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in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Imaging Science

at the Rochester Institute of Technology

Abstract

Medical imaging is routinely performed in clinics worldwide for the diagnosis and
treatment of numerous medical conditions in children and adults. With the advent
of these medical imaging modalities, radiologists can visualize both the structure of
the body as well as the tissues within the body. However, analyzing these high-
dimensional (2D/3D/4D) images demands a significant amount of time and effort
from radiologists. Hence, there is an ever-growing need for medical image computing
tools to extract relevant information from the image data to help radiologists perform
efficiently. Image analysis based on machine learning has pivotal potential to improve
the entire medical imaging pipeline, providing support for clinical decision-making and
computer-aided diagnosis. To be effective in addressing challenging image analysis tasks
such as classification, detection, registration, and segmentation, specifically for medical
imaging applications, deep learning approaches have shown significant improvement in
performance. While deep learning has shown its potential in a variety of medical image
analysis problems including segmentation, motion estimation, etc., generalizability is
still an unsolved problem and many of these successes are achieved at the cost of a large
pool of datasets. For most practical applications, getting access to a copious dataset
can be very difficult, often impossible. Annotation is tedious and time-consuming. This
cost is further amplified when annotation must be done by a clinical expert in medical
imaging applications. Additionally, the applications of deep learning in the real-world
clinical setting are still limited due to the lack of reliability caused by the limited
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prediction capabilities of some deep learning models. Moreover, while using a CNN in
an automated image analysis pipeline, it’s critical to understand which segmentation
results are problematic and require further manual examination. To this extent, the
estimation of uncertainty calibration in a semi-supervised setting for medical image
segmentation is still rarely reported.

This thesis focuses on developing and evaluating optimized machine learning models
for a variety of medical imaging applications, ranging from fully-supervised, single-task
learning to semi-supervised, multi-task learning that makes efficient use of annotated
training data. The contributions of this dissertation are as follows:
(1) developing a fully-supervised, single-task transfer learning for the surgical instrument
segmentation from laparoscopic images; and
(2) utilizing supervised, single-task, transfer learning for segmenting and digitally re-
moving the surgical instruments from endoscopic/laparoscopic videos to allow the
visualization of the anatomy being obscured by the tool. The tool removal algorithms
use a tool segmentation mask and either instrument-free reference frames or previous
instrument-containing frames to fill in (inpaint) the instrument segmentation mask;
(3) developing fully-supervised, single-task learning via efficient weight pruning and
learned group convolution for accurate left ventricle (LV), right ventricle (RV) blood
pool and myocardium localization and segmentation from 4D cine cardiac MR images;
(4) demonstrating the use of our fully-supervised memory-efficient model to generate
dynamic patient-specific right ventricle (RV) models from cine cardiac MRI dataset via
an unsupervised learning-based deformable registration field; and
(5) integrating a Monte Carlo dropout into our fully-supervised memory-efficient model
with inherent uncertainty estimation, with the overall goal to estimate the uncertainty
associated with the obtained segmentation and error, as a means to flag regions that
feature less than optimal segmentation results;
(6) developing semi-supervised, single-task learning via self-training (through meta
pseudo-labeling) in concert with a Teacher network that instructs the Student network
by generating pseudo-labels given unlabeled input data;
(7) proposing largely-unsupervised, multi-task learning to demonstrate the power of a
simple combination of a disentanglement block, variational autoencoder (VAE), gen-
erative adversarial network (GAN), and a conditioning layer-based reconstructor for
performing two of the foremost critical tasks in medical imaging — segmentation of
cardiac structures and reconstruction of the cine cardiac MR images;
(8) demonstrating the use of 3D semi-supervised, multi-task learning for jointly learning
multiple tasks in a single backbone module – uncertainty estimation, geometric shape
generation, and cardiac anatomical structure segmentation of the left atrial cavity from
3D Gadolinium-enhanced magnetic resonance (GE-MR) images.
This dissertation summarizes the impact of the contributions of our work in terms of
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demonstrating the adaptation and use of deep learning architectures featuring different
levels of supervision to build a variety of image segmentation tools and techniques that
can be used across a wide spectrum of medical image computing applications centered on
facilitating and promoting the wide-spread computer-integrated diagnosis and therapy
data science.
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Chapter 1

Introduction and Background

Good, better, best. Never let it rest. ‘Til
your good is better and your better is best.

— St. Jerome

This chapter provides the reader an overview of medical image analysis, machine
learning, and deep learning concepts. A literature review of the current techniques and
challenges of machine learning in medical image segmentation in both supervised and
semi-supervised regimes is included in this chapter.

1.1 Medical Imaging and Imaging Modalities

Medical image analysis is a core field of research in medical imaging, which entails the
generation of visual representations of the intricacies of the human body by the virtue
of computer vision techniques [1, 2, 3, 4]. The integration of various image acquisition
instruments has provided invaluable ways of scanning the human body for disease
diagnosis. For an accurate clinical diagnosis of human body anatomy, with regards to
the progress of the disease state, imaging modality is a vital characteristic. Medical
imaging archives are comprised of several routinely used modalities such as magnetic
resonance imaging (MRI) [5], endoscopy, computed tomography [6], ultrasound (US)
[7], X-ray imaging, etc., which have paved the way for non-invasive and less invasive
techniques. The main types of imaging modalities focused on in this thesis are MRI
and Endoscopic. MR images provide detailed information on the anatomy and soft
tissues inside the body whereas, endoscopic images are used to directly visualize the
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large epithelial surfaces in hollow organs, such as the esophagus, stomach, and abdomen.

1.1.1 Endoscopic Imaging

Endoscopy is a widely used minimally-invasive procedure that allows clinicians to
visualize the inside of a person’s body [8]. During an endoscopy procedure, the clinicians
use a thin tube-shaped tool named an endoscope to examine the epithelial surfaces of
a hollow organ or cavity of the body. The most commonly used endoscopy procedure
is laparoscopy. The advent of laparoscopic procedures has made a paradigm shift in
medical technology for minimally invasive surgery. Procedures that required weeks to
recover from were dramatically reduced in many ways. The procedure takes its name
from the laparoscope, a slender tool that has a tiny video camera and light source on
the end. This laparoscopic surgical procedure is done by cutting a small hole into the
human body and inserting a laparoscope to see inside the body. Thanks to da Vinci
surgical instruments, surgeons can perform precise minimally invasive surgery using
these advanced surgical tools [9] as shown in Figure 1.1.

Figure 1.1: Different instrument types used in robot-assisted surgery. (a) Maryland
Bipolar Forceps and (b) Bipolar instruments (c) Prograsp Forceps instrument. (d) Large
Needle Driver instrument. (e) Vessel Sealer (f) Grasping Retractor. (g) Monopolar
Curved Scissors and (h) Drop-in Ultrasound probe (Image adapted from [9]).
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1.1.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a noninvasive medical imaging modality that
produces detailed 3D images of the human body, including the organs, bones, muscles,
and blood vessels using a large magnet and radio waves. The strong magnetic field
gradient applied by the MRI scanner causes the hydrogen atoms (protons) in your body
to align in the same direction. This is possible due to the intrinsic magnetic properties
of the various tissues inside the human body. Radio waves are then sent from the MRI
machine and move these atoms out of the original position. As the radio frequency (RF)
pulses are turned off, the atoms realign with the magnetic field by returning to their
original position and sending back radio signals. These signals are recorded as k-space
data through this relaxation process and constructed as an image of the part of the
body being examined. Different tissues in the body can be identified on the basis of how
rapidly the protons release their excess energy after the applied RF pulse is turned off.

The principle behind magnetic resonance imaging shows that the atom’s precession
rate or relaxation rate is proportional to the strength of the magnetic field, B0 and is
expressed by the Larmor frequency, υ as shown in Equation 1.1:

υ = γB0 (1.1)

Where, γ is the gyromagnetic ratio expressed in radian per second per tesla or MHz
T

.
Signal in MR images is high or low (bright or dark), depending on the pulse sequence
used, the magnetic field due to the spins in each spin packet (magnetization vector),
and the type of tissue in the image region of interest. Two separate processes take place
during relaxation: longitudinal relaxation (T1 relaxation) and transverse relaxation (T2
relaxation). At equilibrium, the net magnetization vector lies along the direction of the
applied magnetic field B0 and is called the equilibrium magnetization M0. There is no
transverse (MXorMY ) magnetization here. The time constant which describes how the
longitudinal magnetization, MZ returns to its equilibrium value is called the longitudinal
relaxation time (T1). In addition to the rotation, the net magnetization starts to
dephase and rotates at its own Larmor frequency. Here the net magnetization vector is
initially along +Y. The time constant which describes the return to equilibrium of the
transverse magnetization, MXY , is called the transverse relaxation time. The graphical
representation of the relationship between the relaxation time and the magnetization is
shown in Figure 1.2.

To differentiate normal anatomy from pathology, it is required to create a contrast
difference. Contrast is improved when two adjacent areas have high and low signal
intensities. There are many different MRI sequences (>100) including gradient echo [10],
steady-state free precision (SSFP) [11] pulse sequence, etc., and all attempt to optimize
tissue contrast. Cardiac CINE magnetic resonance imaging (MRI) [12] is considered the

3



Figure 1.2: Graphical representation of the relationship between the relaxation time
and the magnetization (Image adapted from 2).

gold standard for the assessment of cardiac morphology and function which follows this
SSFP pulse sequence. Cine images are typically obtained by repeatedly imaging the
heart at a single slice location throughout the cardiac cycle. Between 10 and 30 cardiac
phases are usually sampled.

SSFP pulse sequence reduces the acquisition time while maintaining a good signal-to-
noise ratio as well as bright-blood imaging by a retrospective EKG-gating to be assigned
to the appropriate phase of the cardiac cycle. The short-axis cine MR slices (Figure 1.3)
covering the whole heart are stacked together to generate a pseudo-four-dimensional
(4D) volume, which can be used to perform quantitative analysis of cardiac indices.

Figure 1.3: Example of cine cardiac MR images (ACDC Dataset).
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1.2 Image Analysis

The use of medical computer vision to evaluate the subtleties of the human body is
characterized by medical image analysis, which is a fundamental field of innovation in
medical imaging. The introduction of digital images and the integration of medical
image acquisition systems such as computed tomography (CT), endoscopic imaging,
and magnetic resonance imaging (MRI) into clinical workflows revolutionized the field
of diagnostic radiology and minimally invasive therapy. The relevance of the collected
semantic information within photographs lies at the heart of image analysis. The
following processing processes for abstract interpretation and quantitative measurements
that image analysis entails are at the heart of advancements in this subject:

1. feature extraction – identifying and extracting distinguishing qualities or charac-
teristics from input data for use in following procedures;

2. segmentation - the process of separating regions of interest from the background
and from each other;

3. classification - the practice of categorizing data into groups based on common
attributes or characteristics;

4. registration - the technique of combining multiple sources of data into a single
coordinate system;

5. measurement – obtaining quantitative values.

1.3 Image Segmentation

Image segmentation involves partitioning an image semantically into two classes or
regions – foreground and background – which are non-overlapping and coherent. These
homogeneous regions are partitioned based on some characteristics, such as intensity,
or texture similarities, and higher level knowledge about the objects and are called
representation images. These representational images are encoded into a more meaningful
layout which is sometimes called a segmentation mask. The segmentation masks are
generated either by assigning a categorical label to each pixel of information in the
source image – semantic segmentation or distinctly delineating each object of interest in
any type of image (natural image, MRI, Endoscopic, CT, etc.) – instance segmentation.
However, manual segmentation is time-consuming and often prone to error and biased
outcomes. Hence, automatic and computationally efficient segmentation techniques are
paramount. Commonly used image segmentation algorithms can be broadly categorized
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into (i) No prior, (ii) Weak prior, (iii) Strong prior, and (iv) Machine learning-based
approaches.

Threshold-based segmentation methods are one of the simplest segmentation al-
gorithms that partition the image histogram into several parts and require no prior
knowledge. However, they require post-processing which necessitates the introduction
of weak-prior-based deformable models that favor the adherence of the shape surface to
the edges in an image [13]. An extension of the weak prior-based approach was first
proposed by Cootes et al. in their statistical shape models paper [14] which learns the
pattern of shape variability from the training set of correctly annotated images.

1.4 Medical Image Segmentation

Medical image analysis is quite different and challenging compared to natural image
segmentation. Identifying the pixels of organs or cavities from clinical images such as
CT or MRI is more challenging due to their low signal-to-noise ratio as well as artifacts
generated by either patient movement or the magnetic materials prevalent in the scanner
itself. Moreover, the anatomical variation of human organs makes it harder to identify
the cluster or mass of pixel information.

1.4.1 Machine Learning in Medical Imaging

With the advent of artificial intelligence, more specifically the machine learning approach
in healthcare, the challenges in medical image segmentation and analysis have become
more relaxed and easy-going to tackle thanks to its ability to perform a specific task
without any explicit instructions which were difficult in classical segmentation methods
[15, 16, 17].

1.5 Deep Learning

Deep learning is a subset of machine learning, which attempts to simulate the behavior of
the human brain—allowing it to “learn” from large amounts of data to make predictions
with incredible accuracy. While a neural network with a single layer can still make
approximate predictions, additional hidden layers can help optimize and refine for
accuracy. Deep neural networks consist of multiple layers of interconnected nodes, each
building upon the previous layer to refine and optimize the prediction or categorization.
This progression of computations through the network is called forward propagation.
The input and output layers of a deep neural network are called visible layers. The input
layer is where the deep learning model ingests the data for processing, and the output
layer is where the final prediction or classification is made. In the following section, we
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will review several deep learning networks and key techniques that have been commonly
used in state-of-the-art segmentation algorithms.

1.5.1 Neural Networks

Perceptron is the most basic algorithm and the source of modern neural networks which
was then extended to a multilayer approach called multilayer perceptron (MLP) [18].
Inspired by the human brain, MLPs are designed to learn feature representations by
utilizing supervised learning techniques and have multiple layers and a set of non-linear
activation functions, h = f(w.x). The inputs xi are associated with weights wi, and
the summation of input-weight products are fed to an activation function h, which
determines to what extent the signal should pass through the network (Figure 1.4). The
final output then can be expressed as:

yi = h(
m∑
i=1

wixi + w0), (1.2)

Figure 1.4: Illustration of a simplified version of Multi-Layer Perceptrons. Each circle
corresponds to a neuron (nodes), taking a number of inputs and producing a single
output by convolving the weighted sum with a nonlinear function (Image adapted from
4 and [18]).
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1.5.2 Convolutional Neural Networks (CNNs)

The unique capability of Convolutional Neural Networks (CNNs) [19] to learn problem-
specific features in an end-to-end manner has established them as a powerful general-
purpose supervised machine learning tool that can be deployed for various computer
vision tasks [20, 21, 22, 23]. A simple CNN architecture consists of hierarchical layers
and the core element of convolutional neural networks is the convolutional layer. The
convolutional layer consists of a set of learnable filter components with learnable weights
and biases which generate feature maps computed by moving filters across each row of
pixels in an image. During the forward pass, each kernel slides across width and height
and produces feature maps along the channel axis which are then stacked together to
create the output volume. Convolutional layers are usually followed by activation layers
including sigmoid, hyperbolic tangent, or rectified linear units (ReLu) [24] that introduce
non-linearity to the activation maps. Following several convolutions and non-linear
activation layers, the pooling layer is the most common layer which performs multi-
resolution analysis, as well as reduces the spatial size of the intermediate representation,
ultimately reducing the computational complexity and memory footprint in subsequent
layers. After several convolutional and pooling layers, the high-level inference of the
neural network takes place through fully connected or dense layers that generate the
network output.

Figure 1.5: The LeNet architecture for handwritten digits recognition on the MNIST
dataset consists of two sets of convolutional, activation, and pooling layers, followed by
a fully-connected layer (Image adapted from 6).

In recent years, convolutional neural networks have been successfully applied to
advance the state-of-the-art on many image classification, object detection, and segmen-
tation tasks. One of the first successful applications of CNN in the hand-written digits
recognition task is LeNet, which was first proposed by LeCun et al. [19] in 1998. The
detailed architecture of the LeNet is shown in Figure 1.5. However, it did not get highly
recognized because it was found difficult to apply this naive implementation to large
datasets for solving real-world vision problems. Large-scale CNNs became prevalent after
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Figure 1.6: The architecture of ResNet consists of convolutional, pooling, and residual
connections followed by a fully-connected layer (Image adapted from [27]).

the great success of AlexNet [25] on the ImageNet dataset in 2012. Although AlexNet
has a similar type of architecture to LeNet, it is deeper than LeNet and convolutional
layers are stacked on top of each other. Since then, a number of works started to further
improve image classification performance, and later, the VGGNet [26] was proposed by
Simonyan et al. which showed that the depth of the network is a critical component for
good performance. Their final best network contains 16 convolutional or fully connected
layers, with 3×3 convolutions and 2×2 pooling from the beginning to the end structure.

Later, the degradation7 as well as vanishing gradient8 problem in a deeper network
was first addressed by Kaiming He et al. in their ResNet paper [27]. They introduced
residual connections that enable deep neural networks to improve with the addition
of more layers, creating deeper and deeper networks. Each “Residual Unit” can be
expressed as below:

yl = H(xl) + F(xl, wl) (1.3)

xl+1 = f(yl) (1.4)

where xl and xl+1 are the input and output of the lth unit respectively, and F is a
residual function as shown in Figure 1.6.

7With the network depth increasing, accuracy gets saturated (which might be unsurprising) and
then degrades rapidly.

8A problem found in training deep neural networks, where the weights would be prevented from
updating due to the gradient vanishing by becoming extremely small
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Figure 1.7: The architecture of DenseNet consists of convolutional, pooling, and dense
connections followed by a fully-connected layer (Image adapted from [28]).

However, in ResNet, the identity function and the output of H are combined by
summation, which may impede the information flow across the network.

1.5.3 Densely Connected Network (DenseNet)

To solve the problem associated with ResNet architecture, Huang et al. proposed
the DenseNet [28] architecture to ensure the maximum flow of the gradients between
the layers both in forward as well as backward computation, as shown in Figure 1.7.
DenseNet connects all layers in such a way each layer obtains additional inputs from all
preceding layers and passes its own feature maps to all subsequent layers.

DenseNets consist of several dense blocks and pooling layers, where each dense
block (DB) is a group of layers connected to all their preceding layers. A single layer
is comprised of Batch Normalization (BN) [29], ReLU activation function [24], 3 × 3

convolution and dropout layers [30]. As the network performs concatenation of feature
maps, the output dimension of each layer adds k feature maps which regulates how
much new information each layer contributes and grows linearly with the depth. The
lth layer connects the feature maps of all the preceding layers:

xl = H([x0, x0, ..., xl−1]) (1.5)

where [x0, x0, ..., xl−1] are the concatenation of the feature maps.
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To reduce the spatial dimension of feature maps, the transition layers are connected
between dense blocks and perform convolution and pooling operations. The transition
block is comprised of a 1 × 1 convolution operation followed by a 2 × 2 max-pooling
operation. As the network encourages feature reuse, it substantially reduces the number
of parameters compared to the ResNet architecture. In a normal ConvNet, the number
of parameters is proportional to the square of the number of channels produced at the
output of each layer, whereas in DenseNets the number of parameters is proportional to
O(lth × kl × kl) where k is much smaller than the number of channels which reduces
the number of parameters in DenseNet. Moreover, the concatenation of the feature
maps increases variation in the input of subsequent layers and improves the overall
performance.

Figure 1.8: The FCN architecture consists of two sets of convolutional, activation, and
pooling layers, followed by a fully-connected layer (Image adapted from [31]).

1.5.4 Fully Convolutional Networks (FCNs)

While most of the above-mentioned methods work well on image classification tasks, in
terms of image segmentation, spatial dimensions are important for pixel-level predictions.
Long et al. [32] proposed the first fully convolutional network (FCN), in which the last
fully connected layer was replaced with a fully convolutional layer of dimensions 1× 1 in
order to capture the global context of the image semantically. The fully convolutional
networks (FCNs) consist of a down-sampling path followed by an up-sampling path to
restore the spatial resolution of the input image as shown in Figure 1.8.
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One of the ways to upsample the bottleneck feature is by Unpooling using Nearest
Neighbor or bilinear interpolation as shown in Figure 1.9.

Figure 1.9: Illustration of upsampling operation by Nearest-Neighbor interpolation.

Another approach is to compute the transposed convolution, often referred to as
deconvolution, which is the reverse operation of convolution, for instance, if a convolution
goes from 7× 7 to 3× 3, then the corresponding transposed convolution will go from
3× 3 to 7× 7 as shown in Figure 1.10. Here, the filter is placed over the input image
pixels which are multiplied successively by the filter weights to produce the upsampled
image.

Figure 1.10: Illustration of upsampling operation by transposed convolution operation
(Image adapted from 10).

The major difference between the interpolation-based upsampling and the transposed
convolution is that the latter learns the weights the same way as in convolutional
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operation whereas, the interpolation operation does not learn the weights which makes
the operation faster.

Figure 1.11: An illustration of U-Net architecture consisting of encoder, decoder, and a
bottleneck layer (Image adapted from [33]).

However, this upsampling method alone can not capture the global information that
is lost during the downsampling operation. To address this issue, Ronneberger et al.
[33] first proposed a U-shaped auto-encoder with skip connections that concatenate the
feature maps from the encoder part with that of the decoder part for the end task of
medical image segmentation and the concept of deconvolution was inspired from [34].
This architecture thus differs from regular FCNs on several levels. Firstly, its shortcut
connections allow the gradients to be propagated from encoder layers to decoder layers
directly, which assists the decoder in recovering image details.

More specifically, U-Net architecture can be divided into three parts: an encoder
part, a bottleneck, and a decoder part. The encoder path is comprised of 4 blocks with
two 3× 3 convolutions followed by 2× 2 pooling layers. The bottleneck layer has two
3× 3 convolutions followed by 2× 2 up-convolution. The decoder path is also comprised
of 4 blocks with two 3× 3 convolutions followed by 2× 2 upsampling layers as shown in
Figure 1.11.

Recently in medical image analysis, FCNs have achieved tremendous success in the
segmentation of cardiac structures [35, 36], atrial structures [37, 38], surgical instruments
[39, 9], brain lesions [40, 4]; liver lesions [41, 42] from medical volumes.
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Figure 1.12: Difference between 2D and 3D CNN (Image adapted from 11).

1.6 3D CNNs

Although 2D CNNs based methods are great at capturing spatial features, they are not
optimal for medical image segmentation, as they lack the potential of capturing the
temporal information present in 3D data like MRI images. 3D CNNs apply convolution
in 3 dimensions hence capturing the temporal as well as the spatial features present in
the data describing the relationship of instances in 3D space. The 3D convolution is
achieved by convolving a 3D kernel to the cube formed by stacking multiple contiguous
frames together. Figure 1.12 shows the 2D and 3D convolution operations. Based on
the architecture of the 3D U-Net [43], the V-Net [44] introduced residual structures
(skip connection) into each stage of the network and then Chen et. al [45] proposed a
deep voxel-wise residual network for 3D brain segmentation.
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1.7 Generative Models

Generative models are becoming one of the fundamental tasks in machine learning
that provide a powerful mechanism for the underlying data-generating distribution
and simulated samples. Recent years have seen remarkable advances, especially in
deep approaches such as Generative Adversarial Networks (GANs) [46], Variational
Autoencoders (VAEs) [47] etc. Generative models [48] have brought enormous success
in different applications varying from image synthesis, and image-to-image translation
[49, 50], to semantic image segmentation.

Figure 1.13: Architecture of a generative adversarial network (Image adapted from 13).

1.7.1 Generative Adversarial Networks

The first Generative adversarial network (GAN) was proposed by Goodfellow et al. [46]
in 2014 and since then, it is being used extensively for estimating generative tasks via
an adversarial process. The framework is comprised of two models: a generator G to
generate synthetic data samples given a noise variable input z so that it may capture the
real data distribution and a discriminator D working as a critic to distinguish the real
data from the fake data generated by G as shown in Figure 1.13. The whole network is
trained in an adversarial way [51], corresponding to a min-max game between G and D

which is formulated as:
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min
G

max
D
L(D,G) = Ex∼pr(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (1.6)

where, the training process involves two parts: training of a discriminator D while
generator G is idle (only forward propagated), and training of generator G while D is
idle. Given a fake sample G(z), z ∼ pz(z), the discriminator maximizes Ez∼pz(z)[log(1−
D(G(z)))] and provides an output probability, D(G(z)).

max
D
L(D) = Ex∼pr(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (1.7)

On the other hand, the generator is trained to minimize Ez∼pz(z)[log(1−D(G(z)))]

producing a high probability for a fake example.

min
G
L(G) = Ez∼pz(z)[log(1−D(G(z)))] (1.8)

Even though the generator might be able to fool the corresponding discriminator, it
may collapse to a setting where it always produces same outputs called Mode Collapse.

Figure 1.14: A graphical representation of Variational Autoencoder (Image adapted
from 15).

1.7.2 Variational Autoencoder

On the other hand, Variational Autoencoder (VAE) [47] is a Bayesian graphical inference
model that learns the underlying probability distribution of data so that it could create
a new plausible sample from that distribution. They specify a joint probability model as
pθ(x, z) = pθ(x|z)pθ(z) over the observed data x and latent variable z, parameterized by
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θ as shown in Figure 1.14. The ultimate goal is to approximate the intractable posterior
conditional density of the latent variables given observed data:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(1.9)

where the data generation process involves the encoding vector:

pθ(x) =

∫
pθ(x|z)pθ(z)dz (1.10)

To ease the computation, a new approximation function q(z|x) is introduced to compute
the intractable posterior distribution which is parameterized by ϕ.

We can use the Kullback-Leibler divergence, which quantifies the distance between
the estimated and the real posterior as below:

DKL(qϕ(z|x)||pθ(z|x)) = log pθ(x) +DKL(qϕ(z|x)||pθ(z))− Ez∼qϕ(z|x) log pθ(x|z) (1.11)

1.8 Network Training Techniques

Machine learning approaches are broadly classified into three categories: supervised
learning, semi-supervised, and unsupervised learning (Figure 1.15).

Figure 1.15: Graphical illustration of supervised and semi-supervised learning (Image
adapted from 17).
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1.8.1 Supervised Learning

Supervised learning is the most widely used approach in machine learning. In supervised
learning, the algorithms are trained with a training set consisting of expert-annotated
labels for each corresponding input to learn a mapping between input X and output
spaces Y .

In general, we assume that (x1, y1), (x2, y2), ...., (xN , yN) represents N example data
pair sampled from the training set D, where x refers to the input, and y is generated
as the desired output. The goal of supervised learning is to find the parameter θ of an
unknown function y = f(x; θ) that will reduce the prediction error on the test dataset
by making an assumption that the training samples are conjugate18 distribution of the
test sample. In practice, we can measure the performance of an algorithm based on a
real-valued loss function L(ŷ, y) which will measure the difference between the prediction
ŷ and the true outcome y. The ultimate goal is to find the risk associated with finding
the expected value of the loss function.

1.8.2 Semi-supervised Learning

Semi-supervised learning (SSL) [53] has recently been a growing trend as an alternative
to supervised models for improving a model’s overall performance by imposing a strong
assumption on the decision boundary (Figure 1.16) to avoid high-density regions by
leveraging supplementary information from readily available unlabeled data Du. In

18Both training set and the test set are sampled from the similar type of distribution

Figure 1.16: The decision boundaries show both supervised as well as different SSL
approaches, using both labeled and unlabeled data (Image adapted from [52]).
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addition to unlabeled data, the algorithm is provided with some supervision information
– the labeled data Dl.

As shown in Figure 1.16, the supervised model can separate data points with low-
density regions. However, the SSL algorithm can provide additional information about
the shape of the decision boundary between two classes by leveraging unlabeled data.
Depending on how unlabeled data are leveraged, semi-supervised learning has recently
emerged as a growing body of research, especially in the medical imaging domain,
yielding domains such as transfer learning [54], domain adaptation [55], adversarial
learning [56], and disentangled representation [57].

1.8.3 Unsupervised Learning

Algorithms that find patterns in data sets without any classified or labeled data points
are known as unsupervised learning [58]. Since no supervision is required, the algorithms
are able to classify, label, and group the data points within the data sets. In other words,
the learning algorithm isn’t given any labels, so it must figure out how to recognize
structure on its own in the input set. Though no categories are provided, in unsupervised
learning, an AI algorithm will cluster unsorted data based on similarities and differences.
As shown in Figure 1.16, the supervised model can separate data points with low-density
regions. However, the unsupervised algorithm cluster the unlabeled data points using
the decision boundary (Figure 1.15).

1.9 Training Methods

The problem of training neural networks is equivalent to the problem of minimizing the
loss function. The most effective algorithm that optimizes the objective functions is
based on the gradient to find a good solution which is faster than taking random guesses.
The best way to compute the gradient is to find the derivative with respect to the
weights and biases of the network. During forward propagation, the initial information
from the input is propagated through each of the hidden units at each layer and an
output is produced. During the backward propagation, the weights and biases for each
hidden unit are updated based on minimizing the error of the objective function.

The weight update formula in standard gradient descent is given by the following:

Wt = Wt − α∇J(Wt) (1.12)

∇J(Wt) is the gradient vector containing each of the individual partial derivatives
of the cost function with respect to each parameter. This gradient is calculated by
utilizing the chain rule in calculus, which lets us decompose a derivative as a product of
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its individual functional parts. This backpropagation dramatically speeds up training.

Medical	source

Non-Medical	source

Pre-training

Feature	extraction	or
	Fine-tuning

Medical	target

Figure 1.17: Transfer learning pipeline

One of the critical challenges of the recent deep learning-based architecture is the
need for a huge number of training datasets to achieve high-end performance. Transfer
learning [59, 60] has emerged as a highly popular technique for the limited dataset
scenario on a medical domain. In transfer learning, the model can be reused for the new
task which is already trained on millions of data inputs. These pre-trained networks can
be used in two major ways: 1) fixed feature extractor, where the network is trained on
a large-scale benchmark dataset (e.g., ImageNet [61]), removed the last fully-connected
layer and then used the rest of the network as a fixed feature extractor for the new task;
and 2) fine-tuning, where either the weights of all the layers or some fixed layers of the
pre-trained network is further trained on the specific target task of interest (shown in
Figure 1.17). The choice of whether or not to fine-tune the first n layers of the target
network depends on the size of the target dataset and the number of parameters in
the first n layers. If the target dataset is small and the number of parameters is large,
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fine-tuning may result in overfitting, so the features are often left frozen. On the other
hand, if the target dataset is large, then the base features can be fine-tuned to the new
task to improve performance [62].

Transfer learning has become extremely popular in many settings, particularly so in
medical tasks ranging from recognizing de-Vinci surgical instruments [63], interpreting
chest x-rays [64] to early detection of Alzheimer’s disease.

1.9.1 Avoiding Overfitting

The biggest challenge of training deep networks for medical image analysis is over-fitting,
due to the fact that there is often a limited number of training images in comparison
with the number of learnable parameters in a deep network. A number of techniques
have been developed to alleviate this problem. Some of the techniques are the following:

− Data augmentation: Data augmentation is a training strategy that artificially
generates more training samples to increase the diversity of the training data as well
as prevent the network from overfitting on the training set. This can be done by
randomly generating data with invariant properties or expected noise/distortions,
such as flips, rotations, scaling, or intensity changes.

− Dropout: Dropout [30] is a regularization technique that randomly drops a
majority of connections at the training stage, encouraging the network to learn a
sparse representation.

− Weight pruning: Weight pruning has shown promising results in achieving
high compression rates with minimal accuracy loss in medical imaging [65]. The
main assumption behind this method is that deep neural networks are often
over-parameterized and, thus, one can obtain comparable accuracy by removing in-
dividual connections, generating a sparse model that preserves the high-dimensional
features of the original network.

− Regularization: Weight regularization is a type of regularization technique that
reduces the negative effects on accuracy introduced by weight pruning by inducing
weight penalties to the loss function. Common methods to constrain the weights
include L1, L2, Lasso, and Ridge regularization.

1.10 Deep Learning for Cardiac Image Segmentation

We present a summary of deep learning-based applications for MR imaging in this part,
with a focus on specific applications for targeted structures. These deep learning-based
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algorithms, in general, provide an efficient and effective manner of segmenting certain
organs or tissues (e.g., the LV, RV, and atrium), allowing for quantitative investigation
of cardiovascular structure and function in the future. A major fraction of these
approaches, particularly in the MR domain, are designed for ventricular segmentation.
The goal of ventricular segmentation is to separate the LV and/or RV endocardium
and epicardium. These segmentation maps are crucial for calculating clinical indices
including left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic
volume (LVESV), right ventricular end-diastolic volume (RVEDV), right ventricular end-
systolic volume (RVESV), and ejection fraction (EF). In addition, these segmentation
maps are essential for motion analysis [66], patient-specific geometric model generation
[67] and uncertainty estimation [68]. Before going into the topic, we need to know the
real anatomy of the human heart and the cardiovascular diseases associated with it.

1.10.1 Human Heart Anatomy

The heart is a finely-tuned organ of the human body that is primarily responsible for
pumping blood and circulating oxygen throughout the body [69]. It sits slightly to the
left of the center of the chest in a thorax. It has four chambers: two atria and two
ventricles (Figure 1.18). The right atrium and right ventricle together make up the
"right heart," and the left atrium and left ventricle make up the "left heart" which are
separated by the septum wall. The heart’s blood-pumping cycle, called the cardiac cycle
consists of two phases: diastole – the heart relaxes when it receives blood through the
atrium from the body and systole – the ventricles contract due to the excessive pressure
in the ventricles when it pumps blood to the body. The heart’s outer wall is made up
of three layers: epicardium, the middle layer, or myocardium, and the inner layer, or
endocardium.

1.10.2 Cardiovascular Diseases

Cardiovascular diseases (CVDs) are the leading cause of death for both men and women
in the United States (US) according to the American Heart Association and someone
dies from a distinct form of CVDs in every 38 seconds, based on 2016 data 21. Even
the number is set to reach 130 million by the year 2035 as projected by the American
Heart Association[70]. According to a 2020 report from American Heart Association
(AHA), [71], a large proportion of deaths resulting from CVDs are due to coronary
heart disease (CHD) which buildup of cholesterol on the inner walls of the arteries
restricting the blood flow to the heart muscle. Eventually, it may cause a heart attack.

21https://newsroom.heart.org/news/nearly-half-of-all-u-s-adults-have-some-form-of-cardiovascular-
disease?
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Figure 1.18: 3D model showing the full view of the human heart (top-left), ventricles
(bottom-left), right-ventricle shape (bottom-right), and top-view (top-right) (Image
adapted from 20).

Cardiomyopathy is another type of cardiovascular disease (CVD) that enlarge and stiffen
the heart abnormally [72]. As a result, the heart muscle can not pump blood efficiently
causing failure of heart rhythms. Among different cardiomyopathy categories, dilated
cardiomyopathy (DCM) has the increased mortality rate caused by intra-ventricular
conduction delay with dyssynchronous wall motion [73]. The latter cause can reduce
cardiac systolic function while increasing oxygen consumption causing the arrhythmia.

Table 1.1: Imaging Planes for Cardiac Structures.

Cardiac Structures Imaging Planes

Left Ventricle Four-chamber view, horizontal long- and short-axis views
Right Ventricle Right-sided horizontal long-axis view, short-axis view
Left Atrium Horizontal long-axis view, and four-chamber view
Right Atrium Axial, coronal, and right-sided horizontal long-axis planes
Aorta Oblique sagittal plane
Main Pulmonary Artery Sagittal plane of the RVOT view
Coronary Arteries Three-point planes

23



Figure 1.19: Cardiac MRI anatomy: Short-axis (A), horizontal long-axis (B), two-
chamber (C), right ventricular outflow tract (D), and left ventricular outflow tract (E)
views (Image adapted from [74]).

1.11 Cardiac magnetic resonance imaging

The work in this dissertation focuses on cardiac MR imaging [75] which is a non-invasive
imaging technique most commonly used by the clinician for visualizing cardiac structure
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and function of the body. MR imaging provides a much higher soft tissue contrast, and
higher spatial and temporal resolution as well as it does not have any ionizing radiation
compared to CT or X-ray imaging.

As the heart is continuously in motion, it is difficult to acquire a volume. Instead, a
volume is acquired by stacking slices up in multiple orientations for displaying the heart.
The imaging planes are defined in reference to the long axis of the left ventricle. The
commonly used imaging planes are: (1) short axis view planes which are perpendicular
to the long axis; (2) horizontal long axis view (four-chamber view) is generated by
selecting the horizontal plane that is perpendicular to the short axis, (3) vertical long
axis (two-chamber view) is generated along a vertical plane orthogonal to the short-axis
plane [76, 77]. The optimal planes used for evaluating the major structures and chambers
of the heart are listed in Table 1.1 and shown in Figure 1.19.

Figure 1.20: Cine cardiac MR imaging: ECG triggering versus retrospective ECG gating.
Cine imaging is achieved by acquiring data for a single slice location at multiple time
points throughout the cardiac cycle ( Image adapted from [78]).

Among different cardiac MRIs, cine cardiac MRI has become the gold standard
thanks to the use of ultrafast steady-state gradient echo pulse sequence with retrospective
gating which has the advantage of having a high signal-to-noise ratio and a high T2/T1
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contrast. Blood typically appears bright in these sequences due to those properties
clearly discriminating between blood and myocardium. An example of this imaging
modality is shown in Figure 1.20.

1.12 Challenges of Cardiac Segmentation

Although recent research efforts have detected the contours of cardiac structures from
MRI automatically, there are still some challenges that make it difficult to put them
into clinical application. One of the key challenges is that CMR images exhibit great
variability due to differences in the acquisition protocols. Also, pathological changes
such as myocardial infarction, and hypertrophy may lead to morphological changes in
the LV which are shown in Figure 1.21. Simultaneously, the LV being the only moving
organ in the thorax, undergoes continuous deformation during the cardiac cycle which
makes the contour of the epicardium difficult to predict correctly. Additionally, the
papillary muscles inside the heart chambers have the same intensity as the myocardium
which makes it difficult to distinguish them from the myocardium. This variability must
be accounted for during the segmentation.

1.13 Ventricle Segmentation

1.13.1 FCN-based Segmentation

Tran [80] was one of the first to use an FCN on short-axis cardiac magnetic resonance
(MR) images to segment the left ventricle, myocardium, and right ventricle. Their
end-to-end technique based on FCN outperformed previous segmentation approaches
in terms of both speed and accuracy. In the years since, a number of studies based
on FCNs have been proposed, with the goal of improving segmentation performance
even more. One line of research in this area focuses on optimizing network structure
to improve feature learning capacity for segmentation ([81], [82], [35]). Jain et al. [83],
for example, designed a CNN model for cardiac image segmentation using a 2D and
3D segmentation pipeline. Isensee et al. [35] proposed to segment bi-ventricle and
myocardium using an ensemble of modified 2D and 3D U-Net. Wolterink et al. [84]
designed a deep neural network for automatic cardiac segmentation, as well as disease
classification from the cardiac features. Baumgartner et al. [85] explored various 2D
and 3D convolution neural networks for the segmentation of the left (LV) and right (RV)
ventricular cavities and the myocardium. Khened et al. [81] employed a multi-scale
residual DenseNet model to automatically segment the cardiac structure from the cine
MRI sequence. Although these methods were successful for cardiac segmentation, the
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Figure 1.21: Variability among cardiac images in terms of both appearance and shape
(Image adapted from [79]).

use of deep model compression tasks for medical image segmentation is still rarely
reported.

1.13.2 Multi-Stage Networks

There has recently been a surge in interest in using neural networks in a multi-stage
pipeline that divides the segmentation problem into subtasks. For example, Zheng et al.
[86] and Li et al. [87] presented a segmentation network followed by a region-of-interest
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(ROI) localization network. Vigneault et al. [88] introduced the Omega-Net network,
which comprises a U-net for cardiac chamber localization, a learnable transformation
module for image orientation normalization, and a succession of U-Nets for fine-grained
segmentation.

1.13.3 Multi-Task Learning

Multi-task learning (MTL) techniques have shown promising results for improving
the generalizability of any models by jointly tackling multiple tasks, such as motion
estimation (Qin et al., [89]), estimation of cardiac function (Dangi et al., [90]), uncertainty
estimation (DeVries et al., [91]) and image reconstruction (Chartsias et al., [92]) through
shared representation learning. When a network is trained for multiple tasks at the
same time, it is more likely to extract features that are valuable across all of them,
resulting in increased learning efficiency and prediction accuracy.

1.13.4 Utilizing Unlabeled Data

Semi-supervised learning has aroused much research attention thanks to the availability
of large-scale unlabeled data. Semi-supervised learning (SSL) aims to revamp the model
performance by learning from a small portion of labeled data along with optimizing
an additional unsupervised loss on a larger portion of unlabeled data, assumed to
be sampled from the similar distributions, depending on what type of information
needs to be captured from the unlabeled data. Commonly, the rationale of SSL is
based on generative models and adversarial networks. The integration of consistency
regularization in SSL has shed light on standard baselines recently. By optimizing this
loss term, the model sets assumptions on the decision boundary to avoid the high-density
regions of the unannotated data.

Generative adversarial learning can be adapted to semi-supervised learning for
semantic segmentation [93, 94] as well. Adversarial networks use a critic to predict the
pixel-level distribution of the data, which acts as an adversarial loss term to provide the
generator with learnable useful visual features for medical image synthesis [95].

1.13.5 Unsupervised Learning in Medical Domain

The goal of unsupervised learning is to learn without the need of paired labeled data.
Unsupervised learning methods for cardiac image segmentation have a small body of
work compared to semi-supervised tasks, possibly due to the task’s difficulty. Without
requiring a training set of paired pictures and labels, an early attempt was made to train
a network segmenting LV and RV from CT and MR images via adversarial training
(Joyce et al. [96]).
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1.14 Deep Learning-Based Deformable Registration

The goal of cardiac motion estimation is to compute the optical flow representing the
displacement vectors between consecutive 3D frames of a 4D cine CMR dataset, an
image registration problem. To date, a number of approaches for motion estimation from
cine MRI have been studied, including optical flow-based registration methods [97] and
techniques based on feature tracking [98]. Metaxas et al. [99] proposed a physics-based
framework for reconstructing the motion of the LV and RV from MRI-SPAMM (Spatial
Modulation of Magnetization) data. Here, the authors deform the computed dynamic
models with forces computed from the automatically segmented boundary data points.
Similarly, Park et al. [100] presented the use of finite element methods (FEM) to recover
the right ventricle (RV) motion using parameter functions.

Recent approaches involve integrating anatomical data into a consistent framework
to build patient-specific models. Hoogendoorn et al. [101] proposed a bilinear model for
the extrapolation of cardiac motion assuming that the motion of the heart is independent
of its shape. Xi et al. [67] proposed a bi-ventricular computational model to analyze
ventricular mechanics in a pulmonary arterial hypertension patient from cine cardiac
MRI images.

1.15 Atrial Segmentation

Atrial Fibrillation is the most common cardiac arrhythmia with increased mortality and
morbidity. Important examples of such diseases include stroke, transient ischemic attack,
myocardial infarction, heart failure, etc. As a result, atrial segmentation is critical in
the clinic, as it improves the assessment of atrial anatomy in both pre-operative and
post-operative atrial fibrillation (AF) ablation planning and follow-up evaluations. In
addition, scar segmentation and atrial fibrosis quantification from LGE pictures can
be based on atrium segmentation. Traditional approaches for automated left atrium
segmentation have included region growth (Karim et al., [102]) and methods that use
strong priors (e.g. atlas-based label fusion (Tao et al., [103]) and non-rigid registration
(Zhuang et al., [104]).

To date, a number of approaches address SSL along with MTL-based segmentation
from MRI including adversarial learning-based method [105], mutual learning-based
approach [106] and techniques based on signed distance map [107]. Recent approaches
involve integrating uncertainty map into a mean-teacher framework to guide student
network [108] for left atrium segmentation. However, this method lacks the geometric
shape of semantic objects, leading to poor segmentation at the edges. Li et al. [109]
proposed an adversarial-based decoder to enforce the consistency between the model
predictions on the original data and the data perturbed by adding noise into it.
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1.16 Cardiac Indices

Clinical indices associated with the obtained segmentation are used to assess and provide
synergistic information on cardiac function describing the overall ability of the heart to
deliver blood to the rest of the body.

1.16.1 Clinical Indices

To assess the performance of the ventricles, different indices have been used in the
literature [110], such as left ventricular volume (LVV), left ventricular myocardial mass
(LVM), stroke volume (SV), and ejection fraction (EF). The left ventricular volume
(LVV) is defined as the volume enclosed by the LV blood pool and the myocardial mass
is equal to the volume of the myocardium, multiplied by the density of the myocardium:

Myo-Mass = Myo-Volume (cm3)× 1.06 (gram/cm3) (1.13)

Stroke volume (SV) is defined as the volume ejected during systole and is equal to the
difference between the end-diastolic volume (EDV) and the end-systolic volume (ESV):

SV = EDV − ESV × 100% (1.14)

The ejection fraction (EF) is an important cardiac parameter quantifying the cardiac
output and is defined as the ratio of the SV to the EDV:

EF =
SV

EDV
× 100% (1.15)

Correlation Coefficient

The Pearson correlation coefficient [111] is a statistical measure that calculates the
strength of the relationship between the relative movements of two variables x and
y varying between ± 1. A value of + 1 is a total positive linear correlation, 0 is no
linear correlation, and −1 is a total negative linear correlation. Given a pair of random
variables (x, y), the correlation-coefficient can be written as:

ρxy =
Cov(x, y)

σxσy

=
E[(x− µx)(y − µy)]

σxσy

(1.16)

where Cov denotes the covariance, E refers to the expected value and σ is the standard
deviation of the variable.
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1.16.2 Segmentation Indices

Different metrics are used to evaluate the performance of the segmentation with that of
the manual segmentation such as dice similarity coefficient (DSC) [112], intersection
over union (IoU) / Jaccard index, Hausdorff Distance, precision, and recall.

Dice and Jaccard Coefficients

DICE is used to measure the percentage of overlap between manually segmented
boundaries and automatically segmented boundaries of the structures of interest. Given
the set of all pixels in the image, the set of foreground pixels by automated segmentation
Sa
1 , and the set of pixels for ground truth Sg

1 , DICE score can be compared with [Sa
1 ,

Sg
1 ]⊆ Ω, when a vector of ground truth labels T1 and a vector of predicted labels P1,

Dice(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1|

(1.17)

DICE score will measure the similarity between two sets, T1 and P1 and |T1| denotes
the cardinality of the set T1 with the range of D(T1,P1) ϵ [0,1].

The Jaccard Index or Jaccard similarity coefficient is another metric that aids in the
evaluation of the overlap in two sets of data. This index is similar to the Dice coefficient
but mathematically different and typically used for different applications. For the same
set of pixels in the image, the Jaccard index can be written by the following expression:

Jaccard(T1, P1) =
|T1 ∩ P1|
|T1 + P1|

(1.18)

Hausdorff Distance

Hausdorff distance (HD) [113] measures the maximum distance between two surfaces.
Let, SA and SB, surface corresponding to two binary segmentation masks, A and B,
respectively. Hausdorff Distance (HD) is defined as:

HD = max
(
max
pϵSA

d(p, SB),max
qϵSB

d(q, SA)
)

(1.19)

where d(p, S) = min qϵSd(p, q) is the minimum Euclidean distance of point p from the
points q ϵ S.
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Precision and Recall

Precision and recall are other forms of metrics to measure the segmentation quality
which are sensitive to under and over-segmentation. High values of both precision and
recall indicate that the boundaries in both segmentation agree in location and level of
detail. Precision and recall can be written as:

Precision =
TP

TP + FP
(1.20)

Recall =
TP

TP + FN
(1.21)

where, TP denotes the true positive rate when a prediction-target mask pair has a score
which exceeds some predefined threshold value; FP denotes a false positive rate when a
predicted mask has no associated ground truth mask; FN denotes a false negative rate
when a ground truth mask has no associated predicted mask.

1.17 Motivation for Effective Image Segmentation Tools

Humans have a diverse range of powerful sensory abilities that allow them to interact
with their surroundings. Based on the diverse range of information surrounding the
scene when a human observer looks at it, their visual system effectively divides a scene
into various parts. This method is particularly effective because it requires the viewer to
focus on a group of semantically defined objects as opposed to a complex scene, which
would otherwise require more observation time. This was my initial realization regarding
the concept of automatically segmenting objects using machine learning methods.

Despite the fact that this research question is well-known, developing a trustworthy,
accurate, and high-performing solution still remains a significant challenge in the
modern world. With the widespread application of deep supervised learning in the
field of computer vision in recent years, tremendous progress has been made across
a variety of visual tasks, generating spectacular results. While deep learning has
demonstrated its potential in a variety of medical image processing tasks, including
segmentation, uncertainty estimation, registration, motion prediction, etc., many of these
accomplishments have come at the expense of a huge amount of labeled data. Obtaining
labeled images, on the other hand, is time-consuming and expensive, making large-scale
deep-learning models challenging to implement in clinical settings. To obtain these
annotations, clinical experts construct polygons around regions with the same semantic
class One accurate polygon takes at least half a minute, and if a pathology image has
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10 polygons (a conservative estimate), a clinician can complete 12 such images in an
hour. Then, it takes roughly 42 hours of human labor to create a dataset that includes
5 classes with 100 images each. This estimate fails to account for quality assurance
measures and the fact that every new semantic category necessitates re-labeling the
entire dataset.

To address these timing expensive and financial constraints, as well as the limited
labeled data problem, we modified our fully supervised tasks into semi-supervised
learning (SSL) tasks by imposing a strong assumption on the decision boundary and by
leveraging supplementary information from unlabeled data. While it is safer to acquire
data non-invasively from the patients, the applications of segmentation, registration, and
motion estimation from the generated segmentation in the real-world clinical setting are
still limited due to the lack of trustworthiness caused by the limited prediction capabilities
of deep learning models. For clarity below, we summarize the major challenges associated
with the segmentation of ventricular structures from cardiac MRI.

• Medical Images are Expensive: While deep learning has shown its potential
in a variety of medical image analysis problems including segmentation, motion
estimation, etc., generalizability is still an unsolved problem and many of these
successes are achieved at the cost of a large pool of datasets. And for most
practical applications, getting access to a copious dataset can be very difficult
often impossible.

• Correctly Labeled Data are Expensive: The emerging success of deep
convolutional neural networks (CNNs) has made them the de facto model for
solving high-level computer vision tasks. However, such approaches mostly rely on
a large amount of annotated data for training which acquisition is expensive and
laborious. This cost can be maximal when annotation must be done by a clinical
expert in medical imaging applications. Medical image annotation is tedious and
time-consuming, and, even if outsourced, it is still financially straining. Therefore,
there is a challenge in training deep learning models from limited data while
improving the overall generalization.

• Sources of Uncertainty: Firstly, when a physician advises a patient to take
specific drugs based on a medical record analysis, the physician frequently relies
on the expert who is analyzing the medical record’s confidence. However, the
emergence of techniques like automatic cardiac structure segmentation based on
MRI scans could complicate the procedure significantly. Even in the hands of
an expert, such systems may introduce biases that impair the expert’s judgment.
When a system encounters test samples that are outside of its data distribution, it
is easy for it to offer irrational suggestions, unjustly biasing the expert. However, if
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model confidence is high enough, an expert might be notified when the algorithm
is simply guessing at random.

Secondly, while deep learning has shown potential in solving a variety of medical
image analysis problems including segmentation, registration, motion estimation,
etc., their applications in the real-world clinical setting are still limited due to
the lack of reliability caused by the failures of deep learning models in prediction.
Moreover, while using a CNN in an automated image analysis pipeline, however,
it’s critical to understand which segmentation results are problematic and require
manual examination. This may enhance workflow efficiency by concentrating on
problematic segmentations, avoiding the need to review all images, and reducing
downstream analysis errors. Therefore, the estimation of uncertainty calibration
in a semi-supervised setting for medical image segmentation is still rarely reported
and could be viable research to be included in this dissertation.

1.18 Contributions

As illustrated in Figure 1.22, the contributions reported in this thesis include a detailed
description of the proposed methods to overcome the challenges with the segmentation
of 2D, 3D, and 4D medical images from Endoscopic and Cine MRI modalities and range
from low-level image processing to fully-supervised learning, transfer learning, generative
modeling, semi-supervised learning, and multi-task learning.
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Figure 1.22: Pipeline of thesis contributions. Our contributions range from supervised,
transfer, and disentangled learning to semi-supervised multi-task learning.

SEGMENTATION OF (SURGICAL INSTRUMENTS FROM LAPARO-
SCOPIC IMAGES AND CARDIAC FEATURES FROM CINE MRI IM-
AGES) VIA SUPERVISED SINGLE-TASK LEARNING

• The first main contribution of the thesis is to develop a modified U-Net architecture
for surgical instrument segmentation from laparoscopic images. A fully convolu-
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tional auto-encoder framework consisting of transfer learning approaches is de-
signed, where we used a pre-trained model as the encoder with batch-normalization,
which converges much faster than the network trained from scratch. To further
improve robustness, we substituted the deconvolution layer with an upsampling
layer in the decoder part that uses nearest-neighbor interpolation followed by two
convolution layers. Experiments demonstrate its better performance than other
competing methods on the MICCAI 2017 EndoVis Challenge dataset for both
binary and multi-class semantic and instance segmentation.

• To further demonstrate the application of our above-mentioned tool segmentation,
we presented a novel application of digitally removing the surgical instruments from
laparoscopic/endoscopic video using digital inpainting to allow the visualization of
the anatomy being obscured by the tool during surgical procedures. To segment
the surgical instruments, we use our prior work – U-NetPlus composed of a
pre-trained encoder and re-designed decoder. The tool removal algorithms use
tool segmentation masks and either instrument-free reference frames or previous
instrument-containing frames to fill in (inpaint) the instrument segmentation mask.
We have demonstrated the performance of our surgical tool segmentation/removal
algorithms on a robotic instruments dataset from the MICCAI 2015 EndoVis
Challenge. We also showed successful performance of the tool removal algorithm
from synthetically generated surgical instruments containing videos obtained by
embedding a moving surgical tool into surgical tool-free videos. Our application
successfully segments and removes the surgical tool producing visually comparable
results to the ground truth.

• In chapter 3, we presented to address the problem of 4D cardiac cine MRI
segmentation from an intricate anatomy of the heart. The complex motion of the
heart, the presence of trabeculations, intensity inhomogeneity, and various other
imaging artifacts, make the cardiac segmentation task challenging. We design a new
paradigm for accurate LV, RV blood pool, and myocardium segmentation from cine
cardiac MR images by combining the memory-efficient CondenseNet architecture
with the modified U-Net model. The capability of our network to learn the group
structure allows multiple groups to reuse the same features via dense connectivity.
Moreover, the integration of efficient weight pruning with a simple regularizer
leads to high computational savings without compromising the accuracy of the
segmentation and the fidelity of the estimated clinical parameters. Our designed
work reveals that a properly designed condensely connected network, when trained
in the U-Net-shaped framework, produces significantly higher performance with
fewer trainable parameters.

35



• To reduce the computational complexity of the deep learning model and improve
segmentation accuracy, we used a low-level image pre-processing operation which
serves as a precursor preliminary segmentation that narrows the capture range of
the subsequent deep learning segmentation and parameter estimation. We used
the circle Hough transform to identify the center and radius of the ROI of the LV
and RV and then generated a bounding box to crop the ROI from the image. The
extracted ROI is used by our proposed learned-condensation optimization network
(L-CO-Net) during training and inference time. This combined approach helps
in the reduction of GPU memory usage, inference time, and elimination of False
Positives. Our experiments show that L-CO-Net runs on the 4D cardiac dataset
using 50% of the memory requirements of Dense-Net and 8% of the memory
requirements of U-Net, while still maintaining excellent clinical accuracy.

• In chapter 3, we also described a segmentation pipeline that integrates a Monte
Carlo dropout CondenseUNet model with inherent uncertainty estimation, with the
overall goal to study the uncertainty associated with the obtained segmentations
and errors, as a means to flag regions that feature less than optimal segmentation
results. This overall pipeline will increase the reliability of automatic segmentation
for both research and clinical use. Our study further showcases the potential of
our deep-learning framework to evaluate the correlation between the uncertainty
and the segmentation errors for a given model. The overall goal of this work
is to demonstrate how this method can be employed to evaluate uncertainty in
cardiac MRI segmentation, to inform an expert whether and where the generated
segmentation should be corrected, and the extent to which it can be trusted. The
proposed model was trained and tested on the Automated Cardiac Diagnosis
Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient datasets for the
segmentation and uncertainty estimation of the left ventricle (LV), right ventricle
(RV), and myocardium (Myo) at end-diastole (ED) and end-systole (ES) phases.

SEGMENTATION (OF THE LEFT ATRIUM FROM LATE GADOLINIUM-
ENHANCED CARDIAC MRI IMAGES) VIA SEMI-SUPERVISED SINGLE-
TASK LEARNING

• In chapter 4, we developed a simple, yet effective semi-supervised learning frame-
work for image segmentation—STAMP (Student-Teacher Augmentation-driven
consistency regularization via M eta Pseudo-Labeling). The method uses self-
training (through meta pseudo-labeling) in concert with a Teacher network that
instructs the Student network by generating pseudo-labels given unlabeled input
data. Unlike pseudo-labeling methods, for which the Teacher network remains
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unchanged, meta pseudo-labeling methods allow the Teacher network to constantly
adapt in response to the performance of the Student network on the labeled
dataset, hence enabling the Teacher to identify more effective pseudo-labels to
instruct the Student. Moreover, to improve generalization and reduce error rate,
we apply both strong and weak data augmentation policies, to ensure the segmen-
tor outputs a consistent probability distribution regardless of the augmentation
level. Our extensive experimentation with varied quantities of labeled data in the
training sets demonstrates the effectiveness of our model in segmenting the left
atrial cavity from Gadolinium-enhanced magnetic resonance (GE-MR) images.
By exploiting unlabeled data with weak and strong augmentation effectively, our
model yielded a statistically significant 2.6% improvement (p < 0.001) in Dice
and a 4.4% improvement (p < 0.001) in Jaccard over other state-of-the-art SSL
methods using only 10% labeled data for training.

SEGMENTATION, UNCERTAINTY ESTIMATION AND RECONSTRUC-
TION (OF CARDIAC STRUCTURES FROM CINE MRI) VIA SEMI-
SUPERVISED MULTI-TASK LEARNING

• We presented a semi-supervised (CqSL) model in chapter 5, that combines recent
developments in semi-supervised learning, generative models, adversarial learning,
and effective use of Feature-wise Linear Modulation (FiLM) in the Skeleton
Decoder to get-rid off domain-invariant information from the Sentiency latent
code as well as Spatially adaptive Normalization (SPADE)-based decoder to
guide the synthesis of more texture information to restrain posterior collapse
of the variational autoencoder (VAE) and the spatial information. Our model
leverages a large amount of unannotated data from cardiac dataset to learn the
interpretable representations through judicious choices of sentiency factors as
strong prior knowledge for two of the foremost critical tasks in medical imaging
— segmentation of cardiac structures and reconstruction of the original image —
and both assignments are handled by the same model.

• To generate smooth and accurate segmentation masks from 3D cardiac MR
images, we developed a Multi-task Cross-task learning (MTCTL) consistency
model to enforce the correlation between the pixel-level (segmentation) and the
geometric-level (distance map) tasks for jointly learning multiple tasks in a single
backbone module – uncertainty estimation, geometric shape generation, and
cardiac anatomical structure segmentation. Our extensive experimentation with
varied quantities of labeled data in the training sets justifies the effectiveness of
our model for the segmentation of the left atrial cavity from Gadolinium-enhanced
magnetic resonance (GE-MR) images.
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• In chapter 6, we proposed a novel method that incorporates uncertainty estimation
to detect failures in the segmentation masks generated by CNNs. Our study
further showcases the potential of our model to evaluate the correlation between
uncertainty estimation and the segmentation errors for a given model. Furthermore,
we introduce a multi-task cross-task learning consistency approach to enforce the
correlation between the pixel-level (segmentation) and the geometric-level (distance
map) tasks. Our extensive experimentation with varied quantities of labeled data
in the training sets justifies the effectiveness of our model for the segmentation
and uncertainty estimation of the left ventricle (LV), right ventricle (RV), and
myocardium (Myo) at end-diastole (ED) and end-systole (ES) phases from cine
MRI images available through the MICCAI 2017 ACDC Challenge Dataset. Our
study serves as a proof-of-concept of how uncertainty measure correlates with
the erroneous segmentation generated by different deep learning models, further
showcasing the potential of our model to flag low-quality segmentation from a
given model in our future study.

SEGMENTATION AND REGISTRATION-BASED MOTION EXTRAC-
TION (FOR DYNAMIC RIGHT VENTRICLE GEOMETRIC MODELING)
VIA UNSUPERVISED LEARNING

• To demonstrate the application of cardiac segmentation, we described the devel-
opment of dynamic patient-specific right ventricle (RV) models associated with
normal subjects and abnormal RV patients to be subsequently used to assess RV
function based on motion and kinematic analysis. We first constructed static RV
models using segmentation masks of cardiac chambers generated from our accurate,
memory-efficient deep neural architecture – CondenseUNet – featuring both a
learned group structure and a regularized weight-pruner to estimate the motion
of the right ventricle. In our study, we use a deep learning-based deformable
network that takes 3D input volumes and outputs a motion field which is then
used to generate isosurface meshes of the cardiac geometry at all cardiac frames
by propagating the end-diastole (ED) isosurface mesh using the reconstructed
motion field. The proposed model was trained and tested on the Automated
Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI
patient datasets. The isosurface meshes generated using the proposed pipeline were
compared to those obtained using motion propagation via traditional non-rigid
registration based on several performance metrics, including Dice score and mean
absolute distance (MAD).

38



1.19 Thesis Outline

• Chapter 1 reviews the background and related works on AI-based cardiac model
segmentation.

• Chapter 2 presents a novel application for segmenting and digitally removing
surgical instruments from endoscopic/laparoscopic videos. The materials presented
in this chapter are adapted from the manuscript published at the 41st International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
2019 as well as from SPIE Medical Imaging, 2021.

• Chapter 3 presents a memory-efficient deep-learning-based architecture for ac-
curate LV, RV blood-pool, and myocardium segmentation, clinical parameter
quantification, uncertainty estimation, and generation of isosurface meshes from
breath-hold cine cardiac MRI. The materials presented in this chapter are adapted
from five different manuscripts (IEEE EMBC 2020, 2021, 2022, SPIE Medical
Imaging 2020, and ISBI 2020).

• In Chapter 4, we presented a self-training-based approach (through meta pseudo-
labeling) in concert with a Teacher network that instructs the Student network
by generating pseudo-labels given unlabeled input data. Unlike pseudo-labeling
methods, for which the Teacher network remains unchanged, meta pseudo-labeling
methods allow the Teacher network to constantly adapt in response to the perfor-
mance of the Student network on the labeled dataset, hence enabling the Teacher
to identify more effective pseudo-labels to instruct the Student. The materials
presented in this chapter are adapted from the manuscript published in Annual
Conference on Medical Image Understanding and Analysis (MIUA), Springer,
2022.

• In Chapter 5, we described a semi-supervised learning model (CqSL) with multiple
novel loss functions mentioning mutual information minimization (MIM), which
minimizes the mutual information between the domain-invariant as well as domain-
specific features. The materials presented in this chapter are adapted from the
manuscript published in the MDPI Journal of Applied Sciences.

• Chapter 6 presents a novel semi-supervised framework exploiting adversarial
learning and task-based consistency regularization for jointly learning multiple tasks
in a single backbone module – uncertainty estimation, geometric shape generation,
and cardiac anatomical structure segmentation. The materials presented in this
chapter are adapted from the manuscript published in Computing in Cardiology
(CinC), 2021 as well as from SPIE Medical Imaging, 2022.

39



• Finally, Chapter 7 concludes the dissertation with a summary of our work and
promising future research directions.
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Chapter 2

Semantic Segmentation and Removal of
Surgical Instruments from Endoscopic /
Laparoscopic Video Images

With the advent of robot-assisted surgery, there has been a paradigm shift in medical
technology for minimally invasive surgery. However, it is very challenging to track the
position of the surgical instruments in a surgical scene, hence the accurate detection and
identification of surgical tools are paramount. Deep learning-based semantic segmentation
of surgical video frames has the potential to facilitate this task. However, these surgical
tools can obscure surgeons’ dexterity control due to narrow working space, and visual
field-of-view, which increases the risk of complications resulting from tissue injuries (e.g.
tissue scars and tears). This chapter demonstrates a novel application of segmenting and
removing surgical instruments from laparoscopic/endoscopic video using digital inpainting
algorithms. To segment the surgical instruments, we use a modified U-Net architecture (U-
NetPlus)1 composed of a pre-trained VGG11 or VGG16 encoder and redesigned decoder.
The decoder is modified by replacing the transposed convolution operation with an up-
sampling operation based on nearest-neighbor (NN) interpolation. This modification
removes the artifacts generated by the transposed convolution, and, furthermore, these new
interpolation weights require no learning for upsampling operation. To further improve
performance, we also employ a very fast and flexible data augmentation technique. The
tool removal algorithms use the previously obtained tool segmentation masks along with

1This chapter is adapted from:
[1] Hasan SMK et al., Segmentation and removal of surgical instruments for background scene visual-
ization from endoscopic/laparoscopic video. Proc. SPIE Medical Imaging – Image-guided procedures,
Robotic Interventions, and Modeling. Vol. 11598. Pp.: 115980A-1-7. 2021.
[2] Hasan SMK et al., U-NetPlus: A Modified Encoder-Decoder U-Net Architecture for Semantic and
Instance Segmentation of Surgical Instruments. Proc. IEEE Eng Med Biol. Pp.: 7205-7211. 2019.
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either instrument-free reference frames or previous instrument-containing frames to fill in
i.e., inpaint the instrument segmentation mask. We have demonstrated the performance
of the proposed surgical tool segmentation/removal algorithms on a robotic instrument
dataset from the MICCAI 2015 and 2017 EndoVis Challenge. Using our U-NetPlus
architecture, we report a 90.20% DICE for binary segmentation, 76.26% DICE for
instrument part segmentation, and 46.07% for instrument type (i.e., all instruments)
segmentation on MICCAI 2017 challenge dataset, outperforming the results of previous
techniques implemented and tested on these data. We also showed successful performance
of the tool removal algorithm from synthetically generated surgical instruments containing
videos obtained by embedding a moving surgical tool into surgical tool-free videos. Our
application successfully segments and removes the surgical tool to unveil the background
tissue view otherwise obstructed by the tool, producing visually comparable results to the
ground truth.

2.1 Introduction

Minimally invasive surgery has addressed many of the challenges of traditional surgical
approaches by significantly reducing the risk of infections and shortening hospitalization,
achieving similar outcomes as traditional open surgery. There is a new paradigm shift in
this field thanks to robot assistance under laparoscopic visualization [1]. To facilitate the
manipulation of the laparoscopic surgical instruments while visualizing the endoscopic
scene, surgical instrument identification is critical. Nevertheless, this task is challenging,
due to the surrounding effects like illumination changes, visual occlusions, and the
presence of non-class objects. Accordingly, surgical instruments used in the endoscopic
surgical suturing procedures, obscure surgeons’ dexterity control due to narrow working
space, and visual field-of-view. These hindrances in the visual field increase the risk of
tissue scars and tears. Hence, it is important to devise segmentation techniques that
are sufficiently accurate and robust to ensure accurate tracking of the surgical tools to
facilitate therapy via accurate manipulation of the laparoscopic instruments. As such,
removing or rendering surgical instruments transparent from the background and then
inpainting the foreground masked region with the correct, corresponding background
information would help address tissue occlusion by surgical instruments.

Although in recent years semantic segmentation methods applied to city-scapes,
street scenes, and even Landsat image datasets [2, 3] have achieved ground-breaking
performance by the virtue of deep convolutional neural networks (CNNs), image segmen-
tation in clinical settings still requires more accuracy and precision, with even minimal
segmentation errors being unacceptable.

The first fully convolutional network was proposed by Long et al. [4] for semantic
segmentation. However, because of the limited size of the training dataset, its use in the
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medical domain has been challenging. Several techniques, including transfer learning
[5], data augmentation, and patch-based training [6], have been devised in an effort
to mitigate the above challenge. However, semantic segmentation is not sufficiently
accurate for handling multi-class objects, due to the close presence of objects of the
same class in the surgical scene. Therefore, the proposed work is motivated by the need
to improve multi-class object segmentation, by leveraging the power of the existing
U-Net architecture and augmenting it with new capabilities.

With the advent of U-Net architectures, a wide range of medical imaging tasks
has been implemented and produced state-of-the-art results since 2015 [7]. Recently,
Chen et al. modified the U-Net architecture by introducing sub-pixel layers to improve
low-light imaging [8] and obtained promising results, with high signal-to-noise-ratio
(SNR) and perfect color transformation on their own SID dataset. The authors in
[9, 10] used nearest-neighbor interpolation for image reconstruction and super-resolution.
The authors in [11] investigated the problem of transposed convolution and provided a
solution by nearest-neighbor interpolation. However, the importance of integrating it
into the deep CNN as part of the image upsampling operation was not fully explored

Figure 2.1: Schematic diagram illustrating an artifact caused by the transposed
convolution operation: a) Checkerboard problem caused by applying a transposed
convolution on images of improper resolution (a) resulting in uneven overlap (b), and
artifacts (c) that can be minimized and essentially eliminated by applying a nearest-
neighbor interpolation up-sampling operation (d).
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so far. There have been a few papers tackling the segmentation and identification of
surgical instruments from the endoscopic video image, and, even fewer than half a dozen
papers tackling this challenge using deep learning. One notable research contribution
has been the use of a modified version of FCN-8, yet with no attempts for multi-class
segmentation [12].

Multi-class (both instrument part and type) tool segmentation was first proposed
by Shvets et al. [13], and Pakhomov et al. [14] and achieved promising results. They
modified the classic U-Net model [7] that relies on the transposed convolution or
deconvolution, in a similar, yet opposite fashion to the convolutional layers. As an
example, instead of mapping from 4× 4 input pixels to 1 output pixel, they map from 1
input pixel to 4 × 4 output pixels. However, its computational performance is much
slower, as the filters need additional weights and parameters that also require training in
an end-to-end manner. Additionally, transposed convolution can easily lead to “uneven
overlap”, characterized by checkerboard-like patterns resulting in artifacts on a variety
of scales and colors [11]. Redford et al. [15] and Salimans et al. [16] introduced the
drawback associated with those artifacts and checkerboard patterns generated by the
transposed convolution which is shown in Figure 2.1. While it is difficult to entirely
remove these limitations and their resulting artifacts, our goal is to, at first, minimize
their occurrence.

Input Ground	Truth

Prediction

Pre-trained	Encoder Interpolated	Decoder

Loss

Figure 2.2: Pipeline of surgical instruments segmentation.

Hence, in the efforts to mitigate these challenges associated with the classic U-Net
architecture, in this work, we present the U-NetPlus model by introducing both VGG-11
and VGG-16 as an encoder with batch-normalized pre-trained weights and nearest-
neighbor interpolation as the replacement of the transposed convolution in the decoder
layer (Figure 2.2). This pre-trained encoder [17] speeds up convergence and leads to
improved results by circumventing the optimization challenges associated with the target
data [18]. Moreover, the nearest-neighbor interpolation used in the decoder section
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removes the artifacts generated by the transposed convolution.

To test the proposed U-NetPlus network, we implemented some of the recent state-
of-the-art surgical tool segmentation architectures and compared their results to those of
the U-NetPlus architecture. From the above-mentioned papers, only one seems to have
achieved results comparable to ours [17], but it still suffers from several artifacts, which we
have been able to further mitigate some of these artifacts using our proposed method. As
such, while this paper leverages some of the existing infrastructures of fully convolutional
network, it focuses on demonstrating the adaptation of existing infrastructure to refine
its performance for a given task — in this case, the segmentation and identification
of surgical instruments from endoscopic images — rather than proposing a new fully
convolutional framework. We demonstrate that the potential use of nearest-neighbor
interpolation in the decoder removes artifacts and reduces the number of parameters.

Additionally, we present an innovative application of our neural net-based surgical
tool segmentor (U-NetPlus) to digitally remove surgical tools from video frames enabling
the visualization of anatomy otherwise obscured by the tool. The authors know of only
one other work tackling the segmentation and modification of surgical instruments in
endoscopic/laparoscopic videos. Koreeda et al. [19] presented a hardware/software-
based solution to visualize areas obscured by surgical instruments. Nevertheless, their
method poses some limitations related to the need for multiple endoscopes present, which
may increase patient invasiveness. In this work, we have developed two image-driven
approaches for surgical tool removal; both approaches rely on the use of information
from the images captured by the laparoscope/endoscope to “paint over” the surgical
tool mask identified by our automated surgical tool segmentor. We show two example
renderings of the background otherwise hidden behind the surgical tool “removed” using
our proposed application in Figure 2.3.

Figure 2.3: An example of background renderings by our application: (a) tool containing
frame; (b) Inpainted tool; (c) Inpainted tool with yellow outline.
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2.2 Methodology

2.2.1 Overview of Proposed Segmentation Method

U-NetPlus has a downsampling path and an upsampling path, followed by a multi-class
softmax layer for pixel-wise segmentation, as illustrated in Figure 2.4.
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Figure 2.4: (a) Modified U-Net with batch-normalized VGG11 as an encoder and
upsampling as the decoder. Feature maps are denoted by rectangular shaped box. It
consists of both an upsampling and a downsampling path and the feature map resolution
is denoted by the box height, while the width represents the number of channels. Cyan
arrows represent the max-pooling operation, whereas light-green arrows represent skip
connections that transfer information from the encoder to the decoder. Red upward
arrows represent the decoder which consists of nearest-neighbor upsampling with a scale
factor of 2 followed by 2 convolution layers and a ReLU activation function; (b)-(d)
working principle of nearest-neighbor interpolation where the low-resolution image is
resized back to the original image.

Similar to U-Net, our proposed U-NetPlus works like an auto-encoder with both
a downsampling and an upsampling path. To maintain exactly the same number of
channels as in the encoder part, downsampling and upsampling paths are connected
through skip connections. This allows a very precise alignment of the mask to the
original image, which is particularly important in medical imaging. Furthermore,
skip connections mitigate the vanishing gradient problem by initiating multiple paths
for backpropagation. Generally, weights are initialized randomly to train a network.
However, limited training data can introduce overfitting problems, which become very
“expensive” as far as manually altering the segmentation mask. Therefore, transfer
learning can be used to initialize the network weights. But since a surgical instrument
is not a class of ImageNet, one way to use transfer learning for a new task is to partially
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reuse the ImageNet feature extractor — VGG-11 or VGG-16 as encoder — and then
add a decoder. An improvement has been introduced for the encoder part, where we
initiated a pre-trained VGG-11 and VGG-16 architecture with batch-normalization
layers that have 11 and 16 sequential layers, respectively. Following this modification, it
has been shown the pre-trained model is able to train the network within a very short
time and with greater accuracy [20].

The feature map of VGG-11 consists of seven convolutional layers of 3× 3 kernel
size followed by a ReLU activation function. For the reduction of the feature map size,
max polling with stride 1 was used. The number of channels is then doubled by the
pooling operation until reaching a total of 512 channels. Weights are copied from the
original pre-trained VGG-11 on Imagenet.

The key effect of batch normalization has been investigated in a recent paper [21].
According to this work, batch normalization not only reduces the internal co-variate
shift but also re-parameterizes the underlying gradient optimization problem that makes
the training more predictive at a faster convergence. After analyzing the impact of
inserting the BatchNorm layer, we applied the BatchNorm layer after each convolutional
layer. The downsampling path decreases the feature size while increasing the number of
feature maps, whereas the upsampling path increases the feature size while decreasing
the number of feature maps, eventually leading to a pixel-wise mask. For the upsampling
operation, we modified the existing architecture to reconstruct the high-resolution
feature maps. Rather than using transposed convolution, we used the nearest-neighbor
upsampling layer with a carefully selected stride and kernel size at the beginning of each
block followed by two convolution layers and a ReLU function that would increase the
spatial dimension in each block by a factor of 2.

Figure 2.5: (b-d) Working principle of nearest-neighbor interpolation where the low-
resolution image is resized back to the original image.

Nearest-neighbor interpolation upsamples the input feature map by superimposing a
regular grid onto it. Given Ii be the input grid which is to be sampled, the output grid
is produced by a linear transformation τθ(Ii). Therefore, for an upsampling operation,
τθ can be defined as:
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(
poi
qoi

)
= τθ(Ii) =

[
θ 0

0 θ

](
pti
qti

)
, θ ≥ 1, (2.1)

where (poi , q
o
i ) ϵ Ii are the original sampling input coordinates, (pti, qti) are the target

coordinates, and θ upsampling factor. The principle of how nearest-neighbor (NN)
interpolation works to enlarge the image size, is shown in Fig. 2.5. After locating the
center pixel of the cell of the output raster dataset on the input raster, the location of
the nearest center of the cell on the input raster will be determined and the value of that
cell on the output raster will be assigned afterward. As an example, we demonstrate the
upsampling of a 4×4 image using this approach. The cell centers of the output raster are
equidistant. A value is needed to be derived from the input raster for each output cell.
Nearest-neighbor interpolation would select those cells centers from the input raster that
are closest to that of the output raster. The black areas of the middle image can be filled
with the copies of the center pixel. Therefore, this fixed interpolation weights requires
no learning for upsampling operation compared to strided or transposed convolution
leading to create a more memory efficient upsampling operation. The algorithm is
similar to the one proposed and used by the authors of [22] in their work.

2.2.2 Surgical Tool Removal Method A: Optical Flow-Based
Video Object Removal Algorithms

The first approach is based on video object removal algorithms [23, 24] that employ
data from previous frames to replace the pixels of the segmented tools in the current
frame. The method works by establishing dense correspondences (optical flow) between
pixels (regions) occluded by the surgical tool in the current frame It(x, y) to the pixels
(i.e. regions) observed in the background region of a previous frame It−1(x, y)). The
background region ΩB corresponds to pixels not occluded by the foreground surgical tool
region ΩF . The optical flow is used to update a cumulative mapping function Vt(x, y)

that defines the correspondences between foreground pixels from the current frame t to
background pixels in the previous frames {I1, I2, , It−1}. This function can then be used
to inpaint the tool region. (using data from previous frames.)

The correspondences between the frames can be identified by using a parametric warp
model [25], such as an affine warp, defined as the solution of the following minimization
problem:

min
p

∑
x,yϵΩt

B ,

(x,y)̸=Ωt
F ,

(x+u,y+v)̸=Ωt−1
F

[It(x, y)− It−1(x+ u(x, y;p), y + v(x, y;p))]2 (2.2)
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where

[
u(x, y;p)
v(x, y;p)

]
=

[
p1 p3 p5
p2 p4 p6

]xy
1

 (2.3)

represents the displacement vector at pixel (x, y) from It to It−1 and ΩB represent the
background region used to determine the affine parameters p. The displacement field in
the missing tool region Ωt is determined by evaluating Equation 2.3 within the region
Ωt using the determined affine parameters p.
Alternatively, the correspondences can be determined by a non-parametric optical
flow-based model [26] as the variational minimization of the following problem:

min
u,v

∑
x,yϵΩt

B ,

(x,y)̸=Ωt
F ,

(x+u,y+v)̸=Ωt−1
F

[It(x, y)− It−1(x+ u(x, y), y+ v(x, y))]2 +α(|∇u(x, y)|2 + |∇v(x, y)|2)

(2.4)
where α is the weight between the data (first) and smoothness (second) term. The

data term represents the similarity between the pixel values of adjacent frames, while the
smoothness term enforces the smoothness of the flow fields. The data term is undefined
inside the tool regions ΩF

t and ΩF
t−1, so the smoothness term becomes the only constraint

resulting in the optical flow field being smoothly interpolated into the missing tool
region. We solve both Equation 2.2 and 2.4 using a multi-resolution (coarse-to-fine)
Gaussian pyramid framework.

The most straightforward way to inpaint the tool region of frame ΩF
t is to use the

correspondences (u, v) to trace the backward displacement at each pixel of the tool region
ΩF

t to find its corresponding location in a previous inpainted frame. The occluded pixel
in ΩF

t is then replaced by the corresponding pixel in ΩF
t−1 using bilinear interpolation.

The current inpainted frame t is then used as a source frame to inpaint the tool region
in next frame ΩF

t+1. A potential problem with this simple inpainting approach can occur
when the same anatomical features are covered by the tool for multiple frames. This
can result in the in-painted regions becoming blurry due to the repeated copying (via
bilinear interpolation) of pixels from the in-painted tool region into the tool region of
consecutive frames. This occurs when the tool dwells over or moves slowly across a
region covered by the tool.

To avoid this problem, we define a cumulative mapping function Vt(x) [23, 24] which
stores for each pixel the index of the source frame I1, I2, , It−1 and relative spatial shift
to the source background region where the pixel was last visible. This mitigates the
blurriness problem because source pixels used to inpaint the tool region are now being
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copied once via interpolation as oppose to multiple times. Letting x = (x, y) and w
= (u, v), the vector field Vt can be computed for each pixel x ∈ Ωt using the optical
flow w for frame t→ t− 1 by propagating the previous frame vector-field value Vt−1

(x+w(x)) using the following rule:

Vt(x) =


[w(x), t− 1] if xt−1 /∈ ΩF

t−1[
w(x) + V1

t−1(xt−1),V2
t−1(xt−1)

]
if Vt−1(xt−1) ̸= undefined

undefined otherwise
(2.5)

where xt−1 = x+w(x) is the corresponding pixel in the previous frame and V1 denotes
the spatial-shift value (first element) and V2 denotes the index of the source frame
(second element). These rules are applied to pixels covered by the tool in frame t. The
first condition occurs if the foreground (occluded) pixel maps back to the background
region in frame t− 1. The second condition occurs if the foreground (occluded) pixel
maps back to the foreground region in frame t− 1 and Vt−1(xt−1) is defined. The last
condition indicates that the foreground pixel has not been observed in the background
of any previous frames and thus the mapping function is undefined.

2.2.3 Surgical Tool Removal Method B: Reference Image Frame
Inpainting Flow-Based Video Object Removal Algorithms

This approach relies on the collection of a number of reference image frames before the
surgical instruments are introduced into the surgical environment and appear in the
field of view of the laparoscope/endoscope. These reference images Ri(x, y) are then
used by the inpainting algorithm to replace the segmented surgical tools.

The method works by establishing correspondences between regions not occluded by
the surgical tool Ωt in the current frame It(x, y) to the regions observed in a reference
frame. From the set of frame reference frames captured before the tools were introduced,
we determine the closest matching reference frame and then further spatially transform
the reference image to match the current image and fill the tool mask region with the
pixels from the warped reference image. For the current frame, we first find the reference
image that yields the lowest sum of the square differences (SSD) between the reference
and the current image within a region of interest surrounding the tool mask Ω in the
current image using Equation 2.6:

min
i

∑
xϵΩB

[Ri(x, y)− It(x, y)]
2 (2.6)

where i is the index of the reference frame. This term enforces spatial continuity between
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the selected reference and the region surrounding the tool mask. The chosen reference
frame is then spatially transformed to improve its registration to the current frame
and to determine the displacement field in the missing tool region. Similar to the
previous method A, the spatial transformations can be defined by an affine parametric
motion model defined via Equation 2.2 or by a non-parametric optical flow-based model
Equation 2.4.

2.2.4 Illumination / Appearance Adjustment

Nonuniform illumination of the operating environment results in variations in the
appearance of the same tissue in different frames. As a result, copying pixels from the
reference images or previous frames into the tool mask region can result in noticeable
boundaries (seams) between the inpainted and existing regions. To mitigate these
seaming artifacts, we use a Poisson blending algorithm [27] to blend the current frame
background IB with the inpainted tool region. Instead of combining pixels from the two
regions, their gradient fields are combined. This problem is formulated as a variational
problem:

min
I

∑
x,yϵΩF

t

|∇I(x, y)− v(x, y)|2 with IB|∂Ω = I|∂Ω (2.7)

where I is the Poisson blended inpainted tool image, v is the gradient of the inpainted
tool image determined by the tool removal algorithms, ∂Ω is the boundary between
the inpainted region and the background, and ΩF

t is the tool mask region. The current
image provides Dirichlet boundary conditions IB|∂Ω = I|∂Ω for the equation around the
inpainted region. The solution to Equation 2.8 is given by

∆I(x, y) = div v(x, y) with IB|∂Ω = I|∂Ω (2.8)

for all x, y ∈ ΩF
t and outside of ΩF

t I takes on the same values of IB. This allows the
Poisson inpainted region to have intensities similar to the background’s boundary with
variations corresponding to the gradient v of the inpainted tool image.

When the laparoscopic/endoscopic procedure (video) starts it will take a few frames
before enough anatomical information is uncovered to inpaint the whole tool region. The
number of frames will depend on how fast the surgical tool is moving. If the inpainted
region does not span the entire tool region, pixels bordering the remaining unfilled tool
region take on Neumann boundary conditions, ∂I

∂n
= 0 where n is the unit normal to

the boundary between the inpainted and unfilled tool region. This will prevent the
intensities of the tool region from bleeding into the inpainted region.

The data used to inpaint a given tool region comes from multiple previous frames,
and, as a result, it is possible to create artifacts due to illumination variation of the data
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used to inpaint the tool region. This can give rise to gradients within the tool region
that are not due to anatomical structures but to illumination differences. These internal
gradients will persist after applying the Poisson blending algorithm.

To remove gradients caused by illumination differences within the inpainted region we
use the following heuristic rule and set the div v(x,y) = 0 at locations where neighboring
inpainted pixels originated from source frames that are greater than 10 frames apart.
We refer to this method of removing these internal gradients as the modified Poisson
blending algorithm.

2.2.5 Image Dataset

For both training and validation, we used the Robotic instruments dataset from the
sub-challenge of MICCAI 2017 Endoscopic Vision Challenge [28]. The training dataset
consists of 8×225 frame sequences with a 2 Hz frame rate of high-resolution stereo camera
images collected from a da Vinci Xi surgical system during laparoscopic cholecystectomy
procedures. The frames were re-sampled from 30 Hz video to 2 Hz to avoid any
redundancy issues. A stereo camera was used to capture the video sequences that consist
of the left and right eye views with a resolution of 1920× 1080 in RGB format. In each
frame, the surgical instrument was manually labeled by expert clinicians as a rigid shaft,
wrist, and claspers. The test set consists of 8× 75 frame sequences and 2× 300 frame
videos. The main challenge lies within the segmentation of seven different classes, such
as grasping retractor, needle driver, prograsp forceps, vessel sealer, etc.

Figure 2.6: Example images of applying both affine and elastic transformation in
argumentation library for data augmentation.
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2.2.6 Data Augmentation

We augmented the MICCAI 2017 EndoVis Challenge data using the argumentation
library that was reported as a fast and flexible implementation for data augmentation
in [29]. These libraries include both affine and elastic transformations, and their effects
on the image data during augmentation are illustrated in Figure 2.6.

In short, the affine transformation includes scaling, translation, horizontal flip,
vertical flip, random brightness, and noise addition, etc. For the elastic transformation
(non-affine), first, a random displacement field, F (R) is generated for the horizontal and
vertical directions, δx, and δy, respectively, where [δx, δy ]= [-1 ≤ δx, δy ≤ +1 ].

These random fields are then convolved with an intermediate value of σ (in pixels)
and the fields are multiplied by a scaling factor α that controls the intensity. Thus, we
obtain the elastically transformed image in which the global shape of the interest is
undisturbed, unlike in the affine-transformed image.

2.2.7 Implementation Details

We implemented our methodology using PyTorch2. During the pre-processing step, we
cropped the unwanted black border from each video frame. Images were normalized
by subtracting their mean and dividing by their standard deviation (i.e., according
to their z-scores). Batch normalization was used before each weighted layer, as it
re-parameterizes the underlying gradient optimization problem that helps the training
to converge faster [21]. For training, we used the Adam optimizer with a learning rate
of 0.00001. We didn’t use dropout as it degraded validation performance in our case.
All models were trained for 100 epochs. The training set was shuffled before each epoch
using a batch size of 4. All experiments were run on a machine equipped with an
NVIDIA GTX 1080 Ti GPU (11 GB of memory). The key idea of using DSC and IoU as
performance metrics is that they work well when the foreground pixel is small compared
to the background. In our case, tool pixels are small compared to the background pixels.

2.2.8 Evaluation Metrics

2.2.8.1 Tool Segmentation Evaluation Metrics

In this work, we used the common Jaccard index — also referred to as the intersection-
over-union (IoU) — to evaluate segmentation results. It is an overlap index that quantifies
the agreement between two segmented image regions: a ground truth segmentation and
the predicted segmentation method. Given a vector of ground truth labels T1 and a
vector of predicted labels P1, IoU can be defined as (Equation 2.9)

2https://github.com/pytorch/pytorch
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J(T1, P1) =
|T1 ∩ P1|
|T1 ∪ P1|

=
|T1 ∩ P1|

|T1|+ |P1| − |T1 ∩ P1|
, (2.9)

where given a pixel j, the label of the pixel zj , and the probability of the same pixel
for the predicted class ẑj, Equation 2.10 for k number of dataset

J =
1

k

k∑
j=1

(
zj ẑj

zj + ẑj − zj ẑj
), (2.10)

We can represent the loss function in a common ground of log scale as this task is a
pixel classification problem. So, for a given pixel j, the common loss can be defined as
the function H for k number of dataset

H = −1

k

k∑
j=1

(zj log ẑj + (1− zj) log(1− ẑj)), (2.11)

From both the Equation 2.10 and Equation 2.11, we can combine and can get a
generalized loss

L = H − log J (2.12)

Our aim is to minimize the loss function, and, to do so, we can maximize the
intersection, J between the predicted mask and the ground truth.

Another commonly used performance metric is the DICE coefficient. Given the set
of all pixels in the image, the set of foreground pixels by automated segmentation Sa

1 ,
and the set of pixels for ground truth Sg

1 , the DICE score can be compared with [Sa
1 ,

Sg
1 ]⊆ Ω, when a vector of ground truth labels T1 and a vector of predicted labels P1,

D(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1|

(2.13)

DICE score will measure the similarity between two sets, T1 and P1 and |T1| denotes
the cardinality of the set T1 with the range of D(T1,P1) ϵ [0,1].

2.2.8.2 Tool Inpainting Evaluation Metrics

In this work, we report the quantitative evaluation of the inpainted videos using common
metrics including mean squared error (MSE), peak signal-to-noise ratio (PSNR), and
structural similarity index as image quality metrics. It can be noted that MSE and
PSNR are not always well-correlated with perceived/subjective visual quality, whereas
SSIM can show better correlations.
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2.3 Results

2.3.1 Quantitative Segmentation Results

To illustrate the potential improvement in segmentation performance by using the
nearest-neighbor interpolation (i.e., fixed upsampling) in the decoder, we conducted a
paired comparison between the segmentation results obtained using the classical U-Net
architecture, U-Net + NN, TernausNet, and U-NetPlus (our proposed method).

Training accuracy for binary segmentation is shown in Figure 2.7 for 100 epochs.
We compare our proposed architecture with three other models: U-Net, U-Net+NN,
TernausNet. We can observe from this figure that after adding nearest-neighbor (NN)
in the decoder of U-Net, the training accuracy of the classical U-Net framework (shown

Table 2.1: Quantitative comparison for instrument segmentation across several tech-
niques. Mean and (standard deviation) values are reported for IoU(%) and DICE
coefficient(%) from all networks against our proposed U-NetPlus. The statistical signifi-
cance of the results for the U-Net + NN and U-NetPlus model compared against the
baseline model (U-Net and TernasuNet) are represented by ∗ and ∗∗ for p-values 0.1
and 0.05, respectively. U-Net has been compared with U-Net+NN, and TernausNet has
been compared with U-NetPlus. The best performance metric (IoU and DICE) in each
category (Binary, Instrument Part, and Instrument Type Segmentation) is indicated in
bold text.

Metric

Binary Segmentation Instrument Part Instrument Type
Models IoU Dice IoU Dice IoU Dice
ToolNetH [12] 74.4 82.2 - - - -
ToolNetMS [12] 72.5 80.4 - - - -
FCN-8s [12] 70.9 78.8 - - - -
CSL [30] - 88.9 - 87.70 (Shaft) - -

U-Net[7] 75.44 84.37 48.41 60.75 15.80 23.59
Std. Dev. ± 18.18 ± 14.58 ± 17.59 ± 18.21 ± 15.06 ± 19.87

U-Net + NN 77.05** 85.26* 49.39* 61.98* 16.72* 23.97
Std. Dev. ± 15.71 ± 13.08 ± 15.18 ± 15.47 ± 13.45 ± 18.08

TernausNet [13] 83.60 90.01 65.50 75.97 33.78 44.95
Std. Dev. ± 15.83 ± 12.50 ± 17.22 ± 16.21 ± 19.16 ± 22.89

U-NetPlus-VGG-11 81.32 88.27 62.51 74.57 34.84* 46.07**
Std. Dev. ± 16.76 ± 13.52 ± 18.87 ± 16.51 ± 14.26 ± 16.16

U-NetPlus-VGG-16 83.75 90.20* 65.75 76.26* 34.19 45.32
Std. Dev. ± 13.36 ± 11.77 ± 14.74 ± 13.54 ± 15.06 ± 17.86

94.75(Shaft)
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Figure 2.7: Quantitative comparison of (a) training accuracy (left), (b) multi-class
(class=3) instrument parts (middle) (c) multi-task segmentation accuracy (right).

in blue) featuring the transposed convolution in the decodes, improves. Furthermore,
the training of our proposed method (U-NetPlus) also converges faster and yields
better training accuracy compared to TernausNet (shown in cyan). Hence, this graph
alone illustrates the benefit of the nearest-neighbor interpolation on the segmentation
performance. The model was tested on the MICCAI 2017 EndoVis dataset. Table 2.1
summarizes the performance of our proposed U-NetPlus framework in the context of
several state-of-the art multi-task segmentation techniques. The table clearly indicates
the improvement in segmentation following the addition of nearest-neighbor interpolation
in the decoder step across all frameworks — U-Net and TernausNet. Moreover, our model
had been compared with four different structures other than U-Net and TernausNet —
ToolNetH, ToolNetMS, FCN-8s, and CSL. The last one (CSL) was the first approach to
multi-class surgical instrument segmentation. But, they used only two instrument classes
(shaft and claspers) and omit wrist class which we introduced in our approach and the
overall accuracy that we obtained was significantly higher than the CSL approach.

We conducted a paired statistical test to compare the segmentation performance of
each of these methods (U-Net, U-Net+NN, TernausNet, U-NetPlus) in terms of the
IoU and DICE metric. As illustrated, our proposed U-NetPlus architecture yielded a
statistically significant3 11.01% improvement (p < 0.05) in IoU and 6.91% DICE (p <

0.05) over the classical U-Net framework; a statistically significant 8.0% improvement
(p < 0.05) in IoU and 5.79% DICE (p < 0.05) over the U-Net + NN framework; a
statistically significant 0.18% improvement in IoU and 0.21% DICE (p < 0.1) over the
state-of-the-art TernausNet framework [13].

Multi-class instrument segmentation was performed by labeling each instrument pixel
with the corresponding index given in the training set. This application consisted of three
classes: shaft, wrist, and claspers. The multi-class segmentation using our proposed
U-NetPlus framework yielded a mean of 65.75% IoU and 76.26% DICE. The accuracy

3For statistical significance testing, Wilcoxon signed-rank test is performed
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and precision of the U-NetPlus architecture relative to the other three frameworks are
illustrated in Figure 2.7. As shown, the U-NetPlus framework outperforms the currently
deemed best-in-class TernausNet framework.

The instrument type was segmented by labeling each instrument pixel with the
corresponding instrument type, according to the training set, and all background pixels
were labeled as 0. In the case of instrument type segmentation (for class = 7), the
U-NetPlus-VGG-11 encoder worked better than the U-NetPlus-VGG-16. Our results
for instrument type segmentation can be further refined.

Figure 2.8: Qualitative comparison of binary segmentation, instrument part and
instrument type segmentation result and their overlay onto the native endoscopic images
of the MICCAI 2017 EndoVis video dataset yielded by four different frameworks: U-Net,
U-Net+NN, TernausNet, and U-NetPlus.

2.3.2 Qualitative Segmentation Results

The qualitative comparison of our proposed model both for both binary and multi-class
instrument segmentation is illustrated in Figure 2.8. The second row of the figure shows
that for the binary segmentation, the classical U-Net shows a portion of the instrument
which was not present in the binary mask of our ground truth data (second row and
second column). U-netPlus yields the best performance for binary segmentation (i.e. it
can clearly segment out the instruments from the background), whereas TernausNet
still shows unwanted regions in the segmentation output.

For the instrument parts segmentation, U-Net still segments the un-wanted instru-
ment (blue), whereas U-NetPlus can segment the 3 classes (blue: shaft, green: wrist,
yellow: claspers) nearly perfectly compared to TernausNet. For the instrument type
segmentation, we can clearly observe that U-Net can not differentiate between the blue
and the green classes, whereas U-NetPlus can differentiate these classes more accurately
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than TernausNet. Both the binary and multi-class segmented output have been overlayed
onto the original image (sixth, seventh, eighth, and ninth column). The figure has a
clear indication of qualitative improvement of U-NetPlus over U-Net, U-Net+NN, and
TernausNet as shown in Figure 2.8

2.3.3 Segmentation Ablation Study

We performed an additional ablation analysis to further analyze the segmentation
performance. This attention study visualizes where our proposed algorithm “looks” in
an image by using a novel image saliency technique [31] that learns the mask of an
image by suppressing the softmax probability of its target class. Figure 2.9 shows the
heat-map image of the segmented surgical instruments superimposed onto the original
video image.

Figure 2.9: Attention results: U-NetPlus “looks” at a focused target region, whereas
U-Net, U-Net+NN and TernausNet appear less “focused”, leading to less accurate
segmentation.

Figure 2.9 shows that the U-Net + NN architecture featuring the nearest-neighbor
sampling in the decoder path and the traditional U-Net encoder out-performed the
traditional U-Net architecture (featuring the transposed convolution in the decoder).
On the other hand, due to the limited training dataset, the U-Net + NN framework
slightly under-performed the TernausNet architecture featuring the pre-trained VGG
network in the encoder. Nevertheless, using this class activation mapping, our proposed
approach (U-NetPlus) localizes the wrist and claspers of the bipolar forceps near perfectly
compared to the traditional U-Net, U-Net+NN, and TernausNet frameworks (Figure
2.9). Therefore, the skillful integration and combination of pre-trained encoder and
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nearest-neighbor interpolation as a fixed upsampling technique yields higher overall
performance.

2.3.4 Surgical Tool Removal via Inpainting

Figure 2.10: Top row: Tool containing frames with U-NetPlus segmentation results
(yellow outline). Bottom row: Inpainted results using Method A; yellow arrow in
mid-column shows residual tool caliper.

The first surgical video demonstrates that our tool segmentor can successfully segment
and generate a mask that can be used to remove the tool from the video images. In this
video, the camera is stationary, while viewing in vivo anatomy with minimal surface
deformation. In Figure 2.10, we show the results of the tool segmentor (top row (a), red
outline) and tool removal method A that uses an affine parametric motion model to
inpaint the segmentation mask region (bottom row (b)). The majority of frames show
tool segmentation results that are comparable to the results shown in columns 1 and 3.
Occasionally the tool segmentor misses parts of the tool calipers as shown in column 2.
To compensate for under-segmentation and to ensure complete inpainting of the tool,
the segmentation mask was dilated by 20 pixels. The incomplete inpainting results in
column 1 are the result of the frame occurring early in the procedure (video) where not
enough anatomical information had been uncovered to inpaint the whole tool region.

To test our tool removal algorithms on more difficult cases where the camera and/or
anatomy are in motion, we generated videos containing surgical tools from surgical
tool-free videos by embedding a moving surgical tool into the surgical tool-free video.
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Figure 2.11: Two examples showing tool removal method A with an affine parametric
motion model: (a) Tool containing frames; (b) modified Poisson blended inpainted
results; (c) ground truth frames.

The surgical tool-free videos were obtained from the Hamlyn Centre Laparoscopic /
Endoscopic Video Datasets and the surgical tool was the ground truth mask obtained
from the MICCAI 2015 dataset. In these cases, the tool segmentation mask was obtained
from the ground truth mask and was dilated by 1 pixel.

In Figure 2.11, we show representative examples of using tool removal method A
with an affine parametric motion model to remove the tool from a video where the
camera is in motion while viewing a porcine abdomen with minimal deformation of the
abdomen. Column (a) shows the tool containing frame, column (b) shows the modified
Poisson blended inpainting results and column (c) shows the ground truth. It can be
seen that the combination of method A and the modified Poisson blending algorithm
produces visually comparable results to the ground truth.

In Figure 2.12, we show the efficacy of using the modified Poisson blending algorithm
to mitigate internal illumination seams. The data used to inpaint a given tool region
comes from multiple previous frames, and, as a result, it is possible to introduce artifacts
due to illumination variation of the data used to inpaint the tool region. This can give
rise to gradients within the tool region that are not due to anatomical structures, but
to illumination differences in the data used to inpaint the tool region.
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Figure 2.12: Example showing the results of the modified Poisson blending algorithm:
(a) gray scale corresponds to the source frame used to inpaint tool region; (b) plot of
source frame used to inpaint tool region as a function of position along the red line in
(a); (c) inpainted results using Poisson blending algorithm; (d) inpainted results using
modified Poisson blending algorithm.

Figure 2.13: Comparison of using a simple (noncumulative) vs cumulative mapping
function to inpaint the tool region using a parametric optical flow model for frames
275, 300, and 315 where the anatomy under the tool is changing slowly. Top row:
noncumulative mapping function; Bottom row: cumulative mapping function. Focusing
on the specular highlight and blood vessel it can be seen that inpainting with the
cumulative mapping function leads to sharper results.

Figure 2.12 a shows a tool containing a frame where the grayscale values inside the
tool correspond to the source frames used to inpaint the tool and Figure 2.12 b shows a
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plot of the source frame vs distance along the red line in (a). The yellow arrow points
to a region where there is a temporal discontinuity between the source frames used to
inpaint the tool region. As shown in Figure 2.12 c these internal gradients will persist
after applying the Poisson blending algorithm. In Figure 2.12 d we applied the modified
Poisson blending algorithm where the internal gradients are suppressed by setting div
v(x,y) = 0 in Equation 2.8. at locations where neighboring inpainted pixels originated
from frames that are greater than 10 frames apart.

In Figure 2.13, we compare the use of a simple (non-cumulative) vs. cumulative
mapping function to inpaint the tool region where the tool moves slowly across a
region where the same anatomy is covered for multiple frames. The top and bottom
row shows the inpainted tool results for frames 275, 300, and 315 using the simple
noncumulative and cumulative mapping functions, respectively. Focusing on the blood
vessel and specular highlight (blue arrows) we see that when using non-cumulative
mapping, the resulting inpainted images become blurrier the longer the anatomy is
covered in consecutive frames by the tool, whereas the cumulative mapping results stay
sharp.

Figure 2.14: Tool removal using Method B with nonparametric optical flow-based model:
(a) tool containing frames; (b) inpainted results using closest reference frame; (c) ground
truth frames.

For the simple mapping the data used to inpaint the tool originates from the
previous inpainted frame and depending upon the motion of the tool it will be from
either the inpainted tool region or background. For cumulative mapping, the data
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used to inpaint the tool (the pixel data) originates from the source frame where the
covered anatomy was last visible in the background region (i.e. uncovered by the tool).
The cumulative mapping eliminates the blurriness problem that occurs with the simple
mapping because the source pixels used to inpaint the tool region are now being copied
once via interpolation from the source frame as opposed to the simple mapping where
the source data may have been copied multiple times.

In Figure 2.14, we show the results of using tool removal method B using a non-
parametric optical flow-based model to remove the tool from a video where the camera
is stationary while viewing a cardiac surface deforming due to both respiration and
cardiac motion. The reference frames are captured before introducing the surgical tools
and consist of 150 consecutive frames that encompass multiple cycles of the deforming
cardiac surface. Column (a) shows the tool containing frame, column (b) shows the
inpainted results using the closest reference frame spatially transformed by by optical
flow-based model and column (c) shows the ground truth. It can be seen that the
reference image frame inpainting method produces visually comparable results to the
ground truth. The main observable differences between the inpainted results and the
ground truth are the specular highlights in the inpainted region. The reference frame
and ground truth frame are captured at different times and the specular highlights in
the images are not always identical.

In Figure 2.15, we show a comparison between copying and pasting the pixels of
the closest reference frame before (Figure 2.15 a) and after applying the optical flow
transformation (Figure 2.15 b) for inpainting using Method B. Note in the figure we
refer to copy and paste to inpainting before and optical flow to inpainting after the
applying the spatial transformation to the closest reference frame. Focusing on the
region within the black circle (Figure 2.15 a) it can be seen that applying the optical
flow transformation improves and generates inpainting results that are very similar
to the ground truth. In many of the inpainted frames the copy and paste method
results when observing a single stimulus, that is observing one frame at a time, produce
inpainted results that visually look very acceptable, but when observed in a video
playback becomes very obvious that the results are not accurate and are improved by
the optical spatial transformation.
In Table 2.2, we report the quantitative evaluation of the inpainted videos using mean
squared error (MSE), peak signal to noise ratio (PSNR), and structural similarity index
(SSIM) [32] image quality metrics. It can be noted that MSE and PSNR are not always
well-correlated with perceived/subjective visual quality, whereas SSIM can show better
correlations.

For the method A example, we show the comparison between the inpainted and
Poisson blended inpainted results. For this example, the algorithm performs well in
finding the appropriate pixels from previous frames to fill in the occluded region. But
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Figure 2.15: A comparison between copying and pasting the pixels of the closest reference
frame before and after applying the optical flow transformation for inpainting using
Method B.

Table 2.2: Quantitative evaluation of the tool removal methods for synthetic tools in
terms of mean squared error (MSE), peak signal to noise ratio (PSNR), and structural
similarity index (SSIM).

Metric

Method MSE (avg / min /
max) (smaller better)

PSNR (avg / min /
max) (larger better)

SSIM (avg / min /
max) (larger better)

Method A: Affine Transformation (640 x
480 x 135)

690.9 / 58.0 / 2111.6 22.5 / 14.9 / 30.5 0.932 / 0.797 / 0.993

Method A: Affine Transformation with
Poisson Blending

41.5 / 6.5 / 163.9 33.3 / 26.0 / 40.0 0.993 / 0.958 / 0.999

Method B: Copy and Paste (720 x 576 x
500)

223.7 / 40.8 / 1183.5 25.4 / 17.4 / 32.0 0.971 / 0.937 / 0.994

Method B: Optical Flow Warping 125.0 / 16.7 / 641.7 28.1 / 20.1 / 35.9 0.980 / 0.948 / 0.994

these image pixels originate from frames where the illumination of the occlude anatomy
was not the same as the current frame. Therefore, the errors for this example are mostly
nonstructural errors and can be reduced by using the Poisson blending algorithm to
help to minimize illumination mismatches.

For the method B example, we show a comparison between copying and pasting
the pixels of the closest reference frame before and after applying the optical flow
transformation. For this case, since the camera is stationary, the illumination is fairly
constant albeit there are variations in the specular highlights due the variations in the
surface in the beating heart. The errors in this example are mostly structural errors due
to the potential lack of an appropriate match between the reference frames and current
frame. The lack of a matching frame is most likely due to an insufficient frame rate of
the video capture. Although it is also known that the beating heart has an underlying
stochastic component partly due to the stochastic properties of the ion channels [33].
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The spatial transformation helps to minimize these errors, but can never fully alleviate
the structural errors. The complete videos for our inpainting results can be seen at
https://smkamrulhasan.github.io/.

2.4 Discussion and Conclusion

This research work demonstrates a novel application of segmenting and digitally removing
the surgical instruments from laparoscopic/endoscopic video using digital inpainting to
allow the visualization of the anatomy being obscured by the tool.

To segment the surgical instruments, we proposed a modified U-Net architecture
for the surgical tool segmentation. To improve robustness beyond that of the U-Net
framework, we used a pre-trained model as the encoder with batch normalization, which
converges much faster than the network trained from scratch. In the decoder part,
we substituted the deconvolution layer with an upsampling layer that uses nearest-
neighbor interpolation followed by two convolution layers. Moreover, we used a fast and
effective data augmentation technique to avoid the overfitting problem. We evaluated its
performance on the MICCAI 2017 EndoVis Challenge dataset. We also visualized the
output of our proposed model both as stand-alone surgical instrument segmentation, as
well as overlays onto the native endoscopic images. Apart from that, we also conducted
an “attention” study to determine where our proposed algorithm “looks” in an image.

Our proposed model with batch-normalized U-NetPlus-VGG-16 outperforms existing
methods according to both the Jaccard and DICE metrics, achieving 90.20% DICE for
binary class segmentation and 76.26% for parts segmentation, both of which showed
at least 0.21% improvement over the current methods and more than 6% improvement
over the traditional U-Net architecture. Nevertheless, U-NetPlus-VGG-16’s performance
with regards to identifying the instrument type was inferior to that of U-NetPlus-VGG-
11, which was slightly superior to the other disseminated techniques. Though the
improvement is still small, our paired statistical test showed significant improvement
over the performance of the state-of-the-art TernausNet method.

To evaluate the performance improvement in segmentation yielded by our proposed
method, we conducted the above-mentioned paired statistical tests between the output of
our proposed method and that of the other networks. The test showed that the U-NetPlus
framework significantly outperformed the U-Net and TernausNet architectures (p <

0.05). Although there are existing methods and approaches utilizing the interpolation on
the upsampling path of an encoder-decoder network for different segmentation purposes,
the masterly integration, and adaptation of existing methods for improving segmentation
accuracy of the surgical instruments is a key of our research. Moreover, we emphasize
our main contribution that lies in improving U-Net architecture via a modification of
the state-of-the-art TernausNet to mitigate some of the artifacts still existing. So while
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this work does not propose a fully novel framework, it does demonstrate that the skillful
integration and combination of existing contributions yields higher overall performance.

Overall, our tool segmentation architecture shows sufficient accuracy for reliable
binary segmentation of the surgical tools. For the training set the DICE score was
90.84± 0.046% and for the test set the DICE score was 89.56± 0.103%.

It should be noted that the da Vinci labeled ground truth data does not always
represent an accurate segmentation of the surgical tool (see Figure 2.16 (b) & (d)).
There are significant limitations that essentially discredit the reliability of the ground
truth data due to the misalignments associated with the tool outline reconstructed from
the forward kinematics of the da Vinci Research Kit and the actual tool appearance in
the image frame. Nevertheless, our segmentation technique learns how to compensate
for these limitations and yields more accurate tool outlines than those generated from
the ground truth forward kinematics (see Figure 2.16 (a) & (c)).

Figure 2.16: Qualitative evaluation of segmentation results: (a)&(c) ground truth
generated by forward kinematics of the da Vinci Research Kit; (b)&(d) segmentation
results from our U-NetPlus segementor.

The tool removal algorithms use a tool segmentation mask and either instrument-free
reference frames or previous instrument-containing frames to fill in (i.e. inpaint) the
instrument segmentation mask. We have demonstrated the performance of the proposed
surgical tool segmentation/removal algorithms on a robotic instruments dataset from
the MICCAI 2015 EndoVis Challenge. We also showed successful performance of the
tool removal algorithm from synthetically generated surgical instruments containing
videos obtained by embedding a moving surgical tool into surgical tool-free videos.

In summary, this work serves as the first demonstration of a modified version of the
U-Net decoder via nearest-neighbor interpolation to remove artifacts induced by the
transposed convolution. Our proposed architecture is used to 1) segment the surgical
instruments from laparoscopic images and showed improved performance over the state-
of-the-art TernausNet framework and subsequently to 2) successfully remove the surgical
tool producing visually comparable results to the ground truth.
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Chapter 3

Cardiac Chamber Segmentation
featuring Uncertainty Estimation,
Clinical Parameter Quantification and
Dynamic RV Model Propagation from
Cine Cardiac MRI

In this chapter we describe the development of several deep learning-based techniques for
accurate segmentation of cardiac chambers and features of interest from cine cardiac
MR images, as well as the use of uncertainty, maps to identify the regions featuring
higher segmentation error1. We assess the designed segmentation techniques against
several other deep-learning-based architectures and also compare the clinical parameters
quantified based on the achieved segmentation results to the homologous clinical param-

1This chapter is adapted from:
[1] Hasan SMK et al., Joint Segmentation and Uncertainty Estimation of Ventricular Structures from
Cardiac MRI using a Bayesian CondenseUNet. Proc. IEEE Eng Med Biol. Pp.: 5047-50. 2022.
[2] Hasan SMK et al., Motion Extraction of the Right Ventricle from 4D Cardiac Cine MRI Using A
Deep Learning-Based Deformable Registration Framework. Proc. IEEE Eng Med Biol. Pp.: 3795-99.
2021.
[3] Hasan SMK et al., L-CO-Net: Learned Condensation-Optimization Network for Segmentation
and Clinical Parameter Estimation from Cardiac Cine MRI. Proc. IEEE Eng Med Biol. Pp.: 1217-20.
2020.
[4] Hasan SMK et al., A Learned Condensation-Optimization Network: A regularized Network for
Improved Cardiac Ventricle Segmentation from Breath-hold Cine MRI. Proc Int Symp Biomed Imaging
(ISBI) - Workshop on Deep Image Analysis and Understanding. 2020.
[5] Hasan SMK et al., CondenseUNet: a memory-efficient condensely-connected architecture for
bi-ventricular blood pool and myocardium segmentation. Proc. SPIE Medical Imaging – Image-guided
Procedures, Robotic Interventions, and Modeling. Vol. 11315. Pp.: 113151J-1-7. 2020.
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eters quantifies using other baseline methods. Lastly, we demonstrate the use of our
designed segmentation tools to generate static and dynamic geometric models of the left
and right ventricles, which were subsequently propagated throughout the cardiac cycle
using cardiac motion extracted using an unsupervised deep learning-based registration
technique. The fidelity of the dynamic RV geometric models was assessed by comparison
to homologous models generated using traditional deformable registration-based cardiac
motion extraction techniques.

3.1 INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death for both men and women
in the United States (US) according to the American Heart Association and someone
dies from a distinct form of CVDs every 38 seconds, based on 2016 data2.

Important examples of such heart diseases include right ventricle (RV) ischemia and
hypertrophy which may lead to abnormal RV motion. An efficient method that can
accurately estimate the motion of the RV from cine cardiac MR images with the overall
goal to study the RV kinematics could be used as a viable indicator of the progression of
the disease and evaluation of a cardiac function at an early stage and the segmentation
of the cardiac structures is the first step towards extracting anatomical information
for incorporation into geometric models. Although cardiac cine MRI has provided a
non-invasive method for studying global and regional functions of the heart, most of
these studies have been centered on the LV. In light of the thin wall structure of the RV
and its asymmetric geometry, there have only been very few research endeavors exploring
the kinematics of RV, including the extraction of the RV motion and generation of
patient-specific RV anatomical models. The goal of this work is to develop an approach
for extracting the RV motion from cine cardiac MR image sequences and generate
deformable endocardial RV models that can be later used to study RV kinematics as a
biomarker for studying RV-related cardiac disease.

3.1.1 Cardiac Chamber/Feature Segmentation

From the machine learning perspective, cardiac image segmentation is a multi-class
classification problem aiming to assign each voxel, a target label. Previously, traditional
machine learning techniques had been shown to achieve good performance in cardiac
image segmentation [1]. However, they require both prior information and manual
interaction.

2https://newsroom.heart.org/news/nearly-half-of-all-u-s-adults-have-some-form-of-cardiovascular-
disease?

84



The emerging success of Convolutional Neural Networks (CNNs) in solving high-
level computer vision tasks can be utilized to develop machine learning tools that are
capable of learning hierarchical features in an end-to-end manner [2]. Motivated by
the superior performance of deep learning, the medical imaging community has also
embraced the implementation of deep learning-based approaches for medical image
segmentation [3], as a precursor task for clinical parameter estimation [4]. However,
image segmentation in clinical settings still requires high accuracy and precision, with
even minimal segmentation errors being unacceptable.

In the context of cardiac image segmentation, fully convolutional networks (FCNs)
have become well-established, thanks to their per-pixel prediction capabilities. An
example of such an application is the segmentation of various cardiac structures from
MR images [5]. Similarly, Bai et al. [6] reported improved accuracy and robustness of
the ventricles and atria segmentation by using a modified FCN architecture.

Jain et al. [7] designed a CNN model for cardiac image segmentation using a 2D
and 3D segmentation pipeline. Isensee et al. [8] proposed to segment bi-ventricle and
myocardium using an ensemble of modified 2D and 3D U-Net. Wolterink et al. [9]
designed a deep neural network for automatic cardiac segmentation, as well as disease
classification from the cardiac features. Baumgartner et al. [10] explored various 2D
and 3D convolution neural networks for the segmentation of the left (LV) and right (RV)
ventricular cavities and the myocardium. Khened et al. [11] employed a multi-scale
residual DenseNet model to automatically segment the cardiac structure from the cine
MRI sequence. Although these methods were successful for cardiac segmentation, the
use of deep model compression tasks for medical image segmentation is still rarely
reported.

The formulation and integration of various regularization techniques have been a
growing strategic trend to improve the generalization performance of neural networks.
One such particularly compelling approach is the use of Dropout at the training stage of
a neural network. However, the accuracy of a trained deep network will not be severely
improved by dropping out a majority of connections at the training stage and hence
current research efforts have been focused on the use of deep model compression tasks,
including weight pruning [12], weight decay [13], and knowledge distillation [14].

Weight pruning has aroused much research attention due to its faster inference with
minimal loss in accuracy. Huang et al. [15] demonstrated the use of a weight-pruning
technique in a group-convolution setting, where a DenseNet-type architecture can learn
more sparse information during the training process and prune redundant connections
between convolution layers.

Although the first introduction of group convolution in AlexNet [16] has well illus-
trated its efficacy in recent network design, the pre-defined use of filters in each group
convolution [17] restricts its representation capability.
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Figure 3.1: System diagram for our proposed pipeline. A semantic segmentation network
takes an input image and produces a segmentation prediction along with errors and an
uncertainty map.

3.1.2 Integration of Segmentation Uncertainty

For assessing predicted uncertainty in Deep neural networks (DNNs), a number of
approaches, including Bayesian and non-Bayesian, have been proposed. Despite the fact
that Bayesian neural networks (BNNs) provide a theoretical foundation for generating
well-calibrated uncertainty estimates, learning BNNs is difficult due to the intractable
nature of integrating over the posterior in high-dimensional space. As such, approximate
inference approaches such as Monte Carlo (MC) Dropout [18, 19], Deep Ensembles [20]
and techniques based on Learned Confidence [21] are becoming increasingly prominent.

Recent work by Sander et al. [19] used MC Dropout on a CNN for cardiac MRI
segmentation, demonstrating that training with a Brier loss or cross-entropy loss yielded
well-calibrated pixel-wise uncertainty and that correcting uncertain pixels may consis-
tently enhance segmentation outcomes.

In the uncertainty work, we study predictive uncertainty estimation for semantic
segmentation with a fully convolution network (FCN) and propose a Bayesian dropout
for reliable predictive uncertainty estimation of segmented cardiac structures. The
network takes a 2D image as input and outputs an uncertainty map, and a segmentation
map, as illustrated in Figure. 3.1.
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3.1.3 Cardiac Motion Extraction and Dynamic Model Propaga-
tion

The goal of cardiac motion estimation is to compute the optical flow representing the
displacement vectors between consecutive 3D frames of a 4D cine CMR dataset, an
image registration problem. To date, a number of approaches for motion estimation from
cine MRI have been studied, including optical flow-based registration methods [22] and
techniques based on feature tracking [23]. Metaxas et al. [24] proposed a physics-based
framework for reconstructing the motion of the LV and RV from MRI-SPAMM (Spatial
Modulation of Magnetization) data. Here, the authors deform the computed dynamic
models with forces computed from the automatically segmented boundary data points.
Similarly, Park et al. [25] presented the use of finite element methods (FEM) to recover
the right ventricle (RV) motion using parameter functions.

Recent approaches involve integrating anatomical data into a consistent framework
to build patient-specific models. Hoogendoorn et al. [26] proposed a bilinear model for
the extrapolation of cardiac motion assuming that the motion of the heart is independent
of its shape. Xi et al. [27] proposed a bi-ventricular computational model to analyze
ventricular mechanics in a pulmonary arterial hypertension patient from cine cardiac
MRI images.

In this work, we propose a deep learning-based approach for extracting the frame-to-
frame RV motion from cine cardiac images and using this motion, along with segmented
isosurface meshes at ED, to generate dynamic, deformable models of the RV. Here, we
illustrate the potential of the CNN-based 4D deformable registration technique to build
dynamic patient-specific RV models across subjects with normal and abnormal RVs.
We used the segmented mask of the RV endocardium at all cardiac frames generated
via our previously proposed CondenseUNet [28], which substitutes the concept of both
standard convolution and group convolution (G-Conv) with learned group-convolution
(LG-Conv).

Following segmentation of the ED cardiac frame, we generate isosurface meshes,
which we then propagate through the cardiac cycle using the CNN-based registration
fields. Lastly, we compare these propagated isosurface meshes to those generated directly
from the segmentation masks obtained from our proposed model which uses the concept
of learned-group convolution and weight-pruning technique in a fully convolutional
setting to segment the left and right ventricle blood-pool and left ventricle Myocardium
from end-diastolic and end-systolic cardiac MR images in a more accurate and more
efficient manner. To assess the performance of this proposed segmentation framework,
we compare our results (Dice score, Hausdorff distance, and clinical parameters) to
those obtained using five other segmentation architectures on the Automatic Cardiac
Diagnosis Challenge (ACDC) dataset. Lastly, we show that the proposed learned-group
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convolution and weight-pruning technique improve the segmentation performance, as
well as the estimation of clinical cardiac indices in cine MR slices.

3.2 Methodology

3.2.1 Imaging Data

For this study, we used the Automated Cardiac Diagnosis Challenge (ACDC) dataset3,
consisting of short-axis cardiac cine-MR images acquired for 100 patients divided into
5 subgroups: normal (NOR), myocardial infarction (MINF), dilated cardiomyopathy
(DCM), hypertrophic cardiomyopathy (HCM), and abnormal right ventricle (ARV),
available through the 2017 MICCAI-ACDC challenge [29] which are then splitted into
70% training and 15% validation set.

3.2.2 Slice Misalignment Correction

One of the main challenges with cardiac image acquisition is to account for cardiac
motion due to respiration, which can lead to severe artifacts that manifest themselves
by an overall misalignment of the 2D image slices. Numerous techniques for motion
compensation have been proposed for pre-processing as well as post-processing cardiac
images. We leverage the slice misalignment correction method proposed by Dangi
et al. [30] where we train a modified version of the U-Net model [3] to segment the
cardiac chambers, namely the – LV blood-pool, LV myocardium, and RV blood-pool,
from 2D cardiac MRI images. We identify the LV blood-pool center, i.e., the centroid
of the predicted segmentation mask, and stack the 2D cardiac MRI slices such that
the LV blood-pool centers from each slice are collinear, hence correcting for any slice
misalignment. This technique results in a set of correctly aligned image slice stack that
faithfully represents the cardiac geometry and reduces the presence of stair-step artifacts
that appear at the edges of the segmented features.

3.2.3 Data Pre-processing

To solve the class-imbalance problem in multi-slice cardiac MR images, a patch of size
128×128 was extracted around the LV center from a full-sized cardiac MR and slice-wise
normalization of voxel intensities were performed. The training dataset was divided into
70% training data, 15% validation data, and 15% testing data with five non-overlapping
folds for cross-validation. We heavily augment the ACDC dataset through both affine
and elastic transformations, including several operations: (i) re-scaling: random zoom

3https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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Figure 3.2: Illustration of L-CO-Net framework: (a) ROI detection around LV-RV; (b)
Segmentation block consisting of a decoder and an encoder where each condense block
(CB) consists of 3 Layers with a growth rate of k = 16. The transformations within each
CB and the transition-down block are labeled with a cyan and yellow box, respectively.
(c) Learned Group Convolution (LG-Conv) block is shown in the red rectangular box.

factor ranging 0.8 ∼ 1.2, (ii) translation: random shift ranging −5 ∼ 5mm, (iii) rotation,
and (iv) Gaussian noise addition.

3.2.4 L-CO-Net framework

To tackle the task of precise and rapid heart chamber detection and segmentation in
cine MR images, we propose a specifically designed network architecture — learned
condensation-optimization network (L-CO-Net), shown in Figure 3.2. Our proposed
L-CO-Net framework substitutes the concept of both standard convolution and group
convolution (G-Conv) with learned group-convolution (LG-Conv). While the standard
convolution needs an increased level of computation, i.e. O(Ii x Oo), and concurrently,
the pre-defined use of filters in each group convolution restricts its representation
capability, these aforementioned problems are mitigated by introducing LG-Conv that
learns group convolution dynamically during training through a multi-stage scheme.
Before training, the input channels and filters are split into equally sized M groups
denoted as Ik = {Ik1 , Ik2 , ..., IkM } and F k = {F k

1 , F k
2 , ..., F k

M}, where Iki is the ith

feature map of kth layer. The output of this group convolution layer is formulated
as Ik+1 = [F k

1 ⊗ Ik1 , F
k
2 ⊗ Ik2 , ..., F

k
M ⊗ IkM ] = [{fk

11 ∗ ik11, fk
12 ∗ ik12, ..., fk

1N ∗ ik1h}, {fk
21 ∗

ik21, f
k
22 ∗ ik22, ..., fk

2N ∗ ik2h}, .... , {fk
M1 ∗ ikM1, f

k
M2 ∗ ikM2, ..., f

k
MN ∗ ikMh}], where Ik = {ik1, ik2,

... , ikh }, F k = {fk
1 , fk

2 , ... , fk
N}, h is the number of channels, and N is the number

of filters. Since each group has its own weights, it can select its own set of relevant
input features, assisting the system to predict the most relevant features at the relevant
connections. This multi-stage pipeline consists of multi-condensation stages followed by
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the optimization stage. In the first half of the pipeline, training is initiated by calculating
the magnitude of the weights for each incoming feature, which are then averaged. After
that, the low-magnitude weighted column is screened out from the features. Thus, a
fraction of (C − 1)/C is truncated after each of the C − 1 condensing stages.

The second part of the pipeline is where all training occurs. This stage is focused on
finding the optimal permutation connection that will share a similar sparsity pattern, to
mitigate any negative effects on accuracy induced by the pruning process. As mentioned
by Huang et al. [15], both the L1 and L2 regularization methods are efficient for solving
the overfitting problem, but they do not perform well for network optimization. To
address this limitation, we use an efficient regularizer referred to as group lasso (GL),
which is a natural generalization of the standard lasso (least absolute shrinkage and
selection operator) objective [31]. Additionally, the GL regularizer encourages group-
level sparsity at the factor level by forcing all outgoing connections from a single neuron
(corresponding to a group) to be either simultaneously zero or not.

Algorithm 1 Dropping Connections in Condensing Stage
0: procedure Find the current stage(weight = 0)
0: for i in range (condense factor -1 ) do:
0: if progress ∗ 2 < (i+ 1)/(condense factor -1 ) then:
0: return current stage = i
0: else:
0: return current stage = condense factor - 1
0: end if
0: end for
0: if not the current stage then:
0: current stage
0: return weight = input channels // condense factor
0: if weight > 0 then:
0: return Algorithm 2 to apply weight pruning method (weight)
0: end if
0: end if
0: end procedure=0

3.2.5 Deformable Registration Framework

Here we use a deep learning registration approach that employs the VoxelMorph [32]
framework. We focus on the deformable registration of 3D cardiac images after slice
misalignment correction, as described in Section 3.2.2. We follow the approach as
described in [33, 34] and a convolutional neural network (CNN), G(f,m) with parameters
θ is used to map the fixed and moving images to the parameters of the transformation,
as illustrated in Figure 3.3.
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Figure 3.3: Image segmentation and deformable registration pipeline: a) ED frame
segmentation and slice misalignment correction; b) deep learning registration framework.
The CNN G(f,m) learns to predict the deformation field and register the moving
3D image to the fixed 3D image to generate the transformed image using the spatial
transformation function.

During training, a sequence of cardiac 3D MR image pairs mED,mED+t, ...,mED+NT−1,
where NT is the total number of frames, and mED is the end-diastole image frame, are
passed to the CNN to generate the deformation field ϕ. The moving ED frame mED is
then warped using the deformation field ϕ to obtain the transformed 3D image mED

◦ ϕ, which is then used to compute the similarity loss Lsim(f,mED ◦ ϕ), with f being
the fixed / target image. We iterate over pairs of fixed-moving images in a training
dataset to find the network parameters that minimize the similarity loss LSim, which is
additionally constrained with a smoothing loss Lsmooth. Formally the overall objective
function is written as in Equation 3.1:

L(f,mED ◦ ϕ) = Lsim(f,mED ◦ ϕ) + λLsmooth, (3.1)

where LSim is the mean squared error (MSE), λ is the regularization parameter, and
Lsmooth is a regularization on the deformation field ϕ to further enforce smoothness
spatially as given by Equation 3.2:

Lsmooth =
∑
iεΩ

||∆ϕ(i)||2, (3.2)

where ∆ is the Laplacian operator that takes into consideration both global as well as
local properties of the objective function, as inspired by Zhu et al. [35]. We found that
our model performs best with λ = 10−3.
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3.2.6 Isosurface Mesh Extraction

The surface mesh generation pipeline contains two main tasks: surface mesh generation
and smoothing. The predominant algorithm for isosurface extraction from original
3D data is marching cubes [36], which produces a triangulation within each cube to
approximate the isosurface by using a look-up table of edge intersections. For this
purpose, we used the segmentation map of all the frames in a cardiac cycle generated
by our CondenseUNet model. Since the slice thickness was large and ranged from 5
mm to 10 mm, we re-sampled the dataset to achieve a 1 mm consistent slice thickness.
After extracting the isosurface models using the Lewiner marching cubes [36] algorithm
implemented using the scikit-image library [37] in the Python programming language,
our next task was to remove the surface noise by applying smoothing operations. In
order to smooth the isosurface meshes, we used the joint smoothing technique in 3D
Slicer 4.10.2 [38], with the smoothing factor in the range of 0.15 to 0.2. This mesh
smoothing operation significantly improves mesh appearance as well as shape, by moving
mesh vertices without modifying topology.

Besides the RV isosurface meshes generated from the individual cardiac image frame
segmentations following marching cubes and smoothing, which served as ground truth,
we generated three additional sets of meshes by propagating the isosurface mesh at the
ED phase to all the subsequent cardiac frames using the registration field estimated
using the proposed VoxelMorph registration, as well as two traditional nonrigid image
registration methods: the B-spline free form deformation (FFD) [39] algorithm and the
fast symmetric force Demon’s algorithm [40, 41], as detailed in Section 3.2.7.

3.2.7 Baseline Comparisons:
The results obtained using the proposed deep learning segmentation framework in terms
of Mean Dice score (%) with Hausdorff distance(in mm), no. of parameters (×106), and
the clinical indices were compared against five other baseline segmentation methods,
including Dilated Convolution Network (DCN), Modified 3D UNet (MUNet), Modified
M-Net, DenseNet, and Ensemble UNet. Pearson’s correlation coefficient are estimated
using our proposed segmentation model and homologous parameters estimated from
five other baseline models. The results obtained using the proposed deep learning
registration framework were compared to those obtained using traditional iterative
image registration methods, including the FFD [39] algorithm and the fast symmetric
force Demon’s algorithm [41]. The FFD registration method was implemented in
SimpleElastix [42]. The FFD algorithm was set to use the adaptive stochastic gradient
descent method as the optimizer, MSE as the similarity measure, binding energy as the
regularization function, and was optimized in 500 iterations. The Demon’s algorithm was
implemented in SimpleITK [43]. The standard deviations for the Gaussian smoothing
of the total displacement field was set to 1 and optimized in 500 iterations. These
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algorithms are trained using manually tuned parameters on an Intel(R) Core(TM)
i9-9900K CPU.

3.2.7.1 Heart Localization

To reduce computational complexity and improve accuracy, a Fourier transform-based
method proposed by Lin et al. [44] is used to automatically detect and extract a region
of interest (ROI) that encompasses the LV and RV. The motivation for using the Fourier
transform is that LV and RV are the only large moving structures in the thorax and
move at the same frequency, dictated by the heart rate. Therefore, the pixel intensity
changes over time between the LV blood-pool and the LV-myocardium, whereas the
change in pixel intensity is almost static at the boundary. We enhanced the LV and RV
regions by computing the Fourier transform for each slice and retaining only the first
harmonic. Moreover, since the shape of the LV is circular in nature, we also used the
circle Hough transform introduced by Oksuz et al. [45] to identify the center and radius
of the ROI of the LV and RV. We then generated a bounding box and used it to crop
the ROI from the image (Figure 3.2 (a)).

Algorithm 2 Pruning Weights
0: procedure Optimization stage
0: for i in range (groups) do:
0: wi = weight[i * dout:(i + 1) * dout, :]
0: if progress ∗ 2 < (i+ 1)/(condense factor -1 ) then:
0: return current stage = i
0: else:
0: return current stage = condense factor - 1
0: end if
0: end for
0: if not the current stage then:
0: current stage
0: return weight = input channels // condense factor
0: if weight > 0 then:
0: return Algorithm 2 to apply weight pruning method (weight)
0: end if
0: end if
0: end procedure=0

3.2.7.2 Heart Segmentation

The heart segmentation block in Figure 3.2 (b) consists of both an encoder and a
decoder path, where the encoder path has an input image size of 128× 128, and three
condense blocks (CBs) with feature map size of {1282, 542, 322}. We employ separable
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convolution with different filter sizes in the initial layers and then stack them together,
as inspired by the Xception network. We introduced a novel skip connection block which
is computationally and memory-efficient (Figure 3.2). The decoder is symmetrical to
the encoder consisting of three blocks, comprised of 3× 3 transposed convolutions CBs,
and a soft-max layer in the last layer for generating the image mask. The concatenation
in skip-layer has been replaced by an element-wise addition operation to mitigate the
problem of the feature-map explosion. We employ a number of layers per block as 2, 3,
4, 5, 4, 3, 2 with 32 initial feature maps, 3 max-pooling layers, a growth rate of k = 16,
group/condense block = 4, and condensation factor, C = 4 (Figure 3.2). The weights
are updated during back-propagation operation by minimizing the dual loss function:

LTotal = α.LEntropy(A,E) + β.(1− LDice(A,E)) (3.3)

where LEntropy is the weighted cross-entropy loss and LDice is the dice loss. The parameter
α varies between 0 and 1 and β = 1 − α. A be the training samples and E be the
weights. The first term, LEntropy in equation 3.3 is used to calculate the weight map
from the reference classes and labels, where L and |V | are the set of all reference classes
and voxels in the training set, respectively in the Equation in 3.4.

LTotal = α. [−
∑
ai∈A

{
∑
l∈L

scale ∗ |V |
classfreq

+
∑
l∈L

edgescale ∗ |V |
edgefreq

} log (p(ri|ai;E))] +

β. [1−
∑

l∈L
|B|
|Bl|

(
∑

ai∈A p(ri|ai;E)G(ai) + ϵ)∑
l∈L

|B|
|Bl|

(
∑

ai∈A p(ri|ai;E) +G(ai) + ϵ)
]

(3.4)

Let ri be the label of the reference class corresponding to voxel ai ∈ A. |B| represents
the number of pixels in a mini-batch and |Bl| represents the number of pixels in each
class l ∈ L. The term ϵ is used to prevent division by 0 when one of the sets is empty.
The total loss, LTotal is minimized via the Adam optimizer and evaluated by dice scores
associated with clinical indices i.e. ejection fraction and myocardial mass, etc.

3.2.7.3 Uncertainty Estimation and Quantification

To estimate uncertainty information, we apply dropout after each convolutional layer
during training and test time, the Monte Carlo dropout L-CO-Net approximates the
probabilistic uncertainty similar to a Bayesian neural network from segmentation models.
We construct 10 slightly different samples for each input, average the voxelwise probability
over these samples to generate a final segmentation probability map, and then binarize
this map to generate a final segmentation result for MC dropout L-CO-Net models. The
weights are updated during the back-propagation operation by minimizing the dual loss
function, LTotal as mentioned in Equation 3.3.
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In this uncertainty work, we used the sample variance as the voxel-wise uncertainty
measure, computed on a voxel-by-voxel basis. The metric is calculated as the variance
of N Monte-Carlo prediction samples of a voxel (i.e. each voxel (x, y) has N softmax
predictions (p

(x,y,c)
1 ...p

(x,y,c)
N )) over all classes of the MC probability maps. In Equation

3.5, u(x, y) is the sample variance of each voxel (x, y) of the image. The mean-variance
of softmax probabilities is computed as follows:

u(x, y) =
1

C

C∑
c=1

[ 1

N − 1

N∑
n=1

(
p(x,y,c)n − 1

N

N∑
n=1

p(x,y,c)n

)2]
, (3.5)

where p
(x,y,c)
n represents the softmax probability of the c−th class in the n−th time, C

is the number of classes and N is the number of samples. We set the dropout rate to q
= 0.1 and produce 10 MC samples. We employ dropout layers after every encoder and
decoder block with a dropout rate to create a probabilistic encoder-decoder network.
By also using dropouts during testing, we obtain per voxel samples from the posterior
distribution. The segmentation loss is mentioned in Equation 3.3, which measures how
closely the neural network segmentation probabilities represent the likelihood of being
correct on a per-pixel basis by computing the error between the predicted and ground
truth probabilities.

3.3 Results

3.3.1 Cardiac Chamber/Feature Segmentation Evaluation

The proposed architecture was evaluated on the MICCAI STACOM 2017 ACDC dataset
in a stratified five-fold cross validation. Figure 3.4 shows segmentation results and
the ground truth masks for both 2D and 3D cases. Table 3.1 and 3.2 summarize the
comparison results, which show that our proposed model significantly improved the
segmentation performance against several state-of-the-art multi-class segmentation
techniques [29] in terms of Dice metrics, Hausdorff distance, and clinical parame-
ters. Our proposed L-CO-Net architecture achieved a Dice score and (Hausdorff dis-
tance) of 96.8%(7.9mm) and 95.1%(6.4mm) for the LV blood-pool, 89.5%(8.9mm) and
90.0%(8.9mm) for the LV-Myocardium and 93.3%(11.2mm) and 87.43%(11.9mm) for
the RV blood-pool in end-diastole and end-systole, respectively.

The predicted segmentation was subsequently used to compute the clinical parameters.
The agreement between the ground truth and the automatic is reported using correlation
statistical analysis by mapping the predicted volumes of the testing set onto the ground
truth volumes of the training set. As illustrated in Table 3.3 the agreement between our
method’s prediction and ground truth is high, characterized by a Pearson’s correlation
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Figure 3.4: Representative ED and ES frames segmentation results of a complete cardiac
cycle from the base (high slice index) to apex (low slice index) showing RV blood-pool,
LV blood-pool, and LV-Myocardium in purple, red, and cyan respectively.

Table 3.1: Quantitative evaluation of the segmentation results in terms of Mean Dice
score (%) with Hausdorff distance(in mm), no. of parameters (×106), and the clinical
indices evaluated on the ACDC dataset for LV, RV blood-pool and LV-myocardium
compared across several best performing networks, including L-CO-Net. The statistical
significance of the L-CO-Net results compared against five other baseline models are
represented by ∗(p < 0.05) and ∗ ∗ (p < 0.01). The best dice scores and Hausdorff
distances are emphasized using bold fonts.

End-Diastole (ED)
UNet DCN MUNet MNet DNet L-CO-Net

Dice [LV] 95.0 96.0 96.3 96.1 96.4 96.8*
Hausdorff (8.2) (7.5) (6.5) (7.7) (8.1) (7.9)
Dice [Myo] 88.2 87.5 89.2 87.5 88.9 89.5*
Hausdorff (9.8) (11.1) (8.7) (9.9) (9.8) (8.9)
Dice[RV] 91.1 92.8 93.2 92.9 93.5 93.3
Hausdorff (13.5) (11.9) (12.7) (12.9) (14.0) (11.2)

#Parameters 4.1 - 19.0 2.11 0.65 0.34

coefficient (rho) of 0.997(p < 0.01) for LV-EF, 0.998 for LV-EDV and 0.993(p < 0.1) for
Myo-mass. There was a slight over-estimation in the RV blood-pool segmentation, also
reflected in the clinical parameters estimation.

Figure 3.5 shows a graphical comparison between the clinical parameters estimated
from the cardiac features segmented via L-CO-Net and the same homologous parameters
estimated from the ground truth, manual segmentations, for both healthy volunteers
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Table 3.2: Quantitative evaluation of the segmentation results in terms of Mean Dice
score (%) with Hausdorff distance(in mm), no. of parameters (×106), and the clinical
indices evaluated on the ACDC dataset for LV, RV blood-pool and LV-myocardium
compared across several best performing networks, including L-CO-Net. The statistical
significance of the L-CO-Net results compared against five other baseline models are
represented by ∗(p < 0.05) and ∗ ∗ (p < 0.01). The best dice scores and Hausdorff
distances are emphasized using bold fonts.

End-Systole (ES)
UNet DCN MUNet MNet DNet L-CO-Net

Dice [LV] 90.0 91.0 91.1 91.5 91.7 95.1**
Hausdorff (10.9) (9.6) (9.2) (7.1) (9.0) (6.4)
Dice [Myo] 89.7 89.4 90.1 89.5 89.8 90.0*
Hausdorff (11.3) (10.7) (10.6) (8.9) (12.6) (8.9)
Dice[RV] 81.9 87.2 88.3 88.5 87.9 87.4
Hausdorff (18.7) (13.4) (14.7) (11.8) (13.9) (11.9)

Table 3.3: Correlation between clinical parameters estimated using L-CO-Net segmen-
tation and homologous parameters estimated from six other baseline segmentation
methods (⋆(p < 0.1), ⋆ ⋆ (p < 0.01)).

Parson’s Correlation Coefficient
UNet DCN MUNet MNet DNet EUNet L-CO-Net

LV EF 0.987 0.988 0.988 0.989 0.989 0.991 0.997⋆⋆
LV EDV 0.997 0.993 0.995 0.993 0.997 0.997 0.998
RV EF 0.791 0.852 0.851 0.793 0.858 0.901 0.869
RV EDV 0.945 0.980 0.977 0.986 0.982 0.988 0.988
Myo mass 0.989 0.963 0.982 0.968 0.990 0.989 0.993⋆

DCN: Dilated Convolution Network, MUNet: Modified 3D UNet, MNet: Modified M-Net, DNet: DenseNet, EUNet[8]:
Ensemble UNet, L-CO-Net: Learned Condensation-Optimization Network.

and patients featuring various cardiac conditions. As shown, the clinical parameters
estimated using our automatically segmented features show no significant difference
from those estimated based on the ground truth, manually segmented features.

In terms of performance, as summarized in Table 3.1, our proposed L-CO-Net
segmentation framework entails roughly 340, 000 parameters, which represents more
than 10-fold reduction from the UNet (∼ 4.1 million parameters), 60-fold reduction from
MUNet (∼ 19 million parameters), and a 2-fold reduction from the most parameter-
efficient method reported here - DNet (∼ 650, 000 parameters).

3.3.2 Segmentation Uncertainty Evaluation

Theoretically, incorrectly segmented voxels should be covered by higher uncertainty
than correctly segmented voxels. The spatial uncertainty maps are perfectly calibrated
in this scenario. Figure 3.6 illustrates the correlation between the erroneous pixels and

97



Figure 3.5: Graphical comparison between clinical parameters estimated using L-CO-Net
segmentation and same parameters estimated using the ground truth segmentation
in terms of Mean(Std. Dev.) EDV (in mL) = end-diastolic volume, ESV (in mL) =
end-systolic volume, SV (in mL) = stroke volume, EF (%) = ejection fraction MM (in
gm) = myocardial mass.

the uncertainty. The error is calculated by finding the difference between the reference
mask and the predicted mask. The computed correlation value of r=0.94 indicates that
there is a very good correlation between the error and the uncertainty in terms of pixels.
The qualitative uncertainty maps from our proposed model for both the ED and ES
phases are visualized in Figure 3.7.

As seen from Figure 3.7, our model-predicted uncertainty maps closely match the
regions where the segmentation algorithm under-performs compared to the ground
truth. As such, these predictive maps show lower uncertainty in the periphery of the
LV blood pool an LV myocardium, and higher uncertainty (on the order of 80%) close
to the periphery of the RV blood pool. Similarly, these regions also show the greatest
discrepancies between the proposed and ground truth segmentation masks.

One benefit of the uncertainty maps is their behavior in the regions featuring poor
segmentation. The panels in columns 1 and 3 of Figure 3.7 show the proposed and
ground truth segmentation masks overlaid onto the ED and ES images slice, while
columns 2 and 4 illustrate the segmentation uncertainties. These panels, when visualized
side-by-side clearly show how that Bayesian uncertainty maps are highly indicative of
the poorly segmented regions, confirming the 94% correlation between the erroneously
segmented regions and the cumulative segmentation uncertainty regions shown in Figure
3.6. Hence, these uncertainty maps are key to raising awareness and caution about the
reliability of the segmentation at various locations.
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Figure 3.6: Correlation between the segmentation error and model-predicted uncertainty.

3.3.3 Cardiac Motion Extraction and Dynamic RV Model Prop-
agation Evaluation

To evaluate the registration performance of the FFD, Demon’s and VoxelMorph methods,
the isosurface of the right ventricle (RV) generated from the segmentation map in the
ED frame is propagated to all the subsequent cardiac frames using the registration
field. We then compare the registration accuracy by measuring the overlap between
the isosurfaces directly generated by segmenting all cardiac image frames using our
CondenseUNet model [28] (i.e., “silver standard”) and those propagated by FFD, Demon’s
and VoxelMorph using Dice score and mean absolute distance (MAD).

Table 3.4 summarizes the registration performance between these propagated and
“silver standard” isosurfaces, for both normal and abnormal RV. Figure 3.8 illustrates
the MAD between the propagated and segmented isosurfaces for one patient each with
normal and abnormal RV. It can be observed that the CNN-propagated isosurfaces
are closer to the segmented isosurfaces than the FFD-propagated isosurfaces; they are
comparable to the Demon’s-propagated isosurfaces.

As mentioned in Section 3.2.6, we generate four sets of isosurface meshes at each
frame of the cardiac cycle for one patient with a normal RV and one patient with an
abnormal RV. Figure 3.9 shows the mean nearest neighbor (NN) distance between the
three sets of the registration-propagated isosurface meshes and the isosurface meshes
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Figure 3.7: Representative uncertainty maps (red areas correspond to higher uncertainty
as shown in the color bar) of a cardiac cycle in ED and ES phase from the base to
apex showing RV blood-pool (green), LV blood-pool (cyan), LV-Myocardium (blue),
and segmentation errors (red). The first column shows SSFP cine cardiac MR images.
The second column shows the MRI overlaid with segmentation predictions and errors
(red) of U-Net architecture. The third column shows the errors in predictions of our
model trained with our custom loss. The last column shows the Bayesian uncertainty
maps for the Brier score.

generated directly from the segmented masks at each frame of the cardiac cycle for both
the normal and abnormal RV subjects. It can be observed that the isosurface meshes are
in close agreement with one another in the subjects with both a normal and an abnormal
RV. Figure 3.10 illustrates the model-to-model distance at the end-systole (ES) frame
between the three registration-propagated isosurface meshes and the isosurface meshes
generated directly from the segmented masks for both the normal and abnormal RV
subjects.

The proposed CNN-based cardiac motion extraction can be used to generate isosurface
meshes at all the cardiac phases, which are in close agreement with the isosurface meshes
propagated using traditional iterative image registration algorithms, as well as the
meshes generated from the direct segmentation of the cardiac image frames.

One of the major advantages of the proposed CNN-based framework over the
traditional nonrigid image registration techniques is the significantly faster computing
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Table 3.4: RV Endocardium Mean (std-dev) Dice score (%) and mean absolute distance
(MAD) between FFD and segmentation (FFD-SEG), Demon’s and segmentation (Dem-
SEG), CNN and segmentation (CNN-SEG), FFD and CNN (FFD-CNN), and Demon’s
and CNN (Dem-CNN) results. Statistically significant differences were confirmed via
t-test between FFD-SEG and Dem-SEG, and FFD-SEG and CNN-SEG (* p < 0.1 and
** p < 0.05).

Normal RV Abnormal RV
Methods Dice MAD Dice MAD
FFD-SEG 75.47 4.37 81.72 2.39

(5.71) (1.23) (3.32) (0.62)
Dem-SEG 79.49 3.52 84.54 2.14

(4.77)** (0.93) (4.75)** (0.46)
CNN-SEG 79.51 3.34 83.61 2.44

(4.93)** (0.82)* (4.96)** (0.63)
FFD-CNN 80.15 1.69 87.31 1.03

(5.86) (1.02) (3.45) (0.56)
Dem-CNN 84.91 1.08 90.64 0.78

(5.58) (0.91) (2.55) (0.31)

time. For example, it takes around 40 seconds to propagate the isosurface mesh at the
ED frame to the other frames of the cardiac cycle using a trained VoxelMorph model,
compared to 135 and 160 seconds using the FFD and Demon’s registration methods,
respectively. Similarly, the advantage of using mesh propagation rather than direct mesh
generation from individual cardiac image frame segmentation is point correspondence
across meshes at different frames, as well as an overall smoother mesh animation over
sequential frames, since the individual frame segmentation is accompanied by inherent
uncertainty. One area of improvement is to impose diffeomorphic restrictions to the
CNN-based image registration method in order to prevent mesh tangling and maintain
high mesh quality.

3.4 Discussion and Conclusion

This research presents an unsupervised deep learning-based deformable image regis-
tration technique to generate individualized anatomically detailed RV models from
high-resolution cine cardiac MR images, following accurate cardiac chamber and feature
segmentation also conducted using our custom-developed methods. The cardiac motion
estimation was formulated as a 4D image registration problem, which constrains the
smoothness of the estimated motion fields concurrently with the image registration
procedure.
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Figure 3.8: Mean absolute distance (MAD) between FFD-, Demon’s- and CNN-
propagated and segmented (i.e., “silver standard”) masks at all cardiac frames for
patients with normal and abnormal RVs.

Figure 3.9: Nearest neighbor (NN) distance between FFD-, Demon’s- and CNN-
propagated and segmented (i.e., “silver standard”) isosurface meshes at all cardiac
frames for patients with normal and abnormal RVs.

To generate the segmentation mask, we developed a new memory-efficient architecture
for accurate LV, RV blood-pool, and myocardium segmentation, and clinical parameter
quantification from breath-hold cine cardiac MRI. The capability of our network to learn
the group structure allows multiple groups to re-use the same features via condensed
connectivity. Moreover, the efficient weight-pruning methods lead to high computational
savings without compromising segmentation accuracy. To the best of our knowledge,
at the time of its dissemination in 2019-2020, this was the first work that presented
a learned condensation-optimization approach for estimating clinical parameters from
cardiac image segmentation in a fully convolutional setting. Our analysis across both
healthy and abnormal patients indicated that the segmentation and estimated clinical
parameters show no statistically significant difference from the ground truth manual
segmentation and the inherently estimated clinical parameters.
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Figure 3.10: Model-to-model distance between the isosurface mesh at end-systole (ES)
frame generated from segmentation and propagated using FFD, Demon’s and CNN-
based deformable registration methods (left to right) for a patient with normal RV (top)
and a patient with abnormal RV (bottom).

Our uncertainty study has confirmed that there is poor segmentation near the apical
and basal regions. Our model-predicted uncertainty maps show good agreement with
the regions where the segmentation algorithm underperforms in comparison to the real
data.

Our proposed model outperforms several best methods according to dice scores,
Hausdorff distances(HD), and clinical parameters, achieving 96.8% dice with 7.9mm HD
for LV blood pool in ED and 95.1%(6.4mm) in ES phase, which showed at least 0.41%

improvement in ED phase and 3.7% improvement in ES phase over the current methods,
as well as more than 6% improvement over the traditional U-Net architecture. For
LV-Myocardium segmentation, we achieved 89.5%(8.9mm) in ED and 90.0%(8.9mm)

in ES, which showed at least 0.67% improvement in ED and 0.22% improvement in
ES phase over the current methods, with at least a 10-fold reduction in the number of
parameters.

To improve the robustness of L-CO-Net framework, we used a low-level image
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pre-processing operation which serves as a precursor preliminary segmentation that
narrows the capture range of the subsequent deep learning segmentation and parameter
estimation. Our experiments show that L-CO-Net runs on the ACDC dataset using
50% of the memory requirements of Dense-Net and 8% of the memory requirements of
U-Net, while still maintaining excellent clinical accuracy.

The performance of our 4D registration method for cardiac applications has been
evaluated by qualitative, as well as quantitative validation using cardiac cine MR images.
In addition, our method is not restricted to only the RV geometry and can be extended
to bi-ventricular models. Thus, it can be used potentially for improving early diagnosis
and treatment planning of cardiomyopathies.

As part of future work, we will use the deformable endocardial RV models to
characterize the kinematics of the RV endocardium and study the displacement, velocity,
and acceleration, as well as shape changes and use these quantities as potential biomarkers
across various RV-specific cardiac diseases, such as pulmonary hypertension or other
cardiac conditions resulting from RV malfunction. Additionally, the overall pipeline
will increase the reliability of automatic segmentation for both research and clinical
use. Our future research will explore the use of uncertainty measures to flag low-quality
segmentation for automatic detection using a deep neural network in place of human
review to detect and correct the low-quality segmentation maps.
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Chapter 4

A Self-training Student-Teacher
Augmentation-driven Meta
Pseudo-labeling Framework for 3D
Cardiac MRI Image Segmentation

Medical image segmentation has significantly benefited from deep learning architectures,
with semi-supervised learning (SSL) leading to significant improvements in overall model
performance by leveraging abundant unlabeled data. Nevertheless, one shortcoming of
pseudo-labeled-based semi-supervised learning is pseudo-labeling bias, whose mitigation
is the focus of this work. We developed a simple, yet effective SSL framework for image
segmentation—STAMP1 (Student-Teacher Augmentation-driven consistency regulariza-
tion via Meta Pseudo-Labeling) that uses self-training (through meta pseudo-labeling)
in concert with a Teacher network that instructs the Student network by generating
pseudo-labels given unlabeled input data. Unlike pseudo-labeling methods, for which the
Teacher network remains unchanged, meta pseudo-labeling methods allow the Teacher
network to constantly adapt in response to the performance of the Student network on
the labeled dataset, hence enabling the Teacher to identify more effective pseudo-labels
to instruct the Student. Moreover, to improve generalization and reduce error rate,
we apply both strong and weak data augmentation policies, to ensure the segmentor
outputs a consistent probability distribution regardless of the augmentation level. Our
extensive experimentation with varied quantities of labeled data in the training sets
demonstrates the effectiveness of our model in segmenting the left atrial cavity from

1This chapter is adapted from:
[1] Hasan SMK et al., STAMP: A Self-training Student-Teacher Augmentation-driven Meta Pseudola-
beling Framework for 3D Cardiac MRI Image Segmentation. Springer – Lect Notes Comput Sci. Vol.
13413. Pp.: 371-86. 2022.
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Gadolinium-enhanced magnetic resonance (GE-MR) images.

4.1 Introduction

While deep learning has shown potential for improved performance across a wide variety
of medical computer vision tasks, including segmentation [1, 2], registration [3], and
motion estimation [4], many of these successes are achieved at the cost of a large pool
of labeled datasets. Obtaining labeled images, on the other hand, requires substantial
domain expertise and manual labor, making large-scale deep learning models challenging
to implement in clinical settings. Moreover, when the annotation of medical images
requires the assistance of clinical experts, the cost becomes unaffordable. Hence, this
ineffectiveness in the low-data domain, in turn, hampers the clinical adoption and use of
many medical image segmentation models. Therefore, instead of attempting to improve
high-data regime segmentation, this work focuses on data-efficient segmentation training
that only uses a few pixel-labeled data and takes advantage of the wide availability
of unlabeled data to improve segmentation performance, with the goal of closing the
performance gap with supervised models trained with fully pixel-labeled data.

Our work is motivated by the recent progress in image segmentation using semi-
supervised learning (SSL), which has shown good results with limited labeled data and
large amounts of unlabeled data. Recent research has yielded a variety of semi-supervised
learning techniques. Successful examples include MeanTeacher [5], MixMatch [6], and
FixMatch [7]. One outstanding key feature of most SSL frameworks is consistency
regularization, which encourages the model to produce the same output distribution
when its inputs are perturbed [8, 9]. As such, pseudo-labeling or self-training is also
utilized in conjunction with semi-supervised segmentation to incorporate the model’s
own predictions into the training [10, 11]. As such, to increase training data, models
incorporate pseudo-labels of the unlabeled images obtained from the segmentation model
trained on the labeled images.

To execute a task, semi-supervised learning (SSL) uses a small number of labeled
examples along with unlabeled samples. Most methods follow one or combinations of
directions, such as consistency regularization ([12], [7]) or pseudo-labeling ([10], [13]).
Existing methods use conventional data augmentation [5], [14] to provide alternative
transformations of semantically identical images, or they blend input data to create
enhanced training data and labels [15], [16]. Liu et al. [17] revisit the Semi-Supervised
Object Detection and identify the pseudo-labeling bias issue in SS-OD. However, they
updated the Teacher network using a non-gradient exponential moving average (EMA),
which concentrates on weighting the Student’s parameters at each stage of the training
process, without explicitly evaluating parameter quality. Sohn et al. introduce FixMatch
[7], which matches the prediction of the strongly-augmented unlabeled data to the
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pseudo label of the weakly-augmented counterpart when the model confidence on the
weakly-augmented counterpart is high. In contrast to these approaches, here we redesign
the pseudo label as well as data augmentations for semantic segmentation utilizing both
consistency regularization, as well as pseudo labeling.

A self-training-based approach was used by Bai et al. [11] for cardiac MR image
segmentation. They use an initial model trained on labeled data to predict the labels on
unlabeled data, so that these labels, although less accurate, can be used for training an
updated, more powerful model. Recent approaches involve integrating an uncertainty
map into a mean-Teacher framework to guide the Student network [18] for left atrium
segmentation. Zeng et al. [19] propose a Student-Teacher framework for semi-supervised
left atrium segmentation. However, they haven’t applied any data augmentation and
thus omit the idea that a segmentor should output the same probability distribution for
an unlabeled pixel even after it has been augmented.

Nevertheless, pseudo-labeling techniques, despite their benefit, suffer from one major
flaw: if the pseudo-labels are erroneous, the Student network will learn from inaccurate
data, much like the analogy of a Student’s performance (i.e., the accuracy of the
segmentation labels output by a model) not being able to significantly exceed the
Teacher’s performance (i.e., the accuracy of the pseudo-labels used for training the
model). This flaw is also known as the problem of confirmation bias in pseudo-labeling.
To this extent, in this work we investigate pseudo-labeling for semi-supervised deep
learning from network predictions and shows that in contrast to previous attempts at
pseudo-labeling [20, 19], simple modifications to correct confirmation bias results in
state-of-the-art performance.

To address these issues, we propose a three-stage semi-supervised framework –
STAMP: Student-Teacher Augmentation-Driven Meta Pseudo-Labeling, in-
spired by the framework in Noisy-Student [21], a method of training a Student and
a slowly progressing Teacher (Figure 4.1) in a mutually advantageous manner. In
the first stage, we train a fully convolutional network (FCN) using all labeled data
until convergence. In the second stage, the weak data augmentations are applied to
each unlabeled image where the Teacher model is trained with unlabeled data and the
Student learns from a minibatch of pseudo-labeled data generated by the Teacher. The
prediction of strongly-augmented data is then optimized to match its corresponding
pseudo-labels with the labeled data pre-trained in the first stage. Later on, the Student
progressively updates the Teacher using the response signal in the third stage. Unlike
the non-gradient EMA [14] method, this reward signal is utilized to motivate the Teacher
during the Student’s learning process through a gradient descent algorithm. We evaluate
our approach using the Left Atrial Segmentation Challenge dataset by comparing our
results to those of existing SSL methods. STAMP achieves a 2.6-fold mean improvement
over the state-of-the-art RLSSS [19] method.
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Our proposed method presents several key contributions which are summarized
as follows: (1) STAMP presents simple and effective strategy for dealing with the
pseudo-labeling bias problem by adopting a threshold where pixels with a confidence
score higher than 0.5 will be used as pseudo labels, while the remaining are treated
as ignored regions. Additionally, since a large pool of labeled data is not available,
the proposed method inherently mitigates the over-fitting problem; (2) The different
strong and weak data augmentation policies improve the generalization performance
and reduce the error rate significantly. Our observation shows that when replacing weak
augmentation with no augmentation, the model overfits the predicted unlabeled labels;
(3) The use of pseudo-labels enables a gradient descent response loop from the Student
network to the Teacher network that improves the teaching of the Teacher network and
minimizes the prediction bias; and (4) Extensive experimental studies on the MICCAI
STACOM 2018 Atrial segmentation challenge dataset and comparative analyses are
conducted to validate the effectiveness of this method at not only the low-data regime
but also the high-data regime.

Unlabeled Image

Student Prediction

Teacher Prediction

Figure 4.1: STAMP model applied to the left atrium dataset, where a large amount of
unlabeled data is available. Both the Student and Teacher predictions are shown during
a random training iteration.
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4.2 Methodology

4.2.1 STAMP Model Framework

4.2.1.1 Segmentation Model Formulation:

We define the semi-supervised image segmentation problem in a semi-supervised setting
as follows: given an (unknown) data distribution p(x, y) over images and segmen-
tation masks, we have a source domain having a training set, DL = {(xl

i, y
l
i)}

nl
i=1

with nl labaled examples and DUL = {(xul
j )}

nul
j=1 with nul unlabaled examples which

are sampled i.i.d. from p(x, y) and p(x) distribution and nl ≪ nul, where xl
i is the

i-th labeled image with spatial dimensions H × W , yli ∈ {0, 1}C×H×W is its corre-
sponding pixelwise label map with C as the number of categories, and xul

j is the
j-th unlabeled image. Empirically, we want to minimize the target risk ϕt(θ

S, θT ) =

minθS ,θT LL(DL, (θ
S, θT )) + γLUL(DUL, (θ

S, θT )), where LL is the supervised loss for
segmentation, LUL is unsupervised loss defined on unlabeled images and θS, θT denotes
the learnable parameters of the overall network.

4.2.1.2 Model Architecture and Components:

We propose STAMP – a simple yet effective Student-Teacher SSL framework for
image segmentation based on Augmentation driven Consistency regularization and
Self-Training (through Meta Pseudo-labeling), as illustrated in Figure 4.2. The overall
model entails three stages of training, where we train a Teacher model using all available
labeled data in the first stage as a pre-trained initializer, while in the second stage,
we train STAMP using both labeled and unlabeled data. We manage the quality of
pseudo labels constituted of segmentation masks using a high confidence-based threshold
value inspired by FixMatch [7]. The training steps for STAMP are summarized in the
subsequent sections.

(a) Training a Teacher Model: It is critical to start with an appropriate initial-
ization for both the Student and Teacher models because we’ll be relying on the
Teacher to create pseudo-labels to subsequently train the Student. Hence, we first
apply the supervised loss LL to improve our model using the existing supervised
data. For a labeled set DL = {(xl

i, y
l
i)}

nl
i=1, the segmentation network is trained

in a traditional supervised manner which minimizes the cross-entropy (CE) loss,

LL = 1
nl×|DL|

∑
x∈DL

nl∑
i=1

CrossEntropy{yli, fT (xl
i; θ

T )}, where the definitions of parame-

ters are defined in Problem Description section.

114



Strong Augment 
(Cutout) 

Weak Augment 
(Horizontal Flip) 

Labeled Set Label

Pseudo-Label

Unlabeled Set

Supervision
Stage 1:

Stage 2:

Gradient
UpdateStage 3:

Supervised  
Loss

Pseudo-Label 
(Conf. thres.)

Figure 4.2: Schematic of STAMP model: The Teacher model is trained using all labeled
data until convergence. Weak data augmentations are applied to each unlabeled image,
such that the Teacher model is trained with unlabeled data and the Student learns from
a mini-batch of pseudo-labeled data generated by the Teacher. In turn, the Teacher’s
parameters θT are updated based on the response signal from the Student’s parameters
θS via gradient-descent in the later stage.

(b) Generating Pseudo-Labels: STAMP assigns each unlabeled example an artificial
label, which is subsequently employed in a standard cross-entropy loss to train the
Student model. We initially compute the model’s predicted distribution using a weakly-
augmented (e.g. horizontal flip) version of a given unlabeled image xul

j in an unlabeled set
DUL to obtain an artificial label, yul ∼ P (fT (Aweak(x

ul); θT )). To avoid the cumulatively
detrimental effect of noisy pseudo-labels (i.e., confirmation bias), we first set a confidence
threshold τ of predicted masks to filter low-confidence predicted masks, which are more
likely to be false-positive samples. Then, the final pseudo-labels are obtained by selecting
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Algorithm 3 STAMP’s main learning algorithm
Input:
Training set of labeled data xl, yl ϵ DL, and unlabeled data xul ϵ DUL

Require: Learned parameters: (θT , θS), number of pre-train epoch, number of
main-train epoch, confidence threshold τ

for each epoch do
if epoch < maintrain then

Sample mini-batch from xl
i;x

l
1, . . . , x

l
nl
;

θT ← θT + γ ∂Lsup

∂θT
{Train the Teacher network with all the labeled data}

else
Teacher UPDATE STAGE:
Sample mini-batch from xl

i;x
l
1, . . . , x

l
nl
; and xul

j ;x
ul
1 , . . . , x

ul
nul

;

Apply weak data augmentation to xul, xul = Aweak(x
ul) to train Teacher model

Apply strong data augmentation to xul, xul = Astrong(x
ul) to train Student model

Sample a pseudo label yul ∼ P (fT (Aweak(x
ul); θT ))

Use a confidence threshold, τ
if P (fT (Aweak(x

ul); θT )) ≥ τ then
pseudo-mask, ŷul = argmax(yul)

end if
Update the Student using the pseudo label ŷul:

θS(t+1) = θS(t) − ηS ∇θS CE(ŷul, fS((Aweak(x
ul); θS))|θS=θS

(t)
(4.1)

Compute the Teacher’s response coefficient

h = ηS.
(
(∇θ′S CE(yl, fS(x

l; θS(t+1))))
⊤.

∇θSCE(ŷul, fS(Aweak(x
ul); θS))

)
(4.2)

Compute the Teacher’s gradient from the Student’s response signal:

gT(t) = h. ∇θTCE(ŷul, fT (A(xul); θT ))|θT=θT
(t)

(4.3)

Compute the Teacher’s gradient on labeled data:

gT,Sup(t) = ∇θTCE(yl, fT (x
l; θT )) (4.4)

Update the Teacher:

θT(t+1) = θT(t) − ηT.
(
gT(t) + gT,Sup(t)

)
(4.5)

end if
end for=0
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the pixels having the maximum predicted probability of the corresponding class, ŷul =
(argmax(P (fT (Aweak(x

ul)); θT )) ≥ τ), where Aweak denotes the weak-augmentation
operation.

(c) Student Learning from Pseudo-Labels: In this stage, the Student model
fS(., θ

S) is trained with the pseudo-labels generated from the Teacher model, where we
use both the labeled and unlabeled datasets DL, DUL. We enforce the cross-entropy loss
against the Student model’s output for the strong-augmentation of the unlabeled images
having the idea that the Student model would output the same probability distribution
for an unlabeled pixel even after it has been augmented. Additionally, we utilize a
consistency regularizer function to enforce consistency between the generated pseudo
masks and the masks predicted by the Student model itself (Equation 4.6).

1

nul × |DUL|
∑

x∈DUL

nul∑
j=1

CrossEntropy{ŷuli , fS(Astrong(x
ul
j ); θ

S)} +

∑
xi∈D ||(ŷul)− (fS(Astrong(x

ul
j ); θ

S))||2︸ ︷︷ ︸
Regularizer

,

(4.6)

where Astrong denotes the strong-augmentation (Cutout, Gaussian blur, Shift-ScaleRotate)
operation. Since the Student parameters always depend on the Teacher parameters
via the pseudo labels, we need to compute the Jacobian, as shown in Equation (4.1)
(Algorithm 3).

(d) Updating the Teacher Model: To obtain more stable meta pseudo-labels, we use
the response signal from the Student to gradually update the Teacher model. Unlike the
non-gradient EMA [14] method, this reward signal is utilized to motivate the Teacher
during the Student’s learning process through the gradient descent algorithm as described
in [22] (Equation 4.2 - 4.5).

4.2.2 Data Augmentation Strategies:

A robust data augmentation is a vital aspect in the success of SSL approaches like
MixMatch [6], FixMatch [7] etc. We leverage the Cutout augmentation [23] (strong
augmentation) with a rectangle of 50× 50 pixels because of its consistent results. We
investigate various transformation techniques including Horizontal Flip (weak augmenta-
tion), Gaussian Blur, ShiftScaleRotate colorJitter, etc. Each operation has a magnitude
that determines the degree of strength augmentation. We visualize transformed images
with the aforementioned augmentation strategies in Figure 4.3.
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Figure 4.3: Visualization of different types of augmentation strategies. Original image,
Horizontal Flip, ShiftScaleRotate, Gaussian Blur, and Cutout (left to right).

4.2.3 Experiments

Data: The model was trained and tested on the MICCAI STACOM 2018 Atrial
Segmentation Challenge datasets featuring 100 3D gadolinium-enhanced MR imaging
scans (GE-MRIs) and LA segmentation masks, with an isotropic resolution of 0.625×
0.625× 0.625mm3. The dimensions of the MR images vary depending on each patient,
however, all MR images contain exactly 88 slices in the z axis. All the images were
normalized and resized to 112× 112× 80 before feeding them to the models. We split
the dataset into 80 scans for training and 20 scans for validation, and apply the same
pre-processing methods.
Baselines Architecture: For a fair comparison, we use V-Net [24] as the backbone
for both the Teacher and the Student models in our semi-supervised segmentation
experiments.
Training: The performance of semi-supervised models trained for image segmenta-
tion can significantly be enhanced by the selection of the regularizer, optimizer, and
hyperparameters. We implement our method using the PyTorch framework and set the
batch size to 4. In self-training, a batch of 4 images is composed of 2 labeled images
and 2 unlabeled images. Both the Teacher and the Student models are trained for 6000

iterations, with an initial learning rate of 0.01, decayed by 0.1 every 2500 iterations. We
train the network on varying proportions of labeled data – 10%, 20%, 30%, 50%, and
100% – while enforcing that |DL| ≤ |DUL|. We include an ablation study to elucidate
and investigate the effects of the different components and hyperparameters of our
model. All experiments were conducted on a workstation equipped with two NVIDIA
RTX 2080 Ti GPUs (each 11GB memory). The detailed training procedure is presented
in Algorithm 3.

4.2.4 Evaluation:

To evaluate the performance of semantic segmentation of cardiac structures, we use
several standard metrics, including Dice score (Dice), Jaccard index, Hausdorff distance
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(HD), Precision, and Recall. We compare the segmentation results achieved using our
proposed STAMP architecture with those achieved using five other frameworks: V-Net,
MT, UA-MT, SASSNet, and RLSSS.

To justify the choice of these frameworks as benchmarks, here we briefly highlight
their features. The UA-MT [18] model is based on the uncertainty-aware mean Teacher
framework, in which the Student model learns from meaningful targets over time
by leveraging the Teacher model’s uncertainty information. The Teacher model not
only generates the target outputs but also uses Monte Carlo sampling to quantify the
uncertainty of each target prediction. When computing the consistency loss, they use the
estimated uncertainty to filter out the faulty predictions and keep only the dependable
ones (low uncertainty).

Similarly, to take advantage of the unlabeled data and enforce a geometric form
constraint on the segmentation output, SASSNet [25] offered a shape-aware semi-
supervised segmentation technique. Meanwhile, in semi-supervised image segmentation,
self-ensembling approaches, particularly the mean Teacher (MT) model [5], have re-
ceived a lot of attention. The mean Teacher (MT) structure guarantees consistency of
predictions with inputs under varied perturbations between the Student and Teacher
models, boosting model performance even more. In RLSSS [19], the Teacher updates its
parameters autonomously according to the reciprocal feedback signal of how well the
Student performs on the labeled set.

4.3 Results and Discussion

4.3.1 Image Segmentation Evaluation

We first evaluate our proposed framework on Left Atrium MRI dataset. The quantitative
comparison of various approaches in terms of Dice score (Dice), Jaccard index, Hausdorff
distance (HD), Precision, and Recall is shown in Table 4.1. A better segmentation
yields higher Dice, Jaccard, Precision, and Recall values and lower values for the other
metrics. All semi-supervised approaches that take advantage of unannotated images
enhance segmentation performance significantly when compared to fully-supervised
V-Net trained with only 8 (10%) annotated images.

Our proposed model outperformed the fully supervised method according to all
metrics, achieving 90.4% Dice and 82.7% Jaccard scores, which represent a 13% and
21.3% improvement, respectively. Moreover, in comparison to other methods, our
proposed framework more efficiently utilized the limited labeled data by employing a
Teacher-Student mutual learning strategy, which allowed the Teacher model to update
its parameters autonomously and generate more reliable annotations for unlabeled data.
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Table 4.1: Quantitative comparison of left atrium segmentation across several frameworks.
Mean (standard deviation) values are reported for Dice(%), Jaccard(%), 95HD(%),
ASD(%), Precision(%), and Recall(%) from all networks against our proposed STAMP.
The statistical significance of the STAMP results compared to those achieved by the
other top-performing models, including RLSSS, for 10% and 20%, labeled data are
represented by ∗ and ∗∗ for p−values 0.1 and 0.001, respectively. The best performance
metric is indicated in bold text.

SCANS USED METRICS
METHODS Labeled Unlabeled Dice(%) ↑ Jaccard(%)↑ HD95(mm) ↓
V-Net [24] 10% 0 79.98 ±1.88 68.14±2.01 21.12±15.19
MT [5] 10% 90% 83.76±1.03 73.01±1.56 14.56±14.03
UA-MT [18] 10% 90% 84.25±1.61 73.48±1.73 13.84±13.15
SASSNet [25] 10% 90% 87.32±1.39 77.72±1.49 12.56±11.30
RLSSS [19] 10% 90% 88.13±1.68 79.20±1.78 11.59±9.28
STAMP (Proposed) 10% 90% **90.43±0.75 **82.67±.82 **6.22±4.55
V-Net [24] 20% 0 85.64±1.73 75.40±1.84 16.96±14.37
MT [5] 20% 80% 88.23±1.01 79.29±1.80 10.64±9.32
UA-MT [18] 20% 80% 88.88±0.73 80.20±0.82 8.13±6.78
SASSNet [25] 20% 80% 89.54±0.66 81.24±0.75 8.24±6.58
RLSSS [19] 20% 80% 90.07±0.76 82.03±0.84 6.67±3.54
STAMP (Proposed) 20% 80% *91.90±0.64 **84.38±0.83 7.15±4.74

SCANS USED METRICS
METHODS Labeled Unlabeled ASD(mm)↓ Precision(%) ↑ Recall(%)↑
V-Net [24] 10% 0 5.47±1.92 83.67±1.79 74.55±1.90
MT [5] 10% 90% 4.43±1.08 87.23±1.06 76.31±1.88
UA-MT [18] 10% 90% 3.36±1.58 87.57±1.53 77.85±1.65
SASSNet [25] 10% 90% 2.55±1.86 87.66±1.38 87.22±1.37
RLSSS [19] 10% 90% 2.91±0.59 90.33±1.66 87.08±1.70
STAMP (Proposed) 10% 90% *1.82±0.40 90.96±0.74 **90.30±0.75
V-Net [24] 20% 0 4.03±1.53 88.78±1.70 83.79±1.51
MT [5] 20% 80% 2.66±1.26 89.89±0.92 87.54±0.66
UA-MT [18] 20% 80% 2.35±1.16 89.57±0.73 88.82±0.72
SASSNet [25] 20% 80% 2.27±0.81 89.86±0.65 90.42±0.66
RLSSS [19] 20% 80% 2.11±4.67 90.16±0.77 89.97±0.76
STAMP (Proposed) 20% 80% 2.04±0.34 90.92±0.93 *91.43±0.92

The paired statistical test reported in Table 4.1 shows that our proposed model
significantly improved the segmentation performance compared to the semi-supervised,
fully-supervised, models in terms of the Dice, Jaccard, 95% Hausdorff Distance (95HD),
average surface distance (ASD), Precision, and Recall. In addition, by effectively
exploiting unlabeled data with weak and strong augmentation, our proposed model
yielded a statistically significant 2.6%improvement (p < 0.05) in Dice and 4.4% Jaccard
(p < 0.05) over the RLSSS framework, while using only 10% labeled data for training.

Figure 4.4 shows the results obtained by V-Net [24], MT [5], UA-MT [18], SASSNet
[25], RLSSS [19], our proposed STAMP framework, and the corresponding ground truth
on the MICCAI STACOM 2018 Atrial Segmentation Challenge. Figure 4.4 (bottom
row) also shows that all frameworks but STAMP yield segmentation masks that miss
portions of the aortic (AO) region (indicated by the red arrows in 2D and black arrows
in 3D). On the other hand, the STAMP framework yields a complete segmentation of
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the left atrium that closely matches the ground truth segmentation mask, preserves
more details, and yields fewer false positive results, overall demonstrating the increased
efficacy of the proposed learning strategy.

Figure 4.4: Qualitative comparison result in 2D as well as 3D of the MICCAI STACOM
2018 Atrial Segmentation challenge dataset yielded by six different frameworks (V-Net,
MT, UA-MT, SASSNet, RLSSS, and STAMP). The comparison of segmentation results
between the proposed method and five typical deep learning networks indicates that the
performance of our proposed network is superior. The black arrows indicate the locations
where the segmentation masks yielded by the other networks used as benchmarks fail to
correctly capture the aorta (AO) in 3D.

Figure 4.5(a) shows the best segmentation contours yielded by the STAMP frame-
work (green) and the corresponding ground truth contours (red). We trained our model
on varying proportions of labeled data – 10%, 20%, 30%, 50%, and 100% – while
enforcing that |DL| ≤ |DUL|. Figure 4.5(b) shows that STAMP accuracy further
increases with increasing proportions of labeled data for training. The mean Dice score
(%) increases from 90% with only 10% labeled data to 93% with 100% labeled data.
This experiment clearly emphasizes the robustness and high performance of STAMP
using mostly (90%) unlabeled data, and its only incremental improvement with the
addition of large quantities of labeled data.

4.3.2 Ablation Study

We also conducted ablation studies to demonstrate the effectiveness of incorporating a
response signal loop by gradient descent step from the Student network to the Teacher
network to improve the teaching of the Teacher network and minimize the prediction
bias in a semi-supervised setting, as well as study the benefit of different forms of
augmentation.
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Figure 4.5: (a) Axial, coronal and sagittal views of the STAMP (green) and ground
truth (red) left atrium segmentation contours; (b) robust and high performance (90%
Dice score) STAMP segmentation with 10%: 90% labeled: unlabeled data and consistent
steady performance increase (up to 93% Dice score) with additional labeled data.

Figure 4.6: Ablation study designed to investigate the effect of gradient-based teacher
training (GTT) on Dice score for left atrial segmentation using only 20% labeled data
with and without GTT.

4.3.2.1 Effect of the Gradient-based Teacher Training:

To illustrate the impact of Gradient-based Teacher training (GTT), we compared our
model performance with and without GTT. Figure 4.6 shows that the incorporation
of GTT significantly improves segmentation performance, as quantified by the Dice
score. This significant improvement can be explained by the fact that while conventional
training (without GTT) often generates imbalanced pseudo-labels, where most pixel
category instances in the pseudo-labels vanish, leaving just instances of specific pixel
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categories, GTT constrains the generation of imbalanced pseudo-labels, leading to
improved performance.

4.3.2.2 Effect of Pre-Training Stage:

For both the Student and Teacher models, a proper initialization is critical. Figure 4.7
shows the effects of using a pre-training stage. We observe that using the pre-training
step, the model may generate more accurate pseudo-labels early in the training process.
As a result, the model can attain lower loss in the training process, as well as better
performance once the model converges.

Figure 4.7: Experiment conducted on a left atrial image datasets consisting of only 20%
labeled data showing the benefits of using a pre-training stage (right) in concert with
STAMP, which leads to lower loss compared with no pre-training stage (left).

Figure 4.8: Experiment conducted on a left atrial image datasets consisting of only 20%
labeled data showing the benefits of using data augmentation (orange) in concert with
STAMP, which leads to higher accuracy (Dice and Jaccard) compared with no data
augmentation (purple).

4.3.2.3 Effect of data augmentation:

To improve generalization and significantly reduce error rate, we applied different strong
and weak data augmentation strategies. Figure 4.8 shows a comparison of the model
with and without the augmentation strategies. Our observation shows that when
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replacing weak augmentation with no augmentation, the model overfits the predicted
unlabeled labels. The statistical significance of the *Dice and **Jaccard for STAMP
model with and without data augmentation for 20% labeled data are represented by *
and ** for p−values 0.1 and 0.001, respectively.

4.4 Conclusion

In this chapter, we describe an effective Student-Teacher Augmentation-driven Meta
pseudo-labeling (STAMP) model for 3D cardiac MRI image segmentation. The frame-
work mitigates the pseudo-labeling bias problem arising due to class imbalance by
adopting a threshold where pixels with a confidence score higher than 0.5 will be used
as pseudo labels, while the remaining are treated as ignored regions. Additionally,
the proposed model also mitigates the over-fitting challenge induced by the lack of
a large pool of labeled data. The meta pseudo-labeling approach generates pseudo
labels by a Teacher-Student mutual learning process where the Teacher learns from
the Student’s reward signal, which, in turn, best helps the Student’s learning. Unlike
the non-gradient exponential moving average (EMA) method, this reward signal is
utilized to motivate the Teacher during the Student’s learning process through the
gradient descent algorithm. Moreover, the application of different strong and weak
data augmentation strategies improve the generalization performance and reduce the
error rate significantly. We evaluated our proposed framework within the SSL setting
by comparing the segmentation results with those yielded by several existing methods.
When using only 10% labeled data, STAMP achieves a 2.6-fold mean Dice improvement
over the state-of-the-art RLSSS model. In addition, our proposed model outperforms
existing methods in terms of both Jaccard and Dice, achieving 90.4% Dice and 82.7%
Jaccard with only 10% labeled data and 91.9% Dice and 84.4% Jaccard with only 20%
labeled data for atrial segmentation, both of which showed at least 2.6% improvement
over the best methods and more than 11% improvement over fully-supervised traditional
V-Net architecture.
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Chapter 5

Learning Deep Representations of
Cardiac Structures for 4D Cine MRI
Image Segmentation through
Semi-supervised Learning

Learning good data representations for medical imaging tasks ensures the preservation
of relevant information and removal of irrelevant information from the data to improve
the interpretability of the learned features. The work in this chapter focuses on a semi-
supervised model — namely, Combine-all in Semi-Supervised Learning (CqSL)1 — to
demonstrate the power of a simple combination of a disentanglement block, variational
autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-
based reconstructor for performing two important tasks in medical imaging: segmentation
and reconstruction. Our work is motivated by the recent progress in image segmentation
using semi-supervised learning (SSL), which has shown good results with limited labeled
data and large amounts of unlabeled data. A disentanglement block decomposes an input
image into a domain-invariant spatial factor and a domain-specific non-spatial factor.
We assume that medical images acquired using multiple scanners (different domain
information) share a common spatial space but differ in non-spatial space (intensities,
contrast etc.). Hence, we utilize our spatial information to generate segmentation
masks from unlabeled datasets using a generative adversarial network (GAN). Finally,
to reconstruct the original image, our conditioning layer-based reconstruction block
recombines spatial information with random non-spatial information sampled from the
generative models. Our ablation study demonstrates the benefits of disentanglement in

1This chapter is adapted from:
[1] Hasan SMK et al., Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image
Segmentation through Semi-supervised Learning. Appl Sci. 12(23). 12163. 2022.
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holding domain-invariant (spatial) as well as domain-specific (non-spatial) information
with high accuracy. We further apply a structured L2 similarity (SL2SIM) loss along with
a mutual information minimizer (MIM) to improve the adversarially trained generative
models for better reconstruction. Experimental results achieved on the STACOM 2017
ACDC cine cardiac Magnetic Resonance (MR) dataset suggest that our (CqSL) model
outperforms fully supervised and semi-supervised models, achieving an 83.2% performance
accuracy even when using only 1% labeled data.

5.1 Introduction

The emerging success of deep convolutional neural networks (CNNs) has rendered them
the de facto model in solving high-level computer vision tasks [1, 2, 3]. However, such
approaches mostly rely on large amounts of annotated data for training, the acquisition
of which is expensive and laborious, especially for medical imaging / diagnostic radiology
data. To address the need for high performance, there has been a growing trend in using
a limited amount of annotated data along with an abundance of unlabeled data in a
semi-supervised learning (SSL) setting.

The recent dominant body of research that has proposed SSL methods in deep
learning features various approaches, including an auxiliary loss term defined on un-
annotated data (consistency regularization) [4, 5], adversarial networks [6], generating
pseudo-labels [7, 8] based on model predictions on weakly-augmented un-annotated
data, self-training [9, 10], adversarial learning [11] and domain adaptation [12]. Here
we acknowledge their latest accomplishments in the field of domain adaptation, semi-
supervised learning and interpretable representation learning by disentanglement and
briefly discuss some of their yet outstanding limitations.

Semi-Supervised Learning: Semi-supervised learning (SSL) [13, 14] has expe-
rienced much research attention thanks to the increasing availability of large scale
of unlabeled data. Semi-supervised learning aims to revamp the model performance
by learning from a small portion of labeled data along with optimising an additional
unsupervised loss on a larger portion of unlabeled data, assumed to be sampled from
similar distributions, depending on the type of information that needs to be captured
from the unlabeled data. Commonly, the rationale of SSL is based on generative models
and adversarial networks. The integration of consistency regularization in SSL has shed
light on standard baselines recently. By optimising this loss term, the model imposes
several assumptions / constraints on the decision boundary to avoid high-density regions
of unannotated data.

Generative Adversarial Networks: Moreover, generative adversarial learning can
be adapted to semi-supervised learning for semantic segmentation [15, 16, 17] as well as
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by generating pseudo pixel-level predictions [18, 19]. Adversarial networks use a critic
to predict the pixel-level distribution of the data, which acts as an adversarial loss term
with the goal to provide the generator with learnable useful visual features from the
unlabeled data for medical image synthesis [20]. Nonetheless, learning high-dimensional
data can be difficult. Autoencoders struggle with multi-modal data distributions, and
generative models rely on computationally demanding models, which are especially
difficult to train.

Mutual Information Estimation: Recent work on representation learning has
focused on mutual information estimation [21]. As mutual information maximization
has been shown to be effective at capturing the salient attributes of data, being able
to disentangle these attributes is another desirable property. For example, it may
be beneficial to remove data attributes that are irrelevant to a given task, such as
illumination conditions in object recognition.

Disentanglement Learning: Some newly introduced techniques have dedicated
considerable attention to disentangle representation with generative modeling [22, 23]. In
disentangled representation, information is represented as a collection of (independent)
factors [24], each of which corresponds to a meaningful aspect of the data [25, 26]. A
current line of research has argued that disentangled representations are beneficial for a
variety of tasks, including (semi-) supervised learning of downstream tasks, few-shot
learning [27], and exploratory medical data analysis. Additionally, these representations
also make it easier for later processes to only use the relevant parts of the data as input.

Unpaired Image to Image Translation: Image to image translation was first
proposed by Isola et al. in [28] in their conditional GAN paper. Furthermore, CycleGAN
[29] tackles the problem of the above paired image translation approach by introducing a
cycle-consistency loss to retrieve the original images by exploiting a cycle of translation.
Later work [30] improved CycleGAN from one-to-one mapping to multimodal image
generation. Nevertheless, in medical applications, image synthesis without explicit
anatomy design constrain may lead to volatile anatomical structures and artifacts.
Moreover, these methods are not aimed at medical image segmentation.

Domain Adaptation: Domain adaptation, a form of transfer learning, encodes the
distribution knowledge from a certain source domain to a different, but related target
domain, and thus, alleviates the domain shift discrepancy in real world applications [31].
Various methods have been proposed, including style and content-disentanglement [32],
and adversary based approaches [33, 34]. As described later, in this work, we disentangle
the most interpretable segmentation-aware spatial (Skeleton) information.

Normalization Layers: Inspired by instance normalization (IN) [35], conditional
batch-normalization [36] and adaptive IN (AdaIN) [37] bring significant improvement in
image generation. Later on, feature-wise linear modulation (FiLM) [38] and spatially
adaptive denormalization (SPADE) [39] shed additional light over other normalization
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layers in image synthesis. In our proposed work, we also show how we can adapt both
SPADE as well as FiLM normalization as part of a residual and common decoder,
respectively (Figure 5.3).

Variational Autoencoder-based Models: There have been several recent works
involving disentangled learning with Variational Autoencoder (VAE) [40, 24, 41]. In
contrast to these previous works, we will attempt to demonstrate the use of a VAE as a
disentangled representation by sampling sentiency code to separate the domain-specific
information from the domain-invariant latent code.

To further address some of the shortcomings associated with existing methods, our
efforts focus on learning meaningful spatial features utilizing a disentangler with a
mutual information minimizer (MIM) to improve the adversarially trained generative
models for improving semi-supervised segmentation and reconstruction results.

Our proposed method builds on several recent and key research findings in the
fields of generative models, semi-supervised learning, and representation learning via
disentanglement. We believe that the proposed framework’s reliance on as little as 1%
labeled data for training, in concert with the high segmentation accuracy achieved,
comparable to the fully or semi-supervised models, renders the proposed work an
attractive solution for medical image segmentation, where access to vast expert-annotated
data is expensive and often difficult to gain access to.

We approach this problem using a method that is based on disentangled represen-
tations and utilizes data from multiple scanners with varying intensities and contrast
(Figure 5.1). Our method is intended to address multi-scanner unlabeled-data issues
such as intensity differences, and a lack of sufficient annotated data. Learning good
data representations for medical imaging tasks ensures the preservation of relevant
information and removal of irrelevant information from the data to improve the inter-
pretability of the learned features. Our model disentangles the input image into spatial
and non-spatial space. These spatial features are represented as categorical feature
maps, with each category corresponding to input pixels that are spatially similar and
are from the same organ part. This semantic similarity aids in learning to be generalized

Figure 5.1: Images, histograms and surface plots of two 3D cardiac images featuring all
slices of two random patients from the ACDC dataset (a,b). From left to right: cardiac
MR image in 4-dimensions, histogram plot, and surface plot.
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the anatomical representation to any modality from different scanners. Furthermore,
the non-spatial features capture the image’s global intensity information, which aids
the renderer in inpainting the anatomy in the reconstructed image. Finally, because
annotating data is time-consuming and expensive, the ability to learn this decomposition
through disentanglement using a small number of labels is critical in medical image
analysis.

In light of these needs, here we propose a semi-supervised (CqSL) model for learning
disentangled representations that combines recent developments in semi-supervised
learning – generative models and adversarial learning. We aim to factorize the repre-
sentation of an image pair into two parts: a shared representation that captures the
common information between images and an exclusive representation that contains the
specific information of each image. Furthermore, in order to achieve representation
disentanglement, we propose to minimize mutual information between shared and ex-
clusive representations. Moreover, we use Feature-wise Linear Modulation (FiLM) [38]
to distinguish the domain-invariant information from the domain-specific information,
as well as Spatially-adaptive Normalization (SPADE) [39]-based decoder to guide the
synthesis of more texture information to restrain posterior collapse of the VAE and
spatial information.

D

SKe
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Z1 Z2 Z3 Z4 Z5 Z6 Z7
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Figure 5.2: A simplified schematic overview of the proposed model.

To illustrate its adequacy, our model is applied to two of the foremost critical tasks
in medical imaging — segmentation of cardiac structures and reconstruction of the
original image — and both assignments are handled by the same model. Our model
leverages a large amount of unannotated data from the ACDC 2 dataset to learn the

2https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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interpretable representations through judicious choices of common factors that serve
as strong prior knowledge for more complicated problems — segmentation of cardiac
structures. Figure 5.2 shows a simplified data view of our proposed model.

The work described in this chapter makes several contributions summarized as
follows:

1. We combine recent developments in disentangled representation learning with
strong prior knowledge about medical imaging data that features a decomposition
into a “Skeleton (spatial)” and a “Sentiency (non-spatial)”, to ensure that the
spatial information does not mixup with the non-spatial information;

2. We alter the usual cross entropy loss to down-weigh the loss applied to well-classified
samples in order to overcome the foreground-background class imbalance problem.
Specifically, we exploit a novel supervised loss — the weighted-soft-background-
focal (WSBF) loss, which focuses the training on a set of hard examples to ensure
that this loss can differentiate between easy/hard examples;

3. We employ both qualitative and quantitative tests to evaluate the usefulness of our
framework, which showed that our model outperformed fully supervised methods,
even when using only 1% labeled data for training.

5.2 Methods

5.2.1 CqSL Model Overview

We propose a model that combines the concept of variational generative and adversarial
learning, and disentangled interpretation learning in a semi-supervised learning scheme,
which is suited for domain-adapted segmentation as well as reconstruction.

We define the learning task as follows: given an (unknown) data distribution p(x, y)

over images and segmentation masks, we define a source domain having a training set,
DL = {(xl

i, y
l
i)}

nl
i=1 with nl labaled examples, and another domain having a training

set, DUL = {(xul
j )}

nul
j=1 with nul unlabaled examples which are sampled as independent,

identically distributed variables from p(x, y) and p(x) distribution. Empirically, we
want to minimize the target risk ∈t (ϕ, θ) = minϕ,θ LL(DL, (ϕ, θ)) + γLUL(DUL, (ϕ, θ)),
where LL is the supervised loss for segmentation, LUL is the unsupervised loss defined
on unlabeled images and ϕ, θ denotes the learnable parameters of the overall network.

We propose to solve the task by learning domain-specific and domain-invariant
features that are discriminative of the semgentor and reconstructor. Figure 5.3 shows
the proposed model comprised of five components–—(1) disentanglement component,
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(2) a disentangled variational autoencoder (DVAE), (3) a mask segmentor identifier (SI),
(4) a mask discriminator identifier (DI), and (5) a reconstructor R.

The disentangler D (Figure 5.3 (a)) is designed to factorize the representation of an
image pair into two parts: a shared spatial representation (Skeleton, SKe) that captures
the common information between images and an exclusive non-spatial representation
(Sentiency, Se) that contains the specific information of each image. The Skeleton block
SKe is a modified U-Net++ [42] type architecture (EPU-Net++) (Figure 5.4 & Section
5.2.1.1) and is responsible for capturing the domain-invariant features (fSK). The
Sentiency block Se is a DVAE (Figure 5.3 (b)) type architecture which takes both the
input image and the domain-invariant features (fSK) as the input to map domain-specific
features (fSE) using reparameterized trick [43].

The reconstruction block consists of two decoders: the SPADE-based decoder takes
the (fSE) feature from Sentiency block and proceeds directly to the reconstructor R

(Figure 5.3 (d)), while the FiLM-based decoder works as another disentangler, which
untangles a segmentor identifier (SI) (Figure 5.3 (c)) used for segmentation and extracted
features, which then proceed directly to the reconstructor R. The reconstructor R aims
to recover the original image from both (fSK , fSE). A mutual information minimizer
(Figure 5.3 (a) block) is applied between (SKe and Se) to enhance the disentanglement.
A supervised trainer is trained on the labeled data to predict the segmentation mask
distribution optimizing a supervised loss. An unsupervised trainer is trained on the
unlabeled data optimizing unsupervised losses (Algorithm 4 specifies the overall training
procedure). Both the unsupervised and supervised trainers share the same block, as
mentioned above.

5.2.1.1 Disentanglement

Referring to Figure 5.3 (a), the disentangler block factorizes the image features into
spatial (skeleton/physique) features, as well as non-spatial (sentiency) features that
carry residual information. The Skeleton block is a modified U-Net type architecture —
EvoNorm-Projection-UNet++ (EPU-Net++) as shown in Figure 5.4. We attach eight
different decoders at the common bottleneck layer of EPU-Net++. Each decoder captures
bottleneck features from 2D cropped images and transforms them into different feature
maps consisting of a number of binary channels which are then combined together to

form eight most effective channels: xST

(0,1)(h×w×c)−−−−−−−→ {
∑i=8

i=1 fSKi
}. These feature maps are

responsible for capturing the domain-invariant features and contain cardiac structures
(myocardium, the left and the right ventricle), effective for segmentation and some
surrounding structures, effective for reconstruction (Figure 5.5).

We use a separate neural network for capturing the sentiency information i.e. domain-
specific information. We combine the cropped image and the domain-invariant features to
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Figure 5.3: Illustration of CqSL framework: Our model makes use of both labeled
as well as unlabeled images. The first block (a) crops the input images to a specific
dimension. Then, we disentangle the latent features of the images via a disentangled block.
An input image is first encoded to a multi-channel spatial representation, SKdn=1,2..8.
Then, SKdn can be fed into a segmentation network SI to generate a multi-class
segmentation mask; (c) we train a generative network, which predicts semantic labels
for both labeled and unlabeled data; (b) a Sentiency encoder Se uses the factor SKdn
and the input image to generate a latent vector z representing the imaging modality
using a variational autoencoding block; (d) the decoder networks combine the two
representations SKdn and z to reconstruct the input image.

penalize the deviation of latent features from the prior distribution employing Kullback-
Leibler divergence by applying a VAE architecture (Figure 5.3 (b)) with the following
objective function as in Equation 5.3:

Lvae =
∑∣∣∣(p(zi) log p(zi)

p(zi|xul
i , fSKi

)

)∣∣∣ (5.1)

A VAE learns a low dimensional latent space such that the acquired latent repre-
sentations fit a prior distribution that is predetermined to be an isotropic multivariate
Gaussian p(z) = N (0, 1). An encoder and a decoder make up a VAE. Given an input,
the encoder guesses the Gaussian distribution’s parameters. In order to enable learning
through back propagation, this distribution is then sampled using the reparameterization
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Algorithm 4 CqSL Mini-Batch Training
Input:
Training set of labeled data xl, yl, cl ϵ DL
Training set of unlabeled data xul, size m, ϵ DUL
Disentanglement
Learned parameters: (ϕ, θ), generator G; segmentor S; disentangler D; discriminator
identifier DI, mutual information estimator M, and reconstructor R.
Require:
Shared disentangler D, Shared encoder SKk

d , Se and decoder
for each epoch do

for each step do
Sample mini-batch from xl

i;x
l
1, . . . , x

l
nl
; through DL(x)

Sample mini-batch from xul
j ;x

ul
1 , . . . , x

ul
nul

; through DUL(x)
Compute model outputs for the labeled inputs
ŷl ←Wϕ,θ (IL)
Compute model outputs for the unlabeled inputs
ŷul ←Wϕ,θ(IUL)
Calculate mutual information between the disentangled feature pair (fsk, fse)
with Mi:
Update the mask discriminator identifier DI along its gradient:

∇ϕDI
1

|IL|
∑
i∈IL

[
LDI(x

l
i, y

l
i, ŷ

l
i)
]
+

γ
1

|IUL|
∑
i∈IUL

[
LDI(x

ul
j , ŷ

ul
j )

]
Update the segmentation mask generator SI and VAE encoder along its gradient:

∇θSI
1

|IL|
∑
i∈IL

[
LSI(x

l
i, y

l
i, ŷ

l
i)
]
+

∇θSE
1

|IL|
∑
i∈IL

[
LSe(x

l
i,F(xl

i),∼ zldim)
]
+

γ
1

|IUL|
∑
j∈IUL

[
LG(x

ul
j , ŷ

ul
j )

]
+

∇θSE
1

|IUL|
∑
i∈IUL

[
LSe(x

ul
j ,F(xul

j ),∼ zuldim)
]

end for
end for=0
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Figure 5.4: Illustration of EPU-Net++ Block: skip connections are replaced with a long
projection block.

technique, and the resulting sample is sent through the decoder to reconstruct the input.
We use disentangled features as the prior distribution in a VAE (Equation 5.2)

to remove class-irrelevant features (e.g. background pixels) and ensure that domain-
invariant features are well disentangled from class-specific features because the image-only
Priori aligns the latent features to a normal distribution.

5.2.1.2 Mutual Information Minimizer

To better exploit the disentanglement, we add a regularization term based on mutual
information (MI), denoted as MIM , which measures the “amount of information” learned
from knowledge of random variable Y about the other random variable X [44]. For this
work, we adopt the Mutual Information Neural Estimator (MINE) [45], MI(fSK , fSE) :

as in Equation 5.2:

1

N

N∑
i=1

M(α, β, θ)− log
( 1

N

N∑
i=1

expM(α,β′,θ)
)

(5.2)
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Figure 5.5: Representative examples showing the 5 (out of 8) most semantic disentangled
multi-channel binary maps of the spatial information generated from the Skeleton decoder
from the base to apex (top to bottom rows). Some channels indicate anatomical portions
that are well-defined, such as the myocardium, left ventricle, or right ventricle, while
others represent the remaining anatomy needed to characterize the input image.

where (α, β) are sampled from the joint distribution of (fSK , fSE) and β′ is sampled
from the marginal distribution.

The mutual information can be expressed as the difference of two entropy terms
MIM(X;Y ) = H(X)−H(X|Y ); we seek to minimize the MI between domain-invariant
and domain-specific features (fSK , fSE) whereas make an assumption that information
content does not vary much between intra-domain (Figure 5.3 (a)).

5.2.1.3 Segmentation

The mask segmentor identifier (SI) (Figure 5.3 (c)) takes the output from the FiLM
decoder fF

SK as input and generates predicted segmentation mask SI(fSK) = ŷl ∈
{0, 1}(H×W×L), where L is the number of categories (RV, LV, LV-Myo, and background)
in the training dataset. We exploit a novel supervised loss – weighted-soft-background-
focal (WSBF) loss, LL

SI(seg) = LWSFL+LBFD for the base model which is a combination
of background-focal-dice loss (BFD) and weighted-soft-focal loss (WSFL) as in Equation
5.3:
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LL
SI(seg) =

[
α0 + y(α1 − α0)

]
|y − ŷ|γ.wmap.CE(y, ŷ) +∑

c

[
2− 2

∑
yŷ + ϵ∑

(y + ŷ) + ϵ
− 2

∑
yŷ + ϵ∑

(y + ŷ) + ϵ

] 1
γ

(5.3)

where α0 and α1 are designed to account for class imbalance and are treated as hyper-
parameters, the term |y− ŷ|γ is used to down-weight examples with backgrounds where,
and γ varies in the range [1, 3]. The term CE(y, ŷ) = −y log ŷ − (1 − y) log(1 − ŷ)

denotes the cross-entropy loss.
On the other hand, the data with no corresponding segmentation masks are trained

by minimising the unsupervised loss via a KL divergence based on Least Squares-GAN
[46]. However, since the least-square loss is not sufficiently robust, we introduce a new
divergence loss function by incorporating it into a Geman-McClure model [47] fashion
called adversarial-Geman-McClure (adv-GM) loss between the ground truth of real
mask yl and prediction on unlabeled data yul as in Equation 5.4:

LU
SI(adv−GM) =

DI(SI(fSK(x
ul)))2 + (DI(ŷul)− 1)2

2β +DI(SI(fSK(xul)))2 + (DI(ŷul)− 1)2
(5.4)

where β is the scale factor which varies in the range of [0, 1] and we set β = 0.5 in
our experiment.

5.2.1.4 Image Reconstruction

To better capture the anatomical shape and the intensity information in the synthetic
image, we propose a two-branched reconstruction architecture featuring two separate
decoders: one is conditioned with FiLM [38], and the other with SPADE [39] (Figure 5.6
(a)) and both are then concatenated to produce a realistic image. The FiLM decoder
consists of multiple FiLM layers, a gamma-beta predictor, and convolutional layers with
3 × 3 kernel and (8, 8, 8, 8, 1) channels in the stride of 1. Each convolution layer is
followed by batch normalization layer along with a Leaky-ReLU layer.

To better retain the non-spatial information in the MR image, we integrate the shape
knowledge into the idea of SPADE [39] and form a shape-aware normalization layer (see
Figure 5.6). SPADE first normalizes the input feature Fin with a scale α and a shift µ

learned from sampled z using an instance-normalization (InstanceNorm) layer, inspired
by [38] and then denormalizes it based on a spatial representation fSK through learnable
parameters γ and β. fSK is then interpolated to match the texture dimension of the
sampled z from the Sentiency encoder and used as a semantic mask for the SPADE.
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Figure 5.6: Detailed architecture of SPADE block: (a) shape-aware normalization block
where the spatial tensors, γ and β are multiplied and added to the input features; (b)
decoder block fSES with shape-aware normalization.

Fout =
Fin − µ

α
× γ(fSK) + β(fSK) (5.5)

where Fin, and Fout denote the output feature maps. γ and β are learned from fSK by
three Conv layers. Thus, the learned shape information precludes washing away the
anatomical information, which encourages the image synthesis to be more accurate. The
first convolution layer inside the SPADE block (Figure 5.6) encodes the interpolated fSK ,
and the other two convolution layers learn the spatial tensors γ and β. Simultaneously,
an instance normalization layer is applied to the intermediate feature map, which is
then modulated by the scale and shift parameters γ and β learned from sampled z to
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produce the output. Finally, the output of the two decoders is re-entangled in order to
reconstruct an image.

5.2.2 Objective Functions

The training objective function consists of multiple losses for labeled and unlabeled
data, each weighted by some scalar term λ.

Ltotal = λseg LL
SI(seg) + λadv−GM {LL

SI,DI(adv−GM)

+ LU
SI,DIu(adv−GM)}+ λvaeLvae

+ λSL2SIM { LL
SL2SIM

+ LU
SL2SIM

}
+ λMIM MIM(fSK , fSE)

(5.6)

where λt is the weight for the loss of type t. For this work, we empirically set the weights
as λvae = 0.01, λseg = 10, λadv−GM = 10, λSL2SIM = 0.01, λMIM = 1.

5.2.2.1 Segmentation Loss

Since the model is trained on both labeled and unlabeled data, the segmentation loss
Lseg includes both supervised and unsupervised losses.

Lseg = Lsup + Lusup (5.7)

Supervised Loss. Our supervised cost is based on the combination of the two
following functions: (1) the weighted-soft-focal loss, and (2) the background-focal-dice
loss mentioned in Equation (5.3) (Lsup = LL

SI(seg)).

Unsupervised Loss. The discriminator identifier is adversarially trained for the
labeled and unlabeled data and updated along with adversarial-Geman-McClure (adv-
GM) loss Lusup = LL

SI,DI(adv−GM) + LU
SI,DIu(adv−GM). For labeled data, the adversarial

loss is:

LL
SI,DI(adv−GM) =

Ex∼xl
i
[DI(SI(fSKi

(xl
i)))

2] + Ey∼yli
[(DI(yli)− 1)2]

2β + Ex∼xl
i
[DI(SI(fSKi

(xl
i)))

2] + Ey∼yli
[(DI(yli)− 1)2]

(5.8)
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Similarly, for the unlabeled data, the adversarial loss is:

LU
SI,DIu(adv−GM) =

Ex∼xul
i
[DIu(SI(fSKi

(xul
i )))

2]

2β + Ex∼xul
i
[DIu(SI(fSKi

(xul
i )))

2]

+ Ey∼ŷuli
[(DIu(yuli )− 1)2]

+ Ey∼ŷuli
[(DIu(yuli )− 1)2]

(5.9)

VAE Loss. For smooth texture detail of the input data, the VAE learns factorised
representations to optimize a KL-divergence loss, given an image xul

i , and its decomposed
skeleton feature fSK (Equation 5.2).

5.2.2.2 Reconstruction Loss.

We adopt a novel reconstruction loss as a combination of structural similarity (SSIM)
and L2 loss— SL2SIM in order to enforce the similarity between recovered image and
original image for better learning the distribution of images.

SL2SIM Loss. Since the image intensities vary across imaging scanners, as a result,
there are high chances that the generative model will tend to mode collapse. This
structural L2 similarity (SL2SIM) loss provides a similarity measure between the input
image and the reconstructed image based on high light-dark variance, contrast, and
structural similarity. The concatenated FiLM and SPADE decoder learn the parameters
to reconstruct the input image using a novel combination of structured similarity loss
and L2 loss. For labeled data, the reconstruction loss is:

LL
SL2SIM

= Exi∼xl
i

[
1− SL2SIM

{
xl
i, (F(fSKi

, fSEi
)

⊕ S(fSKi
, fSEi

))
}
+ α

nl∑
i=1

∣∣∣∣∣∣{xl
i − (F(fSKi

, fSEi
)

⊕ S(fSKi
, fSEi

))
}∣∣∣∣∣∣2

2

] (5.10)

Similarly, for unlabeled data, the reconstruction loss is:

LU
SL2SIM

= Exi∼xul
i

[
1− SL2SIM

{
xul
i , (F(fSKi

, fSEi
)

⊕ S(fSKi
, fSEi

))
}
+ α

nul∑
i=1

∣∣∣∣∣∣{xul
i − (F(fSKi

, fSEi
)

⊕ S(fSKi
, fSEi

))
}∣∣∣∣∣∣2

2

] (5.11)

where, SL2SIM is the structure similarity index term and α is a regularized term.
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5.2.3 Experiments

5.2.3.1 Datasets

We validate the effectiveness of CqSL on a widely adopted cardiac image segmentation
challenge dataset by conducting several comparisons to other baseline models. We use the
STACOM 2017 Automated Cardiac Diagnosis Challenge (ACDC) dataset3, consisting of
short-axis cardiac cine-MR images acquired for 100 patients (1,920 labeled and 23,530
unlabeled images) divided into 5 subgroups: normal (NOR), myocardial infarction
(MINF), dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and
abnormal right ventricle (ARV), available through the 2017 MICCAI-ACDC STACOM
challenge [48]. The images were acquired over a 6 year period using two MRI scanners
of different magnetic strengths (1.5 T and 3.0 T). The images were acquired using the
SSFP sequence with spatial resolution 1.37 to 1.68 mm2/pixel and 28 to 40 frames per
cardiac cycle. We split the dataset into three sets—training (70), validation (15), and
test (15).

5.2.3.2 Implementation Details

Input:
All the cine cardiac images employed slice-wise normalization in the range [0, 1] by
subtracting the mean slice intensity from each pixel intensity, then dividing it by the
difference between the maximum and minimum slice intensity. All images were resampled
to 1.37 mm2/pixel. Images are cropped to 192× 192× 1 pixels before feeding to the
models. We applied data augmentation on the fly during training as shown in Figure 5.7,
which includes random rotations up to 90 degrees, random zooms up to 20%, random
horizontal shifts up to 20%, random horizontal and/or vertical flips, and noise addition
(Figure 5.7).

Baselines Architecture:
As the disentangled encoder in the skeletal block, we use a modified U-Net-like architec-
ture — EPU-Net++ and as a sentiency encoder, we use VAE. As the reconstruction
block, we use FiLM- and SPADE-based decoders as used in [49].

Generator-Discriminator Network:
Our segmentation generator network consists of 3 convolution layers with 3× 3 kernel
and {64, 64, 1} channels in the stride of 1. Each convolution layer is followed by a batch
normalization [50] layer along with a Leaky-ReLU [51] except the last layer. We use a
structure similar to DCGAN [52] for the discriminator network.

3https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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Figure 5.7: Example images of applying data augmentation via affine transformations.

EvoNorm-Projection skip connections:
In our Skeleton encoder, we replace the standard skip connection with a normalized-
projection operation using EvoNorm2D + 1× 1− Conv +Gaussian− dropout, as in
Figure 5.4. This new normalization layer adds together two types of statistical moments
– batch variance, and instance variance, both of which capture both the global and local
information across images without having any explicit activation function [53]. The
proposed projection operation helps in reducing the learnable weights and also allows
intricate learnability of cross-channel information.

Additional Factors:
The performance of semi-supervised models trained for image segmentation can be
significantly impacted by the proper selection of regularizers, optimizers, and hyperpa-
rameters. The model implemented in Keras was initialized with the He normal initializer
and trained for 100 epochs with a batch size of 4. We train all the components iteratively
with the Adam optimizer with a 0.0001 learning rate to minimize the objective function.
All experiments were conducted on a machine equipped with two NVIDIA RTX 2080 Ti
GPUs (each 11GBs memory). The detailed training procedure is presented in Algorithm
4.

Training:
In our semi-supervised setup, we train the network on varying proportions of labeled
data: 1%, 10%, 20%, 30%, 50%, and 90% as a labeled set and use the rest of the
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data as the training unlabeled set to hold |DL| ≤ |DUL|. In Section 5.3, we include an
ablation study to investigate the importance of adding different loss components in our
model CqSL which is comprised of all the three loss functions: WSBF, MIM, Adv-GM (
definitions are provided in Section 5.2.1.2 and Section 5.2.1.3).

We experimented with an ablation study containing four of the variants of our
proposed model CqSL. The variants are described as; 1CqSL: without a weighted-soft
focal loss (WSFL), 2CqSL: without an adversarial-Geman-McClure loss (Adv-GM),
3CqSL: Dice and cross-entropy loss only, and 4CqSL: without mutual information
minimizer loss (MIM). Here, we utilize the same backbones as the baselines with only
exceptions being different loss functions. To clarify our point, in 1CqSL, we have
removed the weighted-soft focal loss (WSFL) from the weighted-soft-background-focal
loss (WSBF), while keeping the background-focal-dice loss (BFD), mutual information
minimizer loss (MIM) and adversarial-Geman-McClure (adv-GM) the same as before. In
2CqSL, we have removed our Geman-McClure version of adversarial loss, while keeping
the regular adversarial loss, weighted-soft-background-focal loss (WSBF), and mutual
information minimizer loss (MIM) the same as before. Similarly, in 3CqSL, we have
used DICE + CE loss rather than using our novel weighted-soft-background-focal loss
(WSBF) while keeping the mutual information minimizer loss (MIM) and adversarial-
Geman-McClure (adv-GM) the same as before. Finally, in 4CqSL, we have removed
our mutual information minimizer loss (MIM) loss, while keeping the weighted-soft-
background-focal loss (WSBF), and adversarial-Geman-McClure (adv-GM) the same as
before. Additionally, the Sentiency block, Se and the Skeleton block, SKe were in place.
We evaluated the performance of all four CqSL semi-supervised variants as summarized
in Tables 1 - 3 in the Results section, and, as illustrated later, the 1 CqSL variant
performed best, but for the sake of consistency, we asses and compare the performance
of all four implemented variants.

5.2.4 Evaluation Metrics

To evaluate the performance of the semantic segmentation of cardiac structures, we use
the standard metrics, including Dice score, Jaccard Index, Hausdorff distance (HD),
precision (Prec), and recall (Rec).

1. Dice and Jaccard Coefficients: Dice score is used to measure the percentage
of overlap between manually segmented boundaries and automatically segmented
boundaries of the structures of interest. Given the set of all pixels in the image,
set of foreground pixels by automated segmentation Sa

1 , and the set of pixels for
ground truth Sg

1 , DICE score can be compared with [Sa
1 , S

g
1 ]⊆ Ω, when a vector
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of ground truth labels T1 and a vector of predicted labels P1,

Dice(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1|

(5.12)

Dice score will measure the similarity between two sets, T1 and P1 and |T1| denotes
the cardinality of the set T1 with the range of D(T1,P1) ϵ [0,1].

The Jaccard Index or Jaccard similarity coefficient is another metric which aids
in the evaluation of the overlap in two sets of data. This index is similar to
the Dice coefficient but mathematically different and typically used for different
applications. For the same set of pixels in the image, Jaccard index can be written
by the following expression:

Jaccard(T1, P1) =
|T1 ∩ P1|
|T1 + P1|

(5.13)

2. Precision and Recall

Precision and Recall are two other metrics used to measure the segmentation
quality which are sensitive to under and over-segmentation. High values of both
precision and recall indicate that the boundaries in both segmentation agree in
location and level of detail. Precision and recall can be written as:

Precision =
TP

TP + FP
(5.14)

Recall =
TP

TP + FN
(5.15)

where, TP denotes true positive rate when a prediction-target mask pair has a
score which exceeds some predefined threshold value; FP denotes false positive
rate when a predicted mask has no associated ground truth mask; FN denotes
false negative rate when a ground truth mask has no associated predicted mask.

3. Hausdorff distance (HD): Hausdorff distance (HD) measures the maximum
distance between the two surfaces. Let, SA and SB, be surfaces corresponding to
two binary segmentation masks, A and B, respectively. Hausdorff Distance (HD)
is defined as:
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HD = max
(
max
pϵSA

d(p, SB),max
qϵSB

d(q, SA)
)

(5.16)

where d(p, S) = min qϵSd(p, q) is the minimum Euclidean distance of point p from
the points q ϵ S.

4. Image Quality Metrics:

PSNR: The Peak signal-to-noise ratio is the most commonly used quality as-
sessment technique for determining the quality of lossy image compression codec
reconstruction. The signal is the original data, and the noise is the error caused
by the distortion.

5. Clinical Indices: To assess the performance of the ventricles, different indices
have been used in literature [54], such as left ventricular volume (LVV), left
ventricular myocardial mass (LVM), stroke volume (SV), and ejection fraction
(EF). Left ventricular volume (LVV) is defined as the volume enclosed by the
LV blood pool and myocardial mass is equal to the volume of the myocardium,
multiplied by the density of the myocardium:

Myo−Mass = Myo− V olume(cm3)× 1.06(gram/cm3) (5.17)

Stroke volume (SV) is defined as the volume ejected during systole and is equal
to the difference between the end-diastolic volume (EDV) and the end-systolic
volume (ESV):

SV = EDV − ESV × 100% (5.18)

Ejection Fraction (EF) is an important cardiac parameter quantifying the cardiac
output and defined as the ratio of the SV to the EDV:

EF =
SV

EDV
× 100% (5.19)
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5.3 Results

5.3.1 Image Segmentation Assessment

We tested our CqSL model on varying proportions of labeled and unlabeled data available
through the STACOM 2017 ACDC cine cardiac MRI dataset. Training and validation
segmentation accuracies for three different classes (RV, LV, and LV-Myo) are shown in
Figure 5.8 for 100 epochs. Note that the validation curves show similar trends as the
training curves (Figure 5.8).
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Figure 5.8: Representative accuracy curves showing the training and validation accuracy
of three different classes (RV blood-pool, LV blood-pool, and LV-Myocardium).

The CqSL experimental results were compared against a fully supervised U-Net
model trained from scratch, as reported in Table 5.1 - 5.4. Furthermore, to explore the
effectiveness of each component in our model, we propose three different semi-supervised
ablations, i.e. model I: only a GAN architecture (Figure 5.3 (c)) ; model II: I +
reconstruction (Figure 5.3 (c + d)); model III: II + disentangler block (Figure 5.3
(a + b + c + d)), which are also reported in Table 5.1 - 5.4. The detailed comparison
of our model can be seen in Table 4. The segmentation performance is evaluated both
qualitatively and quantitatively. As shown in Table 5.1, 5.2, and 5.4, our proposed
model significantly improves the segmentation performance of right ventricle (RV), left
ventricle blood-pool (LV), and LV-myocardium, respectively on varying proportions of
annotated data in terms of the Dice and Jaccard indices, Hausdorff distance, precision
and recall rates. Our CqSL model achieves a high dice score (± std. dev.) of 75.50
± 10.9% for the RV, 83.21 ± 7.1% for the LV blood-pool and 77.65 ± 9.3% for the
LV-myocardium even if we use only 1% labeled data.
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Table 5.1: Quantitative evaluation of RV blood pool segmentation results achieved
using four semi-supervised variants of the proposed CqSL model in terms of mean Dice
score (%) with std. dev., Jaccard index, Hausdorff distance (mm), Precision (%) and
Recall (%) rate evaluated for varying proportions of labeled data on the ACDC dataset
compared across several frameworks.

Right Ventricle (RV)
Dice Jaccard HD Prec. Rec.

U-Net-90% 80.50 ± 8.45 72.03 ± 9.77 8.89± 8.45 90.09 94.35
U-Net-50% 79.21 ± 8.49 70.26 ± 10.69 8.90 ± 6.12 85.32 90.11
U-Net-30% 72.32 ± 10.60 66.10 ± 14.75 10.19 ± 7.43 79.50 83.45
U-Net-20% 61.29 ± 16.59 55.65 ± 18.90 12.88 ± 7.32 67.19 74.50
U-Net-10% 54.90 ± 19.66 46.89 ± 20.05 14.58 ± 9.03 60.55 63.02
U-Net-1.0% 39.02 ± 21.22 32.10 ± 22.22 15.90 ± 9.12 43.02 44.15
GAN-90% 79.0 ± 8.15 70.59 ± 10.89 9.55 ± 6.35 85.09 90.12
GAN-50% 78.76 ± 8.98 70.16 ± 11.18 9.88 ± 6.44 84.32 89.43
GAN-30% 73.97 ± 10.87 67.01 ± 13.04 10.23 ± 6.98 79.93 84.97
GAN-20% 69.92 ± 11.45 63.65 ± 16.88 11.66 ± 7.14 79.12 84.12
GAN-10% 66.33 ± 13.21 60.18 ± 19.23 11.99 ± 7.88 74.12 78.34
GAN-1.0% 62.43 ± 13.23 56.43 ± 22.12 13.43 ± 8.11 69.12 73.33
GAN+REC-90% 78.78 ± 8.11 71.13 ± 9.77 9.12 ± 6.46 86.09 90.23
GAN+REC-50% 78.98 ± 8.88 70.13 ± 11.13 9.78 ± 6.66 85.12 90.54
GAN+REC-30% 74.83 ± 10.67 68.67 ± 14.06 10.01 ± 6.98 80.12 85.32
GAN+REC-20% 71.14 ± 11.18 66.65 ± 16.44 11.34 ± 7.05 80.23 84.23
GAN+REC-10% 69.24 ± 13.78 63.23 ± 17.71 11.80 ± 7.23 75.13 79.12
GAN+REC-1.0% 64.19 ± 12.22 59.33 ± 21.01 12.91 ± 7.54 70.34 74.67
CqSL-90% 83.0 ± 6.33 77.77 ± 11.66 8.1 ± 6.00 90.78 95.12
CqSL-50% 82.72 ± 8.29 76.15 ± 11.0 8.21 ± 6.04 88.44 94.26
CqSL-30% 81.59 ± 7.20 73.27 ± 12.14 8.28 ± 6.10 85.19 92.62
CqSL-20% 81.44 ± 6.12 75.33 ± 11.52 8.56± 6.11 83.14 93.79
CqSL-10% 79.21 ± 9.76 71.45 ± 12.91 9.82± 6.78 82.40 90.93
CqSL-1.0% 75.50 ± 10.87 70.55 ± 12.58 9.87± 6.72 80.55 83.68
1 CqSL-90% 81.88 ± 6.0 74.31 ± 11.65 8.5 ± 6.15 90.12 91.97
1 CqSL-50% 82.03 ± 6.45 75.22 ± 11.24 8.49± 6.10 88.11 93.44
1 CqSL-30% 79.25 ± 8.11 73.16 ± 8.14 8.77± 6.22 83.62 92.05
1 CqSL-20% 80.21 ± 7.54 73.19 ± 11.04 9.01± 6.34 83.69 91.05
1 CqSL-10% 78.58 ± 9.22 71.12 ± 11.25 9.48 ± 6.57 82.21 91.01
1 CqSL-1.0% 73.90 ± 11.88 68.58 ± 13.89 9.85 ± 6.71 79.54 84.54
2 CqSL-90% 81.03 ± 7.11 74.37 ± 11.48 8.74 ± 6.25 88.39 92.28
2 CqSL-50% 80.65 ± 7.26 73.36 ± 12.06 8.54 ± 6.23 86.78 93.05
2 CqSL-30% 78.02 ± 9.36 72.66 ± 10.55 9.35 ± 6.65 82.88 91.96
2 CqSL-20% 79.55 ± 8.10 73.0 ± 11.54 9.65± 6.63 83.02 89.15
2 CqSL-10% 78.33 ± 8.96 68.54 ± 12.89 9.77 ± 6.34 80.56 91.55
2 CqSL-1.0% 71.21 ± 11.76 63.45 ± 15.91 11.82 ± 7.12 76.40 81.93
3 CqSL-90% 81.13 ± 7.33 73.04 ± 12.11 8.93 ± 6.33 86.02 90.17
3 CqSL-50% 79.34 ± 8.56 71.23 ± 12.87 9.05 ± 6.66 84.34 91.24
3 CqSL-30% 76.77 ± 10.11 72.04 ± 11.26 9.66 ± 6.73 82.0 90.88
3 CqSL-20% 79.01 ± 8.58 71.89 ± 12.88 9.52 ± 6.46 81.66 87.56
3 CqSL-10% 76.55 ± 8.25 68.55 ± 13.23 10.12 ± 6.89 81.02 88.72
3 CqSL-1.0% 70.41 ± 11.86 64.77 ± 15.70 12.11 ± 7.23 74.44 80.21
4 CqSL-90% 79.83 ± 8.23 70.33 ± 12.66 9.25 ± 6.34 84.54 90.02
4 CqSL-50% 79.02 ± 8.88 72.68 ± 12.26 9.36 ± 6.23 85.20 90.22
4 CqSL-30% 75.38 ± 9.75 70.49 ± 12.0 9.52 ± 6.54 80.33 88.59
4 CqSL-20% 75.77 ± 9.05 69.88 ± 13.22 10.19 ± 6.77 81.02 88.78
4 CqSL-10% 72.24 ± 10.65 66.70 ± 13.56 10.55 ± 6.75 79.79 85.47
4 CqSL-1.0% 68.97 ± 13.90 63.19 ± 16.50 12.88 ± 7.43 72.13 77.59
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Table 5.2: Quantitative evaluation of LV blood pool segmentation results achieved
using four semi-supervised variants of the proposed CqSL model in terms of mean Dice
score (%) with std. dev., Jaccard index, Hausdorff distance (mm), Precision (%) and
Recall (%) rate evaluated for varying proportions of labeled data on the ACDC dataset
compared across several frameworks.

Left Ventricle (LV)
Dice Jaccard HD Prec. Rec.

U-Net-90% 88.03 ± 6.81 85.09 ± 6.98 5.16± 5.92 97.88 98.79
U-Net-50% 86.88 ± 6.09 84.67 ± 5.36 5.29 ± 6.20 97.01 98.19
U-Net-30% 82.98 ± 8.66 80.10 ± 8.19 6.89 ± 6.75 89.66 91.05
U-Net-20% 81.29 ± 8.91 79.78 ± 9.02 8.22 ± 8.23 87.50 89.77
U-Net-10% 79.49 ± 9.56 71.29 ± 11.26 9.56 ± 9.82 83.33 86.14
U-Net-1.0% 42.56 ± 19.76 37.02 ± 21.45 14.35± 10.12 45.53 46.17
GAN-90% 86.15 ± 6.45 81.23 ± 8.01 5.53 ± 5.08 90.57 92.87
GAN-50% 85.34 ± 7.03 81.26 ± 8.12 5.91 ± 6.03 88.34 89.43
GAN-30% 84.03 ± 8.16 80.22 ± 9.11 6.89 ± 7.03 87.23 88.87
GAN-20% 81.90 ± 8.59 79.12 ± 10.82 7.12 ± 7.33 86.19 88.12
GAN-10% 81.78 ± 8.16 76.67 ± 14.13 8.02 ± 7.54 83.15 87.43
GAN-1.0% 75.02 ± 12.32 70.22 ± 15.12 10.89± 9.12 80.22 83.12
GAN+REC-90% 88.06 ± 6.11 81.94 ± 8.12 5.73 ± 5.22 91.19 93.35
GAN+REC-50% 86.19 ± 6.89 81.02 ± 8.23 5.76 ± 5.43 90.54 91.65
GAN+REC-30% 85.53 ± 7.36 80.34 ± 9.12 6.78 ± 6.34 89.76 90.34
GAN+REC-20% 83.89 ± 8.19 79.34 ± 10.22 6.88± 7.05 87.19 89.53
GAN+REC-10% 83.29 ± 7.16 77.56 ± 13.05 7.58 ± 8.33 85.55 89.02
GAN+REC-1.0% 76.02 ± 11.22 71.32 ± 14.22 10.04 ± 9.12 80.12 84.43
CqSL-90% 92.77 ± 4.98 85.67 ± 7.31 4.53± 4.98 96.12 99.75
CqSL-50% 92.25 ± 5.12 83.98 ± 7.98 5.23± 5.03 95.91 97.95
CqSL-30% 90.10 ± 5.89 82.91 ± 8.12 5.93± 5.23 93.50 93.79
CqSL-20% 88.98 ± 6.33 81.26 ± 8.78 6.21 ± 5.04 90.14 92.90
CqSL-10% 88.33 ± 6.39 79.92 ± 9.21 6.17 ± 6.44 89.35 92.95
CqSL-1.0% 83.21 ± 7.12 77.94 ± 10.51 7.0 ± 5.98 86.96 91.36
1 CqSL-90% 92.21 ± 5.13 83.66 ± 7.45 4.88 ± 3.21 95.03 97.33
1 CqSL-50% 91.0 ± 5.55 81.61 ± 8.05 5.16 ± 4.09 94.12 96.13
1 CqSL-30% 89.56 ± 5.97 81.23 ± 7.89 5.89± 6.98 92.22 92.80
1 CqSL-20% 87.28 ± 6.91 80.32 ± 8.12 6.55 ± 5.23 89.89 91.0
1 CqSL-10% 87.89 ± 6.44 79.15 ± 9.30 6.05 ± 5.33 89.03 92.55
1 CqSL-1.0% 81.78 ± 7.22 75.36 ± 9.20 7.88 ± 5.44 84.55 89.17
2 CqSL-90% 91.45 ± 5.86 83.31 ± 7.23 4.90 ± 4.90 95.13 96.73
2 CqSL-50% 90.22 ± 5.12 80.78 ± 8.34 5.54 ± 4.55 93.02 96.04
2 CqSL-30% 89.11 ± 5.89 81.14 ± 8.10 5.88 ± 5.11 91.14 92.89
2 CqSL-20% 87.02 ± 6.98 81.12 ± 8.77 6.74 ± 5.28 89.11 90.58
2 CqSL-10% 87.15 ± 6.93 79.02 ± 8.87 6.44 ± 4.87 88.53 92.47
2 CqSL-1.0% 80.80 ± 8.12 75.06 ± 10.04 8.01 ± 6.12 85.54 90.20
3 CqSL-90% 91.03 ± 5.57 82.44 ± 7.87 5.32 ± 4.77 95.31 95.55
3 CqSL-50% 89.79 ± 5.02 79.15 ± 8.04 5.12 ± 5.12 93.44 95.18
3 CqSL-30% 89.24 ± 6.15 81.02 ± 7.95 5.71 ± 5.18 92.26 91.11
3 CqSL-20% 88.19 ± 5.53 80.52 ± 8.12 6.80 ± 5.05 88.78 89.10
3 CqSL-10% 86.56 ± 6.15 79.55 ± 8.45 6.56 ± 6.54 87.98 92.01
3 CqSL-1.0% 79.58 ± 9.25 73.20 ± 10.87 8.64 ± 7.01 85.77 91.05
4 CqSL-90% 90.55 ± 5.88 80.19 ± 8.25 6.55 ± 6.12 93.12 95.55
4 CqSL-50% 89.10 ± 6.15 79.01 ± 8.77 5.54 ± 5.88 92.11 93.22
4 CqSL-30% 88.01 ± 6.43 79.89 ± 8.00 5.86 ± 6.43 91.54 91.02
4 CqSL-20% 87.78 ± 5.53 80.13 ± 7.72 6.91 ± 5.16 88.17 90.56
4 CqSL-10% 86.0 ± 6.39 80.10 ± 8.90 6.92 ± 5.12 85.67 93.34
4 CqSL-1.0% 78.13 ± 8.66 74.19 ± 11.20 9.56 ± 8.05 84.66 89.10

150



Table 5.3: Quantitative evaluation of LV-myocardium segmentation results achieved
using four semi-supervised variants of the proposed CqSL model in terms of mean Dice
score (%) with std. dev., Jaccard index, Hausdorff distance (mm), Precision (%) and
Recall (%) evaluated for varying proportions of labeled data on the ACDC dataset
compared segmentation across several frameworks.

LV-Myocardium (LV-Myo)
Dice Jaccard HD Prec. Rec.

U-Net-90% 86.93 ± 5.56 84.50 ± 5.20 4.97 ± 3.76 92.32 96.54
U-Net-50% 85.82 ± 6.32 82.25 ± 7.66 5.16 ± 5.77 90.19 95.66
U-Net-30% 77.29 ± 9.19 75.49 ± 7.90 6.56 ± 5.65 87.11 89.56
U-Net-20% 76.56 ± 9.16 71.78 ± 16.20 7.69 ± 5.45 83.57 88.34
U-Net-10% 66.23 ± 15.90 60.63 ± 19.87 10.10 ± 8.55 59.34 62.08
U-Net-1.0% 29.47 ± 20.29 25.39 ± 22.50 13.95 ± 9.12 32.25 34.54
GAN-90% 84.50 ± 6.14 79.03 ± 9.17 5.89 ± 4.23 88.12 89.14
GAN-50% 81.21 ± 7.49 74.12 ± 11.77 5.45 ± 5.14 85.55 88.01
GAN-30% 78.67 ± 9.61 75.88 ± 12.75 5.19 ± 6.15 84.33 86.10
GAN-20% 77.88 ± 9.89 72.45 ± 15.91 6.01 ± 7.65 83.32 85.12
GAN-10% 75.23 ± 11.19 70.33 ± 17.19 7.87 ± 8.55 76.44 81.33
GAN-1.0% 66.02 ± 20.10 62.55 ± 20.87 12.67 ± 9.72 71.43 76.23
GAN+REC-90% 85.34 ± 6.42 77.44 ± 12.13 5.34 ± 4.37 88.44 90.33
GAN+REC-50% 82.33 ± 7.49 75.16 ± 13.16 5.81 ± 4.73 87.32 89.10
GAN+REC-30% 79.77 ± 9.21 74.10 ± 14.77 5.91 ± 5.12 86.76 88.34
GAN+REC-20% 78.43 ± 9.11 73.32 ± 15.11 6.12 ± 6.14 84.12 87.43
GAN+REC-10% 76.18 ± 11.18 72.21 ± 15.80 7.23 ± 7.34 79.43 83.53
GAN+REC-1.0% 67.52 ± 18.12 64.22 ± 19.33 12.12 ± 9.34 72.43 78.44
CqSL-90% 89.33 ± 5.11 82.03 ± 7.33 5.20± 5.11 93.98 96.01
CqSL-50% 87.77 ± 6.19 79.12 ± 9.0 5.88 ± 5.43 93.33 93.17
CqSL-30% 85.89 ± 7.07 77.72 ± 11.92 6.23± 6.14 91.20 92.25
CqSL-20% 85.55 ± 7.22 76.95 ± 12.9 6.85 ± 7.04 90.01 91.09
CqSL-10% 84.14 ± 7.64 72.76 ± 13.01 7.07 ± 8.01 88.84 90.88
CqSL-1.0% 77.65 ± 9.26 74.20 ± 11.87 10.88 ± 8.45 83.22 88.10
1 CqSL-90% 88.98 ± 6.01 81.78 ± 7.63 6.11 ± 6.10 94.13 95.33
1 CqSL-50% 86.55 ± 6.22 78.31 ± 9.46 5.74 ± 5.34 93.41 94.11
1 CqSL-30% 86.23 ± 7.62 77.43 ± 11.89 6.43 ± 6.29 91.88 91.0
1 CqSL-20% 85.10 ± 6.98 76.09 ± 12.77 6.80 ± 6.25 88.87 91.09
1 CqSL-10% 84.56 ± 8.01 72.11 ± 13.54 8.13 ± 7.03 89.73 90.16
1 CqSL-1.0% 75.54 ± 9.89 73.01 ± 11.56 10.05 ± 8.43 80.89 85.44
2 CqSL-90% 88.44 ± 6.43 81.03 ± 7.89 6.65 ± 5.24 92.0 95.32
2 CqSL-50% 86.01 ± 6.69 79.28 ± 10.02 5.65 ± 5.27 93.19 92.66
2 CqSL-30% 84.93 ± 8.01 78.52 ± 11.61 6.88 ± 5.86 90.42 93.53
2 CqSL-20% 85.33 ± 5.73 77.11 ± 11.59 6.32 ± 7.32 89.82 92.38
2 CqSL-10% 83.02 ± 8.33 71.67 ± 14.04 8.71 ± 8.10 87.77 91.45
2 CqSL-1.0% 75.0 ± 10.10 72.55 ± 11.18 10.20 ± 8.88 81.01 86.56
3 CqSL-90% 87.33 ± 7.22 80.73 ± 8.10 6.43 ± 5.50 92.31 94.52
3 CqSL-50% 86.43 ± 6.32 78.56 ± 10.22 5.76 ± 5.40 91.34 92.11
3 CqSL-30% 83.10 ± 8.66 78.15 ± 10.78 5.92 ± 6.11 88.82 91.63
3 CqSL-20% 83.00 ± 6.02 75.44 ± 13.10 6.65 ± 7.63 90.31 92.11
3 CqSL-10% 82.88 ± 9.01 72.00 ± 14.66 7.98 ± 8.34 86.11 90.87
3 CqSL-1.0% 73.19 ± 11.56 70.04 ± 12.93 10.78 ± 8.54 77.50 83.39
4 CqSL-90% 87.44 ± 7.71 81.24 ± 7.45 6.12 ± 5.11 91.32 92.65
4 CqSL-50% 86.01 ± 6.81 76.12 ± 10.64 6.01 ± 6.12 89.32 91.88
4 CqSL-30% 81.98 ± 10.01 76.65 ± 11.44 5.32 ± 5.44 87.11 92.33
4 CqSL-20% 84.01 ± 7.44 75.15 ± 13.19 6.72 ± 6.41 88.43 91.66
4 CqSL-10% 81.97 ± 10.66 73.43 ± 13.78 6.69 ± 6.87 84.77 86.32
4 CqSL-1.0% 71.21 ± 11.76 69.25 ± 13.16 11.82 ± 9.23 75.40 82.56
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Figure 5.9: Representative results showing the comparison across several best performing
networks, including CqSL for semantic segmentation of full cardiac image dataset from
the base to apex showing of RV blood-pool, LV blood-pool, and LV-Myocardium on
20% labeled data in red, green, and yellow respectively.

Table 5.4: Our proposed CqSL model achieves 84.9% accuracy, significantly outper-
forming other baselines. We incrementally add each component, aiming to study their
effectiveness on the final results; (model I: only a GAN architecture (Figure 5.3
(c)) ; model II: GAN + reconstruction (Figure 5.3 (c + d)); model III: GAN +
reconstruction + disentangled block (Figure 5.3 (a + b + c + d)).

Average
Models Dice ↑ Jaccard ↑ HD ↓ Prec. ↑ Rec. ↑
Model I: GAN 76.56 ± 9.97 71.74 ± 14.54 8.26 ± 7.37 82.87 ± 7.66 85.78 ± 6.34
Model II: GAN + REC 77.82 ± 9.87 73.10 ± 13.92 8.11 ± 6.74 83.84 ± 7.12 87.06 ± 5.65
Model III: GAN +
REC + DISENTANGLE
(CqSL)

84.92 ± 6.55 77.85 ± 11.06 7.20 ± 6.06 87.76 ± 5.45 89.56 ± 5.04

Figure 5.9 illustrates a qualitative segmentation output that compared CqSL and two
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Figure 5.10: Representative results showing the semantic segmentation of RV, LV blood-
pool, and LV-Myocardium on different proportion of labeled data in red, green, and
yellow respectively.

others semi-supervised models, i.e. model I: only a GAN architecture (Figure 5.3 (c))
; model II: I + reconstruction (Figure 5.3 (c + d)). For simplicity, this comparison is
based on 20% unlabeled training data. As demonstrated, when only 20% of the training
annotation is employed, U-Net fails completely to segment the cardiac structures from
base to apex, particularly RV segmentation. As shown in the figure, the segmentation
results improve with each consecutive addition of a distinct block. The GAN-only
architecture performs badly, particularly during RV segmentation, whereas the addition
of a reconstruction block improves performance. Finally, adding a disentangled block to
the GAN and reconstruction block yielded the greatest results. Even the least performing
version of our proposed CqSL model (4CqSL) achieves an overall accuracy superior to
the U-Net, GAN-only, as well as GAN+REC model, confirming that the proposed model
is able to effectively learn correct features that ensure correct segmentation.

Figure 5.10 illustrates a qualitative segmentation output that compared CqSL and
U-Net results with increasing proportion of unlabeled training data. For simplicity,
we have shown two of our best performing models. As shown, when only 1% training
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annotation is used, U-Net completely fails to segment the cardiac structures. Under
similar conditions, our model is still able to yield a high segmentation accuracy of LV,
RV, and LV-myocardium. When the amount of labeled data increases from 1% to 10%,
the U-Net model still performs poorly, especially for RV segmentation. On the other
hand, although the performance of our model improves significantly when utilizing more
than 30% annotated data, its performance with even 1% labeled data is still satisfactory,
comparable to that of semi-supervised models, and superior to U-Net’s performance
under similar conditions.
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Figure 5.11: Consistent improvement in segmentation accuracy by the proposed CqSL
model over baseline semi-supervised (variants of our CqSL model: 1CqSL, 2CqSL, 3CqSL,
and 4CqSL) and fully-supervised models in varying proportions of labeled training data.

We assessed the performance of our proposed CqSL cardiac image segmentation
method against the segmentation results yielded by the well-established, fully supervised
U-Net architecture [55] in light of its effectiveness across various medical image segmen-
tation applications, as well as its extensive use as a baseline method for comparison
by the participants of the ACDC cardiac image segmentation challenge. Furthermore,
to explore the effectiveness of each component in our model, we experiment on three
different semi-supervised ablations, i.e. model I: only a GAN architecture; model II:
GAN + reconstruction; and model III: GAN + reconstruction + disentangler block
(CqSL).

As shown in Figure 5.11, the accuracy of our CqSL models remains high when using
as much as 50 - 90% unlabeled data, which essentially implies excellent performance
with as little as as 10% annotated data. Nevertheless, both U-Net and CqSL models
perform similar to each other when the amount of annotated data increases above 90%.
We plot the mean accuracy for all the models in Figure 5.12 and confirm that under low
amounts of annotated data conditions, even as low as 1%, our proposed CqSL model and
all four of its semi-supervised variants (1CqSL, 2CqSL, 3CqSL, and 4CqSL) outperform
GAN, GAN+REC, as well as U-Net models for LV, RV, and LV-myocardium. The
typical segmentation contours of complete cardiac image dataset for the mid and apical
slices are shown in Figure 5.13.
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Figure 5.12: Evaluation on the robustness of CqSL in terms of mean accuracy over RV,
LV, and LV-Myocardium segmentation tasks on varying amounts of labeled training
samples. Note significant improvement in Dice score across all CqSL semi-supervised
variants for as little as 1% unlabeled data.

5.3.2 Image Quality Assessment:

Figure 5.14 illustrates a qualitative comparison between the original image slice and
the reconstructed slices generated from our proposed approach on the ACDC dataset
at the original 5 mm slice thickness. The comparison is augmented by the computed
correlation coefficients (CC) and peak signal-to-noise ratio (PSNR) shown below each
figure. As illustrated in Figure 5.14, our approach preserves fine structural details and
realistic textures while remaining visually comparable to the ground truth image. Aside
from qualitative improvements, the proposed method’s CC and PSNR values also prove
that the synthesized image slices preserve fine structural details.

Table 5.5 shows the quantitative results of the objective quality metrics of reconstruc-
tion, indicating that the use of feature-wise linear modulation to remove domain-invariant
information from the disentangled latent code guides the synthesis of more texture infor-
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Figure 5.13: Representative segmentation contours of a complete cardiac cycle for the
middle and apex slices showing RV and LV blood-pool, and LV-Myocardium in green,
yellow, brown respectively in three different view setting (axial, sagittal, and coronal).

Table 5.5: Image reconstruction assessment: Correlation Coefficient (CC) and peak
signal-to-noise ratio (PSNR) comparison between reconstructed and input images based
on 288 test sets.

Reconstruction Quality
CC (%) PSNR (dB)
n = 288 n = 288

Model II: GAN + REC 0.912 27.32
Model III: GAN + REC + DISENTANGLE
(Proposed)

0.934 28.89

mation. Starting with the spatial factor, we change the content of the spatial channels
in Figure 5.15 to see how the decoder has learned a correlation between the position of
each channel and different signal intensities of the Skeleton parts. The Sentiency factor

156



Figure 5.14: Qualitative comparison of the original and the reconstructed slices showing
that the original images are well reconstructed by combining Skeleton and Sentiency
information.The comparison is augmented by the computed correlation coefficients (CC)
and peak signal-to-noise ratio (PSNR). The middle row illustrates the error images.

remains constant in all of these experiments. The first two columns show the original
input and the reconstruction. The third row is created by the RV spatial channels and
disregarding (zeroing) the MYO and LV channel. In the fourth image, we swap the
RV’s channels with the LV’s. Finally, the fifth column is produced by considering all
LV, MYO and RV channels.

5.3.3 Clinical Parameter Estimation:

The performance of our developed segmentation method was also reflected in the
computed clinical indices. These clinical indices are computed using Simpsons method
and the agreement between the ground truth and the same parameters computed using
the automated segmentation results is reported using correlation statistical analysis
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Figure 5.15: Reconstructions of a sample of input images when rearranging the spatial
representation’s channels. Rearranging the channels results in reconstructing only
left ventricle blood-pool or only right ventricle blood-pool only or all the ventricular
structures.

by mapping the predicted volumes of the testing set onto the ground truth volumes
of the training set. As illustrated in Table 5.6 the agreement between our method’s
prediction and ground truth is high, characterized by a Pearson’s correlation coefficient
(rho) of 0.898 (p < 0.01) for LV-EF, 0.723 for RV-EF (p < 0.1) and 0.924 (p < 0.01) for
Myo-mass. There was a slight overestimation in the RV blood-pool segmentation also
reflected in the estimation of the clinical parameters.

Figure 5.16 shows a graphical comparison between the clinical parameters estimated
from the cardiac features segmented via CqSL and the same homologous parameters
estimated from the ground truth manual segmentations, for both healthy volunteers
and patients featuring various cardiac conditions. As shown, the clinical parameters
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Figure 5.16: Graphical comparison showing no statistically significant differences between
clinical parameters estimated using CqSL segmentation and same parameters estimated
using the ground truth segmentation in terms of Mean (Std. Dev.) EF (mL / mL
(%)) = ejection fraction, Myo-mass (in gm) = myocardial mass (LV-EF, Myo-mass
∗ ∗ (p > 0.8), RV − EF ∗ (p > 0.5).

Table 5.6: The Correlation between the CqSL predicted and ground truth clinical indices
is significantly higher than the correlation between the U-Net predicted and same ground
truth clinical indices (⋆ ⋆ (p < 0.01), ⋆(p < 0.1).

Clinical Indices of healthy volunteers
UNet CqSL

LV EF 0.487 0.898⋆⋆
RV EF 0.371 0.723⋆
Myo mass 0.427 0.924⋆⋆

estimated using our automatically segmented features show no statistically significant
difference from those estimated based on the ground truth, manually segmented features.

5.3.4 Ablation Studies

We perform an ablation study to investigate the effect of using different loss functions in
our semi-supervised setting. We demonstrate the effect of different novel loss functions
used in CqSL model: WSBF, MIM, and Adv-GM by assessing the model performance
when each novel loss function is removed. Figure 5.17 shows a graphical representation
of the results achieved on the ACDC dataset. In Figure 5.10 we illustrate qualitative
results on the ACDC dataset to visualize the effect of using all the loss components.
We can observe that the best results are achieved when all loss components are used.
Specifically, without MIM, the loss curve oscillates, while without WSBF, the output
images deviate drastically from the ground truth. Both the quantitative and qualitative
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results show that the design of CqSL improves the preservation of subject identity and
enables the more accurate segmentation of cardiac structures.
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Figure 5.17: Empirical analysis showing the effect of different loss functions on the
2017 STACOM ACDC dataset. The significant reduction of total loss in CqSL (in red)
suggests the best-performing model with the best-learned features.

5.4 Conclusion and Future Work

This chapter describes a semi-supervised learning model (CqSL) that features multiple
novel loss functions including mutual information minimization (MIM), which minimizes
the mutual information between the domain-invariant as well as domain-specific features.
Empirically, we showed that disentanglement with mutual information can improve the
performance of the segmentation accuracy when combined with an adversarial and a
reconstruction block. Our novel use of the total loss function enforces the network to
capture both the spatial and intensity information. Our weighted-soft-focal loss can
minimize the class imbalance problem by applying varying weights over different classes
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along with a modulating term. We applied our model to cardiac image segmentation
tasks with varying proportions of labeled data.

Our CqSL model achieves 85% accuracy, significantly outperforming other baselines.
We incrementally add each component, aiming to study their effects on the final results;
(model I: only a GAN architecture (Figure 5.3 (c)) ; model II: GAN + reconstruction
(Figure 5.3 (c + d)); model III: GAN + reconstruction + disentangled block (Figure
5.3 (a + b + c + d)).

In light of consistency, all four implemented CqSL variants were evaluated and
compared to the baselines, but as shown in Table 1 - 3, the first variant (1CqS) performed
best and hence it is deemed as the most suitable and recommended CqSL framework.

Experimental results reported in this manuscript showed that the proposed CqSL
framework outperformed semi-supervised learning with GANs [56] as well as fully
supervised type models when using as little as even 1% labeled data and displayed
similar performance and comparable accuracy when employing more than 50% labeled
data. Unlike these, we use adversarial-Geman-McClure (adv-GM) loss to force mask
generation to be spatially aligned with the image. Furthermore, we discovered that
the semi-supervised segmentation approach of Hung et al. [18] obtained results slightly
inferior to ours. Hung et al. reported that their adversarial model achieved a 80.63%
accuracy when trained on 20% labeled data using the ACDC dataset, whereas our model
achieved a 81.44% accuracy under similar training conditions.

Hence, the proposed method is a first to achieve significant performance for 4D cine
cardiac MRI image segmentation with very minimal annotated data, specifically 1% of
the training dataset. This is a key feature of the proposed work and hence a significant
contribution to the medical (cardiac, in particular) image segmentation, as access to
large amounts of expert-annotated ground truth imaging data is expensive in the medical
field. Nevertheless, here we demonstrate that CqSL can still yield segmentation accuracy
superior to other semi-supervised methods while requiring minimal annotated data for
training.
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Chapter 6

A Multi-Task Cross-Task Learning
Architecture for Ad-hoc Uncertainty
Estimation in 3D Cardiac MRI Image
Segmentation

Semi-supervised learning (SSL)1 has recently been a growing trend for improving a
model’s overall performance by leveraging abundant unlabeled data. Moreover, learning
multiple tasks within the same model further improves model generalizability. While deep
learning has shown potential in solving a variety of medical image analysis problems
including segmentation, registration, motion estimation, etc., their applications in the
real-world clinical setting are still limited due to the lack of reliability caused by the
failures of deep learning models in prediction. In this chapter, we describe a novel
method that incorporates uncertainty estimation to detect failures in the segmentation
masks generated by CNNs. Our study further showcases the potential of our model to
evaluate the correlation between uncertainty estimation and the segmentation errors for
a given model. To generate smooth and accurate segmentation masks from 3D cardiac
MR images, we present a Multi-task Cross-task learning consistency approach to enforce
the correlation between the pixel-level (segmentation) and the geometric-level (distance
map) tasks. Our extensive experimentation with varied quantities of labeled data in the
training sets justifies the effectiveness of our model for the segmentation and uncertainty

1This chapter is adapted from:
[1] Hasan SMK et al., A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty
Estimation in 3D Cardiac MRI Image Segmentation. Proc. IEEE - Computing in Cardiology. Vol. 48.
Pp.: 1-4. DOI: 10.22489/CinC.2021.115. 2021.
[2] Hasan SMK et al., Calibration of cine MRI segmentation probability for uncertainty estimation using
a multi-task cross-task learning architecture. Proc SPIE Medical Imaging: Image-guided Procedures,
Robotic Interventions, and Modeling. Vol. 12034. Pp.: 120340T-1-6. 2022.
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estimation of the left ventricle (LV), right ventricle (RV), and myocardium (Myo) at end-
diastole (ED) and end-systole (ES) phases from cine MRI images available through the
MICCAI 2017 ACDC Challenge Dataset. Additionally, the model was trained and tested
on the MICCAI STACOM 2018 Atrial Segmentation Challenge datasets featuring 100 3D
gadolinium-enhanced MR imaging scans (GE-MRIs) and left atrium (LA) segmentation
masks.

6.1 Introduction

While deep learning has shown its potential in a variety of medical image analysis
problems including segmentation [1], motion estimation [2] etc., many of these successes
are achieved at the cost of a large pool of labeled datasets. Obtaining labeled images
however is laborious as well as costly, making the adoption of large-scale deep learning
models in clinical settings difficult. To address the limited labeled data problem, semi-
supervised learning (SSL) [3] has been a growing trend for improving the deep learning
model performance through utilizing unlabeled data. Furthermore, multi-task learning
(MTL) [4] techniques have shown promising results for improving the generalizability of
any models by jointly tackling multiple tasks through shared representation learning [5].

To date, a number of approaches address SSL along with MTL-based segmentation
from MRI including adversarial learning-based method [6], mutual learning-based ap-
proach [7] and techniques based on signed distance map [8]. Recent approaches involve
integrating uncertainty map into a mean-teacher framework to guide student network
[9] for left atrium segmentation. However, this method lacks the geometric shape of
semantic objects, leading to poor segmentation at the edges. Li et al. [10] proposed an
adversarial-based decoder to enforce the consistency between the model predictions on
the original data and the data perturbed by adding noise into it.

Additionally, a major challenge in adopting automated medical image segmentation
in a clinical workflow is the lack of reliability and trustworthiness. To date, most of these
studies have been centered solely on automatic segmentation and there have only been
very few research endeavors exploring the ambiguous predictions in some challenging
regions generated by the deep learning models, increasing the model’s uncertainty. An
efficient method that can accurately identify the problematic segmentation generated by
the models with the overall goal to avoid the review of all images and reducing errors in
the downstream analysis would be a great asset.

To date, a number of approaches have attempted to estimate uncertainty in CNNs
for medical image segmentation including Monte Carlo (MC) Dropout [11, 12], Deep
Ensembles [13] and techniques based on Learned Confidence [14]. Recent work by Wang
et al. [15] observed positive correlations between segmentation accuracy and uncertainty
measures. Heo et al. [16] proposed a method that allows the attention model to leverage
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uncertainty for the improvement of both model calibration as well as performance.
However, many of these successes are achieved at the cost of a large pool of labeled
datasets. Obtaining labeled images however is laborious as well as costly, impeding the
adoption of large-scale deep learning models in clinical settings. To address the problem
of limited access to labeled data, semi-supervised learning (SSL) [3] has been a growing
trend for improving the deep learning model performance by utilizing unlabeled data.
Furthermore, multi-task learning (MTL) [4] techniques have shown promising results for
improving the generalizability of any models by jointly tackling multiple tasks through
shared representation learning [5]. Although these methods were successful for cardiac
segmentation and uncertainty estimation, the estimation of uncertainty calibration in a
semi-supervised setting optimizer for medical image segmentation is still rarely reported.

As a departure from the existing SSL and MTL models, we propose a novel semi-
supervised framework exploiting adversarial learning and task-based consistency regu-
larization for jointly learning multiple tasks in a single backbone module – uncertainty
estimation, geometric shape generation, and cardiac anatomical structure segmentation.
The network takes as input a 3D volume and outputs an uncertainty map, a 3D distance
map, and a segmentation map. The distance map is fed to a transformer to produce a
segmentation map which is then used to share the supervisory signal from the predicted
segmentation map. To leverage the unlabeled data, the distance map is fed to an
adversarial discriminator network to distinguish the predicted distance map from the
labeled data. The same encoder backbone is used to estimate the uncertainty of the
predicted segmentation map with Monte Carlo sampling. We implemented the proposed
model and demonstrated its functionality in the context of both the left atrium segmen-
tation from late Gadolinium-enhanced cardiac MR images, as well as the bi-ventricle
segmentation from cine cardiac MRI.

6.2 Multi-Task Cross-Task Learning

6.2.1 Left Atrium Segmentation Implementation

As shown in Figure 6.1, our proposed MTCTL model has two distinctive features. First,
we combine four different decoders who share the same backbone encoder – V-Net [17].
The uncertainty map generated by the uncertainty decoder is used as the local guidance
between the predicted segmentation mask and the mask generated by transforming the
distance map. Second, we enforce the correlation between the pixel-level (segmentation)
and the geometric-level (distance map) tasks for the generation of smoother and more
accurate segmentation masks by introducing the cross-task loss function and include a
guidance loss as an uncertainty estimation to smooth out the predicted segmentation
mask.
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Figure 6.1: Schematic of the MTCTL model: we combine four different decoders who
share the same backbone encoder – V-Net.

We define the learning task as follows: given an (unknown) data distribution p(x, y)

over images and segmentation masks, we have a source domain having a training
set, DL = {(xl

1, y1), ..., (x
l
n, yn} with n labeled data and another domain having a

training set, DUL = {xul
1 , ..., x

ul
m} with m unlabeled data which are sampled i.i.d. from

p(x, y) and p(x) distribution. Empirically, we want to minimize the target risk ∈t
(ϕ, θ) = minϕ,θ LL(DL, (ϕ, θ)) + γLUL(DUL, (ϕ, θ)), where LL is the supervised loss for
segmentation, LUL is unsupervised loss defined on unlabeled images and ϕ, θ denotes
the learnable parameters of the overall network.

In this work, our architecture is composed of a shared encoder e and a main decoder
d, which constitute the segmentation network f = d◦e. We introduce a set of J auxiliary
decoders dja, with j ∈ [1, J ].

• Dice Loss: For a labeled set DL, the segmentation network is trained in a
traditional supervised manner comprising dice loss,
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LL
(seg)(x, y) =

∑
xi,yi∈DL

Ldice(xi, yi) =
∑

xi,yi∈DL

[
1−

2
∑

xj∈xi,yj∈yi f1(xi)yi∑
xj∈xi,yj∈yi f1(xj) +

∑
yj∈yi yj

]
,

(6.1)

Then we define the supervised loss for the distance map generation task as the
mean squared error (MSE) loss between the predicted probability map f2(x) and
the transformed ground truth map π(y):

LL
(dis)(x, y) =

∑
xi,yi∈DL

||f2(xi)− π(yi)||, (6.2)

• Smoothing Loss: We utilize a smoothing loss function L(cross−task) to enforce
smoothness between the predicted segmentation mask and the inverse transform
of the distance map as in [18]:

L(cross−task)(x) =
∑
xi∈D

||f1(xi)− π−1(f2(xi))||2 =
∑
xi∈D

||f1(xi)−
1

1 + e−k.(f2(xi))
||2,

(6.3)

• Guidance Loss: As the uncertainty maps give the model some amount of
interpretability with which we can decide whether the final segmentation is to
be trusted, we consider using Monte-Carlo dropout (MC-dropout) [19] thanks to
straightforward implementation. Voxel-wise segmentation uncertainty from MC
dropout models is estimated as the mean entropy over all N samples generated
by running inference on an input volume N times providing outputs with a set
of probability vector of softmax scores, {Pn}Nn=1 which captures a combination of
aleatoric and epistemic uncertainty as:

U(x) = − 1

N

N∑
i=1

p(x)log(pi(x)), (6.4)

We exploit the uncertainty as the guidance to filter out the high uncertainty
(unreliable) predictions to minimize the voxel-level mean squared error (MSE)
loss between the predicted mask and the transformed mask generated from the
distance map:

LG =

∑
xi∈(h×w×d) B̂(U(x) < t)||f1(xi)− π−1(f2(xi))||2∑

xi∈(h×w×d) B̂(U(x) < t)
, (6.5)
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Figure 6.2: Schematic of the BMT-CTL model: we combine segmentation and uncertainty
decoder who share the same backbone encoder – Deep Bayesian Neural Network.

Where ˆB(.) represents the indicator function for the uncertainty U(x) with thresh-
old t; f1(x) and π−1(f2(xi)) are the prediction of main decoder and the distance
map auxiliary decoder respectively.

• Adversarial-Geman-McClure Loss: On the other hand, the data with no
corresponding segmentations are trained by minimising the unsupervised loss via
a KL divergence which is based on LeastSquares-GAN. However, least-square loss
is not robust. Instead, we adopt a new divergence loss function by incorporating it
into a Geman-McClure model fashion called adversarial-Geman-McClure (adv-GM)
loss between the labeled data xl and the unlabeled data xul:

LU
(adv−GM) =

D{xl, distl;ϕ}2 + {D(xul, distul;ϕ)− 1}2

2β +D{xl, distl;ϕ}2 + {D(xul, distul;ϕ)− 1}2
,

(6.6)

where distul = fdis(x
ul; θ), β is the scale factor which varies in the range of [0, 1]

and we set β = 0.5 in our experiment.
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6.2.2 Bi-ventricular Segmentation Implementation

The overall objective function consists of different loss functions including distance
loss, cross-task loss, adversarial loss, dice loss, and guidance loss. Our goal is to infer
the posterior distribution p(w|D) over the weights, instead of optimizing maximum
likelihood using a Bayesian neural network (BNN). This posterior distribution represents
uncertainty in the weights, which could be propagated to calculate uncertainty in the
predictions. Unfortunately, the posterior probability distribution cannot be evaluated in
closed form for neural networks, so one must resort to approximate inference based on
variational inference [20] methods and stochastic regularization techniques using dropouts
with an aim to find a surrogate distribution q(w) by minimizing the Kullback-Leibler
(KL) divergence between the approximate and the posterior probability distribution
which is equivalent to maximizing the evidence lower bound (ELBO) as follows:

Eq(w)[log p(Y |X,w)]−KL[q(w)||p(w)], (6.7)

where Eq(w)[·] denotes expectation over the approximate posterior q(w), log p(Y |X,w)

is the log-likelihood of the training data with given weights w, p(w) represents the prior
distribution of w, and KL[·]optimizer is the Kulback-Leibler divergence between two
probability distributions.

6.3 Uncertainty Quantification

The uncertainty map is obtained by computing the maximum softmax probabilities with
a number of samples N per voxel over all classes over the MC probability maps. The
mean standard deviation of softmax probabilities are computed as follows:

u(x, y) =
1

C

C∑
c=1

√√√√ 1

N − 1

N∑
n=1

(p
(x,y,c)
n − 1

N

N∑
n=1

p
(x,y,c)
n )2, (6.8)

where p
(x,y,c)
n represents the softmax probability of the c−th class in the n−th time, C

is the number of classes and N is the number of sample. We set the dropout rate to q
= 0.1 and produce 10 MC samples. We employ dropout layers after every encoder and
decoder block with a dropout rate to create a probabilistic encoder decoder network.
By also using dropouts during testing, we obtain per voxel samples from the posterior
distribution q(w).
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6.4 Evaluation Metrics

To evaluate the performance of the semantic segmentation of cardiac structures, we use
the standard metrics, including Dice score, Jaccard Index, Hausdorff distance (HD),
precision (Prec), and recall (Rec).

1. Dice and Jaccard Coefficients: Dice score is used to measure the percentage
of overlap between manually segmented boundaries and automatically segmented
boundaries of the structures of interest. Given the set of all pixels in the image,
set of foreground pixels by automated segmentation Sa

1 , and the set of pixels for
ground truth Sg

1 , DICE score can be compared with [Sa
1 , S

g
1 ]⊆ Ω, when a vector

of ground truth labels T1 and a vector of predicted labels P1,

Dice(T1, P1) =
2|T1 ∩ P1|
|T1|+ |P1|

(6.9)

Dice score will measure the similarity between two sets, T1 and P1 and |T1| denotes
the cardinality of the set T1 with the range of D(T1,P1) ϵ [0,1].

The Jaccard Index or Jaccard similarity coefficient is another metric which aids
in the evaluation of the overlap in two sets of data. This index is similar to
the Dice coefficient but mathematically different and typically used for different
applications. For the same set of pixels in the image, Jaccard index can be written
by the following expression:

Jaccard(T1, P1) =
|T1 ∩ P1|
|T1 + P1|

(6.10)

2. Precision and Recall

Precision and Recall are two other metrics used to measure the segmentation
quality which are sensitive to under and over-segmentation. High values of both
precision and recall indicate that the boundaries in both segmentation agree in
location and level of detail. Precision and recall can be written as:

Precision =
TP

TP + FP
(6.11)

Recall =
TP

TP + FN
(6.12)
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where, TP denotes true positive rate when a prediction-target mask pair has a
score which exceeds some predefined threshold value; FP denotes false positive
rate when a predicted mask has no associated ground truth mask; FN denotes
false negative rate when a ground truth mask has no associated predicted mask.

3. Hausdorff distance (HD): Hausdorff distance (HD) measures the maximum
distance between the two surfaces. Let, SA and SB, be surfaces corresponding to
two binary segmentation masks, A and B, respectively. Hausdorff Distance (HD)
is defined as:

HD = max
(
max
pϵSA

d(p, SB),max
qϵSB

d(q, SA)
)

(6.13)

where d(p, S) = min qϵSd(p, q) is the minimum Euclidean distance of point p from
the points q ϵ S.

6.5 Cardiac MRI Data

In the context of the left atrium segmentation, the model was trained and tested on
the MICCAI STACOM 2018 Atrial Segmentation Challenge datasets featuring 100 3D
gadolinium-enhanced MR imaging scans (GE-MRIs) and LA segmentation masks, with
an isotropic resolution of 0.625× 0.625× 0.625mm3. The dimensions of the MR images
may vary depending on each patient, however, all MR images contain exactly 88 slices
in the z axis. All the images were normalized and resized to 112 × 112 × 80 before
feeding them to the models. We split them into 80 scans for training and 20 scans for
validation, and apply the same pre-processing methods.

In addition, to demonstrate its use for the joint left and right ventricle segmentation,
we used the Automated Cardiac Diagnosis Challenge (ACDC) dataset2, consisting of
short-axis cardiac cine-MR images acquired for 100 different patients divided into 5 evenly
distributed subgroups according to their cardiac condition: normal- NOR, myocardial
infarction- MINF, dilated cardiomyopathy- DCM, hypertrophic cardiomyopathy- HCM,
and abnormal right ventricle- ARV, available as a part of the STACOM 2017 ACDC
challenge [21]. The acquisitions were obtained over a 6 year period using two MRI
scanners of different magnetic strengths (1.5T and 3.0T). The images were acquired using
a retrospective or prospective gating and the SSFP sequence with the following settings:
thickness 5-8mm, inter-slice gap of 5 or 10mm, spatial resolution 1.37 to 1.68 mm2/pixel,
28 to 40 frames per cardiac cycle. The manual segmentation for RV blood-pool, LV

2https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.h
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myocardium, and LV blood-pool were performed by a clinical expert for the end-systole
(ES) and end-diastole (ED). Since the slice thickness was large and ranged from 5 mm
to 10 mm, we re-sampled the dataset to 1.4× 1.4 mm2. The image intensity values are
normalized such that the pixel values lie in between 0 and 1 according to the 5th and
95th percentile.

6.6 Results and Discussion

6.6.1 Left Atrium Segmentation and Uncertainty Assessment

Figure 6.3 shows the results obtained by V-Net [17], UA-MT [9], SASSNet [10], our
MTCTL, and the corresponding ground truth on the MICCAI STACOM 2018 Atrial
Segmentation Challenge from left to right. The second row of the figure shows that all
the three frameworks shows a portion of missing masks (red arrow) near Aorta (AO)
region, whereas MTCTL generates more complete left atrium segmentation following
the addition of multiple tasks (distance map, cross-tasks, and uncertainty guidance) as
multiple decoders in either 3D or 2D view.

Figure 6.3: Qualitative comparison of left atrium segmentation result in 2D as well as
3D of the MICCAI STACOM 2018 Atrial Segmentation challenge dataset yielded by
four different frameworks: V-Net, UA-MT, SASSNet, and MTCTL. The comparison
of segmentation results between the proposed method and three typical deep learning
networks indicates that the performance of our proposed network is superior. Red arrow
indicates the networks fail to capture the masks near Aorta (AO) region in 3D.

We conducted a paired statistical test to compare the segmentation performance in
Table 6.1 which shows that our proposed model significantly improved the segmentation
performance compared to the semi-supervised, fully-supervised, single-task, and multi-
task models in terms of the Dice, Jaccard, 95% Hausdorff Distance (95HD), average
surface distance (ASD), relative absolute volume difference (RAVD), Precision, and
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Table 6.1: Quantitative comparison of left atrium segmentation across several frameworks.
Mean (std. dev.) values are reported for Dice(%), Jaccard(%), 95HD(%), ASD(%),
RAVD(%), Precision(%), and Recall(%) from all networks against our proposed MTCTL.
The statistical significance of the results for MTCTL model compared against the baseline
model SASSNET for 10% and 20% labeled data are represented by ∗ and ∗∗ for p−values
0.1 and 0.05, respectively. The best performance metric is indicated in bold text.

SCANS USED METRICS
METHODS Labeled Unlabeled Dice(%) ↑ Jaccard(%)↑ HD95(mm)
V-Net [17] 10% 0 79.98 ±1.88 68.14±2.01 21.12±15.19
UA-MT [9] 10% 90% 84.25±1.61 73.48±1.73 13.84±13.15
SASSNet [10] 10% 90% 87.32±1.39 77.72±1.49 12.56±11.30
MTCTL
(Proposed)

10% 90% *89.28±0.76 *80.92±.79 *7.74±6.05

V-Net [17] 20% 0 85.64±1.73 75.40±1.84 16.96±14.37
UA-MT [9] 20% 80% 88.88±0.73 80.20±0.82 8.13±6.78
SASSNet [10] 20% 80% 89.54±0.66 81.24±0.75 8.24±6.58
MTCTL
(Proposed)

20% 80% **91.80±0.67 **84.80±0.83 **5.50±4.74

SCANS USED METRICS
METHODS Labeled Unlabeled ASD(mm)↓ RAVD(%) Precision(%) ↑ Recall(%)↑
V-Net [17] 10% 0 5.47±1.92 -1.34±2.78 83.67±1.79 74.55±1.90
UA-MT [9] 10% 90% 3.36±1.58 -0.13±2.56 87.57±1.53 77.85±1.65
SASSNet [10] 10% 90% 2.55±1.86 -0.09±2.26 87.66±1.38 87.22±1.37
MTCTL
(Proposed)

10% 90% 2.0±1.02 0.56±1.58 *89.74±0.71 *89.40±0.68

V-Net [17] 20% 0 4.03±1.53 -0.05±2.64 88.78±1.70 83.79±1.51
UA-MT [9] 20% 80% 2.35±1.16 -2.74±1.58 89.57±0.73 88.82±0.72
SASSNet [10] 20% 80% 2.27±0.81 0.03±1.55 89.86±0.65 90.42±0.66
MTCTL
(Proposed)

20% 80% 1.55±0.28 0.01±1.65 91.15±0.76 91.04±0.75

Recall. By exploiting unlabeled data with multiple tasks effectively, our proposed
MTCTL model yielded a statistically significant 7.2% improvement (p < 0.05) in Dice
and 12.5% Jaccard (p < 0.05) over the single tasked V-Net framework; a statistically
significant 2.5%improvement (p < 0.05) in Dice and 4.4% Jaccard (p < 0.05) over the
SASSNet framework with only 20% labeled training data.

Figure 6.4 shows a visual comparison of the uncertainty for segmentation of left
atrium images in the coronal view. The first and second row presents the uncertainty
over-segmentation and the uncertainty only for two different slices obtained by the
UA-MT and MTCTL framework respectively. In the uncertainty maps, blue pixels
have low uncertainty values and red-ish pixels have high uncertainty values. It can be
observed from the uncertainty map that the highest uncertainties are located near the
border of the segmented foreground, while the pixels with a larger distance to the border
have very low uncertainty.
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Figure 6.4: Visual comparison of segmentation predictions overlayed with uncertainty
and uncertainty-only (predictive entropy) slices. Segmentation accuracy decreased while
predictive uncertainty increased (low uncertainty shown in purple and high uncertainty
shown in yellow). Segmentation mask overlaid with uncertainty ((a) & (c)), along with
uncertainty maps ((b) & (d)) for two different slices of a patient.

6.6.2 Bi-ventricle Segmentation and Uncertainty Assessment

Figure 6.5 shows a qualitative comparison of the segmentation, generated segmentation
errors, and uncertainty maps, illustrating that our proposed model significantly improved
the segmentation as well as the uncertainty estimation against the classical U-Net model.
Upon visual assessment, the uncertainty maps of the U-Net model show high uncertainty
in the periphery of the LV and LV-Myocardium and a larger area of high uncertainty
in the RV blood pool region, whereas the uncertainty maps derived from our model
have a low uncertainty gradient at the margins. Images in the third and fourth columns
visualize the segmentation errors (red) for the U-Net and BMT-CTL models respectively.
We can observe from the error map (fourth column) as well as the uncertainty map (sixth
column) that the estimated errors are accurately captured by the Bayesian uncertainty
maps i.e. the errors are prominent on base and apical slices, especially in the RV regions.
For instance, U-Net has prominent red pixels in the regions where there are no actual
RV regions segmented in the ground truth and this trend is also consistent with the
information portrayed in the uncertainty maps. The reddish color in the uncertainty
map of the U-Net model denotes higher uncertainty which is also visible in the U-Net
segmentation errors regions. On the other hand, our proposed BMT-CTL model shows
significantly less segmentation error around the LV boundary. Both the mid and apical
slices exhibit similar effects.
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Figure 6.5: Representative segmentation results and uncertainty maps (red areas cor-
respond to higher uncertainty as shown in the color bar) of a cardiac cycle from the
base (top row) to apex (bottom row) showing RV blood-pool (green), LV blood-pool
(cyan), LV-Myocardium (blue), and segmentation errors (red). The first column shows
SSFP cine cardiac MR images. The second column shows ventricular structures of heart
annotated by experts. The third column shows the MRI overlaid with segmentation
predictions and errors (red) of U-Net architecture. The fourth column shows the seg-
mentation predictions of our Bayesian BMT-CTL network trained with our custom loss.
The fifth and sixth column show the Bayesian uncertainty maps for the Brier score.

6.7 Conclusion

In this chapter, we described a multi-task cross-task learning network (MTCTL) for atrial
segmentation. To improve robustness beyond that of the recent SOTA framework, we
utilize model uncertainty derived from Monte Carlo Sampling to serve as local guidance
between the predicted segmentation mask and the mask generated by transforming
the distance map. Our enforced cross-task loss correlates between the pixel-level
(segmentation) and the geometric-level (distance map) tasks to generate smoother and
more accurate segmentation masks. We evaluated its performance on the MICCAI
STACOM 2018 Atrial Segmentation Challenge dataset.

We also conducted an “uncertainty” estimation analysis to determine where our
algorithm “fails” to segment regions of interest in an image. Our proposed model
outperforms existing methods in terms of both Jaccard and Dice, achieving 89.3% Dice
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and 80.9% Jaccard with only 10% labeled data and 91.8% Dice and 84.8% Jaccard
with only 20% labeled data for atrial segmentation, both of which showed at least 2.5%
improvement over the best methods and more than 7% improvement over single-task
traditional V-Net architecture.

To our best knowledge, the proposed MTCTL framework constitutes the first ap-
proach to adopt an adversarial approach along with uncertainty estimation and the most
accurate semi-supervised left atrium segmentation performance on the LA database.

We also adapted and demonstrated this new paradigm for accurate LV, RV blood-
pool, and LV-myocardium segmentation associated with uncertainty estimation from cine
cardiac MR images by introducing a multi-task cross-task learning consistency approach
to enforce the correlation between the pixel-level (segmentation) and the geometric-
level (distance map) tasks. We have assessed the relationship between the uncertainty
distribution and the size of the erroneous region by computing the correlation. We
present model uncertainty estimation derived from a novel Bayesian multi-task cross-task
learning model for the task of cardiac ventricle segmentation. Our focus is not to achieve
state-of-the-art results on the segmentation tasks, but to exploit uncertainty measures
to flag regions exhibiting sub-optimal segmentation. This overall pipeline will increase
the reliability of automatic segmentation for both research and clinical use.

Our future research will explore the use of uncertainty measures to flag low-quality
segmentation for automatic detection using a deep neural network in place of human
review to detect and correct the low-quality segmentation maps. As part of future work,
we will use these uncertainty maps to detect regions where the segmentation of the left
and right ventricle myocardium and blood pool fails, which is a critical feature for both
research and clinical applications.
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Chapter 7

Discussion, Conclusion, and Future
Research Directions

The concluding chapter of this thesis revisits the challenges associated with the segmen-
tation of medical images and demonstrates how these challenges are overcome by the
proposed methods. The limitations and future studies proposed inspired by the work
presented in this thesis will be discussed along with its impact on the field.

7.1 Thesis Motivations and Contributions: Revisiting

In this dissertation, we were primarily interested in addressing the challenge posed
by limited availability of large labeled data which are not easy to obtain because of
privacy issues, varying imaging configurations, disease types and severity, and laborious
manual annotation for ground truth, etc. With limited labeled data, learning the
complex models like deep neural networks is difficult, affecting models’ generalization
across different dataset with disparate distributions, and inducing large domain shift.
Toward approaching these challenges, we have developed and demonstrated a number of
deep learning-based solutions for medical image analysis ranging from fully-supervised
single-task to semi-supervised multi-task learning models. The later solutions limit
supervision to a small portion of labeled training samples and leverage a large amount
of unlabeled data, achieving improved generalization performance by jointly tackling
multiple tasks through shared representation learning compared to training the models
only with the labeled dataset.

Below we summarize the contributions of this dissertation and room for improvement
in the future:

Chapter 2: We developed a novel application for segmenting and digitally removing
surgical instruments from endoscopic/laparoscopic videos to allow the visualization of the
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anatomy being obscured by the tool. We proposed a modified U-Net architecture for the
surgical tool segmentation. The proposed 2D segmentation methods are applied for the
segmentation of the surgical instruments from an open-source robotic instrument dataset
with provided manual segmentation. We also visualized the output of our proposed
model both as stand-alone surgical instrument segmentation, as well as overlays onto
the native endoscopic images.

Chapter 3: We described a memory-efficient architecture for accurate LV, RV blood-
pool and myocardium segmentation, clinical parameter quantification, uncertainty
estimation, and generation of isosurface meshes from breath-hold cine cardiac MRI.
To improve the robustness of our segmentation framework, we used a low-level image
pre-processing operation which serves as a precursor preliminary segmentation that
narrows the capture range of the subsequent deep learning segmentation and parameter
estimation. We also present a deep learning-based deformable model to generate motion
fields to be used to generate isosurface meshes of the cardiac geometry at all cardiac
frames by propagating the end-diastole (ED) isosurface mesh using the reconstructed
motion field in this chapter. Our uncertainty study showcases the potential of our
deep-learning framework to evaluate the correlation between the uncertainty and the
segmentation errors for a given model.

Chapter 4: We presented a simple, yet effective semi-supervised learning (SSL) frame-
work for image segmentation—STAMP (Student-Teacher Augmentationdriven consis-
tency regularization via Meta Pseudo-Labeling). The proposed method uses self-training
(through meta pseudo-labeling) in concert with a Teacher network that instructs the
Student network by generating pseudo-labels given unlabeled input data. Unlike pseudo-
labeling methods, for which the Teacher network remains unchanged, meta pseudo-
labeling methods allow the Teacher network to constantly adapt in response to the
performance of the Student network on the labeled dataset, hence enabling the Teacher
to identify more effective pseudo-labels to instruct the Student. Moreover, to improve
generalization and reduce error rate, we applied both strong and weak data augmentation
policies, to ensure the segmentor outputs a consistent probability distribution regardless
of the augmentation level.

Chapter 5: We implemented a semi-supervised learning model (CqSL) with multiple
novel loss functions, which minimizes the mutual information between the domain-
invariant as well as domain-specific features. Empirically, we showed that disentan-
glement with mutual information can improve the performance of the segmentation
accuracy. Our novel use of the total loss function enforces the network to capture both
the spatial and intensity information.

Chapter 6: We developed a novel semi-supervised framework exploiting adversarial
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learning and task-based consistency regularization for jointly learning multiple tasks in
a single backbone module – uncertainty estimation, geometric shape generation, and
cardiac anatomical structure segmentation. We presented a novel method that incor-
porates uncertainty estimation to detect failures in the segmentation masks generated
by CNNs. Our study further showcased the potential of our model to evaluate the
correlation between the uncertainty estimation and the segmentation errors for a given
model. This study served as a proof-of-concept of how uncertainty measure correlates
with the erroneous segmentation generated by different deep learning models, further
showcasing the potential of our model to flag low-quality segmentation from a given
model in our future study.

7.2 Future Work

Despite the advances put forth in this body of work, some key issues still remain. We
will now briefly summarize some future research directions that sparked off during the
course of this dissertation’s research:

Student-Teacher Network with MixUp Augmentation:

Because medical imaging datasets are not readily available, one avenue for future work
is to integrate a data-agnostic and straightforward data augmentation technique on top
of our proposed self-training-based student-teacher network. Our hypothesis is that this
data-agnostic data augmentation technique will mix two images via a simple weighted
sum and combine it with label smoothing. Incorporating this data mixing into existing
training pipelines will introduce little or no computational overhead, but significantly
improve generalization while reducing error.

Self-supervised Learning:

Chapter 4 presented an initial study that showed the feasibility of self-training (through
meta pseudo-labeling) in concert with a Teacher network that instructs a Student
network by generating pseudo-labels given unlabeled input data. Because medical data
are not readily available, one potential avenue for future work is to investigate ways to
enable self-supervised learning by first pre-training a task-agnostic model on a large
unsupervised data corpus via self-supervised learning and then fine-tuning it on the
downstream task with a small labeled dataset.
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Segmentation Quality Control:

While the uncertainty maps are used to detect segmentation failures, there is no explicit
application of uncertainties due to the high uncertainty of many well-segmented voxels,
such as those at anatomical structure boundaries. We had observed from our previously
proposed model that the largest segmentation errors in short-axis Cardiac MRI are
often found in the most basal and apical slices in both supervised and semi-supervised
segmentation, leading to the overall poor segmentation accuracy in these regions.

Several strategies have been developed to improve segmentation performance. Several
researchers employed a convolutional neural network (CNN) (orthogonal to short-axis) to
regress anatomical landmarks from long-axis views. They used landmarks to determine
the majority of basal and apical slices in short-axis views, limiting automatic CMRI
segmentation. As a result, the system’s robustness and performance improved. However,
these landmarks need some sort of manual intervention, which is often not desired, as it
introduces unwanted user bias and inherent variability.

Therefore, one potential avenue for future research is to use uncertainty measures to
flag low-quality segmentation for automatic detection using a deep neural network in
place of human review to automatically detect and correct the low-quality segmentation
maps. The quantification of this uncertainty and correction of low-quality segmentation
maps can provide scientists and physicians with an overall sense of the model’s prediction
capabilities and help them make better-informed decisions.

Cross-Training between CNN and Transformer for Segmentation Quality:

Although CNN-based approaches have currently excelled at medical image segmentation,
they still fall short of meeting the standards of medical applications for segmentation
accuracy. In medical image analysis, image segmentation is still a challenging task. It is
challenging for CNN-based techniques to learn explicit global and long-range semantic
information interaction because of the fundamental locality of the convolution operation.
Researchers have recently attempted to apply Transformer to the vision domain in
response to its recent success in the natural language processing (NLP) domain.

Vision Transformers (ViTs) embrace strong interpretability with long-distance infor-
mation interaction and dynamic feature aggregation, thanks to self-attention operations.
Using 2D image patches with positional embeddings as inputs and pre-training on a large
dataset, ViT outperforms CNN-based methods. However, they generate single-scale
and low-resolution representations that are unsuitable for semantic segmentation, which
requires high position sensitivity and fine-grained image details.

Swin Transformers introduced a hierarchical architecture with patch merging layers
and relative position embedding to address shortcomings of ViT-based models such as
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fixed token resolution and lack of inductive bias. Although transformers have extremely
high representation capacity, they are still a data-hungry solution for recognition tasks,
requiring even more data than CNNs. Hence, the training of transformers in a semi-
supervised manner is also an intriguing and difficult problem, particularly for data-limited
medical image analysis tasks.

To address the above-mentioned limitations, one immediate future direction is
to design a two-stage framework – CroCaT-PseudoSeg: Cross-Training between
CNN and Transformer for Pseudo label segmentation quality leveraging uncertainty
estimation. This framework is inspired by our previously proposed Student-Teacher
network, a method of training a Student and a slowly progressing Teacher in a mutually
advantageous manner. We will employ U-Net-like CNN as our Teacher network backbone
and Swin-UNet as the Student backbone. To adapt the U-Net as a Bayesian network
to estimate the uncertainty, dropout layers with a dropout rate of 0.5 will be added
after each convolutional layer during training and test time. The overall framework
will take both labeled and unlabeled images as inputs. In the first stage, each input
image will be processed by a CNN and a transformer to produce the prediction. For
the labeled data, the CNN and transformer will be supervised by the ground truth
individually. To update the Transformer / CNN parameters, we will use predictions
of unlabeled images generated by CNN / Transformer. In the second stage, both the
cardiac MR image along with the corresponding spatial uncertainty map generated from
the Teacher network will be passed as input to an auxiliary patch-based network. The
goal of this auxiliary detection network will be to detect segmentation failures. For each
patch of voxels, the network will generate a probability indicating whether it contains
segmentation failure.

7.2.1 Closing Remarks

At the time this research journey commenced in 2018, the field of medical image
computing was slowly embracing the recent development at that time in machine
learning and deep learning techniques for computer vision applications, with the overall
goal to further and facilitate the wider spread of data-driven computer-integrated
diagnosis and therapy.

Within this context, this 4+ year doctoral dissertation has responded to the timely
trends by making several contributions to the field of medical image segmentation,
feature extraction and classification, clinical parameter quantification, and dynamic
anatomical geometric modeling by leveraging a spectrum of architectures spanning from
fully-supervised single task learning to semi-supervised and unsupervised multi-task
learning.

The developed techniques have been implemented and evaluated on various datasets
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featuring the traditional variability associated with medical images and were shown to
yield competitive results while relying on limited labeled data, yielding a clear paradigm
shift given the scarcity of available medical imaging datasets, and especially those
correctly annotated by expert raters.

190



7.3 Author Publications

1. [2023]: Khanal B, Hasan SMK, Khanal B, and Linte CA, Investigating the
impact of class-dependent label noise in medical image classification. SPIE Medical
Imaging – Image Processing.

2. [2022]: Hasan SMK and Linte CA, Learning Deep Representations of Cardiac
Structures for 4D Cine MRI Image Segmentation through Semi-supervised Learn-
ing. Appl Sci. 12(23). 12163. 2022.

3. [2022]: Hasan SMK and Linte CA, “STAMP: A Self-training Student-Teacher
Augmentation-Driven Meta Pseudo-Labeling Framework for 3D Cardiac MRI
Image Segmentation”, Springer – Lect Notes Comput Sci. Vol. 13413. Pp.: 371-86.
2022.

4. [2022]: Hasan SMK and Linte CA, Joint Segmentation and Uncertainty Estima-
tion of Ventricular Structures from Cardiac MRI using a Bayesian CondenseUNet.
Proc. IEEE Eng Med Biol. Pp.: 5047-50. 2022.

5. [2022]: Hasan SMK and Linte CA, Calibration of cine MRI segmentation proba-
bility for uncertainty estimation using a multi-task cross-task learning architecture.
Proc SPIE Medical Imaging: Image-guided Procedures, Robotic Interventions,
and Modeling. Vol. 12034. Pp.: 120340T-1-6. 2022.

6. [2021]: Hasan SMK and Linte CA, Multi-Task Cross-Task Learning Architecture
for Ad Hoc Uncertainty Estimation in 3D Cardiac MRI Image Segmentation. Proc.
IEEE - Computing in Cardiology. Vol. 48. Pp.: 1-4. DOI: 10.22489/CinC.2021.115.
2021.

7. [2021]: Hasan SMK, Upendra RR, Simon R, Wents BJ, Shontz SM, Sacks MC
and Linte CA. Motion Extraction of Right Ventricle from 4D Cardiac Cine MRI
Using A Deep Learning-Based Deformable Registration Framework. Proc. IEEE
Eng Med Biol. Pp.: 3795-99. 2021.

191



8. [2021]: Hasan SMK, Simon R and Linte CA. Segmentation and removal of
surgical instruments for background scene visualization from endoscopic/laparo-
scopic video. Proc. SPIE Medical Imaging – Image-guided procedures, Robotic
Interventions, and Modeling. Vol. 11598. Pp.: 115980A-1-7. 2021.

9. [2020]: Hasan SMK, Simon R and Linte CA. L-CO-Net: Learned Condensation-
Optimization Network for Segmentation and Clinical Parameter Estimation from
Cardiac Cine MRI. Proc. IEEE Eng Med Biol. Pp.: 1217-20. 2020.

10. [2020]: Hasan SMK, Simon R and Linte CA. A Learned Condensation-
Optimization Network: A regularized Network for Improved Cardiac Ventricle
Segmentation from Breath-hold Cine MRI. Proc Int Symp Biomed Imaging (ISBI)
- Workshop on Deep Image Analysis and Understanding. 2020.

11. [2020]: Hasan SMK, and Linte CA. CondenseUNet: a memory-efficient condensely-
connected architecture for bi-ventricular blood pool and myocardium segmentation.
Proc. SPIE Medical Imaging – Image-guided Procedures, Robotic Interventions,
and Modeling. Vol. 11315. Pp.: 113151J-1-7. 2020.

12. [2019]: Otani NF, Dang D, Beam C, Mohammadi F, Wentz B, Hasan SMK,
Shontz SM, Schwarz KQS, Thomas S, and Linte CA. Toward Quantification and
Visualization of Active Stress Waves for Myocardial Biomechanical Function As-
sessment. Computing in Cardiology. Vol: 46. Pp.: 1-4. 2019.

13. [2019]: Hasan SMK, and Linte CA. U-NetPlus: A Modified Encoder-Decoder U-
Net Architecture for Semantic and Instance Segmentation of Surgical Instruments.
Proc. IEEE Eng Med Biol. Pp.: 7205-7211. 2019.

14. [2018]: Hasan SMK, and Linte CA. A Modified U-Net Convolutional Network
Featuring a Nearest-neighbor Re-sampling-based Elastic-Transformation for Brain
Tissue Characterization and Segmentation. Proc IEEE Western NY Image Signal
Proc Workshop. 2018. DOI: 10.1109/WNYIPW.2018.8576421.

192


	From Fully-Supervised Single-Task to Semi-Supervised Multi-Task Deep Learning Architectures for Segmentation in Medical Imaging Applications
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction and Background
	1.1 Medical Imaging and Imaging Modalities
	1.1.1 Endoscopic Imaging
	1.1.2 Magnetic Resonance Imaging (MRI)

	1.2 Image Analysis
	1.3 Image Segmentation
	1.4 Medical Image Segmentation
	1.4.1 Machine Learning in Medical Imaging

	1.5 Deep Learning
	1.5.1 Neural Networks
	1.5.2 Convolutional Neural Networks (CNNs)
	1.5.3 Densely Connected Network (DenseNet)
	1.5.4 Fully Convolutional Networks (FCNs)

	1.6 3D CNNs
	1.7 Generative Models
	1.7.1 Generative Adversarial Networks
	1.7.2 Variational Autoencoder

	1.8 Network Training Techniques
	1.8.1 Supervised Learning
	1.8.2 Semi-supervised Learning
	1.8.3 Unsupervised Learning

	1.9 Training Methods
	1.9.1 Avoiding Overfitting

	1.10 Deep Learning for Cardiac Image Segmentation
	1.10.1 Human Heart Anatomy
	1.10.2 Cardiovascular Diseases

	1.11 Cardiac magnetic resonance imaging
	1.12 Challenges of Cardiac Segmentation
	1.13 Ventricle Segmentation
	1.13.1 FCN-based Segmentation
	1.13.2 Multi-Stage Networks
	1.13.3 Multi-Task Learning
	1.13.4 Utilizing Unlabeled Data
	1.13.5 Unsupervised Learning in Medical Domain

	1.14 Deep Learning-Based Deformable Registration 
	1.15 Atrial Segmentation
	1.16 Cardiac Indices
	1.16.1 Clinical Indices
	1.16.2 Segmentation Indices

	1.17 Motivation for Effective Image Segmentation Tools 
	1.18 Contributions
	1.19 Thesis Outline

	2 Semantic Segmentation and Removal of Surgical Instruments from Endoscopic / Laparoscopic Video Images
	2.1 Introduction
	2.2 Methodology
	2.2.1 Overview of Proposed Segmentation Method
	2.2.2 Surgical Tool Removal Method A: Optical Flow-Based Video Object Removal Algorithms
	2.2.3 Surgical Tool Removal Method B: Reference Image Frame Inpainting Flow-Based Video Object Removal Algorithms
	2.2.4 Illumination / Appearance Adjustment
	2.2.5 Image Dataset
	2.2.6 Data Augmentation
	2.2.7 Implementation Details
	2.2.8 Evaluation Metrics

	2.3 Results
	2.3.1 Quantitative Segmentation Results
	2.3.2 Qualitative Segmentation Results
	2.3.3 Segmentation Ablation Study 
	2.3.4 Surgical Tool Removal via Inpainting

	2.4 Discussion and Conclusion

	3 Cardiac Chamber Segmentation featuring Uncertainty Estimation, Clinical Parameter Quantification and Dynamic RV Model Propagation from Cine Cardiac MRI
	3.1 INTRODUCTION
	3.1.1 Cardiac Chamber/Feature Segmentation
	3.1.2 Integration of Segmentation Uncertainty
	3.1.3 Cardiac Motion Extraction and Dynamic Model Propagation

	3.2 Methodology
	3.2.1 Imaging Data
	3.2.2 Slice Misalignment Correction
	3.2.3 Data Pre-processing
	3.2.4 L-CO-Net framework
	3.2.5 Deformable Registration Framework
	3.2.6 Isosurface Mesh Extraction
	3.2.7 Baseline Comparisons:

	3.3 Results
	3.3.1 Cardiac Chamber/Feature Segmentation Evaluation
	3.3.2 Segmentation Uncertainty Evaluation
	3.3.3 Cardiac Motion Extraction and Dynamic RV Model Propagation Evaluation

	3.4 Discussion and Conclusion

	4 A Self-training Student-Teacher Augmentation-driven Meta Pseudo-labeling Framework for 3D Cardiac MRI Image Segmentation
	4.1 Introduction
	4.2 Methodology
	4.2.1 STAMP Model Framework
	4.2.2 Data Augmentation Strategies:
	4.2.3 Experiments
	4.2.4 Evaluation:

	4.3  Results and Discussion
	4.3.1 Image Segmentation Evaluation
	4.3.2 Ablation Study

	4.4 Conclusion

	5 Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-supervised Learning
	5.1 Introduction
	5.2 Methods
	5.2.1 CqSL Model Overview
	5.2.2 Objective Functions
	5.2.3 Experiments
	5.2.4 Evaluation Metrics 

	5.3 Results
	5.3.1 Image Segmentation Assessment
	5.3.2 Image Quality Assessment:
	5.3.3 Clinical Parameter Estimation:
	5.3.4 Ablation Studies

	5.4 Conclusion and Future Work

	6 A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty Estimation in 3D Cardiac MRI Image Segmentation
	6.1 Introduction
	6.2 Multi-Task Cross-Task Learning
	6.2.1 Left Atrium Segmentation Implementation
	6.2.2 Bi-ventricular Segmentation Implementation

	6.3 Uncertainty Quantification
	6.4 Evaluation Metrics 
	6.5 Cardiac MRI Data
	6.6  Results and Discussion
	6.6.1 Left Atrium Segmentation and Uncertainty Assessment
	6.6.2 Bi-ventricle Segmentation and Uncertainty Assessment

	6.7 Conclusion

	7 Discussion, Conclusion, and Future Research Directions
	7.1 Thesis Motivations and Contributions: Revisiting
	7.2 Future Work
	7.2.1 Closing Remarks

	7.3  Author Publications


