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Abstract

The recent detection of gravitational waves (GWs) from a system of binary neutron stars (BNS)

in coincidence with electromagnetic observations has launched a new era of multimessenger

astrophysics. In light of the complementary knowledge to be gained through simultaneous

observations, BNS mergers are one of the main targets for terrestrial GW interferometric

detectors. These observations may prove critical in understanding the equation of state (EOS)

of the nuclear matter inside the neutron star core, which is still poorly constrained given

current observations. Understanding the neutron star (NS) EOS is critical for binary parameter

estimation, and will hopefully aid in the prediction and detection of additional GW signals for

systems with varying NS masses. While configurations of binary neutron stars having mass

ratios far from unity are of great interest because of their potential observational signatures,

generating accurate initial data for such systems has historically proven to be difficult, and

relatively limited work has been done to date in simulating unequal-mass BNS because of a

variety of numerical difficulties. In this work, we have modified the publicly available LORENE

binary initial data code to advance our ability to construct unequal-mass BNS initial data, and

used our results to initiate dynamical evolutions of BNS mergers performed using the Einstein

Toolkit. We have investigated the quality of the initial data produced by our modified version

of LORENE by evaluating a number of metrics, particularly the conservation of the Hamiltonian

constraint when data are interpolated onto a grid for use in dynamical simulations.

Here we discuss the process by which we generate initial data and use it for launching dynamical

simulations, as well as our analysis of the dynamics of the merger for varying mass ratios and

different EOSs represented as simple polytropes and piecewise polytropes. In particular, we

analyze the relationship between the BNS mass ratio, EOS, and the ejected mass during the

merger, and classify the fate of the merger remnant produced in each case.
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Chapter 1

Introduction

In August 2017, the first Binary Neutron Star (BNS) merger was detected by the Laser Inter-

ferometer Gravitational-Wave Observatory (LIGO) and the Virgo Gravitational Wave Obser-

vatory (VIRGO) [9]. The gravitational wave signal GW170817 was accompanied by observable

electromagnetic signals from radio frequencies to γ-rays [10, 11]. This first joint gravitational

and electromagnetic (EM) observation from a single source provided striking “multimessenger”

data about the system progenitors, the merger process, and the merger’s aftermath. Due to

the availability of a wealth of varied observational probes, we hope to learn a great deal more

about neutron star structure and astrophysics through these multiple channels. Over the next

few years, we should be able to detect many more such events. As of 12th April 2022, there

have been two confirmed BNS merger events [12, 13] and many more probable and confirmed

BHNS (black hole-neutron star) merger events as well – these latter ones marking the first time

that a black hole-neutron star binary was confirmed to exist, as none have been conclusively

observed through electromagnetic techniques.

Binary neutron star mergers have a rich and varied phenomenology when compared to binary

black hole (BBH) mergers due to the presence of matter in neutron stars, and are consequently

much more complex to model. In particular, while a BBH system can be fully described by

the component masses and spins (and potentially the binary eccentricity, though this latter

quantity is typically expected to be nearly zero [14, 15]), we are still working toward a proper
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Chapter 1. Introduction

understanding of the fluid state describing the matter inside NS from the nuclear densities

present in the core all the way to the crust at the surface [16].

At present, we possess only weak constraints on the equation of state (EOS) of nuclear matter

inside the neutron star, from either gravitational wave (GW) observations of BNS systems or

more traditional electromagnetic observations of pulsars [17]. The EOS, which describes the

dependence of the pressure on the density and other parameters, will leave imprints on the

BNS merger process and both the emitted GW and EM signals. As a result, BNS mergers

can be used as an astrophysical laboratory to investigate the properties of nuclear matter in

extreme conditions in a way largely inaccessible to other observational strategies.

In order to use multimessenger signals from BNS mergers for source parameter estimation,

we need to compare the observed signals to theoretical GW templates and merger simulations

that can predict the high-energy emission as a function of system parameters such as the

total binary mass and mass ratio and the NS EOS. In both cases, full three-dimensional gen-

eral relativistic numerical simulations of BNS are required to achieve quantitative accuracy.

Among the sources of observational evidence that may aid us in probing the interiors of NS,

the clearest signature may be provided by the timescale on which merger remnants collapse to

BH, assuming that they do so at all. Numerical simulations are critical for determining under

what circumstances the merged neutron star collapses immediately to a black hole, survives

indefinitely as a hypermassive neutron star (HMNS), or lives for a brief time before a delayed

collapse, as well as for helping us to understand the observational signatures characterizing

each channel.

Given the importance of numerical simulations, one critical link in the process of generating a

bank of numerical simulations is a corresponding bank of initial data models for NS with dif-

ferent masses and EOS, from which numerical simulations can be initiated. While NS masses

are easily specified, it is critical that the EOS functional models be parameterized in ways

that allow for comparison to observations by existing data analysis techniques.

Nearly all BNS initial data is generated under a similar set of assumptions. The binary is

assumed to be in a quasi-equilibrium state, with a velocity field that permits a helical Killing

2



vector in time to describe the orbital motion [18]. Based on arguments about the weak viscos-

ity present, the NS are assumed to be essentially irrotational [19, 20]; indeed, given the orbital

period of 1-5 ms immediately prior to the merger, even relatively rapidly rotating pulsars can

be treated as nearly irrotational. While magnetic fields are expected to be present, the field

strengths yield only perturbative corrections to the overall pressure throughout a star and are

typically ignored when constructing quasi-equilibrium configurations.

As a result, there are a limited number of physical parameters to vary to describe a BNS

system prior to the merger. Besides the EOS, as discussed above, the most important pa-

rameters are simply the masses of the two NS. One challenge that we have faced here has

been the fact that many of the leading numerical techniques struggle with binary mass ratios

significantly different than unity (thus q ≡ M2
M1

< 1). Such mergers are of particular interest

to the community, since mass loss from a binary merger is expected to scale strongly with the

mass ratio, based on previous numerical studies [21, 22, 23]

This dissertation has the following organization: Chapter 2 consists of the background material

required to understand the astrophysics of neutron stars and numerical relativity. Chapter

3 has a description of the code LORENE used to produce initial data of the binary neutron

star configurations. In chapter 4 we describe the various modifications we have done to the

LORENE code in order to expand the parameter space of BNS configurations. In chapter 5

we present our results obtained from investigating the quality of initial data, along with the

results from dynamical simulations of BNS configurations we conducted. Chapter 6 consists of

a brief description of the conclusions obtained from conducting the research presented in this

dissertation, and describes future steps anticipated for our publicly available binary neutron

star initial data library.

Chapter 1. Introduction 3



Chapter 2. Background

Chapter 2

Background

To understand what we can learn by studying merging neutron star systems, it helps to

explain what neutron stars are, the physics that describes them, and how they are produced

astrophysically (Sec. 2.1). We also consider how they are produced in binaries via binary stellar

evolution processes and the processes that take close binaries and drive them to coalescence

and merger (Sec. 2.2). Since these mergers have long been considered a critical target for

gravitational wave detectors like LIGO and VIRGO, we discuss how these systems produce

gravitational radiation and how we interpret it via the signals we observe, and then turn our

focus to how gravitational radiation and electromagnetic observations may be combined in this

new era of “multimessenger astronomy” (Sec. 2.3; noting that neutrino observations may also

lay claim to this latter name as well). Finally, we discuss the approach used by the Lorene

code to construct binary neutron star initial data, the main topic of this thesis (Sec. 2.4).

2.1 Neutron Stars

A neutron star is a compact star with a radius between 9 - 15 km, a mass range between 1 -

3 M⊙ and a central density of n0 = 0.16fm−3 [24]. Composed of matter at nuclear densities,

they are one of the most dense objects in the universe. Neutron stars are made of neutrons,

as the name suggests, but a fraction of protons, electrons and/or muons is also present to

neutralize the matter. Held together by a strong gravitational field, inward forces cannot be
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2.1. Neutron Stars

balanced solely by electron Fermi gas pressure [25], [26], like in a white dwarf; rather, repulsive

strong nuclear forces are needed to balance the gravitational field inside neutron stars [27].

2.1.1 The final stages of stellar evolution

How do neutron stars form? The post-main sequence evolution of massive stars results in

the star exhausting its supply of hydrogen and helium in its core, while it continues to fuse

heavier elements such as carbon and oxygen there (and possibly these and lighter elements in

surrounding shells), eventually forming an iron core. This terminates the fusion process, since

iron is the most stable element in terms of binding energy. As the iron core becomes more

massive, the star can no longer be supported by hydrostatic pressure and collapses under its

own gravity. This process results in a supernova, a catastrophic explosion that can form either

a neutron star or a black hole, depending on the initial mass of the star.

Numerical simulations of supernova explosions are computationally challenging as they include

nuclear physics motivated equation of state, a detailed description of neutrino interactions

and general relativity. Previous work of numerical simulations show that the mass of a newly

formed NS depends mainly on the mass of the progenitor [28, 29]. Progenitors with an initial

mass, M ≥ 10M⊙ form NS with an average mass of MNS 1.4M⊙ and heavier mass NS

M > 1.6M⊙ are formed by progenitor having masses above M > 20M⊙.

Given the potential variability in the detailed dynamics of the supernova process, the mass

distribution of newly formed NS remains somewhat uncertain, and will be difficult to fully

constrain using numerical simulations for quite some time into the future.

In the first phase during the collapse, a shock wave is generated as the central density of

star reaches the nuclear equilibrium density. The star emits energy and angular momentum

into neutrino radiation, the latter due to the presence of turbulence and hydrodynamical

instabilities. The neutrino radiation is accompanied by electron captures, thus leaving behind

a neutron-rich star:

p+ + e− → n+ νe, (2.1.1)

In the second stage, the so-called “Kelvin-Helmholtz phase”, the proto-neutron star cools and

Chapter 2. Background 5



Chapter 2. Background

shrinks down, becoming transparent to neutrinos and thus forming a cool neutron star [30].

Neutron stars typically have strong magnetic fields, as the field embedded in the stellar ma-

terial increases in strength by several orders of magnitude during the gravitational collapse

because of flux conservation. A typical neutron star has a magnetic field of 108 − 1012 Gauss,

but some neutron stars are even thought to have magnetic fields of up to 1015 Gauss. These

latter ones form a special class of NS called magnetars. Several NS emit pulses of electro-

magnetic radiation, typically in the radio band and less frequently in the X-ray or gamma ray

components of the electromagnetic spectrum, forming the population of pulsars we observe

on Earth 1. These pulses arise due to the misalignment of the rotational axis and the dipolar

magnetic field. These pulses are visible from the earth when the star’s radiation beam crosses

the observer’s line of sight. We are able to directly measure the rotational period of a pulsar

as it is equal to the pulse period.

2.1.2 Equation of state

The nuclear matter equation of state, which states how the pressure behaves as a function

of other physical parameters inside the NS, remains poorly constrained based on theoretical

predictions and limited experimental evidence. Due to the extreme nature of the physical

conditions (pressure, density, gravitational potential), we cannot reproduce the appropriate

conditions stably through experiments on earth for longer than fleetingly brief timescales.

Therefore, we cannot perform first-principles Quantum Chromodynamical calculations for the

extreme parameter space required to describe NS [32]. In order to parameterize our uncer-

tainty, different approximate EOS models are used widely throughout the numerical modeling

community, with parameters that can be chosen to match specified theoretical EOS models

to the desired accuracy. In this work, we have explored three different types of EOSs: simple

polytropes (in which the pressure is related to the density by a simple power-law model),

piecewise polytropes, and tabulated EOS. These are discussed in Sections 3.2.1, 3.2.2 and 5.2

respectively.
1There are 3,342 known pulsars listed in the database maintained by the Australian Telescope National Facility
[31], of which 359 are in binaries (two of which form the only known pulsar-pulsar binary, PSR J0737-3039).
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Given an EOS model, the neutron star structure, including its mass and radius, can be deter-

mined using the EOS and the Tolman-Oppenheimer-Volkov equations [26, 25]:

dP

dr
= − 1

r2
(ϵ+ P )(m+ 4πr3P )

(
1− 2m

r

)−1

, (2.1.2)

dm

dr
= 4πr2ϵ ⇒ M =

∫ R

0
4πr2ϵ dr. (2.1.3)

The only independent variable is r (radius) and all other variables are functions of radius. In

the above equations, ϵ is the energy density and P is the pressure. The enclosed mass, m(r),

is the total mass contained between the center of the NS at r = 0, where P = Pc and ϵ = ϵc,

to a radius of r. The total NS mass M is calculated from the center to the surface of the

star where r = R and P = 0. The microscopic properties of the NS can be described by the

(barotropic) equation of state of the matter, and we can derive the mass-radius relationship

for cold NSs by solving the TOV equations for different values of the central density (or related

quantities). Should we be able to place simultaneous constraints on the NS mass and radius,

it should be useful for helping to constrain the properties of matter at nuclear densities.

2.2 Binary neutron star systems

There is a well-accepted evolutionary pathway that leads to the formation of close binary

neutron stars (and BH-NS systems). While other options have been discussed, the standard

channel described below and shown in Fig. 2.2 is favored by population synthesis calculations

to produce the number of observed systems detected to date. In this channel, both the

progenitor stars need to have masses M ≥ 8 M⊙ to ensure a pair of supernovae [1, 33]. The

more massive primary star evolves for over a million years along the main sequence before it

enters the giant phase, the lifetime depending on the star’s mass with heavier stars lasting

for less time and smaller ones for more before exhausting their fuel supply and triggering the

giant phase. Eventually, the primary undergoes a supernova, either a “Type Ib”, “Type Ic”,

or “Type II” depending on the particular absorption spectra that would be observed from the
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Figure 2.1: Cartoon showing the formation of binary neutron star system, taken from [1]

ejected material, leaving behind a compact object at its core.

The secondary, less massive star follows a slightly different evolutionary process. After the

primary becomes a compact object, the secondary eventually leaves the main sequence in turn

and enters the giant phase, which triggers the binary’s evolution into a common envelope (CE)

phase, as the secondary overflows its Roche lobe in an unstable process and expands while the

primary plunges within the newly formed envelope. The separation between the stars decreases

dramatically because of dynamical friction, releasing sufficient energy to eventually expel the
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envelope. Without the decrease in the separation between the components, the stars would

not merge through the emission of GWs within a Hubble time (i.e., the age of the universe,

used as a standard heuristic timescale throughout astrophysics). Next, the helium rich core

of the secondary undergoes a supernova explosion, after which the binary could either end up

as an unbound system or as a tight binary, with the end result depending on the magnitude

and orientation of the supernova kick.

The properties of binaries containing NS has been well-studied through a number of differ-

ent channels, primarily by the study of X-ray binaries and pulsars in binaries. In [34], they

extrapolate from a population of 15 known pulsars in binaries in the Milky Way to estimate

a population of up to ∼ 1000 active pulsars in binaries in the galaxy – the vast majority of

which beam in directions away from the Earth – representing a small subset of the approxi-

mately 270,000 neutron stars in unmerged binaries within the galaxy. The properties of these

binaries remain somewhat uncertain; binary separations are still often fit using power-laws in

population synthesis calculations [35] and masses can be difficult to determine with precision.

The mass ratio of neutron stars seen in the binary radio pulsar systems detected to date is

typically close to unity and masses are constrained to a small range, with an average mass of

1.4 M⊙. On the other hand, the detected X-Ray binary systems (NS + regular star or NS +

white dwarf) show a broader mass range of X-ray pulsars and have a slightly higher average

mass. We have observed a range of masses for NS from near 1.35M⊙ [36] to 2.1± 0.2M⊙ [37],

which provides important information on the production mechanisms of neutron stars and the

behavior of nuclear matter.

2.2.1 Stages of a Binary Merger

A binary neutron star merger, or that of any other pair of compact objects, consists quali-

tatively of three different phases: inspiral, merger and ringdown. Each of the three phases

presents a distinct set of challenges to model numerically and to describe in theoretical terms.

To visualize a binary neutron star merger, we can begin from the cartoon shown in Figure 2.2.

The cartoon was originally designed to describe a binary black hole merger, and is commonly
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attributed to Kip Thorne 2. It may be adapted to a binary neutron star merger by noting

that neutron stars are assumed to be non-spinning, or at least to spin much more slowly than

typical BHs. Additionally, the result of the "ringdown" phase may either be a newly formed

BH or a NS that survives against gravitational collapse.

Figure 2.2: Cartoon image of a binary black hole merger, that may be applied to binary
neutron mergers as well. Image taken from [2].

The three phases of a neutron star merger can be summarized as follows:

• During the inspiral phase, the orbital separation decays over long timescales through

gravitational wave emission. This phase takes up the entire lifetime of the binary until

its last few milliseconds. We can describe the binary system in the inspiral phase using

a quasiequilibrium formalism until the point where the gravitational radiation timescale

becomes comparable to the dynamical timescale. The evolution of the binaries in time, as

well as their deformations due to tidal effects, are well described by the post-Newtonian

approximation to general relativity.
2See, e.g., “Spacetime Warps and the Quantum World: Speculations about the Future” in R.
H. Price, ed., The Future of Spacetime. W. W. Norton, New York, 2002, pp. 109-152.
https://www.its.caltech.edu/ kip/index.html/PubScans/VI-42.pdf).
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• Binaries become unstable when their separation becomes comparable to a few times

their radii. As they come closer, dynamical instabilities set in, and the stars plunge to-

gether as the binary enters the merger phase. We need to perform full general relativistic

simulations to understand the hydrodynamics of the merger phase. According to past

simulations, if the two stars have nearly equal masses, they collide with each other in

a balanced way, gradually forming first a bar like object and then a more axisymmet-

ric configuration. On the other hand, if the primary is substantially heavier than the

secondary, the less massive star gets torn apart due to tidal disruptions and largely ac-

cretes onto the primary. Numerical calculations of the GWs produced in binary mergers

uniformly predict the largest GW amplitudes during this phase. Important information

regarding the EOS of the NSs should in theory be possible to infer from within the GW

emission during this phase.

• In the final stage, the ringdown phase, the system will settle into a dynamically stable

configuration and emit a lower-amplitude, higher-frequency GW signal. The particular

GW properties depend on the final remnant’s mass and rotational profile. The remnant

will always be a compact object, either a black hole or a neutron star. If the remnant is

a neutron star, it can fall into one of the three categories:

Stable neutron star: The NS mass is less than the maximum mass supported by the

nuclear matter EOS for an isolated, non-rotating configuration.

Supramassive neutron star: The NS is above the maximum stable stationary iso-

lated mass given by the Tolman-Oppenheimer-Volkov (TOV) equation describing

the relativistic stellar structure, but uniform rotation can support it for a much

longer time because of centripetal effects.

Hypermassive neutron star: If the remnant has a mass above the supramassive limit,

it may fall into the hypermassive regime, where it is supported against gravita-

tional collapse by rapid differential rotation. This cannot support itself on the

same timescales as a supramassive or stable NS, since any dissipative process, e.g.,
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viscosity or magnetic effects, will damp away the differential rotation and lead to

the remnant’s collapse into a black hole on a relatively shorter timescale (though

still potentially quite long with respect to what most 3-d numerical simulations can

model).

If the mass of the remnant is large enough, it will collapse into a black hole immediately,

bypassing the HMNS stage entirely.

2.3 Gravitational Waves and Multimessenger Astronomy

The existence of gravitational waves was one of the immediate consequences of Einstein’s

General Theory of Relativity (GR). They are perturbations in spacetime resulting from ac-

celerating massive bodies, traveling at the speed of light with amplitudes that decay inversely

with the distance to their source. They have a quadrupolar nature, as opposed to electromag-

netic waves which have a leading-order dipolar nature. They are most easily derived from the

general relativistic field equations when treated in a linear regime. When we are far away from

the compact sources, we can treat the spacetime metric as the Minkowski special relativistic

metric ηµν plus a perturbation hµν given as

gµν = hµν + ηµν . (2.3.4)

As we assume the perturbation to be very small, ||hµν || << 1, we can ignore higher-order

terms and thus assume the weak nature of the gravitational field. The Christoffel symbols can

be expanded in terms of hµν as

Γν
αβ =

1

2
ηµν(∂βhµα + ∂αhµβ + ∂µhαβ),

=
1

2
(∂βh

ν
α + ∂αh

ν
β + ∂νhαβ).

(2.3.5)
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Thus, the Riemann tensor becomes

Rν
αβµ = ∂βΓ

ν
αµ + ∂µΓ

ν
αβ,

=
1

2
(∂α∂βh

ν
µ + ∂µ∂

νhαβ − ∂β∂
νhαµ − ∂µ∂αh

ν
β).

(2.3.6)

In linearized theory the Ricci tensor becomes

Rαβ = Rµ
αβµ =

1

2
(∂µ∂βh

µ
α + ∂µ∂αhβµ − hβα − ∂α∂βh, (2.3.7)

where the d’Alembertian wave operator is given by

= ∂µ∂
µ = ∇2 − ∂t

2, (2.3.8)

and h is the trace of metric perturbation.

The general theory of relativity gives the Einstein tensor as

Gαβ = Rαβ − 1

2
ηαβR. (2.3.9)

We can calculate the Ricci scalar using the Ricci tensor as

R = Rα
α = (∂µ∂αh

µ
α − h). (2.3.10)

Thus, the Einstein tensor becomes

Gαβ =
1

2
(∂µ∂βh

µ
α + ∂µ∂αhβµ − hβα − ∂α∂βh− ηαβ∂µ∂αh

µ
α − ηαβ h),

= 8πTαβ.

(2.3.11)

Einstein’s equations in linearized gravity yield

h̄αβ − 2∂(α∂
ρh̄β)ρ + ηαβ∂

ρ∂σh̄ρσ = −16πTαβ, (2.3.12)
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where

h̄αβ = hαβ − 1

2
hηαβ, (2.3.13)

is the trace reversed metric perturbation.

The metric given by the above equation is not unique. When we do an infinitesimal coordinate

transformation such as

xα −→ xα + ξα, (2.3.14)

it leaves the equation unchanged. Therefore the linearized theory is invariant under gauge

transformation

hαβ −→ hαβ + 2∂(αξβ). (2.3.15)

As a result, this transformation will not change the field equations. This problem is further

simplified by making the choice of the Lorenz gauge

∂αh̄αβ = 0. (2.3.16)

This is analogous to the gauge transformation in electromagnetism where the Faraday tensor

is invariant under the gauge transformation of the vector potential, to simplify Maxwell’s

equations.

The final form of Einstein’s equations in weak field limit under linearized theory becomes

h̄αβ = −16πTαβ. (2.3.17)

The above equation has the form of wave equation, propagating at the speed of light. In the

case of the field equations in a vacuum and far away from the source we get

h̄αβ = 0. (2.3.18)
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We can decompose the metric using Fourier transformation as

h̄αβ =

∫
Aαβ(k)e

ikρxρ
d4k. (2.3.19)

We can further impose a transverse traceless (TT) gauge condition along with the Lorenz

gauge condition to make the metric perturbation purely spatial and traceless. This gives us

h = 0, (2.3.20)

hαβ = h̄αβ. (2.3.21)

In the TT gauge, for a gravitational wave traveling in the z direction, the metric perturbation

becomes

hTT
αβ =



0 0 0 0

0 h+ h× 0

0 h× h+ 0

0 0 0 0


, (2.3.22)

where h+ is called the plus polarization and h× is the cross polarization, making them the

only two independent components of the waveform. For a circle of particles, with their center

at the center of a Cartesian coordinate system, the plus polarization will elongate the particle

configuration along the x- and y-axes in alternating fashion while the cross polarization will

elongate it along the bisector of x- and y-axes.

If we wish to consider the production of gravitational waves by matter sources, we need to

couple Einstein’s equations with matter. Starting from the source equation for each component

h̄αβ(t, x⃗), the linear wave equation (Eq. 2.3.17)

h̄αβ(t, x⃗) = 4

∫
Tαβ(t

′, x⃗′)

|x⃗− x⃗′|
d3x′, (2.3.23)
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where t′ is the retarded time given as

t′ = t− |x⃗− x⃗′|. (2.3.24)

As we are interested in deriving the gravitational waves far from the source, r = |x⃗| >> Rsource,

we can further simplify the above expression by using the “slow source” approximation, where

the wavelength linked with the characteristic source is much bigger than the source size,

λ >> Rsource. As a result, we get

h̄αβ =
4

r

∫
Tαβ(t− r, x⃗′)d3x⃗′. (2.3.25)

We can relate the above term to the quadrupole source term and in doing so, explain why

conservation of mass and momentum imply that monopole and dipole gravitational radiation

cannot exist. Indeed, monopole radiation contributions would result from a change in time of

the zeroth moment of the mass distribution, implying non-conservation of mass, and dipole

radiation from the change in time of the mass-dipole moment, which is always zero when

viewed in the center-of-mass frame assuming conservation of momentum.

Using the conservation of energy momentum tensor and integrating over a considered volume

we get ∫
T ij(x)dx3 =

1

2
∂20

∫
xixjT 00d3x, (2.3.26)

Applying the above condition to eqn (2.3.25)

h̄ij(t, x⃗) =
2

r
Ïij(t− r), (2.3.27)

where Ïij is the second mass moment given as

Iij(t) =

∫
ρ(t, x⃗)xixjd

3x. (2.3.28)
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We get the quadrupole formula by projecting eqn (2.3.27) in TT gauge, given as

hTT
ij (t, x⃗) =

2

r
Λij,kl(n⃗)Q̈ij(t− r), (2.3.29)

where

Λij,kl = PikPjl −
1

2
PijPkl, (2.3.30)

where Pij = δij − ninj is the projection operator with n⃗ − x⃗/r⃗ and Qij is mass quadrupole

moment,

Qij(t) =

∫
ρ(t, x⃗)

(
xixj −

1

3
|x⃗|2δij

)
. (2.3.31)

2.3.1 Binary inspiral

In this section, we will derive the predicted inspiral of a binary system, applying it to the

regime where the NS are separated enough so that tidal forces are negligible. The binaries

are expected to be in circular orbits when they become visible to laser interferometers, due

to gravitational wave emission, which has the effect of damping away eccentricity on a faster

timescale than the inspiral timescale. Let us consider a binary system of stars with individual

masses M1 and M2. The reduced mass of the system is given by

µ =
M1M2

M1 +M2
. (2.3.32)

Further, let us assume the stars are spherical and irrotational, so the total Newtonian energy

of the system is given by

E(r) =
1

2
(M1v

2
1 +M2v

2
2)−

GM1M2

r
,

= −1

2

GMµ

r
,

(2.3.33)

and the angular velocity given by

ω =

√
GM

r3
, (2.3.34)
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where r is the binary separation. The quadrupole moment of the system is given as

Qxx = µr2(cos2 θ − 1

3
) =

1

2
µr2 cos 2θ,

Qxy = µr2(cos θ sin θ) =
1

2
µr2 sin 2θ,

Qxz = µr2(sin2 θ − 1

3
) = −1

2
µr2 cos 2θ.

(2.3.35)

The energy loss rate in gravitational waves at a moment where they are separated at a distance

r is given as

dEGW

dt
=

16Gµ2r4ω6

5c5
(2 cos2 θ 2 sin2 θ),

=
32G4µ2M3

5c5r5
.

(2.3.36)

The inspiral rate is calculated by equating the energy loss caused by gravitational radiation

with the energy change resulting from a decrease in separation, such that

dr

dt
=

(
dEGW

dt

)(
dE(r)

dr

)−1

,

=
32G4µ2M3

5c5r5
2r2

GMµ
,

=
64G3µM2

5c5r3
.

(2.3.37)

We can integrate and solve for r(t) to give

r(t) = r0

(
1− t

τ

) 1
4

, (2.3.38)

where τ0 is the expected time remaining for the binary to merge, if they were point masses,

given as

τ0 =
5

256

5c5r40
G3µM2

. (2.3.39)

When the stars get too close, we can now longer make use of the point mass formalism, as

tidal interactions will become important in describing the dynamics of the simulations.
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2.3.2 Multimessenger Astronomy with binary neutron star mergers

Along with emitting gravitational waves, BNS and BH-NS systems can also emit a wide range

of electromagnetic and neutrino signals. They provide a wealth of varied probes and multiple

avenues to learn more about the structure and astrophysics of neutron stars and open a new

field of multimessenger astrophysics. In August 2017, the Laser Interferometer Gravitational

Wave Observatory (LIGO) [38] and the Virgo Gravitational Wave Observatory [39] detected

a BNS merger for the first time, a source named GW170817. It was accompanied by a

mulitmessenger photon display with detections covering the entire electromagnetic spectrum,

all the way from radio frequencies to γ-rays [10]. These events had been predicted to be

sites of production of r-process elements, a prediction that was confirmed by the emission of

IR/optical signals coincident with GW170817 [40, 41, 42]. It was also accompanied by a short

gamma ray burst (SGRB) [43], as had also been widely suggested for many years (see, e.g.,

[44]).

SGRBs are among the most energetic astrophysical events that have ever been observed, each

releasing around 1048 - 1052 ergs (see, e.g., [45] for a review of SGRB models in the LIGO era).

The working mechanism of the central engine of SGRBs had not previously been conclusively

determined, and various models had been proposed to explain the prompt emission from

an ultrarelativistic outflow. Before LIGO had even been constructed, it was suggested that

multimessenger events could be used to study the mechanism behind SGRBs in the Universe.

They can also be used study the effects of NS EOSs and mass ratios on the properties of the

merger remnant, and thus to place constraints on the central engine of SGRBs.

BNS merger events are also predicted to be the primary sites of production for r-process

elements in the universe [46]. During the merger, for mass ratios that differ significantly from

unity, the heavier star tears apart the outer layers of the lighter and less massive NS, the

matter from which is either unbound and cast away or left bound to the system to form some

kind of accretion disk. The mass ejecta of the BNS mergers hosts suitable conditions for

producing heavy elements via nuclear processing. This is accompanied by characteristic EM

radiation patterns called a “kilonova”, in which heavy radioactive elements decay and emit
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radiation in ultraviolet, visible and near-infrared wavelengths. We can conduct fully general

relativistic numerical simulations for predicting the characteristic properties of mass ejected

during BNS and BH-NS merger events by expanding the parameter space for these systems

and use them to correctly interpret GW and EM signals from multimessenger events.

2.3.3 Detected BNS and BHNS Events

Table 2.1 lists all observed GW events as detected by LIGO-VIRGO collaboration, for which

the mass of the second star is ≤ 3M⊙, as of April 12, 2022. The data displayed here clearly

show the importance of generating unequal mass BNS initial data, and studying the BNS

mergers that result from them.

Name M1(M⊙) M2 (M⊙) Release Reference
GW170817 1.46+0.12

−0.01 1.27+0.09
−0.09 GWTC-1-confident [47]

GW190425 1.74+0.17
−0.09 1.56+0.08

−0.14 GWTC-2.1-confident [48]
GW190426_152155 5.7+3.9

−2.3 1.5+0.08
−0.5 GWTC-2.1-marginal [48]

GW190814 23.2+1.1
−1.0 2.6+0.08

−0.09 GWTC-2.1-confident [48]
GW190917_114630 9.3+3.4

−4.4 2.1+1.5
−0.5 GWTC-2.1-confident [49]

GW191219_163120 31.1+2.2
−2.8 1.17+0.07

−0.06 GWTC-3-confident [50]
GW200105_162426 9.0+1.7

−1.7 1.91+0.33
−0.24 GWTC-3-marginal [50]

GW200115_042309 5.0+2.0
−2.5 1.44+0.85

−0.29 GWTC-3-confident [50]
GW200210_092254 24.1+7.5

−4.6 2.83+0.42
−0.47 GWTC-3-confident [50]

Table 2.1: BNS and BH-NS events detected by the LIGO-VIRGO collaboration through 12th

April 2022.

2.4 Initial data and the Conformal Thin Sandwich Formalism

All dynamical simulations of merging BNS systems require a starting point. AS is typical

for hyperbolic PDE systems, the initial data must be generated through an approach that

is consistent with, but very different in mathematical nature from, the time evolution equa-

tions. Indeed, the equations describing a self-consistent spacetime and matter configuration

describing a quasi-equilibrium system are generally written down in elliptic form, and solved

using a different set of numerical codes and techniques than those used to perform evolution

simulations in time.
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The most commonly used approach for generating BNS initial data by specifying the evolution

of the spatial metric is the Conformal Thin Sandwich (CTS) formalism. The 4-dimensional

spacetime is treated equivalently to a stack of 3-dimensional spacelike hypersurfaces Σ. The

hypersurfaces do not intersect and are specified as a function of global time. This approach is

called the 3+1 decomposition [51] and the metric is defined by

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (2.4.40)

where α is lapse function, βi are components of the shift vector (a relativistic 3-d vector),

and γij is the spatial 3-metric induced on the hypersurface. The lapse function measures the

amount of proper time elapsed between two neighboring time slices along the normal vector to

the hypersurface, while the shift vector βi measures the difference between the normal vector

and the time vector connecting two neighboring hypersurfaces. Thus, the lapse and shift, both

of which involve a gauge freedom to specify their respective properties, measure the evolution

of coordinates with time. We can use the 3+1 metric to cast the Einstein equations into a

set of time-evolution equations for which the evolved quantities must satisfy the Hamiltonian

and momentum constraint equations to remain self-consistent. With the help of extrinsic

curvature, which measures the difference between normal vectors n to the hypersurface at

adjacent points, defined as

Kab = −γcaγdb∇cn
d. (2.4.41)

where ni is the normal vector, the Hamiltonian constraint can be expressed as

R+K2 −KabK
ab = 16πρ, (2.4.42)

where ρ is the total energy density as measured by a normal observer and R is the Ricci scalar

(K is the trace of the extrinsic curvature). The momentum constraint equation is given as

DbK
b
a −DaK = 8πSa, (2.4.43)
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with Sa as the momentum density measured by a normal observer and Da denoting the

spatial covariant derivative with respect to coordinate xa. These constraint equations allow

for the conversion of four dimensional manifold with the metric (gab) into a 3-dimensional

hypersurface Σ with field data (γab,Kab). We have to solve these equations to construct initial

data, but they provide more equations than the number of unknowns. One of the methods

used to provide a sufficient number of constraints is to perform a conformal decomposition

of the constraint equations using the CTS approach. Here, the spatial metric is conformally

decomposed as [52, 53]

γij = ψ4γij , (2.4.44)

where the conformal factor ψ is defined such that det | γij | = 1. The extrinsic curvature can

be split into two parts given as

Kij = Aij +
1

3
γijK = ψ−2Aij +

1

3
γijK, (2.4.45)

with K as the trace of Kij and A the traceless component. This method provides information

about γij on two time slices. We define the traceless part of the time derivative of the spatial

metric as

uij = γ1/3∂t(γ
−1/3γij), (2.4.46)

and use it to redefine Aij in terms of shift vector as

A
ij
=
ψ6

2α
[(Lβ)ij − uij ], (2.4.47)

where L is the conformal killing operator defined as

(LG)ij = DiGj +DjGi − 2

3
γijDkG

k. (2.4.48)

For quasiequilibrium data we choose uij = 0 and ∂tK = 0. Further, we assume maximal
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slicing (K=0) to get the derivative of the lapse from the ADM equations as

D2(αψ) = αψ

(
7

8
ψ−8AijA

ij
+

1

8
R+ 2πψ4(ρ+ 2S)

)
, (2.4.49)

with

ψ−4R = R+ 8ψ−5γijDiDjψ. (2.4.50)

The Hamiltonian constraint transforms as

D
2
ψ =

1

8
ψR− 1

8
ψ−7AijA

ij − 2πψ5ρ, (2.4.51)

and the momentum constraint as

(∆L β)
i = 2A

ij
Dj(αψ

−6) + 16παψ4Si, (2.4.52)

where ∆L is the vector Laplacian. and D2 is the covariant Laplace operator associated with γij

These three equations are the elliptic equations that completely describe the metric, Eq. 2.4.40,

[54] and all unknowns can be calculated from them. They provide the lapse and the shift vector

along with the metric and extrinsic curvature.

2.4.1 Conformal Flatness Approximation and elliptic equations solved by

LORENE

The LORENE code, described in detail in section 3 below, solves elliptic equations for quasiequi-

librium field configurations using the conformal flatness approximation. In this approach, it is

assumed that gravitational radiation has a negligible contribution towards the structure and

evolution of neutron stars. Thus the initial spatial metric becomes

γij = ψ4ηij , (2.4.53)
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with ηij as the flat 3-metric and we get

ds2 = −(α2 − βiβ
j)dt2 − 2βdtdxi + ψ4ηijdx

idxj . (2.4.54)

The extrinsic curvature is defined as

Kij = − 1

2α
(Diβj +Djβi) = − 1

2ψ4α

{
∇i
αj +∇j

αi − 2

3
ηij∇kα

k

}
, (2.4.55)

where ∇ is the covariant derivative with respect to flat metric η.

In order to derive the equation that Lorene will solve to define the spacetime metric for a

given BNS configuration, the code uses a set of familiar constraint equations from general

relativity, much as one would use the divergence-free nature of a magnetic field to ensure that

a given electromagnetic field configuration was self-consistent. These constraints are known

as the Hamiltonian and momentum constraints, and describe the properties of a spacetime

in which energy and momentum sources yield the proper curvature effects, respectively. In

Lorene, these may be combined with a “maximum slicing” condition, tr K = 0, to yield a set

of elliptic equations that can be solved.

Two of the three elliptic equations can be derived using the Hamiltonian constraint equation

and maximal slicing:

∇2ν = 4πψ4(E + S) + ψ4KijK
ij −∇iν∇

i
ϵ, (2.4.56)

∇2ϵ = 4πψ4S +
3

4
ψ4KijK

ij − 1

2

[
∇iν∇

i
ν +∇iϵ∇

i
ϵ

]
, (2.4.57)

where ν = lnα, ϵ = ln(ψ2α), E is matter energy density and S is trace of the stress tensor

calculated as

E = Γ2
n(e+ p)− p, (2.4.58)

S = 3p+ (E + p)U · U. (2.4.59)

where U is the fluid velocity in inertial frame, p is the fluid pressure, e is the fluid proper
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energy density and Γn is the Lorentz factor between the co-orbiting observer and the Eulerian

observer.

The momentum constraint gives the last elliptic equation as

∇2N i +
1

3
∇i(∇j)N

j = −16παψ4(E + p)U i + 2αψ4Kij∇j(3ϵ− 4ν), (2.4.60)

with the shift vector of non-rotating co-ordinates as,

N = βββ +Ω
∂

∂ϕ
. (2.4.61)
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Chapter 3

Description of LORENE

The LORENE code [https://lorene.obspm.fr/] was developed by scientists at Observatoire

de Paris to solve different problems in computational astrophysics including the elliptic sys-

tems that occur in the Conformal Thin Sandwich formalism [3] to describe quasi-equilibrium

binary neutron star configurations. It consists of a set of C++ classes that provide tools to

solve partial differential equations using multi-domain spectral methods. In this section, we

will briefly describe the method used by [3] in which a system of coupled non-linear partial

differential equations are solved to obtain a quasiequillibrium relativistic binary system. The

fluid motion is described by considering a zero-temperature, perfect fluid EOS. The matter

stress energy tensor is described as

Tµν = ρhuµuν + pgµν , (3.0.1)

where ρ is rest-mass density, h is fluid specific enthalpy, u is fluid 4-velocity, p is fluid pressure

and gµν is the metric. The first law of thermodynamics for neutron star matter is :

∆p

e+ p
=

1

h
∆h, (3.0.2)
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where e ≡ ρh− p is the proper fluid energy density. The specific enthalpy is defined as

h =
e+ p

mBn
, (3.0.3)

where n is fluid baryon density and mB is the mean baryon mass. A cold matter equation of

state is supplied, given by

n = n(h), e = e(h), p = p(h). (3.0.4)

LORENE can use several different kinds of EOSs for calculating the initial data; these include

three types we discuss further here: polytropes, piecewise polytropes and tabulated EOS. We

will discuss more EOSs in section 3.2.

3.1 Co-ordinate system and computational domains

Figure 3.1: Depiction of placement of stars in LORENE[3]
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The placement of stars is done in LORENE using co-orbiting Cartesian co-ordinates, where the

orbital plane is at Z = 0, the two centers lie on the X-axis and the rotation axis lies along

the Z-axis. Using these co-ordinates we can define the line element in the usual conformal

decomposition involving a lapse function, shift vector, and conformal factor, as

ds2 = −α2dt2 + ψ4[(dX − βXdt)2 + (dY − βY dt)2) + (dZ − βZdt)2], (3.1.5)

Additionally, two Cartesian coordinate systems are introduced by the code, one centered on

each star and each covering all of the volume, that are used to describe the interior of the

stars and the gravitational forces they each encounter (see Figure 1). The center of each star

is defined at the location of maximum enthalpy h. We note to clear up the confusion that this

may differ from the center-of-mass or other quantities one might typically prefer in a Newtonian

calculation. LORENE divides the entire hypersurface into computational domains topologically

representing spheroids. The domains are described using spherical co-ordinates (r, θ, ϕ) and

extend via compactification up to r = +∞. It allows for the spherical co-ordinates to adapt

to the surface of each star using Eq. 74 & 75 from [3], which describe radial deformations

of the spheroidal surface in terms of angular modes. For our calculations, we have used two

sets of five domains, with one set of domains centered around each star. In each set, the first

domain contains the center of the star and topologically represents a ball. The second domain

represents a spherical shell covering the star. The surface of the star coincides exactly with

the outer boundary of the second domain. The third and fourth domains also represent nested

spherical shells, located outside of the surface of the stars. The fifth domain extends up to r

= +∞ and is mapped to a finite computational domain using compactification. The radii of

different domains can be calculated as follows:

r = a0[1 + P0(θ, ϕ) +Q0(θ, ϕ)], (3.1.6)

is the radius of the outer boundary of the nucleus, where Pi and Qi terms here and below
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represent the odd and even Fourier modes, respectively.

r = ai[−1 + Pi(θ, ϕ)] + bi, (3.1.7)

is the radius of the inner boundary of shell number i and

r = ai[1 +Qi(θ, ϕ)] + bi, (3.1.8)

where ai and bi are some constants and the boundary of each domain is determined in part

by Pi(θ, ϕ) and Qi(θ, ϕ). We have produced initial data where the domains are placed at radii

having factors of 2 in spacing. For example, d1 is placed at the surface of NS (i.e r=1), d2

is placed at r=2, d3 is placed at r=4 and so on. We have investigated the effect of changing

domain boundaries on the quality of initial data, discussed in section 5.3

3.2 Initial conditions

LORENE needs to specify the following four quantities to build a quasiequilibrium binary neutron

star configuration: 1) The equation of state for both stars, 2) the stellar rotation state – either

irrotational or corotating, 3) the co-ordinate distance between the two stars and 4) the central

enthalpies hc⟨1⟩ and hc⟨2⟩ and thus the central densities in each star. These parameters are used

for computing the initial conditions for the iterative procedure. We note that while Lorene

can theoretically employ different EOS models for the two stars, this is seemingly unphysical

since there is assumed to be a “true” NS EOS model whose properties we’ve yet to determine.

The initial state of the binary, prior to full relaxation, is comprised of two superposed numer-

ical solutions for spherically symmetric, static, isolated neutron stars with the given central

enthalpies. In our calculations, we have used simple polytropic EOS, piecewise polytropic EOS

specified by 4 free parameters to model neutron star matter as given by [4], and tabulated

EOS, discussed further below. A polytrope is defined as any region where pressure depends

solely on the (rest-mass) density in a power law form: p = KρΓ, where Γ is the adiabatic

index and K is a constant.
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3.2.1 Simple polytropes

The first law of thermodynamics, in relativistic form with c = 1, may be expressed in differ-

ential form as

d

(
ϵ

ρ

)
= −pd

(
1

ρ

)
, (3.2.9)

For a single polytrope, the EOS is given as

p = KρΓ, (3.2.10)

with the above two equations, we can derive the following three quantities: ϵ, the “energy den-

sity” or “mass-energy density”; e, the “specific internal energy”; and h, the “specific enthalpy”.

The specific internal energy is given as

e ≡ ϵ

ρ
− 1, (3.2.11)

ϵ ≡ ρ(1 + e). (3.2.12)

The specific enthalpy can be calculated as

h =
ϵ+ p

ρ
, (3.2.13)

h = 1 + e+
p

ρ
. (3.2.14)

At infinitesimal densities we note that

lim
ρ→0

h = 1, (3.2.15)

lim
ρ→0

ϵ

ρ
= 1, (3.2.16)

and

lim
ρ→0

e = 0. (3.2.17)
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On integrating the first law of thermodynamics in differential form and using the above con-

ditions we obtain the following equations for energy density,

ϵ(ρ)

ρ
=−

∫ ρ

0
KρΓ

(
− 1

ρ2
dρ

)
,

ϵ(ρ)

ρ
=

∫ ρ

0
KρΓ−2 dρ,

ϵ(ρ)

ρ
=
KρΓ−1

Γ− 1
+ C,

ϵ(ρ)

ρ
=1 +

KρΓ−1

Γ− 1
,

(3.2.18)

which gives

ϵ(ρ) =Cρ+
KρΓ

Γ− 1
,

ϵ(ρ) =ρ+
KρΓ

Γ− 1
,

ϵ(ρ) =ρ+
p

Γ− 1
.

(3.2.19)

We can obtain specific internal energy as,

e =
KρΓ−1

Γ− 1
,

e =
p

(Γ− 1)ρ
,

(3.2.20)

giving the relation between pressure and specific internal energy as

p =(Γ− 1)ρe, (3.2.21)

and the relation for specific enthalpy

h =1 + Γe. (3.2.22)
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3.2.2 Piecewise polytropes

Piecewise polytropes are treated somewhat differently. We assume that there are a set of

“breakpoint” densities 0 < ρ0 < ρ1 < ρ2 < ..., such that pressure can be treated as

p(ρ) =Kiρ
Γi ; ρi−1 ≤ ρ ≤ ρi. (3.2.23)

We can freely determine only a single K value. We assume it is K0 and note that the pressure

being a continuous function of density requires

p(ρi−1) =Kiρ
Γi
i−1,

p(ρi−1) =Ki−1ρ
Γi−1

i−1 ,

(3.2.24)

which gives

Ki =Ki−1ρ
Γi−1−Γi

i−1 . (3.2.25)

To determine all other thermodynamic quantities, we use the fact that ϵ must also be contin-

uous. We define ϵ0 = ϵ(ρ0) and similarly continue for all breakpoint densities ϵi = ϵ(ρi). From

the above equations, we have

ϵ

ρ
=

ϵi−1

ρi−1
+

Ki

Γi − 1
(ρΓi−1 − ρΓi−1

i−1 ), (3.2.26)

ϵ =ρ

(
ϵi−1

ρi−1
−
Kiρ

Γi−1
i−1

Γi − 1

)
+
Kiρ

Γi

Γi − 1
,

ϵ =ρ

(
ϵi−1

ρi−1
−
Kiρ

Γi−1
i−1

Γi − 1

)
+

p

Γi − 1
,

(3.2.27)

e =

(
ϵi−1

ρi−1
−
Kiρ

Γi−1
i−1

Γi − 1
− 1

)
+
Kiρ

Γi−1

Γi − 1
, (3.2.28)

h =

(
ϵi−1

ρi−1
−
Kiρ

Γi−1
i−1

Γi − 1

)
+
KiΓiρ

Γi−1

Γi − 1
. (3.2.29)
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It is convenient, following [4] to define

ai ≡
ϵi−1

ρi−1
−
Kiρ

Γi−1
i−1

Γi − 1
− 1, (3.2.30)

so that we find
ϵ =ρ(1 + ai) +

p

Γi − 1
,

e =ai +
Kiρ

Γi−1

Γi − 1
= ai +

p

(Γi − 1)ρ
,

h =1 + ai +
KiΓiρ

Γi−1

Γi − 1
= 1 + ai +

Γip

(Γi − 1)ρ
.

(3.2.31)

Finally, we note that
ϵi
ρi

=
ϵi−1

ρi−1
+

Ki

Γi − 1

(
ρΓi−1
i − ρΓi−1

i−1

)
. (3.2.32)

There are over 40 approximate, piecewise polytropic equations of states listed in [4] that may

be used to model many well-known physically motivated EOS models (i.e AP1-4[55], SLy[56],

MS1-2[57], etc). The particular values of adiabatic indices and pressure at the first break

point, corresponding to the models for which we have constructed initial data are shown in

Table 3.1

EOS log(p1) Γ1 Γ2 Γ3

SLy 34.384 3.005 2.988 2.851
AP3 34.392 3.166 3.573 3.281
AP4 34.269 2.830 3.445 3.348
WFF1 34.031 2.519 3.791 3.660
MPA1 34.495 3.446 3.572 2.887
MS1 34.858 3.224 3.033 1.325
MS1b 34.855 3.456 3.011 1.425

Table 3.1: List of EOSs and their free parameter values. The units for p1 are dyne/cm2.

The high density pressure profile for these models is calculated by stitching together three

polytropic regions having breaks at ρ1 = 1014.7g/cm3 and ρ2 = 1015g/cm3. As a result, for

ρ ≥ ρ0 (see below) we obtain

p(ρ) = Kiρ
Γi , for ρi−1 ≤ ρ ≤ ρi. (3.2.33)
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The free parameters used to model the NSs are the adiabatic indices in the three regions

Γ1,Γ2,Γ3 and the pressure at the density between the first two regions. To make sure we

Figure 3.2: The high density region is parameterized using adiabatic indices Γ1,Γ2,Γ3 and
pressure p1 at the first dividing density ρ1 [4].

treat the low density fluid near the surface of the star, admittedly not resolved in great detail

in our spectral scheme, consistently across all of the piecewise polytropic equations of state

we consider, we adopt a “crust model” for the low density crust region derived from the SLy

EOS model. In general, there will be very few if any collocation points for which the local

densities are sufficiently small to make use of these values, but for consistency’s sake, we use

these values to specify the local pressure as p = Kiρ
Γi for all densities between ρi−1 and ρi.
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Figure 3.3: Mass versus radius variation for different models described in [4]

Ki Γi ρi
6.80110× 10−9 1.58425 2.44034× 107

1.06186× 10−6 1.28733 3.78358× 1011

5.32697× 101 0.62223 2.62780× 1012

3.99874× 10−8 1.35692 -

Table 3.2: List of values of K, density and adiabatic indices used to model the low density
region for piecewise polytropes.

The transition from the crust model to the piecewise polytropic model is defined to occur at

the density ρ0 where the highest-density “crust” component yields the same pressure as the
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first of the piecewise polytropic segments (such an overlap is guaranteed for any Γ1 ≳ 1.36).

3.3 The Tolman-Oppenheimer-Volkov (TOV) equation

The Tolman-Oppenheimer-Volkov (TOV) equation for NS structure takes the following form

in these units (again with G = c = 1):

dP

dr
= − 1

r2
(ϵ+ P )(m+ 4πr3P )

(
1− 2m

r

)−1

. (3.3.34)

Here, r is the circumferential radius, which accurately measures distances in the angular

direction for the NS, but not in the radial direction. The mass m satisfies

dm

dr
= 4πr2ϵ

M =

∫ R

0
4πr2ϵ dr.

(3.3.35)

To find an equation for the density gradient, we may write

dρ

dr
=

(dP/dr)TOV

dP/dρ
=

(dP/dr)TOV

KiΓiρΓi−1
, (3.3.36)

where every quantity on the RHS may be determined as a function of ρ and r.

3.3.1 Schwarzschild vs. isotropic metrics

The standard TOV equation derivation assumes that the metric takes the following form,

known as the Schwarzschild metric:

ds2 = α2 dt2 −
(
1− 2m

r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2). (3.3.37)

Here, r is the circumferential radius, since angular displacements of angle dξ represent proper

distances given by r dξ, and thus the proper circumference of a circle is 2πr. The value at the

surface is the circumferential (or areal) radius R. The radial proper distance measurement is
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different. There, we find

rprop;rad =

∫ r

0

dr√
1− 2m

r

> r. (3.3.38)

If you think of the classic “funnel” model of a black hole or neutron star, the radial dimension

deforms out of the plane, and distances are longer in that direction. To determine the proper

radial distance for a neutron star, we can integrate the equation above as part of our ODE

setup.

Lorene uses a different metric, known as an isotropic conformal metric:

ds2 = α2 dt2 − [ψ(r̂)]4(dr̂2 + r̂2[dθ2 + r̂2dϕ2]). (3.3.39)

The function ψ(r̂) is known as the conformal factor of the metric (α is known as the lapse

function, but we don’t need to worry about that here). Comparing the expressions, we find

the following equivalences:

radial : drprop;rad =
dr√

1− 2m
r

= ψ2 dr̂,

angular : r = ψ2r̂.

(3.3.40)

To actually solve for the conformal factor, we divide the radial expression by the angular one:

dr̂

r̂
=

dr√
r2 − 2mr

, (3.3.41)

where we make sure that as r → ∞, the two distance measures agree up to an additive

constant. Setting m =M constant in the exterior, we find for r ≥ R

r̂ =

(√
r +

√
r − 2M

2

)2

,

r =r̂

(
1 +

M

2r̂

)2

,

R =R̂

(
1 +

M

2R̂

)2

,

ψ =1 +
M

2r̂
.

(3.3.42)
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The baryon mass differs from the gravitational mass in two respects. First, we count only

the rest-mass density ρ, not the energy density ϵ. Second, we have to account for how the

space-time metric measures volumes. As a result, we find the following expression:

Mb =

∫ R

0

4πr2ρ√
1− 2m

r

dr. (3.3.43)

3.4 Description of one step

LORENE begins each step using first an integral of the motion, derived by assuming a quasiequi-

librium configuration, with fluid motion described as either corotational or irrotational. It is

given by

H + ν − lnΓ0 + lnΓ = constant, (3.4.44)

with

H = lnh, (3.4.45)

ν = lnα, (3.4.46)

with α the lapse function and Γ0 the Lorentz factor between a co-orbiting observer and an

Eulerian observer. The value of Γ is calculated by taking the negative dot product between

the fluid velocity and velocity of the co-orbiting observer and is the Lorentz factor between the

fluid and a co-orbiting observer. The specified coordinate separation of the two neutron stars

is defined with respect to the maximum enthalpy within each star. The gradient of Eq. 3.4.44

above is taken along the X direction to determine the value of the orbital angular velocity Ω

and the X co-ordinate of rotation axis Xrot. This leads to two equations for each star

∂

∂X
lnΓ0

∣∣∣
(X⟨a⟩,0,0)

=
∂

∂X
ln(Γ + ν)

∣∣∣
(X⟨a⟩,0,0)

a = 1, 2, (3.4.47)

where Γ0 is given by

lnΓo = −1

2

{
1− ψ4

N2

[
[ΩY +NX ]2 + [Ω(X −Xrot)−NY ]2 +NZ2

]}
, (3.4.48)
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where ψ is the conformal factor. After this, an elliptic equation for the velocity potential is

solved. This equation is derived in the next section.

3.5 Equations for the fluid with a conformally flat 3 metric

We can derive the elliptic equation for the flow by assuming the existence of an irrotational,

relativistic velocity potential, such that

w = ∇Ψ, (3.5.49)

where Ψ is the velocity potential of irrotational flow and w is the comomentum 1-form given

by w = hu. Combined with our equation of motion, we find

n

h
∇ · ∇Ψ+∇Ψ · ∇

(
n

h

)
. (3.5.50)

The Lorentz factor between the fluid and Eulerian observer is given by

Γn =

(
1 +

1

h2
DΨ · DΨ

)1/2

, (3.5.51)

D being the covariant derivative with respect to the 3 metric of spatial hypersurface Now, the

3+1 form of Eq. 3.4.40, the continuity equation, can be written as

nD · DΨ+ Dn · DΨ = hΓnU0 · Dn+ n

(
DΨ · D ln

h

α
+ U0 · DΓn

)
+ nhKΓn, (3.5.52)

where U0 is orbital 3-velocity. The Lorentz factor between the co-orbiting observer and the

Eulerian observer for a conformally flat metric and irrotational motion can be written as

Γn =

(
1 +

1

ψ4h2
ηij∇iΨ∇jΨ

)1/2

, (3.5.53)
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and the fluid 3-velocity is

U i =
1

ψ4Γnh
∇i

Ψ. (3.5.54)

LORENE considers the enthalpy as a function of baryon density and introduces a thermodynamic

coefficient using the definition

ζ =
d lnH
d lnn

. (3.5.55)

We can rewrite the continuity Eq. 3.5.52 by replacing the gradient of baryon density with the

gradient of enthalpy as,

ζH∇2Ψ+∇i
H∇iΨ = ψ4hΓnU

i
0∇iH + ζH(∇i

Ψ∇i(H − ϵ) + ψ4hU i
0∇iΓn). (3.5.56)

Let us define the constant (translational) velocity field as

W i = ψ4hΓnU
i
0. (3.5.57)

We can rewrite Eq. 3.5.56 as

ζH∇2Ψ0 +

[
(1− ζH)∇i

H + ζH∇i
ϵ

]
∇iΨ0 =

(W i −W i
0)∇iH + ζH

(
W i

0∇i(H − ϵ) +
W i

Γn
∇iΓn

)
,

(3.5.58)

where

Ψ = Ψ0 + ηW i
0x

j , (3.5.59)

and W i
0 is the central value of W i. LORENE solves the above equation using spectral methods as

described in [3]. After this step, new thermodynamic values for density, pressure and specific

energy are computed using the EOS and enthalpy. Next, the matter energy density and trace

of the stress energy tensor are calculated to solve the Einstein equations.
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Chapter 4

Modified version of LORENE

In this Chapter, we describe our modifications to the publicly released Lorene code to increase

the stability of its iterative scheme, and to allow for the generation of close binaries of unequal

mass beyond those capable of being produced stably by the public code. All modifications

described herein have been shared with the community at large. In Appendix B, we discuss

the structure of the different routines used to generate quasiequilibrium binary sequences, as

well as the contents of the parameter files used to set up a given run.

4.1 Generating unequal mass ratios far from unity

LORENE uses a complicated relaxation scheme and historically has had multiple failure modes

that can cause a run designed to generate initial data to crash prior to converging to the

desired configuration. For very unequal-mass binary neutron star systems, one of the key

culprits is a flaw in the numerical methods found in the current releases of the code. The

safest parameter choices are low-mass binaries and mass ratios either equal or close to unity.

In solving simultaneously for the angular velocity and rotation axis of the system, Eq. 3.4.47,

Lorene uses a 2-d secant method. While this is a standard numerical method for use in these

situations, the particular equations as implemented are poorly chosen for stability as shown in

Fig. 4.2, and can generate both divide-by-zero errors as well as discontinuous changes in the

sign of the terms. Even when the code continued to generate configurations without crashing,
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the center of mass and rotational axis often had a highly oscillatory behavior as shown in

Fig. 4.1.

Figure 4.1: Oscillatory behavior of center of mass co-ordinate before converging to a constant
value for unequal mass configurations.

Figure 4.2: Center of mass of one of the stars versus iteration number. It diverges from the
equilibrium making the code unstable.

To describe the particular issues associated with the choice of function on more detail, we

note that the code estimates the value of system’s angular velocity Ω for each star separately,

and then iteratively forces the difference to zero to achieve a consistent value. The angular
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velocity values for each star are obtained from equation Eq. 3.4.47, expanded as:

Ω2
(a) =

dξ
dXa

[12(
dµ
dXa

λ+ µ dλ
dXa

) + µλ dξ
dXa

]
, (4.1.1)

where

µ =
A2

N2
, (4.1.2)

ξ = ν + lnΓ, (4.1.3)

λ = [(Y +
βX

Ω
)2 − ((X −Xrot)−

βY

Ω
)2 + (

βZ

Ω
)2] (4.1.4)

where a=1,2 for both the stars. Please refer to Appendix A for the detailed derivation.

Unfortunately, these functional choices for each star require a division by a term that can

change sign (as seen in Eq. 4.1.1), leading to non-continuous behavior of the function whose

root the routine attempts to determine. To alleviate this problem, we have found that taking

the reciprocal of Ω2 for each star and setting those equal to each other yields well-defined,

continuous results for all reasonable parameter choices (see Sec. 4.2.1 for demonstrations of

how Lorene convergence was enabled by this code modification).

4.2 Higher-mass configurations and close separations

As a BNS system is driven to inspiral by gravitational radiation, the baryon mass remains

conserved during the evolution. LORENE computes evolutionary sequences of BNS by com-

puting configurations for a specified set of baryon masses. The computation of a sequence is

initiated from the central enthalpies of the stars and the initial separation between them as

input parameters. Since the baryon mass is an increasing function of the central enthalpy, an

iterative procedure is implemented to reach a given final baryon mass for each star. During
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this procedure, the central enthalpy is multiplied by a factor given by

η =

(
2 + ξ

2 + 2ξ

)1/4

, (4.2.5)

where ξ is the relative difference between the actual baryon mass M ⟨1⟩J
B and the desired baryon

mass M ⟨1⟩
B : ξ =M

⟨1⟩J
B /M

⟨1⟩
B − 1. The factor η tends to one on convergence.

As mentioned in the previous section, LORENE attempts to estimate the values of Xrot and Ω

for the BNS system. For high-mass binaries that are initially too far from equilibrium, this

procedure leads to fluctuations of the estimates of Xrot and the center of mass of the system

at the beginning of the iterative procedure, with the possibility that a given configuration will

be unstable and rapidly lead to non-convergence. We modified the driver code routines to

include a mass scanning routine to compute stable, high-mass BNS systems by designing an

iterative procedure to reach a given high-mass, low-mass-ratio configuration (q < 1) having

started with both the stars at a low baryon mass and stable mass ratio. We modified the

code to increase the baryon mass to the desired value M ⟨1⟩
B in a number of steps (which are

user-modified) and slowly relax the stars to the given high mass configuration. Thus when

the stars reach higher masses, they are already much closer to equilibrium, and the routine is

much more stable as a result. The failure mode is easily classified, if not completely intuitive.

When configurations are moved inward, any underdamping in the relaxation scheme tends to

produce overshooting as the stars settle into their new equilibrium configuration corresponding

to the new tidal gravity forces. Should either NS instantaneously find its outer surface having

exceeded the Roche lobe radius at a given iteration step, the response is to keep growing

unstably, eventually leading to numerical non-convergence. It is mistaken to describe this

process as “Roche lobe overflow” or other terms describing dynamical binaries, since we note

that this is an elliptic-equation relaxation scheme and there is no time-evolution whatsoever.

We also implemented a stepping routine to achieve a small binary separation between the

stars. The routine is automated to begin at a relatively wide binary configuration and then

gradually shrink the binary separation until the system reaches the tidal stability limit that

would mark the onset of a merger. A graphical representation of achieving a BNS configuration

44 4.2. Higher-mass configurations and close separations



4.2. Higher-mass configurations and close separations

for high-mass binaries at a low separation distance is shown in Fig. 4.3.

Figure 4.3: The mass and separation scanning routine as employed by the updated version of
LORENE. First, the binary separation is gradually reduced until we reach a desired value for a
low-mass configuration. Next, we gradually increase the masses at fixed separation until the
desired quasi-equilibrium binary configuration is achieved. To compute a binary configuration
at smaller separations, we go back to the final low-mass configuration and repeat the process
from that point again.

As discussed above, the difference in central enthalpy for the NS is the parameter used as a

convergence factor as described in the parameter file parcoal_seq.d. Figure 4.4 shows the

evolution of this value, called diff_ent within the Lorene code, for a typical BNS configuration

with simple polytropic EOS and 1.4M⊙ gravitational mass. The configuration eventually

converges after around 130 steps.
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Figure 4.4: Step-over-step difference in central enthalpy for the two NS for an equal-mass
pair of polytropic with γ = 2 NS during a run that successfully generates a quasi-equilibrium
configuration. This error measure produces a somewhat underdamped decaying exponential
over time, eventually falling below the step-over-step tolerance condition.
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4.2.1 Demonstration of Lorene stepping routine to produce a higher-mass

configuration at close separations

In this section, we will demonstrate the improvements seen in LORENE after incorporating our

modifications. We started with a BNS configuration having M1 = 1.2M⊙ and M2 = 1.0M⊙

having FPS[58] EOS. The previous version(before fixes) of LORENE did not converge for the

said configuration at 50 kms as shown in Figure 4.5b. It failed to find a root of Eq. 4.1.1.

However modified LORENE successfully generates a quasi-equilibrium configuration at 50kms

and 45kms separation as shown in Figure 4.5a

Figure 4.5a: Step-over-step difference in cen-
tral enthalpy for the two NS for M1 = 1.2M⊙
and M2 = 1.0M⊙ with a FPS piecewise poly-
tropic EOS at 45kms and 50kms separation.
This run produces a stable quasi-equilibrium
configuration using the new modified version
of LORENE

Figure 4.5b: Step-over-step difference in cen-
tral enthalpy for the two NS for M1 = 1.2M⊙
and M2 = 1.0M⊙ with a FPS piecewise poly-
tropic EOS and 50kms separation. This run
fails to produce a stable quasi-equilibrium con-
figuration using the older version of LORENE
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Chapter 5

Results

5.1 Updated Lorene

We are able to produce initial data (ID) for various EOSs and unequal mass ratios using both

our new secant method fix and the mass and separation scanning routines. Our data, as well

as all of the changes to the publicly released Lorene code, are fully documented, and released

on our public BNS Initial Data Repository, (https://ccrgpages.rit.edu/~jfaber/BNSID/

Data/) for public use.

A typical procedure to develop initial data for a BNS configuration using LORENE involves

specifying the central enthalpy to generate initial mass and radius of both stars individually.

We have developed a TOV equation solver, separately, to determine the central enthalpy by

using radius and/or mass as inputs for the neutron stars with a given equation of state (for

polytropes, both may be specified and K needs to be determined as well; for piecewise and

tabulated models, one may specify either the radius or mass and then determine the other).

Using the enthalpy, an initial configuration is generated that is used as the input for the

coalescence routine. We have shown an initial output of LORENE in figure 5.1 for an unequal

mass binary with M1 = 2.0M⊙ and M2 = 1.4M⊙, thus q = 0.7, modeled with an SLy EOS

at a separation of 50km.

An iterative step for the coalescence routine begins with calculating the position of rotational
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Figure 5.1: Initial output from Lorene for a BNS system with an unequal mass ratio of q=
0.7 and total mass of 3.4 M⊙. The black curves show isocontours of the lapse function in the
X-Z plane, one of the metric field quantities calculated by the code.

axis and angular velocity, while at the same time making sure that the enthalpy is maximized

at both the stellar centers. Using this routine, a BNS configuration is set up as described in

chapter 3. We are able to produce initial data for piecewise polytropes for mass ratios from

unity down to 0.7, and a total combined gravitational mass of up to 3.4M⊙ for the binary. We

observed that for EOSs with larger maximum mass (AP3, AP4, MS1, MS1b, WFF1, MPA1,

SLy) we are able to produce ID of single NSs having higher masses (M⊙≥ 2). The initial data

files generated by LORENE are used as input by the Einstein Toolkit for creating dynamical

simulations.
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Figure 5.2: Pressure versus density plot for piecewise polytropic EOSs included in our publicly
released Initial Data library, available at (https://ccrgpages.rit.edu/~jfaber/BNSID/
Data/.
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The following list details the piecewise polytropic EOS models and component masses of the

different configurations included in the initial data library published at https://ccrgpages.

rit.edu/~jfaber/BNSID/Data/. Parameters for each model are listed in Table 3.1. The

pressure versus density plot for various models is shown in Fig. 5.2. The masses are in units

of M⊙. We produced data from initial separations starting at 50km, gradually shrinking the

binary separation in each case by steps of 2.5km until the system reached the tidal stability

limit that would mark the onset of a merger.

SLy :1.4 + 1.4, 1.6 + 1.4, 1.8 + 1.4, 2.0 + 1.4

AP3 :1.4 + 1.4, 1.6 + 1.4, 1.8 + 1.4, 2.0 + 1.35, 2.0 + 1.4

AP4 :1.4 + 1.0, 1.4 + 1.4, 1.5 + 1.5, 1.6 + 1.08, 1.6 + 1.4,

1.7 + 1.14, 1.8 + 1.215, 1.8 + 1.4, 1.9 + 1.2825,

2.0 + 1.35, 2.0 + 1.4

MPA1 :1.4 + 1.4, 1.6 + 1.4, 1.8 + 1.4, 2.0 + 1.4

MS1 :1.4 + 1.4, 1.6 + 1.4, 1.8 + 1.4, 2.0 + 1.4,

MS1b :1.4 + 1.4, 1.6 + 1.4, 1.8 + 1.4, 2.0 + 1.4

WFF1 :1.4 + 1.4, 1.6 + 1.4, 1.8 + 1.4, 2.0 + 1.4

5.2 Tabulated EOS

Our ID library also includes BNS configurations for NS with tabulated EOS taken from

https://stellarcollapse.org, developed by [6] and [8]. The finite-temperature tables pro-

vide thermodynamic quantities as a function of three variables: the electron fraction Ye (ratio

of the number density of charged baryons to total baryon density), the rest mass energy density

(ρ), and temperature (T ). The nuclear matter is assumed to consist of photons, alpha particles,

protons, neutrons, electrons and positrons. The high-density region utilizes the liquid-drop

model and the low-density region assumes nuclear statistical equilibrium with interpolation to
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achieve smoothness.

As thermodynamic quantities, the pressure and specific internal energy are both dependent

on the three variables, ρ , T and Ye, but initial data configurations are generally assumed to

be one-dimensional, so we have to slice the 3-dimensional table two times in order to correlate

pressure and specific internal energy.1 The first slicing condition is the beta-equilibrium con-

dition, enforcing chemical equilibrium of beta decay and inverse beta decay, which constrains

the electron fraction. The condition is given by

Ye(T, ρ) = Ye : (µe + µp − µn)|(T,ρ) = 0, (5.2.1)

where µe, µp and µn are chemical potentials of electrons, protons and neutrons respectively.

After this step, the number of independent parameters is reduced to 2 (ρ, T). The second slicing

condition is achieved by constraining the temperature to be “cold”, which is achieved numer-

ically by choosing a constant value representing the lowest tabulated temperature present in

the data, typically either 0.01 or 0.1 MeV. Using these two slicing conditions, we can express

the pressure and specific energy as

p = p(ρ), ϵ = ϵ(ρ). (5.2.2)

Therefore the number of independent variables has been reduced to one and the 1D table can

be read by LORENE.

5.3 Verification of initial data

5.3.1 Conservation of Hamiltonian constraints

The Einstein equations, decomposed using the 3+1 decomposition, consist of a set of evolution

equations and constraint equations as shown in Eqs. 2.4.51 and 2.4.52. If the spatial metric

and the extrinsic curvature satisfy the constraint equations at time t = 0 and are advanced
1The routines to slice the tables have been developed by our collaborator Lorenzo Sala from the University of
Trento.
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forward in time using the evolution equations, then they should satisfy the constraint equations

at all later times, evaluating to zero in absence of numerical error. Therefore, we can test the

quality of initial data based on how well the Hamiltonian constraint is conserved, and use any

violations to measure the accuracy of our initial data.

We use the Baikal thorn2 in the EinsteinToolkit to calculate constraint violations. Baikal

defines the Hamiltonian constraint using Equation 13 of [59], given as:

H =
2

3
K2 −Aij −A

ij
+ e−4ϕ(R− 8DiϕDiϕ− 8D

2
ϕ)− 16πρ, (5.3.3)

where eϕ is a conformal factor. We vary different parameters in LORENE, including the spectral

resolution, number of domains, and the convergence factor on the iteration-by-iteration change

in the central enthalpy to study the violation of the Hamiltonian constraint for different models

for the equation of state that include simple polytropes, piecewise polytropes, and tabulated

EOS. In each case, we assume NS with gravitational mass 1.32M⊙ and a separation of 50 km.

We present our results in the following section.

5.3.1.1 Changing the spectral resolution

We change the spectral resolution, by increasing the number of points in the radial (nr), theta

(nt) and phi (np) directions (this also represents increased spatial resolution as well, but for

spectral decompositions, smooth functions should converge much more rapidly towards “exact”

values than the power-law convergence one expects using methods like finite differencing). We

use the following values:

Resolution Radial Theta Phi
low resolution 9 7 4
medium resolution 49 17 16
high resolution 49 or 63 33 32

Table 5.1: Different Spectral resolutions used for analysing the Hamiltonian Constraint Vio-
lations

2“Thorns” in the language of the EinsteinToolkit project are packages of routines that can be included in a
compiled version of the code should the functionality they provide be desired for a particular simulation.
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The parameter choices for spectral resolution are chosen such that nr ≥ nt > np. The number

of points in the phi direction need to work well in a fast Fourier transform (FFT), in factors of

2 and 3 whenever possible. The number of points is the theta direction is given by nt = np+1

in nearly all cases. For our models, the theta parameter only covers half of the range due to

vertical symmetry used by LORENE – only points above the equatorial plane are calculated,

with symmetry conditions used to extend the configuration to its mirror image below the

plane. The number of points in the radial direction is supposed to be an “FFT number+1”.

Runs with higher spectral resolution generally take longer to converge to a stable configuration.

In some cases, increased resolution can actually over-resolve the cusps that form on the inner

side of both the stars and can be problematic for configurations close to the stability limit.

Therefore we need to choose the spectral resolution carefully for optimal results.

EOS: simple polytrope

Figure 5.3: Hamiltonian constraint violation of BNS with for simple polytropic EOS having
Γ = 2.5 with gravitational mass = 1.32M⊙ and a separation of 50 kms
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EOS: Piecewise polytrope

Figure 5.4: Hamiltonian constraint violation of BNS with piecewise polytropic EOS with
gravitational mass = 1.32M⊙ and a separation of 50 kms

EOS: Tabulated (older version taken from [6])

Figure 5.5: Hamiltonian constraint violation of BNS with for tabulated EOS:BHBλϕ [5] with
tables developed by [6] with gravitational mass = 1.32M⊙ and a separation of 50 kms
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EOS: Tabulated (newer version taken from [8])

Figure 5.6: Hamiltonian constraint violation of BNS with for tabulated EOS:LS220 [7] with
SREOS table developed by [8])

As discussed in section 5.2 we have used the finite temperature tables to convert a function

of three variables, the electron fraction Ye, the rest mass energy density (ρ), and temperature

(T) into a 1D table, which is read as an input into LORENE. The slicing algorithm uses the

following steps:

1. Read in the input variables from the tables: Ye, P, ϵ, T, and ρ and the chemical potentials.

2. Find the temperature index at which the tables needs to be sliced.

3. Set 2d interpolators for P and ϵ as functions of ρ and Ye.

4. Finally, determine P and ϵ in β equilibrium for the particular densities.

We can see from Fig 5.3, Fig 5.4 and Fig 5.5 that increasing the spectral resolution of the

grid in LORENE improves conservation of Hamiltonian constraints within the star and in the

vacuum region.

We can see from Fig 5.6 that increasing spectral resolution only improved the constraint

violations in vacuum region, while there was little to no improvement inside the stars. It also

worth noting that convergence issues are largely associated with the fluid itself in virtually all

cases, as we see increased convergence down to very small levels in the vacuum regions of the

simulation in virtually all cases. Increasing resolution within LORENE is unlikely to help once
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we start encountering (small) Gibbs phenomenon errors associated with the NS surfaces being

“seen” in the other domain set. The remaining non-convergent behavior is likely attributed to

discretization effects from within the Einstein Toolkit.

The non-convergent behavior, which appears in the domain containing the NS for every EOS

model that LORENE can compute, is an inevitable side effect of the dual-coordinate multi-

domain spectral method used to describe binary systems. For a single NS, using a single

set of nested domains and placing a domain boundary at the stellar surface is sufficient to

eliminate numerical errors associated with Gibbs’ phenomenon. For a binary system, this can

only serve to minimize Gibbs’ phenomenon noise to the extent possible. Indeed, the “auto-

potentials” that appear as the component of a given metric field whose source is centered

on a given star are able to confine all non-smooth behavior to the domain boundary, but

when LORENE interpolates these values over to the coordinates describing the other domain

to form the “comp-potentials”, there will inevitably be non-smooth behavior captured by the

transition. The resulting Gibbs’ phenomenon errors will appear as spurious oscillations in

the source potentials, which are then fed through the elliptic equations, in particular as pre-

factors multiplying the densities and/or momenta in Eqs. 2.4.56, 2.4.57, and 2.4.60. In vacuum

regions, these particular density/momentum source terms are uniformly zero, and we see errors

that decay exponentially with distance from the stellar surface whose source is the much

smaller-magnitude terms in which auto-potentials are multiplied by comp-potentials, yielding

effectively spectral convergence in the vacuum regions between, around, and outside of both

NS.
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5.3.1.2 Changing number of domains

Figure 5.7: Hamiltonian constraint violation of BNS with for tabulated EOS having Γ = 2.5

5.3.1.3 Changing the convergence factor

Figure 5.8: Hamiltonian constraint violation of BNS with for tabulated EOS having Γ = 2.5

We can conclude from Figure 5.7 and 5.8 that increasing the number of domains did not

change the Hamiltonian constraint violations, as the curves are completely overlapping. It
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is worth noting that we also tried changing the location of domain boundaries, but found

that since essentially all of the constraint violation can be attributed to the surface of NS

themselves, it doesn’t matter how many domains we use to resolve the vacuum regions of the

space nor their specific radii.

5.3.2 Summary of analysis performed to study the conservation of Hamil-

tonian constraints

• We can see from the plots above that increasing the spectral resolution improved the

Hamiltonian constraint violation for all three EOSs. If we increase LORENE resolution

even further, it is unlikely to help as the remaining non-convergent behavior is likely

attributable to Gibbs phenomenon effects in the elliptic equation source terms used by

the multidomain spectral method.

• There is no improvement in the quality of initial data when we change the number of

domains or the convergence factor of LORENE used as a stopping condition for a given

run.

• The Hamiltonian constraint violations do reduce down to very small values at the grid

points associated with vacuum regions in virtually all cases.

• As shown in Fig. 4.4, minor details in the stellar configuration owing to the exact iteration

at which a run is declared to have converged do not seem to be the key factor determining

Hamiltonian constraint violation. It is a global property of having a NS with a surface

producing Gibbs phenomenon errors in the potentials seen by its companion.
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5.4 Dynamical Simulations

5.4.1 Mass Ejecta

In order to study the relationship between the initial binary NS parameters, including the

choice of the NS EOS, and the amount of unbound mass left on the grid during and immediately

after the merger, we have conducted high-resolution dynamical simulations of BNS mergers

for different mass ratios and EOSs. The fluid material is considered ejected from the system

when it is unbound by the gravitational potential of the BNSs and the merger remnant formed

after the merger.

There are two criteria that can be used to define whether or not a fluid element is “unbound”.

For particles in Newtonian physics, one would typically only need to check whether the poten-

tial energy or kinetic energy is of larger magnitude. For fluid configurations, hydrodynamic

simulations typically require one to modify the kinetic energy description to include the in-

ternal energy of the gas as well: even if a small region of the fluid has not achieved escape

velocity collectively, the fluid will be expected to expand if placed in a low-pressure environ-

ment with the vast majority of the mass eventually becoming unbound as a result should the

temperature/internal energy be sufficiently large. For our calculations, we use the relativistic

analogue of this latter approach. The fluid material is considered unbound when it satisfies

the following condition

hut < −1, (5.4.4)

where ut is the first component of the fluid velocity at each grid point given as

ut = uνt
ν , (5.4.5)

where tν is a timelike vector [60]. The mass of the ejecta can then be calculated by integrating

the total fraction of rest mass that is unbound over some volume using the above condition:

Munbound =

∫
hut<−1

ρ d3x (5.4.6)
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In order to study the dynamical properties of the mergers that would result from the time

evolution of our initial data, and to further validate the ID produced by our modified version of

LORENE, we used the EinsteinToolkit (ETK) with the IllinoisGRMHD evolution system [61]

& [62] to dynamically simulate BNS configurations. ETK has modules that are built to read

LORENE’s ID. To see the evolution of the merger, we have plotted the distribution of different

quantities: the fluid density, enthalpy, and the metric terms needed to classify whether matter

remains bound or has become unbound from the binary. We have used three different EOSs:

simple polytropes with γ = 2 and piecewise polytropes representing the APR4[55] and SLy[56]

EOSs. The initial distance between the NSs was chosen to be 40km for all the simulations.

Distance is in km and units of time and density in geometric units. For G = c=M⊙=1, t=1

in geometric units is 4.93× 10−6s and ρ =1 is 6.194×1017 g/cm3. We have implemented the

following grid structure for the dynamical simulation runs

• The grid extends to +/- 3729.04 km in the x-, y- and z-directions.

• There are 7 refinement boundaries, each with a factor of two improvement in resolution.

• The finest-level resolution is ∼120 m.

• After the black hole is formed, two additional refinement levels are added, centered at

the remnant, yielding a finest resolution after merger of ∼30 m.
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Run 1: PPEOS- APR4, M1 = 1.4 and M2 = 1.4

62 5.4. Dynamical Simulations



5.4. Dynamical Simulations

Run 1: PPEOS- APR4, M1 = 1.4 and M2 = 1.4

Figure 5.9: Evolution of the density for a BNS system with masses of 1.4M⊙ each and piecewise
polytropic APR4 EOS, shown at equivalent times for the x− y and x− z planes, respectively
(top and bottom of each subfigure). The run was stopped at 29.8ms. The merger remnant at
the end of 29.8ms is a hypermassive neutron star.
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Run 1: PPEOS- APR4, M1 = 1.4 and M2 = 1.4

Figure 5.10: Density profile at t = 0

Figure 5.11: Density profile at t = 6059.26 CU
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Analysis of Run 1: PPEOS- APR4, M1 = 1.4 and M2 = 1.4

The simulation begins from an initial separation of 40 km with a total mass of 2.8M⊙ and a

mass ratio of 1. As the initial orbital separation is only a few times of the radii of NSs, such

binaries rapidly become unstable and we need to use numerical relativity to dynamically simu-

late the system. The BNS configuration is evolved relativistically using the EinsteinToolkit

(ETK) with IllinoisGRMHD [61] & [62]. Since the two NS masses are equal, the merger

resembles a slow collision. First, the stars inspiral together and their orbital separation de-

creases. As their separation further decreases, the NS surfaces come in contact with each

other and the two NS form a dumbbell shaped massive NS remnant comprised of two cores.

Eventually the dumbbell shape transforms into an ellipsoid due to loss of angular momentum

and gravitational wave emission, as the ellipticity of the remnant decreases with time. The

angular momentum loss rate depends on the type of EOS. As seen from Figs. 5.9 and 5.11

the remnant stabilizes into a long-lived, oblate-spheroid shaped HMNS as predicted by earlier

studies [22]. For this particular run, we stopped the simulation at 29.8 ms, at which time it

remained a HMNS. If we continued the simulation, it could have eventually collapsed into a

BH as the total mass of the NSs at the beginning of the simulations is equal to 2.8M⊙, but

the timescale on which this is expected to occur is much larger than we can simulate using

these techniques. Very little mass ejecta left on the grid during the merger process, due to the

symmetrical nature of the NS masses and their resulting evolution process – neither star can

be said to be tidally disrupted during the merger process, and only weak mass loss in a spiral

pattern from the outer edges is seen, very little of which is outflowing with significant enough

velocity to unbind the material.
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5.4.2 Formation of hyper massive neutron star

Figure 5.12: Density profile at late times for AP4 EOS run with M1 = M2 = 1.4, where a
HMNS is formed
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Run 2: PPEOS- APR4, M1 = 1.6 and M2 = 1.4
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Run 2: PPEOS- APR4, M1 = 1.6 and M2 = 1.4

Figure 5.13: Evolution of density of BNS system with masses 1.6M⊙ and 1.4M⊙ and EOS
APR4 in x− y and x− z direction. The merger remnant is a black hole formed at t = 7.69ms
star.
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Run 2: PPEOS- APR4, M1 = 1.6 and M2 = 1.4

Figure 5.14: Evolution of bound and unbound mass for EOS APR4 having masses 1.6 M⊙
and 1.4 M⊙.

Figure 5.15: Density profile in x direction at t = 2158.6128 CU
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Analysis of Run 2: PPEOS- APR4, M1 = 1.6 and M2 = 1.4 The simulation begins

from an initial separation of 40 km with a total mass of 3.0 M⊙ and a mass ratio of 0.875

(M1 = 1.6, M2 = 1.4). We see that as the stars approach merger, the evolution process for

an unequal mass BNS configuration is different from an equal mass configuration. The less

massive star gets tidally deformed and its outer layers get stripped during the merger. The

stripped material forms an envelope around the remnant while the core of the lower mass NS

interacts with the core of the high mass NS, forming a remnant composed of two asymmetric

cores. The massive NS remnant eventually relaxes into a quasi stationary state due to release of

angular momentum by interacting with the envelope, thus decreasing the degree of asymmetry.

The merger occurs more rapidly from a given initial orbital separation than an equal mass

ratio BNS systems and has a larger amount of mass ejecta. As can be seen from the density

profile plotted in Figure 5.14, an accretion disk is formed at around 10km away from center,

and the remnant promptly collapses into BH at 7.69 ms after the start of simulation.
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Run 3: PPEOS- APR4, M1 = 1.8 and M2 = 1.4
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Run 3: PPEOS- APR4, M1 = 1.8 and M2 = 1.4

Figure 5.16: Evolution of the density of a BNS system with masses 1.8M⊙ and 1.4M⊙ and
AP4 EOS in the x− y and x− z directions. The merger remnant is a black hole formed at t
= 7.69ms.

72 5.4. Dynamical Simulations



5.4. Dynamical Simulations

Run 3: PPEOS- APR4, M1 = 1.8 and M2 = 1.4

Figure 5.17: Evolution of bound and unbound mass for EOS APR4 having masses 1.6 M⊙
and 1.4 M⊙.

Figure 5.18: Density profile in the x−direction at t = 2158.6128 CU
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Analysis of Run 3: PPEOS- APR4, M1 = 1.8 and M2 = 1.4 The simulation begins

from an initial separation of 40 km and the total mass of the system is 3.2 M⊙ with a mass

ratio of 0.78 (M1 = 1.8, M2 = 1.6). Here, the evolution process is similar to the process of

Run 2 due to the unequal mass ratio. Compared to Run 2, the merger occurs at an even larger

orbital separation and at a faster rate due to the more extreme mass ratio, resulting in a more

violent tidal disruption of the secondary. As can be seen from Fig 5.18, the accretion disk is

denser at t = 2158CU than the disk formed during Run 2 and the remnant collapses to a BH

sooner, at 6.31ms.
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Run 4: PPEOS- SLY, M1 = 1.4 and M2 = 1.4
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Run 4: PPEOS- SLY, M1 = 1.4 and M2 = 1.4

Figure 5.19: Evolution of the density of a BNS system with masses 1.4M⊙ and 1.4M⊙ and Sly
EOS, shown in the x− y and x− z directions. The merger remnant is a black hole formed at
t = 9.25ms.
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Run 4: PPEOS- SLY, M1 = 1.4 and M2 = 1.4

Figure 5.20: Evolution of bound and unbound mass for Sly EOS with NS masses 1.4 M⊙ and
1.4 M⊙.

Figure 5.21: Density profile in the x−direction at t = 2338.4972 CU
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Analysis of Run 4: PPEOS- SLY, M1 = 1.4 and M2 = 1.4

1. The simulation begins from an initial separation of 40 km and the total system mass is

2.8M⊙ with a mass ratio of unity. The evolution process is similar to the process of Run

1, as it is an equal mass BNS system the merger resembles a slow collision. The stars

plunge together as their orbital separation decreases. Unlike the case of the AP4 EOS

shown previously, the remnant of this run promptly collapses into a BH, as opposed to

Run 1, where for a similar mass configuration the remnant was a long-lived HMNS. This

is due to the difference in stiffness of the EOSs for both of the runs – AP4 can support

a larger stable mass configuration than Sly. The BH forms at 9.25 ms after the start of

simulation run.
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Run 5: PPEOS- SLY, M1 = 1.6 and M2 = 1.4
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Run 5: PPEOS- SLY, M1 = 1.6 and M2 = 1.4

Figure 5.22: Evolution of density of BNS system with masses 1.6M⊙ and 1.4M⊙ and EOS
SLY in x− y and x− z direction. The merger remnant is a black hole formed at t = 7.86ms.
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Run 5: PPEOS- SLY, M1 = 1.6 and M2 = 1.4

Figure 5.23: Evolution of bound and unbound mass for EOS SLY having masses 1.6 M⊙ and
1.4 M⊙.

Figure 5.24: Density profile in x direction at t = 1533.7512 CU
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Analysis of Run 5: PPEOS- SLY, M1 = 1.6 and M2 = 1.4

1. The simulation begins from an initial separation of 40 km with a total system mass of

3.0M⊙ and a mass ratio of 0.875 (M1 = 1.6, M2 = 1.4). The evolution process is similar

to the process of Run 2 as it is an unequal mass BNS system, but with a different EOS.

The remnant promptly collapses into a BH at 7.86 ms after the start of simulation, very

similar to Run 2 which collapses into a BH at 7.69 ms. This run stopped soon after the

formation of black hole, due to numerical errors encountered by IllinoisGRMHD soon

after the BH formed, a challenge for numerical codes that is only exacerbated by the

formation of an off-center horizon with a non-trivial kick velocity, owing to asymmetric

gravitational wave emission and mass ejecta patterns.
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Run 6: PPEOS- SLY, M1 = 1.8 and M2 = 1.4
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Run 6: PPEOS- SLY, M1 = 1.8 and M2 = 1.4

Figure 5.25: Evolution of density of BNS system with masses 1.8M⊙ and 1.4M⊙ and EOS
SLY in x− y and x− z direction. The merger remnant is a black hole formed at t = 6.26ms.
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Run 6: PPEOS- SLY, M1 = 1.8 and M2 = 1.4

Figure 5.26: Evolution of bound and unbound mass for Sly EOS for NS having masses 1.8 M⊙
and 1.4 M⊙.

Figure 5.27: Density profile in the x−direction at t = 1287.5936 CU
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Analysis of Run 6: PPEOS- SLY, M1 = 1.8 and M2 = 1.4

1. The simulation begins from an initial separation of 40 kms with a total system mass

3.2M⊙ and a mass ratio of 0.78 (M1 = 1.8, M2 = 1.4). The evolution process is similar

to the process of Run 3 as it is an unequal mass BNS, system but with a different EOS.

Compared to Run 5, the merger occurs at an even larger orbital separation and faster

due to the mass ratio. The remnant promptly collapses into a BH at 6.26 ms after the

start of simulation, very close to Run 3 which collapses into a BH at 6.31 ms. This run

stopped soon after the formation of BH. As the masses of NSs are not equal to each

other, the BH acquired a kick velocity, causing the crash in a similar scenario as Run 5.
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Run 7: PPEOS- simple polytrope with γ = 2, M1 = 1.4 and M2 = 1.4
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Run 7: PPEOS- simple polytrope with γ = 2, M1 = 1.4 and M2 = 1.4

Figure 5.28: Evolution of density of BNS system with masses 1.4M⊙ each and simple polytropic
EOS in the x − y and x − z directions. The merger remnant is a black hole formed at t =
10.37ms .
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Run 7: PPEOS- simple polytrope with γ = 2, M1 = 1.4 and M2 = 1.4

Figure 5.29: Evolution of bound and unbound mass for simple polytropic EOS with γ = 2
having masses 1.4 M⊙ and 1.4 M⊙.

Figure 5.30: Density profile in x direction at t = 2565.7196 CU
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Analysis of Run 7: PPEOS- simple polytrope with γ = 2, M1 = 1.4 and M2 = 1.4

1. The simulation begins from an initial separation of 40 km with a total mass of is 2.8M⊙

ans a mass ratio of unity. The evolution process is similar to the process of Run 1 as it

is an equal-mass BNS system and the merger resembles a slow collision. The remnant

of this run promptly collapses into a BH, as opposed to Run 1, where for similar mass

configuration the remnant is a HMNS. Again, the difference in the EOSs of both the

runs is responsible, since γ − 2 is relatively soft compared to most physically motivated

models. The BH forms at 10.37 ms as compared to Run 4 with similar mass configuration

(but SLY EOS) where the remnant collapses into a black hole at 9.25ms.
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5.4.3 Binary neutron star merger remnant

We also conduct an analysis on how different initial properties of NSs affect the fate of the

merger remnant. The result of a merger is inevitably a compact object, either a black hole or

a neutron star. If the remnant is a neutron star, it can fall into one of the three categories:-

supramassive neutron star, hypermassive neutron star, or stable neutron star, depending on

whether and how the rotational state is necessary to prevent gravitational collapse. If the mass

of the remnant is large enough, it will collapse into a black hole immediately. The table below

consists of the list of the dynamical simulations we performed and the different parameters of

the runs, along with the final merger remnant we observed.

We note that while we can and do see BHs forming as the result of many of our simulations,

it remains extremely difficult to classify the eventual fate of what appears to be a HMNS that

survives the the end of our numerical simulations. These configurations typically maintain

strong rates of differential rotation, and will do so for timescales much longer than we can

simulate. Our simulations do not include magnetic effects, which can facilitate the transfer of

angular momentum from the remnant to its surroundings. Thus, we can only conclude that

such remnants do not collapse promptly, nor have they collapsed yet; their final fate remains

unknown to us given our available computational resources.

Run No. M1 M2 EOS Remnant Time(ms) Max unb mass
1 1.4 1.4 AP4 HMNS 29.8 NA
2 1.6 1.4 AP4 BH 7.69 0.1
3 1.8 1.4 AP4 BH 6.31 0.1
4 1.4 1.4 SLY BH 9.25 0.1
5 1.6 1.4 SLY BH 7.86 0.1
6 1.8 1.4 SLY BH 6.26 0.1
7 1.4 1.4 γ = 2 BH 10.37 0.1*

Table 5.2: Different dynamical simulations performed with different parameters. The dynami-
cal simulation run with AP4 EOS and M1 =1.4 and M2 = 1.4 was stopped at 29.8 ms and the
merger remnant at t = 29.8 ms was a long lived HMNS. The last column includes the maxi-
mum amount of unbound mass left on the grid for each run. We could not get the unbound
mass for Run 1 as we were able to capture the value only after a BH was formed and Run
1 was terminated before the HMNS could collapse into a BH. we recorded a slightly higher
maximum unbound mass for Run 7, *although this could be due to numerical error and not a
real physical effect as the resolution used for the run was not high enough.
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5.5 Summary of Results

• The maximum amount of unbound mass left on the grid soon after the merger is ap-

proximately 10−1 M⊙ for the grid structure and the resolution we have used in our

simulations, except for Run 7, where more unbound material is seen left on the grid

(Figure 5.28). This discrepancy can be explained as an artifact of the mass falling into

the black hole, being calculated as unbound mass.

• A fraction of material from the NS is ejected in the form of unbound mass immediately

after the remnant collapses to a black hole, an amount that eventually decreases as it

leaves the numerical grid. We did not observe any unbound mass for Run 1, as the run

was stopped before the remnant collapsed into a black hole.

• Run 5 and Run 6 stopped soon after the black hole formed. This seemingly occurred

because the NS had unequal masses and the BH could acquire a non-trivial kick velocity.

The investigation of the details of the crash is outside the scope of this dissertation and

will be considered in future works.
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Conclusion

6.1 Conclusion

In this dissertation we investigated improving the quality of binary neutron star initial data

and expanded the parameter space of publicly available binary neutron star quasi-equilibrium

configurations, constructing several new models as part of our initial data library. We have

also used the initial data from our library to launch dynamical simulations and investigate

how different system parameters affect the amount of mass ejected versus the amount left on

the grid over time, while classifying the fate of the merger remnant. We summarize our results

below.

6.1.1 Update of LORENE

We have modified LORENE to build initial data for more unequal mass ratios and higher total

masses using a secant method fix and routines that “scan” configuration through sequential

steps in both mass and radius. We have released the data publicly on our website, so that they

may be used to conduct dynamical simulations of BNS mergers using the Einstein Toolkit.

With both the secant method fix and the mass and separation scanning routines in place, many

of the problems that most users have encountered with Lorene have been resolved. These fixes

allow for an easier use of Lorene along with an increased consistency for initial data runs.
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6.1.2 Conservation of Hamiltonian constraints

We investigated different methods for improving the conservation of the Hamiltonian con-

straints, thus improving the quality and validity of initial data using LORENE. We can conclude

the following regarding the conservation of Hamiltonian constraint:

• First, we were able to improve the quality of initial data for three different types of EOS

by increasing the grid resolution, namely

1. Simple polytrope

2. Piecewise polytrope

3. Tabulated EOS taken from [6]

• Second, we were not able to improve the initial data for the newer version of tabulated

EOS given by [8].

• Third, we did not see any change in the conservation of the Hamiltonian constraint after

increasing the number of domains or changing the convergence factor used by LORENE.

This strongly suggests that these parameters do not play a significant role in the level

of the numerical constraint violations, which are instead inherent to the multidomain

spectral methods used by LORENE. These appear to be directly attributable to non-

smooth behavior in the field solutions at the surface on one NS leading to non-smooth

behavior in the factors multiplying the matter source terms for the elliptic equations

centered on the other star.

6.1.3 Dynamical simulations and analysis of mass ejecta

We have performed dynamical simulations of BNS mergers using the initial data produced

by our modified version of LORENE. Due to our radius scanning sequence, we were able to

produce initial data at smaller separations (40km) than those previously generated, reducing

the computational time required to see the onset of a merger. We summarize our results below.

• We can see from the evolution of the density (Figures 5.9 - 5.29) that the matter that

bleeds off of the surfaces of the neutron star occurs at extremely low densities. Prior to

merger, any and all ejecta is due to numerical effects, an artifact of the modeling of the
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“atmospheres” required by conventional Eulerian hydrodynamic schemes. This effect is

extremely small with regard to the total mass of the binary, and can largely be ignored.

On the other hand, the mass loss during and immediately after the merger itself is a real

physical effect caused by tidal interactions between the two stars.

• The amount of unbound mass produced in the simulations after the merger occurs in-

creases as the mass ratio of the NS decreases (q<1). More unequal-mass mergers lead to

more unbound material, since the lower-mass secondary is disrupted in a more violent

fashion via interactions with the relatively heavier primary.

• A fraction of material from the NS is ejected in form of unbound mass immediately after

the remnant collapses to a black hole and decreases eventually as it leaves the grid.

• The bound mass left on the grid eventually becomes constant in time and can be seen

in form of a longer-lived accretion disk.

• The NS EOS affects the fate of the merger remnant and the amount of mass ejected dur-

ing and after a merger. This is largely a consequence of the NS compactness depending

on the EOS. The BNS merger remnant collapses faster when the mass ratio goes away

from 1 (q<1).

6.2 Future Work

We will continue to work on expanding the initial data library and include more EOSs as well

as better quality initial data. We will also continue to publish documentation addressing the

following:

• How to use LORENE with a step-by-step sequence to produce stable initial data

• How to use LORENE to expand the parameter space for producing initial data

• How to use the initial data from our library to launch runs with the Einstein Toolkit.
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Appendix A

Mathematical Derivations

Taking equation 95 from [3]
d

dX
(ν + lnΓ) =

d

dX
(lnΓo) (1.0.1)

d

dX
(ξ + 0.5(ln|1− µλΩ2|)) = 0 (1.0.2)

ξ′(1− µλΩ2) = 0.5(µ′λΩ2 + µλ′Ω2) (1.0.3)

ξ′ = 0.5(µ′λΩ2 + µλ′Ω2) + µλΩ2ξ′ (1.0.4)

ξ′

Ω2

2 (µ′λ+ µλ′) + µλξ′
= 1 (1.0.5)

ξ′

[12(µ
′λ+ µλ′) + µλξ′]

= Ω2 (1.0.6)
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LORENE uses different variable names while calculating omega and are as follows:

dnulg =
d

dX
(ν + lnΓ) = ξ asn2 =

A2

N2
= µ dasn2 =

d

dX

[
A2

N2

]
= µ′

bpbi =
λ

Ω2
cpci =

λ′

2Ω2
andani = (0.5µ′ + µλ′) (1.0.7)
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Appendix B

Lorene parameter files and executables

B.1 Initial binary routine

The initial binary routine contained in the file init_bin.C sets up a superposition of two

spherical NS, each with a specified EOS and central enthalpy, but does not account for the

effects of the tidal interaction between them. All results published to date employ the same

EOS model for both stars, as there is no compelling physical reason why it should be different

for different NS.

The routine uses the following input parameter files:

• par_eos1.d and par_eos2.d: We can control the NS EOS using these two files. The typ-

ical par_eos.d files for the three different EOSs consist of the following input parameters:

– EOS: simple polytrope

Line 1: Type of EOS: Given by a number found at (https://lorene.obspm.fr/

Refguide/classLorene_1_1Eos.html)

Line 2: Star number → Specifies the star and takes either 1 or 2 as value

Line 3: Adibatic index

Line 4: This is the pressure coefficient k in P = kργ , measured in units such that

k = P
ρnucc2

, where ρnuc = 1.66× 1014g/cm2 is Lorene’s unit of nuclear density.
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– EOS: piecewise polytrope

Line 1: Type of EOS: Given by a number found at (https://lorene.obspm.fr/

Refguide/classLorene_1_1Eos.html)

Line 2: Star n ::- Specifies the star and takes either 1 or 2 as value

Line 3: N → Number of pieces of polytropes

Line 4 to N+3: Array of adiabatic index

Line N+4: Value of k at ρ0 given in equation P = kρΓ

Line N+5: log(P0)

Line N+6 to 2N+4 =(N+6+(N-2)): array of the exponent of fiducial densities lo-

gRho

Line 2N+5 to 3N+3 =(2N+5+N-2) : array of percentage

– EOS: Tabulated EOS

Line 1: Type of EOS: Given by a number found at (https://lorene.obspm.fr/

Refguide/classLorene_1_1Eos.html)

Line 2: Number representing the format of tabulated EOS 0 for standard format

and 1 for CompOSE format

Line 3: Tabulated EoS Line 4: File path pointing to the tabulated EOS file

• par_grid1.d and par_grid2.d: These parameter files determine the size of the compu-

tational grid to be used by Lorene. The files are described as follows

Line 1: nz: total number of domains

Line 2: nzet: number of domains inside the star

Line 3: nt: number of points in theta (the same in each domain)

Line 4: np: number of points in phi (the same in each domain)

The next N number of lines specify the inner domain boundaries. We typically increase

the radii in factors of 2. A typical par_grid1.d can be constructed as

5 nz: total number of domains
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1 nzet: number of domains inside the star

17 nt: number of points in theta (the same in each domain)

16 np: number of points in phi (the same in each domain)

# Number of points in r and (initial) inner boundary of each domain:

33 0. <- nr & min(r) in domain 0 (nucleus)

33 1. <- nr & min(r) in domain 1

33 2. <- nr & min(r) in domain 2

33 4. <- nr & min(r) in domain 2

33 8. <- nr & min(r) in domain 2

• par_init.d: This file contains information on both the stars such as central enthalpy

and binary separation. The central enthalpy is given as log of enthalpy, log(h) as defined

in Eq. 3.2.13. A typical par_init.d files consists of the following lines

Line 1: factor defining the kind of computation, 1 for a relativistic computation, 0 for a

Newtonian one

Line 2: coordinate distance between the two stellar centers [km] for the initial setup

Line 3: initial central enthalpy of star 1

Line 4: rotational state of star 1 : 1 = irrotational, 0 = corotating

Line 5: initial central enthalpy of star 2

Line 6: rotational state of star 2 : 1 = irrotational, 0 = corotating

We use the parameter files to choose the mass and radius for the NSs. For polytropes, there is

a scale freedom in the TOV equations, so as long as the central enthalpy remains fixed, varying

kappa just changes the mass and radius linearly in relation to each other; for an EOS model

with specified kappa values, the central enthalpy controls the mass and radius. In practice,

We need to choose kappa properly to get the desired compactness for a given mass.

B.2 Coalescence routines

The routine found in coal.C, and various modifications we have made to it, reads in the

binary configuration produced by init_bin, and iteratively applies the quasi-equilibrium field
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equations to produce a relaxed configuration for two NS with specified EOS and baryon masses,

at a specified binary separation as measured from the points of maximum enthalpy within the

stars.

The coalescence routines make use of the EOS and grid files defined above, as well as the

following:

• parcoal_seq.d: This file is used to run the coal_seq.d routine for different configura-

tions. The main lines to change are the binary separation (start_dist), measured in

km, number of steps for both the binary and mass separation, the amount of jump in the

distance (radius_step), and the initial and final mass values for both stars. It consists

of the following lines

Line 1: File containing the initial conditions

Line 2: start_dist : Factor by which the initial separation is multiplied at beginning

(replaces fact_separ)

Line 3: radius_step, step size used for the distance scanning sequence

Line 4: nofsteps_radius, number of steps used in the distance scanning sequence

Line 5: mbar_voulue_init[0], Initial Baryon mass required for star 1

Line 6: mbar_voulue_init[1], Initial Baryon mass required for star 2

Line 7: mbar_voulue_final[0], Final Baryon mass required for star 1

Line 8: mbar_voulue_final[1], Final Baryon mass required for star 2

Line 9: nofsteps_mass, Number of steps in which to let the baryon mass change

Line 10: nmass_delay, how long after mer_masse steps to begin scanning mass

Line 11: massscan_rstep, Radial step at which mass is scanned – from 1 to nof-

steps_radius

Line 12: mermax, Maximum number of steps in the main iteration

Line 13: relax, Relaxation factor in the main iteration

Line 14: mermax_eqb, Maximum number of steps in Etoile_bin::equilibrium

Line 15: prompt, 1 if no pause during the computation

Line 16: graph, 1 if graphical outputs during the computation
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Line 17: seuil, Threshold on the enthalpy relative change for ending the computation

Line 18: fmer_stop, Step interval between pauses in the main iteration

Line 19: fmer_save, Step interval between safeguards of the whole configuration

Line 20: mermax_poisson, Maximum number of steps in Map_et :: poisson

Line 21: relax_poisson, Relaxation factor in Map_et::poisson

Line 22: mermax_potvit, Maximum number of steps in Map_radial::poisson_compact

Line 23: relax_potvit, Relaxation factor in Map_radial::poisson_compact

Line 24: mer_masse, Step from which the baryon mass is forced to converge

Line 25: aexp_masse, Exponent for the increase factor of the central enthalpy

Line 26: fmer_udp_met, Step interval between metric updates

Line 27: ind_rel_met, 1 if relaxation of the metric, 0 if not

Line 28: relax_met, Relaxation factor of the metric (used only if ind_rel_met=1)

Line 29: relax_omeg, Relaxation factor on Omega (orbital angular velocity)

Line 30: fact_omeg_min, fact_omeg_min * omega = low bound in the omega search

Line 31: fact_omeg_max, fact_omeg_max * omega = high bound in the omega search

Line 32: thres_adapt1, threshold on dH/dr for the adaptation of the mapping in star 1

Line 33: thres_adapt2, threshold on dH/dr for the adaptation of the mapping in star 2

Line 34: reduce_shift, factor by which the initial analytical shift is reduced

B.3 Executables

The following executables are required for running Lorene:- init_bin, coal/coal_seq_massscan.

The initial code used for constructing the binaries is called init_bin.C and does the following

steps

1. Reads the input values from par_eos and par_init.d

2. Maps each individual NSs onto the grid individually ready from par_grid.d

3. Constructs the binary, where the individual stars are placed at an initial distance

4. The binary configuration is saved to output files which are read by coalescence routine.

The second routine called as the coalescence routine is calculated using the code coal_seq_mass.C.
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It conducts the following steps

1. Reading in all parameter values from the files mentioned above

2. Setting up 3-dimensional nested grid structures to describe each NS, and reading in the

metric data from the init_bin routine.

3. A loop over gradually decreasing separations in which:

(a) The binary separation (interpreted here as the offset between the centers of the two

sets of domains) is reduced by a user-specified factor, typically 2.5 km.

(b) The metric components from each star are re-interpolated into the domains of the

other star

(c) The typical LORENE relaxation step is computed, including calculation of the angu-

lar velocity and rotation axis, the computation of the enthalpy equation, and the

determination of the new quasi-equilibrium state.

(d) The change in central enthalpy of the NS is calculated, which is used as a stopping

criterion for the loop.

4. Stellar data are saved prior to any increase in the stellar masses, as low-mass configura-

tions are typically much more numerically stable than high-mass ones, especially when

one changes the binary separation.

APPENDIX B. LORENE PARAMETER FILES AND EXECUTABLES B.111


	Initial data generation and dynamical simulations of binary neutron star systems
	Recommended Citation

	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Neutron Stars
	2.1.1 The final stages of stellar evolution
	2.1.2 Equation of state

	2.2 Binary neutron star systems
	2.2.1 Stages of a Binary Merger

	2.3 Gravitational Waves and Multimessenger Astronomy
	2.3.1 Binary inspiral
	2.3.2 Multimessenger Astronomy with binary neutron star mergers
	2.3.3 Detected BNS and BHNS Events

	2.4 Initial data and the Conformal Thin Sandwich Formalism
	2.4.1 Conformal Flatness Approximation and elliptic equations solved by LORENE


	3 Description of LORENE
	3.1 Co-ordinate system and computational domains
	3.2 Initial conditions
	3.2.1 Simple polytropes
	3.2.2 Piecewise polytropes

	3.3 The Tolman-Oppenheimer-Volkov (TOV) equation
	3.3.1 Schwarzschild vs. isotropic metrics

	3.4 Description of one step
	3.5 Equations for the fluid with a conformally flat 3 metric

	4 Modified version of LORENE
	4.1 Generating unequal mass ratios far from unity
	4.2 Higher-mass configurations and close separations
	4.2.1 Demonstration of Lorene stepping routine to produce a higher-mass configuration at close separations


	5 Results
	5.1 Updated Lorene
	5.2 Tabulated EOS
	5.3 Verification of initial data
	5.3.1 Conservation of Hamiltonian constraints
	5.3.2 Summary of analysis performed to study the conservation of Hamiltonian constraints

	5.4 Dynamical Simulations
	5.4.1 Mass Ejecta
	5.4.2 Formation of hyper massive neutron star
	5.4.3 Binary neutron star merger remnant

	5.5 Summary of Results

	6 Conclusion
	6.1 Conclusion
	6.1.1 Update of LORENE
	6.1.2 Conservation of Hamiltonian constraints
	6.1.3 Dynamical simulations and analysis of mass ejecta

	6.2 Future Work

	Bibliography
	Appendices
	A Mathematical Derivations
	B Lorene parameter files and executables
	B.1 Initial binary routine
	B.2 Coalescence routines
	B.3 Executables


