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Abstract 

Electricity is becoming increasingly important in modern civilization, and as a result, the emphasis 

on and use of power infrastructure is gradually expanding. Simultaneously, investment and 

distribution modes are shifting from the large-scale centralized generation of electricity and sheer 

consumption to decentralized generators and extremely sophisticated clients. This transformation 

puts further strain on old infrastructure, necessitating significant expenditures in future years to 

ensure a consistent supply. Subsequent technical and prediction technologies can help to maximize 

the use of the current grid while lowering the probability of faults. This study discusses some of the 

local grid difficulties as well as a prospective maintenance and failure probabilistic model. To provide 

an effective and convenient power source to consumers, a high Volta protects and maintains under 

fault conditions. Most of the fault identification and localization approaches rely on real and reactive 

power converter observations of electronic values. This can be seen in metrics and ground evaluations 

derived via internet traffic. This paper provides a thorough examination of the mechanisms for error 

detection, diagnosis, and localization in overhead lines. The proposal is then able to make suggestions 

about the ways that can be incorporated to predict foreseen faults in the electrical network. The three 

classifiers, Random Forest, XGBoost and Decision tree are producing high accuracies, while Logistic 

Regression and SVM are producing realistic accuracy results.   

 

Keywords: Distribution Network, Electrical Fault, Predictive Maintenance, Power, Machine 

Learning  
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Chapter 1 Introduction 

1.1 Background Information 

The transmission line is the backbone of the electrical grid. Power and its reliability have become 

increasingly important in the modern era, and a transmission line's primary function is to move 

electricity from its generation facility to its distribution system. As a result of its dynamic and 

interconnected nature, the electrical power system is constantly vulnerable to disruption or 

malfunction.  The interconnected nature of the electrical power system results in a vulnerability to 

disruption or malfunction. The electrical power system is vulnerable to disruption or malfunction. 

Identifying where a problem exists in the electrical grid is an important responsibility for those who 

work in the industry. Because of the potential for damage to network devices, disruptions in service, 

and overall network instability, the fault has the potential to decrease network reliability and affect 

the ability of network devices to function properly. Therefore, identifying and locating faults within 

the power grid is essential to maintaining the reliable operation of the electrical grid. The utility 

industry relies on information from a variety of sources, including field workers and power plant 

operators, to identify system-wide problems such as faults in transmission lines, substations, or other 

network devices within an electric utility's grid (Eskandarpour & Khodaei, 2017).  

Customers and power corporations both suffer monetary losses as a result. When a distribution 

network spans a large geographical area, standard fault location methods in the distributed 

network are ineffective. There is a high cost in time and resources needed to cover a large area with 

redundant distribution networks. The location can be determined by the node with the best quality of 

service, by the most resources, or a combination thereof. One method of improving reliability is to 

enlarge and duplicate the size of power stations to have more capacity (Viegas et al., 2016). This 
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increases costs, but also increases reliability due to redundancy in terms of power generation and 

distribution networks must have the ability to automatically detect and locate faults. Time, labor, 

system readiness for power maintenance, future scheduling flexibility, and economic variables are 

just a few of the benefits of automatic fault prediction and localization. Customer satisfaction and 

system dependability both rise because of these changes. The operation of a distribution system is 

based on the premise that a fault will always be present and can be found through routine monitoring. 

If the system does not function properly, it could lead to both safety and financial problems. For 

example, if the power goes out in one location for a long time, it could lead to fire or electrocution 

hazards.  

This paper will discuss the different methods and algorithms that can be used to predict electrical 

faults in distribution networks. Distribution networks are the backbone of our society. These 

networks transport the electricity from power plants to substations, and then through high voltage 

transmission lines to households and businesses. The distribution networks are composed of many 

cables that run underground or over the ground to multiple nodes where electricity is distributed. 

Electrical faults in these networks can lead to blackouts and even fire hazards.  As these networks 

become ever more complex, the chance of a fault occurring becomes greater and greater. The 

consequences of a network fault can be disastrous, with power outages leading to injuries or even 

loss of life.  

The location of faults is the key to preventing power outages. This paper will discuss the different 

methods and algorithms that can be used to predict electrical faults in distribution networks.  

Distribution power networks often experience electrical faults that cause power outages. These faults 

can be caused by equipment malfunctions, lightning strikes, and other events. Methods used to 

prevent these failures include using advanced warning systems such as voltage sensors and telemetry 
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in the distribution network. Manufacturing fluctuations also contribute to large-scale failures on 

power networks. A power distribution network is a chain of interconnected electrical substations and 

transmission lines that carry electricity from large energy sources to end users. A power network may 

be operated by an electric utility, a local or regional government agency cooperative. 

 

 

 

 

 

 

 

 

 

 

 

 

Faults in energy systems lead to potentially dangerous transients, equipment failure, and power 

outages, all of which lower system reliability and leave customers frustrated. Fault prediction is 

crucial in the shift from reactive and wasteful maintenance procedures to a more proactive 

maintenance plan. To avoid defects and failures in energy systems, it is important to identify 

developing problems before they become obvious. For instance, we can replace or fix the faulty parts 

Figure 1 Electrical Network 
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that cause symptoms i.e., cable with a spark in it, a transformer with partial discharge, etc. These 

components are defective to the point that the entire system can be shut down by the slightest change. 

Predictive maintenance is the process of keeping systems and components in good working order by 

anticipating potential problems. (Balouji et al., 2018) Electrical distribution network fault prediction 

is possible with the help of machine learning technologies and model training developed using real 

and/or simulated data. The system's reliability is improved because of this strategy, which reduces 

the likelihood that the defect would occur in the first place. This requires classifying the system's 

actual data. The weather conditions recorded by weather stations, the locations of any breakdowns, 

or even the voltage currently recorded at regular intervals by the energy system's components, are all 

examples of the types of information that could be collected. (Skydt et al., 2021) Therefore, two 

general cases may exist based on the data type:  

● Predicting fault in an electrical network using weather conditions and/or characteristic data 

of systems components. 

● Predicting fault in the equipment of the network such as transformer, cable, etc. using 

periodically recorded voltage and current. The model assumes that when measured values are 

low or zero and model values are high, then the fault is most likely to occur. In this case, it is 

assumed that data labels were applied by the process designer before creating a model. 

Previous generating systems that used massive revolving masses, like as enormous power plants, are 

rapidly getting supplanted by battery technology which precisely manages grid frequency ratios 

because of these trends. Such expansion reduces the total electricity state's resilience to errors and 

shocks. Sliding failures on a platform base would become more important in the future even without 

stabilizing the aspect of spinning forces. It is critical to address such issues as part of that process 

toward a more responsive Power System (Andresen et al., 2018). 
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1.2 Introduction 

A steady supply of power is becoming increasingly important to the functioning of modern society. 

The repercussions of a power outage can range from being a little annoyance to causing large 

financial losses or even posing serious risks to the health and safety of local residents (BUTLER, 

2001). 

The complexity of the systems that distribute power makes it more likely that there will be frequent 

faults (OFGEM, 2017). The leading equipment in the network, in particular, is always susceptible to 

multiple failures, which can take place in any of the leading equipment's primary components or 

subcomponents. These failures can take place at any time. If there is a problem with one of the 

network's components, the power will go out not just in the region that is being served by those 

components, but also in the areas that are adjacent to those components. If there is a problem 

anywhere in the system that distributes energy, it will produce a severe disturbance throughout the 

entire grid. When something goes wrong with the system, there is potentially a large risk of incurring 

significant financial consequences. To avoid incurring the monetary penalties that the authorities 

threaten them with, it is reasonable for electrical businesses to prevent any delays in the provision of 

electricity and to quickly regain their customers' confidence in the event of a breakdown. When a 

fault occurs, determining where in the distribution systems the issue can be found is of the utmost 

importance. It is very vital to be able to predict problems in distribution networks particularly along 

with their locations. 

1.2.1 Statement of Problem 

Due to increased load on the network, electrical faults are a common issue that causes electrical 

interruption to consumers, usually up to two hours of interruption. It is hard to check the path of the 
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faults manually to judge whether which part has the defect and which connection must manage 

properly. Predicting electrical faults in distribution networks using online data helps in avoiding long 

interruptions for the consumers which could increase satisfaction. 

1.2.2 Problem Question 

Failures in the energy distribution network should be thoroughly understood by both the operators 

and the customers of the network. This is of the utmost significance. On the other hand, due to the 

unpredictability of the problems, it can be difficult to provide accurate failure predictions for a certain 

time. 

This study attempts to answer the following primary research question: “Use of machine learning 

techniques can provide the accurate prediction and forecasting of defects in distributing networks" 

1.3 Project Definition and Goals 

To predict electrical issues in the distribution network to reduce electrical interruption. The key goals 

of the project are: 

● To use preceding research to explore the edge. 

● To determine the types of faults and their causes. 

● To lessen usage of manpower. 

● To suggest areas of conflict having electric faults. 

● To build a classification model that predicts an electrical fault in the network before it occurs 
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1.4 Research Methodology  

The suggested methodology is supported by a schema. The very first stage is unquestionably the 

most crucial since it makes it possible to identify the distribution system and any potential defects 

using information from linked devices and appliances. 

● Step 01: Source dataset is collected from Kaggle which contains total of 12001 instances 

with 7 attribute value pairs.  

● Step 02: For these analysis and design processes, appropriate dataset will be explored and 

visualized using R programming language working in RStudio IDE. 

● Step 03: For evaluation, dataset will be split into standard 70/30 split ratio as train-test subset 

datasets. 

● Step 04: Dataset will be trained and tested using 5 different Machine Learning Models. 

o Logistic Regression  

o SVM Classifier  

o Decision Tree 

o XG Boosting Classifier 

o Random Forest  

● Step 05: Obtained results will be evaluated using the Accuracy as evaluation measure. 
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1.5 Limitations of the Study   

This study was limited based on the availability of the data set, service providers usually have 

confidentiality that prevent them from live information from smart electric meters; voltage and 

current. Therefore, a MATLAB-simulated data set was collected from Kaggle. The study will be 

limited on a set of data that is simulated by a computer software that may not reflect in real life. 

Data Collection 

(Kaggle Source) 

Exploratory Data Analysis (EDA) 

 

 

Data Exploration  Data Visualization  

 Evaluation Measure 

(Accuracy)  

 

Train/Test Machine Learning Algorithm 

 

 

 

Random Forest SVM Classifier 

XG Boost Classifier 

Logistic Regression Decision Tree 

Evaluation Methodology  

(70/30 Ratio Split) 

Figure 2 Methodology 
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Chapter 2 Literature Review 

2.1 History 

Over the years, approaches for detecting, classifying, and locating faults in transmission lines and 

distribution systems have been extensively investigated. With power system notions causing 

academics to become increasingly concerned, the need for training a deep fault tracking and definite 

form capable of identifying and finding various sorts of problems cannot be stressed. In this paper, 

we first provide an overview of the most used fault detection and location mechanisms in practice, 

then we evaluate their accuracy with a case study. Summary of basic fault detection and locating 

methods, Basic approaches for fault detection and locating include various means to detect failures 

in the system. 

The diagnosis, categorization, and placement of defects in power sources have advanced rapidly over 

the last Twenty years in a variety of disciplines. Recent advancements in methods, cognitive 

computing, location-based services, and communication channels have empowered a growing 

number of scientists to support research with a wide scope and depth, allowing traditional fault 

defense methodologies to be pushed to their limits. In addition, two main limitations of web defect 

diagnostics are indeed being addressed. The first limitation is the delay in receiving data. Recently 

designed sophisticated electrical gadgets are really being implemented (Wang et al., 2011) to acquire 

data at various nodes in the systems, in complement to classic test rigs like voltage transformers, 

current transformers, and peripherals.  The second limitation is the cost of web services. For example, 

when a device is not directly connected to an external network and data are being acquired via radio 

waves, the accuracy is lessened by the positioning errors in geographical space. From a learning 
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perspective, I would say that this field has evolved rapidly over time. It's important to understand 

where your strengths and weaknesses are and to work on improving those areas. 

Self-powered non-intrusive sensors are also being developed with the potential to form sensors Self-

powered, non-intrusive sensors are now being developed, with the possibility of forming sensor 

nodes for power system online control (Han et al., 2015). Researchers can construct intelligent fault 

diagnostic systems by mining knowledge from data corresponding to various conditions as more data 

becomes accessible. When current and voltage signals are collected by many interspersed sensors, 

the effect of complicated and diverse network designs can be minimized. The lack of adequate terms 

of computational capabilities is the next constraint. In a self-powered sensor, the power for its 

operation is typically generated by a renewable energy source such as solar cells. Renewable sources 

can produce more power on demand than non-renewable sources like fossil fuels. This ability can be 

utilized to construct simple, robust sensors that are not dependent on external power supplies. 

However, more conventional sensors are more complicated and require more power. In the case of a 

robotic system, the processing power is often used to control its movement. For example, mobile 

robots use GPS receivers to keep track of their position in space and need powerful processors to 

carry out complex calculations in real-time. Sensor systems may also depend on bulky batteries or 

fuel cells, which require powerful processors. Power outages in the smart grid must be managed and 

assessed quickly enough to protect framework components and maintain normal operations.  Many 

of the new technologies that are being developed to enhance the grid will require a more efficient 

and resilient power supply. New technologies in this area include demand response and distributed 

energy. 

The model reported in this study (Tyvold et al., 2020) has been proven to have high accuracy and an 

impressive level of reliability when used on a wide range of data samples that includes some faulty 
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examples. No faulty data will comprise most of the information that only an operating model will 

examine. For example, if the normal fault incidence had one or two each week, but the model adjusts 

the fault risk once each second, this is a common circumstance. As a result, if the model's number of 

false isn't particularly low, the number of false alarms can rapidly overwhelm the genuine ones. .-

Incorrect data will comprise the minority of the information that only an operating model will 

examine. Likewise, if the normal fault incidence had limited numbers each week, but the model 

adjusted for it once every second, this is a common circumstance. As a result, if the model's number 

of false isn't particularly low, it can be hard to tell where there are genuine faults from false alarms. 

False alarms also cause some of the model's data to be noisy. This can be partially mitigated by 

increasing the number of model parameters that are being used and/or increasing the period in which 

the model is being compared to its prior data. 

The report (Mahmoud et al., 2021) focused on flaws in the smart grid system from several 

perspectives. 

The following are some of the flaws that were identified: 

● Smart grid system is not able to produce electricity during power outages. 

● Power consumption is higher than what was expected and predicted in terms of frequency 

and duration of power outages. 

● The smart grid system has environmental side effects with an increased amount of CO2 

emissions and nitrogen oxide. 

In this study, power problems in the smart grid are discussed, including the causes of an event, fault 

management, types of failures, and protection. Locating, identifying, and isolating defective lines are 

all part of fault management research. In the transition to a smarter network grid, advancements in 

this study area are projected to enable a more robust and effective grid utilization. Finally, predictive 
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maintenance algorithms can largely profit from the expanded use of data frameworks created using 

big data technologies and algorithms. 

The suggested technique (Picard et al., 2021) improves the traditional distribution network planning 

process by incorporating DER from a network perspective and utilizing the data made accessible by 

smart grid deployment. Furthermore, the proposed technique was successfully evaluated in a real 

distribution network with 450,000 delivery points over a 5000 km2 geographical area, identifying 

zones where new DER will be more effective. It was determined which areas in the distribution 

system will benefit most from the new DER and which zones are potential bottlenecks. Through this, 

a roadmap was created to guide the further deployment of DER. The key outcome was the 

establishment of a method for improving present network knowledge by breaking it down into 

subsystems and planning with specific base cases for each region and their related needs operation, 

type of consumption, and generation. This novel approach to planning was proven in terms of 

economics in a regulated distribution framework, taking into account new network infrastructure. , 

including the creation of a series of requirements for the new network, such as security and 

component redundancy to ensure reliability. The study's contribution is shown through its ability to 

identify key areas for improvement to position itself as the global reference for smart energy 

networks. 

This study (Andresen et al., 2018) discusses the anticipated obstacles in the utility grid, as well as 

various metering and activities that could aid the power grid. The increasing availability of long-term 

monitoring and control data will help reduce data latency, along with developments in big data 

analysis and machine learning, allowing for efficient failure classification and prevention. In the shift 

to a smarter grid, advancements in this study area are projected to enable a more resilient and 

economical grid utilization. 
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The climate machine-learning techniques created in this article for predicting voltage instability have 

been proven to outperform games of chance or random speculation. Given those models' restricted 

power, the gain proved significant across several cases: the median reliability for the highest 

performing designs for each period and activity genre ranged between +0:06 to +0:26 greater than 

that of the benchmark value. "This study finds that grouping and density segmentation techniques 

can be used to anticipate electric grid failure incidents. The techniques have low predictability, but 

they may be used in conjunction with classifiers, for example." The research also shows how 

addressing imbalanced instead of equitable statistics reduces accurate predictions, which is essential 

because consecutive actual data is imbalanced. 

In this paper (Høiem et al., 2020) the author did a comparison of defect prediction models based on 

several supervised machine learning algorithms was undertaken in this paper. 

Norway is a beautiful country, known for its amazing landscapes, long coastlines, and rich cultural 

and natural history. These majestic qualities attracted power quality experts from IBV. With the help 

of automated data acquisition equipment provided by our close partner Rockwell Automation™*, 

IBV was able to employ high-resolution power quality measurements in Norway to train the machine 

learning models used in its PQD.IBV's PQD suppliers internally use a model based on machine 

learning technology to predict and identify power quality problems in the grid. 

The energy grid is vulnerable to various errors, each with its own characteristics and dispersion 

pattern. One of these types of errors is predictable, so identifying it can help mitigate the issue. This 

hallmark must be present before the crucial tragedies. That some of the most common issue incidents 

in the main supply are thought to grow over time but have a defect generation hallmark before the 

disruption, as seen (Russell et al., 2009). An isolator defect that leads to an earth fault or capacitance, 

for instance, might also cause releases which could be discovered with measurement tools, but the 
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releases could be so small that they escape detection. It is important to note that the error process can 

be detected with measurement tools, but the releases might be so small that they escape detection. In 

a comprehensive schematic of this kind, it is imperative to have engineers analyze propagation 

patterns because each different type of defect and its various frequencies correspond to different 

causes of the damage. Another aspect of root cause analysis is determining whether an environmental 

factor or a defect contributed to a particular failure. If a part cracked but no defects were found on 

the part, then it could be attributed to temperature cycling. 

2.2 Machine Learning Based Solution 

2.3 Supervised Learning 

Learning via example is at the heart of supervised machine learning (Gorunescu 2011), which is 

accomplished using data that has been labelled and previously categorized. The term "supervised 

learning" refers to a sort of task in which an algorithm is trained based on past knowledge. Supervised 

learning is also known as "supervised machine learning." This means that the labelling of the 

outcome, which is also known as the response variable, dependent variable, or target variable, must 

be predicted in advance for this type of learning. The assumption that learning is directed by the 

learning results of the training data is where the supervision originates from. The learning algorithm 

is given a set of inputs that correspond to preset correct outputs; from these, it learns the pattern and 

adapts itself appropriately. In this study, the methods of classification and regression, both of which 

fall under the umbrella of supervised learning, will be employed to make predictions (G. Lei wang,s 

2011). 
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2.4 Decision Tree 

A decision tree is a type of supervised classification algorithm that draws inferences from previous 

data to correctly categorize new data. The algorithm learns from previous data and then applies those 

learnings to classify new data (Hongquan 2019). 

Random Forest which is an extension of Decision Trees that works by building an ensemble of 

Decision Trees on various subsets of the complete dataset and then aggregating the outputs of these 

Decision Trees to obtain a more accurate prediction model. The Decision Tree is a technique for 

solving classification issues that is used in machine learning. This technique works by inferring rules 

for partitioning the dataset into numerous subsets based on the characteristics of the data. 

2.5 Support Vector Machine 

Support Vector Machines, or SVM for short, are a form of machine learning that have seen extensive 

use in the field of classification problems. It accomplishes this by locating, within a space consisting 

of many dimensions, the hyperplane that best differentiates the specified categories by accounting 

for the greatest distance between itself and the nearest sample (Andrew, 2011). 

2.6 Models Comparison 

A comparison of defect prediction models that are based on several supervised machine learning 

approaches has been carried out in this piece of research. To train the machine learning models, high-

resolution power quality measurements were taken from the Norwegian power system. The 

predictive models were trained to forecast four distinct event categories, which are referred to as 

voltage dips, ground faults, rapid voltage changes (RVC), and interruptions, respectively. The 

outcomes of the comparison between the Random Forest model, the Support Vector Machine model, 
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the Feed Forward Neural Network model, and the Recurrent Neural Network model indicate that the 

Random Forest model is performing marginally better than the other models, with an accuracy of 

0.602. However, the performance is not yet at a level where it would be possible to implement the 

technology in an operating setting. The rate of false positives as well as the rate of false negatives 

are too high for such a step to be taken. It has also been noticed that the models' performances vary 

depending on the different kinds of events that they are trained on. This is another thing that may be 

examined. According to the findings, the PQ events that are simplest to forecast are rapid voltage 

shifts, which have an accuracy of 0.710, and voltage dips, which have an accuracy of 0.601. 

2.7 Summary of Literature Review 

Failure detection and prevention strategies in the utility grid and various metering activities could 

help adequately control and manage the grid system. Long-term monitoring and data control 

strategies help reduce data latency in the systems. The energy grid system is vulnerable to many 

errors that have different characteristics. The measurement tools could discover and prevent 

significant defects in the systems. The only challenge is that some of the errors in the grid system 

might be smaller to the point of escaping detection. This means that it is essential to have engineers 

who would analyze the propagation patterns and detect the releases that escape detection. The aspect 

of cause in defect detection and prevention varies, and defects might correspond to different causes 

and damages. This means it is important to analyze a defect to establish if it causes system failures. 

 Machine learning solutions in defect detention rely on massive amounts of data which could 

be problematic for other predictive methods 

 Data mining methods become an efficient method that is supported by complex algorithms 

that could be used in the detection of faults through the processing of enormous amounts of 

data 
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 Data gathering devices could also help in error detection in the transmission line networks 

 Data gathering method employs the use of complex machine-learning algorithms 

 Supervised learning is a system of learning by example.  

 Supervised learning works through predictive variables or target variables that must have 

been labelled based on past incidents 

 A decision tree is a method in a smart grid system that utilizes previous data in the 

generation of new data 

 Support vector machine works by locating within a vast space a hyperplane that best suits a 

specific category and differentiates it from the nearest sample. 

 The predictive models in smart grid system focuses on four distinct events; voltage dips, 

ground faults, rapid voltage change and interruptions 

 A comparison between various models shows that random forest model is performing better 

than other models, with accuracy of 0.602. 

 The performance of the random forest model has however not reached the projected levels. 
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Chapter 3 Project Description 

3.1 Project Overview 

To ultimately attain the fundamental goal of creating numerous machine learning classification 

algorithms that can categorize electrical faults, the project will go through several processes. The 

project will begin with exploratory data analysis (EDA) and data visualization for the chosen dataset 

after it has been chosen. Before moving on to the data modelling stage, additional manual data pre-

processing activities will be carried out to clean the data, cope with empty cells, and attempt to 

enhance the accuracy of the dataset if required. The algorithms will be tested using the appropriate 

metrics to judge their performance after being built using the clean data set. Additionally, all work 

involving data will be carried out using the RStudio software. 

3.2 Dataset Description  

The data set was gathered from the Kaggle website, a well-known platform and online community 

for practitioners of data science and machine learning (ML), which offers a wide range of data science 

and ML issues. The problem confronting is “Detecting and Classifying Electrical Faults using 

Machine Learning Algorithms”, and in this project an open-source dataset is used for analysis and 

implementation.   

The downloaded dataset folder contains two csv files. Our concerned file is named 

“detect_dataset.csv” containing total of 12001 rows and 7 attribute value pairs with unique values. 



24 

 

 

 

Table 1 Dataset Description 

Feature Type Details 

Output (S) Boolean (0 or 1) 0: there is no fault 

1: there is a fault 

Ia integer Electric Current of phase ‘A’ 

Ib integer Electric Current of phase ‘B’ 

Ic integer Electric Current of phase ‘C’ 

Va integer Voltage of phase ‘A’ 

Vb integer Voltage of phase ‘B’ 

Vc integer Voltage of phase ‘C’ 

 

Source of Dataset: 

Dataset is available in this link below 

 https://www.kaggle.com/datasets/esathyaprakash/electrical-fault-detection-and-classification 

 

 

 

 

 

 

 

 

https://www.kaggle.com/datasets/esathyaprakash/electrical-fault-detection-and-classification
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Chapter 4 Data Analysis 

4.1 Data Understanding 

The working data set must first be understood and studied; this is a crucial initial step in trying to 

draw attention to some of the properties and characteristics of our data collection. The creation of a 

word cloud, evaluating attitudes, and visualizing attributes to uncover more information about them, 

such as keyword and location properties, are additional aspects of exploratory data analysis (EDA). 

For the EDA process, we used R programming language and to support R language used RStudio 

software.  

4.2 Dataset Exploration 

In RStudio, initially, we installed the necessary packages for our required EDA procedure sequence.  

The dataset was explored into different phases and steps for better understanding and clarity of each 

phase. Each package contains specific metadata about visualizations, modelling, preprocessing, and 

other tasks needed to be done. 
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Then responding libraries were imported into RStudio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Installing packages 

Figure 4 Importing Libraries 
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Then, the dataset named “detect_dataset.csv” was imported.  

 

Figure 5 Loading dataset in a data frame 

 

To display the initial rows and columns of the dataset, we used the head() function. 

 

Figure 6 Head of the dataset 
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Then, the dataset summary is estimated as the Means, Median and Mode of the complete dataset.  

 

Figure 7 Summary of the dataset 

We retrieved the dimension of the dataset, which notifies that dataset has a total of 12001 no. of rows 

and a total of 7 columns.  

 

Figure 8 Dataset dimension 

Then displayed the complete dataset in a single plot to represent the different dataset column values 

as an individual value set.  
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Figure 9 Dataset values in a graph 

 

 

Plotted a graph using different columns means the y-axis shows actual values present in the 

dataset and the x-axis shows times ranges. 
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Figure 10 Dataset value on X-axis & Y-axis 

Plotted different graphs to visualize the attributes’ index values. 

 

Figure 11 Plotting the output in the data frame 
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Figure 12 Plotting Ia in the data frame 

 

Figure 13 Plotting Va in the data frame 
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The histogram graph here shows that the y-axis is the frequency, and the x-axis shows the actual 

value or column present in the dataset. So, this graph also shows frequency value ups and downs 

compared to the value of the dataset. 

 

Figure 14 Displaying Histograms 
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Figure 15 Frequency of Output (S) 

 

Figure 16 Frequency of Ia 

 



34 

 

 

Figure 17 Frequency of Va 

4.3 Train-Test the Dataset 

To train and test the dataset, we followed the standard approach which is a 70-30 ratio. From the total 

dataset, 70% of the dataset is used to train and 30% of the dataset is used to test the trained models. 

Dimensions of train and test dataset is also presented.  
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Figure 18 Splitting dataset into training & testing subsets 

4.4 Data Pre-processing 

In the data exploration phase, we observed our desired dataset is a nominal attribute-paired dataset 

containing only numeric data for all attributes. So, we did not require any preprocessing steps to 

clean our dataset. We also found there is no null value associated with any column because every 

value for the individual column is calculated from the generators and automatically stored.  

4.5 Data Modeling 

We processed our data using a variety of machine-learning algorithms. We selected the most popular 

and appropriate classifiers for the classification task that involves electric fault identification. The 

machine learning model will be trained on the training subset in the modelling part, and its 

performance will be evaluated against the unknown testing subset by creating a confusion matrix. 
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4.5.1 SVM Classifier 

SVM, or support vector machines, are effective models for sorting data with various attributes. SVM 

builds a dimensional space in high-dimensional space by using the linear function hypothesis. Using 

a hyperplane in p-dimensional space, classes can be divided. Additionally, SVM uses the margin, a 

method to choose the best hyperplane that divides classes maximizing. SVM is among the most 

effective and widely used among all classification techniques, text classification methods are widely 

used. SVMs possess the being capable of learning independently of the dimension of the feature set 

is a special quality. This argues that our data can be distinguished from other data with high 

confidence using variables from the hypothesis. Despite the presence of many features in the space, 

we can generalize. The selection of parameters that results in the hypothesis also with minimum VC- 

Dimension is the ideal one. This makes expensive cross-validation unnecessary and enables fully 

automated parameter tuning. 

 

In RStudio, we used the SVM function and confusion matrix function as seen in the following chunk: 

 

Figure 19 SVM Classifier 
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Figure 20 SVM Confusion Matrix 

We can see that the accuracy estimated through the confusion matrix is 72.55%. 

4.5.2 Decision Tree 

A supervised non-parametric classifier for the classification method is the decision tree. To forecast 

the output value, DT uses training data to learn simple rules. Although DT is simple to comprehend 

and depict, it does not accept missing data. As a result, it set itself up to work without normalizing 

the data. DT is applicable to category and numeric data formats. Although DT uses white boxing, 

statistical analysis allows us to estimate its performance 
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In RStudio, we used the decision tree function and confusion matrix function as seen in the following 

chunk: 

 

Figure 21 Decision Tree Classifier 

 

Figure 22 DT Confusion Matrix 

We can see that the accuracy estimated through the confusion matrix is 98.78% which is very high 

and considered to be over fitted. 
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Figure 23 Decision Tree 

As per the decision tree, if the current of B-phase is less than -65A, there’s a fault in the network. If 

the current is greater than or equal to -65A, the output depends on other values as shown in the 

figure.  

4.5.3 XG Boost Classifier  

XG is a classification and regression problem-based classifier, the boosting classifier. It is a 

component of ensemble machine-learning techniques. Boosting is mentioned in this context since a 

cost function is being utilized to optimize the model. Its operation relies on the cooperation of several 

inaccurate weak learners and accurate strong learners. Each case receives full attention, and it picks 

up additional rules from the distribution of past misclassifications. It uses a decision tree to spread 

predecessors in a network. It instantly over fits the corpus data using the greedy method. It utilizes 

regularization techniques to penalize the modelling of the various sections. As a result, overfitting 
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was decreased, and model performance was enhanced. 

In RStudio, we used the XGBoost and confusion matrix functions as seen in the following chunk: 

 

Figure 24 XGBoost Classifier 

 

Figure 25 XGBoost Confusion Matrix 
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We can see that the accuracy estimated through the confusion matrix is 99.58% which is very high 

and considered to be over fitted. 

4.5.4 Random Forest  

Random Forest is a component of the ensemble learning approach, which is particularly effective in 

solving the classification problem. With accurate prediction, it performs better than a sizable amount 

of data. To obtain the forecasts, a variety of configuration packages are provided. The parameter 

settings were made defaults. Anybody can adjust the parameter settings to suit their needs. To 

generate trees, it uses bagging and randomization features. Instead of looking for the most crucial 

feature, it looks for the best features among all the grown nodes. There are various parameters and 

properties for this classifier. It is a high-dimensional data classifier that is off the shell. For each tree 

distribution, it generates a mixture of tree predictors. The tree distribution fully extends and may 

reach a very huge tree with the default configuration value. Parameter tweaking is essential in 

accordance with the criteria to control this problem. Additionally, it resolves the memory usage 

problem. 

In RStudio, we used the Random Forest and confusion matrix functions as seen in the following 

chunk: 

 

 

Figure 26 Random Forest Classifier 



42 

 

 

Figure 27 Random Forest Confusion Matrix 

We can see that the accuracy estimated through the confusion matrix is 99.78% which is also very 

high and considered to be over fitted. 

4.5.5 Logistic Regression  

Predictive analytics and categorization frequently make use of this kind of statistical model, also 

referred to as a logit model. Based on a particular dataset of independent variables, logistic regression 

calculates the likelihood that an event will occur, such as voting or not voting. Given that the result 

is a probability, the dependent variable's range is 0 to 1. In logistic regression, the odd that is, the 

chance of success shared by the probability of failure is transformed using the logit formula. 

In RStudio, we used the logistic regression and confusion matrix function as seen in the following 

chunk: 
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Figure 28 Logistic Regression 

 

Figure 29 Logistic Regression Confusion Matrix 

4.6 Results 

In the modeling part, we used five supervised machine learning models, SVM, Decision Tree, 

XGBoost, random forest and logistic regression. The table below summarizes the comparison of 

them all. Data was split 70/30, and the values are of the test data. 
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Table 2 Models Statistical Performance 

Classifier Accuracy Sensitivity Specificity 

SVM 0.7255 1 0.4005 

Decision Tree 0.9878 0.9969 0.9769 

XGBoost 0.9958 0.9954 0.9964 

Random Forest 0.9978 0.9964 0.9994 

Logistic Regression 0.7321 0.9995 0.4157 

 

Random Forest scored the highest in accuracy (99.78%) followed by XGBoost (99.58%), Decision 

tree (98.78%), logistic regression (73.21%) and SVM with the lowest accuracy (72.55%). High 

accuracy usually indicated over fitting. 

Sensitivity is the percentage of true Positive (TP, model predicted positive and the actual is positive) 

divided by TP and False Negative (FN, model predicted negative and the actual is positive). Although 

SVM scored low on accuracy, it has the highest sensitivity, 100%. The next model with the highest 

sensitivity is logistic regression, followed by decision tree, random forest and finally XGBoost. They 

all scored over 99%. 

Specificity is the percentage of true negative (TN, model predicted negative and the actual is 

negative), divided by TN and false positive (FP, model predicted positive and the actual is negative). 

Random forest scored highest with 99.94%, followed by XGBoost, decision tree, logistic regression 

and finally SVM with 40.05%. 

To sum up, we produced three models that could be over fitted (Decision tree, random forrest, and 

XGBoost). SVM and logistic regression had reasonable and realistic accuracies, around 73%. 
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Chapter 5 Conclusion & Recommendations 

5.1 Conclusion  

The processes for error detection, detection, and identification in overhead wires are thoroughly 

examined in this study. The solution is then able to offer advice on potential strategies for 

incorporating to forecast anticipated issues in the electric system. The three classifiers, Random 

Forest, XGBoost and Decision tree are producing high accuracies, while Logistic Regression and 

SVM are producing realistic accuracy results. As a result of its ability to predict events in the most 

efficient manner, random forest is currently ideally outperforming other models in terms of fault 

detection, just as what was learned in the literature review.  

5.2 Recommendations 

For future work, we recommend few suggestions to work with advance machine learning models 

and deep learning models. Then identifying which model is best fit for electrical faults in electric 

system using same dataset. Another recommendation is to create a new dataset with different no. 

of parameters for the same problem and them deploying the previous and new suggested 

methodology. These results will be verified using WEKA tool and then further exploring using R 

language in RStudio or any other R language supportive IDE. Moreover, the used models, such 

can undergo parameters tuning which might yield a higher/realistic accuracy, one challenge was 

the time it takes to build the model.  
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