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ABSTRACT  

The biotechnology industry has shifted in recent years in corporate policy from a more 

traditional, closed research and development (R&D) model to an open innovation (OI) model, 

leading to increased collaboration between companies and academic institutions. The literature 

has reinforced this shift by demonstrating the role these collaborative relationships play in 

contributing to high-quality innovations. In this study, I use a unique dataset composed of 

biotechnology patents granted in the United States from 2000-2020 to examine the relationship 

between patent assignee and patent quality. Specifically, I measure patent quality using the 

number of forward citations and patent family size and classify the biotech patents based on the 

number and type of their assignees (companies, government, or academic institutions). Multiple 

assignees—indicating the presence of collaborative behavior to produce the invention—are 

shown to have, in general, higher patent quality as opposed to patents with a single assignee.  

Patents produced by multiple companies, university-company, and university-company-

government collaborations receive a higher number of forward citations relative to patents 

produced by a single company assignee. Also, simple patent family size is larger for patents 

produced by company-company collaborations as opposed to patents with a single assignee. 

Overall, the results support the hypothesis that cross-organizational collaborations—particularly 

company-company, university-company, and university-company-government collaborations—

are associated with higher quality innovations in the biotechnology field, although these effects 

are stronger when considering number of forward citations rather than patent family size as a 

proxy for patent quality. 
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1   INTRODUCTION 

The biotechnology industry has shifted in recent years in corporate policy from a more 

traditional, closed research and development (R&D) model to an open innovation (OI) model, 

leading to increased collaboration between companies and academic institutions (Nilsson & 

Felding, 2015). The literature has reinforced this shift by demonstrating the role of these 

collaborative relationships in contributing to high-quality innovations (Kumaramangalam, 2005; 

Takabe et al., 2018; Kneller, 2010; Lincker et al., 2014; Patridge et al., 2015; Schuhmacher et al., 

2018; Minguillo & Thelwall, 2015). The biotechnology industry serves as an excellent case to 

examine the impact of cross-organizational collaboration and OI on innovation quality due to its 

high R&D spending relative to other industries and the historically closed nature of 

biotechnology companies’ R&D models.  

Industry-academia collaboration plays a critical role in the success of high-technology 

industries such as biotechnology. The knowledge-sharing and learning gains attained in these 

collaborations support the generation of high-quality inventions. A high proportion of scientific 

specialists reside in academia, and these academic researchers benefit industry through 

collaborations by contributing their expertise to problem-solving (Kumaramangalam, 2005). The 

respective roles of academia and industry are illustrated clearly through a consideration of the 

drug discovery, development, and commercialization process. In the drug discovery sphere, 

university involvement is beneficial in that basic research and early development is a strength of 

academia. In addition, because academic researchers tend to pursue higher-risk novel drug 

targets than industry researchers can afford to do, academic research is a key contributor to 

industry pursuing the development of a greater number of drugs with novel mechanisms of 

action (Takabe et al., 2018 & Kneller, 2010). In turn, companies provide pharmaceutical and 
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commercial expertise that enable the translation of these drugs from an academic setting to a 

commercial one. Government often plays a key role in providing early funding that spurs 

innovation, especially for emerging technologies. The interactions between these three 

contributors—academia, industry, and government—in innovation are modeled through the 

“Triple Helix” (Hudson & Khazragui, 2013). 

My study takes a patent-based approach, capable of accounting for the direct 

contributions of universities, companies, and governments, to assessing innovation quality in the 

biotechnology field by examining a dataset of patents derived from the Lens, including patents 

granted in the United States from 2000-2020 that are classified as biotechnology-related 

according to the International Patent Classification (IPC) system. The relationship between 

patent assignee and patent quality—here, proxied by number of forward citations and patent 

family size—is examined via regression analysis. Patent quality is a common indicator of the 

technological value of innovation. In patenting, there may be either a single or multiple assignees 

for a given patent; multiple assignees listed on a patent indicates a situation in which the rights to 

the patent are inclusive of all assignees and therefore suggests that collaborative relationships 

exist between the listed assignees. Patents with multiple assignees are shown to have, in general, 

higher patent quality as opposed to patents with a single assignee. Delving further in the 

organizations contributing towards these multiple-assignee patents, the results also support the 

hypothesis that cross-organizational collaborations—particularly company-company, university-

company, and university-company-government collaborations—are associated with higher 

quality innovations in the biotechnology field, although these effects are stronger when 

considering number of forward citations as a proxy for patent quality than for patent family size.  



6 

While other researchers (Kumaramangalam, 2005; Takabe et al., 2018; Kneller, 2010; 

Lincker et al., 2014; Patridge et al., 2015; Schuhmacher, et al., 2018; Minguillo & Thelwall, 

2015) have examined the role of collaborations between academic and industry partners in 

promoting innovation in biotechnology, this relationship has not been well-characterized using 

patent data; through this research, I seek to fill that literature gap and expand upon the existing 

literature by providing empirical evidence of the impact of cross-organizational collaboration on 

technological innovations. I expect this research to be beneficial in contributing toward the body 

of work guiding policymakers’ decisions regarding optimization of its R&D funding patterns for 

maximized success of biotechnological innovation and potential incentivization of industry-

academia collaborations through funding and patent policy.  

2   LITERATURE REVIEW 

2.1   THE TRIPLE HELIX MODEL: ROLES OF GOVERNMENT, COMPANIES, AND 

UNIVERSITIES IN INNOVATION 

2.1.1   Interplay between Government, Private Industry, and Academia Stakeholders 

For the purposes of examining biotechnological innovation from a public policy 

perspective, the Triple Helix model, which emphasizes the interactions between the three 

primary stakeholders in R&D and innovation policy—(1) universities, (2) private industry, and 

(3) federal government—is ideal (Hudson & Khazragui, 2013). The guiding principle of the 

Triple Helix concept is that “arrangements and networks among the Triple Helix institutional 

spheres provide the source of innovation rather than any single driver” (Etzkowitz, 2003).  

The roles played by the three institutions included in the Triple Helix are related to but 

distinct from the roles which are traditionally attributed to each. Universities are becoming 

increasingly entrepreneurial, retaining their traditional role as producers of knowledge as a 
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public good but taking on a new role in promoting innovation as well (Etzkowitz, 2003). On the 

other hand, private firms are adopting models increasingly similar to the traditional academic 

model, with high levels of training and knowledge sharing, such that the process of innovation is 

no longer simply an internal one but one that takes place between firms and knowledge-

producing institutions (Etzkowitz, 2003).  

Government continues to serve in its traditional policy-making role, but increasingly 

interacts with the other players in the Triple Helix through economic and industrial policies. 

Specific government roles include not only funding R&D through both national labs and grants 

and subsidies to corporations and universities, but also mediating the conflict between 

intellectual property (IP) management on the part of the industry partner and the drive to publish 

on the part of the academic partner: the conflict between the public and private good aspects of 

technology. Government creates stronger incentives for collaboration between industry and 

academia through the adoption of legal frameworks that clearly define ownership of IP rights in 

the products of government-funded research. Further, the government is responsible for outlining 

a framework so that those IP rights can be transferred from public institutions to the private 

sector. Government policies such as the Bayh Dole Act, or the Patent and Trademark Act 

Amendments of 1980, enable universities, nonprofit research institutions, and small businesses to 

own, patent and commercialize inventions developed under federally funded research programs 

within their organizations (Portilla & Rohrbaugh, 2014).  

2.1.2     Biotechnology and Pharmaceutical Innovation as a Case Study of the Triple Helix 

Model in Action 

2.1.2.1     Shifting Roles of Industry and Academia: Open Innovation Corporate Policy 

 Biotechnology serves as an excellent case study of how the new Triple Helix structure of 

closer collaborations and interactions between private industry, academic institutions, and 
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government is transforming basic research into successful innovation. The pharmaceutical 

industry, which tends to overlap significantly with biotechnology, is a very apt selection for 

study simply in terms of its large volume of R&D spending relative to other industries. In a 2021 

report by the Congressional Budget Office (CBO) on “Research and Development in the 

Pharmaceutical Industry”, the “R&D intensity”—R&D spending as a share of net revenues (sales 

less expenses and rebates)—of the pharmaceutical industry was found to be over 25% in 2019 

(averaging about 19% from 2000 to 2019) in contrast to the other industries studied (the 

Technological Hardware, Software, and Semiconductor industries), which each had an R&D 

intensity of less than 17% in 2019. For contrast, the Semiconductor industry, another research-

intensive industry, had an average R&D intensity of only about 15% from 2000 to 2019 (CBO, 

2021).  

Traditionally, the pharmaceutical and biotechnology industries relied on a closed model 

of innovation, which was founded on the need for complete confidentiality and protection of IP 

(Nilsson & Felding, 2015). Since the 1990s, these industries’ corporate policies have been 

shifting through necessity to a more OI model of R&D. The concept of “open innovation” was 

first coined by Dr. Henry Chesbrough of Harvard Business School in 2003 in his book, “Open 

innovation: The new imperative for creating and profiting from technology.” Chesbrough 

describes a “paradigm shift” from the old paradigm, what he calls Closed Innovation, which 

contends that “successful innovation requires control,” to the new paradigm of OI. The paradigm 

of closed innovation is that successful innovation requires control and ownership of IP. This 

system is historically founded in the early 1900s, when universities and governments were not 

involved in commercialization of science, leading to a need for companies to perform all R&D 

in-house at internal R&D units in order to be self-sufficient. On the other hand, the OI paradigm 
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is that companies benefit from use of external ideas in addition to internal ones. Notably, in his 

2003 book, Chesbrough cited the pharmaceutical and biotechnology industries as examples of 

industries that were “in transition between the two paradigms” (Chesbrough, 2003).  

From an industry perspective, the shift from closed to OI models may be attributed to a 

variety of factors, including the expiration of patents for many of the pharmaceutical industry’s 

blockbuster drugs. Perhaps the most important driving factor is the high-cost burden and 

declining productivity of R&D. The efficiency of pharmaceutical R&D, as defined by the 

number of New Drug Applications (NDAs) submitted to the United States Food and Drug 

Administration (FDA) per billion U.S. dollars spent, has reportedly halved roughly every nine 

years for the past several decades (Reichman,& Simpson, 2016). Industry also benefits from 

interactions with universities in that academia provides highly-trained researchers and research 

managers to industry, and serves as an efficient and inexpensive process for screening talent 

(Hall & Rosenberg, 2010). Further, universities provide companies with open access to new 

information regarding research methods and findings, enabling businesses to identify and 

monitor scientific advances that have the potential to transform technologies and markets (Hall 

& Rosenberg, 2010).  

From the academic perspective, steady declines in National Institutes of Health (NIH) 

funding have driven academic researchers to search for other sources of funding. Also, 

partnerships with industry may equip university scientists with new and advanced tools and 

instruments (Hall & Rosenberg, 2010). Thus, while the traditional paradigm is that federally-

funded research enables early basic science research in academia such that this knowledge may 

be transferred to industry where biotechnological inventions are developed and commercialized, 

this paradigm is changing with increasingly OI-oriented policies.  
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2.1.2.2     The Role of Government: Relevant Federal Agencies (NIH, National Science 

Foundation (NSF), and FDA) 

While viewing drug innovation from an OI perspective is logical in the context of 

corporate policy and the relationship specifically between academia and industry, the essential 

role of the third player in the Triple Helix—the government—in biotechnological innovation 

should not be neglected. The role of early federal funding in spurring innovation, especially for 

emerging technologies, is not to be understated. Tassey notes that “several decades of large-scale 

funding of molecular biology research by the NIH were required before private investment 

kicked in and spawned a biotechnology industry” (2004). Tassey goes so far as to attribute the 

creation of a biotechnology research infrastructure in both universities and industry to NIH 

funding, and the NIH Office of Extramural Research is, in fact, the largest funder of biomedical 

research in the world (NIH, 2019). Cleary et al., showed that NIH funding contributed to 

research publications associated with every one of the 210 new drugs approved by the FDA 

between 2010 and 2016 (2018).  

Aside from the NIH, the other major federal funder in the drug innovation space is the 

NSF, which funds about 20% of all federally-supported basic research conducted at universities 

in the U.S. (NSF, n.d.). As mentioned earlier, the government also continues to serve in its 

regulatory role through the FDA, which approves drugs for marketing in the United States 

following review of the drugs’ effects by the FDA’s Center for Drug Evaluation and Research 

(CDER) (US Food & Drug Administration, 2022). The federal government also continues to 

influence university-industry relationships, technology transfer, and patent law through its 

innovation policies.  
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2.1.2.3     Forms of Collaboration between Industry, Academia, and Government 

 Primary forms of collaboration between the biotechnology and pharmaceutical industries 

and academic or government institutions include public-private partnerships (PPPs), academic 

centers of excellence, and direct collaboration. The first form of collaboration, public-private 

partnership, in which participants exchange data, share expertise, resources, IP, and ultimately 

risk, is commonly applied to enabling drug development for neglected diseases. By definition, a 

public-private partnership is an arrangement between a government institution—which provides 

funding for the project—and other institutions such as universities or companies. Examples 

include the Drugs for Neglected Diseases Initiative (DNDi) and the Medicines for Malaria 

Venture (MMV), which are sponsored by a variety of universities, research centers, 

governmental organizations, biotech companies, and pharmaceutical companies (Tralau-Stewart 

et al., 2009). The second type of collaboration is academic centers of excellence or innovation 

centers, established by companies to leverage the expertise of academic research institutions. 

Pfizer’s Global Centers for Therapeutic Innovation (CTIs) in partnership with the University of 

California at San Francisco serves as an excellent example (Schuhmacher, et al., 2018) of this 

collaboration form. Another instance is the Genomics Institute of the Novartis Research 

Foundation (GNF), which is affiliated with academic centers such as the Scripps Research 

Institute, the University of California at San Diego, and the Salk Institute for Biological Studies 

(Thomas & McKew, 2014). The third type of collaboration is “direct” collaboration between 

pharmaceutical or biotechnology companies and academic institutions. Examples of prominent 

universities known to collaborate in this way include Harvard—with collaborations with Ipsen, 

Pfizer, Roche, and Sanofi—and Vanderbilt—with collaborations with GlaxoSmithKline, 

Janssen, Bristol-Myers Squibb, and AstraZeneca (Thomas & McKew, 2014). These “direct” 

collaborations stem from companies seeking to leverage an academic institution’s expertise in 
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exchange for funding. Stepping into their new entrepreneurial role described above, universities 

are also beginning to take their involvement in the drug discovery and development process 

further down the innovation chain, particularly through spinout companies, which represent the 

translation of publicly-funded research into private entrepreneurial endeavors (Hudson & 

Khazragui, 2013).  

2.2     COLLABORATION BETWEEN UNIVERSITIES AND COMPANIES IN 

BIOTECHNOLOGY 

 

In cross-organizational collaboration, the academic partner provides knowledge sharing, 

access to scientific expertise, and a focus on basic research; companies, in turn, provide 

commercial expertise enabling the translation of early discoveries into commercial products. One 

of the most common appearances of academic-industry collaboration in biotechnology in the 

literature is in the form of studies exploring the relative contributions of these two parties as 

originators of new drugs. Some researchers, including Takabe et al. (2018), have investigated 

industry-academia collaborations from the academic contributor’s perspective. Takebe et al. 

(2018) investigate the success rates of nearly 800 drug discovery projects conducted between 

1991 and 2015 at 36 academic institutions in the U.S. for the various phases of clinical trials and 

the approval process—phase I, II, III, and NDA or Biologics License Application (BLA)—and 

compare these rates to those of the pharmaceutical industry. The study finds that the rates were 

similar for academia and the industry, and that collaboration plays an essential role in bringing 

the academic-origin drugs to the phase III and NDA/BLA stages; all projects that were 

successful at these later stages were found to involve academic-industrial collaboration. This 

study also takes into account the effect of disease domain and modality on the success rate of the 

collaboration.  



13 

Further, Kneller (2010) demonstrates that, out of a dataset of 252 new drugs approved by 

the FDA between 1998 and 2007, 24% originated from a university. Lincker et al. (2014) use 

prior patent art to demonstrate that, out of 357 FDA-approved drugs, 48% originated from 

academic research. Finally, Patridge, et al., (2015) show that 55% of 1453 FDA-approved new 

molecular entities (NMEs) were first reported in academia.  

Taking a different approach, Schuhmacher et al. (2018) consider the financial benefits of 

collaboration from the industry partner’s perspective. The authors, in an analysis of the key 

financial and R&D figures of multinational pharmaceutical companies, find that the industry 

R&D standard comprises a project portfolio with approximately 50% externally generated R&D 

and predominantly introverted innovation management. Further, companies with a proportion of 

externally acquired R&D projects that is above benchmark were found to have a higher Earning 

Before Tax and Interest (EBIT) margin and an average stock price that increased continuously by 

5-10% higher in 2006 to 2011 compared with companies that acquired less than 50% of their 

projects from the outside.  

Other, non-drug-related studies have also explored the importance of university-industry 

collaboration in contributing towards high-quality biotechnology outputs. These sometimes make 

use of scientific publications as a method of studying collaboration between private and 

academic researchers; co-authorship is considered a “form of direct interaction and knowledge 

transfer between the communities” (Minguillo & Thelwall, 2015). For instance, 

Kumaramangalam (2005) uses a dataset of scientific articles from the United Kingdom’s (U.K.) 

biotechnology sector from 1988 to 2001 to show that increased academic contribution on 

industry research papers improves research quality, as proxied by journal status.  
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2.3     PRECEDENT FOR PATENT-BASED ASSESSMENT OF INNOVATION QUALITY 

In this study, I use patent data to measure the innovation. Historically, measures of 

innovation have evolved from early input measures such as R&D expenditure and number of 

scientists to output measures such as patent counts, publications, or licensing (Donoso, 2017). 

Today, patents are the main source of data on innovation. Patenting involves an inventor paying 

a fixed cost in exchange for earning a legal monopoly right over an invention. The rationale 

behind patents as measure of innovation is that, in theory, all innovations that are profitable—

those for which the monopoly profits over the duration of the patent exceed the fixed cost of the 

patent—should be patented (Donoso, 2017).  

Patent “quality” has been widely utilized to represent the innovativeness, impactfulness, 

and “technological value of an invention” (Michelino, et al., 2016) in the literature. Various 

indicators of patent quality have been explored, including forward citations, backward citations, 

number of claims, family size, generality, and originality (Baron & Delcamp, 2012). One of the 

most common indicators of patent quality is number of forward citations, defined as the number 

of patent applications that cite the patent of interest as an influential “prior art” (Briggs & Wade, 

2014). Lanjouw and Schankerman (2004) suggest that the forward citations are the most 

important quality indicator for drug patents. Forward citations generally indicate the relevance 

and influence of the patent for future research and innovations (Baron & Delcamp, 2012) and 

capture the importance of the innovation in facilitating “spillovers”, the development of public 

knowledge, and cumulative innovation (Briggs & Wade, 2014; Sterzi, 2013). Forward citations 

are also thought to be a useful indicator given that they are forward-looking rather than driven by 

any strategic behavior on the part of the applicant, as is the case with indicators such as number 

of claims or backward citations (Sterzi, 2013). Many studies have demonstrated that forward 
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citations are highly correlated with innovation value, from the perspective of both technological 

impact and market and social value (Briggs, 2021). 

In one example of a study employing the number of forward citations as an indicator of 

patent quality, Sterzi (2013) examines the relationship between ownership structure and patent 

quality, indicated by number of forward citations, for both university-owned and corporate-

owned patents in the U.K. from 1990-2001. Sterzi (2013) finds that academic patents owned by 

companies receive more citations in the first years after the filing date than those owned by 

universities or other public research organizations when controlling for observable inventor and 

patent characteristics. Additionally, patent quality is higher for patents originally assigned to 

universities but transferred to companies, showing the importance of translation from academia 

to industry. In another study, examining university-industry collaborations of Italian inventors 

from 1978-2007, Crescenzi et al. (2017) measure patent quality via forward citations. They find 

that university-industry collaborations are less likely to occur than collaborations between 

exclusively university partners or business partners, but that these collaborations tend to generate 

patents with high general applicability and patent quality as proxied by forward citations. Also, 

Briggs and Wade (2014) find that joint patent ownership positively impacts the quality of an 

innovation, as measured by forward patent citations.  

A second commonly used indicator of patent quality is family size, which is defined as 

the number of international patents filed for the same priority patent (Baron & Delcamp, 2012). 

Patent family size is relevant as an indicator of quality in that it indicates that a patent is 

important on an international scale. Further, if the patent’s assignee is willing to incur the high 

application costs necessary to obtain patents internationally (Baron & Delcamp, 2012), it follows 
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that the assignee expects the patent to prove profitable enough to defray and potentially exceed 

those costs.  

Ocean Tomo is a platform that offers periodical auctions in which patents are sold by 

individual inventors or investors, academic institutions, companies, and government agencies, 

allowing researchers to have a direct measure of the private value of a patent. Using Ocean 

Tomo’s auction data to empirically test predictions on patent value indicators on real-world 

auction prices, Fischer and Leidinger (2014) find support for both forward citations and patent 

family size as indicators of patent value. Guellec & van Pottelsberghe de la Potterie (2000), 

however, find that, family size is only correlated to patent value up to a certain threshold. They 

conjecture that, for many technologies, protection in only a few countries, especially if these are 

large ones, may be sufficient to gain worldwide protection without incurring the cost of patenting 

in additional smaller countries (Guellec & van Pottelsberghe de la Potterie, 2000). This may be a 

limitation to using patent family size as an indicator of patent quality.  

3   METHODS 

3.1   RAW DATA COLLECTION 

I collected the patent data from the Lens structured patent search featuring data derived 

from the U.S. Patent and Trademark Office (USPTO)1. My objective was to obtain a dataset of 

patents classified under the 8th edition of the IPC system as falling in the biotechnology sector. 

The list of IPC codes used is derived from the OECD Science, Technology and Industry 

Scoreboard (2009): A01H1/00, A01H4/00, A61K38/00, A61K39/00, A61K48/00, C02F3/34, 

C07G(11/00, 13/00, 15/00), C07K(4/00, 14/00, 16/00, 17/00,19/00), C12M, C12N, C12P, C12Q, 

 
1 Data were retrieved from https://www.lens.org/lens/search/patent/structured in June, 2022 

https://www.lens.org/lens/search/patent/structured
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C12S, G01N27/327, G01N33/(53*, 54*, 55*, 57*, 68, 74, 76, 78, 88, 92) (Table A1). In this 

analysis, I focus on the biotechnology patents that were granted in the U.S. between January 1st, 

2000, and January 1st, 2020, and were classified with at least one of the above IPC codes (Figure 

1, Table A2).  

 

Figure 1: Number of Patents in the Dataset Published Each Year from 2000 to 2020 

3.2   GENERATION OF FINAL DATASET FOR ANALYSIS 

From the raw dataset obtained as described above, duplicate entries with the same patent 

family were dropped, ensuring that each observation represents one unique invention. Patents 

with no owner information available were also dropped. Finally, all patents for which the first 

assignee’s country was not one of the assignee countries with at least 1000 patents were dropped. 
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This means that the final dataset only includes patents for which the first assignee’s country is 

listed as the United States, Japan, Germany, Great Britain, France, Switzerland, Canada, Korea, 

the Netherlands, Denmark, Israel, China, Australia, Taiwan, Belgium, or Sweden (Figure 2, 

Table A3), a list which captures the countries most prevalent on the U.S. patenting stage. The 

final dataset contains 137,947 total biotechnology patents. For 88,585 (64%) of these, the first 

listed assignee’s country is the U.S..  

 

Figure 2: Frequency of Assignee Country in Dataset 
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types are: (1) university (including academic institutions and hospitals), (2) corporate 

organizations or companies (industry), (3) government (any government-affiliated institution, 

including the NIH), and (4) others (i.e., an assignee cannot be identified as any of the 

aforementioned organization types). Of the 137,947 patents included in my sample, 44,309 

(about 32%) had multiple assignees, while the other 93,638 (about 68%) had single assignees, 

with the bulk of these being single companies (613,44 patents, or about 44%) (Figure 3, Table 

A4). The distribution of assignee organization types for the U.S.-only sample population is fairly 

similar; of the 88,585 patents included in the U.S.-only dataset, 26,611 (about 30%) had multiple 

assignees, while the other 61,974 (about 70%) had single assignees, with the bulk of these being 

single companies (37,966 patents, or about 43%) (Figure 4, Table A5).   

 

 
Figure 3: Frequency of Assignee Organization Types for Patents with First Listed Assignee from 

the United States, Japan, Germany, Great Britain, France, Switzerland, Canada, Korea, the 

Netherlands, Denmark, Israel, China, Australia, Taiwan, Belgium, or Sweden 
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Figure 4: Frequency of Assignee Organization Types for Patents with First Listed Assignee from 

the U.S. Only 

 

3.3   MEASURES IN THE MODEL 

To measure the quality of a biotech patent, I use two outcome variables: the number of forward 

citations and the size of the patent family (Table 1). For the full 16-country sample, the number 

of forward citations ranges from 0 to 2,850, with a mean of 14 and a standard deviation of 45; 

the simple family size ranges from 1 to 391, with a mean of 15 and a standard deviation of 20. 

Table 1: Summary Statistics for Dependent Variables 

Variable Number of 
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Mean Standard 
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Number of Forward 
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137,947 14 45 0 2,850 

Simple Family Size 137,947 15 20 1 391 
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My independent variables include the following: 

Multiple Assignees: A binary variable was generated to indicate whether the patent had more 

than one assignee listed (single assignee is coded as zero; multiple assignees are coded as one). 

Single assignee refers to a situation in which the rights to the patent are exclusive and no 

collaboration behavior is considered to exist in the inventive process. On the other hand, multiple 

assignees refers to a situation in which the rights to the patent are inclusive of all assignees. 

Further, collaborative relationships are considered to exist between assignees listed on a 

multiple-assignee patent. 

Assignee Organization Type: I constructed 12 binary variables to measure the collaboration 

among different types of patent assignees (first by identifying whether the number of assignees is 

single or multiple and then by identifying the organization category). These are mutually 

exclusive such that a single patent will have 0 for eleven of the variables but 1 for one of the 

variables. (1) The variable single company indicates whether a patent has a single assignee that is 

categorized as a company. (2) The variable single government indicates whether a patent has a 

single assignee that is categorized as a governmental organization. (3) The variable single 

university indicates whether a patent has a single assignee that is categorized as a university. (4) 

The variable single “other” indicates whether a patent has a single assignee that is categorized as 

other. (5) The variable multiple companies indicates whether a patent has multiple assignees that 

are each categorized as a company. (6) The variable multiple universities indicates whether a 

patent has multiple assignees that are each categorized as a university. (7) The variable multiple 

governments indicates whether a patent has multiple assignees that are each categorized as a 

government. (8) The variable university-company indicates whether a patent has multiple 

assignees including at least one university organization and one business organization. (9) The 
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variable university-government indicates whether a patent has multiple assignees, including at 

least one university organization and at least one assignee as government organization. (10) The 

variable company-government indicates whether a patent has multiple assignees, including at 

least one business organization and at least one government organization. (11) The variable 

university-government-company indicates whether a patent has multiple assignees, including at 

least one university organization, at least one government organization, and at least one business 

organization. Finally, (12) the variable multiple “other” indicates whether a patent has multiple 

assignees, with any of those assignees being categorized as other. Note that, for regressions 

against assignee organization type, single company assignee organization type was used as the 

baseline or omitted category. 

 

In addition to the variables of interest, I also include the following additional independent variables 

to control for the differences in technological fields, countries of origin, and time of patent 

publication:  

Number of IPC Codes: The number of IPC codes associated with each patent was identified 

and used to control for the generalness of each patent, such that a greater number of IPC codes 

associated with a patent is thought to indicate a greater level of generalness. For the full 16-

country sample, number of IPC codes ranges from 1 to 169, with a mean of 7 and a standard 

deviation of 6 (Table A6).  

Assignee Country: A binary dummy variable was generated for the country of the first listed 

assignee (US, JP, DE, GB, FR, CH, CA, KR, NL, DK, IL, CN, AU, TW, BE, and SE). Note that, 

in the regressions, the U.S. is used as the baseline/omitted country. 
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Publication Year: A binary dummy variable was generated for each year (2000 through 2020) 

to control for the year the patent was published. This is particularly important in regressions 

against number of forward citations, as one of the primary limitations of utilizing forward 

citations as an indicator of patent quality is the issue of “time truncation”, or the “natural bias 

that older patents likely have more citations because they have had more time to be cited” 

(Briggs & Wade, 2014). Note that, in the regressions, 2000 (the first year in the dataset) is used 

as the baseline/omitted year. 

IPC Section Symbol: To control broadly for the type of technology a certain patent falls under, I 

use a set of binary variables each indicating one of the eight IPC sections (WIPO, 2022; Table 

A1). Based on the IPC system, a given patent may be categorized by one or more IPC codes and 

therefore may be associated with one or more of the eight IPC sections. In the full 16-country 

sample, 48% of patents were associated with a section A IPC code; 6% with section B; 81% with 

section C; 27% with section G; and 1% with section H (Table A7). Note that, in the regressions, 

IPC section C is used as the baseline/omitted IPC section symbol, as it has the highest frequency 

in the dataset.  

4   ANALYSIS AND DISCUSSION 

4.1   EFFECT OF MULTIPLE ASSIGNEES ON PATENT QUALITY 

I begin by estimating a regression model (specified in Equation 1) to examine the correlation 

between patent quality and an indicator of  multiple assignees, while controlling for number of 

IPC codes, assignee country, publication year, and IPC section symbol.   

 

Equation 1: Yict = β1*multi_assignee(i) + β2*number_of_IPC + γc + γt  + δipc + εict 
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In the model, the dependent variable Y is a proxy for patent quality, either number of 

forward citations or simple patent family size, of a patent i from country c published in year t. β1 

denotes the coefficient for the independent variable, multiple assignees. β2 denotes the 

coefficient for a control variable, number of IPC codes. γc , γt, and δipc denote sets of binary 

variables indicating assignee country, publication year, and IPC section symbol, respectively. 

Finally, εict denotes the error term. 

Table 2 reports my regression results. In columns 1 and 2, the dependent variable is the 

number of forward citations, while the dependent variable in columns 3 and 4 is the size of 

patent family. For both outcomes, I report the regression results based on the full sample (patents 

filed by assignees in 16 countries) and a restricted sample of patents by U.S. assignees only.  

First, in columns 1 and 2, I find that the estimated coefficients of the multiple assignee indicator 

are positive and statistically significant at the 1% level. More specifically, this suggests that a 

patent with multiple owners on average receives 4.0 more citations than a patent with one single 

assignee (column 1), when everything else is held constant. This difference is slighter larger for 

U.S.-based patents (column 2); a U.S.-based patent with multiple assignees on averages receives 

4.9 more citations than a patent with one single assignee.  

Notably, I include the number of IPC codes associated with each patent as a control for 

generalness and IPC section symbols as a control for the type of technology associated with a 

given patent. In column 1, I find that the estimated coefficient for the number of IPC codes is 

positive and statistically significant at the 1% level, suggesting that patents spanning more 

technological fields receive more citations. More specifically, my estimated coefficient indicates 

that a given patent on average receives 0.4 more forward citations for every additional IPC code 

associated with that patent. I also find that the estimated coefficients for IPC section symbols B, 
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F, G, and H are positive and statistically significant at the 1% level, suggesting that a given 

patent on average receives 6.1 more forward citations if it is associated with IPC section symbol 

B in comparison to IPC section symbol C; 5.2 more forward citations if it is associated with IPC 

section symbol F; 1.4 more forward citations if it is associated with IPC section symbol G; and 

6.6 more forward citations if it is associated with IPC section symbol H. These effects are very 

similar for U.S.-based patents (column 2).  

In columns 3 and 4, I show that the effect of multiple assignees on simple patent family 

size is also positive and statistically significant at a 1% level. More specifically, this suggests 

that the simple family size of a patent with multiple owners is on average 3.2 patents larger than 

that of a patent with one single assignee (column 3), when everything else is held constant. This 

difference is slighter larger for U.S.-based patents (column 4); the simple patent family size of a 

patent with multiple owners for a U.S.-based patent is on average 3.6 patents larger than that of a 

patent with one single assignee.   

In column 3, I find that the estimated coefficient for the number of IPC codes is positive 

and statistically significant at the 1% level. More specifically, this suggests that the simple patent 

family size of a patent is on average 0.9 patents larger for every additional IPC code associated 

with that patent. I also find that the estimated coefficients for IPC section symbols A, D, E, and 

H are positive and statistically significant at the 1% level, suggesting that the simple patent 

family size of a patent is on average 0.7 patents larger if it is associated with IPC section symbol 

A in comparison to IPC section symbol C; 3.6 patents larger if it is associated with IPC section 

symbol D; 39.2 patents larger if it is associated with IPC section symbol E; and 1.3 patents larger 

if it is associated with IPC section symbol H. On the other hand, I find that the estimated 

coefficients for IPC section symbols B, F, and G are negative and statistically significant at the 
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1% level, suggesting that the simple patent family size of a patent is on average 1.0 patents 

smaller if it is associated with IPC section symbol B in comparison to IPC section symbol C; 4.1 

patents smaller if it is associated with IPC section symbol F; and 0.6 patents smaller if it is 

associated with IPC section symbol G. For U.S.-based patents, the effects observed for number 

of IPC codes and IPC section symbols D through H are very similar for U.S.-based patents 

(column 4); however, the effect of IPC section symbol B is not statistically significant at the 1% 

level for U.S.-based patents. Additionally, I find that simple patent family size of a U.S.-based 

patent is on average 0.8 patents smaller if it is associated with IPC section symbol A, as opposed 

to 0.8 patents larger as observed in the 16-country dataset. Overall, these results suggest that an 

invention developed by multiple organizations (regardless of their type) tends to have higher 

quality compared to an invention developed by one single organization. 

  

Table 2: Estimated Effect of Number of Assignees on Patent Quality (as Proxied by Number of 

Forward Citations and Simple Patent Family Size) of Biotechnology Patents from 2000 to 2020 

in the United States 

 Number of Forward Citations Simple Patent Family Size 

 1 2 3 4 

 
US, JP, DE, GB, FR, CH, 
CA, KR, NL, DK, IL, CN, 

AU, TW, BE, SE 
US only 

US, JP, DE, GB, FR, CH, 
CA, KR, NL, DK, IL, 
CN, AU, TW, BE, SE 

US only 

Multiple 

Assignees 

4.000*** 

(0.247) 

4.946*** 

(0.357) 

3.169*** 

(0.107) 

3.630*** 

(0.143) 

Number of IPC 

Codes 

0.358*** 

(0.021) 

0.423*** 

(0.030) 

0.920*** 

(0.009) 

1.031*** 

(0.012) 

IPC Section 

Symbol A 

-0.156  

(0.259) 

-0.523  

(0.366) 

0.741*** 

(0.112) 

-0.761*** 

(0.147) 
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IPC Section 

Symbol B 

6.148*** 

(0.510) 

8.129*** 

(0.721) 

-0.978*** 

(0.221) 

-0.075 

(0.289) 

IPC Section 

Symbol D 

-0.475  

(1.706) 

1.092 

(2.570) 

3.615*** 

(0.739) 

7.942*** 

(1.031) 

IPC Section 

Symbol E 

-1.575  

(3.896) 

-5.197  

(5.365) 

39.215*** 

(1.687) 

54.507*** 

(2.152) 

IPC Section 

Symbol F 

5.153*** 

(1.747) 

5.004** 

(2.332) 

-4.072*** 

(0.756) 

-4.996*** 

(0.935) 

IPC Section 

Symbol G 

1.413*** 

(0.276) 

1.815*** 

(0.392) 

-0.586*** 

(0.119) 

-0.589*** 

(0.157) 

IPC Section 

Symbol H 

6.588*** 

(1.062) 

8.890*** 

(1.487) 

1.281*** 

(0.460) 

3.244*** 

(0.596) 

Constant 
42.073*** 

(0.625) 

49.274*** 

(0.865) 

1.789*** 
(0.271) 

0.369  

(0.347) 

Observations 137,947 88,585 137,947 88,585 

R-squared 0.102 0.109 0.112 0.124 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

Note that the following variables were controlled for in these regressions (not shown in the table for brevity): 

Assignee Country and Publication Year. 

 

4.2   EFFECT OF ASSIGNEE ORGANIZATION TYPE ON PATENT QUALITY 

To further examine the effect of cross-organizational collaboration, I estimate another 

regression model with more detailed characterization of assignee organization type and their 

collaboration relationship, specified as Equation 2.  
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Equation 2: Yict =  β1*single_government(i) + β2*single_university(i) + β3*single_other(i) + 

β4*multiple_companies(i) + β5*multiple_universities(i) + β6*multiple_governments(i) + 

β7*university_company(i) + β8*university_government(i) + β9*company_government(i)+ 

β10*university_government_company(i) + β11*multiple_others(i) + β12*number_of_IPC + γc + γt 

+ δipc + εict 

 

In this equation, the dependent variable Y is a proxy for patent quality, either number of 

forward citations or simple patent family size, of a patent i from country c published in year t.  β1 

through β11 denote the coefficients for the independent variables of interest measuring various 

assignee organization types. β2 denotes the coefficient for a control variable, number of IPC 

codes. γc , t, and δipc denote sets of binary variables indicating assignee country, publication year, 

and IPC section symbol, respectively. Finally, εict denotes the error term. I report the regression 

results in Table 3.  

For both outcomes, I report the regression results based on the full sample (patents filed 

by assignees in 16 countries) and a restricted sample of patents by U.S. assignees only. Across 

all specifications, patents with a single company assignee are the omitted category. Thus, the 

estimated coefficients on the assignee organization variables indicate their difference from the 

omitted category.  

First, in columns 1 and 2, I find that patents with single government, single university, 

and single “other” assignees receive significantly fewer citations compared to patents with one 

single corporate assignee. In column 1, I find that the estimated coefficients of the single 

government, single university, and single other assignees indicators are negative and statistically 

significant at the 1% level. More specifically, this suggests that a patent with a single 
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government assignee on average receives 5.0 fewer forward citations than a patent with one 

single corporate assignee; a patent with a single university assignee receives 1.5 fewer citations; 

and a patent with a single “other” assignee receives 5.0 fewer citations, when everything else is 

held constant (column 1). Similarly, for the U.S.-based patents (column 2), I find that a U.S.-

based patent with a single government assignee on average receives 7.2 fewer forward citations 

than a patent with one single corporate assignee and a U.S.-based patent with a single university 

assignee receives 3.3 fewer citations. However, I find that the estimated coefficient for the single 

“other” assignees of U.S.-based patents is not statistically significant at the 1% level, although 

the estimated coefficient for multiple universities is, indicating that a U.S.-based patent with 

multiple universities assignees on average receives 2.6 fewer forward citations than a patent with 

one single corporate assignee.  

On the other hand, I find that patents with multiple companies, university-company, and 

university-company-government assignees receive significantly more citations compared to 

patents with one single corporate assignee. In column 1, I find that the estimated coefficients of 

the multiple companies, university-company, and university-company-government indicators are 

positive and statistically significant at the 1% level. More specifically, this suggests that a patent 

with multiple company assignees on average receives 4.6 more forward citations than a patent 

with one single corporate assignee; a patent with university and company assignees receives 2.3 

more citations; and a patent with university, company, and government assignees receives 17.0 

more citations, when everything else is held constant (column 1). Similarly, for the U.S.-based 

patents (column 2), I find that a U.S.-based patent with multiple company assignees on average 

receives 4.7 more forward citations than a patent with one single corporate assignee; a U.S.-

based patent with university and company assignees receives 3.4 more citations; and a U.S.-
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based patent with university, company, and government assignees receives 35.1 more citations. I 

also find that the estimated coefficients of multiple “other” assignees is positive and statistically 

significant at the 1% level for U.S.-based patents, suggesting that a patent with multiple “other” 

assignees on average receives 4.3 more forward citations than a patent with one single corporate 

assignee. 

In columns 3 and 4, I find that the simple patent family size for patents with single 

government, single university, single “other”, multiple universities, multiple governments, and 

multiple “other” assignees is significantly smaller than that of patents with one single corporate 

assignee. In column 3, I find that the estimated coefficients of the single government, single 

university, single “other”, multiple universities, university-government, and multiple “other” 

indicators are negative and statistically significant at the 1% level. More specifically, this 

suggests that the simple family size of a patent with a single government assignee is on average 

3.8 patents smaller than that of a patent with one single corporate assignee; the simple family 

size of a patent with a single university assignee is on average 5.0 patents smaller; the simple 

family size of a patent with a single “other” assignee is on average 3.6 patents smaller; the 

simple family size of a patent with a multiple university assignees is on average 3.5 patents 

smaller; the simple family size of a patent with university and government assignees is on 

average 3.5 patents smaller; and the simple family size of a patent with multiple “other” 

assignees is on average 2.6 patents smaller, when everything else is held constant (column 3). 

These effects are very similar for U.S.-based patents (column 4). The simple family size of a 

U.S.-based patent with a single government assignee is on average 3.4 patents smaller than that 

of a patent with one single corporate assignee; the simple family size of a U.S.-based patent with 

a single university assignee is on average 4.5 patents smaller; the simple family size of a U.S.-
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based patent with a single “other” assignee is on average 5.1 patents smaller; the simple family 

size of a U.S.-based patent with a multiple university assignees is on average 2.5 patents smaller; 

the simple family size of a U.S.-based patent with university and government assignees is on 

average 2.8 patents smaller; and the simple family size of a U.S.-based patent with multiple 

“other” assignees is on average 2.7 patents smaller, when everything else is held constant.  

On the other hand, I find that the simple patent family size for patents with multiple 

company assignees is significantly larger than that of patents with one single corporate assignee. 

In column 3, I find that the estimated coefficient of the multiple company indicator is positive 

and statistically significant at the 1% level. More specifically, this suggests that a patent with 

multiple company assignees on average receives 3.8 more forward citations than a patent with 

one single corporate assignee (column 3). This effect is slightly larger for U.S.-based patents 

(column 4), such that a U.S.-based patent with multiple company assignees on average receives 

3.9 more forward citations than a patent with one single corporate assignee, when everything else 

is held constant. Notably, I again include the number of IPC codes associated with each patent as 

a control for generalness and IPC section symbols as a control for the type of technology 

associated with a given patent. The estimated coefficients of the number of IPC codes and many 

of the IPC section symbols are statistically significant at the 1% level, similar to the findings in 

Table 2.  

 I conducted additional tests to compare the estimated coefficients using number of 

forward citations as the proxy for patent quality on the various assignee variables (using the 

lincom command in Stata). Comparing the estimated coefficients for the effect of assignee 

organization type being university-company-government versus multiple companies or 

university-company, I find that patents with multiple assignees including universities, 
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government, and companies receive, on average, 12.3 forward citations more than patents with 

multiple company assignees and about 14.7 forward citations more than patents with multiple 

assignees including companies and universities. Thus, collaboration among universities, 

companies, and government agencies tends to yield the highest-quality innovation. I also find 

that patents with multiple company assignees receive, on average, 2.4 forward citation more than 

patents with multiple assignees including universities and companies. This indicates that 

company-company collaboration yields the second-highest patent quality, followed by 

university-company collaborations.  

Overall, these results suggest that an invention developed by multiple companies, 

university-company, and university-company-government assignees tends to have higher patent 

quality than an invention developed by a single corporate assignee when considering number of 

forward citations. When considering simple patent family size, the results suggest that only an 

invention developed by multiple company assignees tends to have higher patent quality than an 

invention developed by a single corporate assignee.  

 

Table 3: Estimated Effect of Assignee Organization Type on Patent Quality (as Proxied by 

Number of Forward Citations and Simple Patent Family Size) of Biotechnology Patents from 

2000 to 2020 in the United States 

 Number of Forward Citations Simple Patent Family Size 

 1 2 3 4 

 

US, JP, DE, GB, FR, 
CH, CA, KR, NL, 

DK, IL, CN, AU, 

TW, BE, SE 

US only 

US, JP, DE, GB, FR, 
CH, CA, KR, NL, 

DK, IL, CN, AU, 

TW, BE, SE 

US only 

Single 
Government 

-5.043*** 
(0.630) 

-7.283*** 
(0.844) 

-3.795*** 
(0.271) 

-3.424*** 
(0.337) 

Single 

University 

-1.466*** 

(0.316) 

-3.262*** 

(0.424) 

-4.999*** 

(0.136) 

-4.514*** 

(0.169) 
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Single “Other”  -5.018*** 

(1.271) 

-3.716 

(2.274) 

-3.599*** 

(0.546) 

-5.117*** 

(0.907) 

Multiple 

Companies 

4.624*** 

(0.318) 

4.653*** 

(0.455) 

3.823*** 

(0.136) 

3.914*** 

(0.182) 

Multiple 

Universities 

-0.505 

(0.678) 

-2.596*** 

(0.871) 

-3.474*** 

(0.291) 

-2.484*** 

(0.348) 

Multiple 

Governments 

-0.372 

(1.967) 

-2.010  

(2.539) 

-0.604  

(0.845) 

0.446  

(1.013) 

University-

Company 

2.255*** 

(0.526) 

 3.414*** 

(0.826) 

-0.426* 

(0.226) 

0.371  

(0.329) 

University-

Government 

0.274 

(1.194) 

-0.657  

(1.758) 

-3.519*** 

(0.513) 

-2.801*** 

(0.701) 

Company-

Government 

  0.0432 

(1.217) 

1.826 

(2.092) 

0.550  

(0.523) 

0.960  

(0.834) 

University-

Company-

Government 

16.952*** 

(2.071) 

35.071*** 

(3.630) 

-0.202  

(0.889) 

-0.803  

(1.448) 

Multiple 

“Other” 

0.348 

(0.767) 

4.318*** 

(1.380) 

-2.627*** 

(0.330) 

-2.745*** 

(0.551) 

Number of IPC 

Codes 

0.408*** 

(0.021) 

0.408*** 

(0.030) 

0.898*** 

(0.009) 

1.014*** 

(0.012) 

IPC Section 
Symbol A 

-0.044  
(0.259) 

-0.392 
(0.366) 

  0.982*** 
(0.111) 

-0.566*** 
(0.146) 

IPC Section 

Symbol B 

  5.946*** 

(0.510) 

  7.794*** 

(0.721) 

-1.422*** 

(0.219) 

-0.519* 

(0.287) 

IPC Section 
Symbol D 

-0.655  
(1.705) 

0.919  
(2.566) 

3.247*** 
(0.732) 

7.714*** 
(1.024) 

IPC Section 

Symbol E 

-1.855  

(3.893) 

-5.858  

(5.358) 

38.604*** 

(1.672) 

53.932*** 

(2.137) 

IPC Section 
Symbol F 

  5.082*** 
(1.746) 

4.913** 
(2.329) 

-4.398*** 
(0.750) 

-5.337*** 
(0.929) 

IPC Section 

Symbol G 

1.543*** 

(0.276) 

2.054*** 

(0.392) 

-0.274** 

(0.118) 

-0.290* 

(0.156) 

IPC Section 
Symbol H 

6.446*** 
(1.062) 

8.613*** 
(1.485) 

1.092** 
(0.456) 

2.965*** 
(0.592) 

Constant 42.842*** 

(0.634) 

50.869*** 

(0.879) 

  3.348*** 

(0.272) 

2.102*** 

(0.351) 

Observations 137,947 88,585 137,947 88,585 
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R-squared 0.103 0.112 0.128 0.136 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

Note that the following variables were controlled for in these regressions (not shown in the table for brevity): 

dummy variables for Assignee Country and Publication Year. 

5   CONCLUSIONS 

5.1   SUMMARY OF FINDINGS 

In this study, I investigate the effects of cross-organizational collaborations, particularly 

those involving companies and universities, on the quality of innovations in biotechnology. 

Overall, my empirical results show that patents with multiple assignees—evidence of 

collaboration between at least two organizations—tend to have greater patent value, proxied by 

number of forward citations and patent family size, than patents with only a single assignee. 

Upon examination of the specific collaborators contributing to the multiple-assignee 

relationships, I find that patents produced by multiple companies, university-company, and 

university-company-government collaborations receive a higher number of forward citations 

relative to patents produced by a single company assignee. This positive effect is relatively small 

for patents with multiple companies and university-company collaborators as the assignees; the 

number of forward citations is found to be, on average, about 5 citations more for patents with 

multiple companies as the assignees rather than a single company assignee for our full sample 

and restricted sample of U.S.-based patents only, respectively, and about 2-3 citations more for 

patents with university-company assignees rather than a single company assignee. However, by 

far the strongest statistically significant effect is observed when a university-company-

government collaboration is involved; these relationships correlate to patents with about 17 

citations more than a single company assignee on average, and the difference is as large as 35 

citations for U.S.-based patents. These observations highlight the importance of the relationships 
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between universities, companies, and government—the three main players in the Triple Helix—

in maximizing innovation quality in the biotechnology space. In addition, it should be noted that 

the results for the U.S.-only population are similar to those for the 16-country sample, indicating 

that the results of this study are applicable for both patents owned by assignees within the U.S. 

and by assignees from the other major patenting countries outside of the U.S.  

When examining simple patent family size as the proxy for patent value, I find that 

company-company collaboration correlates with increased patent value relative to patents with a 

single company assignee, but do not demonstrate a benefit from any other form of collaboration. 

This effect may be attributed to simple patent family size being perhaps a better proxy for the 

commercial value of the invention, as it reflects a company’s business interests in seeking IP 

protection in foreign countries; organizations may only choose to patent in countries where they 

see market potential. In this way, the simple patent family size is dictated by the assignee 

organization itself, in contrast to the number of forward citations, which is not controllable by 

the assignee organization. Similarly, while cross-organizational collaboration may add 

innovation value that may be beneficial externally, it does not necessarily add commercial value 

to the assignee organization itself. Another possible explanation is suggested by Guellec & van 

Pottelsberghe de la Potterie (2000): patent family size may be correlated with patent value only 

up to a certain threshold, as patent protection in a small number of larger countries may be 

sufficient. Thus, the observation that simple patent family size is, on average, about 4 patents 

more for patents with multiple companies as the assignees rather than a single company assignee 

suggests that companies may still be the major drivers of the commercialization of innovations, 

while the role of governments or universities may be less important in this sphere. Additionally, 
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it is possible that inventions developed by government agencies and universities have high 

scientific value but not necessarily high business value. 

On the whole, the results support the research hypothesis that cross-organizational 

collaborations—particularly company-company, university-company, and university-company-

government collaborations—can generate higher quality innovations in the biotechnology field, 

but reveal that this effect is sensitive to the measure of innovation quality used.  

5.2   IMPLICATIONS OF FINDINGS 

Because taxpayer money from the American public is being used not only to fund the 

agencies responsible for activities such as granting and enforcing patents, regulating drug 

approvals, and providing federal R&D funding, it logically follows that the federal government 

should recognize and seek to understand its essential role in the Triple Helix of innovation. 

Characterizing the existing relationships between the three players in the Triple Helix is the first 

step in optimizing their interactions for maximum research efficiency, productivity, and success 

of innovation.  

Only a small percentage (about 6%) of the patents in the 16-country dataset had 

government listed as an assignee. While many of the assignee organization types involving 

government were not found to correlate to higher patent quality than a single company assignee, 

the assignee type embodying the Triple Helix model—the university-government-company 

assignee type—was shown to correlate with higher patent quality as proxied by number of 

forward citations. While, on the one hand, this evidence could serve as motivation for the 

government to increase the frequency of its involvement in university-government-company 

collaborations, it is worth noting that the Triple Helix model may also be fulfilled by other 

means aside from direct government involvement in patenting, which is measured in the 
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regression model employed in this research. That is, other government contributions play a role 

in the success and high innovation quality of patents with non-government assignee types.  

For instance, while the company-company collaborations correlating to increased patent 

family size and are mostly outside of the jurisdiction of the federal government, as these are 

handled largely within the private industry, the government should nonetheless be aware of the 

important role that patent policy plays in mediating these types of collaborative relationships 

within the private sector. Similarly, the federal role in mediating technology transfer between 

universities and companies is responsible for many of the university-company collaborations 

represented in this dataset. The government also has a hand in promoting research in the field of 

biotechnology in general through providing grants and subsidies to both companies and 

academic institutions. All of these factors should be considered in understanding the complex 

role played by the government alongside universities and companies in the Triple Helix of 

innovation. This work may prove informative in guiding the federal government’s decisions 

regarding not only direct patenting, but also other activities such as optimization of R&D 

funding patterns and potential incentivization of industry-academia collaborations through 

funding and patent policy to promote successful innovation in the field of biotechnology.  

5.3   LIMITATIONS AND FUTURE WORK 

A limitation of this study is that patents are not a perfect measure of innovation; many 

valuable inventions are never made public or patented, but rather are kept as trade secrets. In this 

case, my dataset would exclude these innovations. Another limitation is that, in this analysis, I do 

not control for individual organizations’ capacity for innovation. Even within the same assignee 

organization type—for instance, companies—there is significant heterogeneity in the 

organization’s ability to conduct R&D. For example, a large company may have significantly 
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greater resources and financial ability to conduct R&D than a small company. Also, the type of 

innovation developed through multi-organizational collaboration may differ significantly in 

nature from the type of innovation developed by companies alone. The metrics used in this 

study—number of forward citations and simple patent family size—may not accurately capture 

this difference. 

Additionally, while the list of IPC codes used to capture patents falling in the 

biotechnology sector most likely captured the majority of the relevant patents, there is the risk 

that new IPC subsections pertaining to biotechnology patents have been developed since the list 

of codes was released, resulting in the utilized list perhaps not capturing all relevant patents. For 

this reason, a new and updated list of IPC codes pertaining to biotechnology patents could be 

developed for future work that aligns with a more recent edition of the IPC system.  

The results are consistent with the idea that cross-organizational collaboration can be 

useful for producing high-quality innovations. Research has shown that assembling teams from 

“diverse” backgrounds—including not only gender, age, and nation of origin but also career path 

and industry background—is positively correlated to innovation. For example, in a study 

examining a company’s level of innovation examined as a percentage of total revenue from new 

products and services launched over the past three years, Lorenzo et al. (2018) found that 

companies reporting above-average diversity on their management teams also reported greater 

innovation revenue (45% of total revenue as opposed to just 26% for companies reporting below-

average leadership diversity). If one considers gaining project contribution from various 

organizations as attaining a diverse set of perspectives on a project, the results of this research 

may suggest, similarly, that diversifying a project team may also improve innovation.  
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However, proof of causality is not possible due to the regression approach to analysis of 

the dataset. That is, it is challenging to discern whether high patent quality results from cross-

organizational collaboration, or whether, on the other hand, high-importance projects demand or 

attract multiple contributors. It is possible that the correlation between patent quality and cross-

organizational collaboration is related to the idea that larger-scale, more impactful projects tend 

to attract more experts and therefore often call for cross-organizational collaboration. Using this 

argument, a small-scale, simpler project may be accomplished easily “in-house” without seeking 

collaborators from other organizations. Future work might benefit from investigating the scale or 

ambitiousness of some of the projects resulting in patents with multiple assignees to seek clarity 

on the nature of this correlative relationship between patent quality and multiple patent 

assignees. Another possible hypothesis explaining the correlation between patent quality and 

multiple patent assignees—as seen when using number of forward citations as the measure of 

patent quality—is that having multiple organizations involved in the patent simply increases 

exposure, rather than quality. This might be further analyzed by examining what proportion of 

the forward citations are actually self-citations by one of the contributors on the original patent.  

An additional consideration is that cross-organizational collaboration may be driven by a 

variety of factors. In this study, I do not explicitly address the endogeneity of organizations’ 

collaboration decisions, which may pose a threat to the internal validity of my results. Thus, my 

research findings only provide suggestive evidence that collaboration may improve the quality of 

innovation. The field might benefit from some descriptive research—perhaps involving 

interviews with decision-makers within patent contributors’ organizations—to ascertain the 

motivation behind decisions to engage in external collaborations. Additionally, alternative data 

types—including academic publications, commercial financial figures, or, in the case of 
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biotechnology, FDA drug approvals—beyond simply patent data as a metric for innovation 

quality could be applied to diversify the body of research and provide additional insights into the 

relationship between cross-organizational collaboration and quality of innovations. 
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APPENDIX 1: IPC CODES USED FOR PATENT SEARCH 

 

Table A1a: Biotechnology-related IPC codes used to obtain dataset, with description of 

technologies covered by these classifications (WIPO, 2022).  

IPC Description 

A01H1/00 Processes for modifying genotypes 

A01H4/00 Plant reproduction by tissue culture techniques 

A61K38/00 Medicinal preparations containing peptides 

A61K39/00 Medicinal preparations containing antigens or antibodies 

A61K48/00 
 

Medicinal preparations containing genetic material which is inserted 

into cells of the living body to treat genetic diseases; Gene therapy 

C02F3/34 Biological treatment of water, waste water, or sewage; characterised 

by the microorganisms used 

C07G11/00 Antibiotics 

C07G13/00 Vitamins of unknown constitution 

C07G15/00 Hormones 

C07K4/00 Peptides having up to 20 amino acids in an undefined or only 

partially defined sequence; Derivatives thereof 

C07K14/00 Peptides having more than 20 amino acids; Gastrins; Somatostatins; 

Melanotropins; Derivatives thereof 

C07K16/00 Immunoglobulins, e.g. monoclonal or polyclonal antibodies  

C07K17/00 Carrier-bound or immobilised peptides; Preparation thereof 

C07K19/00 Hybrid peptides (hybrid immunoglobulins composed solely of 

immunoglobulins) 

C12M Apparatus for enzymology or microbiology  

C12N Microorganisms or enzymes; Compositions thereof; Propagating, 

preserving, or maintaining microorganisms; Mutation or genetic 

engineering; Culture media 

C12P 

 

Fermentation or enzyme-using processes to synthesize a desired 

chemical compound or composition or to separate optical isomers 

from a racemic mixture 

C12Q Measures or testing processes involving enzymes, nucleic acids or 

microorganisms; Compositions or test papers therefor; Processes of 
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preparing such compositions; Condition-responsive control in 

microbiological or enzymological processes 

C12S 

 

 

Processes using enzymes or micro-organisms to liberate, separate or 

purify a pre-existing compound or composition; Processes using 

enzymes or micro-organisms to treat textiles or to clean solid surfaces 

of materials 

 G01N27/327 Biochemical electrodes 

G01N33/53* Immunoassay; Biospecific binding assay; Materials therefor 

(medicinal preparations containing antigens or antibodies) 

G01N33/54* Double or second antibody …with steric inhibition or signal 

modification, e.g. fluorescent quenching; …with an insoluble carrier 

for immobilising immunochemicals; …the carrier being organic; 

Synthetic resin …as water suspendable particles; …with antigen or 

antibody attached to the carrier via a bridging agent; Carbohydrates, 

e.g. dextran …with antigen or antibody entrapped within the carrier 

G01N33/55* Carbohydrates, e.g. dextra …the carrier being inorganic; …Glass or 

silica; …Metal or metal coated; the carrier being a biological cell or 

cell fragment, e.g. bacteria, yeast cells; …Red blood cell; Fixed or 

stabilised red blood cell; …using kinetic measurement, i.e. time rate 

of progress of an antigen-antibody interaction; …using diffusion or 

migration of antigen or antibody; …through a gel, e.g. Ouchterlony 

technique 

G01N33/57* Immunoelectrophoresis for venereal disease, e.g. syphilis, gonorrhea, 

herpes; …for enzymes or isoenzymes; …for cancer; …for hepatitis; 

…involving monoclonal antibodies; …involving limulus lysate 

G01N33/68 Immunoelectrophoresis involving proteins, peptides or amino acids 

G01N33/74 Immunoelectrophoresis involving hormones 

G01N33/76 

 

Immunoelectrophoresis involving Human chorionic gonadotropin 

G01N33/78 Immunoelectrophoresis involving Thyroid gland hormones 

G01N33/88 Immunoelectrophoresis involving prostaglandins 

G01N33/92 Immunoelectrophoresis involving lipids, e.g. cholesterol 
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Table A1b: Definitions of IPC section symbols (WIPO, 2022).  

 

IPC Description 

A 

 

HUMAN NECESSITIES 
 

B PERFORMING OPERATIONS; TRANSPORTING 

C CHEMISTRY; METALLURGY 

D TEXTILES; PAPER 

E FIXED CONSTRUCTIONS 

F MECHANICAL ENGINEERING; LIGHTING; 

HEATING; WEAPONS; BLASTING 

G PHYSICS 

H ELECTRICITY 
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APPENDIX 2: SUMMARY STATISTICS FOR VARIABLES IN 

DATASET 

Table A2: Number of Patents in the Dataset Published Each Year from 2000 to 2019 in the full 

16-country Sample 

Publication Year Frequency Percent (%) 

2000 5,126 4 

2001 5,786 4 

2002 5,353 4 

2003 5,078 4 

2004 4,413 3 

2005 3,889 3 

2006 5,743 4 

2007 5,490 4 

2008 5,258 4 

2009 5,541 4 

2010 6,983 5 

2011 6,945 5 

2012 7,118 5 

2013 7,576 5 

2014 8,824 6 

2015 9,416 7 

2016 9,417 7 

2017 9,984 7 

2018 9,775 7 

2019 10,232 7 

Total 137,947 100 
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Table A3: Frequency of Assignee Country in in the full 16-country Sample 

Country Frequency Percent (%) 

1 United States 88,585 64 

2 Japan 11,031 8 

3 Germany 6,750 5 

4 Great Britain 4,269 3 

5 France 3,901 3 

6 Switzerland 3,667 3 

7 Canada 3,396 2 

8 Korea 2,985 2 

9 The Netherlands 2,638 2 

10 Denmark 2,041 1 

11 Israel 1,715 1 

12 China 1,490 1 

13 Australia 1,463 1 

14 Taiwan 1,454 1 

15 Belgium 1,325 1 

16 Sweden 1,237 1 

Total 137947 100 
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Table A4: Frequency of Assignee Organization Types for Patents with First Listed Assignee 

from the United States, Japan, Germany, Great Britain, France, Switzerland, Canada, Korea, the 

Netherlands, Denmark, Israel, China, Australia, Taiwan, Belgium, or Sweden 

Assignee Organization Type Frequency Percent (%) 

Single Company  61,344  44 

Single Government  4,972  4 

Single University  26,172  19 

Single "Other"  1,150  1 

Multiple Companies  25,957  19 

Multiple Universities  4,242  3 

Multiple Governments  475  0 

University-Company  7,381  5 

University-Government  1,305  1 

Company-Government  1,256  1 

University-Government-Company  428  0 

Multiple "Other"  3,265  2 

Total 137,947 100 

 

 

Table A5: Frequency of Assignee Organization Types for Patents with First Listed Assignee 

from the United States Only 

Assignee Organization Type Frequency Percent (%) 

Single Company 37,966 43 

Single Government 3,597 4 

Single University 19,954 23 

Single "Other" 457 1 

Multiple Companies 16,360 18 

Multiple Universities 3,349 4 

Multiple Governments 366 0 

University-Company 3,777 4 

University-Government 771 1 

Company-Government 541 1 

University-Government-Company 178 0 

Multiple "Other" 1,269 1 

Total 88,585 100 

 

Table A6: Summary Statistics for the Number of IPC Codes Associated with each Patent in the 

full 16-country Sample  

 Number of 

Observations 

Mean Standard 

Deviation 

Minimum Maximum 

Number of IPC Codes 137,947 7 6 1 169 
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Table A7: Number of Patents Associated with each IPC Section Symbol in the full 16-country 

Sample 

IPC Section Symbol Frequency Percent (%) 

A 65,874 48 

B 8,204 6 

C 111,465 81 

D 635 0 

E 121 0 

F 617 0 

G 36,628 27 

H 1,694 1 
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