
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

1-9-2023 

Normalization and Generalization in Deep Learning Normalization and Generalization in Deep Learning 

Griffin Hurt 
gxh2932@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Hurt, Griffin, "Normalization and Generalization in Deep Learning" (2023). Thesis. Rochester Institute of 
Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F11389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/11389?utm_source=repository.rit.edu%2Ftheses%2F11389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


NORMALIZATION AND

GENERALIZATION IN DEEP

LEARNING

by

Griffin Hurt

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Applied and Computational Mathematics

School of Mathematical Sciences, College of Science

Rochester Institute of Technology

Rochester, NY

January 9, 2023



Committee Approval:

Nathan Cahill, D.Phil. Date

School of Mathematical Sciences

Thesis Advisor

Ernest Fokoué, Ph.D. Date
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Abstract

In this thesis, we discuss the importance of data normalization in deep learning and its relationship with

generalization. Normalization is a staple of deep learning architectures and has been shown to improve

the stability and generalizability of deep learning models, yet the reason why these normalization tech-

niques work is still unknown and is an active area of research. Inspired by this uncertainty, we explore how

different normalization techniques perform when employed in different deep learning architectures, while

also exploring generalization and metrics associated with generalization in congruence with our investiga-

tion into normalization. The goal behind our experiments was to investigate if there exist any identifiable

trends for the different normalization methods across an array of different training schemes with respect

to the various metrics employed. We found that class similarity was seemingly the strongest predictor for

train accuracy, test accuracy, and generalization ratio across all employed metrics. Overall, BatchNorm and

EvoNormBO generally performed the best on measures of test and train accuracy, while InstanceNorm and

Plain performed the worst.
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Mathematical Preliminaries

Definition 1 (Perceptron). A perceptron is defined as a single-layer network with outputs defined by

y(x) = σ
(
WTx+w0

)
.

where x = [x1, . . . , xd] ∈ Rd, W = [w1, . . . ,wc] ∈ Rd×c, w0 = [w0,0, . . . , wc−1,0]
T ∈ Rc, y(x) =

[y0(x), . . . , yc−1(x)]
T and σ is some activation function. The letter d refers to the number of features in the

input and c refers to the number of classes in which the input can be classified.

Definition 2 (Multilayer perceptron). A multilayer perceptron of depth N is defined as

y(x) = σ
(
W(N)T · · ·σ

(
W(2)Tσ

(
W(1)Tx+w1

)
+w2

)
· · ·+wN

)
.

Definition 3 (Loss function). The loss function is defined as some function L : Rc → R which acts as the

objective function of a model.

Definition 4 (Batch). A batch is defined as a set B = {x1 . . .xn}, where m is the number of elements in

the batch.
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Introduction

Deep learning is a relatively new field that has been growing exponentially in recent years and has seen

applications in many different areas, including self-driving vehicles, personal assistants, medical image

analysis, and much more. There are three main types of deep learning: supervised, unsupervised, and

reinforcement learning. Supervised learning is where the algorithm is given a set of training data, and the

desired outputs are also known [1]. The algorithm then learns to map the input data to the desired output.

Unsupervised learning is where the algorithm is given a set of data but not told what the desired output

should be [1]. The algorithm then has to learn to find patterns and structure in the data. Reinforcement

learning is where the algorithm is given a set of data and a reward function. The algorithm then learns to

map the input data to the desired output in order to maximize the reward [1].

Within these three types exists a bimodal set of study: computer vision and natural language processing.

Computer vision is the process of using computers to interpret and understand digital images [1]. Com-

puter vision can be used for a variety of purposes, such as image recognition, object detection, and motion

estimation. Natural language processing is concerned with language and symbolic representations [1]. Per-

haps the quintessential example of natural language processing is language translation. This thesis is mainly

concerned with computer vision using supervised learning.

Across all these fields of studying exists a common principle: generalization. Generalization is the

ability of a model to accurately predict outputs for data that was not used in the training of the model [1].

The concept is fundamental to the field of deep learning, and on an even greater scale, artificial intelligence.

The purpose of developing deep learning models is to be able to predict outcomes, and in some cases, act

on those outcomes. Models make predictions based on things that they have already learned in training. To

make proper predictions, they need to be able to generalize outside of just the data seen in training. That is

what makes a “good” model. It’s no wonder then why the concept of generalization is such an important

and highly studied topic within deep learning. It’s much easier to create models which generalize well when

you know what properties of a model are associated with its ability to generalize.

Normalization is one of the techniques used to help deep learning models generalize well, and are a

fundamental building block of most deep learning architectures [2, 3, 4, 5, 6]. The topic has been studied
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fairly extensively and many different normalization techniques have been developed over the years as a result

of these studies [7, 8, 9, 10, 11, 12, 13, 14, 15]. However, the question of why these normalization techniques

help performance remains somewhat of a mystery.

In this thesis, we will review some of the different models and normalization techniques commonly used

as well as an array of techniques for evaluating and investigating model performance. Once these have been

reviewed, we conduct a collection of experiments in an attempt to uncover any potential trends between

the different models, normalization techniques, and metrics. Our ultimate goal is to see if there exist any

commonalities between the different normalization schemes with respect to our tested metrics, so that we

may gain insight into what may or may not make a good scheme.
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Chapter 1

Normalization

Normalization in deep learning traces its origins to Yann Lecunn et al. in the foundational paper Efficient

Backprop [16], which laid the groundwork for much of deep learning theory today. In this paper, the authors

highlight the idea that if you normalize your inputs to your model, convergence toward a solution will

typically be faster. As important as this idea was, there was a lack of subsequent novelty for quite some time.

That is until the introduction of the normalization technique known as BatchNorm from Ioffe and Szegedy

[9]. Today, most architectures employ either BatchNorm or LayerNorm in the intermediate layers of the

model, similar to Figure 1.1. BatchNorm tends to be more popular for vision-related architectures such as

CNNs, while LayerNorm tends to be more popular for language-related architectures such as Transformers.

As for why these normalization techniques work, it is still not totally clear and research into this topic is still

ongoing. Slightly later in this chapter, we shed some light as to where and how research is being done to

confront this issue.

1.1 Why Is It Important?

The paper which introduced Batch Normalization [9] is one of the most highly cited papers in the field of

machine learning, netting over 35,000 citations to date. Most modern architectures employ some form of data

normalization for training and testing and has become a fundamental building block for constructing models.

From MLPs, to ResNets, to Transformers, you are almost guaranteed to spot some sort of normalization step

within their structure. This almost universal prevalence makes understanding why normalization lets models

operate more smoothly than without, and on a more general scale, why neural networks actually work, an

important task. As an analogy, if we wish to understand the brain, we need to understand its parts.
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Figure 1.1: Multilayer perceptron with normalization [17].

1.2 Why It Works

The answer to this question does not have a clear answer. As stated earlier, the authors who published the

paper on Batch Normalization believed that their method worked due to reducing what is known as Internal

Covariate Shift [9], which is defined as the change of the distribution of the activations induced by the change

in the network parameters during training. It was later shown that preventing internal covariance shift was not

necessarily indicative of better training [18]. Instead, it was proposed that BatchNorm’s effectiveness may

have been connected to how it impacts the “Lipschitzness” of the loss function. The problem is still unsolved

though, and there is still not a conclusive argument for why BatchNorm or other forms of normalization

impact performance in the way that they do.

1.3 The Current State of Research

Probably the most interesting paper as of late was published by Sing et al. [6], in which they conducted a

large study looking at different normalization techniques employed in different CNNs for image classifica-

tion while sweeping over different hyperparameters, such as batch size and learning rate. The paper was

mostly focused on how normalization impacts training behavior. Their key findings were i) non-weight-

based normalization schemes were found to prevent feature explosion during forward propagation, ii) how

well a normalizer generates dissimilar features between classes is a strong predictor of optimization speed,

and iii) small group sizes for channel-based normalization techniques (GroupNorm, LayerNorm, Instan-
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ceNorm) are connected to large gradient norms in earlier layers which can lead to gradient explosion and

therefore unstable backpropagation. Although this paper does not really provide an argument for why nor-

malization works in general, it may provide a good basis to work from for solving that problem.

1.4 BatchNorm

Input: Values of x over a mini-batch of size n: B = {x1...n};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

n

n∑
i=1

xi // mini-batch mean

σ2
B ←

1

n

n∑
i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B + ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to input x over a mini-batch [9]. Informally, we can
think of the algorithm as normalizing each feature of an input relative to the other inputs within the mini-
batch, and then scaling and shifting the normalized inputs.

Following early theory surrounding the normalization of inputs [16], Ioffe and Szegedy took this prin-

ciple and used it to formulate what is known as BatchNorm [9]. They theorized that the distribution of the

inputs changed as they passed through the model due to the change in network parameters during training.

They coined this change in distribution as “internal covariate shift” and hypothesized that this internal co-

variate shift contributed to greater model sensitivity to learning rates and required careful initialization of

the parameters. They believed that the solution to their theorized issue was Batch Normalization. Their

empirical results which implemented Batch Normalization within CNNs with the purpose of image classifi-

cation were shown to be a massive improvement over the previous state-of-the-art architectures, which did

not possess intermediary normalization layers.

1.4.1 Internal Covariate Shift

Internal Covariate Shift is defined as the change of the distribution of the activations induced by the change

in the network parameters during training [9]. Ioffe and Szegedy believed that if they could correct this

covariate shift then this would improve training. They believed that by fixing the distribution of the inputs

at mean 0 and variance 1 throughout the network that this would prevent internal covariate shift, and by

preventing the internal covariate shift, improve training speed and stability. This principle was inspired by
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two papers [16, 19], which showed that network training converges faster if its initial inputs are linearly

transformed to have mean 0 and variance 1.

While internal covariance shift coincided with improved training in the empirical results, it was later

shown that preventing internal covariance shift was not necessarily indicative of better training [18]. They

showed that explicitly introducing covariate shift into a model using BatchNorm did not lead to worse

training outcomes. Following this, the authors proposed that instead of looking at internal covariance shift as

the main metric of insight, we should instead perhaps look towards the parameter space, and how BatchNorm

impacts the concavity of the parameter space, and hence, the smoothness of the loss surface.

1.4.2 Smoothness

Santurkar et al. showed that the implementation of BatchNorm led to a smoother loss surface by looking

at the “Lipschitzness” of the loss function [18]. Their argument details that the smoother the loss surface,

the more informed the gradient traversal of the surface will be. This is because the gradient is a first-order

method and so it has no knowledge of curvature, and so the greater the curvature of the surface the less

accurate the gradient traversal will be since it cannot account for any present curvature in the direction it

wishes to travel in as informed by the gradient. Hence, the surface smoothing introduced by BatchNorm will

generally lead to better training outcomes for training schemes that employ gradient descent.

Looking at the concept of “Lipschitzness”, let us first explain what it is. In essence, Lipschitzness

refers to the magnitude of the gradient of the loss function with respect to the activations or ||∇yj
L||. The

term itself stems from the concept of Lipschitz continuity and the Lipschitz constant. The reason why the

Lipschitzness is important is because it dictates the change in the loss when taking a step with gradient

descent. The Lipschitz constant of a function gives a measure of how much the output of the function can

change for a given change in the input. A smaller Lipschitz constant indicates that the function is more

smooth and has a more predictable gradient, while a larger Lipschitz constant indicates that the function is

less smooth and has a less predictable gradient.

The authors show that the gradient magnitude is bounded for a batch normalized network and can achieve

“better” Lipschitzness compared to the non-normalized network; “better” in this case means that the Lip-

schitz constant indicates a more predictive gradient since it is smaller. The authors also show that the

quadratic form of the Hessian matrix of the loss function with respect to the activations for models using

layer-wise BatchNorm is upper-bounded, indicating a limit to the ”unsmoothness” of the loss surface, and so

the gradient is generally more predictive compared to a model that does not employ layer-wise BatchNorm.
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Figure 1.2: Feature tensors with N as the batch axis, C as the channel axis, and (H,W ) as the spatial axes
[11].

1.5 Normalization Before BatchNorm

Prior to the advent of BatchNorm and its massive success, there existed normalization techniques that were

implemented in CNNs: Local Contrast Normalization [7] and Local Response Normalization [8]. However,

these were fairly niche compared to BatchNorm since they only really saw usage in CNNs and not so much

in the broader sphere of deep learning models, since they were designed for tasks related to computer vision.

Following the introduction of BatchNorm and other regularization techniques though, these methods mostly

fell out of favor and are generally no longer used as a result of being rendered obsolete.

1.6 BatchNorm’s Descendants

Following BatchNorm and its success, many took the opportunity to build upon it and develop different

normalization techniques with different purposes and different results. Perhaps the most notable of these

descendants is LayerNorm [10]. Today, LayerNorm is considered the state-of-the-art normalization tech-

nique in the field of natural language processing. The famous Transformer architecture which has taken the

deep learning scene by storm makes use of LayerNorm [5]. Interestingly, the computer vision variant of

the Transformer architecture [4] also employs LayerNorm just like its ancestor, which is a deviation from

the norm of vision-related architectures which typically employ BatchNorm [3, 2, 20, 21, 22, 23, 24, 25].

Outside of LayerNorm, other techniques include GroupNorm [11], Instance Normalization [12], Variance

Normalization [26] and many more. 1

LayerNorm LayerNorm was developed with the intention of bringing the revolution of normalization to

recurrent neural networks [10]. LayerNorm is actually quite similar to BatchNorm, except that the way

it normalizes its data is by normalizing a different dimension of the activations. Instead of normalizing

by the batch statistics, LayerNorm normalizes by the neuron statistics. In other words, for LayerNorm,

the mean and variance statistics are calculated across the feature dimension, for each element and instance
1The operations performed by the normalization procedures described in this section can be found in the table.
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Activations-Based Normalizers
µ{d} = µ{d}(A); σ{d} = σ{d}(A)

BN [9] A−µ{b,x}
σ{b,x}

LN [10] A−µ{c,x}
σ{c,x}

IN [12] A−µ{x}
σ{x}

GN [11] A−µ{c/g,x}
σ{c/g,x}

FRN [13] A
RMS{x}

VN [14] A
σ{b,x}

ENBO [15] A
max{σ{b,x},v⊙A+σ{x}}

ENSO [15] Aρ(v⊙A)
σ{c/g,x}

Figure 1.3: Operations performed by different normalizers. A denotes normalization layer input (activations
or activation function output). Operators µ{d}(A) and σ{d}(A) calculate the mean and standard deviation
along the dimensions specified by a set {d}. Symbols b, c, x denote the batch, channel, and spatial dimen-
sions. The notation c/g denotes division of c neurons (or channels) into groups of size g. Each group is
normalized independently when grouping is performed. RMS denotes root mean square.

independently. For BatchNorm, the statistics used for normalization are calculated across all elements of all

instances in a batch.

Instance Normalization Instance Normalization was developed with the intention of developing a more

efficient normalization technique than BatchNorm for the process of image generation [12]. Instance Nor-

malization can be thought of in terms of BatchNorm, where instead of normalizing using the entire batch,

you normalize by each sample in the batch (i.e. only one blue column in the BatchNorm cube from Figure

1.2). Instance Normalization has been known to be fairly unstable during training [6]. This instability is

believed to be related to gradient explosion during training which leads to unstable backpropagation. The

reason for this is theorized to be related to the limited scope of how InstanceNorm normalizes the data. Un-

like other norms which normalize by groups of channels or by batches, InstanceNorm normalizes by each

channel for each individual sample in the batch as seen in Figure 1.2.

Group Normalization Group Normalization, like LayerNorm and InstanceNorm, is independent of batch

size [11]. GroupNorm computes normalization statistics by grouping the channels and normalizing within

the groups. You can actually think of LayerNorm and InstanceNorm in terms of GroupNorm, where Layer-

Norm is GroupNorm with group size C and InstanceNorm is GroupNorm with group size 1. GroupNorm

was created with the intention of providing an alternative normalization technique to BatchNorm such that

it would be a more stable technique that was not reliant on batch statistics, since it had been observed that

the error of models employing BatchNorm would witness rapidly increasing error when the batch size was

reduced [11], because the batch statistics were then less representative of the greater set of inputs. Generally,

larger models need smaller batch sizes because of computational limitations with respect to memory, and
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so using BatchNorm on large models could potentially be less fruitful than on smaller models. GroupNorm

was designed such that this trade-off between batch size and memory would not be an issue.

Filter Response Normalization Filter Response Normalization follows the footsteps of GroupNorm in

trying to develop a normalization technique that is independent of the batch [13]. It works by normalizing

the inputs per channel and then sending those normalized inputs through an activation function known as the

Threshold Linear Unit (TLU). The reason for the activation function is that Filter Response Normalization

does not have mean centering, which leads to the activations typically having some non-zero mean, and this

non-zero mean does not interact well with the ReLU activation function and can lead to poor performance.

In essence, TLU is ReLU with an additional learned parameter τ where ReLU is defined as max(y, 0) and

TLU is defined as

max(y, τ) = max(y − τ, 0) + τ = ReLU(y − τ) + τ.

As the name might suggest, Filter Response Normalization is quite similar to the previously mentioned

Layer Response Normalization. They do share some differences, however; the most apparent being that

Layer Response Normalization operates on adjacent channels at the same spatial location, while FRN oper-

ates globally over the spatial extent.

EvoNorm EvoNorms are a result of experiments with the purpose of finding optimal normalization tech-

niques through an automated approach [15]. These norms exist as a unification of normalization and activa-

tion into a single computation graph. There exist two different forms of EvoNorms: B-series and S-series.

B-series EvoNorms are batch-dependent while S-series are batch independent and operate on individual

samples.

Variance Normalization Variance Normalization is simply an ablation of BatchNorm which does not

employ mean centering [14]. It was designed for experiments investigating the rank-preserving properties

of BatchNorm. It has been shown that mean centering is redundant for linear networks, but the authors of

Variance Normalization show that empirically this may also be true for non-linear networks.

Parametric Normalization Another type of normalization employed in deep learning architectures is

parametric normalization, as opposed to activation normalizers. Parametric normalizers such as Weight

Normalization [26] operate in the weight space as opposed to the activation space. Meaning, that instead of

normalizing the activations, parametric methods normalize the weights. In this paper, however, we do not

inspect parametric normalization and leave that for future work.
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On a more general note, typically once activations are normalized, they will then be scaled and shifted

using variables γ and β respectively, where γ and β are learned affine parameters. An example of this can be

seen in Algorithm 1. Once they are scaled and shifted, they are typically passed through some non-linearity

such as ReLU. This is not always the case though, as can be seen with the Transformer which does not pass

the normalized activations through an activation function (unless the normalizer architecture includes one,

such as Filter Response Normalization with TLU).
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Chapter 2

Generalization & Flatness

2.1 Generalization

One of, if not the most important goals in deep learning, is training networks that can generalize well.

Why, and how models generalize is still a subject of great interest, yet with inconclusive results. There

has been a myriad of papers [27, 28, 29, 30? , 31, 32, 33] which have tackled aspects of the issue from a

theoretical perspective, but still much mystery remains. The two main trajectories traveled for investigating

the generalization problem are typically either from a PAC-Bayes perspective or from a geometrical analysis

of the loss surface.

The PAC-Bayes approach typically involves generating some type of bound on how well a model will

generalize based on how it was trained. The geometric approach focuses on metrics of sharpness/flatness of

minima. There has been an observed phenomenon in which flat minima tend to generalize better than their

sharp counterparts. There has been a plethora of research backing this trend and remains quite a promising

avenue [34, 35, 36, 37, 38, 39, 40]. Still, the hunt for why networks generalize and how to predict how

well they will generalize ensues. We are interested in contributing to this search by studying the relationship

between normalizers and how they may influence the geometry of the loss surface, as well as how they

impact generalization. For the sake of time, we will not be venturing into the realm of PAC-Bayes analysis

and leave that for future work. Instead, we will be directing our focus toward metrics of flatness as it pertains

to the loss surface.

Generalization is at the core of artificial intelligence research. Being able to create an agent which can

effectively generalize what it has learned is arguably the most important goal in the entire field. Hence why

research into this area is so extensive. The term “generalize” in deep learning is used fairly loosely. Usually,

the data that’s used to test how well a model generalizes is very similar to the data that it was trained on, at

least in the case of supervised learning. The train and test sets for things like ImageNet [41] or CIFAR [42]
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both have images of cats and dogs, for example. It is not as if the test set has classes of objects not seen in

the train set. The space in which the data lies is very limited. So when we mention the term “generalize” we

are just referring to the model’s ability to evaluate data from the test set.

2.2 Flatness

2.2.1 What is a Loss Surface?

A loss surface is a surface that represents the error of a model as a function of its weights. The loss surface

is generally used to geometrically schematize how the error changes as the weights of a neural network

are updated during training. Visualizing loss surfaces is not a trivial problem since most models are high-

dimensional (i.e. have many parameters). Probably the most popular approach to visualizing loss surfaces

was done by Li et al. [38].

In their paper, they outline two different approaches to tackling the problem. The first approach involves

1-dimensional linear interpolation. To do this, two sets of parameters θ and θ′ are chosen, and then values

of the loss function along the line connecting these two points are plotted. This line can be parameterized

by choosing a scalar parameter α, and defining the weighted average θ(α) = (1− α)θ + αθ′. The function

f(α) = L(θ(α)) is then plotted.

The second approach involves generating contour plots by randomly sampling direction vectors. This

approach involves choosing a center point θ∗ in the graph and then choosing two direction vectors: δ and β.

Then a contour plot is generated by plotting the function f(α) = L(θ∗ + αδ) in the 1-D case or f(α, β) =

L(θ∗ + αδ + βη) in the 2-D case.

Another method, outlined in [43], uses the eigenvectors of the Hessian of the loss function. To plot the

loss surface, they first compute the top Hessian eigenvector and then perturb the model parameters along

that direction and measure the loss. The loss value is then plotted as a function of the perturbation. They

also introduce another very similar method which uses the gradient instead of the eigenvector.

2.2.2 Relationship Between Flatness and Generalization

There exist a series of notable works which link flatness of the loss surface to generalization. The idea that

flat minima tend to generalize well was first introduced in 1997 by Hochreiter and Schmidhuber [34] in which

they argue that flat minima correspond to low expected generalization error. This idea didn’t see much more

attention until the paper published by Keskar et al. [35], who showed that large batch sizes during training

can yield sharper minima than smaller batch sizes (32−512), and that sharp minima generalize poorly. This

trend was subsequently observed in several other influential papers [36, 37, 38, 39, 40].
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However, it has also been shown that flatness is not necessarily indicative of how well a model general-

izes [44]. Through reparameterization of the model such that the area surrounding the minimum found by

the model is sharpened, the model can still generalize just as well. While this result may prevent any affir-

mative claims about how well a model will generalize just by inspecting flatness, it can still be a valuable

signal.

At its core, the flatness of the loss surface is a metric for measuring how sensitive a model is to parameter

perturbations. If small perturbations to the model parameters result in large increases in error then the mini-

mum is sharp. More generally, a small step from the optimal set of parameters results in a large change in the

loss function output (relatively speaking). Sharp minima tend to possess rigid class boundaries [45], hence

why small perturbations to the parameters of the model can have large impacts on these class boundaries

which result in misclassification. Flat minima, however, tend to have less rigid, wider, nicer boundaries.

These more lenient boundaries can allow the model to better classify data not seen in the training set (i.e.

generalize better), since a classifier whose decision boundaries exist far from the original training data will

be more likely to classify test data correctly than otherwise.

2.3 Hessian-Based Analysis

The Hessian of the loss function with respect to the model parameters can provide insight into the second-

order behavior of the model. This is of particular interest to us given the observations between the curvature

of the loss surface and a model’s ability to generalize.

The Hessian matrix is a square matrix that is used to describe the second-order derivatives of a multi-

variate function. More formally, suppose f : Rn → R is a function taking as input a vector x ∈ Rn and

outputting a scalar f(x) ∈ R. If all second-order partial derivatives of f exist, then the Hessian matrix H of

f is a square n× n matrix, usually defined and arranged as follows:

Hf =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


.

The eigenvalues of the Hessian matrix are used to describe the curvature of the function. If all of the

eigenvalues are positive, then the function is said to be convex. If all of the eigenvalues are negative, then

the function is said to be concave. If some of the eigenvalues are positive and some are negative, then the

function is said to be saddle-shaped. If the function is flatter (closer to being linear), then it will have smaller

eigenvalues, and if the eigenvalues are large in magnitude, then the function is far from being linear (curved).
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In our analysis of the second-order behavior later in this thesis, we will consider two metrics: the absolute

trace of the Hessian and the eigenvalue spectral density of the Hessian. The Hessian will be calculated

with respect to the training set, since we are interested in where the model converges during training. If we

calculated the Hessian with respect to the test set, then we would almost certainly be evaluating the curvature

of the loss surface at a point somewhere different than where we converged, since the loss value for the test

set is likely going to be different (and larger) than that of the training set.

2.3.1 Trace

Input: Parameter: θ.
Compute the gradient of θ by backpropagation, i.e., compute gθ = dL

dθ .
Output: Trabs(H) = sum{abs{E[v ⊙Hv]}}

for i = 1, 2, ... do
Draw a random vector v from Rademacher distribution (same dimension as θ).
Compute gv = gTθ v

Compute Hv by backpropagation, Hv = d(gv)
dθ

Compute and record v ⊙Hv
end for
Compute the average of all computed v ⊙Hv
Return the sum of the absolute-valued elements of the computed average

Algorithm 2: Absolute Trace computation.

A commonly employed metric for measuring curvature of a surface at a point is the trace of the Hessian

evaluated at that point. The trace of a matrix is the sum of its diagonal entries. We employ a modified version

of this metric by calculating the trace using the absolute value of each element. This is done to get a full

picture of the curvature of the surface, since computing the trace the standard way will encounter issues when

there exists saddling on the surface. Clearly, a flat (constant surface) would have a zero matrix as the Hessian,

so the trace of the Hessian would be zero. However, consider the 2-D function f(x, y) = x2–y2. The origin

is a saddle point – there is strong positive curvature in the x direction and strong negative curvature in the y

direction, but at the origin, the trace of the Hessian is also zero. And furthermore, as you move away from

the origin along the line x = y, the trace of the Hessian is zero for all points on that line. This effect may

generally be less powerful with high dimensional functions such as deep nets due to having many parameters

and hence unlikely to have ”cancellations” to the same degree as the example, and also because stochastic

gradient descent for deep networks tends to settle in flat regions rather than saddle-like regions, but taking

the absolute trace still allows for additional precision without much extra compute.

Since computing the Hessian for models with many parameters is computationally infeasible, we instead

approximate the diagonal of the Hessian using a modified form of the Hutchinson method [46], and then
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compute the absolute trace using the approximated diagonal. To approximate the diagonal, we compute

Diag(H) ≈ E[v ⊙Hv]

where v is a random vector drawn from a Rademacher distribution [47] (discrete distribution taking on only

two possible values ±1 with equal probability) such that E[vvT ] = I , and ⊙ denotes the Hadamard product

(element-wise product). We compute Hv using the following observation

∂gTθ v

∂θ
=

∂gTθ
∂θ

v + gTθ
∂v

∂θ
=

∂gTθ
∂θ

v = Hv (2.1)

where

gθ =
∂L

∂θ
∈ Rm

H =
∂2L

∂θ2
=

∂gθ
∂θ
∈ Rm×m

and L denotes the loss function. In Equation (2.1), the first equality is the chain rule, the second is due

to the independence of v with respect to θ, and the third equality is the definition of the Hessian. Note

that the computational cost to find Hv is the same as one iteration of backpropagation, and hence much

less expensive than computing the full Hessian. Once we’ve calculated Hv we then use it to calculate the

diagonal of H as follows

Diag(H) = Diag(HI) = Diag
(
HE

[
vvT

])
= E

[
Diag

(
HvvT

)]
= E[v ⊙Hv].

We then calculate the absolute trace by summing the absolute value of each element in the calculated

diagonal. Once the trace has been computed, we normalize the trace by the number of parameters in the

model. This is because we use models with different parameter counts, and models with more parameters

will generally have a larger trace since their Hessian will be greater in dimension.
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2.3.2 Eigenvalue Spectral Density

Figure 2.1: A surface centered about the origin and it’s corresponding Hessian matrix H . The red vectors
correspond to the eigenvectors of the Hessian.

We are interested in the eigenvalues of the Hessian matrix since they provide a window to peer into the

geometry of the loss landscape, as can be seen in Figure 2.1. A Hessian with zero-valued eigenvalues

denotes a flat surface. We operate in real-valued space and the Hessian matrix is both square and symmetric,

and so has real-valued eigenvalues. This allows for a convenient and intuitive analysis of the loss surface.

The eigenvectors of the Hessian correspond to the principal axes of a surface at a given point and their

eigenvalues provide information on their magnitude. The greater the magnitude, the greater the curvature

along the surface in the direction of the eigenvector from the point, and the lesser the magnitude the lesser

the curvature.

We can think of the eigenvalue spectral density of a matrix as a probability density distribution that

measures the likelihood of finding eigenvalues near some point on the real line. To compute the eigenvalue

spectral density, we follow the procedure outlined by Yao et al. [43] known as stochastic Lanczos quadrature.

In summary, to approximate the spectral density of the Hessian, we apply the Lanczos algorithm (not to

be confused with stochastic Lanczos quadrature) with q steps on the Hessian to get the tridiagonal matrix T

of size (q×q). We then calculate the q eigenpairs of T which are used in a Guassian kernel f to approximate

the distribution of eigenvalues for the Hessian. This method of calculating the eigenpairs for T and using

them to approximate the eigenvalues of the Hessian is less expensive than directly calculating the Hessian’s

20



eigenvalues. The full spectral density of the Hessian eigenvalues is defined as

ϕ(t) =
1

m

m∑
i=1

δ (t− λi) ,

where δ is the Dirac distribution and λi is the ith eigenvalue of the Hessian, H . To approximate ϕ(t), we

apply a Guassian kernel f , with variance σ2 to obtain

ϕσ(t) =
1

m

m∑
i=1

f(λ; t, σ),

where f(λ; t, σ) = 1
σ
√
2π

exp
(
−(t− λ)2/

(
2σ2
))

. Note that

Tr(f(H)) = Tr
(
Qf(Λ)QT

)
= Tr(f(Λ)),

where QΛQT is the eigendecomposition of H , and f(H) is the matrix function defined as

f(H) ≜ Qf(Λ)QT ≜ Qdiag (f (λ1) , . . . , f (λm))QT .

We approximate the Guassian kernel by

ϕσ(t) =
1

m
Tr(f(H; t, σ)),

which is computed using the Hutchinson method. This is done by drawing a random Rademacher vector v

and computer the expectation E
[
vT f(H; t, σ)v

]
to get

ϕσ(t) =
1

m
E
[
vT f(H; t, σ)v

]
.

This approximation is still infeasible however, since the trace would need to be computed for every value of

t. Another approximation is made where we define ϕv
σ(t) = vT f(H; t, σ)v, which results in

ϕv
σ(t) = vT f(H; t)v = vTQf(Λ; t)QT v

=

m∑
i=1

µ2
i f (λi; t) ,

where µi is the dot product of v along the ith eigenvector of H . We then approximate ϕv
σ(t) using the

Riemann-Stieltjes integral

ϕv
σ(t) =

∫ λ1

λm

f(α; t)dπ(α),
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where the measure π(α) is defined as the piecewise function

π(α) =


0 α ≤ λm∑j

i=1 µ
2
i λj ≤ α ≤ λj−1∑m

i=1 µ
2
i λ1 ≤ α.

.

This integral is then approximated using Gaussian quadrature:

ϕv
σ(t) ≈

q∑
i=1

ωif (ti; t, σ) ,

where (ωi, ti) is the weight-node pair. Stochastic Lancsoz is then used to approximate the quadrature, using

q-steps. In this case, for SLQ we have q eigenpairs
(
λ̃i, ṽi

)
. With these eigenpairs, we perform the following

approximation

ϕv
σ(t) ≈

q∑
i=1

ωif (ti; t, σ) ≈
q∑

i=1

τif
(
λ̃i; t, σ

)
,

where τi = (ṽi[1])
2 , and ṽi[1] is the first component of ṽi, . Finally, ϕσ(t) can be approximated using nv

runs of the Lanczos algorithm

ϕσ(t) = Tr(f(H)) ≈ 1

nv

nv∑
l=1

(
q∑

i=1

τ
(l)
i f

(
λ̄
(l)
i ; t, σ

))
.

For additional detail behind stochastic Lanczos quadrature and how it is used to approximate eigenvalues,

refer to the original paper [43]. For additional info on the Lanczos algorithm, Ch. 7 of Applied Numerical

Linear Algebra by James Demmel [48] has a great explanation of how it works.

2.4 When Flatness Does and Does Not Work

Two very informative papers were recently published which outline the failure and success modes of mea-

sures of flatness for predicting generalization. The first paper by Zhang et al. [49] mostly focused on the

sharpness measure developed by Keskar et al. [35] as well as Hessian-based eigenvalue measures. The

second focuses on the maximum Hessian eigenvalue [50].

Zhang et al. [49] showed that for a series of classic image classification tasks (MNIST [51] and CIFAR-

10 [42]), flatness measures change substantially as a function of epochs. This was shown by training for an

additional 1000 epochs after reaching zero training error and observing a reduction in the flatness measure

(more flat) even though the training error was no longer changing. Additionally, it is known that parameter

re-scaling can arbitrarily change flatness [44], but it quickly recovers to a more typical value under further
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training. It was also demonstrated that some variants of SGD (e.g. Adam optimizer) result in a significantly

lesser correlation between flatness and generalization than found for vanilla SGD.

Kuar et al. [50] found that while larger learning rates reduce the maximum eigenvalue of the Hessian, the

benefits of a larger learning rate disappear for large batch sizes. They also found that by scaling the batch

size and learning rate together, it is possible to change λmax without affecting generalization. The paper

also discusses the effects of different types of regularization on λmax, namely sharpness-aware minimization

(SAM). They found that while SAM produces smaller λmax for all batch sizes, the benefits of SAM vanish

with larger batch sizes. They also found that for dropout, excessively high dropout 1 probabilities can degrade

generalization, even as they promote smaller λmax. Finally, they found that while batch-normalization does

not consistently produce smaller λmax, it nevertheless confers generalization benefits.

1Dropout is a layer that randomly ignores features as they are passed through the layer.
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Chapter 3

Vision Models

3.1 Convolutional Neural Networks

Figure 3.1: Basic diagram of CNN architecture [52].

The previous decade of computer vision and the successes that came with it can in large part be attributed to

the effectiveness of convolutional neural networks (CNNs or ConvNets) as seen in Figure 3.1. The concept

of scale in deep vision was transformed with the introduction of ConvNets and allowed for a pound-for-

pound more powerful architecture than the classical multilayer perceptron. Perceptrons do not scale well

with image size, in fact, the number of weights scales quadratically with square images (equal height and

width). If we took an image of size 32× 32× 3 (as seen in CIFAR-10/CIFAR-100 [42]), a fully-connected

neuron in the first hidden layer of an MLP would have 32×32×3 = 3072 weights. Now say we took a larger

image of size 200×200×3, then we would have 200×200×3 = 120, 000 weights. That is just one neuron

and clearly, we would want more than just one if possible. ConvNets help alleviate this scaling issue. Unlike

MLPs, ConvNets have layers with volumetric neurons arranged in 3 dimensions: width, height, color. For

example, the input images in CIFAR-10 are an input volume of activations, and the volume has dimensions
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32× 32× 3 (width, height, color respectively).

CNNs are typically comprised of five major building blocks (not counting normalization layers): the

input, convolutional layers, ReLU activation functions, pooling layers, and a fully-connected layer at the

end of the model. CNNs were designed with image input in mind and so the dimension of the input will

typically take on the form of the number of inputs× height× width× channel (or color). The convolutional

layers compute the output of neurons that are connected to local regions in the input. This is done by

computing dot products between what are known as filters and the local feature regions in the input. The

ReLU activation function simply takes in the input x and outputs max(0, x). Pooling layers perform what is

known as downsampling along the spatial regions (height and width), in which they downsize the input so

that there are fewer features. For example, you could have a downsampling of a 32× 32× 3 input such that

the resulting output of the downsampling is of size 16 × 16 × 3. Finally, the fully-connected layer takes in

the generated image features as inputs and computes the class score.

To give some more detail on how exactly the unique components (convolution and pooling) of a CNN

operate, let us first look at what convolution actually is in this context. In essence, convolution acts as a

way to help extract features from an input image and to reduce the number of parameters that need to be

learned in order to improve the performance of the model. A convolutional layer accepts an input volume

of size H1 ×W1 × C1 and requires four hyperparameters: the number of filters K, their spatial extent F ,

the stride S, and the amount of zero padding P . The convolutional layer produces an output volume of size

H2 ×W2 × C2, where H2 = (H1 − F + 2P ) /S + 1 and W2 = (W1 − F + 2P ) /S + 1. In the output

volume, the c-th channel slice (of size W2 ×H2) is the result of performing a valid convolution of the c-th

filter over the input volume with a stride of S, and then offset by c-th bias.

Let us look at a concrete example to help convey the process. Consider an input volume of size W1 = 5,

H1 = 5, D1 = 3 and parameters K = 2, F = 3, S = 2, P = 1. Suppose our input is the following tensor:





2 2 2 2 0

2 2 0 1 1

0 0 0 1 2

2 2 1 0 1

0 0 1 0 1





2 1 1 2 1

2 1 0 2 1

2 1 2 1 0

2 0 0 2 2

0 2 1 2 1





0 0 0 2 0

0 0 2 1 0

2 1 0 0 2

0 0 1 0 1

0 0 2 2 2




,
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where each matrix corresponds to a channel. First, we apply the padding to our input:





0 0 0 0 0 0 0

0 2 2 2 2 0 0

0 2 2 0 1 1 0

0 0 0 0 1 2 0

0 2 2 1 0 1 0

0 0 0 1 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 2 1 1 2 1 0

0 2 1 0 2 1 0

0 2 1 2 1 0 0

0 2 0 0 2 2 0

0 0 2 1 2 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 2 0 0

0 0 0 2 1 0 0

0 2 1 0 0 2 0

0 0 0 1 0 1 0

0 0 0 2 2 2 0

0 0 0 0 0 0 0





.

Next, we take our filter of size 3× 3× 3



−1 1 −1

−1 1 −1

−1 0 1




1 0 1

−1 1 0

1 1 −1



−1 −1 0

−1 0 −1

1 1 0


 ,

with bias = 1, and our filter of size 3× 3× 3



1 1 1

1 1 1

1 0 1



−1 0 1

−1 0 1

1 1 1



1 1 1

0 1 1

0 −1 −1


 ,

with bias = 0, and slide them over our input to get the output



6 −3 −1

7 −5 7

1 −1 1



10 12 4

13 11 8

6 11 1


 .

The output matrices are obtained by element-wise multiplication between each input matrix with its corre-

sponding filter, summing it up, and then offsetting the sum by the bias. For example, let us look at how

we would calculate the first entry in the first output matrix. Let ⋆ represent the operation for element-wise

multiplication with summation between two matrices, then


0 0 0

0 2 2

0 2 2

⋆

−1 1 −1

−1 1 −1

−1 0 1

 = 0 ·(−1)+0 ·1+0 ·(−1)+0 ·(−1)+2 ·1+2 ·−1+0 ·(−1)+2 ·0+2 ·1 = 2
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0 0 0

0 2 1

0 2 1

 ⋆


1 0 1

−1 1 0

1 1 −1

 = 3


0 0 0

0 0 0

0 0 0

 ⋆


−1 −1 0

−1 0 −1

1 1 0

 = 0,

and so 2+3+0+1 = 6, which is the top left element of the output. The next calculation would then involve

striding the filter two places to the right over the input and getting −3:


0 0 0

2 2 2

2 0 1

 ⋆


−1 1 −1

−1 1 −1

−1 0 1

 = −3


0 0 0

1 1 2

1 0 2

 ⋆


1 0 1

−1 1 0

1 1 −1

 = −1


0 0 0

0 0 2

0 2 1

 ⋆


−1 −1 0

−1 0 −1

1 1 0

 = 0,

and so −3 + (−1) + 0 + 1 = −3. Once the eight strides are completed for the first filter, then you would

move on to the second filter and perform the same process to get the second output matrix.

The pooling operation is generally much simpler than the convolution operation. Pooling more or less

exists to reduce the size of the features to reduce the amount of compute and prevent overfitting. CNNs

typically employ what is known as “max pooling”, which down-samples the input by taking the max value

for each iteration of the sliding filter. For example, if we have a filter of size 2 and stride 2 and apply it to

the following slice of the input (one channel) we get



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4


−→

6 8

3 4

 .

In this case, you are essentially splitting the matrix into four 2×2 matrices and taking the max element from
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each sub-matrix.

3.1.1 VGG Neural Networks

The VGG neural network is a CNN that was proposed in 2014 by K. Simonyan and A. Zisserman from the

University of Oxford in the paper Very Deep Convolutional Networks for Large-Scale Image Recognition

[53]. It was created with the intention to improve upon the AlexNet neural network [8]. The VGG network

was designed to be deeper than AlexNet, which at the time was considered the state-of-the-art for ConvNets.

Additionally, it was made using smaller convolutional filters in order to increase the receptive field of each

neuron, and also to use more pooling layers in order to reduce the dimensionality of the input data. The

network is composed of 16-19 layers of convolutional and fully-connected layers. It has been very successful

in a number of image classification tasks and has been used to achieve state-of-the-art results in the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [53].

3.1.2 Residual Neural Networks

The ResNet architecture was originally proposed in 2015 by Kaiming He, et al. in the paper Deep Residual

Learning for Image Recognition [3]. The architecture was designed to address the problem of vanishing

gradients in very deep neural networks. This can make it difficult or impossible for the algorithm to learn

from the data. The problem occurs when the error gradients in the backpropagation algorithm become

smaller and smaller as the algorithm moves from the input layer to the hidden layers. This is because the

derivatives of the activation function used in the hidden layers tend to be small. The problem is compounded

by the fact that the weights in the hidden layers are usually initialized to small random values. ResNet

addresses the vanishing gradient problem by using what is known as a skip connection. A skip connection

is a connection between two layers that bypasses one or more intervening layers. This allows the gradient to

flow directly from the input layer to the output layer, without having to go through the hidden layers. This

can significantly improve the training of deep neural networks. It is a small change to the CNN architecture

yet with considerable impact. An ensemble of these ResNets was able to win 1st place on the ILSVRC 2015

classification task [3].
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3.2 Transformers

Figure 3.2: Transformer architecture [5]

The Transformer as seen in Figure 3.2 was introduced in 2017 as a response to the failings of RNNs in the

space of long-range attention. Attention, in simple terms, is a method by which a neural network manages

the interdependence between elements in a sequence. It’s essentially how the network tracks the context

surrounding an element in the sequence. Additionally, attention also tracks the interdependence between

elements in two different sequences (i.e. the input and output sequences). To give an example, take the sen-

tence ”How was your day” which you would like to translate into French - “Comment se passe ta journée”.

The attention mechanism will generate features for the input sentence (English) for each word and these fea-

tures will provide information for each word itself as well as the words around it. The attention mechanism

will then generate a set of weights pertaining to each word in the input sentence for each word in the output

sentence. These weights are essentially a representation of how much ”attention” the translation should pay

attention to each word in the input sentence when generating a word in the output sentence. Each word

generated in the translation is not only dependent on the words in the input sentence, but also the words

preceding it in the output sentence. The Transformer employs a modified form of attention known as scaled

dot-product attention which operates using a system of keys, values, and queries.

Attention forms the basis of the Transformer, hence the title of the paper which introduced it to the
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world: Attention Is All You Need [5]. However, attention is not exactly ”all you need” as the paper may

imply. There are several other moving parts in the architecture, namely the encoding-decoding mechanism,

the feed-forward networks, and the normalization layers.

3.2.1 Vision Transformer

The original Transformer architecture was developed with the idea of natural language processing in mind.

As it so happens, the architecture designed for natural language processing did not handle vision problems

very well. In response, the Vision Transformer (ViT) as seen in Figure 3.3, was developed with the goal of

introducing the Transformer architecture to the world of computer vision [4].

Figure 3.3: Vision Transformer architecture [4].

The Vision Transformer, while not identical to the original Transformer, shares many of the same funda-

mental building blocks; namely LayerNorm, multi-headed attention, feed-forward artificial neural networks

(referred to as multilayer perceptrons or MLP in the Vision Transformer paper) [4].

In the paper, it was found that the Vision Transformer did not quite reach the same level of performance

in classification as ResNets of comparable size when training on mid-sized datasets such as ImageNet [41]

without strong regularization [4]. However, when the models were trained on larger datasets (14M-300M

images), the Visual Transformer approached or even outperformed the ResNets. This was attributed to

Transformers lacking some of the inductive biases seen in convolutional neural networks such as translation

equivariance and locality. This means that Transformers tend not to generalize as well as CNNs when trained

on smaller amounts of data.

The Vision Transformer can essentially be decomposed into three different parts: the image handling at

the beginning of the model, the encoder, and the fully-connected output layer. The encoder consists of a stack

of encoder blocks. Each block contains two normalization layers (the default is LayerNorm), a self-attention

layer, a dropout layer, and an MLP block. The encoder block also possesses skip connections, similar to

the ResNet. The normalization layer normalizes the activations of the previous layer. The self-attention
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layer allows the model to attend to different parts of the input sequence simultaneously. The dropout layer

randomly drops out neurons during training in order to prevent overfitting. The MLP block contains two

linear layers, a GELU (Gaussian Error Linear Unit) activation layer, and two dropout layers.

The Vision Transformer works by using a convolutional layer to project the image such that (c, h, w)→

(t, nh, nw), where t is the size of the output of the convolutional layer, nh = h//p and nw = w//p where p

is patch size and // is the floor division operation. The output from the convolutional layer is then reshaped

such that (t, nh, nw) → (t, (nh × nw)). Once the input has been projected and reshaped, it is then sent

through the encoder which handles the features of the image and sends its output to the fully-connected

output layer which then classifies the input.

The key operation within the encoder is the attention mechanism. The attention mechanism works by

calculating the relevance of a set of features from the input with a set of other features from the input. This

is done by computing a dot product between a query tensor Q and a key tensor K. These two tensors

represent features in the input image. The relevance scores are calculated by softmax
(

QKT

√
dk

)
where dk is

the dimension of K and acts as a scaling factor to prevent exploding values. The scores are then multiplied

by a feature tensor V (known as the value tensor). The product of the score and the value tensor produce a

tensor that informs the model which positions in the input image are “important” features, since the features

in V are scaled by the values from the softmax. Hence the full attention operation is

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V.

The multi-head attention block consists of a set of attention mechanisms that look at different subsets

of features in the input. The outputs from each attention head are concatenated so that the multi-headed

attention block outputs a set of attended features to pass through the normalization layer, which has its

output passed through the fully-connected layer and then finally through the dropout layer at the end of the

encoder.
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Chapter 4

Experiments

4.1 Methods

In this section, we detail the setup for our experiments. The goal behind our experiments is to investi-

gate if there exist any identifiable trends for the different normalization methods across an array of dif-

ferent training schemes with respect to the various metrics employed. The different model configurations

can be found in Appendix B. Our experiments are implemented using PyTorch and code is available at

https://github.com/gxh2932/Thesis. The data obtained from our experiments can also be found on the

GitHub.

To collect our results, we use a ResNet, a VGG-like convnet, and a Vision Transformer, each paired with

every normalizer. All the models are trained from scratch using randomly initialized weights per PyTorch’s

default randomization scheme. Our goal behind employing the different normalizers with different types

of models is to filter for results that may be the product of similar architecture. Common results across

different models for the same normalizer are more likely to be a result of the normalizer itself. The models

are trained using a series of several different hyperparameter configurations. The reasoning behind this

follows the same logic as for employing the normalizers across different models. Common results across

different hyperparameter configurations are more likely to be a product of properties associated with the

architecture and normalizer. Once trained, the class cosine similarity metric is generated for each model by

computing the average of the cosine similarities between the average of each class’s features. Finally, the

Hessian for the model is computed and then used to calculate its trace and its eigenvalue spectral density. For

each model, we used two A100 GPUs as provided by RIT Research Computing [54] to collect our results.

Architectures To conduct our experiments we employ a ResNet-56 model, a VGG-10 model, and a Vision

Transformer with 6 encoder blocks, each with 12 attention heads.
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Model Param. Count
R56 3.5M
VGG 940K
ViT 11.4M

Data We use both CIFAR-10 and CIFAR-100 [42] to train our models. Each model configuration has

two models: one trained on CIFAR-10 and one trained on CIFAR-100. No data augmentations are applied

(e.g. image rotation or mirroring). The samples are transformed to have a mean/std of 0.5 in all dimensions,

following standard practice with CIFAR datasets.

GroupNorm For experiments involving GroupNorm, we use 11 different GroupNorm configurations

which are differentiated by group size. We use group sizes of 2, 4, 8, 16, 32, 64, layer-width/1, layer-width/8,

layer-width/16, layer-width/32, layer-width/64, and layer-width/10000000. Layer width refers to the out-

put dimension of the previous layer which feeds into the GroupNorm layer. Since the layer width can be

subject to change throughout the model, GroupNorms that are dependent on layer width are dynamic and do

not have a constant group size. It should be noted that for the ResNet, a group size of 64 is not compatible

with the standard architecture due to how the ResNet manipulates the dimensions of the features during the

throughput process.

Learning Rate We use a learning rate scheduler similar to that of [6, 55], in which the learning rate is

scaled linearly with the batch size. The reasoning behind this is that it has been observed that when linearly

scaling the learning rate by batch size, the train and test accuracy between using small and large batches

remains relatively unchanged [55]. The first set of epochs uses a learning rate of 0.1/(256/bsize) and the

second uses a learning rate of 0.01/(256/bsize). For a batch size of 16, the first set is comprised of 8 epochs

and the second is comprised of 2 (10 epochs total). For a batch size of 256, the first set is 40 epochs and the

second is 20. We only use batch sizes of 16 and 256.

Momentum & Weight Decay We categorize the experiments into two different sets: experiments that in-

clude momentum and weight decay, and experiments that do not. A weight decay of 0.0001 and momentum

0.9 is used for experiments that include them. Outside of the presence of weight decay and momentum, both

sets of experiments will be run with the same hyperparameter sweeps. The reason for the distinction is that

we wish to investigate the inclusion of weight decay and momentum on the relationship between metrics of

flatness and generalization, since it has been found that employing non-vanilla SGD optimizers can weaken

the strength of the correlation between flatness and generalization [49]. In other words, we wish to see if

there exist differences in the metrics for models trained using vanilla SGD versus those that were not.
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4.1.1 Metrics

In this section, we outline the metrics used to gauge different properties of the trained models.

Class Cosine Similarity

We are interested in how each normalizer may influence the cosine similarity between class features. The

reason we are choosing to look at class cosine similarity is that we suspect there is potentially some corre-

lation between how well a model generalizes and how well it generates distinct features between classes.

We suspect that if a model is proficient at generating distinct features for different classes then perhaps the

model will have a less difficult time discerning classes during prediction than otherwise. This investigation

is inspired by the result from Lubana et al. [6] in which they showed that models with normalizers which

induce dissimilar activations tend to converge faster.

We also suspect that models which generate dissimilar features could be associated with flat minima,

since perturbations in the weight space may not have a large impact on the model’s ability to generate

distinct features (e.g. if you perturb a weight it won’t have a big impact on the distinctness of the generated

features since there are other distinct features unaffected by the perturbation) and if the perturbations don’t

result in a significant change in loss after we’ve reached a minimum it should imply that our minimum is

relatively flat.

To compute the cosine similarity between class features, we calculate the average of the features for each

class and then take those averaged features to compute the cosine similarity between each class. To get the

features, we extract them right before the final fully-connected layer used for classification. Once the cosine

similarities between each class are computed, we then average the cosine similarities to find the average

cosine similarity of the average features between each class. We use the training set to calculate this metric.

Eigenvalue Mean & Variance We wish to inspect the mean and variance of the eigenvalues calculated

using the method outlined in Section 2.3.2. This will give us information with regard to the distribution of

eigenvalues for the Hessian matrix.

Greatest Eigenvalue There have been studies that suggest that the greatest eigenvalue of the Hessian may

be a good predictor for how well a model generalizes [35, 56, 39, 57]. In essence, the maximum Hessian

eigenvalue measures the worst-case loss increase under a perturbation to the weights. However, there have

also been counter-studies which show that the greatest eigenvalue may in fact be a weak indicator, if one at

all [50, 44]. We wish to contribute to this ongoing debate by inspecting how the magnitude of the greatest

eigenvalue correlates with model performance.

34



Generalization Ratio We are interested in how well models generalize relative to how well they perform

in training. We measure this by inspecting the ratio between test and train accuracy (i.e. GR = test/train).

Trace As discussed in Section 2.3.1, we wish to inspect the absolute trace of the Hessian matrix to inspect

the “flatness” of the loss surface.

Correlation between metrics/hyperparameters is measured using the Pearson correlation coefficient. The

p-values for the respective correlations are computed using the probability density function of the sample

correlation coefficient

f(r) =

(
1− r2

)n/2−2

B
(
1
2 ,

n
2 − 1

) ,
where n is the number of samples and B is the beta function. The p-value is a two-side p-value, and is the

probability that abs(r′) of a random sample x′ and y′ drawn from the population with zero correlation would

be greater than or equal to abs(r). The p-value is calculated by computing p = 2f(−abs(r)). Correlations

with p-values less than 0.05 are kept in the heatmaps.

4.2 Results

(a) Mom & WD (b) No Mom & WD (c) All

Figure 4.1: Heatmaps of correlations between different hyperparameters and metrics for models which
employ weight decay and momentum, models which do not, and both. Axis labels from left-right/top-down:
batch size, trace, eigenvalue mean, eigenvalue variance, max eigenvalue, class similarity, train accuracy, test
accuracy, generalization ratio.

Interestingly, class similarity was seemingly the strongest predictor for train accuracy, test accuracy, and gen-

eralization ratio across all metrics (trace, eigen mean, eigen variance, maximum eigenvalue, class similarity)

as can be seen in Figure A.6.

Overall, BatchNorm and EvoNormBO were the champions of the normalizers. On the other end, In-

stanceNorm and Plain (identity layer which does not normalize the data) were among the worst across the

experiments fairly consistently. Plain configurations suffered from gradient explosion which would render

the model untrainable after a few epochs. Even if the model did not suffer gradient explosion, it typically
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would still have trouble to converging to a good minimum. InstanceNorm configurations, while more sta-

ble, also had trouble converging to good minima. Additionally, the only models which failed to train were

those without normalizers. Interestingly, BatchNorm and EBO had the smallest class similarity by a fair

margin. They also had the second and third largest traces behind VarNorm, as well as the second and third

largest maximum eigenvalues behind VarNorm. Notably, BatchNorm had one of the highest averages for

max eigen.

Excluding Plain, the normalizer with the worst test accuracy which used momentum and weight decay

(InstanceNorm) was still better than the best which did not (EvoNormBO). This was also true for batch size.

The worst performing batch size with momentum and weight decay (16) was better than the best performing

batch size without (256). This was not true for the different architectures though, since ResNet and VGG

without momentum and weight decay performed better than ViT with.

One of the more interesting takeaways was the performance of Vision Transformers using LayerNorm

- the standard normalizer for the architecture. Overall, it performed below average and even went so far as

being the worst normalizer (outside of Plain) for experiments using momentum and weight decay. This result

likely warrants further investigation into the performance of ViT when paired with LayerNorm. Another

interesting observation with respect to ViT was the dissimilarity of the features generated by ViT models

using BatchNorm. Out of all the different combinations of models trained, ViT + BatchNorm generated

the most dissimilar features by far. It was also the best performing ViT model overall when considering

test accuracy, train accuracy, and stability. This goes against the trend of class similarity being positively

correlated with test accuracy for ViT.

When comparing models that were trained to convergence (95% training accuracy or greater) with those

that were not, there are several notable differences that emerge. For example, the models that were trained

to convergence typically used a batch size of 256, while the non-converged models used a batch size of 64.

This difference in batch size may have contributed to the observed differences in the models’ behavior. Also,

none of the models which converged used CIFAR-100. Only models trained on CIFAR-10 converged. This

is not that surprising considering that the CIFAR-100 dataset is more complex due to having more classes

[42].

One interesting difference between the converged and non-converged models was the magnitude of the

absolute trace. The converged models had a much smaller Hessian trace, approximately 3.8 times smaller,

than the non-converged models. This suggests that the converged models settled into flatter minima, which

may have contributed to their better generalization performance. Another notable difference between the

converged and non-converged models was the cosine similarity between the weights of the models. The

converged models had a much smaller cosine similarity, approximately 0.5 versus 0.7 for the non-converged

models. Despite these differences, the test accuracy of the converged (61%) and non-converged models
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(54%) was somewhat similar.

Architectures ResNet was by far the least flat, with a trace larger than ViT and VGG by an order of

magnitude. It also had significantly greater class similarity. Overall, it was the best performing model from

a test accuracy perspective, even though it had the lowest train accuracy. This finding is evidence against the

hypothesis that flat minima tend to generalize better.

Batch Size Models trained with a batch size of 16 had greater trace, and much greater max eigenvalue,

class similarity, and generalization ratio than those trained with a batch size of 256. They also had signifi-

cantly smaller eigen mean, eigen variance, train accuracy, and somewhat smaller test accuracy.

Group Size For CNNs, group size did not have a large impact on train and test accuracy (less than 3%

spread for both ResNet and VGG) outside of group size = 1, in general. However, for the Vision Trans-

former, group size seemingly had a somewhat greater impact on train accuracy (∼ 5% spread). Interestingly,

while ViT models employing group size = 1 still performed the worst with respect to test accuracy, there

was not a large discrepancy in performance between them and the models using other group sizes like for

CNNs. Additionally, they actually had greater train accuracy than some of the other grouping configurations

(group size = 16, 0.25, 0.0000001).

Skip Connections The inclusion of skip connections in the ResNet led to a much smaller trace (by an

order of magnitude), eigen variance, and max eigenvalue as well as smaller eigen mean. It also coincided

with improved stability, considering the only ResNet models which failed to train were those which did not

use skip connections. Interestingly, the inclusion of skip connections also coincided with lower train and test

accuracy. However, when considering models at or near convergence (> 98% train accuracy), models with

skip connections had smaller trace, eigen mean, eigen variance, and max eigen while also having greater

train and test accuracy. The class similarity was still greater for these models, however.

Optimization Models trained with vanilla SGD had a much greater trace, max eigenvalue and class sim-

ilarity. They also had greater eigen mean and significantly smaller eigen variance, train accuracy, and test

accuracy.

4.2.1 Without Momentum & Weight Decay

Overall, EvoNormBO, VarianceNorm, and BatchNorm were the top performers with respect to test accuracy.

InstanceNorm and Plain were by far the worst performers when you consider the instability of Plain. For

both the Vision Transformer and the ResNet, half the models without a normalizer (Plain) failed during
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training. When not using a normalizer, the Vision Transformer only failed to train when using a batch size

of 256, and the ResNet only failed to train when not using skip connections.

For the Vision Transformer, BatchNorm was the stand-out performer, while Plain and EvoNormSO were

generally the worst. Interestingly, the test and train accuracy spread across the different norms was relatively

small for ViT compared to the other models. Perhaps the Vision Transformer relies on normalization less

than the other architectures. When comparing the successful ViT + Plain models to other ViT models which

use a batch size of 16, we see they underperform relative to the competition. For the VGG architecture,

VarianceNorm and EvoNormBO were the top performers, while InstanceNorm was by far the worst. For the

ResNet architecture, EvoNormBO, BatchNorm, and VarianceNorm were by far the top performers, while

InstanceNorm and Plain were the worst. When comparing ResNet-56 + Plain with skip connections (i.e.

successful ResNet-56 + Plain models) to other ResNet-56 models employing skip connections, Plain was

relatively average with regard to test accuracy.

Among models which used vanilla SGD, VGG had the highest test accuracy, ResNet-56 second, and ViT

third. For training accuracy, ViT > VGG > ResNet-56 (i.e. ViT converged to a solution the quickest). In

terms of trace, ResNet-56 > ViT > VGG (i.e. VGG was the flattest). In terms of class similarity, ResNet-56

> VGG > ViT (i.e. ViT produced the least similar features between classes). For the generalization ratio,

ResNet-56 > VGG > ViT (same ordering as the class similarity metric).

4.2.2 With Momentum & Weight Decay

BatchNorm and EvoNormBO were the clear top performers with respect to test accuracy for training con-

figurations that used momentum and weight decay, while InstanceNorm and Plain were the clear worst

performers. This follows the trend seen in configurations with vanilla stochastic gradient descent. In fact,

BatchNorm and EvoNormBO were the clear top performers for all three architectures. Once again, for both

the Vision Transformer and the ResNet, half the models without a normalizer failed during training. When

using no normalizer, the Vision Transformer only failed to train when using a batch size of 256, and the

ResNet only failed to train when not using skip connections. Interestingly, Vision Transformers without a

normalizer had the highest test accuracy amongst training configurations with a batch size of 16.

For the Vision Transformer, GroupNorm (w/ layer-width 32 and 64), BatchNorm, EvoNormBO were the

stand-out performers. Once again, the test and train accuracy spread across the different norms was relatively

small compared to the other models. When comparing the successful Plain models to other models which

use a batch size of 16, we see that it actually performs significantly better than the competition. For the VGG

architecture, EvoNormBO, BatchNorm, and EvoNormSO were the top performers, while InstanceNorm was

by far the worst. For the ResNet architecture, BatchNorm was the stand-out performer, while EvoNormSO

and Plain were the worst. When comparing ResNet-56 + Plain with skip connections to other ResNet-56
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models employing skip connections, Plain was once again relatively average with regard to test accuracy.

Among models which did not use vanilla SGD, ResNet-56 had the highest test accuracy, VGG second,

and ViT third. For training accuracy, VGG > ResNet-56 > ViT. In terms of trace, ResNet-56 > VGG >

ViT. In terms of class similarity, ResNet-56 > ViT > VGG. For the generalization ratio, ResNet-56 > VGG

> ViT.
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Chapter 5

Discussion & Future Work

On a slightly less rigorous note, I think it’s probably the case that metrics of flatness only provide a narrow

window into the connection between the geometry of the loss surface and how well the model generalizes.

It ignores the question of depth, which is just as important as flatness. A flat but shallow surface won’t

generalize nearly as well as a deeper surface with the same level of flatness. That’s not to say flatness is

a bad metric however when you consider the nature of how deep nets optimize, since stochastic gradient

descent tends to favor deeper basins over shallower basins, especially in high dimensions. Good minima

seem to generally be some type of high-volume basin with a flat bottom. Deepness implies low loss while

flatness implies robustness to parameter perturbations, and hence larger decision boundaries.

Randomness, particularly with respect to the model parameters, also plays a very important role in how

stochastic gradient descent traverses the loss surface and locates minima. It’s standard practice to initialize

your deep nets with random weights at the beginning of training. From the perspective of the loss surface,

this is essentially picking a random point on the surface from where to start your traversal. Your starting point

is going to influence how your model converges. Different initializations have a chance to lead you toward

different minima basins. And of course not all basins are created equal, so the level of generalization and

flatness your model will achieve will be fairly random even when training on the same data with the same

hyperparameters. Ultimately, even if two models have the same exact structure, you’re starting with two

different functions at the initialization of the optimization process. The presence of this randomness makes

it difficult to draw strong conclusions from studies such as the one done in this paper, since it pushes toward

the need for large sample sizes, and even relatively small models with only a few million parameters require

exceptionally large amounts of compute. This is especially true when estimating something second-order

like the Hessian.

On the topic of class cosine similarity; intuitively I imagine there might be some optimal range of cosine

similarity of features, dependent on the model/hyperparameters. My reasoning for this is that I imagine
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if a model generates features that are too dissimilar/similar that there is probably some type of overfit-

ting/underfitting occurring. Empirically it was the case that the class similarity was almost always some-

where between 0 and 1, and the average class cosine similarity for ResNet/VGG/ViT was 0.713/0.579/0.572

respectively. When you consider that cosine similarity exists in a range from −1 to 1, these are fairly small

gaps. Especially between VGG and ViT which almost have an identical average.

Building off of this idea of a potential relationship between the class cosine similarity and goodness of

fit, perhaps comparing training schemes where the number of parameters is less than the number of training

samples with schemes where the number of parameters is greater. Or in other terms, comparing the results

of training schemes on different sides of the interpolation threshold. Perhaps the class cosine similarity and

the metrics of flatness would behave differently on opposing sides of the interpolation threshold. It would

also be interesting to inspect if some normalization techniques performed differently on the different ends

of the threshold as well.

Examining the actual feature distributions themselves may provide more insight into why some normal-

ization techniques work better than others. When training a model with different normalization techniques,

the distributions of features throughout the network are likely to be different due to the way that the nor-

malization techniques transform the data. This can potentially have a significant impact on the network’s

behavior and performance. Similarly, it is possible that other normalization techniques may also have an

impact on internal covariate shift. While the internal covariate shift argument may not be as strong as it was

prior to the work done by Santurkar [18], perhaps there is still some merit to investigating internal covariate

shift from the perspective of normalization techniques besides just BatchNorm.

One of the decisions made for our training setup was to use a fixed number of epochs rather than just

training every model to convergence. This was done mostly for the sake of time since training every model

to convergence would take quite a bit longer than just training for a set number of epochs. In future work,

it may be worth training every model to convergence and investigating how that may change some of the

results.

I would say that one of the biggest limiting factors of this paper was the amount of data I could generate

in a reasonable amount of time. The final set of data that I used in this paper included over 700 models, and

of course, I trained many more models than this over the course of the debugging process. Given more time,

I would like to have fidgeted with the learning rates more to see how that impacted the various metrics. In

total, it probably took hundreds to thousands of hours of computing on state-of-the-art GPUs just to acquire

700 samples, which isn’t even that large of a dataset. I think this soft bottleneck outlines the importance of

theoretical work in the field, since there is only so much computing you can do to collect empirical results.

Not to mention the concern of how large amounts of computing can strain finances and potentially have

negative impacts on the environment. That’s not to say empirical work is bad. In fact, I think it’s very
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important, since observations can lead to a more rigorous formulation of the problem. It’s also the case that

the theory behind the problems presented in this thesis–and for deep learning in general–seem to be lagging

behind the empirical results. It’s why the work from someone like Cybenko with his proof of the Universal

Approximation Theorem [58] or Belkin with his work on Double Descent [59, 60] is so important. Until the

theory does catch up, we won’t know why things work, just how they may work, and the former can be so

much more powerful than the latter.
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Appendix A

Figures

Below exist the figures showing the results from the conducted experiments. They are broken up into four

sections: test accuracy vs. metrics for all the different models and training configurations, results of the

experiments for models without momentum & weight decay, results for models with momentum & weight

decay, and test accuracy vs. metrics for all the different p-groupings for models which used GroupNorm.

A.1 Test Accuracy vs. Metrics

(a) Class Similarity
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(b) Eigen Mean

(c) Eigen Variance
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(d) Max Eigen

(e) Trace

Figure A.1: Test Accuracy of architectures plotted against the investigated metrics.
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(a) Class Similarity

(b) Eigen Mean
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(c) Eigen Variance

(d) Max Eigen
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(e) Trace

Figure A.2: Test Accuracy of normalizers (excluding GroupNorm due to overpopulation of graph) plotted
against the investigated metrics.
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A.2 Without Momentum & Weight Decay

The figures in this section showcase the performance of each normalizer within the respective model. They

do not factor in models which failed to train.

(a) ResNet-56 (b) VGG (c) ViT

Figure A.3: Heatmaps of correlations between different hyperparameters and metrics for different model
types which did not use momentum and weight decay. Axis labels from left-right/top-down: batch size, skip
connections, trace, eigenvalue mean, eigenvalue variance, max eigenvalue, class similarity, train accuracy,
test accuracy, generalization ratio.
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(a) BatchNorm (b) EvoNormBO (c) EvoNormSO

(d) Filter Response Normalization (e) GroupNorm (f) InstanceNorm

(g) LayerNorm (h) Plain (i) VarianceNorm

Figure A.4: Heatmaps of correlations between different hyperparameters and metrics for different normal-
izers which did not use momentum and weight decay. Axis labels from left-right/top-down: batch size,
trace, eigenvalue mean, eigenvalue variance, max eigenvalue, class similarity, train accuracy, test accuracy,
generalization ratio.

55



(a) Average Across Architectures (no plain)

Norm Test Accuracy Final Train Accuracy

EvoNormBO 55.403 78.291
VarianceNorm 54.881 76.245
BatchNorm 53.790 79.932
LayerNorm 50.881 70.411
FRN 50.264 68.658
GroupNorm 49.721 69.917
EvoNormSO 48.560 70.099
InstanceNorm 39.447 57.112

(b) ResNet-56 w/o plain

Norm Test Accuracy Final Train Accuracy

EvoNormBO 59.511 74.200
BatchNorm 58.194 75.543
VarianceNorm 58.147 68.636
LayerNorm 50.218 52.884
FRN 50.165 55.854
GroupNorm 49.588 53.664
EvoNormSO 44.461 53.240
InstanceNorm 41.151 49.542

(c) ResNet-56 w/ plain, skipinit=True

Norm Test Accuracy Final Train Accuracy

EvoNormBO 56.714 70.409
BatchNorm 56.083 71.927
VarianceNorm 55.658 64.550
Plain 50.025 61.557
LayerNorm 47.931 49.921
FRN 46.886 50.496
GroupNorm 46.507 48.774
EvoNormSO 40.272 47.046
InstanceNorm 37.572 42.637

(d) VGG

Norm Test Accuracy Final Train Accuracy

VarianceNorm 58.831 83.556
EvoNormBO 58.624 88.637
EvoNormSO 55.612 87.722
LayerNorm 54.639 80.475
BatchNorm 52.600 84.012
FRN 52.386 77.239
GroupNorm 51.677 76.420
Plain 48.199 77.788
InstanceNorm 29.343 39.280

(e) ViT no plain

Norm Test Accuracy Final Train Accuracy

BatchNorm 50.575 80.240
FRN 48.242 72.880
EvoNormBO 48.075 72.037
GroupNorm 47.898 79.668
InstanceNorm 47.847 82.515
LayerNorm 47.786 77.875
VarianceNorm 47.664 76.543
EvoNormSO 45.606 69.336

(f) ViT w/ plain, batch size=16

Norm Test Accuracy Final Train Accuracy

BatchNorm 50.850 61.700
InstanceNorm 50.511 65.277
GroupNorm 49.907 59.492
LayerNorm 49.111 57.182
FRN 48.800 53.041
VarianceNorm 48.422 56.676
EvoNormBO 46.556 51.739
Plain 45.794 52.861
EvoNormSO 45.322 48.516

Table A.1: Average performance of every model which did not use momentum and weight decay.
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A.3 With Momentum & Weight Decay

(a) ResNet-56 (b) VGG (c) ViT

Figure A.5: Heatmaps of correlations between different hyperparameters and metrics for different model
types. Axis labels from left-right/top-down: batch size, skip connections, trace, eigenvalue mean, eigenvalue
variance, max eigenvalue, class similarity, train accuracy, test accuracy, generalization ratio.

(a) BatchNorm (b) EvoNormBO (c) EvoNormSO

(d) Filter Response Normalization (e) GroupNorm (f) InstanceNorm

(g) LayerNorm (h) Plain (i) VarianceNorm

Figure A.6: Heatmaps of correlations between different hyperparameters and metrics for different normal-
izers which used momentum and weight decay. Axis labels from left-right/top-down: batch size, trace,
eigenvalue mean, eigenvalue variance, max eigenvalue, class similarity, train accuracy, test accuracy, gener-
alization ratio.
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(a) Average Across Architectures (no plain)

Norm Test Accuracy Final Train Accuracy

BatchNorm 65.015 89.292
EvoNormBO 64.436 86.134
FRN 61.236 83.433
VarianceNorm 61.020 84.118
EvoNormSO 60.994 86.486
GroupNorm 60.391 83.506
LayerNorm 59.900 82.040
InstanceNorm 56.269 77.700

(b) ResNet-56 no plain

Norm Test Accuracy Final Train Accuracy

BatchNorm 74.006 90.139
EvoNormBO 71.935 87.358
FRN 69.178 84.552
VarianceNorm 67.806 84.519
GroupNorm 67.513 82.001
LayerNorm 66.015 79.529
InstanceNorm 66.001 82.489
EvoNormSO 65.767 84.752

(c) ResNet-56 w plain, skipinit=True

Norm Test Accuracy Final Train Accuracy

BatchNorm 74.228 89.501
EvoNormBO 73.033 89.885
VarianceNorm 71.372 86.744
FRN 69.869 84.827
Plain 68.394 86.500
GroupNorm 67.720 82.726
LayerNorm 67.203 81.721
InstanceNorm 65.164 80.842
EvoNormSO 64.700 84.991

(d) VGG

Norm Test Accuracy Final Train Accuracy

EvoNormBO 68.721 97.029
BatchNorm 68.326 96.992
EvoNormSO 67.043 97.899
VarianceNorm 65.756 92.167
LayerNorm 65.622 90.468
FRN 64.706 91.278
GroupNorm 64.399 89.577
Plain 58.362 90.685
InstanceNorm 52.521 76.650

(e) ViT no plain

Norm Test Accuracy Final Train Accuracy

BatchNorm 52.714 80.747
EvoNormBO 52.653 74.016
InstanceNorm 50.286 73.961
EvoNormSO 50.172 76.808
FRN 49.825 74.469
VarianceNorm 49.500 75.668
GroupNorm 49.262 78.939
LayerNorm 48.064 76.123

(f) ViT w plain, bsize=16

Norm Test Accuracy Final Train Accuracy

Plain 59.856 71.727
BatchNorm 52.461 62.840
GroupNorm 50.909 60.063
InstanceNorm 50.783 61.754
EvoNormBO 49.922 55.480
VarianceNorm 49.461 58.377
EvoNormSO 49.244 55.816
LayerNorm 48.661 55.648
FRN 47.983 52.785

Table A.2: Average performance of every model which used momentum and weight decay.

58



A.4 P-groupings

(a) Class Similarity

(b) Eigen Mean
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(c) Eigen Variance

(d) Max Eigen
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(e) Trace

Figure A.7: Test Accuracy of p-groupings plotted against the investigated metrics.
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A.4.1 Without Momentum & Weight Decay

(a) Average Across Architectures (no gsize 64)

P-grouping Test Accuracy Final Train Accuracy

8.000e+00 51.652 72.083
1.600e+01 51.349 72.214
6.250e-02 51.176 71.449
1.250e-01 51.164 71.444
2.500e-01 51.155 71.665
3.125e-02 51.106 71.095
1.000e-07 50.853 70.848
3.200e+01 50.497 71.904
5.000e-01 48.830 70.503
1.000e+00 38.452 54.280

(b) ResNet-56 P-groupings

P-grouping Test Accuracy Final Train Accuracy

8.000e+00 52.051 55.383
2.500e-01 51.737 55.676
1.600e+01 51.622 55.938
6.250e-02 51.246 54.403
1.250e-01 50.971 54.079
3.125e-02 50.481 53.119
1.000e-07 49.504 52.156
5.000e-01 48.765 54.120
3.200e+01 48.290 54.378
1.000e+00 41.217 47.388

(c) VGG P-groupings

P-grouping Test Accuracy Final Train Accuracy

8.000e+00 55.133 80.956
3.200e+01 55.125 81.383
1.600e+01 55.114 81.178
1.000e-07 54.811 80.847
6.250e-02 54.721 80.598
1.250e-01 54.718 80.503
3.125e-02 54.557 80.397
6.400e+01 54.204 81.280
2.500e-01 53.632 79.767
5.000e-01 49.996 77.758
1.000e+00 26.438 35.953

(d) ViT P-groupings

P-grouping Test Accuracy Final Train Accuracy

6.400e+01 48.308 79.877
3.125e-02 48.281 79.769
1.000e-07 48.244 79.541
2.500e-01 48.094 79.550
3.200e+01 48.075 79.951
1.250e-01 47.803 79.752
8.000e+00 47.772 79.910
5.000e-01 47.728 79.631
1.000e+00 47.703 79.498
6.250e-02 47.561 79.347
1.600e+01 47.311 79.526

Table A.3: Average performance of each p-grouping employed in each architecture for training schemes
which did not use momentum and weight decay.
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A.4.2 With Momentum & Weight Decay

(a) Average Across Architectures (no gsize 64)

P-grouping Test Accuracy Final Train Accuracy

3.200e+01 62.326 87.537
8.000e+00 60.966 83.326
1.250e-01 60.917 83.696
2.500e-01 60.806 83.601
1.600e+01 60.726 83.485
3.125e-02 60.722 83.133
6.250e-02 60.527 83.611
5.000e-01 60.500 84.035
1.000e-07 60.038 82.577
1.000e+00 55.191 78.452

(b) ResNet-56 P-groupings

P-grouping Test Accuracy Final Train Accuracy

8.000e+00 68.524 81.836
5.000e-01 68.321 84.042
2.500e-01 68.171 83.029
1.600e+01 68.010 81.929
1.250e-01 67.867 82.476
6.250e-02 67.589 81.430
3.200e+01 67.568 83.134
3.125e-02 67.310 80.329
1.000e-07 65.983 79.918
1.000e+00 65.790 81.889

(c) VGG P-groupings

P-grouping Test Accuracy Final Train Accuracy

6.400e+01 66.560 92.118
3.200e+01 66.417 91.630
3.125e-02 65.744 90.912
8.000e+00 65.744 90.841
1.600e+01 65.732 91.296
1.250e-01 65.565 90.825
2.500e-01 65.501 90.713
1.000e-07 65.468 90.631
6.250e-02 65.415 90.742
5.000e-01 64.389 89.833
1.000e+00 51.851 75.809

(d) ViT P-groupings

P-grouping Test Accuracy Final Train Accuracy

3.200e+01 52.993 87.847
6.400e+01 52.407 84.940
1.250e-01 49.319 77.788
3.125e-02 49.111 78.160
5.000e-01 48.789 78.229
2.500e-01 48.744 77.060
1.000e-07 48.664 77.181
8.000e+00 48.631 77.302
6.250e-02 48.578 78.662
1.600e+01 48.436 77.230
1.000e+00 47.931 77.659

Table A.4: Average performance of each p-grouping employed in each architecture for training schemes
which used momentum and weight decay.
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Appendix B

Basic Training Configurations

Below exist the model combinations used in our experiments. Note however that this table DOES NOT

account for the different p-groupings used in GroupNorm. Keep in mind that each GroupNorm configuration

in this table was trained with each appropriate p-grouping. Again, it should be noted that for the ResNet-56,

a p-grouping of 64 is not compatible with the standard architecture due to how the ResNet manipulates the

dimensions of the features during the throughput process.
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Model Norm Dataset Batch Size Skip Connections Mom. & Weight Decay

ResNet BatchNorm CIFAR-10 16 Yes Yes

ResNet BatchNorm CIFAR-10 16 No Yes

ResNet BatchNorm CIFAR-10 256 Yes Yes

ResNet BatchNorm CIFAR-10 256 No Yes

ResNet BatchNorm CIFAR-100 16 Yes Yes

ResNet BatchNorm CIFAR-100 16 No Yes

ResNet BatchNorm CIFAR-100 256 Yes Yes

ResNet BatchNorm CIFAR-100 256 No Yes

ResNet EvoNormBO CIFAR-10 16 Yes Yes

ResNet EvoNormBO CIFAR-10 16 No Yes

ResNet EvoNormBO CIFAR-10 256 Yes Yes

ResNet EvoNormBO CIFAR-10 256 No Yes

ResNet EvoNormBO CIFAR-100 16 Yes Yes

ResNet EvoNormBO CIFAR-100 16 No Yes

ResNet EvoNormBO CIFAR-100 256 Yes Yes

ResNet EvoNormBO CIFAR-100 256 No Yes

ResNet EvoNormSO CIFAR-10 16 Yes Yes

ResNet EvoNormSO CIFAR-10 16 No Yes

ResNet EvoNormSO CIFAR-10 256 Yes Yes

ResNet EvoNormSO CIFAR-10 256 No Yes

ResNet EvoNormSO CIFAR-100 16 Yes Yes

ResNet EvoNormSO CIFAR-100 16 No Yes

ResNet EvoNormSO CIFAR-100 256 Yes Yes

ResNet EvoNormSO CIFAR-100 256 No Yes

ResNet FRN CIFAR-10 16 Yes Yes

ResNet FRN CIFAR-10 16 No Yes

ResNet FRN CIFAR-10 256 Yes Yes

ResNet FRN CIFAR-10 256 No Yes

ResNet FRN CIFAR-100 16 Yes Yes

ResNet FRN CIFAR-100 16 No Yes

ResNet FRN CIFAR-100 256 Yes Yes
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ResNet FRN CIFAR-100 256 No Yes

ResNet GroupNorm CIFAR-10 16 Yes Yes

ResNet GroupNorm CIFAR-10 256 Yes Yes

ResNet GroupNorm CIFAR-10 16 No Yes

ResNet GroupNorm CIFAR-10 256 Yes Yes

ResNet GroupNorm CIFAR-100 16 Yes Yes

ResNet GroupNorm CIFAR-100 16 No Yes

ResNet GroupNorm CIFAR-100 256 Yes Yes

ResNet GroupNorm CIFAR-100 256 No Yes

ResNet InstanceNorm CIFAR-10 16 Yes Yes

ResNet InstanceNorm CIFAR-10 16 No Yes

ResNet InstanceNorm CIFAR-10 256 Yes Yes

ResNet InstanceNorm CIFAR-10 256 No Yes

ResNet InstanceNorm CIFAR-100 16 Yes Yes

ResNet InstanceNorm CIFAR-100 16 No Yes

ResNet InstanceNorm CIFAR-100 256 Yes Yes

ResNet InstanceNorm CIFAR-100 256 No Yes

ResNet LayerNorm CIFAR-10 16 Yes Yes

ResNet LayerNorm CIFAR-10 16 No Yes

ResNet LayerNorm CIFAR-10 256 Yes Yes

ResNet LayerNorm CIFAR-10 256 No Yes

ResNet LayerNorm CIFAR-100 16 Yes Yes

ResNet LayerNorm CIFAR-100 16 No Yes

ResNet LayerNorm CIFAR-100 256 Yes Yes

ResNet LayerNorm CIFAR-100 256 No Yes

ResNet Plain CIFAR-10 16 Yes Yes

ResNet Plain CIFAR-10 16 No Yes

ResNet Plain CIFAR-10 256 Yes Yes

ResNet Plain CIFAR-10 256 No Yes

ResNet Plain CIFAR-100 16 Yes Yes

ResNet Plain CIFAR-100 16 No Yes

ResNet Plain CIFAR-100 256 Yes Yes
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ResNet Plain CIFAR-100 256 No Yes

ResNet VarianceNorm CIFAR-10 16 Yes Yes

ResNet VarianceNorm CIFAR-10 16 No Yes

ResNet VarianceNorm CIFAR-10 256 Yes Yes

ResNet VarianceNorm CIFAR-10 256 No Yes

ResNet VarianceNorm CIFAR-100 16 Yes Yes

ResNet VarianceNorm CIFAR-100 16 No Yes

ResNet VarianceNorm CIFAR-100 256 Yes Yes

ResNet VarianceNorm CIFAR-100 256 No Yes

VGG BatchNorm CIFAR-10 16 N/A Yes

VGG BatchNorm CIFAR-10 256 N/A Yes

VGG BatchNorm CIFAR-100 16 N/A Yes

VGG BatchNorm CIFAR-100 256 N/A Yes

VGG EvoNormBO CIFAR-10 16 N/A Yes

VGG EvoNormBO CIFAR-10 256 N/A Yes

VGG EvoNormBO CIFAR-100 16 N/A Yes

VGG EvoNormBO CIFAR-100 256 N/A Yes

VGG EvoNormSO CIFAR-10 16 N/A Yes

VGG EvoNormSO CIFAR-10 256 N/A Yes

VGG EvoNormSO CIFAR-100 16 N/A Yes

VGG EvoNormSO CIFAR-100 256 N/A Yes

VGG FRN CIFAR-10 16 N/A Yes

VGG FRN CIFAR-10 256 N/A Yes

VGG FRN CIFAR-100 16 N/A Yes

VGG FRN CIFAR-100 256 N/A Yes

VGG GroupNorm CIFAR-10 16 N/A Yes

VGG GroupNorm CIFAR-10 256 N/A Yes

VGG GroupNorm CIFAR-100 16 N/A Yes

VGG GroupNorm CIFAR-100 256 N/A Yes

VGG InstanceNorm CIFAR-10 16 N/A Yes

VGG InstanceNorm CIFAR-10 256 N/A Yes

VGG InstanceNorm CIFAR-100 16 N/A Yes
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VGG InstanceNorm CIFAR-100 256 N/A Yes

VGG LayerNorm CIFAR-10 16 N/A Yes

VGG LayerNorm CIFAR-10 256 N/A Yes

VGG LayerNorm CIFAR-100 16 N/A Yes

VGG LayerNorm CIFAR-100 256 N/A Yes

VGG Plain CIFAR-10 16 N/A Yes

VGG Plain CIFAR-10 256 N/A Yes

VGG Plain CIFAR-100 16 N/A Yes

VGG Plain CIFAR-100 256 N/A Yes

VGG VarianceNorm CIFAR-10 16 N/A Yes

VGG VarianceNorm CIFAR-10 256 N/A Yes

VGG VarianceNorm CIFAR-100 16 N/A Yes

VGG VarianceNorm CIFAR-100 256 N/A Yes

Vision Transformer BatchNorm CIFAR-10 16 N/A Yes

Vision Transformer BatchNorm CIFAR-10 256 N/A Yes

Vision Transformer BatchNorm CIFAR-100 16 N/A Yes

Vision Transformer BatchNorm CIFAR-100 256 N/A Yes

Vision Transformer EvoNormBO CIFAR-10 16 N/A Yes

Vision Transformer EvoNormBO CIFAR-10 256 N/A Yes

Vision Transformer EvoNormBO CIFAR-100 16 N/A Yes

Vision Transformer EvoNormBO CIFAR-100 256 N/A Yes

Vision Transformer EvoNormSO CIFAR-10 16 N/A Yes

Vision Transformer EvoNormSO CIFAR-10 256 N/A Yes

Vision Transformer EvoNormSO CIFAR-100 16 N/A Yes

Vision Transformer EvoNormSO CIFAR-100 256 N/A Yes

Vision Transformer FRN CIFAR-10 16 N/A Yes

Vision Transformer FRN CIFAR-10 256 N/A Yes

Vision Transformer FRN CIFAR-100 16 N/A Yes

Vision Transformer FRN CIFAR-100 256 N/A Yes

Vision Transformer GroupNorm CIFAR-10 16 N/A Yes

Vision Transformer GroupNorm CIFAR-10 256 N/A Yes

Vision Transformer GroupNorm CIFAR-100 16 N/A Yes
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Vision Transformer GroupNorm CIFAR-100 256 N/A Yes

Vision Transformer InstanceNorm CIFAR-10 16 N/A Yes

Vision Transformer InstanceNorm CIFAR-10 256 N/A Yes

Vision Transformer InstanceNorm CIFAR-100 16 N/A Yes

Vision Transformer InstanceNorm CIFAR-100 256 N/A Yes

Vision Transformer LayerNorm CIFAR-10 16 N/A Yes

Vision Transformer LayerNorm CIFAR-10 256 N/A Yes

Vision Transformer LayerNorm CIFAR-100 16 N/A Yes

Vision Transformer LayerNorm CIFAR-100 256 N/A Yes

Vision Transformer Plain CIFAR-10 16 N/A Yes

Vision Transformer Plain CIFAR-10 256 N/A Yes

Vision Transformer Plain CIFAR-100 16 N/A Yes

Vision Transformer Plain CIFAR-100 256 N/A Yes

Vision Transformer VarianceNorm CIFAR-10 16 N/A Yes

Vision Transformer VarianceNorm CIFAR-10 256 N/A Yes

Vision Transformer VarianceNorm CIFAR-100 16 N/A Yes

Vision Transformer VarianceNorm CIFAR-100 256 N/A Yes

ResNet BatchNorm CIFAR-10 16 Yes No

ResNet BatchNorm CIFAR-10 16 No No

ResNet BatchNorm CIFAR-10 256 Yes No

ResNet BatchNorm CIFAR-10 256 No No

ResNet BatchNorm CIFAR-100 16 Yes No

ResNet BatchNorm CIFAR-100 16 No No

ResNet BatchNorm CIFAR-100 256 Yes No

ResNet BatchNorm CIFAR-100 256 No No

ResNet EvoNormBO CIFAR-10 16 Yes No

ResNet EvoNormBO CIFAR-10 16 No No

ResNet EvoNormBO CIFAR-10 256 Yes No

ResNet EvoNormBO CIFAR-10 256 No No

ResNet EvoNormBO CIFAR-100 16 Yes No

ResNet EvoNormBO CIFAR-100 16 No No

ResNet EvoNormBO CIFAR-100 256 Yes No
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ResNet EvoNormBO CIFAR-100 256 No No

ResNet EvoNormSO CIFAR-10 16 Yes No

ResNet EvoNormSO CIFAR-10 16 No No

ResNet EvoNormSO CIFAR-10 256 Yes No

ResNet EvoNormSO CIFAR-10 256 No No

ResNet EvoNormSO CIFAR-100 16 Yes No

ResNet EvoNormSO CIFAR-100 16 No No

ResNet EvoNormSO CIFAR-100 256 Yes No

ResNet EvoNormSO CIFAR-100 256 No No

ResNet FRN CIFAR-10 16 Yes No

ResNet FRN CIFAR-10 16 No No

ResNet FRN CIFAR-10 256 Yes No

ResNet FRN CIFAR-10 256 No No

ResNet FRN CIFAR-100 16 Yes No

ResNet FRN CIFAR-100 16 No No

ResNet FRN CIFAR-100 256 Yes No

ResNet FRN CIFAR-100 256 No No

ResNet GroupNorm CIFAR-10 16 Yes No

ResNet GroupNorm CIFAR-10 256 Yes No

ResNet GroupNorm CIFAR-10 16 No No

ResNet GroupNorm CIFAR-10 256 Yes No

ResNet GroupNorm CIFAR-100 16 Yes No

ResNet GroupNorm CIFAR-100 16 No No

ResNet GroupNorm CIFAR-100 256 Yes No

ResNet GroupNorm CIFAR-100 256 No No

ResNet InstanceNorm CIFAR-10 16 Yes No

ResNet InstanceNorm CIFAR-10 16 No No

ResNet InstanceNorm CIFAR-10 256 Yes No

ResNet InstanceNorm CIFAR-10 256 No No

ResNet InstanceNorm CIFAR-100 16 Yes No

ResNet InstanceNorm CIFAR-100 16 No No

ResNet InstanceNorm CIFAR-100 256 Yes No
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ResNet InstanceNorm CIFAR-100 256 No No

ResNet LayerNorm CIFAR-10 16 Yes No

ResNet LayerNorm CIFAR-10 16 No No

ResNet LayerNorm CIFAR-10 256 Yes No

ResNet LayerNorm CIFAR-10 256 No No

ResNet LayerNorm CIFAR-100 16 Yes No

ResNet LayerNorm CIFAR-100 16 No No

ResNet LayerNorm CIFAR-100 256 Yes No

ResNet LayerNorm CIFAR-100 256 No No

ResNet Plain CIFAR-10 16 Yes No

ResNet Plain CIFAR-10 16 No No

ResNet Plain CIFAR-10 256 Yes No

ResNet Plain CIFAR-10 256 No No

ResNet Plain CIFAR-100 16 Yes No

ResNet Plain CIFAR-100 16 No No

ResNet Plain CIFAR-100 256 Yes No

ResNet Plain CIFAR-100 256 No No

ResNet VarianceNorm CIFAR-10 16 Yes No

ResNet VarianceNorm CIFAR-10 16 No No

ResNet VarianceNorm CIFAR-10 256 Yes No

ResNet VarianceNorm CIFAR-10 256 No No

ResNet VarianceNorm CIFAR-100 16 Yes No

ResNet VarianceNorm CIFAR-100 16 No No

ResNet VarianceNorm CIFAR-100 256 Yes No

ResNet VarianceNorm CIFAR-100 256 No No

VGG BatchNorm CIFAR-10 16 N/A No

VGG BatchNorm CIFAR-10 256 N/A No

VGG BatchNorm CIFAR-100 16 N/A No

VGG BatchNorm CIFAR-100 256 N/A No

VGG EvoNormBO CIFAR-10 16 N/A No

VGG EvoNormBO CIFAR-10 256 N/A No

VGG EvoNormBO CIFAR-100 16 N/A No
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VGG EvoNormBO CIFAR-100 256 N/A No

VGG EvoNormSO CIFAR-10 16 N/A No

VGG EvoNormSO CIFAR-10 256 N/A No

VGG EvoNormSO CIFAR-100 16 N/A No

VGG EvoNormSO CIFAR-100 256 N/A No

VGG FRN CIFAR-10 16 N/A No

VGG FRN CIFAR-10 256 N/A No

VGG FRN CIFAR-100 16 N/A No

VGG FRN CIFAR-100 256 N/A No

VGG GroupNorm CIFAR-10 16 N/A No

VGG GroupNorm CIFAR-10 256 N/A No

VGG GroupNorm CIFAR-100 16 N/A No

VGG GroupNorm CIFAR-100 256 N/A No

VGG InstanceNorm CIFAR-10 16 N/A No

VGG InstanceNorm CIFAR-10 256 N/A No

VGG InstanceNorm CIFAR-100 16 N/A No

VGG InstanceNorm CIFAR-100 256 N/A No

VGG LayerNorm CIFAR-10 16 N/A No

VGG LayerNorm CIFAR-10 256 N/A No

VGG LayerNorm CIFAR-100 16 N/A No

VGG LayerNorm CIFAR-100 256 N/A No

VGG Plain CIFAR-10 16 N/A No

VGG Plain CIFAR-10 256 N/A No

VGG Plain CIFAR-100 16 N/A No

VGG Plain CIFAR-100 256 N/A No

VGG VarianceNorm CIFAR-10 16 N/A No

VGG VarianceNorm CIFAR-10 256 N/A No

VGG VarianceNorm CIFAR-100 16 N/A No

VGG VarianceNorm CIFAR-100 256 N/A No

Vision Transformer BatchNorm CIFAR-10 16 N/A No

Vision Transformer BatchNorm CIFAR-10 256 N/A No

Vision Transformer BatchNorm CIFAR-100 16 N/A No
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Vision Transformer BatchNorm CIFAR-100 256 N/A No

Vision Transformer EvoNormBO CIFAR-10 16 N/A No

Vision Transformer EvoNormBO CIFAR-10 256 N/A No

Vision Transformer EvoNormBO CIFAR-100 16 N/A No

Vision Transformer EvoNormBO CIFAR-100 256 N/A No

Vision Transformer EvoNormSO CIFAR-10 16 N/A No

Vision Transformer EvoNormSO CIFAR-10 256 N/A No

Vision Transformer EvoNormSO CIFAR-100 16 N/A No

Vision Transformer EvoNormSO CIFAR-100 256 N/A No

Vision Transformer FRN CIFAR-10 16 N/A No

Vision Transformer FRN CIFAR-10 256 N/A No

Vision Transformer FRN CIFAR-100 16 N/A No

Vision Transformer FRN CIFAR-100 256 N/A No

Vision Transformer GroupNorm CIFAR-10 16 N/A No

Vision Transformer GroupNorm CIFAR-10 256 N/A No

Vision Transformer GroupNorm CIFAR-100 16 N/A No

Vision Transformer GroupNorm CIFAR-100 256 N/A No

Vision Transformer InstanceNorm CIFAR-10 16 N/A No

Vision Transformer InstanceNorm CIFAR-10 256 N/A No

Vision Transformer InstanceNorm CIFAR-100 16 N/A No

Vision Transformer InstanceNorm CIFAR-100 256 N/A No

Vision Transformer LayerNorm CIFAR-10 16 N/A No

Vision Transformer LayerNorm CIFAR-10 256 N/A No

Vision Transformer LayerNorm CIFAR-100 16 N/A No

Vision Transformer LayerNorm CIFAR-100 256 N/A No

Vision Transformer Plain CIFAR-10 16 N/A No

Vision Transformer Plain CIFAR-10 256 N/A No

Vision Transformer Plain CIFAR-100 16 N/A No

Vision Transformer Plain CIFAR-100 256 N/A No

Vision Transformer VarianceNorm CIFAR-10 16 N/A No

Vision Transformer VarianceNorm CIFAR-10 256 N/A No

Vision Transformer VarianceNorm CIFAR-100 16 N/A No
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Vision Transformer VarianceNorm CIFAR-100 256 N/A No
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