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Abstract

The purpose of this thesis is to determine the optimal shape of lubricated axisymmetric

spherical bearing cups and symmetric journal bearing sleeves under transient pure squeeze

conditions using a genetic algorithm. The objective is to maximize the load impulse of a per-

fectly spherical ball or perfectly cylindrical journal interacting through a thin lubricant �lm

with a generally non-spherical cup or non-cylindrical sleeve to achieve a speci�ed minimum

�lm thickness value. A generation is a set of bearing shapes over the design space encoded

as binary chromosomes. A �nite element model simulates the normal approach of the ball

or journal to the cup or sleeve and the �tness of each shape is measured by load impulse.

A new generation is formed by splitting and recombining chromosomes while conserving the

top two �ttest solutions and applying random mutations to the rest. This process is repeated

for a �xed number of generations, after which the �ttest design is selected as the �optimal�

shape. It was found that optimal shapes produced by the genetic algorithm yielded generally

higher impulse values than those obtained with perfectly spherical or cylindrical bearings,

but the gain in performance over speci�ed elliptical shapes was mixed over the design space.



Chapter 1

Introduction

1.1 Background

Hydrodynamic self-acting cylindrical (journal) and spherical bearings operate with a thin

lubricant �lm between the interacting surfaces. Pressure is generated within the �lm from

relative transverse surface motion (shear action) and relative normal approach (squeeze

action). Lubricant is typically supplied through edge, groove, or feed hole arrangements at

substantially low supply pressure by an oil pump or drip/splash methods. If the resulting

�lm pressures can generate a �lm thickness large enough to minimize surface asperity

contact, friction can be substantially reduced.

Hydrodynamic cylindrical bearings are ubiquitous and appear in virtually any

machine with rotating parts, with motors, pumps, drivetrains, household appliances, and

watches being just a few examples. Hydrodynamic spherical bearings have many

applications including arti�cial joints, automotive suspensions, heavy machinery, and

robotic mechanisms.
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1.1.1 Literature Review

Traditional Design Guidelines

Traditional design guidelines for cylindrical and spherical bearings usually assume a

uniform radial clearance. Examples in the literature for cylindrical bearings under steady

load and speed are found in standard textbooks (e.g., Budynas and Nisbett [13]). Design of

journal bearings for specialty applications, such as connecting-rod bearings in four-stroke

engines are also available in the literature (e.g., Booker [9], Boedo [2], Boedo and Blais [6]).

Work performed by Goenka and Booker [18] provides a foundation for the �nite

element analysis of spherical bearings. Figure 1.1 shows the bearing geometry. Both

explicit (determining bearing force history given speci�ed ball displacement history) and

implicit (determining ball displacement history given force history) problems can be solved

with this method. In the pure squeeze problem (i.e.� no rotation and constant load) it was

found that the mesh density was not important when eccentricity � the displacement of the

ball from the center of the bearing � was small but that it did cause signi�cant di�erence

in results when the eccentricity was large. Partial spherical bearings were simulated with

various span angles, and it was found that smaller span angles resulted in a lower pressure

ratio ( pressure
applied load

). Figure 1.2 shows non-dimensional squeeze �lm forces for various span

angles. Since perfectly spherical geometry was assumed for both full and truncated

hemispheres, no conclusions could be drawn from this study on the optimal shape of a

spherical bearing cup.
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Figure 1.1: Orthographic view of partial spherical bearing with de�nition of span angle β
(based on [18])

Figure 1.2: E�ect of span angle and eccentricity on dimensionless squeeze �lm force (based
on [18])

However, such bearing clerarances are seldom uniform in practice due to

manufacturing tolerances or distortion due to thermal expansion. The situation is further

complicated by surface deformations due to applied bearing load.
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Optimal Journal Bearing Design

For self-acting cylindrical bearings, there have been a signi�cant number of studies on

intentional deviation from perfect cylindricity as a means to improve bearing performance.

Wang et al. [37] examined the pressure characteristics, cavitation, and thermal e�ects

of elliptical bearings under steady load and speed and an optimal ellipticity ratio that had

the least cavitation, lowest rise in temperature, and the most e�ective formation of a

lubrication �lm. Hashimoto et al. [21] analyzed steadily loaded elliptical bearings in the

turbulent �ow regime, with one of the �ndings being less oil whirl in elliptical bearings

compared to circular bearings at a given speed. Vaidyanathan and Keith [34] [33] employed

the Elrod algorithm to predict cavitation, pressure, and the rupture and reformation

boundaries in various non-circular bearings. Goenka and Booker [19] performed a �nite

element analysis on elliptical bearing surfaces to determine the optimal shape of the sleeve

and journal under oscillatory journal motion and steady load, and found that an elliptical

sleeve with a circular journal was best, with a minimum �lm thickness 36 times that of a

regular bearing, and a maximum pressure 5 times lower.

O�set bearings, which have one or more journal and/or sleeve sections that are not

concentric with the main one, can improve performance in applications such as 2-stroke

diesel engines. In such cases, the journal oscillates within a narrow angular range and the

load never reverses, resulting in extremely thin lubricant �lms and high friction and wear.

The o�set geometry allows for the load to be shared between the multiple sections and for

a thick �lm lubrication regime to develop as the journal rocks back and forth within the

bearing. Studies done by Booker and Olikara [12], Booker et al. [10], Wakuri et al. [35],

and Boedo and Anderson [5] show that o�set journal bearings have greater �lm thickness,

lower maximum pressure, and improved durability than conventional ones. An improved

study by Boedo and Booker [7] using exact numerical methods and mass conserving

cavitation analysis supports these results.

The shape optimization of journal bearings without regard to speci�c geometry has

been examined by several authors. Early examples are Maday [25] and Rohde [31] who

found that stepped concentric bearings (as shown in Figure 1.4) have an higher load
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capacity than purely circular bearings. Kanarachos [24] added dynamic performance

characteristics, expressed by the spring and damping constants of the bearing, into the

optimization process. Haraldsson et al. [20] optimized the shape of a journal bearing with

a rubber layer inside the housing and water as the lubricating �uid, with the objective of

minimizing the maximum pressures developed inside.

A basis for shape optimization of bearings using genetic algorithms is provided by

Boedo and Eshkabilov [16] who implemented a genetic algorithm (GA) to optimize the

shape of a �nite-width isoviscous �uid �lm journal bearing under steady load and steady

journal rotation. The objective was to maximize the bearing load capacity, subject to a

speci�ed minimum �lm thickness. The loads were determined with a �nite element

program using a lubrication algorithm described by Booker and Huebner [11] and 4-noded

isoparametric elements. The design variables, de�ned by �lm thickness speci�cations at

regularly spaced angular positions about the bearing sleeve circumference, were encoded

into a chromosome composed of binary digits. A chromosome's �tness was evaluated by its

load capacity. Figure 1.3 shows the optimal shapes of non-cylindrical and cylindrical

bearings that maximize load capacity for a speci�ed minimum �lm thickness of 5 µm. It

was found that the shape determined by the GA had a slightly higher load capacity than a

perfectly cylindrical bearing, but substantially larger overall �lm thickness, allowing for

better manufacturability and enhanced oil �ow. The GA was found to produce better

results than a random search in less time. Pang et al. [29] did a similar study, but using a

fourier series function instead of individual clearance values, to represent the pro�le, with

the intent of creating a smoother shape. The optimized shape created resulted in a 11.2

percent improvement in the load capacity over that of Boedo and Eshkabilov. Other

studies done by Pang et al. [27] [30] [28] use other methods to maximize multiple di�erent

performance characteristics of journal bearings. Elsharkawy and Guedouar [15] present a

solution to an inverse problem for the elastohydrodynamic lubrication of one-layered

journal bearings, where the eccentricity ratio, lubricant viscosity and bulk modulus, and

pressure-viscosity coe�cient are estimated from a given pressure distribution. Wang et al.

[38] present an engineering approach for optimizing the performance of �uid �lm lubricated
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bearings, using a numerical optimization procedure. When elliptical bearings were

analyzed, it was revealed that high eccentricity ratio and two large pressure zones for

high-speed stability can be obtained by maximizing �lm pressures in the upper and lower

lobes.

Figure 1.3: Optimal shapes of journal bearings; clearances in µm (based on [16])
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Figure 1.4: Optimal journal bearing shape (based on [25])

Optimal Spherical Bearing Design

Compared to journal bearings, there is much less information in the literature on the

lubrication and shape optimization of spherical (or ball and cup) bearings. The study of

the e�ect of non-spherical geometry has been essentially limited to arti�cial hip joints. Jin

and Dowson [23] performed numerical analysis of hydrodyamic lubrication of arti�cial hip

joint replacements with high modulus of elasticity (i.e.� metal-on-metal,

ceramic-on-ceramic) under cyclic walking conditions. It was found that a lubricating �lm

thickness can be developed during the walking cycle due to the combined action of squeeze

�lm and entraining motions, and that a dimple on the acetabular cup can signi�cantly

increase the �lm thickness throughout the walking cycle. A study by Gao et al. [17] found

that an "Alpharabola" cup improved the lubricant �lm thickness and reduced the

hydrodynamic pressure of a metal-on-metal hip replacement, but contrary to Jin and

Dowson, the dimples had an adverse e�ect on these characteristics. Another study by

Meng et al. [26] examined an Alpharabola ball and spherical cup and found that it was

superior to a spherical ball and spherical cup, but inferior to the spherical ball and

Alpharabola cup. Wang et al. [36] studied both ellipsoidal balls and cups, and concluded

that a "well controlled nonsphericity" was bene�cial for improving the lubrication of the

7



bearing. A study of arti�cial hip joints by Boedo and Booker [8] provides insights on

further geometry modi�cations of these cups. A �nite element analysis was performed of

an ellipsoidal cup shown in Figure 1.5, with elastic protrusions extending from the cup

surface towards the ball, as well a wide cut-out slot. During the stance phase (the load

bearing phase) of the walking cycle, a majority of the load is carried by the lubricant

between the cup and the ball due to squeeze �lm action, while a minority is carried by the

elastic elements. These modi�cations were found to result in a larger minimum �lm

thickness and lower pressures during the stance phase as shown in Figure 1.6, making the

modi�ed bearing superior to a spherical bearing as a hip replacement.

Figure 1.5: Squeeze �lm arti�cial hip joint (based on [8])
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Figure 1.6: E�ect of ellipticity on minimum �lm thickness over time (based on [8])

One self-acting spherical bearing not associated with biomechanical applications is the

so-called Hydrosphere [32] shown in Figure 1.7. Under the prescribed axial loading and

spherical rotation with perfectly spherical surfaces, the bearing has theoretically zero load

capacity, yet a load-supporting hydrodynamic �lm was experimentally generated. An

explanation was later put forth by Dowson and Taylor [14] that thermal e�ects were

su�cient to distort the spherical surfaces and generate a load-carrying wedge �lm.

Figure 1.7: Hydrosphere (based on [32])
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1.2 Thesis Objective

There are no papers in the literature which address general shape optimization of bearing

surfaces under transient loads and kinematics. This thesis concerns the shape optimization

of axisymmetric spherical and cylindrical squeeze-�lm bearings under transient pure

squeeze conditions using genetic algorithms (GA).

Figure 1.8 shows an example of a spherical bearing system � an arti�cial hip joint.

The joint is composed of the femoral head (ball), which is made out of ceramic or a hard

metal; a polyethylene liner; and a metal shell. In this speci�c case, the optimal shape

determined in this thesis would be applied to the polyethylene liner.

Figure 1.9 shows an example of a journal bearing system consisting of a cylindrical

journal (in this case, composed of several tilting pads) and a sleeve with a circular pro�le.

All parts in this example are made of metal, but there are a variety of di�erent materials

that can be used for the bushing (the part of the bearing that directly interfaces with the

journal), including plastic, ceramic, and even jewels.

10



Figure 1.8: Spherical bearing example [22]

Figure 1.9: Cylindrical bearing example [1]
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The objective of this thesis is to determine the bearing cup shape (for spherical

bearings) and the bearing sleeve shape (for cylindrical bearings) that maximizes the total

impulse, de�ned by the load multiplied by the time required to reach a speci�ed minimum

�lm thickness h∗min. The problem only concerns the normal approach of the ball/journal to

the cup/sleeve absent of ball/journal rotation, in contrast to previous work done in bearing

shape optimization which involved journal bearings under constant rotation.

The methodology required to accomplish this task are the following:

� Create a �nite element program that allows for variation in the geometry of the

bearing cup or sleeve in the simulation of the pure squeeze scenario involving the cup

and a spherical ball, or a sleeve and a cylindrical journal, respectively, where the

resolution of the design space is independent of the resolution of the �nite element

mesh.

� Implement a genetic algorithm to determine optimal shape through solution

convergence. As in Boedo and Eshkabilov [16], elitism, crossover, and mutation

operators are used.

� Using the modi�ed �nite element program, simulate the natural selection process

with the genetic algorithm starting with a set of randomly generated designs for a

�xed number of generations that is likely to result in improvement of bearing load

capacity.
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Chapter 2

Problem Formulation

2.1 Spherical Bearing

2.1.1 Description of Design Space

Figure 2.1 shows a spherical ball and a generally non-spherical but axisymmetric (about

the Z axis) cup separated by a thin layer of lubricant with viscosity µ. The ball and cup

are initially concentric, and the bearing �lm is initially complete. A constant normal

external load F is applied to the ball, which causes the ball to move toward the cup and

the �uid to squeeze out of the bearing. The squeeze �lm action provides a damping force

to the ball, and the ball will approach the cup asymptotically in the limit as t → ∞.

The radial clearance between the ball and the cup is de�ned when the ball and cup are

concentric. The radial clearance is allowed to vary from a nominal value C0 at equally

spaced points along the circumference of the cup. Figure 2.2 shows the design space

consisting of N points, spaced equally at an angle of α (α = θ0
N ) with speci�ed

non-negative radial clearance deviations δ1 through δN . The radial clearance at node N+1

is set to C0 (δN+1 = 0) at the edge (extent) of the cup, i.e.� at θ = θ0, and is not a design

variable.
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Figure 2.1: Spherical bearing schematic

Figure 2.2: Radial clearance speci�cation

The radial clearance deviation, as a function of θ, is assumed to vary linearly, given by

δ(θ) = δi +
(δi+1 − δi)

α
[θ − (i− 1)α] (2.1)

where (i− 1)α ≤ θ ≤ iα and 0 ≤ δi ≤ δmax, i = 1, N (δmax is the maximum allowable

clearance).
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The �lm thickness h(θ) de�ned in Figure 2.1 is in turn given by

h(θ) = C0 + δ(θ)− e cos θ (2.2)

which is also dependent on the ball displacement (eccentricity) e.

Figure 2.3 shows the lubricant �lm domain projected onto a 2D view. Here the x and

θ axes run from the center of the bearing to the edge. The location of the edge of the

bearing cup depends on θ0, the angular extent of the cup, but the projected shape remains

the same (circular).

Figure 2.3: Lubricant �lm domain (2 dimensional)

2.1.2 Force and Impulse

The Reynolds equation in axisymmetric form is given by [18]

∂

∂θ
(
h3

12µ
sin θ

∂p

∂θ
) = −R2ė sin θ cos θ (2.3)

where

h(θ) = f(θ; θ0, C0, δ0, δ1, δ2, ..., δN )− e cos θ (2.4)
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with boundary conditions

p(θ = θ0) = 0 and
dp

dθ
(θ = 0) = 0 (2.5)

The load F carried by the lubricant �lm is given by

F = 2πR2

∫ θ0

0
p cos θ sin θdθ (2.6)

and the impulse I after a given time interval T is given by

I =

∫ T

0
Fdt = FT (2.7)

The ball and cup are initially concentric, i.e.� e(t = 0) = 0.

2.1.3 Squeeze Film Problem (Dimensional)

With ball and cup initially concentric, a constant external force F is applied to the ball

along the symmetry axis. Given the bearing geometry, �uid viscosity, radial clearance

design space, and the target minimum �lm thickness h∗min, the time history of journal

eccentricity e(t) is obtained from solution of equations 2.3 � 2.6. The simulation is run

until time T ∗ when h∗min is attained, which in turn gives the resultant impulse

I =
∫ T ∗

0 Fdt = FT ∗

In dimensional terms, given maximum allowable clearance deviation δmax and target

minimum �lm thickness h∗min, the optimization problem is to �nd the set of radial

clearances δ1, δ2, ..., δN , 0 ≤ δi ≤ δmax, that maximizes impulse I.

2.1.4 Non-dimensionalization

To make the solution valid at any dimensional scale, the problem will be expressed and

solved non-dimensionally, with the aim of maximizing the non-dimensional impulse as

shown below.
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Film thickness, eccentricity, and radial clearance deviation are all scaled by reference

(edge) radial clearance C0, namely,

h = C0h̄

e = C0ϵ

δi = C0δ̄i i = 1, N

where non-dimensional �lm thickness has the functional form

h̄(θ) = f(θ; θ0, δ̄1, δ̄2, ..., δ̄N )− ϵ cos θ (2.8)

with ball eccentricity ratio ϵ. Plugging these into equation 2.3 gives

∂

∂θ
(h̄3 sin θ

∂p

∂θ
) = −12µ(

R

C0
)2ϵ̇ sin θ cos θ (2.9)

De�ning the non-dimensional pressure according to p = µ( R
C0

)2ϵ̇p̄, we can express the

Reynolds equation in non-dimensional form as

∂

∂θ
(h̄3 sin θ

∂p̄

∂θ
) = −12 sin θ cos θ (2.10)

with boundary conditions

p̄(θ = θ0) = 0 and
dp̄

dθ
(θ = 0) = 0 (2.11)

The load, expressed as an integral of the non-dimensional pressure, is

F = 2πR2µ(
R

C0
)2ϵ̇

∫ θ0

0
p̄ cos θ sin θdθ (2.12)

Multiplying by dt gives

Fdt = 2πR2µ(
R

C0
)2dϵ

∫ θ0

0
p̄ cos θ sin θdθ (2.13)
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Integrating with respect to time from 0 to T ∗ gives the impulse

I =

∫ ϵT∗

0
2πR2µ(

R

C0
)2[

∫ θ0

0
p̄ cos θ sin θdθ]dϵ (2.14)

where ϵT ∗ is the ball eccentricity ratio at time T ∗, where
h∗
min
C0

is speci�ed. Rearranging we

obtain the non-dimensional impulse

I(C0
R )2

πR2µ
= 2

∫ ϵT∗

0

∫ θ0

0
p̄ cos θ sin θdθdϵ (2.15)

2.1.5 Squeeze Film Problem (Non-Dimensional)

Given the radial clearance deviation design space de�ned by

δ̄1, δ̄2, ..., δ̄N , δ̄max; δ̄N+1 = 0; 0 < δ̄i ≤ δ̄max; and given
h∗
min
C0

, the target non-dimensional

�lm thickness, �nd ball position ϵT ∗ corresponding to
h∗
min
C0

, and �nd the resultant

non-dimensional impulse
I(

C0
R

)2

πR2µ
from simultaneous solution of equations 2.8 � 2.15.

In non-dimensional terms, given maximum allowable clearance deviation δ̄max and

target minimum �lm thickness
h∗
min
C0

, the optimization problem is to �nd the

δ̄1, δ̄2, ..., δ̄N ; 0 ≤ δ̄i ≤ δ̄max; δ̄N+1 = 0 such that the non-dimensional impulse
I(

C0
R

)2

πR2µ
is

a maximum.

2.2 Cylindrical Bearing

2.2.1 Description of Design Space

Figure 2.4 shows a cylindrical journal and a generally non-cylindricial but symmetric

(about the XZ plane) sleeve separated by a thin layer of lubricant with viscosity µ. The

radial clearance between the journal and the sleeve is de�ned when the journal and sleeve

are concentric. The radial clearance is allowed to vary from a nominal value C0 at equally

spaced points along the circumference of the sleeve. The journal and sleeve are initially

concentric, and the bearing �lm is initially complete. A constant normal external load F is

applied to the journal, which causes the journal to move toward the sleeve and the �uid to
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squeeze out of the bearing. The squeeze �lm action provides a damping force to the

journal, and the journal will approach the sleeve asymptotically in the limit as t → ∞.

Figure 2.4: Cylindrical bearing schematic

Figure 2.5 shows the lubricant �lm domain "unwrapped" and �attened into a 2D

view. Here the x axis runs along what would be the circumference of the bearing and the y

axis is parallel to the original Z axis.

Figure 2.5: Lubricant �lm domain (2 dimensional)
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As in the spherical bearing, the design space consists of N points, spaced equally at an

angle of α (α = θ0
N ) with speci�ed non-negative radial clearance deviations δ1 through δN .

The radial clearance at node N+1 is set to C0 (δN+1 = 0) at the edge (extent) of the

sleeve, i.e.� at θ = θ0, and is not a design variable.

2.2.2 Generalized Warner Bearing Film Model

The following is taken directly from Boedo [4] and is provided here for completeness.

Assume that �lm pressure can be represented in the separable form

p(θ, y, t) = g(θ, t)f(y) (2.16)

where g(θ, t) is the circumferential pressure distribution along the bearing midplane, and

f(y) is a prescribed axial pro�le with the requirement that f(y = 0) = 1, f(y = ±L
2 ) = 0.

A prescribed axial pro�le motivated by the work of Warner [39] takes the functional

form

f(y) =
cosh(λLD )− cosh[(2yL )(λLD )]

cosh(λLd )− 1
(2.17)

which is dependent upon both L
D ratio and a prescribed shape factor λ, and plotted in

Figure 2.6.
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Figure 2.6: Prescribed axial pro�le f(y) [4]

Note that f(y) approaches parabolic and uniform axial pro�les as λL
D → 0 and λL

D → ∞,

respectively.

By allowing the shape factor λ to vary with �lm thickness, f(y) can capture the local

�attening of the axial pro�le expected with very thin �lms in journal bearings, even with

small L
D ratios. One means of accomplishing this task is to assume that λ takes the local

form

λ2(s) =
24s2H

(1− s2)[12H − 8s(3 + s2)− 3π(2− 3s2)]
(2.18)

in terms of a local eccentricity ratio

s = 1− h(θ)

C(θ)
(2.19)

with

H = s+
cos−1(−s)

(1− s2)1/2
(2.20)

and is plotted in Figure 2.7.

21



Figure 2.7: λ as it varies with non-dimensional eccentricity ratio s [4]

The assumed form of the pressure distribution minimizes the modi�ed power

functional [3, 4] provided that the midplane pressure g(θ, t) satis�es the Euler-Lagrange

equation
1

R2

∂

∂θ
(
h3Γ1

12µ

∂g

∂θ
)− Γ2

h3g

12L2µ
= −Γ3ė cos θ (2.21)

with boundary conditions

g(θ = θ0, t) = 0

dg

dθ
(θ = 0, t) = 0
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Functions Γ1, Γ2, and Γ3 are designated as �ow factors which take the local form

Γ1(γ) =
γ cosh γ − sinh γ

γ(cosh γ − 1)

Γ2(γ) =
4γ(sinh 2γ − 2γ)(γ cosh γ − sinh γ)

(cosh γ − 1)[2γ(cosh 2γ + 2)− 3 sinh 2γ)]

Γ3(γ) =
4(γ cosh γ − sinh γ)2

γ[2γ(cosh 2γ + 2)− 3 sinh 2γ)]

where γ = λ L
D .

The load F carried by the lubricant �lm is given by

F = 2πR2

∫ L/2

−L/2
f(y)g(θ, t) cos θdθdy (2.22)

and the impulse I after a given time interval T is given by

I =

∫ T

0
Fdt = FT (2.23)

The journal and sleeve are initially concentric, i.e., e(t = 0) = 0.

2.2.3 Squeeze Film Problem (Dimensional)

With journal and sleeve initially concentric, a constant external force F is applied to the

journal along the symmetry axis. Given the bearing geometry, �uid viscosity, radial

clearance design space, the target minimum �lm thickness h∗min, and
L
D ratio, the time

history of journal eccentricity e(t) is obtained from solution of equations 2.21 � 2.22. The

simulation is run until time T ∗ when h∗min is attained, which in turn gives the resultant

impulse I =
∫ T ∗

0 Fdt = FT ∗

In dimensional terms, given maximum allowable clearance deviation δmax and target

minimum �lm thickness h∗min, the optimization problem is to �nd the set of radial

clearance deviations δ1, δ2, ..., δN , 0 ≤ δi ≤ δmax, that maximizes impulse I.

23



2.2.4 Non-dimensionalization

To make the solution valid at any dimensional scale, the problem will be expressed and

solved non-dimensionally, with the aim of maximizing the non-dimensional impulse as

shown below.

Film thickness, eccentricity, and radial clearance deviation are all scaled by reference

(edge) radial clearance C0, namely,

h = C0h̄

e = C0ϵ

δi = C0δ̄i i = 1, N

where non-dimensional �lm thickness has the functional form

h̄(θ) = f(θ; θ0, δ̄1, δ̄2, ..., δ̄N )− ϵ cos θ (2.24)

with journal eccentricity ratio ϵ.

Plugging these into equation 2.21 gives

(C0/R)2

µ

∂

∂θ
(
h̄3Γ1

12

∂g

∂θ
)− Γ2(

D

L
)2
(C0/R)2

µ

h̄3g

48
= −Γ3ϵ̇ cos θ (2.25)

where �ow factors Γ1, Γ2, and Γ3 already depend on ϵ, L
D , and the clearance ratio terms.

De�ning the non-dimensional circumferential pressure distribution along the bearing

midplane according to g = µ( R
C0

)2ϵ̇ḡ, we can express the Euler-Lagrange equation in

non-dimensional form as

∂

∂θ
(
h̄3Γ1

12

∂ḡ

∂θ
)− Γ2(

D

L
)2
h̄3ḡ

48
= −Γ3 cos θ (2.26)

with boundary conditions

ḡ(θ = θ0) = 0 and
dḡ

dθ
(θ = 0) = 0 (2.27)
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The load, expressed as an integral of the non-dimensional pressure, is

F = µ(
R

C0
)2ϵ̇LR

∫ 1

−1

∫ θ0

0
f(ȳ)ḡ cos θdθdȳ (2.28)

where the non-dimensional displacement along the y-axis of the 2D �lm domain is

de�ned according to y = Lȳ
2 .

Multiplying by dt and replacing radius with diameter gives

Fdt = µ(
R

C0
)2LD[

1

2

∫ 1

−1

∫ θ0

0
f(ȳ)ḡ cos θdθdȳ]dϵ (2.29)

Integrating with respect to time from 0 to T ∗ gives the impulse

I =

∫ ϵT∗

0
µ(

R

C0
)2LD[

1

2

∫ 1

−1

∫ θ0

0
f(ȳ)ḡ cos θdθdȳ]dϵ (2.30)

where ϵT ∗ is the journal eccentricity ratio at time T ∗, where
h∗
min
C0

is speci�ed.

Rearranging we obtain the non-dimensional impulse

I(C0
R )2

µLD
=

1

2

∫ ϵT∗

0

∫ 1

−1

∫ θ0

0
f(ȳ)ḡ cos θdθdȳdϵ (2.31)

2.2.5 Squeeze Film Problem (Non-Dimensional)

Given the radial clearance deviation design space de�ned by

δ̄1, δ̄2, ..., δ̄N , δ̄max; δ̄N+1 = 0; 0 < δ̄i ≤ δ̄max; and given
h∗
min
C0

, the target

non-dimensional �lm thickness, and L
D ratio, �nd ball position ϵT ∗ corresponding to

h∗
min
C0

,

and �nd the resultant non-dimensional impulse
I(

C0
R

)2

LDµ from simultaneous solution of

equations 2.24 � 2.31.

In non-dimensional terms, given maximum allowable clearance deviation δ̄max, target

minimum �lm thickness
h∗
min
C0

, and L
D ratio, the optimization problem is to �nd the

δ̄1, δ̄2, ..., δ̄N ; 0 ≤ δ̄i ≤ δ̄max; δ̄N+1 = 0 such that the non-dimensional impulse
I(

C0
R

)2

LDµ is

a maximum.
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2.3 System Formulation

Figure 2.8 shows the one-dimensional �nite element mesh of the spherical and cylindrical

bearing �lm domains. Figure 2.9 shows two-dimensional views of the �lm domains with the

�nite element mesh overlaid. Figure 2.10 is a diagram of an arbitrary pressure distribution

along the one-dimensional mesh.

Figure 2.8: Finite element mesh

Figure 2.9: Finite element mesh for spherical bearing (L) and cylindrical bearing (R) (2
dimensional view)
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Figure 2.10: Depiction of actual pressure and �nite element approximation of pressure
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De�ne the following system variables:

n number of �nite element nodes (≫N)

e 1x1 journal eccentricity along z axis (sphere) and x axis (cylinder) (scalar)

F 1x1 z-component (ball to cup) or x-component (journal to sleeve) of external force (scalar)

q nx1 nodal net �ow

p nx1 nodal �lm pressure

C nx1 nodal radial clearance

h nx1 nodal �lm thickness

r nx1 nodal �lm forces (�lm to cup or journal)

S nx1 squeeze-related matrix

T 1xn area-related matrix

G nx1 static equilibrium matrix

Kp nxn pressure �uidity matrix

Kḣ nxn squeeze �uidity matrix

A nxn area matrix

(2.32)

At a given instant, �lm thickness and rate of change are given by

h = C+ eG

ḣ = ėG

where G =

{− cos θ1

...

− cos θn

} (2.33)
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Flow-pressure relation is given by

q= Kpp+Kḣḣ

q= Kpp+ ėKḣG

q= Kpp+ ėS

(2.34)

Pressure-force relation is given by

r = Ap

and force balance is given by

−GTr = F

whereupon

−GTAp = F

Tp = F

(2.35)

Partition nodes into two sets:

1 = speci�ed nodal net �ow q1

2 = speci�ed nodal pressure p2

Equations 2.34 and 2.35 in partitioned form become

q1 = Kp
11p1 +Kp

12p2 + ėS1

q2 = Kp
21p1 +Kp

22p2 + ėS2

T1p1 +T2p2 = F

(2.36)

The (instantaneous) ball or journal velocity (scalar) is then obtained from

p1 = (Kp
11)

−1(q1 −Kp
12p2 − ėS1)

T1(K
p
11)

−1(q1 −Kp
12p2 − ėS1) +T2p2 = F

T1(K
p
11)

−1(q1 −Kp
12p2) +T2p2 − F = ėT1(K

p
11)

−1S1

ė = [T1(K
p
11)

−1S1]
−1[T1(K

p
11)

−1(q1 −Kp
12p2) +T2p2 − F]

(2.37)
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Once that ė is obtained, one can then solve for (instantaneous) unknown nodal

pressures and �ows

p1 = (Kp
11)

−1(q1 −Kp
12p2 − ėS1)

q2 = Kp
21p1 +Kp

22p2 + ėS2

(2.38)

2.4 Method

2.4.1 Genetic Algorithm

Following Boedo and Eshkabilov [16], a genetic algorithm (GA) was written with the

clearance deviation design variables encoded in binary. The minimum value that the

clearance deviation can take on is 0, while the maximum value is δ̄max = λ(2M − 1), where

M is the number of binary digits (bits) used to encode each variable. λ is the resolution,

which is the smallest amount that the non-dimensional value of the deviation can be

incremented by. For example, if M is 7, there are 27 = 128 values that the

non-dimensional radial clearance can take on, from 0 to 127. Figure 2.11 provides an

illustration of a single design variable, which is a snippet of a chromosome, consisting of M

bits.
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Figure 2.11: Illustration of design variable with values ranging from 0 (top) to 127λ (bottom),
which is δmax.

All GAs simulate the process of evolution through natural selection by generating a

set of solutions to a function, evaluating their �tness according to some criteria, and

selecting and crossing ("breeding") the solutions using a method chosen by the writer of

the algorithm. In this case, the solutions are the designs (i.e., the shapes of the bearing

cups), which are encoded into binary chromosomes and comprise all the individual

variables in the design space. The �tness is the impulse generated by the interaction

between the bearing cup and the ball in the squeezing process, with a higher impulse, i.e.,

a longer time to reach the minimum �lm thickness given a certain load, being more

desirable. The chromosomes are ranked by their impulse, and the top two solutions are

carried over to the next generation (known as "elitism"). The remaining chromosomes are

cut at random points, and crossed over with other chromosomes to create new

chromosomes for the next generation ("crossover"). In addition, mutations in the form of

�ipping the binary digit (0 to 1 or 1 to 0) are introduced at random points ("mutation").

The algorithm is run for this new set of chromosomes, the chromosomes ranked in order of

�tness, and the elitism, crossover, and mutation operators were applied. This process is

repeated a number of times set beforehand (number of generations).
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The random number generator in Matlab is used to create the original set of

chromosomes. Since the random number, n, ranges from 0 ≤ n < 1, the number must be

scaled to create the actual design space variable. For the purpose of this thesis, the

maximum design space variables were, for the two runs: 1) equal to the initial clearance C0

(δ̄max = 1), and 2) three times C0 (δ̄max = 3). These were chosen arbitrarily, but were

meant to represent realistic scenarios from a manufacturing perspective.

Several parameters needed to be set before the program was run: Pcross, the

probability that a chromosome would be cut at a given point; Pmutat, the probability that

a given digit would be mutated (i.e., �ipped from 0 to 1 or 1 to 0); nchrom, the number of

chromosomes; nvar, the number of design variables in each chromosome; nbits the number

of bits in each variable; ngen, the number of generations that the program would be run

for. The probabilities, Pcross and Pmutat, were carried over from the GA developed by

Boedo and Eshkabilov for the rotating cylindrical bearing. For this thesis, nvar and nbits

were set to 10 and 7, respectively. Initially, the design points were set to coincide with the

nodes (nvar = nnod), but the resulting designs were jagged and thus unrealistic to

physically produce, so the number was reduced to one tenth the original number. The

number of bits was chosen to create a �ne enough resolution without causing an overly

long computation time.

Since the target variable of this GA does not necessarily converge to a certain value,

an arbitrary limit must be set for the number of generations, ngen, the GA runs before it is

terminated. At �rst, ngen was set to 50, but after �nding that large leaps in �tness were

happening towards the end of the runs, ngen was extended to 100. This allowed for the

impulse to level out somewhat for several generations before the program is terminated.

While extending the generations further might result in even higher impulses (and more

optimal designs), the computation time would be too high for the purposes of this thesis.
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2.4.2 Data Collection

With the parameters decribed in the previous section, the GA was run for various di�erent

bearing span angles and target minimum �lm thicknesses. The span angles, θ, were set to

30, 60, and 90 degrees; and the target minimum �lm thicknesses (in non-dimensional

form), hmin
C0

, were set to 1
20 ,

1
10 ,

1
4 , and

1
2 . For the cylindrical bearing, two

L
D ratios were

used, 0.5 and 1. For each combination, the program was run three times to generate

multiple designs and corresponding maximum impulses. Graphs were generated directly

from the data generated by the program using the Matlab plotting tool.

In some cases, the target minimum �lm thicknesses for all designs was reached

immediately after the simulation was started (i.e., on the second time step), which resulted

in all chromosomes yielding the same impulse values, which meant that the GA could not

work as there was no di�erence in �tness between the designs. In these cases, the time step

was reduced by a factor of 10 from 0.01 s to 0.001 s, after which the GA was able to work

properly.

The results for the optimized bearings are compared to those for perfectly spherical

and cylindrical bearings as well as bearings with an elliptical pro�le de�ned by

C(θ) = C0 + δ cos2 θ, where δ is the elliptical deviation at the center of the bearing.

The impulses output by the Matlab simulation were con�rmed to be in agreement

with the impulses given by the analytical solution. An example using a spherical bearing is

given below, with the same parameters as the sample case in 3.1.

An analytical formula for calculating the impulse for a perfectly spherical bearing is

found in Boedo and Booker [8] and is given by

I =
−3πR2µ

(C0/R)2
[ln(1− ϵT ) +

ln(1− ϵT )

ϵ2T
+

1

ϵT
+

1

2
] where ϵT = 1− hTmin

C0
(2.39)

Using the same parameters as the sample case in the following chapter, ϵT = 0.95 and

then I evaluates to 43, 833. The impulse calculated by the Matlab simulation in the

corresponding scenario was 43,700 (using a 0.01 second time step). This value has a 0.3

percent error from the analytically calculated one.
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Chapter 3

Results and Discussion

3.1 Dimensional Studies

A sample dimensional case for a spherical bearing and one for a cylindrical bearing are

given below. The dimensional speci�cations, loading, and �uid properties of the bearings

are given in Table 3.1, and the optimized shape and the maximum impulse for each

generation are shown in Figures 3.1 and 3.2. For the elliptical pro�le, the elliptical

deviation at the center of the bearing is set to dmax, which is the maximum deviation

allowed in the GA solution.
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Spherical Bearing

F0 10,000 N
R 0.025 m

µ 1 N−s
m2

θ0 90 deg
C0 20 µm
δmax 20 µm
hmin 1 µm

Results

Ioptimized 733,200 N-s
Ispherical 43,700 N-s
Ielliptical 252,200 N-s

Cylindrical Bearing

F0 10,000 N
L 0.05 m
D 0.05 m

µ 1 N−s
m2

θ0 90 deg
C0 20 µm
δmax 20 µm
hmin 1 µm

Results

Ioptimized 738,900 N-s
Icylindrical 37,200 N-s
Ielliptical 566,500 N-s

Table 3.1: Dimensional and load speci�cations and results for spherical and cylindrical
bearings
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Figure 3.1: Shape pro�le (top) and maximum impulse for each generation (bottom) of
optimized spherical bearing with aforementioned characteristics
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Figure 3.2: Shape pro�le (top) and maximum impulse for each generation (bottom) of
optimized cylindrical bearing with aforementioned characteristics

In both cases, the elliptical pro�le bearings yielded a far higher impulse than the

perfectly spherical and cylindrical bearings, and the optimized bearings yielded an even

higher impulse than the elliptical ones. The ratios between the impulse of the optimized

and the original bearing are 16.8 (spherical) and 19.9 (cylindrical), an improvement of

more than an order of magnitude.
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3.2 Non-Dimensional Design Charts

The following chapter contains a selection of results in the form of graphs generated

directly from the data using MATLAB. For both spherical bearings and cylindrical

bearings, the graphs for the full bearing (90 degree span angle) are shown for all four hmin
C0

values, showing the variation in optimized design as the target minimum �lm thickness

increases. The graphs for the partial bearings (60 and 30 degree span angles) are shown for

the smallest �lm thickness, hmin
C0

= 1
20 . Then, the 90 degree, hmin

C0
= 1

20 bearing is compared

with the corresponding result for the expanded design space (δmax = 3C0). For the

cylindrical bearings, the results for two L
D ratios are compared as well.

3.3 Design Charts: Spherical Bearings

3.3.1 δmax

C0
= 1

Figure 3.3: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 90 degree span angle and
h∗
min
C0

= 1
20
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Figure 3.4: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 90 degree span angle and
h∗
min
C0

= 1
10

Figure 3.5: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 90 degree span angle and
h∗
min
C0

= 1
4
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Figure 3.6: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 90 degree span angle and
h∗
min
C0

= 1
2

Figure 3.7: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 60 degree span angle and
h∗
min
C0

= 1
20
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Figure 3.8: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 30 degree span angle and
h∗
min
C0

= 1
20

3.3.2 δmax

C0
= 3

Figure 3.9: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

spherical bearing with 90 degree span angle and
h∗
min
C0

= 1
20 , with δmax = 3C0
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Spherical Bearing

Max deviation Span angle hmin
C0

Īspherical Īelliptical Īoptimized
Īoptimized

Īspherical

Īoptimized

Īelliptical

δ̄max = 1

90 deg

1
20 14.24 82.20 141.73 9.95 1.72
1
10 10.59 44.79 68.63 6.48 1.53
1
4 6.03 19.46 24.40 4.05 1.25
1
2 2.90 9.00 8.70 3.00 0.97

60 deg

1
20 10.07 68.61 117.50 11.67 1.71
1
10 6.75 32.46 53.48 7.93 1.65
1
4 3.13 10.10 11.13 3.56 1.10
1
2 1.21 3.10 2.66 2.21 0.86

30 deg

1
20 3.62 18.79 15.52 4.29 0.83
1
10 1.76 5.36 4.47 2.54 0.83
1
4 0.46 0.86 0.68 1.50 0.80
1
2 0.13 0.19 0.16 1.18 0.82

δ̄max = 3

90 deg

1
20 14.24 310.27 304.07 21.35 0.98
1
10 10.59 118.97 102.82 9.71 0.86
1
4 6.03 34.91 30.36 5.03 0.87
1
2 2.90 12.87 13.98 4.82 1.09

60 deg

1
20 10.07 200.72 183.02 18.17 0.91
1
10 6.75 56.98 51.91 7.69 0.91
1
4 3.13 9.42 10.79 3.45 1.15
1
2 1.21 2.15 2.58 2.14 1.20

30 deg

1
20 3.62 6.49 15.21 4.20 2.34
1
10 1.76 2.39 4.19 2.38 1.76
1
4 0.46 0.54 0.66 1.45 1.22
1
2 0.13 0.15 0.14 1.07 0.94

Table 3.2: Results for spherical bearings
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3.4 Design Charts: Cylindrical Bearings

3.4.1 δmax

C0
= 1, L

D
= 1

2

Figure 3.10: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
20

Figure 3.11: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
10
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Figure 3.12: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
4

Figure 3.13: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
2
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Figure 3.14: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 60 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
20

Figure 3.15: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 30 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
20
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3.4.2 δmax

C0
= 1, L

D
= 1

Figure 3.16: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 1 and

h∗
min
C0

= 1
20

Figure 3.17: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 60 degree span angle, L
D = 1 and

h∗
min
C0

= 1
20
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Figure 3.18: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 30 degree span angle, L
D = 1 and

h∗
min
C0

= 1
20

3.4.3 δmax

C0
= 3, L

D
= 1

2

Figure 3.19: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 0.5 and

h∗
min
C0

= 1
20
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3.4.4 δmax

C0
= 3, L

D
= 1

Figure 3.20: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 90 degree span angle, L
D = 1 and

h∗
min
C0

= 1
20
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Cylindrical Bearing

Max deviation L
D Span angle hmin

C0
Īcylindrical Īelliptical Īoptimized

Īoptimized

Īcylindrical

Īoptimized

Īelliptical

δ̄max = 1

1
2

90 deg

1
20 19.05 71.27 55.96 2.94 0.79
1
10 9.11 23.86 19.39 2.13 0.81
1
4 2.76 5.02 4.04 1.46 0.81
1
2 0.82 1.23 1.14 1.40 0.93

60 deg

1
20 18.48 69.63 40.94 2.22 0.59
1
10 8.65 22.58 16.13 1.86 0.71
1
4 2.46 4.35 3.35 1.36 0.77
1
2 0.67 1.01 0.85 1.28 0.85

30 deg

1
20 13.57 40.70 8.47 0.62 0.21
1
10 5.43 10.19 5.43 1.00 0.53
1
4 1.18 1.67 0.94 0.80 0.56
1
2 0.30 0.37 0.28 0.93 0.75

1

90 deg

1
20 32.05 145.02 129.22 4.03 0.89
1
10 17.84 56.12 53.67 3.01 0.96
1
4 6.78 14.31 12.26 1.81 0.86
1
2 2.33 4.07 3.69 1.58 0.91

60 deg

1
20 29.49 138.75 112.12 3.80 0.81
1
10 15.64 51.07 35.85 2.29 0.70
1
4 5.38 11.44 8.58 1.60 0.75
1
2 1.66 2.79 2.34 1.41 0.84

30 deg

1
20 18.66 68.33 27.75 1.49 0.41
1
10 7.99 18.59 9.98 1.25 0.54
1
4 1.95 2.90 1.96 1.01 0.68
1
2 0.46 0.64 0.48 1.04 0.74

Table 3.3: Results for cylindrical bearings
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Cylindrical Bearing (continued)

Max deviation L
D Span angle hmin

C0
Īcylindrical Īelliptical Īoptimized

Īoptimized

Īcylindrical

Īoptimized

Īelliptical

δ̄max = 3

1
2

90 deg

1
20 19.05 5.97 33.69 1.77 5.64
1
10 9.11 3.40 9.08 1.00 2.67
1
4 2.76 1.23 3.11 1.12 2.52
1
2 0.82 0.39 0.97 1.19 2.47

60 deg

1
20 18.48 4.04 29.12 1.58 7.21
1
10 8.65 2.23 9.05 1.05 4.06
1
4 2.46 0.76 2.22 0.90 2.91
1
2 0.67 0.25 0.68 1.03 2.72

30 deg

1
20 13.57 3.24 3.96 0.29 1.22
1
10 5.43 1.91 2.39 0.44 1.25
1
4 1.18 0.66 0.63 0.54 0.96
1
2 0.30 0.23 0.21 0.71 0.94

1

90 deg

1
20 32.05 13.40 73.12 2.28 5.46
1
10 17.84 8.68 26.58 1.49 3.06
1
4 6.78 3.60 9.47 1.40 2.63
1
2 2.33 1.25 3.32 1.42 2.66

60 deg

1
20 29.49 9.97 67.31 2.28 6.75
1
10 15.64 6.24 16.08 1.03 2.58
1
4 5.38 2.36 4.18 0.78 1.77
1
2 1.66 0.80 1.31 0.78 1.63

30 deg

1
20 18.66 8.37 20.31 1.09 2.43
1
10 7.99 4.52 7.01 0.88 1.55
1
4 1.95 1.39 1.96 1.01 1.41
1
2 0.46 0.45 0.33 0.72 0.74

Table 3.4: Results for cylindrical bearings (continued)

3.5 Discussion

In addition to the quantitative data that is shown in the �gures, some qualitative

observations can be made.

Optimized bearings compared to perfectly spherical or cylindrical bearings:

For the spherical bearing, the impulse produced by the ball's approach to the optimized

bearing was greater than that of the perfectly spherical bearing in all cases. For the

cylindrical bearing, this was dependent on span angle. For the largest angle, 90 degrees,

the impulse produced by the journal's approach to the optimized bearing was higher than
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that of the perfectly cylindrical bearing for 15 of the 16 cases and roughly equal for the

remaining one. However, for the reduced bearings (span angles of 60 and 30 degrees),

several "optimized" designs had a lower �nal impulse than the perfectly cylindrical ones

(note that the initial shape generated by the algorithm was random, so even though the

�nal shape was in many cases inferior to a perfect cylinder, it was better than the starting

random shape in all cases).

Optimized bearings compared to bearings with elliptical pro�les: In all

cases, the optimized spherical bearings had a smaller advantage over the elliptical ones

than over the perfectly spherical ones, and in 12 out of the 24 scenarios examined, had a

disadvantage (i.e., lower impulse) than the elliptical bearings. With the cylindrical

bearings, there was a distinct di�erence between the two δ̄max values. For δ̄max = 1, all

optimized bearings were inferior to the elliptical bearings; however, for δ̄max = 3, the

optimized bearings were better than the elliptical bearings in 21 out of the 24 cases. This

is due to the elliptical bearings with the large deviation having a much lower impulse than

the ones with the smaller deviation. This was strangely the opposite of what happened

with the spherical bearings, where increasing the elliptical deviation from δ̄max = 1 to 3

resulted in an increase in impulse.

The superiority of many elliptical bearings over their optimized counterparts suggests

that eventually, the optimized shape should reach an elliptical pro�le given enough

generations. To see if this was the case, an example where the impulse of the optimized

bearing was signi�cantly lower than that of the elliptical pro�le bearing was selected, and

the GA was run for this scenario for 1000 generations instead of 100. The resulting shape

(see Figure 3.21), while smoother and having a much smaller bulge than the one generated

after 100 generations and thus closer to an elliptical pro�le, was still not actually elliptical.

The �nal impulse, while higher than that produced by the shorter run, was not as high as

the impulse of the elliptical pro�le bearing, and minimal improvement happened after

about 380 generations.
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Figure 3.21: Shape pro�le (L) and maximum impulse for each generation (R) of optimized

cylindrical bearing with 60 degree span angle, L
D = 1

2 and
h∗
min
C0

= 1
20 , after 1000 generations

The general shape pro�le of the optimized spherical bearings consists of a larger

deviation near the center of the bearing, tapering down towards the edge (extent) of the

bearing. In some optimized designs, the maximum deviation is not at the center but at the

second or third design point (δ2 or δ3), and others have a small spike or "bulge" closer to

the edge of the bearing (δ9 or δ10). When the span angle is reduced to 60 or 30 degrees, the

bulge seems to disappear, and the overall pro�le becomes less "stable" at the smallest span

angle (see Figure 3.8).

Like the spherical bearings, the general shape pro�le of the cylindrical bearings

consists of a larger deviation near the center of the bearing (θ = 0), tapering down towards

the edge (extent) of the bearing, with the exception of a pronounced spike or "bulge"

peaking at the ninth or tenth point (i.e., δ9 or δ10). While the large bulge was present in

most optimized designs, it was less pronounced in a few (see full collection of graphs), with

it being the least common and prominent in the 30 degree span bearings.

Expanding the design space in the radial direction from δmax = C0 to δmax = 3C0

results in a signi�cant increase in impulse for the spherical bearing, as can be seen in 3.9,

but does not do the same for the cylindrical bearing (see 3.19 and 3.20). This suggests that

in the case of cylindrical bearings, expanding the design space results in less �t designs

than those that are generated when the design space is smaller, and 100 generations is not

enough for the GA to "�x" the problem.
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It is not clear that any single feature contributes to the increrase in impulse from the

plain spherical or cylindrical bearing to the optimized one. The designs in which the bulge

is absent do not seem to have signi�cantly lower maximum impulses than those that do,

and in some examples, like 3.3 and 3.7, nearly identical looking designs have signi�cantly

di�erent impulses associated with them, whereas in the example of 3.6, there is little

di�erence in the impulse between the three designs. In the cases of 3.9 and 3.15, the bulge

is associated with a lower impulse, although not necessarily the cause of it.
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Chapter 4

Conclusion

The results demonstrate the possibility of increasing the impulse produced by the

interaction of a ball and cup or journal and sleeve in the case of spherical and cylindrical

bearings, respectively, using a genetic algorithm to initiate, evaluate, and create new

combinations of designs (i.e., shape pro�les) of the inner surface of the bearings. Through

this iterative process, the bearing is improved from its initial randomly generated shape

over the course of 100 generations into a shape that generally features a bulge towards the

center of the bearing and in some cases a steep pocket near the edge. In the case of

spherical bearings, the GA consistently produces shapes that are superior to perfectly

spherical bearings, but not always superior to bearings with an elliptical pro�le. In the

case of cylindrical journal bearings, the GA often, but not always, produces shapes that are

superior to perfectly cylindrical bearings and only in some cases better than journal

bearings with an elliptical pro�le (namely, when the maximum deviation from perfect

cylindricity that the GA is allowed to work with is three times the nominal radial clearance

and these results are compared to elliptical bearings where the deviation at the center of

the bearing is the aforementioned).
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In conclusion, between perfectly spherical and cylindrical bearings, bearings with an

elliptical pro�le, and bearings optimized by the GA (given the speci�c parameters used for

this thesis), none of them is unanimously superior, but di�erent ones prevail depending on

the speci�c scenario that is simulated. In the future, further analysis needs to be done to

determine the material properties, as well as the machinability, of the geometries produced

by the GA.
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Appendix A

Finite Element Formuation

A.1 Spherical Geometry

A.1.1 Pressure Fluidity Matrix

General form [18]

(Kp
ij)

e = −
∫
A

h3

12µ
(∇Ni · ∇Nj)dA i = 1, 2 j = 1, 2 (A.1)

Assuming axisymmetry

dA = 2πR2 sin θdθ (A.2)

so that

(Kp
ij)

e= −2πR2

12µ

∫ θ2

θ1

h3

R2

dNi

dθ

dNj

dθ
sin θdθ

≈ −π sin θ̄

6µ

∫ θ2

θ1

h3
dNi

dθ

dNj

dθ
dθ

(A.3)

where

θ̄ = (θ1 + θ2)/2 (A.4)

Assuming linear shape functions for Ni(θ) and assuming h(θ) varies linearly within the
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element gives [11]

(Kp
ij)

e≈ −π sin θ̄

6µB2

∫ θ2

θ1

h3bibjdA

= −πbibj sin θ̄

24µB
(

2∑
k=1

hk

2∑
k=1

h2k)

(A.5)

where

B = θ2 − θ1 (A.6)

A.1.2 Squeeze Fluidity Matrix

General form [18]

(K̇h
ij)

e = −
∫
A
NiNjdA i = 1, 2 j = 1, 2 (A.7)

Assuming axisymmetry

dA = 2πR2 sin θdθ (A.8)

so that

(K̇h
ij)

e= −2πR2

∫ θ2

θ1

NiNj sin θdθ

≈ −2πR2 sin θ̄

∫ θ2

θ1

NiNjdθ

(A.9)

Assuming linear shape functions for Ni(θ) gives [11]

(Kh
ij)

e = −πR2B sin θ̄

3
(1 + δij) (A.10)

A.1.3 Area Matrix

Element resultant force is given by

Fe=

∫
A
pdA

= 2πR2

∫ θ2

θ1

p sin θdθ

≈ 2πR2 sin θ̄

∫ θ2

θ1

pdθ

(A.11)
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Assuming p(θ) varies linearly within the element gives

Fe= 2πR2 sin θ̄

∫ θ2

θ1

[p1N1(θ) + p2N2(θ)]dθ

= πR2p1B sin θ̄ + πR2p2B sin θ̄

(A.12)

De�ne nodal forces (positive radially outward) as

r1 = r2 =
Fe

2
(A.13)

so that

r1 = r2 =
1

2
[πr2p1B sin θ̄ + πR2p2B sin θ̄] (A.14)

from which we can de�ne an element area matrix

(Aij)
e =

πR2B sin θ̄

2
i = 1, 2 j = 1, 2 (A.15)

A.2 Cylindrical Geometry

The following is taken directly from Boedo [4] and is provided here for completeness.

Given a two-noded element with h1,h2, and C1,C2 at nodes 1 and 2,

De�ne for this element

< h >= (h1 + h2)/2

< C >= (C1 +C2)/2

s = 1− < h >

< C >

λ = λ(s)

Γ1(
λL

D
),Γ2(

λL

D
),Γ3(

λL

D
)

B = R(θ2 − θ1)

b1 = −1

b2 = +1

(A.16)
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A.2.1 Pressure Fluidity Matrix

(Kp
ij)

e = − LΓ1

12µB2
bibj

∫ X2

X1

h3dx− Γ2

12µL

∫ X2

X1

NiNjh
3dx (A.17)

where ∫ X2

X1

h3dx =
B

4
(h1 + h2)(h

2
1 + h22)∫ X2

X1

N2
1h

3dx =
B

60
(10h31 + 6h21h2 + 3h1h

2
2 + h32)∫ X2

X1

N2
2h

3dx =
B

60
(h31 + 3h21h2 + 6h1h

2
2 + 10h32)∫ X2

X1

N1N2h
3dx =

B

60
(2h31 + 3h21h2 + 3h1h

2
2 + 2h32)

(A.18)

A.2.2 Squeeze Fluidity Matrix

(Kḣ
ij)

e= −LΓ3

∫ X2

X1

NiNjdx

= −LBΓ3

6
(1 + δij)

(A.19)

A.2.3 Area Matrix

(Aij)
e =

LBΓ1

4
(A.20)
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