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Abstract

The Einstein–Podolsky–Rosen (EPR) paradox proposes an entangled quantum state in

high dimensional non-commuting observables, position and momentum. We experimentally

demonstrate a novel method for measuring spatial correlations in joint position and joint mo-

mentum space for entangled photons in an EPR-like state. Research in the field of quantum

optics can provide insight into quantum information processing, communication, quantum key

distribution, and further investigation into the EPR paradox and locality. Unlike existing

techniques, we take measurements of non-commuting observables using a static configuration.

A 405nm pump laser incident on a Bismuth Borate nonlinear crystal produces an EPR state as

a pair of 810nm photons through the process of spontaneous parametric downconversion. To

measure spatial correlations, we take advantage of holograms displayed on digital micromir-

ror devices (DMDs). This method allows for control over the basis that is measured only by

changing what hologram is displayed on the DMD, without having to add lenses or other bulk

optic components. The field interaction that generates a hologram can be computationally

simulated and displayed on the DMD allowing for a momentum mode projection onto the

incident state. Collection of joint position and joint momentum correlations provide an en-

tanglement witness. Verification of entanglement using this technique provides the framework

to investigate projections onto arbitrary states and explore further quantum communication

advances.
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Chapter 1

Introduction

This thesis presents a proof-of-concept experiment showing that entanglement can be ob-

served using a digital micromirror device to perform holographic quantum state projections.

A nonlinear crystal is the source of entangled photons. The position and momentum of pho-

tons were measured and calculations were performed to determine that the photons are in

fact entangled. The novel technique presented is the use of holograms to measure the mo-

mentum distribution of the entangled photons. There are two primary advantages of our

approach. First, no physical configuration changes are needed in the experiment to change

the measurement basis. The second advantage of this system is that it can be expanded to

project arbitrary spatial modes. The holographic technique for the measurement of entangled

systems is a new practice and we report on the practical obstacles and challenges found when

using this scheme. Along with an investigation of entanglement, our experiment promotes

further investigation into the use of holograms to produce arbitrary modes for use in quantum

communication and information.
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1.1 Entanglement

1.1.1 Einstein–Podolsky–Rosen Paradox

One of the most interesting and impactful predictions of the theory of Quantum Mechanics

is quantum entanglement. Entanglement describes a quantum state that represents a system

composed of multiple entities that cannot be treated separately. Both mathematically in their

description and conceptually in their behavior they are not separable into individual quantum

systems. Our goal is to measure the characteristics of a system and observe the presence of

entanglement.

There are two important measurement properties of entangled systems. A system is said to

be maximally entangled if the following criteria are met. First, the single-particle measurement

outcomes are completely random. For example, in an entangled system of spin 1/2 particles,

when measuring the spin value of one particle, with no regard for the other, one sees completely

random results between spin up and down. Second, when a pair of measurements are taken in

a particular basis on the system, known as a joint measurement, the outcomes are perfectly

correlated. Perfect correlations imply perfect predictive power over the measurement outcome

for one particle given knowledge of the measurement outcome of the other. In the above

example, one would measure the same spin values on both particles (or opposite spin for

anti-correlated systems), where the particular values measured are random. This spin 1/2

example describes a maximally entangled system, but partially entangled systems also exist,

exhibiting imperfect correlations. Maximally entangled systems also exhibit maximally mixed

single-particle states.

We are particularly interested in Einstein–Podolsky–Rosen (EPR) type entanglement [1].

EPR entanglement was originally proposed as a thought experiment where each particle, when

measured on its own, can have any position with equal probability. When considered as a joint

system, both particles will be measured to have the same exact position. The wavefunction

describing this state is [1] :

Ψ(x1, x2) ∝ δ(x1 − x2) (1.1.1)
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Figure 1.1: Joint position and joint momentum probability distribution for the EPR state in
one dimension.

The state is infinite in extent, and infinitesimal in width as in Figure 1.1, therefore Eq. 1.1.1

can not be normalized or realized in its exact form. The EPR state is maximally entangled

and has perfect correlations in both position and momentum. To describe the state in the

conjugate space, take the Fourier transform of Eq. 1.1.1:

Φ(k1, k2) ∝ δ(k1 + k2) (1.1.2)

In this case, the momentum correlations manifest as anti-correlations, where each particle

is traveling in opposite directions. This state is highly non-separable, which is the essence of

a system being mathematically entangled.

The EPR state has interesting implications. An extension of the EPR thought experiment

considers two observers, Alice and Bob, who have detectors for both the position and momen-

tum of photons that head towards them from an EPR source [2]. Alice and Bob are spatially

separated. Pairs of photons are generated in such a way as to observe EPR-like entangle-

ment, as in Figure 1.2. One is then sent toward Alice and the other toward Bob. As photons

reach them, they can choose to measure the position of their photons. From the definition of

maximally entangled systems, the individual photons will arrive with random positions. Now

consider that Alice measures the position of a single photon as it arrives and records its value.

Given that Alice’s and Bob’s photons are entangled, Alice instantaneously knows that Bob’s

photon must be in an eigenstate of position, particularly the same random eigenstate that she

measured. Alice could instead measure the momentum of her photons, obtain a value, and

Chapter 1. Introduction 3



Chapter 1. Introduction

Figure 1.2: Thought experiment to demonstrate EPR paradox. Alice and Bob can choose
which measurements are being performed on their incoming particles.

conclude that Bob’s particle must be in an eigenstate of momentum as well. The EPR state

has the property that given a position measurement outcome of particle 1, there is perfect

predictive power of the position measurement outcome of particle 2. The same relationship

exists for measurements in the momentum basis, regardless of the separation of the observers

[2].

Schrodinger called the ability to determine the eigenstate of the nonlocal particle that

results from Alice and Bob’s demonstration "steering" [2]. This thought experiment begs the

question, if Bob’s particle is in the eigenstate of the basis Alice chose to measure, how did

Bob’s particle "know" what kind of eigenstate to be in without information traveling between

the parties? In accordance with the no signaling theorem, this scheme cannot be used to

transmit information faster than the speed of light [3]. It is only when Alice and Bob meet

up or communicate on a classical channel that they can combine their random single-particle

measurements and obtain the measurement of the joint behavior of the particles, resulting in

correlations. The paradoxical nature of the EPR situation does describe the conflict between

the predictions of Quantum Mechanics and the predictions of locality. Locality is the idea that

all cause-and-effect relationships only flow from positions that occupy the past light cone of a

point in the present. An event in the present can only affect or send information to positions

within its future light cone.

For a single particle, predictions of measurement outcomes of both position and momentum

are limited by the uncertainty relation ∆x∆p ≥ ℏ
2 [4]. According to Quantum Mechanics, this

limitation applies to all single-particle measurement predictions and is known as the Heisenberg

uncertainty principle for position and momentum.

The Heisenberg uncertainty principle restricts single-particle measurement predictions, yet

there are perfect predictive correlations in an EPR system. This is the root of the conflict

between Quantum Mechanics and locality. Both the relationship attributed to single particle
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uncertainties and joint uncertainties are valid within the theory of Quantum Mechanics, but a

local description of the universe does not allow for both to be true. As proposed by Einstein,

Podolsky, and Rosen there may be a more fundamental theory than Quantum Mechanics to

describe this phenomenon that only includes local variables, which resolves the paradox. The

alternative resolution is that the universe is nonlocal. The Bell inequality is a tool used to show

there must be non-locality in the universe [5]. Bell shows that there is limited non-locality

in the universe which is limited by the no-signaling theorem. We can look at the uncertainty

relations quantitatively to further investigate the paradox.

The EPR paradox describes the incompatibility between a local universe and Quantum

Mechanics being a complete description of reality. Entanglement is a quantum phenomenon

that provides evidence against a local universe. Bell developed a theory-independent test of lo-

cality that further supports the incompatibility of Quantum Mechanics and locality [5]. Along

with developing our fundamental understanding of the universe, nonlocality in quantum me-

chanics has implications for use in quantum information processing and secure communication

[6] [7].

One cannot think of an entangled system as two individual systems, but it must be treated

as a single system even when the constituent parts are not located in the same place. The

measurement of the joint position and joint momentum that results in strong correlations

indicates the observation of entanglement. A joint measurement is the consideration of the

results of measurements on the set of observables (x̂1, x̂2) or (k̂1, k̂2).

The goal of our experiment is to make the joint measurements needed to observe correla-

tions in a state that has EPR-like properties. Our experiment will generate a spatial EPR-like

state. We show observation of both joint position and joint momentum correlations. A novel

holographic technique is used to observe the joint momentum correlations. The realizable

state that models the EPR paradox we employ is investigated in detail in Section 2.3. Mea-

surements of strong correlations along with the closing of any loopholes described by Brunner

et al. are the necessary procedures needed to properly witness entanglement [5].

We are interested in the uncertainty relation in terms of the incompatible, non-commuting,
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Fourier transform pair: position and linear momentum. Other observable pairs could also be

investigated in a similar way, such as orbital angular momentum modes. This thesis aims to

realize an EPR-like state and make position and momentum measurements where correlations

provide evidence of entanglement.

1.2 Related Work

Extensions of this research involving the use of position and momentum modes as well as

the projection of arbitrary modes have implications in quantum communication and security.

Various bases can be used to implement security protocols and investigate future quantum

communication methods. Rather than two-state systems like spin 1
2 or polarization systems,

spatial variables such as position and momentum can be used to encode information. This

is typically done where a particle’s positions or momentum form a unit of information called

a "qubit", the quantum analog of a classical computer bit. Qubits can relay information by

taking advantage of the quantum properties of particles to impose security [8] [9]. Neves et

al. provide a scheme to generate qudits (d dimensional qubits) using entangled photons [10].

Similarly, Solis-Prosser et al. use spatial light modulators to encode information in transverse

momentum and position modes [11]. Continuous Variable Quantum Key Distribution involving

the electric field operators to encode information is also gaining popularity [12]. Our research

can provide a framework to either further investigate the use of position and linear momentum

for communication methods, or be expanded to implement other bases, most notably, Orbital

Angular Momentum (OAM) modes. Cox and Drozdov establish the production of OAM

modes through Laguerre–Gauss modes using the same device and similar techniques as we

use to produce linear momentum modes [13]. Ruan et al. [14] and Cozzolino et al. [15] also

implement OAM modes for Quantum Key Distribution.

The realization of EPR-like states has been done in a variety of experiments. Sundaram

produces entangled pairs on a quantum chip with spectral mismatch of telecom and visible

wavelength photons [16]. Courme et al. use a spontaneous parametric downconversion entan-

glement source to investigate entangled photons propagating through a disturbed path using
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both CCD and SPAD cameras [17]. Achatz et al. certify entanglement from a telecom wave-

length SPDC source [18]. Defienne et al. were able to use a type-1 SPDC source and an

EMCCD camera with a unique super-resolution technique to obtain position and momentum

correlations. Along with parametric down-conversion, there are other ways to develop EPR

like states like four-wave mixing [19] [20] and pump-poled quasi-phase matching [20].
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Chapter 2

Witnessing Entanglement and the

EPR Paradox

In this chapter, we will mathematically describe a state that has EPR-like entanglement

and its properties. In our case, the entangled pair consists of photons generated from the

illumination of a non-linear crystal. Then we provide the theoretical framework needed to set

up an experiment that observes correlations and witnesses entanglement in the state. The

position and momentum of each photon are measured using techniques described in Chapter

3 and 4.

2.1 Uncertainty relations from first principles

In order to observe entanglement, the relationship between measurement outcomes of par-

ticles 1 and 2 needs to be quantified. This section aims to answer the question "What does

it mean for a system to be correlated and how correlated does a system have to be to be

considered entangled?". Due to the nature of the calculations used in this report, careful

attention is given to the derivation involving the uncertainty principle. Given the definition of

the uncertainty of an observable ⟨(∆̂A)2⟩ = ⟨Â2⟩− ⟨Â⟩2, Sakurai [21] proves that the variance

of two observables is related by:
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⟨(∆̂A)2⟩⟨(∆̂B)2⟩ ≥ 1

4
|⟨[Â, B̂]⟩|2 (2.1.1)

by invoking the Schwartz inequality and properties of Hermitian / Anti-Hermitian oper-

ators. One can predict the values of measurement results from compatible observables with

arbitrary precision simultaneously, limited only by practical measurement techniques. For in-

compatible observables, which do not commute, "how much" they don’t commute relates to

the uncertainty in predictions of measurement outcomes of those observables [4]. We are in-

terested in spatial degrees-of-freedom of photons, position (x̂) and linear momentum (p̂). The

canonical commutation relation [x̂, p̂] = iℏ can be shown as the result of momentum being the

generator of translation [21]. Substituting A→ x and B → p into Eq. 2.1.1:

⟨(∆̂x)2⟩⟨(∆̂p)2⟩ ≥ ℏ2

4
(2.1.2)

It is convenient to refer to the wave vector k⃗ = p⃗
ℏ . The Heisenberg uncertainty principal[4]

is written as:

⟨(∆̂x)2⟩⟨(∆̂k)2⟩ ≥ 1

4
(2.1.3)

For a quantum system comprised of a single particle, Eq. 2.1.3 describes the limit on the

predictions we can make on the measurement outcomes of position and momentum. Consider

a quantum system comprised of two particles. Any observables that act on particle 1 commute

with the observables that act on particle 2:

[x̂1, x̂2] = [k̂1, k̂2] = 0 (2.1.4)

[x̂i, k̂j ] = iδi,j (2.1.5)

The particular operators x̂1 ± x̂2 and k̂1 ± k̂2 are of interest for EPR-like states because

measurements of these observables have the possibility to show correlations between the two
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particles. For the ideal EPR state Eq. 1.1.1, a measurement of x̂1 − x̂2 and k̂1 + k̂2 results in

zero, this is an important property of the EPR state.

The uncertainty relation between the sum and difference of position and momentum oper-

ators can be found by evaluating [x̂1 ± x̂2, k̂1 ± k̂2] and [x̂1 ± x̂2, k̂1 ∓ k̂2] using Eq. 2.1.4 and

2.1.5 and substituting the corresponding operators and results into Eq. 2.1.1. With ⟨(∆̂O)2⟩

denoted as σ2
Ô
, the relevant uncertainty relations are:

σ2x1−x2
σ2k1+k2 ≥ 0 (2.1.6)

σ2x1+x2
σ2k1−k2 ≥ 0 (2.1.7)

σ2x1+x2
σ2k1+k2 ≥ 1 (2.1.8)

σ2x1−x2
σ2k1−k2 ≥ 1 (2.1.9)

In general Quantum Mechanics allows for systems that obey the above relations. Quantum

Mechanics doesn’t necessarily tell us whether a system that can saturate these relations exists

or what it might look like. Of these relations, Eq. 2.1.6 will be of interest for the EPR state

described in Chapter 1. According to Quantum Mechanics, the restrictions on predictions of

measurement outcomes for joint systems is different than the restrictions for single particle

measurement predictions. The above inequalities describe the joint uncertainties, while pre-

dictions of single-party measurements are restricted by the uncertainty principle Eq. 2.1.3

[4].

Restrictions on our ability to make predictions about measurement outcomes differ between

Quantum Mechanics and a local theory. A local theory predicts that a state is entirely defined

by its past, all events in the past that could have sent information no faster than the speed

of light to the state [22]. Consider particle 1 is outside the light cone of particle 2 and a

measurement on particle 1 is made. In a local universe, the uncertainty of the measurement

outcome on particle 1 conditioned on the results of some measurement on particle 2 can be

no less than that of particle 1 with no conditional information. The following statement
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encompasses the restrictions that locality imposes on measurement uncertainties:

σx1|x2
σk1|k2 ≥ σx1σk1 (2.1.10)

The conditional uncertainty σx1|x2
is the standard deviation in the expectation value of

a measurement result associated with x1 given the measurement result of x2. Knowledge of

the measurement outcome of particle 2 should not allow for knowledge of the measurement

outcome of particle 1 with any more certainty than a measurement of particle 1 itself. The in-

dependence of the uncertainty of measurements of particle 1 upon the results of measurements

on particle 2 is represented by the expressions σ2x1
= σ2x1|x2

and σ2k1 = σ2k1|k2 . Substitution of

Eq. 2.1.10 into Eq. 2.1.3 provides the condition:

σ2x1|x2
σ2k1|k2 ≥

1

4
(2.1.11)

for measurements taken in a local universe. Eq. 2.1.11 and mathematically equivalent

forms will be referred to as an entanglement witness when violated. This is also referred to as

a separability condition because all separable states must satisfy the inequality. Entanglement

is witnessed when σ2x1|x2
σ2x1|k2 is measured and found to violate the restriction stated in Eq.

2.1.10. In order to allow for the arbitrarily small uncertainty bound predicted by Quantum

Mechanics for the observables x̂1 − x̂2 and k̂1 + k̂2, predicted by Eq. 2.1.6, to provide an

entanglement witness, it is necessary to explore the relationship between x̂1 − x̂2, k̂1 + k̂2 and

the conditional variances in the context of the EPR state.

2.2 Development of the Double Gaussian approximation to the

EPR state

In this section, we will investigate the characteristics of a proposed state which provides

a realization of the EPR state and can violate the local uncertainty relation. Measuring the

properties of this state in the lab will allow us to estimate the uncertainty values needed to

witness entanglement.
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Figure 2.1: SPDC from an incident laser on a NLC.

Since creating an ideal EPR state is impossible due to its infinite extent and infinitesimal

width, we aim to create an EPR-like state in the lab. An EPR-like state is a two-particle

entangled state that has strong joint correlations and finite extent. While the EPR state has

zero joint conditional uncertainty and can maximally violate Eq. 2.1.11, an EPR-like state

has finite non-zero joint uncertainties and can still satisfy the entanglement witness. We aim

to describe the mechanisms that can produce an EPR-like state and follow with a detailed

description of the corresponding wave function.

2.2.1 Generation of Entangled Photons

We can create an EPR-like state in the lab by producing a pair of entangled photons from

a non-linear crystal. Nonlinear crystals are able to change the color of light that interacts with

them. When a nonlinear material is illuminated by an oscillating electric field, the response

of the polarizability of the material is [20]:

P⃗ = χ(1)E⃗ + χ(2)E⃗2 + ... (2.2.12)

The first term is the linear response of the material, which exhibits a polarization that os-

cillates with the same frequency as the incident field. Higher-order interactions also take

place. The field of nonlinear optics encompasses special materials with appreciable χn, n ≥ 2

values. These materials have higher-order responses and exhibit interesting behavior. Some

second-order responses, such as second harmonic generation or sum and difference frequency

generation can be described by classical EM theory [20]. We use a second-order interaction

Chapter 2. Witnessing Entanglement and the EPR Paradox 13



Chapter 2. Witnessing Entanglement and the EPR Paradox

Figure 2.2: Energy diagram for degenerate down conversion.

called Spontaneous Parametric Down Conversion. Spontaneous Parametric Down Conversion

(SPDC) can only be described by a quantum theory, as it requires energy present in the

vacuum state [20] [23].

SPDC is the second-order process where one high-energy photon is converted into two

lower-energy photons. Consider the incident photon “pump”, and the outgoing photons “signal”

and “idler”. Most photons pass through the material without interacting in a nonlinear manner,

this is due to the relatively low value of the second-order susceptibility values compared to the

linear term. The interaction is probabilistic in nature so we can not predict which individual

photons will be down-converted, hence the term spontaneous. Down conversion can take

place in a variety of ways depending on the material and the characteristics of the incident

light. Different photon polarization, wavelength, and propagation directions can allow down

conversion to occur. Type 1 SPDC is when the output photons have the same polarization,

which is orthogonal to the input. The term "collinear" describes SPDC signal and idler

momentum distributions centered on the same optical axis. Fields that satisfy the conservation

of energy condition ωsignal + ωidler = ωpump can provide SPDC as in Figure 2.2.

Degenerate SPDC is when signal and idler fields have the same frequency. In reality,

the fields exhibit a bandwidth of frequencies centered on ωpump/2 such that the condition is

satisfied by a small band of frequencies. Although the relative probability of SPDC is low, for

Type 1 SPDC, it is significant enough for us to detect in this experiment. Generally, 100kHz

to 1MHz pair rates can be routinely produced, see Section 3.1.2 Figure 3.4.

14 2.2. Development of the Double Gaussian approximation to the EPR state



2.2. Development of the Double Gaussian approximation to the EPR state

2.2.2 Phase matching

SPDC can only occur when the lattice of the material is oriented so the interaction can

conserve total momentum [20][24][25]:

k⃗signal + k⃗idler = k⃗pump (2.2.13)

Birefringence describes a material that has different indices of refraction depending on

the polarization [20]. Which wave vectors allow SPDC to occur depends on the material,

wavelength, and direction inside the crystal. The conditions that must be satisfied are called

phase matching conditions and are governed by the properties of the material. In order to

conserve momentum, the wave vector of the pump photon must equal the sum of signal and

idler wave vectors, as in Eq. 2.2.13. SPDC is an interaction with the bulk of the material,

therefore there is uncertainty in the precise location of the generation of the photon pair. This

uncertainty is related to the thickness of the crystal in the direction of the pump light. The

region in the material that a particular pair might be found to be generated is its birth zone.

If the light leaving the material is focused using an imaging configuration, the location of the

pairs is preserved, this is known as the conservation of birthplace.

For type 1 SPDC, the orientation of the material changes the angle θ. When theta is

near zero and the photons travel in the same direction, this configuration is referred to as

"beam-like". When theta is appreciably bigger as in Figure 2.3, the extent of the transverse

momentum anticorrelations is greater and the photons leave the material in a ring shape.

Configurations that allow for this are referred to as "ring-like" phase-matching conditions.

Rings can be easily seen by placing a camera down the optical axis of the pump field; us-

ing wavelength bandpass filters, a ring will appear. This is a canonical indicator of down

conversion.

By adjusting the angle between the plane of the material and the incident pump beam,

we can change the phase-matching conditions and control the size of the ring when viewed

on a camera. Whether a beam-like or ring-like state is used is determined by experimental

conditions or application. The extent of the positions where the down-conversion photon
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Figure 2.3: Phase matching conditions for the wave vectors involved in SPDC

pairs are generated is determined by the profile of the pump beam incident on the crystal,

specifically the beam radius.

2.3 Description of SPDC State from First Principals

Largely derived by Schneeloch et al. [24], here we describe the state that is produced as a

result of SPDC using a nonlinear crystal (NLC). Particularly, we aim to describe the bi-photon

state that leaves a Type-1 NLC when illuminated by a pump laser. To do this, we operate in

the paraxial regime. A pump laser beam that is of constant power, narrow band in frequency,

and well collimated along with a thin crystal allow us to make the paraxial approximation.

Since the longitudinal components of the momentum of pump, signal, and idler photons are

much greater than the transverse, the crystal can be treated as a two-dimensional plane where

SPDC takes place. The transverse components of position and momentum are the components

that carry information about the spatial entanglement, therefore we write the spatial biphoton

state in two spatial dimensions rather than three.

Under these assumptions, a wave function can be written to describe the bi-photon state

that SPDC produces. Bandpass filters are optical elements that allow only light from a small

band of selected wavelengths to pass. With the use of bandpass filters, we can consider only

the degenerate SPDC case, ω1 = ω2 and ∆ω = 0. The SPDC wavefunction in the momentum

representation is:

|ΨSPDC⟩ = C0|0102⟩+ C1

∫ ∫
d2k1d

2
k2Φ(k⃗1, k⃗2)â

†(k⃗1)â
†(k⃗2)|0102⟩ (2.3.14)

at the plane of the crystal. k⃗1, k⃗2 are the two-dimensional transverse wave vectors of photon
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Figure 2.4: Double Gaussian approximation of the joint position and joint momentum proba-
bility distribution for the SPDC state in one spatial dimension. We use the term "extent" to
refer to the breadth of modes where a distribution has a nonzero value, in this case, standard
deviations σx+ and σk− describe extent. We use the term "width" to refer to the correlation
between particles 1 and 2, the standard deviation of the distribution perpendicular to the
extent. In this case, σx− and σk+ describe the correlation widths.

1 and 2. |0102⟩ is the vacuum state, â† is the creation operator for photons, Φ(k⃗1, k⃗2) is the

momentum wavefunction for the biphoton system, and C0 and C1 are normalization constants.

Schneeloch et al. [24] use the mismatch in momentum conservation described by ∆Kz, phase

matching conditions, and the collinear characterization to write a wave function to describe

the SPDC state, which can be found in Appendix A. The wavefunction that represents the

state of the bi-photon system at the plane of the crystal can be approximated by a double

Gaussian distribution.

Figure 2.4 shows the characteristics of the Double Gaussian approximation. Similar to the

ideal EPR state, the SPDC state has correlations in the position and anti-correlations in the

momentum of the particles. Unlike the ideal EPR state, the SPDC state is finite in extent and

has a non-zero correlation width. Although the true SPDC state is not separable in x and y,

the Double Gaussian approximation is, therefore we can proceed in one spatial dimension. It

is convenient to write the Double Gaussian approximation to the SPDC state in terms of the

rotated coordinates :

k± =
k1 ± k2√

2
(2.3.15)

x± =
x1 ± x2√

2
(2.3.16)
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The approximation to the SPDC wavefunction can then be written as :

Φ(k+, k−) = Nk exp

(
−

k2−
4σ2k−

)
exp

(
−

k2+
4σ2k+

)
(2.3.17)

Ψ(x+, x−) = Nx exp

(
−

x2−
4σ2x−

)
exp

(
−

x2+
4σ2x+

)
(2.3.18)

From the Fourier transform relationship between Eq. 2.3.17 and 2.3.18 we can relate the

width of the Gaussian distributions as :

σ2x− =
1

σ2k−
2σ2p = σ2x+

=
1

4σ2k+
(2.3.19)

where σp is the pump radius in position space, defined as the standard deviation of x1+x2
2 .

This is the mathematical description, using the double Gaussian approximation, of the spatial

state the biphoton system exhibits at the crystal. σk− and σp are the uncertainties that can

be calculated from the parameters of an experimental configuration. σk− describes the extent

of momentum modes encompassed by the SPDC state due to phase matching conditions,

which limits the correlation width σx− in conjugate position space. σp describes the extent of

the position modes encompassed by the SPDC state. The extent of the allowed positions is

directly related to the area of the crystal illuminated by the pump beam. σp then limits the

correlation width in momentum space due to the Fourier transform relationship. We now have

a fully determined representation of the predicted state at the plane of the crystal according

to nonlinear interactions, conservation of energy, phase-matching conditions, and Quantum

Mechanics.

The probability distributions associated with Eqs. 2.3.17 and 2.3.18 are:
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Pk(k+, k−) = |Φ(k+, k−)|2 = N2
k exp

(
−

k2−
2σ2k−

)
exp

(
−

k2+
2σ2k+

)
(2.3.20)

Px(x+, x−) = |Ψ(x+, x−)|2 = N2
x exp

(
−

x2−
2σ2x−

)
exp

(
−

x2+
2σ2x+

)
(2.3.21)

Substituting the definition of the rotated coordinate systems into Eqs. 2.3.20 and 2.3.21

yields the following:

Φ(k1, k2) = Nk exp

(
−(k1 − k2)2

8σ2k−

)
exp

(
−(k1 + k2)

2

8σ2k+

)
(2.3.22)

Ψ(x1, x2) = Nx exp

(
−(x1 − x2)2

8σ2x−

)
exp

(
−(x1 + x2)

2

8σ2x+

)
(2.3.23)

Pk(k1, k2) = N2
k exp

(
−(k1 − k2)2

4σ2k−

)
exp

(
−(k1 + k2)

2

4σ2k+

)
(2.3.24)

Px(x1, x2) = N2
x exp

(
−(x1 − x2)2

4σ2x−

)
exp

(
−(x1 + x2)

2

4σ2x+

)
(2.3.25)

The rotated coordinates represent nonlocal quantities due to the fact that each coordinate

carries information about both particles. The variance when written here is important in

establishing the Fourier transform relationship. In Section 2.4 the connection between the

variance of the SPDC state and the entanglement witness is made.

Written in this form, we see the connection between the SPDC state and the EPR state.

As
σx−
σx+
→ 0 and

σk+

σk−
→ 0, the double Gaussian approximation approaches the ideal EPR

state. In other words, as the correlation widths σx− and σk+ go to zero the extents of the

correlations go to infinity.
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2.4 Connecting Uncertainty and the Double Gaussian Approx-

imation

The double Gaussian approximation allows us to investigate the conflict between quantum

mechanics and locality. As discussed in Section 2.1, a local theory predicts the restriction

σ2x1|x2
σ2k1|k2 ≥ σ

2
x1
σ2k1 ≥

1
4 . Quantum Mechanics predicts an arbitrarily small variance product

σ2x1−x2
σ2k1+k2

. We also have a model for an entangled EPR-like state in terms of σ2x− and σ2k+ .

The aim of this section is to clearly state the connections needed to measure the joint space

for the SPDC state and observation of entanglement.

Given we can measure the probability distributions Eqs. 2.3.24 and 2.3.25, estimates for

σ2x± and σ2k± can be obtained. These estimates can then be related to the entanglement witness

as follows.

First:

σx± =
σx1±x2√

2
(2.4.26)

σk± =
σk1±k2√

2
(2.4.27)

can be found by invoking the definition of the rotated coordinate system. Alternatively,

explicit calculation of the variance of sums and differences in terms of the covariance using

properties of the double Gaussian distribution can be done [24]. Using Eqs. 2.4.26, 2.4.27,

and measurements of Pk(k1, k2) and Px(x1, x2), the value of σx−σk+ can be transformed to

yield a value for σx1−x2σk1+k2 .

The relationship between σ2x1−x2
σ2k1+k2

and σ2x1|x2
σ2k1|k2 can be found by further application

of the properties of the double Gaussian distribution [24], such as :

σ2x1|x2
=

2σ2x+
σ2x−

σ2x+
+ σ2x−

(2.4.28)

Substitute Eqs. 2.4.26 into Eq. 2.4.28:
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σ2x1|x2
=

2

(
σ2
x1+x2
2

)(
σ2
x1−x2
2

)
(

σ2
x1+x2
2

)
+

(
σ2
x1−x2
2

) (2.4.29)

σ2x1|x2
=

σ2x1+x2
σ2x1−x2

σ2x1+x2
+ σ2x1−x2

(2.4.30)

Since
σ2
x1+x2

σ2
x1+x2

+σ2
x1−x2

≤ 1, then:

σ2x1−x2
≥ σ2x1|x2

(2.4.31)

Eq. 2.4.31 is true independent of the specific joint distribution. For momentum, the same

steps can be taken:

σ2k1|k2 =
σ2k1+k2

σ2k1−k2

σ2k1+k2
+ σ2k1−k2

(2.4.32)

then
σ2
k1−k2

σ2
k1+k2

+σ2
k1−k2

≤ 1 and:

σ2k1+k2 ≥ σ
2
k1|k2 (2.4.33)

Substituting Eq. 2.4.31 and 2.4.33 into the separability condition Eq. 2.1.11, the entan-

glement witness can be written :

σ2x1−x2
σ2k1+k2 ≥

1

4
(2.4.34)

The SPDC state is a valid candidate to witness entanglement because it occurs in the

regime where σx+ ≫ σx− therefore Eq. 2.4.31 is saturated. Similarly when σk− ≫ σk+ then

Eq. 2.4.33 is saturated.

One can also invoke Eq. 2.4.28 written as Case C in Table 2.1 with estimates for σx± and

σk± and calculate the conditional uncertainty product directly. In that case, the extent of the

correlations is used along with the correlation width. Eq. 2.4.34 is the preferred entanglement
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Variance Std. Dev.

A σ2x1|x2
σ2k1|k2 ≥

1
4 σx1|x2

σk1|k2 ≥
1
2

B σ2x1−x2
σ2k1+k2

≥ 1
4 σx1−x2σk1+k2 ≥ 1

2

C σ2x−σ
2
k+
≥ 1

16 σx−σk+ ≥ 1
4

D
σ2
x−

σ2
x+

≥ 1
4

σx−
σx+
≥ 1

2

E
σ2
k+

σ2
k−
≥ 1

4

σk+

σk−
≥ 1

2

Table 2.1: Mathematically equivalent forms of the entanglement witnesses in the context of the
double Gaussian approximation to the SPDC state. Also referred to as separability conditions
since all states separable between particles 1 and 2 satisfy the inequality.

witness as it only takes into account the experimentally determined correlation widths. Details

about experimental restrictions can be found in Section 3.1.7.

Table 2.1 includes the statements of entanglement witness. Given σx− and σk+ are the

experimentally determined values and all others can be derived from them, the statements in

Table 2.1 are all equivalent.

Case D and E must invoke the relations in Eq. 2.3.19 and should be calculated from

σx− and σk+ alone to provide an entanglement witness. The entanglement witness we aim to

employ takes into account only correlation widths. The goal of this experiment is to violate

the inequality and observe entanglement using holograms as momentum projections.
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Chapter 3

Measuring Spontaneous Parametric

Down Conversion

3.1 Experiment

The goal of the experiment is to generate spatially entangled photon pairs and measure

the joint position and joint momentum distributions. SPDC is the entangled photon source.

Those photons are imaged onto the projection device. We will use Digital Micromirror Devices

to project position and momentum states onto the entangled photons. The photons that pass

through the projection filters are coupled into multimode fibers and detected by single photon

detectors. The photodetectors are connected to a time bin correlator where the presence of

entangled pairs is counted.

3.1.1 Optical Set Up

The pump photons are produced by a 405nm CUBE Coherent diode laser operating at

5-50mW [26]. A 405 nm cleanup filter is used following the laser to eliminate unwanted wave-

lengths of light from the beam. The pump laser is then incident on the center of a NLC. The

NLC is a 3mm long Bismuth Borate (BiBO) nonlinear crystal oriented for type-I, degenerate,

collinear SPDC. This means signal and idler photons will have the same polarization, the

Chapter 3. Measuring Spontaneous Parametric Down Conversion 23



Chapter 3. Measuring Spontaneous Parametric Down Conversion

Figure 3.1: Viewing down conversion directly with the pixel fly photon sensitive camera.

same wavelength, and the same emission cone. Since the incident pump beam is 405nm, the

output photon pairs have wavelengths centered on 810nm. The crystal length and orientation

determine the birth zone size and phase matching conditions described in Section 2.2.2.

Consider first a simple viewing configuration for down conversion. A camera is placed

directly following the NLC as in Figure 3.1. A PCO Pixelfly low light camera with up to

62% quantum efficiency is used [27]. The camera is fitted with a pump light removal filter,

an 810nm band pass filter, and a lens. The lens puts the sensor of the camera in the Fourier

plane of the crystal allowing us to see the momentum of the down-converted photons. This

allows us to confirm the presence of down-converted photons and adjust the phase-matching

conditions. By rotating the crystal, the phase matching conditions that allow for SPDC to

occur inside the crystal change, and the resulting momenta of signal and idler change. The

emission cones of the entangled photons narrow or widen with changes in the orientation of

the crystal. A particular entangled pair of photons will be traveling with opposite transverse

momenta and will appear on opposite sides of the ring in a Fourier plane image like the ones

in Figure 3.2.

3.1.2 Coincidence Detection

In order to measure the entangled pairs, they need to be separated and then detected. The

type of detection used for entangled optical systems is referred to as coincident detection. A

beam splitter is used to separate the signal and idler photons. When the photon pair arrives at

the beam splitter, each individual photon can either transmit or reflect. Coincidence detection
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(a) (b)

Figure 3.2: Direct viewing of Down Conversion beam in ring-like (a) and beam-like (b) phase
matching conditions.

(a) (b)

Figure 3.3: Direct Coupling of Down Conversion light into photodetectors.

allows us to post-select the case where one photon is transmitted and the other is reflected.

In order to establish an initial count rate for entangled pairs that will reach the detector,

coupling of all spatial modes of signal and idler will be used. In what we refer to as a "direct"

coupling configuration, photons travel from the beam splitter directly to the detection device

with no spatial projections or filtering. From the two output ports of the BS, signal and

idler photons are guided by steering mirrors to a fiber coupler consisting of an objective lens

and a multimode fiber. The two fibers are coupled into two channels of the photon detector

Excelitas Single Photon Counting Module 4 Channel Array [28]. The photon detector converts

the analog optical signal to an analog electrical signal. The electrical signal is connected to

a Swabian Instruments Time Tagger [29], which records the arrival times of the photons and
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Figure 3.4: Initial Coincidence with direct fiber coupling at 5mW pump power and 0.5s acqui-
sition time. The coincidence window is highlighted in red.

calculates the relative arrival times. This is known as a time correlation measurement and is

used to interpret the analog signal and perform timing calculations. The Time Tagger provides

a histogram of the relative arrival times of single photons and the single detector count rates.

Coincidence detection involves obtaining the arrival times of single photons on both arms

of the experiment and determining the number of pairs versus the corresponding relative

arrival times of those photons. A photon pair is generated at a single instance in time, within

uncertainty, and the optical path lengths are fixed for both arms of the experiment. Therefore

all photons generated from SPDC on the crystal should arrive with the same relative arrival

time and are said to exhibit "coincidence". The goal of this detection scheme is to obtain a

significant signal of time-correlated photons. The uncertainty in the arrival time of the photons

is most significantly attributed to detector timing jitter and finite time bin resolution. All

individual photons captured by the detector have random arrival times, but when calculating

the relative arrival times of pairs, the intended signal can be separated from the noise. Noise

includes room light, residual pump light that pass through the filters, and photon pairs that

travel down the same path, which all arrive with no time correlations. We can plot a histogram

of the relative arrival times of photon pairs. A significant spike in the histogram represents
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photons arriving with the same relative arrival time, this is known as a coincidence peak.

The number of coincidence counts is measured as a sum of coincidences in the peak. The

Time Tagger Python module is used to retrieve the histogram from the device. From the

histogram and singles count rates reported by the device, the coincidence rate, accidental

rate, and coincidence efficiency can be calculated. The single count rate is calculated as the

number of photons that are counted by the detector per second. The accidental coincidence

is calculated as the average number of coincidences detected by the time correlator that do

not fall within the coincidence peak, per the coincidence window we select to use on the peak.

Accidental coincidences are coincidence counts that don’t come from the entangled photon

pairs. Efficiency is calculated as the proportion of coincidences to the (lesser) singles count

rate.

The horizontal axis tsignal − tidler is in units of bins that are 100 ps wide. Coincidence

window size varies throughout the experiment. Depending on the use case, a typical coinci-

dence window is 2-4 ns wide. The quantum efficiency of the detectors is ≈ 50% [28]. The dark

counts, coincidence rate, and singles rates that are measured when the pump laser is powered

off were found to be ≈ 700 single photon counts and ≈ 0.1 coincidence pairs per second.

In the direct detection configuration, forward alignment with an intense alignment laser

is sufficient to establish the fiber coupling and capture down conversion light. A visible laser

near the wavelength of the down-converted photons is directed to overlap the path of the

pump beam. The alignment laser beam allows us to measure the power that travels through

the fiber. Fine adjustments of the fiber tip position and the angle of the steering mirrors are

made to optimize the power transmitted through the fibers. Forward alignment can provide

a configuration that yields some initial coincidence which is useful because it is difficult to

align the invisible weak down conversion beam without any initial coincidence to optimize.

After the alignment beam power is optimized, we remove the alignment laser and perform the

same adjustment procedure, this time optimizing the singles count rate and the coincidence

of down-converted photons. Once coupling with no spatial projections is achieved the optical

path will be adjusted to accommodate the DMDs. The DMDs will be placed in the image
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(a) (b) (c)

Figure 3.5: (a) DLP® 0.47 1080p DMD (b) DMD in original projector mount. (c) DMD
mounted as a stand-alone device on a custom machined mount.

plane of the crystal where they are used to perform projections onto the state of the incident

light. The introduction of the DMDs introduces loss as discussed in Section 4.2.

3.1.3 Digital Micromirror Devices

The tool used to make projections onto particular position or momentum modes is a pair

of Digital Micromirror Devices (DMDs). A DMD is a digital micromirror array, in our case, a

1920x1080 grid of individually addressable actuating mirrors. The terms pixel and mirror will

be used interchangeably. DMDs can be controlled as external monitors where pixel-perfect

manipulation can be achieved by displaying 1920x1080 images over an HDMI display. Each

pixel in an image displayed on the DMD is mapped to a mirror in either the "ON" position

or the "OFF" position. For binary images where the pixels are purely black and white, the

mirrors are in either the ON position or the OFF position. Although only binary images were

used in this experiment, grayscale can be achieved by rapidly switching the mirror between

the two positions ON and OFF. When facing the 4710 model DMD, an ON pixel is pitched

17 degrees upward in the vertical direction, and an OFF pixel is pitched 17 degrees in the

horizontal direction (the right-hand side when facing the exposed mirrors) as seen in Figure

3.6. See Section 4.2 for practical considerations for light interacting with the DMD.

We used a pair of Texas Instrument DLP LightCrafter Display 4710 Evaluation Module

(EVM) Gen2 devices [30]. The model of the DMD that is housed in the EVM is the DLP4710

[31]. The original product is housed in a projector where there are RGB LEDs that cycle and
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Figure 3.6: General Orientation of incoming and outgoing beams interacting with the DMD.
A: an incoming beam, B: a Beam corresponding to mirrors in the "ON" state, C: a Beam
corresponding to mirrors in the "OFF" state. This depiction does not include the diffractive
effects of the mirror array. Distinct diffraction orders would be centered along beams B and
C. See Section 3.1.5 for the extinction relationship between ON and OFF states.

illuminate the DMD. One color channel cycles at 60hz, to display RGB images the mirrors can

actuate at 180hz. The DMD was removed from the EVM’s projection optics and mounted as a

standalone device, roughly following the procedure from Cox and Drozdov using the DLP4710

for holographic mode projection [13]. Custom software configurations were used to bypass the

original use case with the LEDs connected using a USB connection.

The periodic spacing of the mirrors on the array results in a reflective diffraction grating.

As seen in Figure 3.8, the diffraction occurs in both horizontal and vertical orientations because

the mirrors form a two-dimensional diffraction grating.

3.1.4 DMD alignment

After confirming the coincidence from a spatially unfiltered coupling of the down conversion

beams, the DMDs are installed on each arm of the experiment at the image plane using three-

axis translational stages. Various techniques were used to identify the image plane and ensure

the DMDs are in the image plane oriented properly. These include forward and backward

propagation alignment, and image plane identification of the crystal using a camera as seen

in Figure 3.7.

The individual mirrors have a diffraction effect according to nλ = d sin θ, where n is

the order number, d = 5.4µm is the spacing between centers of the mirrors, θ is the angle
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Figure 3.7: DMD showing a test pattern in focus with the aperture of the NLC illuminated
by white light. A technique used to establish the DMDs location in the image plane of the
crystal.

the nth order leaves the DMD relative to the normal. The diffraction occurs for spacing in

both the vertical and horizontal directions. Due to the diffraction grating that the mirrors

create, there will always be light occupying those diffraction orders. The orientation of the

individual mirrors determines the intensity of each diffraction order. The relative intensity of

the diffractive orders results from the shape of the mirrors, the diffraction grating spacing, the

relative number of mirrors in ON and OFF positions, and the rectangular orientation of the

array.

Of the diffraction orders of the DMD, the brightest is identified with a Thorlabs optical

power monitor. This single brightest diffractive order was identified in space using an 810nm

alignment laser. The other orders are found to replicate the field that is intended in the primary

order but distorted by large diffraction angles. Non-primary orders will not be incident on

the objective lens and not coupled into the fiber, being effectively discarded. Diffraction is an

unavoidable and significant source of detected coincidence loss.

Using forward and backward propagation alignment techniques, the selected diffraction

order of the 810nm down conversion beam is coupled into the fiber. The first step in estab-

lishing a coupling configuration that detects light reflected off the mirror array is to set all the

mirrors in the array in a single direction. In this case, the DMDs are set to all "OFF", which

reflects light incident on the DMDs to the side as in Figure 3.6.
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(a) (b)

Figure 3.8: (a) Diffraction pattern of DMD illuminated with an expanded beam. (b) Diffrac-
tion pattern of DMD illuminated by laser directly. Angular spacing of diffraction orders is
constant, but the wavefront shape and intensity of the orders depend on the state of the mirror
array

Figure 3.9: Full Experimental set up for projections of both position and momentum modes.

The steering mirrors are adjusted while the DMDs on both arms are reflecting all the

incident light toward the detectors to optimize the count rates and the number of coincidences

per second.

Once the fibers are properly capturing entangled photons that are reflected from the pair

of DMDs, the DMDs are adjusted to maximize the portion of the two beams that are being

captured. The position of the DMDs is adjusted by translating them in the plane perpendicular

to the incident beam. The first technique used to verify the DMDs are in the image plane and

centered on the beam properly is to "take a picture of the beam".
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Power Characteristics

(a) (b) (c)

(d) (e) (f)

Figure 3.10: (a) Coincidence vs Power, (b) Accidental count rate vs Power, (c) Singles count
rate from DMD1 vs Power, (d) CARs vs Power, (e) Extinction Ratio vs Power, (f) Peak bin
location vs Power. Laser Power is recorded as the nominal power setting of the laser by remote
control. Each data point is taken for 15s acquisition time. The OFF state corresponds to all
black pixels (toward the detector) and the ON state corresponds to all white pixels (away from
the detector). Notes : (e) Low overall extinction ratio posed a challenge for discerning the
coincidence from selected states versus background coincidence. (f) The bin number of the
coincidence peak changes as a function of power, requiring the coincidence window to adapt
depending on the parameters of particular data set.

3.1.5 System characterization

We found that about 3% of the incident light is reflected by the DMDs in the primary

diffractive order and captured by the fiber optic coupling mechanism. In general, 15s acqui-

sition time and 45mW pump power yield the most consistent results. Accidental subtraction

from the coincidence counts was used to provide a more accurate coincidence rate. The peak

coincidence bin is the time bin in the time correlation detection that has the maximum coin-

cidence count number. We found that the coincidence bin that the peak falls in depends on

incident power on the detectors, likely caused by the saturation of the detectors. The coinci-

dence window is shifted accordingly to allow for a narrow coincidence window when acquiring
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Acquisition Time Characteristics

(a) (b) (c)

(d) (e) (f)

Figure 3.11: (a) Coincidence vs taq, (b) Accidental count rate vs taq, (c) Singles count rate
from DMD1 vs taq, (d) CARs vs taq, (e) Extinction Ratio vs taq, (f) Peak bin location vs taq.
For each taq, a data point is taken at various nominal power levels.

data. The extinction ratio for this detection scheme is calculated as the ratio of the coincidence

when all the mirrors on both DMDs are in the ON position to the coincidence when all the

mirrors are in the OFF position. Coincidence to Accidental Ratio (CARs), Extinction Ratio,

and the coincidence peak bin are strongly dependent on the pump power.

3.1.6 Position Measurements

A position measurement is an identification of the location of a photon at the measurement

plane. When the measurement plane coincides with an image plane of the crystal, a position

measurement provides the birth zone of an entangled photon that results from SPDC. Combin-

ing coincidence detection and position measurements, joint positions of the entangled photon

pairs can be determined. Schneeloch et al. provide a comprehensive description of the birth

zone and why it is not a singular point for the pair [24]. A birth zone size is related to the

uncertainty in the position of the pump photon incident on the crystal. Our goal is to use a
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Figure 3.12: DMD acts as a sum of projection operators. The output is proportional to the
amount of |x′⟩, the selected position state, present in the input. Discarded components are
reflected away from the detector. |x′⟩ is defined in Eq. 3.1.1

device to "select" positions to pass through the system and be detected. The DMD can act as

a spatial filter and be used to sort photons by position and send them either toward or away

from a detector.

In order to obtain the joint position probability distribution, a measurement of the position

coordinate of both signal and idler in an image plane is needed.

The position measurements we employ require the image plane of the crystal down the

optical system to be identified. This will allow for a measurement of the positions of the

particles at the plane of the crystal. A f = 100mm lens follows the crystal, followed by a

beam splitter and 2 f = 500mm lenses for each output port. M = 5 magnification is chosen

to fill the measurement device area appropriately. Since the DMD is an amplitude-only device

we are only replicating the spatial intensity of the beam at the plane of the crystal, not the

phase.

The type of image displayed on the DMD determines the mode that is projected onto the

incident light. Since the DMD is in the image plane, coordinates on the DMD correspond to

coordinates on the crystal, up to the magnification of the imaging system. The images we

use to project position modes we refer to as partitions. Partitions are rectangular groups of

mirrors that can be used to conceptually divide the total mirror array into various resolutions.

One-dimensional position measurements use R vertical or R horizontal partitions, see Fig-

ure 3.13. Two-dimensional measurements use a partition made up of a square group of mirrors

that divide a square subspace of the total mirror array up into RxR square regions. In this

experiment, a variety of resolutions are used to take position measurements, from 4x4 grids for

alignment to 64x64 for high-resolution images. High-resolution patterns that use fewer mir-

rors per partition can result in less light coupled into the detector. Therefore high-resolution
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(a) (b)

Figure 3.13: (a) The DMD display for an x measurement is a vertical slice at the chosen
resolution R. (b) The DMD display for a y measurement is a horizontal slice. The color black
represents mirrors oriented to reflect light toward the detector.

images require higher pump power and longer acquisition times.

The intensity of detection given a particular partition is being displayed on the DMD pro-

vides a measure of the amount of light that is incident on that partition, this is a measurement

of the position of the photons at the image plane. This intensity is the coincidence detected.

Note that although the DMD projects discrete partitions of positions, the analysis is contin-

uous in position space. This is because the mirrors of the DMD select a window of positions,

ignoring the space between the mirrors, within the continuous space:

|x′⟩ =
∫ x′+a

2

x′−a
2

dx|x⟩ (3.1.1)

Where |x′⟩ is the state being projected when the DMD is displaying the partition associated

with the position x′, and a is the width of a mirror.

When position measurements are taken in an image plane of the crystal, the spatial prob-

ability distribution for incident photons can be determined. The combination of the DMD

displaying images with the fiber coupler and detectors forms a camera-like device.

3.1.7 Raster Scan Image of Down Conversion Beam

With a scheme to select positions to pass to the detector, the overall region on the DMDs

that the down conversion beam is incident upon can be identified. Using a raster scan, we

can "take a picture" of the incident beam on the DMDs. The main purpose of a raster scan
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Figure 3.14: DMD interaction for position measurements

picture is to orient the DMDs. We are able to determine that the beam is incident on the

center of the DMDs.

Consider all the mirrors on DMD 1 are directed toward the detector, therefore all the signal

photons are collected. DMD 2 will raster scan over positions. A raster scan corresponds to

scanning the partition over the area of the DMD and recording the coincidence per partition.

We expect, from Section 2.3 that the position of the single photons and coincidence pairs is a

projection of the pump beam profile and is a radially symmetric Gaussian. One-dimensional

beam scans in Figure 3.15 show approximately Gaussian profiles as well as provide insight

as to how much of the DMD surface we are using to interact with the incoming field. We

can extend this to two dimensions and get an intensity that varies over the two-dimensional

positions on the DMD, this is what we call a "beam picture". We can use the singles rates

as a function of the partition position as it varies over the surface of the DMD to center up

the DMD positions and make fiber coupling orientation adjustments. The coincidence as a

function of partition position informs us as to how much overlap there is in the joint space

between the two beams. A beam picture is the coincidence detected as one DMD scans over

all possible positions and the other reflects all photons toward the detector.

Ghost images are also a useful alignment technique to allow feedback for fine DMD position

adjustments in the transverse plane. Abouraddy et al. provide an excellent mathematical

treatment of ghost images for a biphoton system and their uses in imaging and image processing

[32]. Consider one DMD now displays a binary image with a simple pattern and the other

scans over the position partitions as it did in the beam picture operation. Only coincidences

from those photons that interact with the "ON" portion of the image should be detected.
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One Dimensional Beam Scans using Coincidence

(a) (b)

(c) (d)

Figure 3.15: (a) One-dimensional scan over the x position on DMD 1. (b) One-dimensional
scan over the x position on DMD 2. (c) One-dimensional scan over the y position on DMD1.
(d) One dimensional scan over the y position on DMD 2.

In order to precisely measure the joint photon positions and the correlation width of the

joint position probability distribution of the SPDC state, the DMDs need to be centered and

perfectly located in the image plane dictated by the lens configuration. A cross pattern is used

for alignment. 1 single partition on DMD1 should correspond to 1 single partition DMD2.

When there is positional mismatch, the ghost image will be blurry. Algorithm 1 includes the

pseudocode for performing a ghost image scan. R is the chosen resolution, and taq is the

chosen acquisition time.

The resulting 2 dimensional coincidence array will capture the image that is displayed

on DMD 2, modulated by the pump beam profile, see Figure 3.18. The cross pattern ghost

image is used to line up the position of the DMDs up to the precision allowed by the coupling

configuration.

The measurement of the joint position probability distribution is the overall goal of making

position mode projections. The process of acquiring a joint space measurement is included in
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Full Data Set Obtained from a Beam Picture

(a) (b) (c)

(d) (e) (f)

Figure 3.16: All the data collected from a beam picture, in this case using 45mW pump power
and taq = 15. Note that for the singles rate on DMD1 we would expect a constant count since
the DMD projection is not changing, but small fluctuations in pump power over time can lead
to stripe patterns. Both singles rates from the scanning DMD and coincidence counts have
high noise floors due to the imperfect extinction of the DMDs.

Algorithm 1 The 2 dimensional ghost imaging algorithm. Note that when the image is
uniform the ghost image becomes a beam picture.

Declare data as array[R,R]
Display Ghost Image on DMD1
for x′2 in [0,R] do

for y′2 in [0,R] do
Display partition (x′2, y

′
2) on DMD2

coinc ← Acquire Coincidence from TimeTagger for taq
data[x′2,y′2] ← coinc

end for
end for
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2 Dimensional Beam Pictures at Various Resolutions

(a) (b) (c) (d)

Figure 3.17: Beam pictures at various resolutions. Figures (a)-(c) are images taken on DMD
1 while Figure (d) is taken on DMD 2. Note the alignment of the beams is relatively similar.

Ghost Images of a Cross Pattern

(a) (b) (c)

Figure 3.18: Ghost Images taken using a cross pattern to perform alignment adjustments

Algorithm 2.

The result is a two-dimensional measurement of the intensity of the system as a function of

x1 and x2. This can be done for both vertical and horizontal partitions. Where both partitions

are displayed on the same relative location for both signal and idler beams, each party of the

entangled pair will be detected and coincidence will be counted. When the partitions are

mismatched, the photons that DMD1 directs toward the detector are not paired with the

photons that DMD2 sends toward the detector, and no coincidence will be detected. As seen

in Figure 3.19, the choice of resolution, as well as the over all alignment of the system can

effect the extent of the correlation. The total amount of position modes that can be captured

by the system is limited. For this reason, we choose an entanglement witness that requires

experimentally determined values of only the correlation width, not the extent.
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Joint Y Position Scans

(a) (b) (c)

(d) (e)

Figure 3.19: Joint Position Scans in the transverse Y direction. Each scan is taken using
45mW pump power and taq = 15s. This data is used first used to align the positions of the
DMDs. Once aligned, correlation width can be determined from the data

Algorithm 2 The Joint Raster Scan algorithm.
Declare data as array[R,R]
for x′1 in [0,R] do

for x′2 in [0,R] do
Display partition x′1 on DMD1
Display partition x′2 on DMD2
coinc ← Acquire Coincidence from TimeTagger for taq
data[x′1,x′2] ← coinc

end for
end for
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(a) (b) (c)

Figure 3.20: (a) Beam picture peak bin location vs position. (b) The ghost image of a cross
pattern peak bin location vs position. (c) Joint Y position peak bin location vs position.

One challenge presented while investigating position measurements is the location of the

coincidence peak within the histogram. The amount of light captured by the detectors changes

depending on the type of data set taken. For beam pictures, ghost images, and joint position

measurements, the incident power on the detectors is different. Within each type of scan,

the peak bin varies by 1-2 bins (0.1-0.2ns) but the larger discrepancy between types of scans

requires prior average coincidence peak bin identification before scanning data is taken. Given

an average bin, a scan can be done with a constant coincidence window centered on that

bin. Identifying the peak bin is important because we aim to use a coincidence window size

that encompasses the peak without capturing the surrounding noise. Some peak bin data has

structure, like Figure 3.20 (c). For a joint position scan, there appears to be structure in the

peak bin data as the DMDs vary the projected position mode. This is likely a result of variable

coupling efficiency associated with each partition on the DMDs.
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Chapter 4

Holographic Projections Using DMDs

4.1 Calculating Holograms Analytically

4.1.1 Background

Traditionally, in order to investigate the momentum spectrum of the SPDC state, the

measurements are taken in the Fourier plane of the NLC. Schneeloch and Howland use two

separate optical paths, where one path measures in an image plane of the crystal and the other

measures in the Fourier plane of the crystal [33]. The choice of basis is made using polarizers

and a polarizing beam splitter that function as a switch between types of measurements.

Howell et al. achieve spatial resolution by varying the position of thin slits preceding bucket

detectors and the choice of basis is made by replacing the imaging system with a Fourier

transforming system by changing the lenses used [34].

Moreau et al. [35] and Edgar et al. [36] both show spatial correlations using electron-

multiplying charge coupled devices (EMCCD) cameras, in separate near and far field config-

urations. Ndagnao et al. perform a similar experiment using single photon avalanche diode

(SPAD) cameras. Defienne et al. compare EMCCD and CCD cameras in correlation measure-

ments [37]. Lastly, Achatz et al. scan transverse position using optical fibers on translation

stages in the image plane and Fourier plane by adding or removing a lens preceding the fiber

tips [38]. All of these examples have one thing in common, there is a physical configuration
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change that needs to be made by the operator to change basis.

The goal of the technique used in this experiment is to avoid a change in configuration.

Configuration changes can be cumbersome and do not extend to arbitrary mode projection.

The advantage of holograms is that no change is needed to the configuration and the location

of the DMD with respect to the incoming beam is constant. The disadvantages arise from the

theory of holograms as well as the effects of the mirror array itself.

Because holograms can encode interference, holograms provide a potential scheme to

project an incident state onto momentum modes without having to change the optical config-

uration. The process known as matched filtering [39] will allow for a selection of momentum

modes, just as raster scanning from Section 3.1.6 allows for a selection of position modes.

Holograms can be realized by devices that can impose a spatial mask on the incident light,

such as film with variable transmittance, etching on a solid surface, or an array of mirrors [39].

The DMD provides a surface that can impose a spatial mask onto the reflected light. The

DMD is fit to display holograms because it has very high reflectivity, high-resolution control,

and can display any hologram that is chosen to be displayed. The mirrors themselves are

small enough to encode interference fringes which is required to display a hologram with high

precision. We are able to employ a programmable diffraction grating using DMDs that allows

us to project different momentum modes. Unlike traditional holography where a new film

would need to be created for each use case, we computationally calculate all holograms needed

and display them on a DMD.

4.1.2 Defining Holograms

A hologram is the encoding of the interference pattern of a reference field and an object

field. In traditional holography, a scene is illuminated with a coherent reference field. An

intensity sensitive film records the interference pattern of the illumination light with the light

transmitted or reflected off the object present. This is referred to as the recording problem [39].

Later, that film can be reilluminated and the output will have a component that replicates

the original object field.
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Imaging vs Fourier Transforming Configurations

(a) (b)

Figure 4.1: (a) The configuration for imaging the crystal. A measurement device like a camera
or DMD can be placed in the image plane and directly measure the position of photons. (a)
is the configuration chosen for this experiment. (b) The configuration for directly measuring
the momentum distribution of photons from the crystal. A Fourier plane measurement can
be accomplished by using holograms in the image plane instead of changing the experimental
configuration.

In this chapter, we will explore the general descriptions of holograms and how they can

be used for momentum mode projections. Holography uses amplitude-controlled devices such

as special types of holographic film or mirror arrays. There are benefits of using holography

over spatial light modulators that control phase directly. Spatial light modulators can be very

expensive, while DMDs are inexpensive and widely available, providing potential scalability.

There are also drawbacks to using holographic projections, some inherent to the theory of

holograms, as well as practical considerations.

In general, a hologram is a recording of the intensity of the interference pattern of a

reference field interacting with an object field. The SPDC state is not in general a single

wavelength state, but as we did in Chapter 2 we consider only the degenerate case. Examples

will be done with coherent illumination.

A hologram is typically written as:

H(x, y) = |A(x, y) + a(x, y)|2 (4.1.1)

Where A = |A(x, y)| exp(iϕ(x, y)) is the reference field, and a = |a(x, y)| exp(iψ(x, y)) is the

object field. A hologram encode phase information when expanded:
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H(x, y) = (A+ a)(A+ a)∗ = |A|2 + |a|2 + aA∗ + a∗A→

|A|2 + |a|2 + |a||A| exp(−iϕ) exp(iψ) + |a||A| exp(iϕ) exp(−iψ)→

|A|2 + |a|2 + 2|a||A| cos(ϕ− ψ) (4.1.2)

Where the first line in Eq. 4.1.2 is the form we will invoke the most often. Note regardless

of the illumination field, the hologram itself will yield three components. A component with

a uniform phase front, |A|2 + |a|2, which Goodman refers to as a "uniform component". The

two other components aA∗ and a∗A whose phase fronts vary in space and encode the phase

profile of the input fields are referred to as "field components" [39]. We will only need to

employ object and reference fields that have uniform constant amplitude, which we normalize

such that |A(x)|2 + |a(x)|2 = 2. The "recording problem" can be confined to computational

simulations of the interference pattern.

It is important to note some properties of the plane wave. For a plane wave, the wave vector

points in the direction of propagation, |⃗k| = 2π
λ , and with transverse component|k⃗T | = |⃗k| sin θ,

where the transverse plane is perpendicular to the primary optical axis ẑ. We will again be

operating in the paraxial regime where the longitudinal component of the wave vector is much

greater than the transverse components, kz ≫ kx, ky. In the paraxial regime we can make the

small angle approximation: |⃗k| sin θ ≈ |⃗k|θ. A plane wave p(x⃗) propagating in an arbitrary

direction is defined as:

p(x⃗) = eik⃗·x⃗ (4.1.3)

Consider a plane wave with a single transverse x̂ component which is evaluated at a plane

perpendicular to the chosen propagation axis defined by z = z0 and written as:

px = ei(kx=kT )x�����:1
ei(ky=0)y

������:constant phase
ei(kz=kL)z0 → eikxx (4.1.4)
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Figure 4.2: Plane wave in arbitrary direction k⃗ shown in the xz plane with transverse compo-
nent angle θ

To perform a momentum mode projection, we consider the reference field A as a plane

wave. When writing a hologram, we are representing the interference pattern of a reference

field and an object field we are interested in. There are two equivalent ways to write a hologram

that encodes the angle between these two fields in the interference pattern. The first is where

the reference field itself can be written as a plane wave with a non-zero transverse component.

The second is where the given object field can be multiplied by a plane wave component:

|eikx + a(x)|2 = |1 + e−ikxa(x)|2 (4.1.5)

Given Eq. 4.1.5, all the positional dependence can be encompassed by the object field and

the reference field can be written as A(x) = 1. To understand the relationship between the 3

hologram components, we will first describe the output field for the simplest object case and

build a framework to make momentum mode projections.

The hologram we will consider first is that of a plane wave object field:

H1(x) = |1 + eik0x|2 = 2 + eikox + e−ikox (4.1.6)

Where ko = k⃗o · x̂ is the object field component.

4.1.3 Illumination of a Hologram

The illumination of a hologram in position representation is simply the multiplication of

the illumination field with the transmission mask of the hologram. The hologram acts as a

spatial mask that allows light to either transmit or absorb (reflect toward or away) depending
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Figure 4.3: Hologram output components of H1 illuminated by B(x) = 1. The vectors repre-
sent the direction of propagation for each output plane wave.

on position [39]. We call the general illumination field B(x). To observe the effects of the

hologram, illumination by the plane wave B(x) = 1 is useful. The output field is:

B ×H1 = 1×H1 = 2 + eikox + e−ikox (4.1.7)

Shown in Figure 4.3 all three output hologram components are a plane wave, the uniform

component is parallel to the primary optical axis, and the field components are comprised of

an exact replication of the object field and its conjugate.

To observe the output dependence on the illumination field, let B = eikix. Let the angle of

incidence for the illuminating plane wave be encompassed by ki. This interaction is represented

by the field interaction:

eikixH1 = eikix(2 + eikox + e−ikox) = 2eikix + ei(ki+ko)x + ei(ki−ko)x (4.1.8)

An important property of this interaction is that the change in the angle of incidence for a

collimated illumination beam shifts the propagation direction of all three hologram components

by a constant amount in k space. Changing ki shifts all the hologram components in the same

direction, while the shift due to changing ko shifts the two field components away or toward the

uniform component, without changing the uniform component angle. In the paraxial regime

shift in ki corresponds to all three components shifted by a constant angle. Although the

incident state in this experiment is comprised of multiple transverse momentum modes, the

center illumination angle is fixed parallel to the primary optical axis.
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4.1.4 Matched Filtering

By programming the value of the object field plane wave propagation direction, ko, we

can use holograms to investigate an unknown illumination field. Projections onto plane wave

fields allow for the decomposition of the illumination state into plane waves traveling in various

directions. Measuring the amount of light that passes through the projections is an investi-

gation into the transverse momentum spectrum that makes up the input state. The concept

of matched filtering will be used to separate out the modes as an investigative technique to

determine the composition of the incident field.

Matched filtering is the use of a lens and an aperture to separate output modes from the

output of an illuminated hologram. As described in Goodman [39], the placement of a thin

lens centered on the primary optical axis along with an aperture at the focal point allows for

the selection of output modes that are plane waves with no transverse momentum components.

This is because a field whose propagation direction is parallel to the ẑ axis will be focused

to a bright point at a distance f from the lens along the ẑ axis. At that point, an aperture

can be placed such that only the component of the field incident on the lens that is "flat"

will pass. Contributions to the output field of the hologram that have non-zero transverse

components will be focused by the lens, but due to the shift in momentum space, the point of

focus will appear with a non-zero transverse coordinate. These modes will not pass through

the aperture. Therefore varying the angle of the plane wave encoded in the object field using a

choice of ko allows us to control the mode that passes through the aperture and is collected. In

this experiment, the lens is realized by the objective lens, and the tip of the fiber that collects

the light acts as the aperture.

The detection condition for matched filtering is the presence of a component that has

no transverse momentum. In the ideal case, no light will be detected unless ko "matches"

a mode that is present in the illumination field B, hence matched filtering. For example,

when ko = ki in Eq. 4.1.8, the second term is a wavefront that is uniform and perpendicular

to the ẑ axis and will be detected. ko is the parameter we control during an experiment,

each value of ko corresponds to a transverse momentum mode partition. We display the
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Figure 4.4: Matched filtering configuration for Eq. 4.1.7.

image that represents the hologram on the DMDs with various values of ko. We measure the

amount of light that passes through the aperture for each ko using the same detector and

fiber coupling configuration as we did for the position measurements. A projection onto a

momentum mode by displaying various holograms corresponding to values of ko is analogous

to displaying position partitions corresponding to various values of x′ in Section 3.1.6. For the

interaction in Eq. 4.1.8, given an ideal matched filtering apparatus, detection occurs when

ko = ±ki.

Algorithm 3 The Joint Momentum Hologram Scan algorithm.
Given Parameters: λ, θymax, R
List holos ← Calculate list of holograms from corresponding to −θymax to θymax in R steps
Declare data as array[R,R]
for i in [0,R] do

for j in [0,R] do
Display holo[i] for θ′1 on DMD1
Display holo[j] for θ′2 on DMD2
coinc ← Acquire Coincidence from TimeTagger for taq
data[i,j] ← coinc

end for
end for

4.1.5 Indistinguishability Problem

A major consideration when using one-dimensional holograms to make momentum mode

projections is the indistinguishability of the output components. Given Eq. 4.1.8 represents

illumination by a single plane wave component, scanning over ko would yield detection from
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(a) (b)

Figure 4.5: (a) Binary hologram displayed on the DMD to project momentum mode corre-
sponding to the single transverse momentum mode ko = 8123.12m−1 in the x̂ direction. (b)
Similar hologram for ko = 8123.12m−1 in the ŷ direction. Simulation and "binarization" are
described in Section 4.2.4.

Subset of Holograms used for Y Momentum Scan

(a) (b) (c)

(d) (e)

Figure 4.6: Subset of Holograms used in a joint scan over Y momentum. koy is the transverse
wave vector value for the object field programmed. (c) Is the hologram for zero transverse
momentum, so there is no interference pattern encoded in the hologram. All light is either
reflected toward or away from the detector. It is important to note that the holograms for ko
and −ko are the same.
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matched filtering at both ko = ki and ko = −ki. Without knowledge of the illumination state,

the sign of momentum modes present would not be obtainable. This creates a challenge for

observing the anticorrelations for the momentum spectrum of an EPR-like state. Indistin-

guishability can be confirmed by observing the holograms themselves, as in Figure 4.5, the

fringe spacing is related to the relative difference of angle between the reference and object

field propagation directions, calculation of holograms corresponding to ko and −ko yield the

exact same holograms.

The goal of this section is to model the field interaction for two holograms H1 acting

on the signal and idler biphoton system, simulate the detection procedure and compare the

model to experimental results. The indistinguishability problem can be modeled explicitly

by calculating the field interaction with the holograms for the biphoton state and modeling

matched filtering as a small range of accepted modes in momentum space. With insight into

the explicit field interaction, we propose a solution to the indistinguishability problem.

Let the illumination field be the double Gaussian approximation to the SPDC state Eq.

2.3.23. Here we are concerned with the biphoton field, where x1 and x2 are independent such

that operators that act on them commute.

B(x1, x2) ∝ exp

(
−(x1 − x2)2

8σ2x−

)
exp

(
−(x1 + x2)

2

8σ2x+

)
(4.1.9)

The illumination of the holograms with field B is the interaction of the SPDC state with the

spatial mask the holograms impose. The field just after the hologram interaction is written in

terms of the hologram H1 from Eq. 4.1.6 parameterized by the object wave vectors in position

space as:

B(x1, x2)H1(x1 : ko1)H1(x2 : ko2) ∝ Ψ(x1, x2)|1 + eiko1x1 |2|1 + eiko2x2 |2 (4.1.10)

The interaction between the SPDC state and the holograms is simpler in momentum space,

the Fourier transform of H1 from position space to momentum space is:
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F [H1(x : ko)] = F
[
|1 + eikox|2

]
∝ 2δ (k) + δ (k + ko) + δ (k − ko) (4.1.11)

The Fourier transform of the output state is:

B(k1, k2) ∗H1(k1 : ko1) ∗H1(k2 : ko2) ∝

Φ(k1, k2) ∗ [2δ (k1) + δ (k1 + ko1) + δ (k1 − ko1)] [2δ (k2) + δ (k2 + ko2) + δ (k2 − ko2)]

(4.1.12)

Where ∗ is the convolution operation, and the convolution of operators of independent

variables is multiplication. Convolution of a function with a Dirac delta applies a shift in

the distribution. The resulting output state Φ′ is comprised of 9 double Gaussians terms in

transverse momentum space and is written as:

Φ′(k1, k2 : ko1, ko2) ∝ 4Φ(k1, k2)+

2Φ(k1 + ko1, k2) + 2Φ(k1 − ko1, k2) + 2Φ(k1, k2 + ko2) + 2Φ(k1, k2 − ko2)+

Φ(k1 + ko1, k2 + ko2) + Φ(k1 − ko1, k2 − ko2) +Φ(k1 − ko1, k2 + ko2) + Φ(k1 + ko1, k2 − ko2)

(4.1.13)

Recall we control the output state by varying ko1 and ko2, the parameters that determine

the angle of the plane wave object fields for each hologram. The first term in the output state

Φ′ does not depend on our choice of ko1 and ko2, we refer to this as the uncontrolled term. The

next four terms only depend on ko1 or ko2, but not both, we refer to these terms as marginally

controlled terms. The last four terms depend on both ko1 and ko2 and are referred to as fully

controlled field terms. Figure 4.7 is a visualization of the state. Note that the constant term is

centered in k space, and is not shifted by hologram control. All three types of contributions to

the output state are needed to model detection. Each term in the output state corresponds to

one of the three hologram output fields discussed in Section 4.1.3. Indistinguishability arises

since we are detecting the desired output field as well as its conjugate.
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Simulation of Φ′

(a) (b)

Figure 4.7: (a) 3D rendering of Φ′, amplitudes to scale. Blue Gaussian is the constant term,
red Gaussians are the marginal terms, and green Gaussians are the fully controlled terms. (b)
2D simulation of Φ′, amplitudes to scale. In both cases, the scale of k1 and k2 reflects the
scale of raw data collection, and convenient choices of ko1 and ko2 are made to demonstrate
the separation between the terms.

In order to model the detection of the output state, we can sum the output state over a

small range of k1 and k2 values centered on zero. This is represented by the aperture that

precedes the detector in Figure 4.4. This can be done because the fiber coupling configuration

is originally coupled to provide the most intense coincidence measurement when all mirrors

are oriented toward the fibers. It is assumed the fibers are coupled into the center of the

outgoing beams for the calculation of the ideal detection scheme. In reality, there is imperfect

coupling in terms of the direction of the beam, distortion for the diffraction of the mirror

array, and alignment of the objective lens. Assume the detection window in k space that

represents the acceptance of modes onto the fiber tip has width Wk. Accepted modes then are

modes propagating away from the DMDs with transverse wave vectors −Wk
2 ≤ k ≤ Wk

2 . The

probability of detection parameterized by ko1 and ko2 is the probability of the output state

occupying the modes in the detection window:

P (ko1, ko2) =

∫ Wk
2

−Wk
2

∫ Wk
2

−Wk
2

dk1dk2
∣∣Φ′(k1, k2 : ko1, ko2)

∣∣2 (4.1.14)

We visualize the simulation output corresponding to H1 in two ways. First, the state itself

in terms of k1 and k2, as in Figure 4.7 (b). Next, the probability of detecting coincidence in

54 4.1. Calculating Holograms Analytically



4.1. Calculating Holograms Analytically

Comparing Simulated Detection to Experiment

(a) (b)

Figure 4.8: (a) Simulation of Eq. 4.1.14. Each integral is estimated by a sum of 50
terms. (b) Coincidence data collected displaying H1 on each DMD. Both plots as func-
tions of ko1, ko2 in step sizes of 696.27m−1. The corresponding range of ko values is(
−24369m−1 ≤ ko1, ko2 ≤ 24369m−1

)

terms of the hologram control variables ko1 and ko2 as in Figure 4.8. Eq. 4.1.14 is numerically

evaluated, normalized, and plotted against values of ko1, ko2, shown in Figure 4.8 (a).

Simulation and data collection both support the presence of the indistinguishability prob-

lem. When matching on ko1 and ko2, the boxed terms in Eq. 4.1.13 contribute to the

appropriate detection of the modes present in the illumination state. The output term

Φ(k1 − ko1, k2 − ko2) for example is all that is needed to use matched filtering to determine

the joint transverse momentum of photon pairs. The underlined terms have a sign mismatch

between the signal and idler projections and equally contribute to the detection for the given

values of ko1, ko2. Therefore, when making momentum mode projections using H1, the sign

of the illumination mode can not be determined, so the tight correlations in k1 + k2 manifest

as "correlations" and "anticorrelations". The presents of both correlations and anticorrela-

tions as well as other detection patterns seen in the experimental results are confirmed by

the simulation. There is a high noise present in the experimental data which is the result of

the uncontrolled term present in the output state. This uncontrolled term does not vary with

any control parameters. The uncontrolled output term is analogous to the uniform term in

equation 4.1.7. Marginal control terms in the output state include a control parameter for only

one of the two photons, therefore the resulting detection data appears to have vertical and
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horizontal stripe patterns. These patterns are found in both the simulation and the experi-

mental results. The horizontal stripe in the experimental results differs from the prediction of

the simulation in that the experimental data is disrupted by a drop in the coincidence, which

is likely due to detector saturation. The correlation/anticorrelation patterns are from the fully

controlled terms in the output state. The model in Figure 4.8 (a) accurately describes the

artifacts seen when momentum mode projections are made using H1.

Recall the goal is to measure the correlation width as in Figure 2.4. The artifacts present

in this form provide a challenge to fit the measurement results with a double Gaussian and

obtain a correlation width. Contributions from the marginal terms are unavoidable using H1.

Details of all experimental artifacts that deviate from the simulation are explored further in

Section 4.2.

4.1.6 Solution to the Indistinguishability Problem

The indistinguishability arises because there are fully controlled terms for each combination

of ±ko1 and ±ko2 that can not be isolated through matched filtering detection. We propose the

addition of a Constant Plane Wave Offset (CPWO) to the object field in the complementary

transverse direction to eliminate the symmetry. Consider the second hologram used in this

experiment:

H2(x) = |1 + eikCyeik0x|2 = 2 + eikCyeik0x + e−ikCye−ik0x (4.1.15)

where the term py = eikCy is the CPWO, a fixed shift in transverse momentum on the ŷ

direction of the object field.

We again explicitly calculate the output field of the SPDC state after it interacts with the

two DMDs displaying H2. To simulate detection, we write the double Gaussian approximation

to the SPDC state in terms of both transverse x̂ and ŷ variables:
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Subset of Holograms used for Y Momentum Scan with CPWO of 0.0275o

(a) (b) (c)

(d) (e)

Figure 4.9: Two important features to note about the set of holograms that include the CPWO.
1) Holograms for ko and −ko are not the same, which supports the CPWO as a solution to
the indistinguishability problem. 2) the center mode ko = 0 is not uniform but includes the
Hologram component of the CPWO. This subset of holograms represents a variable transverse
Y component, and a CPWO in X, so the number of fringes in the horizontal direction is
constant, while the number of fringes in the vertical direction varies.
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B → Ψ(r⃗1, r⃗2) = Ψx(x1, x2)Ψy(y1, y2) ∝

exp
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(4.1.16)

The output state is then

Ψx(x1, x2)Ψy(y1, y2)H2(x1, y1 : ko1, kC)H2(x2, y2 : ko2, kC) =

Ψx(x1, x2)Ψy(y1, y2)|1 + eikCy1eik01x1 |2|1 + eikCy2eiko2x2 |2 (4.1.17)

Expanding the H2 terms and Fourier transforming the system yields the output state Φ′

in momentum space:

Φ′(kx1, kx2, ky1, ky2) = Φx(kx1, kx2)Φy(ky1, ky2)∗
[
4δ(kx1)δ(kx2)δ(ky1)δ(ky2)+

2δ(kx1)δ(ky1) [δ(kx2 − ko2)δ(ky2 − kC) + δ(kx2 + ko2)δ(ky2 + kC)] +

2δ(kx2)δ(ky2) [δ(kx1 − ko1)δ(ky1 − kC) + δ(kx1 + ko1)δ(ky1 + kC)] +

δ(kx1 − ko1)δ(kx2 − ko2)δ(ky1 − kC)δ(ky2 − kC) +

δ(kx1 + ko1)δ(kx2 + ko2)δ(ky1 + kC)δ(ky2 + kC) +

δ(kx1 − ko1)δ(kx2 + ko2)δ(ky1 − kC)δ(ky2 + kC)+

δ(kx1 + ko1)δ(kx2 − ko2)δ(ky1 + kC)δ(ky2 − kC)
]

(4.1.18)

Again, considering the experiment will scan over the value of ko1 and ko2, there are three

different types of contributions: uncontrolled terms, marginally controlled terms, and fully

controlled terms. The difference between the state in Eq. 4.1.18 and Eq. 4.1.13 is that the

former state contains terms whose distribution in terms of ky are shifted by ±kC . In Eq.
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Figure 4.10: Coupling configuration (omitting the matched filtering lens for simplicity). For
H2, the coupling configuration has a significant effect on the components of the output field
that are detected.

4.1.18, the boxed terms are sign matched for the projection of the momentum modes in kx

controlled by ko1 and ko2. The boxed terms are also sign matched in their shift in ky space.

The underlined terms are sign mismatched in their controlled kx distributions and are also sign

mismatched in their constant shift in ky space by the CPWO. The use of H2 couples together

the kx and ky components in such a way that the state is not separable. The mechanism that

imposes the inseparability is the various shifts of the original distribution in the 4 dimensional

biphoton transverse momentum distribution.

From Eq. 4.1.18, we say that using H2 allows for an investigation of the kx distribution

of the input state on a constant off-center slice in ky space. The CPWO shifts the direction

the output states propagate away from the holograms. Therefore the boxed terms shift signal

and idler in the same direction in ky space, and the underlined terms shift signal and idler in

opposite directions in ky space.

UsingH2, the two-dimensional hologram that includes a CPWO, the coupling configuration

can be shifted to accept modes shifted by ±kC in ky1 and ky1. Let ks1 and ks2 be shifts in

the location in momentum space of the detection window for photons 1 and 2. Similar to Eq.

4.1.14, the probability of detection is the sum of modes accepted by the detection window:
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Simulation of Φ′ using H2 to Show Fully Controlled Term Isolation

(a) (b) (c) (d)

Figure 4.11: Visual description of the isolation of the matched sign fully controlled term. (a)
Φ′ evaluated at ky1 = ky2 = 0, convenient choices of ko1 and ko2 are made to display the
separation the holograms impose on the components. With kC = 0 the state is reduced to
Eq. 4.1.13. (b) nonzero CPWO narrows the band of components with significant relative
amplitude. For the center slice in ky space, the uncontrolled term is isolated. (c) Φ′ without
a CPWO, but here the off-center slice in ky space is evaluated, notice the distribution of
components is identical to (a) but the amplitude is greatly reduced. (d) Evaluating Φ′ at
ky1 = ky2 = kC isolates the matched sign fully controlled component. Each component can
be identified by omitting the others from the simulation.

P (ko1, ko2 : ks1, ks2) =

∫ Wk
2

−Wk
2

∫ Wk
2

−Wk
2

∫ Wk
2

+ks1

−Wk
2

+ks1

∫ Wk
2

+ks2

−Wk
2

+ks2

dkx1, dkx2, dky1, dky2
∣∣Φ′(kx1, kx2, ky1, ky2 : ko1, ko2)

∣∣2
(4.1.19)

Unlike H1, H2 includes both the transverse x̂ and transverse ŷ dimensions and a multitude

of control variables imposed by the hologram and experimental configuration. Figure 4.11

describes Φ′ itself for various configurations. Evaluating Φ′ at a slice in ky space is directly

related to the shift in the detection window in ky. Hologram H2 is found to produce the

distinguishability needed to identify the sign of the modes being investigated.

To detect the transverse components of momentum, holograms are used to decompose the

unknown illumination state into components of transverse momentum. The programmer will

display the hologram Eq. 4.1.15. The programmer can then scan through a range of values for

the transverse momentum on the x̂ direction, corresponding to values of the object plane wave

koi for each DMD. Tracking the intensity of the light that passes through the matched filtering

elements as the hologram varies with koi, the composition of the unknown illumination field can
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Simulated Detection for Various Configuration

(a) (b) (c) (d)

Figure 4.12: Simulation of detection at various CPWO values for a constant coupling condition.
(a) No CPWO which is equivalent to using H1. When using a shift in the coupling window,
this configuration yields lower relative amplitude and includes a significant contribution from
the marginal terms and the sign mismatched fully controlled term. (b) Introduction of the
CPWO. The contribution from the sign mismatched fully controlled term is less. (c) kC nears
ks1 and ks2. The simulation indicates this is the ideal set of configuration parameters since the
sign matched fully controlled terms are the most significant. (d) kC = ks1, ks1. The simulation
indicates this is the most significant sign-matched contribution but there is a revival of the
marginal control contributions. More detailed modeling is needed to investigate the true
expected state from detection as we did not see significant contributions from the marginal
control terms for larger CPWO use.

be exactly reconstructed from its spectrum in transverse momentum in the x̂ direction. This

is the method used in this experiment. Many interesting anomalies, artifacts, and limitations

arise when using holograms, described in Section 4.2. Artifacts will refer to any property of

the data that does not match the predicted SPDC state. From the data, there is a rich array

of artifacts that can inform on the intricacies of hologram use for quantum state projections.

The primary advantage of a scheme where holograms are displayed in the image plane of the

crystal is that other bases can easily be investigated, including OAM modes and LG modes

[13].

The simulations provide interesting comparisons to the experimental results. The relative

amplitude between different simulations did not match the detected coincidence. The compar-

ison between simulation and acquired data is only used qualitatively. We use the simulations

as a confirmation that the contributions to the experimental data reflect the overall model

described by equation Eq. 4.1.18. Each type of term predicted by calculating the output
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Variable CPWO for Y Momentum Projections

(a) (b) (c)

(d) (e) (f)

Figure 4.13: Experimental results of variable CPWO in the x direction for transverse mo-
mentum scans in y directions given a constant experimental coupling configuration. Range
of ko values correspond to −0.18o ≤ θy ≤ 0.18o. Each picture represents data acquired
with a different CPWO offset with the corresponding angles : (a)θx = 0o. (b)θx = 0.0075o.
(c)θx = 0.0175o. (d)θx = 0.0275o. (e)θx = 0.0375o. (f)θx = 0.0475o. Various artifacts arise,
some expected from the simulation, like marginal control term contributions. Others like the
coincidence dips for larger CPWO used are not predicted by the simulations.
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state, uncontrolled, marginally controlled, and fully controlled, is present in the experiment

under different conditions.

Horizontal and vertical patterns found in the measured transverse momentum probability

distributions arises purely from the prediction of holograms and the theoretical description of

the state as it leaves the interaction plane and heads toward the detectors. Indistinguishability

and marginal control terms present in the output state contribute to these patterns.

4.2 Practical and Experimental Considerations

In this section, we aim to identify the challenges we encountered when making joint momen-

tum mode projections using holograms displayed on DMDs. The following sections describe

issues not predicted by the calculated state 4.1.18 and detection probability 4.1.19 that also

impact correlation width measurements.

4.2.1 Inaccessible Modes

Figure 4.14: Model for hologram interaction for inaccessible modes. Shown here is the binary
hologram that represents a momentum shift of 0.01o. Note how the beam is only incident
upon one fringe. The effective number of fringes is not enough for diffractive effects to be
detectable.

For holograms corresponding to relatively small shifts in transverse momentum, the fringes

are large and farther apart. When the incoming beam interacts with the DMD, the beam is
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incident on a small number of fringes. The result is a detection that does not accurately

correspond to the momentum mode programmed on the hologram. With a finite beam size,

non-realizable modes are an unavoidable issue. The extreme case consists of a range of holo-

grams that reflect the beam either entirely toward or away from the detector. In this case,

the transverse momentum shifts programmed in the hologram contain fringes whose width is

larger than the incident beam width. The beam is incident upon a uniform region of mirrors

and the outgoing beam does not experience any interference effects.

Inaccessible modes and some other anomalies can be investigated by looking at the singles

rates, the overall rate of photons incident on the detectors regardless of coincidence. When

there is a drop in the detected singles rate, a corresponding drop in coincidence is not neces-

sarily related to whether that particular mode is present in the quantum state or not. It may

simply be the inaccessibility of that mode due to the fringe width of the hologram, reflecting

all the photons away from the detector. Further investigation can be done to learn about

the transition between the inaccessible modes and the modes that experience strong inter-

ference effects. Particularly the relationship between the beam width and the fringe width

could be identified to determine the minimum number of fringes needed to effectively project

a momentum mode.

4.2.2 Incomplete Extinction

As described in Figure 3.10(e) and Figure 3.11(d) there is not complete extinction between

the fully ON and fully OFF states for the DMDs. The orientation of the mirrors on the 4700

DMDs is unique in that the combination of the diffractive properties of the mirror array and

the mirror orientations themselves create an asymmetric extinction relationship between the

ON and OFF modes. Because of the orientation of the modes in the plane parallel to the table,

beam C in Figure 3.6, was easily accessible given the mounting configuration, the mode with

a lower extinction ratio was used in the experiment. Future iterations of this experimental

setup would require the mounts to be rotated 90o around the z axis such that the currently

discarded mode is the new detected mode and the roles of the ON and OFF pixels swapped.
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Negating the CPWO and Comparison to Transverse X Momentum

(a) (b) (c)

Figure 4.15: Results of Negation of the CPWO angle and the complementary measurement
configuration. (a)(b) show opposite CPWO values used where the dark band is reflected over
the origin. (c) is the same data set taken with the roles of x and y swapped. This is included
as a reference for the results of a scan over the transverse momenta kx for the SPDC state.
From this, we can see that the positional in x is not as aligned with the coupling mechanism
as it is in y. The kx mode correlation lacked significant extent, which may be related to the
presents of the dark bands in the ky scans.

A higher extinction ratio would allow for a lower noise floor when investigating correlation for

both position and momentum.

4.2.3 Unexplained Dark Band in Coincidence for Joint Correlations

Figure 4.15, as well as Figure 4.13, display one of the most interesting findings of this

experiment. For most configurations used, the anticorrelations are present, a double Gaussian

shape can be identified in the joint coincidence data. The use of H2 imposes a dip in the

coincidence rate along the length of the double Gaussian. There appears to be only a small

window of CPWO values that yield a valid double Gaussian profile. Smaller CPWO values

allow for marginal control term artifacts and larger CPWO values introduce the coincidence

dip. It is unclear what contribution from Φ′ or experimental condition causes the dip in

coincidence. It is possible that the contribution to coincidence from the fully controlled terms

behaves uniformly across the extent of the correlations but the uncontrolled and marginal

terms vanish there, leading to lower overall coincidence at the location of the dip. It is also

possible the overall particular experimental conditions are not able to detect coincidence for

those particular modes for some unknown reason.
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Hologram Inversion

(a) (b)

Figure 4.16: (a) Hologram directly calculated from the interference pattern of the object and
reference field. (b) The Binary hologram for the same interference.

Figure 4.15 (a) and (b) show two data sets corresponding to a particular CPWO and the

relation to the offset. The coincidence dip reflects over the origin relative to the correlation

extent. Future iterations of this experiment may be able to identify the cause of the coincidence

dip and take advantage of a predictable dark band shape to reinforce a correlation width

measurement.

4.2.4 Binarization and Resolution

Algorithm 4 Binary Hologram Generation algorithm.
field ← A(x, y) + a(x, y)
I ← field × Conjugate(field)
I ← I-Min(I)
I ← I / |(Max(I)|
Output round(I)

The hologram is calculated as a continuous range of amplitude transmittance. The DMD

is a binary-controlled device so the hologram amplitude values are normalized and rounded.

The result is a binary hologram.

Although the binarization itself does not cause detection issues, the utilization of holograms

with high-frequency fringes may be limited by device parameters. If the fringe spacing is

calculated to be less than the pixel size, the hologram is not realizable given the display

device. There may also be some pattern revivals dues to the aliasing effect and Moiré patterns

of high-frequency modes.
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Hologram Inversion

(a) (b)

(c) (d)

Figure 4.17: Inversion of binary Holograms: (a)(b) H1 used. There are vertical and horizontal
patterns that arise along with the expected marginal control term contributions. The discrep-
ancy between the high coincidence vertical pattern and the low coincidence horizontal pattern
can be attributed to a shift in the coincidence peak outside of the coincidence window used.
Inversion of the hologram has a significant effect on modes near ko = 0. (c)(d) H2 used. Here
there is no difference in the artifacts between the hologram and its inverse. The CPWO used
shifts all the modes projected away from ko = 0 so there are significant diffractive effects for
every step used in the scan.

4.2.5 Hologram Inversion

Given that the Hologram is binary when displayed, the inverse (ON and OFF mirrors swap

roles) of the holograms can also be displayed. The result is a hologram that carries the same

information. From experiments using holograms and their inverses, we find that configurations

that result in one dimension vertical and horizontal patterns are most significantly affected

by the inversion of the hologram. These patterns can be a result of the presents of marginal

control terms in the output state as well as the inaccessibility of modes near the center of the

distribution. Hologram inversion changes the state (ON or OFF) of the center fringe which

is the primary interaction for inaccessible modes. Figure 4.17 (a) is an example of the effects
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of using the hologram inverse, which changes the nature of the artifacts. While Figure 4.17

(b) shows for larger CPWO the use of the inverse holograms is inconsequential because the

hologram used includes a significant number of fringes and therefore significant diffractive

effects. It is clear that hologram inversion affects the modes relatively close to the center

momentum mode. For larger CPWO values, inaccessible modes are not present so hologram

inversion has less effect. Overall inverting the hologram does not change the information we

can obtain about the joint momentum correlations but does affect the artifacts that arise in

the detection scheme.

4.2.6 Summary of Hologram Investigation

Among the interesting artifacts found when using H2 to investigate momentum distribu-

tions of the SPDC state, the vertical and horizontal patterns seen have multiple potential

sources. The theory predicts some vertical and horizontal patterns representing an increase in

detection (coincidence) as a narrow band of ko values centered at zero, as seen in Figure 4.12

from the presents of the marginal control terms in the output state. The source of this artifact

is further complicated by the same configuring being used with inverted holograms and the

presents of inaccessible modes. Inversions of the hologram also change the center (ko = 0)

mode behavior. Inverting a hologram should not change the information that it encodes, but

center modes do not simply interact as holograms but are affected largely by whether the

center fringe in the pattern is "ON" or "OFF".

Overall the hologram H2 from Eq. 4.1.15 allows for the projection of transverse momentum

modes and the corresponding joint space coincidence measurements that yield a correlation

width predicted by the SPDC state. Configurations are identified that yield clear double

Gaussians and correlation widths that can be measured.
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Results Estimating Entanglement

In this chapter, we will develop quantitative predictions for entanglement witnesses to com-

pare with experimental results. We must consider the discrete nature of the detection scheme

as well as the shape of the probability distribution we are measuring. We will investigate the

discrete detection of an EPR state, the ideal detection of the SPDC state, and the combined

consideration of the discrete detection and the double Gaussian approximation of the SPDC

state. From Section 2.4, we employ the entanglement witness written in the form σx−σk+ ≥ 1
4 .

We interpret experimental data, determine the correlation width, compute an entanglement

witness, and compare it with our predictions.

5.1 Entanglement Witness Predictions

5.1.1 Discrete Detection of the Ideal EPR State

First, we must investigate the limitations of using a discrete detection scheme to collect

joint spatial probability distributions for the ideal EPR source and calculate an entanglement

witness. We assume perfect detection of joint correlations and the detection amplitude is uni-

form across all joint correlated modes. The ideal EPR state measured using discrete partitions

in joint position and joint momentum space would yield a measured joint position probability

distribution as in Figure 5.1.

Chapter 5. Results Estimating Entanglement 69



Chapter 5. Results Estimating Entanglement

Figure 5.1: Probability distribution for a discrete measurement of the ideal EPR state. Calcu-
lation of an entanglement witness for this probability distribution is useful because it informs
on the relationship between the entanglement violation and the resolution of the spatial de-
tection.

Determining the relationship between the resolution used in the detection and the entan-

glement witness is important because the experimental quality of the results is affected by

the choice of resolution. This is particularly important when using position partitions, where

the resolution directly affects both the amount of light captured and the minimum correlation

width that can be resolved. Low-resolution scans obtain higher coincidence counts but can not

resolve a small enough correlation width to observe entanglement. High resolutions suffer from

lower coincidence per partition but can resolve the detected state. The physical dimensions of

the position partitions as programmed on the DMD can be calculated:

Wx = a ·Nm =
a ·NT

Rx
(5.1.1)

Wx± =
√
2Wx (5.1.2)

where Wx is the width of a position partition, Wx± is the diagonal width of a joint partition

pixel, a = 5.4µm is the size of a single mirror [31], NT = 1024 is the total height and width of

the active area used on the DMDs in number of mirrors, and NM is the number of mirrors per

partition. Rx is the resolution, the number of partitions we choose to use in a joint position

scan, defined as the ratio of the partition size to the total length of the active area used on the

DMD. Half the total diagonal width of a joint partition Wx− is an estimate for the correlation

width σx− of the joint position probability distribution.
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To calculate an estimate for the entanglement witness we also need the limit for the joint

momentum correlation width. For the joint momentum probability distribution, each hologram

corresponds to a particular transverse momentum mode. We traverse the joint momentum

space using a fixed angular step size. The angular step size between each hologram defines

the width of the partition for that joint momentum scan. The physical dimensions of the

momentum partitions using angular step sizes of Wθ can be calculated:

Wθ =
2θmax

Rθ
(5.1.3)

Wk ≈ |k|Wθ =
2π

λ
Wθ (5.1.4)

Wk± =
√
2Wk (5.1.5)

where Wk is the width of a momentum partition in terms of wave vectors, Wk± is the

diagonal width of a joint momentum partition pixel and λ is the wavelength of the down-

converted photons. The effective resolution of a discrete momentum scan using holograms can

be calculated by dividing the total angular window width of momentum modes accessed in

the scan by the step size. Half the total diagonal width of a joint partition Wk+ is an estimate

for the correlation width σk+ of the joint momentum probability distribution.

Given an ideal EPR state is detected using discrete spatial partitions, the minimum correla-

tion widths that could be measured are limited by the resolution chosen. This is the maximum

amount of entanglement we can certify using the chosen resolutions. To calculate this limit,

we can use the diagonal width of the joint partition as an estimate for the correlation width.

Therefore the estimate of the violation of the inequality is:

σx−σk+ ≈
Wx−
2

Wk+

2
=

√
2aNT

2Rx

√
2 2π2θmax

2λRθ
(5.1.6)

An example of a configuration used in this experiment uses the values θmax = 0.18o,

Rx = 32, Rθ = 71, which is an angular step size of Wθ = 8.85 × 10−5radians. The resulting
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product of the widths is:

σx−σk+ ≈
Wx−
2

Wk+

2
= (1.222× 10−4m)(485.402m−1) = 0.059 <

1

4
(5.1.7)

The result Eq. 5.1.7 confirms that reasonable choices of resolution for discrete measure-

ments of joint spatial probability distributions yield a valid witness of entanglement.

5.1.2 Theoretical Prediction of an Entanglement Witness

The next useful value of the entanglement witness to compare experimental results to is

from the SPDC state directly. We determine the correlation widths as predicted by the double

Gaussian approximation of the SPDC state. The correlations are described by the physical

parameters discussed in Section 2.3. From Eq. 1.0.5 we find σk− =
√

3π
Lzλp

= 62277.68m−1

for the 3mm BiBo crystal used. For the position correlation width, the physical parameter

involved is the radius of the pump beam. The beam diameter at 1
e2

power is reported as

1.4mm [26]. From the definition of the 1
e2

width, σp is found to be 2.9× 10−4m. Invoking Eq.

2.3.19 yields:

σx−σk+ = (8.02851× 10−6m)(1213.32m−1) = 0.0097 <
1

4
(5.1.8)

Eq. 5.1.8 describes the minimum values of correlation width that the process of SPDC

can produce. In other words, Eq. 5.1.8 is the case for a measurement of the SPDC state with

infinite resolution. This is confirmation that a precise measurement of the SPDC state is in

fact an observance of entanglement. Note that σk+ in the resolution limited case Eq. 5.1.7

is less than that predicted by the physical parameters of the SPDC state. By choosing to

use high resolution, we can over-resolve the joint momentum probability distribution. This

does not necessarily mean that high resolution is unnecessary, a high-resolution scan of the

joint momentum space reveals the finer structure of the joint state and does not affect the

correlation width.
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We also consider both the discrete nature of the detection and the double Gaussian ap-

proximation of the SPDC state in a single estimate for the product of correlation widths. We

assume that the total diagonal width of a joint partition pixel is the FWHM of a Gaussian

model in the rotated coordinate system for the detection of the SPDC state. From the def-

inition of FWHM with respect to standard deviation we write the estimate for the position

correlation width:

σx− =
FWHM

2
√
2 ln 2

≈
Wx−

2
√
2 ln 2

=
Wx

2
√
ln 2

(5.1.9)

Similarly for the estimate of the momentum correlation width:

σk+ =
FWHM

2
√
2 ln 2

≈
Wk+

2
√
2 ln 2

=

√
2Wk

2
√
2 ln 2

=
πWθ

λ
√
ln 2

(5.1.10)

Using the same experimental parameters as we did in Eq. 5.1.6:

σx−σk+ = (1.04× 10−4m)(412.26m−1) = 0.0428 <
1

4
(5.1.11)

Both Eqs. 5.1.7 and 5.1.11 are important when considering under-sampling (low-resolution

scans) which is the case for some joint position measurements. High-resolution measurements

have lower coincidence rates and are subject to more noise. Higher resolutions yield much

lower coupling efficiency and coincidence therefore there is a practical limit to the resolution. If

greater extinction ratios could be achieved, higher-resolution position scans would be feasible.

The choice of resolution for momentum mode projections is limited only by the size of the

mirrors displaying the holograms. Since transverse momentum step sizes can be chosen smaller

than the expected correlation width, under-sampling is not an issue.
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5.2 Correlation Width Calculations

Fitting Joint Measurements with Double Gaussian Models

(a) (b)

(c) (d)

Figure 5.2: Data sets and the fitted double Gaussian approximations. For the position data,
Rx = 32, taq = 2s, and a coincidence window of 3ns. For momentum data, Rθ = 71, taq = 5s,
CPWO θx = 0.0175o was used and a coincidence window of 2ns. Transverse momentum modes
corresponding to [−0.18o, 0.18o] were scanned. For both 45mW pump power was used.

As discussed in Section 3.1.7 and 4.1.6, measurements of the joint spatial probability

distributions are obtained through the projection of position and momentum modes. Data

is collected and fit with a double Gaussian model. The joint measurement results are fit

using the Python Scipy.optimization.curve_fit function, which includes the uncertainty in the

counting statistics from the probability distribution of counts (σcoincidence =
√
coincidence) in
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the calculation to determine the uncertainty in the resulting fit parameters. The function used

a nonlinear least squares fitting method to calculate the fitting parameters. The probability

distributions Eq. 2.3.25 and 2.3.25 are fit to the data in the form:

Pk(k1, k2) = Ak exp

(
−(k1 − k2 + bk−)

2

4σ2k−

)
exp

(
−(k1 + k2 + bk+)

2

4σ2k+

)
+ Ck (5.2.12)

Px(x1, x2) = Ax exp

(
−(x1 − x2 + bx−)

2

4σ2x−

)
exp

(
−(x1 + x2 + bx+)

2

4σ2x+

)
+ Cx (5.2.13)

Extra fitting parameters b and C are needed to represent the noise floor and coordinate

shift, respectively. Among the valid configurations, Figure 5.2 are the data sets that yield the

smallest correlation widths.

The fit parameters are first calculated in units of partitions for position and momentum.

For both position and momentum, the fit parameters for the standard deviation can be con-

verted from units of partitions to the physical units that they correspond to. The conversions

are as follows:

σx− = σdatax− ×Wx (5.2.14)

σk+ = σdatak+ × 2π

λ
Wθ (5.2.15)

The minimum correlation widths are found to be σx− = (1.47± 0.02)× 10−4m and σk+ =

(1398 ± 2)m−1 whose product is 0.205 ± 0.003 < 1
4 which satisfies an entanglement witness.

The parameters of the particular data sets that yield minimum variance were determined by

testing various resolutions, acquisition times, and power levels until a violation was found.

The magnitude of the violation strongly depends on how well the system is aligned.

Notice that the value of σx− = 1.47 × 10−4m calculated from the joint position data is

greater than the estimated width from the discrete ideal EPR limit 1.04 × 10−4m as the

measured correlation width is greater than 1 partition. The measured value of σx− is also
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Best Fit Parameters for Experimental Joint Measurement Data

Fit Parameter Position Momentum

A 2330± 30 counts 24670± 50 counts

C 6499± 3 counts 51752± 3 counts

σ− (1.47± 0.02)× 10−4m (7060± 13)m−1

σ+ (9.6± 0.1)× 10−4m (1398± 2)m−1

b− (−4.0± 0.3)× 10−5m (1910± 20)m−1

b+ (−5.44± 0.02)× 10−3m (48773± 4)m−1

Table 5.1: The output of the best-fit algorithm used to determine the double Gaussian model
for the chosen data sets.

much greater than the width predicted from the SPDC state directly, 8.03× 10−6m. We can

conclude that the experimental condition like the alignment of the system and low extinction

ratios that restrict our ability to use high-resolution scans are the most significant experimental

restriction to a more significant violation in terms of position and raster scanning.

For momentum, the SPDC state predicts a correlation width of 1213m−1, which is within

an order of magnitude of our experimentally determined value, unlike the position correlation

width. Determining hologram generation parameters like the CPWO used and further analysis

of the biphoton state as it leaves the hologram interaction can also inform techniques to improve

correlation width measurements. The presents of the asymmetric coincidence dip along the

extent of the correlation as in Figure 5.2 restricts the accuracy of the fit.

Comparing Entanglement Witness Prediction to Experimental Results

Estimates σx− σk+ σx−σk+

Discrete Ideal EPR 1.22× 10−4m 485m−1 0.059

Discrete Ideal DG Fit 1.04× 10−4m 412m−1 0.0428

SPDC Parameters 8.03× 10−6m 1213m−1 0.0097

Experimental Data 1.47× 10−4m 1398m−1 0.205

Table 5.2: Summary of Entanglement Witness predictions. The experimental measurements
of correlation width yield the smallest violation of the entanglement inequality.
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5.3 Further Study

This experiment opens the door for a wide range of further exploration into using holograms

as a tool to perform mode projections on photon states. This includes investigation into the

unexplained correlation dip, matched filtering, and alignment techniques. There is also an

interesting possible experiment where the DMDs can be placed in the Fourier plane of the

crystal and directly measure transverse momentum modes while holograms can now serve as

a projection for position modes.

The goal of this experiment was to certify entanglement in position and linear momentum

for an entangled biphoton system. One extension of this project that can be significant for the

quantum optics community would be the certification of entanglement using orbital angular

momentum (OAM) modes. If holograms can be developed to produce angle and OAM modes,

holograms could be shown to be a promising technique to perform arbitrary mode projections.

As discussed in Appendix C.1, we can also control beam focus and direction using holograms,

which is a promising foundation for producing arbitrary fields, 3D projections, and using

DMDs for sensing techniques.

5.4 Conclusion

The goal of this thesis is to observe entanglement in an EPR-like state using the novel

technique of holograms for transverse momentum mode projections. We described the criteria

needed to observe entanglement and developed a realizable EPR-like state that we can create

in the lab. We related this state to the uncertainty principle and entanglement through

the properties of the correlations associated with the biphoton state produced by spontaneous

parametric down-conversion. We use digital micromirror devices to make selections of position

and transverse momentum modes for entangled pairs of photons. Using measurements of joint

position and joint momentum probability distributions, we fit these with a double Gaussian

model and estimate the correlation widths of the SPDC state. The variance product measured

does in fact violate the separability condition and we observe entanglement. Along the way,
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we discovered the challenges and open questions involved with using holograms interacting

with photon quantum states. We hope this work is informative and provides the quantum

optics community with the foundation and inspiration to develop holograms for a wide array

of applications and future work.
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Appendix A

SPDC State Derivation

This section is a summary of the derivation of the SPDC state wavefunction by Schneeloch

et al. [24]. This is important because it gives the wavefunction physical context in terms

of the laser, the crystal, conservation of momentum, and SPDC. From the phase matching

constraints, the wave function Φ(k⃗1, k⃗2) that appears in Eq. 2.3.14 is :

Φ(k⃗1, k⃗2) = Nsinc

(
∆KzLz

2

)
ν
(
k⃗1 + k⃗2

)
(1.0.1)

where k⃗p = k⃗1 + k⃗2 is the collinear condition for transverse momentum coordinates, ν is

the pump beam amplitude distribution and ∆kz = k1z+k2z−kpz. The sinc dependence comes

from the Fourier transform of the rectangular profile of the crystal. Assume the pump beam

profile is Gaussian ν(q⃗p) = Ap exp(−σ2p|q⃗p|2), where σp is the pump radius in position space,

defined as the standard deviation of x1+x2
2 . Substituting the phase matching conditions Eq.

2.2.13 into Eq. 1.0.1, the state can be written:

Φ(k⃗1, k⃗2) = Nsinc

(
λpLz

8π
|k⃗1 − k⃗2|2

)
exp

(
−σ2p|k⃗p|2

)
(1.0.2)

where the amplitude prefactor is taken such that the probability distribution is normalized.

Correlation width is a propriety of the SPDC state which provides a measure of the conditional

uncertainty and provides an entanglement witness. We aim to write Φ(k⃗1, k⃗2) in a form that
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can be easily related to measurements of correlation width in the joint position and joint

momentum space.

A useful approximation to the joint momentum wavefunction Eq. 1.0.2 is to approximate

the sinc with a Gaussian. When writing the wavefunction using a Double Gaussian approx-

imation to the SPDC state, the wavefunction is separable in transverse directions x̂ and ŷ,

so the analysis may proceed considering only one spatial dimension. A Double Gaussian ap-

proximation to Eq. 1.0.2 provides an approximation for the SPDC state in both position and

momentum space that can quantify the correlation width of the entangled photons. The wave-

function in momentum space from Eq. 1.0.2 is not separable in k1 and k2 therefore the Fourier

transform in terms of position coordinates x1 and x2 is not clear. This is why we employ the

rotated coordinate system Eqs. 2.3.15 and 2.3.16. A Double Gaussian approximation in terms

of the entangled coordinates allows us to take the Fourier transform and determine the joint

position wavefunction.

In general, a Gaussian can approximate a sinc2 in the paraxial regime, where the argument

is small. A double Gaussian takes the form:

DG(x1, x2) = A exp

(
−(x1 − x2)2

2∆2
−

)
exp

(
−(x1 + x2)

2

2∆2
+

)
(1.0.3)

where the widths ∆+ and ∆− can be related to physical quantities. Φ(k1, k2), the joint

transverse momentum space representation of the SPDC state, can be approximated by the

form of Eq. 1.0.3 by taking the following steps. Substitution of the rotated coordinates Eq.

2.3.15 into Eq. 1.0.2 yields the wavefunction:

Φ(k+, k−) = Nsinc

(
λpLz

4π
k2−

)
exp

(
−2σ2pk2+

)
(1.0.4)

The k+ dependence is already in a Gaussian form. In order to write the state in terms of

a Double Gaussian we need to approximate the k− dependence term. By integrating over k+

and squaring, the marginal probability distribution for k− can be written as:
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P (k−) =
3

4

√
a

π
sinc2

(
ak2−

)
≈ N ′ exp

(
−

k2−
2σ2k−

)
(1.0.5)

where a =
Lzλp

4π . Eq. 1.0.5 can be approximated by a Gaussian with variance σ2k− =

3
4a = 3π

Lzλp
. The transverse momentum wavefunction can now be written in terms of a double

Gaussian distribution as a function of k+ and k−:

Φ(k+, k−) =

√√√√N ′ exp

(
−

k2−
2σ2k−

)
exp

(
−4σ2pk2+

)
= Nk exp

(
−

k2−
4σ2k−

)
exp

(
−2σ2pk2+

)
(1.0.6)

In this form, the position wavefunction can be determined by performing an inverse Fourier

transform on the state above. As k1 and k2 form an orthonormal Fourier pair with x1 and x2,

the Fourier conjugates of the rotated coordinates k± are x±.

F−1

[
exp

(
−

k2−
4σ2k−

)]
=

1√
2π

∫ ∞

∞
exp

(
−

k2−
4σ2k−

)
eik−x−dk−

=
√
2σk− exp

(
−σ2k−x

2
−

)
(1.0.7)

F−1
[
exp

(
−2σ2pk2+

)]
=

1√
2π

∫ ∞

∞
exp

(
−2σ2pk2+

)
eik+x+dk+

=
1

2σp
exp

(
−
x2+
8σ2p

)
(1.0.8)

The bi-photon wave function in joint position space can be written up to a normalization

constant Nx:

Ψ(x+, x−) = Nx exp
(
−σ2k−x

2
−

)
exp

(
−
x2+
8σ2p

)
(1.0.9)
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Given the standard form of a Gaussian is Ae−
(x−x0)

2

2σ2 , we can make a convenient choice of

coefficients in the exponent when writing of the wave functions:

Φ(k+, k−) = Nk exp

(
−

k2−
4σ2k−

)
exp

(
−2σ2pk2+

)
→ Nk exp

(
−

k2−
4σ2k−

)
exp

(
−

k2+
4σ2k+

)
(1.0.10)

Ψ(x+, x−) = Nx exp
(
−σ2k−x

2
−

)
exp

(
−
x2+
8σ2p

)
→ Nx exp

(
−

x2−
4σ2x−

)
exp

(
−

x2+
4σ2x+

)
(1.0.11)

where the variance relationships can be found by matching the terms in the above expres-

sions, which yields Eq. 2.3.19 and is reported in Section 2.3.
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Appendix B

Addition Results

B.1 Fit Data and Plots

Figure B.1 includes select data sets that yield low correlation widths. A variety of experi-

mental parameters were used to isolate a representative measurement. Some power, time, and

resolution combinations were not compatible due to low extinction, high noise, or low overall

coincidence counts. It is unclear if there is an ideal configuration for the setup, ideally, the

alignment would be perfect and any scan with high enough resolution should yield a proper

measurement. The need for high power, small oscillation in pump power, and interference from

various hologram artifacts pose a challenge to determining the ideal set. Incomplete extinc-

tion could also be investigated further by taking a coincidence measurement for "OFF" states.

Since there is a coincidence signal while partitions are in the "OFF" state, this background

contribution varies with position across the DMD. Handling incomplete extinction needs spe-

cial attention to separate the coincidence that is due to the DMD control and the coincidence

that is always present per partition.

B.2 Further investigation into correlation coincidence dip

Here we include all the data taken from a joint momentum scan where there is a significant

pair of coincidence dips or dark bands in the coincidence data where we expect only a double
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Additional Correlation Data

(a) (b) (c)

(d) (e) (f)

Figure B.1: (a) taq = 15s, R = 32, 45mW Pump, σx− = (1.527± 0.008)× 10−4m.
(b) taq = 15s, R = 16, 45mW Pump, σx− = (1.622± 0.004)× 10−4m.
(c) taq = 30s, R = 32, 45mW Pump, σx− = (1.500± 0.005)× 10−4m.
(d) taq = 5s, R = 65, 45mW Pump, CPWO at θx = 0.0175o, σk+ = (1431± 3)m−1.
(e) taq = 10s, R = 63, 45mW Pump, CPWO at θx = 0.01875o, σk+ = (1538± 2)m−1,
(f) taq = 15s, R = 33, 45mW Pump, CPWO at θx = 0.0175o, σk+ = (1471± 3)m−1

B.88 Further investigation into correlation coincidence dip
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Gaussian profile on a constant noise floor when using H2 to generate holograms. We did not

see this phenomenon for H1. As the offset in transverse momentum set by the CPWO in

H2 increases, the dip encompasses more joint momentum modes. As seen in Fig. B.2, we

can reason that the lack of coincidence in the dark bands is most likely a direct result of the

quantum state and its interaction with the holograms. If there was some alignment or lack of

detection issues, we would expect to also see a drop in the single count rates for individual

photons for those modes where we see the dip. We can also reason that all the coincidence is

captured by the coincidence window, which in this case is 2ns wide, centered on bin number

186. It is interesting that the accidentals also provide no information on the structure of the

dips. Further investigation into the biphoton state that leaves the DMDs could be made to

identify whether the modes encompassed by the dips are in fact not present in the quantum

state as a result of using H2 or if the lack of coincidence is due to some mechanism attributed

to alignment and matched filtering.

B.3 Position Measurements Using CPWO

We also performed a joint position scan where the partitions were further modulated by

the binary hologram for a transverses momentum offset, as in Fig. B.3 (a). This may be a

useful type of measurement for future experiments where the coupling mechanism is strongly

dependent on the shift in the ideal detection window imposed by the CPWO for joint transverse

momentum scans. This way both the position and the momentum projections are both offset

by the same transverse momentum component. The result is a valid position correlation

measurement, as in Fig. B.3 (b).
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Full Data set for Coincidence Dip Investigation

(a) (b) (c)

(d) (e) (f)

Figure B.2: Joint momentum data taken with H2 with a CPWO of θx = 0.0475. Striations in
the accidentals and singles rates are a result of fluctuations in pump power, which are more
easily visible when total scan times are long, particularly long acquisition time along with high
resolution.

Joint Position Measurements Using a CPWO

(a) (b)

Figure B.3: (a) A sample of a position partition that is displayed on the DMD modulated by
a CPWO corresponding to θx = 0.0275o. (b) Joint position scan using the CPWO, taq = 15s,
R = 32. The resulting correlation width from a double Gaussian fit is σx− = (1.85± 0.03)×
10−4m

B.90 Position Measurements Using CPWO
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Addition Calculations

C.1 Spherical Component Holograms and Applications

Among the object fields that can be encoded in a hologram, that of a spherical wavefront is

especially interesting. A spherical object wavefront with unit amplitude is defined by Goodman

[39] as :

a(x, y) = exp
(
ik
√
f2 + (x− x0)2 + (y − y0)2

)
(3.1.1)

We will call a spherical wavefront whose focal point is f S(f), the x and y dependence is

implied. In the paraxial regime, this field can be approximated as a parabolic wavefront:

S(f) = exp

(
ik

(
(x− x0)2

2f
+

(y − y0)2

2f

))
(3.1.2)

Table C.1 includes various holograms that we explored the potential use for throughout

this experiment. Notice that in the paraxial regime, S(f)∗ = S(−f), therefore we can write

Case G from Table C.1. When illuminated by a columnated laser and viewed on a plane z = f

away from the hologram, the hologram Case G will produce a hologram component that is in

focus and another that is out of focus, both centered on the optical axis. In order to vary the

focal point in transverse coordinates in the plane z = f , we show that shifting the transverse

coordinates of the center of the spherical object is equivalent to shifting the wavefront by a
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Case A(x, y) a(x, y) H(x, y)

A A(x) a(x) |A|2 + |a|2 + aA∗ + a∗A

B eikCx a(x)eikox 1 + |a|2 + aeix(−kC+ko) + a∗eix(kC−ko)

C eikCx a(x) 1 + |a|2 + aeix(−kC) + a∗eix(kC)

D 1 a(x)eikox 1 + |a|2 + aeix(ko) + a∗eix(−ko)

E 1 a(x) 1 + |a|2 + a+ a∗

F 1 eikox 2 + eix(ko) + eix(−ko)

G 1 S(f) 2 + S(f) + S(−f)
H 1 S(f)eikox 2 + S(f)eix(ko) + S(−f)eix(−ko)

I 1 eikCyeikox 2 + eiy(kC)eix(ko) + eiy(−kC)eix(−ko)

Table C.1: Holograms used though out this project for testing and measurements. The con-
vention kC is used for CPWO terms, where the shift in momentum is typically a constant in
an experiment. ko is used in the representation of the object field, which we typically vary in
an experiment.

CPWO.

We can solve for the equivalent CPWO that corresponds to a transverse coordinate shift

in the center of the spherical wavefront by equating:

exp (ikCx)S(f, x0 = 0) = S(f : x0 ̸= 0) (3.1.3)

Let kC = k sin(θC), we can expand:

exp (ik sin (θC)x) exp

(
ik

(
(x)2

2f

))
= exp

(
ik

(
(x− x0)2

2f

))
(3.1.4)

Eq. 3.1.4 is solved when sin (θC) = −x0
f . We can then choose to control the focal point

by varying θC , the angle of the CPWO applied to the object field. Table C.1 Case H is an

example of the hologram of a spherical object wavefront whose focal point is shifted in x.

Notice that if the focal point, represented by S(f), is shifted in the positive x̂ direction, then

the out-of-focus term S(f−) will be shifted in the negative x̂ direction. Since an illuminated

hologram always produces 3 components, the out-of-focus term will always be present when

encoding a spherical wavefront.
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Centered and 0.25o Offset Spherical Wavefront Holograms at Various Focal Dis-
tances

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.1: (a)-(d) are binary holograms for spherical wavefronts with no transverse angular
component for various focal distances. (e)-(h) are holograms for the same set of focal distances
but each has a 0.25o offset in x. We are unsure if the apparent circular patterns that arise in
the high spatial frequency regions of the holograms have any effect.

From Fig. C.1 and Fig. C.2 we can see the interesting structure of the binary holograms

that encode spherical wavefronts at various angle offsets and focal lengths. Most notably the

aliasing effects and apparent revival of circular patterns in the holograms. We found that with

a 633mn visible HeNe laser incident on a DMD displaying a spherical wavefront hologram, we

can reliably produce a focused point of light at the desired location in 3D space. Recall that the

diffraction imposed on the reflected field follows the diffraction grating equation nλ = d sin θ

where d is the separation between elements of the grating, in this case, the mirrors. We would

expect for 810nm light the first diffraction order to appear 8.627o offset from the center beam in

either direction. This is a property of the DMD regardless of what is displayed. It is interesting

that when we calculate the hologram for a focal point 8.627o offset from the center, as in Fig.

C.2 (e), rather than a high spatial frequency pattern we might expect for a large diffraction

angle, we get a complete revival of what looks like a centered spherical hologram, as in Fig.

C.1 (c). Since each diffraction order gets its own copy of the three hologram components,

Addition Calculations C.93



C.94 Addition Calculations

Select Angle Offset for Spherical Wavefront Holograms at f = 1m

(a) (b) (c)

(d) (e) (f)

Figure C.2: Binary holograms for spherical wavefronts with significant angular offset. Each
Hologram is calculated for f = 1m.

when we offset the focal point by a multiple of the angular diffraction spacing, the focal point

appears as if it were not offset at all. We are interested to see if this technique can be used

for the production of arbitrary 3D fields as well as sensing technology.

C.2 Effect of Optical Magnification on Correlation Widths

The ray transfer matrix for the optical system with magnification M = 5 from the NLC

to the DMD is exactly: x′
θ′

 =

 −5 0

− 1
100 −1

5

×
x
θ


Where the primed variables represent the coordinate and angle in the plane of the DMD

and the unprimed variables for the plane of the crystal. In the paraxial regime, we can drop

the x dependence for θ′. We can also say that ki = k sin θi ≈ kθi. The resulting coordinate

transformation associated with the magnification is:
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x′i =Mxi (3.2.5)

k′i =
ki
M

(3.2.6)

We can substitute the magnification relations into the biphoton EPR state Eq. 2.3.22

and 2.3.23 and determine the relationship between the correlation width before and after

magnification. First, we write:

Φ(k′1, k
′
2) = Nk exp

(
−(Mk′1 −Mk′2)

2

8σ2k−

)
exp

(
−(Mk′1 +Mk′2)

2

8σ2k+

)
(3.2.7)

Ψ(x′1, x
′
2) = Nx exp

(
−
(
x′
1

M −
x′
2

M )2

8σ2x−

)
exp

(
−
(
x′
1

M +
x′
2

M )2

8σ2x+

)
(3.2.8)

Call the correlation widths we measure in the measurement plane σ′x± and σ′k±. We then

write the state fully defined in terms of the variables in the measurement plane:

Φ(k′1, k
′
2) = Nk exp

(
−(k′1 − k′2)2

8σ′k−
2

)
exp

(
−(k′1 + k′2)

2

8σ′k+
2

)
(3.2.9)

Ψ(x′1, x
′
2) = Nx exp

(
−(x′1 − x′2)2

8σ′x−
2

)
exp

(
−(x′1 + x′2)

2

8σ′x+

2

)
(3.2.10)

We determine that the relationship between the correlation widths in the measurement

plane and the plane of the NLC is:

σ′x± =Mσx± (3.2.11)

σ′k± =
σk±
M

(3.2.12)

It is clear that the individual correlation widths are scaled by a factor of M. When we
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evaluate the variance product, we see that the magnification of the system does not affect the

strength of the violation of the locality condition:

σ′x−σ
′
k+ =Mσx−

σk+
M

= σx−σk+ (3.2.13)

Therefore the locality conditions and entanglement witnesses from Table 2.1 do not change

form in the measurement plane. We choose to represent our findings in Sec. 5 in terms of

the correlations in the plane of the NLC as it provides a straightforward comparison to the

theoretical values predicted by the SPDC state.

C.96 Effect of Optical Magnification on Correlation Widths
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