos, end_pos; 

        ss >> seqid >> start_pos >> end_pos >> strand >> attribute; 

        contigName.push_back(seqid); 

    } 

 

    cout << contigName.size() << "  " << geneInfo.size() << endl; 

    infile.close(); 
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    cout << "Gene info input done!" << endl; 

 

    sort(contigName.begin(), contigName.end()); 

    contigName.erase(unique(contigName.begin(),contigName.end()), contigName.end()); 

    int M = contigName.size(); 

                 int N = geneInfo.size(); 
cout << M << " -> " << N << endl; 

 

    outfile.open("Ljaponica_seedrepeat75_PosStrand.bed"); 

 

    vector<pair<int, int> > myVector; 

    vector<pair<int, int> > New_myVector; 

     

    for (int i = 0; i < M; i++) 

    { 

        string contig = contigName[i]; 

        for (int j = 0; j < N; j++) 

        { 

            if (geneInfo[j].find(contig) != -1) 

            { 

                stringstream ss(geneInfo[j]); 

                string seqid, strand, attribute; 

                int start_pos, end_pos; 

                ss >> seqid >> start_pos >> end_pos >> strand >> attribute; 

                myVector.push_back(make_pair(start_pos, end_pos)); 

            } 

        } 

        sort(myVector.begin(), myVector.end()); 

        myVector.erase(unique(myVector.begin(), myVector.end()), myVector.end()); 
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        New_myVector.push_back(make_pair(myVector[0].first, myVector[0].second)); 

        //cout << myVector.size() << endl; 

 

        for (int a = 1; a < myVector.size(); a++) 

        { 

            int x1 = myVector[a].first; 

            int y1 = myVector[a].second; 

            int x2 = New_myVector[New_myVector.size() - 1].first; 

            int y2 = New_myVector[New_myVector.size() - 1].second; 

            if (y2 >= x1) 

            { 

                New_myVector[New_myVector.size() - 1].second = max(y1, y2); 

            } 

            else 

            { 

                New_myVector.push_back(make_pair(x1, y1)); 

            } 

        } 

 

        for (int b = 0; b < New_myVector.size(); b++) 

        { 

            outfile << contig << "\t" << New_myVector[b].first << "\t" << New_myVector[b].second 
<< "\t" << "+" << endl; 

        } 

 

        myVector.clear(); 

        New_myVector.clear(); 

    } 

 

    cout << "Work Done!" << endl; 
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    return 0; 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

####################remove_clean_gff.cpp######################################## 
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SCRIPT/PROGRAM NAME: 

pick_best_reading_frame.cpp 

 

PURPOSE: 

To select the “best” protein sequences. 

 

APPLICATION IN THIS PROJECT: 

The protein sequences of predicted genes in this project were generate from the nucleotide 

sequence based on the gene position. This C++ program was used to compare the protein sequence 

derived from three reading frames and select the best protein sequence from the three reading 

frames. The output was a fasta file containing the protein sequences. 

 

 

 

 

 

 

 

 

 

 



 
 

73 
 

#########################A_2 pick_best_reading_frame.cpp######################### 

#include <iostream> 

#include <string> 

#include <fstream> 

#include <algorithm> 

#include <vector> 

#include <sstream> 

#include <cstdbool> 

 

using namespace std; 

 

int main() 

{ 

    // Read the first file 

    string line, name, content; 

    vector<string> nameFrame1; 

    vector<string> contentFrame1; 

    ifstream fin; 

    
fin.open("/Users/wang2034/Desktop/MCScanX/test/Lmaackii/Exonerate_out/Ha100proteinF1.fasta"); 

 

    while (getline(fin, line)) 

    { 

        if (line[0] == '>') 

        { 

            if (!name.empty()) 

            { 

                nameFrame1.push_back(name); 

                contentFrame1.push_back(content); 

            } 
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            name = line.substr(1, line.length() - 1); 

            content.clear(); 

        } 

        else 

        { 

            if (line[line.size() - 1] == '\n' || line[line.size() - 1] == '\r') 

            { 

                content += line.erase(line.length() - 1); 

            } 

            else if ((line[line.size() - 1] == '\n' && line[line.size() - 2] == '\r') || (line[line.size() - 1] == 
'\r' && line[line.size() - 2] == '\n')) 

            { 

                content += line.erase(line.length() - 2); 

            } 

            else 

            { 

                content += line; 

            } 

        } 

    } 

    if (!name.empty()) 

    { 

        nameFrame1.push_back(name); 

        contentFrame1.push_back(content); 

    } 

 

    fin.close(); 

    line.clear(); 

    name.clear(); 

    content.clear(); 
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    cout << nameFrame1.size() << " " << contentFrame1.size() << endl; 

 

    // Read the second file 

    vector<string> nameFrame2; 

    vector<string> contentFrame2; 

    
fin.open("/Users/wang2034/Desktop/MCScanX/test/Lmaackii/Exonerate_out/Ha100proteinF2.fasta"); 

    while (getline(fin, line)) 

    { 

        if (line[0] == '>') 

{ 

            if (!name.empty()) 

            { 

                nameFrame2.push_back(name); 

                contentFrame2.push_back(content); 

            } 

 

            name = line.substr(1, line.length() - 1); 

            content.clear(); 

        } 

        else 

        { 

            if (line[line.size() - 1] == '\n' || line[line.size() - 1] == '\r') 

            { 

                content += line.erase(line.length() - 1); 

            } 

            else if ((line[line.size() - 1] == '\n' && line[line.size() - 2] == '\r') || (line[line.size() - 1] == 
'\r' && line[line.size() - 2] == '\n')) 

            { 

                content += line.erase(line.length() - 2); 
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            } 

            else 

            { 

                content += line; 

            } 

        } 

    } 

    if (!name.empty()) 

    { 

        nameFrame2.push_back(name); 

        contentFrame2.push_back(content); 

    } 

 

    fin.close(); 

    line.clear(); 

    name.clear(); 

    content.clear(); 

    cout << nameFrame2.size() << " " << contentFrame2.size() << endl; 

 

    // Read the 3RD file 

    vector<string> nameFrame3; 

    vector<string> contentFrame3; 

    
fin.open("/Users/wang2034/Desktop/MCScanX/test/Lmaackii/Exonerate_out/Ha100proteinF3.fasta"); 

    while (getline(fin, line)) 

    { 

        if (line[0] == '>') 

        { 

            if (!name.empty()) 

            { 

                nameFrame3.push_back(name); 
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                contentFrame3.push_back(content); 

            } 

 

            name = line.substr(1, line.length() - 1); 

            content.clear(); 

        } 

        else 

        { 

            if (line[line.size() - 1] == '\n' || line[line.size() - 1] == '\r') 

            { 

                content += line.erase(line.length() - 1); 

            } 

            else if ((line[line.size() - 1] == '\n' && line[line.size() - 2] == '\r') || (line[line.size() - 1] == 
'\r' && line[line.size() - 2] == '\n')) 

            { 

                content += line.erase(line.length() - 2); 

            } 

            else 

            { 

                content += line; 

            } 

        } 

    } 

    if (!name.empty()) 

    { 

        nameFrame3.push_back(name); 

        contentFrame3.push_back(content); 

    } 

 

    fin.close(); 

    line.clear(); 
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    name.clear(); 

    content.clear(); 

    cout << nameFrame3.size() << " " << contentFrame3.size() << endl; 

 

    //// pick the best frame that has the least stop codons in the protein sequences 

    ofstream outputfile; 

    
outputfile.open("/Users/wang2034/Desktop/MCScanX/test/Lmaackii/Exonerate_out/Ha100protein.fasta")
; 

 

    for (int i = 0; i < contentFrame3.size(); i++) 

    { 

        string seq1 = contentFrame1[i]; 

        string seq2 = contentFrame2[i]; 

        string seq3 = contentFrame3[i]; 

        int Frame1_stopcodon_counts = 0; 

        int Frame2_stopcodon_counts = 0; 

        int Frame3_stopcodon_counts = 0; 

 

        for (int a = 0; a < seq1.length(); a++) 

        { 

            if (seq1[a] == '*') 

            { 

                Frame1_stopcodon_counts += 1; 

            } 

        } 

 

        for (int b = 0; b < seq2.length(); b++) 

        { 

            if (seq2[b] == '*') 

            { 
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                Frame2_stopcodon_counts += 1; 

            } 

        } 

 

        for (int c = 0; c < seq3.length(); c++) 

        { 

            if (seq3[c] == '*') 

            { 

                Frame3_stopcodon_counts += 1; 

            } 

        } 

 

        int MIN = min(Frame1_stopcodon_counts, min(Frame2_stopcodon_counts, 
Frame3_stopcodon_counts)); 

 

        if (Frame1_stopcodon_counts == MIN) 

        { 

            outputfile << ">" + nameFrame1[i] << endl; 

            outputfile << contentFrame1[i] << endl; 

        } 

        else if (Frame2_stopcodon_counts == MIN) 

        { 

            outputfile << ">" + nameFrame2[i] << endl; 

            outputfile << contentFrame2[i] << endl; 

        } 

        else 

        { 

            outputfile << ">" + nameFrame3[i] << endl; 

            outputfile << contentFrame3[i] << endl; 

        } 
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    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

####################A_2 pick_best_reading_frame.cpp############################# 
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SCRIPT/PROGRAM NAME: 

install_Hecaton.sh 

 

PURPOSE: 

To install Hecaton tool on Linux system for local use. 

 

APPLICATION IN THIS PROJECT: 

Hecaton can only be install on Linux system. Before installing Hecaton, all of the scripts of 

Hecaton should be added to $PATH. This bash script was used to download the Hecaton package, 

add the required script to $PATH environment variable first. Then, the script for installing Hecaton 

can executed. 
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###################A_3 install_Hecaton.sh######################################## 

#!/bin/bash 

#Download Hecaton package 

git clone https://git.wur.nl/bioinformatics/hecaton.git 

 

#Set permissions and add all scripts of Hecaton to $PATH: 

cd hecaton 

chmod +x scripts/collapse/* && \ 

chmod +x scripts/convert/* && \ 

chmod +x scripts/filter/* && \ 

chmod +x scripts/genotype/* && \   

chmod +x scripts/gridss/* && \ 

chmod +x scripts/intersect/* && \ 

chmod +x scripts/predict/* && \ 

chmod +x scripts/process/* && \ 

export 

PATH=$PWD/scripts/collapse:$PWD/scripts/convert:$PWD/scripts/filter:$PWD/scripts/genoty

pe:$PWD/scripts/gridss:$PWD/scripts/intersect:$PWD/scripts/predict:$PWD/scripts/process:$P

ATH && \ 

export PYTHONPATH=$PYTHONPATH:$PWD/scripts 
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#Install Hecaton locally 

bash install.sh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

####################A_3 install_Hecaton.sh###################################### 
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SCRIPT/PROGRAM NAME: 

install_Hecaton_dependencies.sh 

 

PURPOSE: 

To install dependencies required for running Hecaton locally. 

 

APPLICATION IN THIS PROJECT: 

The successful execution of Hecaton requires the dependencies installed. This bash script was 

used to install GRIDSS, PICARD, and SPEEDSEQ, repectively, and add them the $PATH 

environment variable. 
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######################A_4 install_Hecaton_dependencies.sh######################### 

#!/bin/bash 

#Install dependencies 

mkdir hecaton_deps && \ 

cd hecaton_deps && \ 

wget https://github.com/PapenfussLab/gridss/releases/download/v2.0.1/gridss-2.0.1-gridss-jar-

with-dependencies.jar && \ 

export GRIDSS_JAR=$PWD/gridss-2.0.1-gridss-jar-with-dependencies.jar && \ 

wget https://github.com/broadinstitute/picard/releases/download/2.18.23/picard.jar && \ 

export PICARD=$PWD/picard.jar && \ 

source activate hecaton_py2 && \ 

git clone --recursive https://github.com/hall-lab/speedseq && \ 

cd speedseq && \ 

make align && \ 

make sv && \ 

make config && \ 

export PATH=$PWD/bin:$PATH && \ 

source deactivate && \ 

cd ../.. 

 

######################### A_4 install_Hecaton_dependencies.sh##################### 
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SCRIPT/PROGRAM NAME: 

run_Hecaton.sh 

 

PURPOSE: 

To conduct CNVs analysis using Hecaton. 

 

APPLICATION IN THIS PROJECT: 

This bash script contained 3 commands for running Hecaton. The first command was used to 

generate the index of reference genome. This step only needs to be run once for every reference 

genome. The second command was used to run Hecaton on a set of paired-end reads. The output 

BEDPE files can be found in the random_forest_calls folder. The third command was for 

converting BEDPE output files to VCF format. In this study, the default cutoff (0.7) was used. The 

VCF format file can be manually parsed to screen for tandem duplication. 
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###############A_5 run_Hecaton.sh ############################################# 

#!/bin/bash 

 

#pre-processing the reference genome 

bash bash/preprocess.sh genome.fa 

 

#run Hecaton on a set of paired-end reads 

nextflow run -c nextflow/nextflow.config -w hecaton_workdir nextflow/hecaton.nf --

genome_file genome.fa --reads "reads{1,2}.fq" --manta_config 

docker/configManta_weight_1.py.ini --output_dir output --model_file 

models/random_forest_model_concat_A_thaliana_ColxCvi_O_sativa_Suijing18_coverage_10x_

insertions_balanced_subsample.pkl 

#convert BEDPE output to VCF 

#output files can be found in the random_forest_calls folder 

source activate hecaton_py3 

scripts/convert/bedpe_to_vcf.py -i output.bedpe -o output.vcf -s name_of_your_sample 

bgzip output.vcf 

tabix output.vcf.gz 

duphold -t number_of_threads -v output.vcf.gz -b alignment_of_this_sample.bam -f reference.fa 

-o output_duphold.vcf 

bgzip output_duphold.vcf 
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tabix output_duphold.vcf.gz 

source deactivate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#########################A_5 run_Hecaton.sh ################################### 
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SCRIPT/PROGRAM NAME: 

steps_before_running_Hecaton.sh 

 

PURPOSE: 

To add dependencies and environment language to $PATH to ensure that Hecaton can be run 

 

APPLICATION IN THIS PROJECT: 

Execution of Hecaton requires several dependencies and workflow language. This bash script 

was used to add these dependencies and workflow language to $PATH environment variable to 

ensure the Hecaton can be executed correctly. 
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##########################A_6 steps_before_running_Hecaton.sh #################### 

#!/bin/bash 

 

cd hecaton 

export PATH=$PATH:/usr/local/bin/seqtk 

export PATH=$PATH:/usr/local/bin/miniconda3/bin 

export PATH=$PATH:/home/gwang 

cd hecaton_deps 

export 

PATH=$PWD/scripts/collapse:$PWD/scripts/convert:$PWD/scripts/filter:$PWD/scripts/genoty

pe:$PWD/scripts/gridss:$PWD/scripts/intersect:$PWD/scripts/predict:$PWD/scripts/process:$P

ATH 

export PYTHONPATH=$PYTHONPATH:$PWD/scripts  

export GRIDSS_JAR=$PWD/gridss-2.0.1-gridss-jar-with-dependencies.jar 

export PICARD=$PWD/picard.jar 

cd speedseq 

export PATH=$PWD/bin:$PATH 

cd ../.. 

 

 

##################A_6 steps_before_running_Hecaton.sh ########################### 
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