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Abstract

In the field of cryptography, the focus is often placed on security in a mathematical

or information-theoretic sense; for example, cipher security is typically evaluated by

the difficulty of deducing the plaintext from the ciphertext without knowledge of the

key. However, once these cryptographic schemes are implemented in electronic de-

vices, another class of attack presents itself. Side-channel attacks take advantage of

the side effects of performing a computation, such as power consumption or electro-

magnetic emissions, to extract information outside of normal means. In particular,

these side-channels can reveal parts of the internal state of a computation. This is

important because intermediate values occurring during computation are typically

considered implementation details, invisible to a potential attacker. If this informa-

tion is revealed, then the assumptions of a non-side-channel-aware security analysis

based only on inputs and outputs will no longer hold, potentially enabling an attack.

This work tests the effectiveness of power-based side-channel attacks against MK-3,

a customizable authenticated encryption scheme developed in a collaboration between

RIT and L3Harris Technologies. Using an FPGA platform, Correlation Power Anal-

ysis (CPA) is performed on several different implementations of the algorithm to

evaluate their resistance to power side-channel attacks. This method does not allow

the key to be recovered directly; instead, an equivalent 512-bit intermediate state

value is targeted. By applying two sequential stages of analysis, a total of between

216 and 322 bits are recovered, dependent on customization parameters. If a 128-bit

key is used, then this technique has no benefit to an attacker over brute-forcing the

key itself; however, in the case of a 256-bit key, CPA may provide up to a 66-bit

advantage. In order to completely defend MK-3 against this type of attack, several

potential countermeasures are discussed at the implementation, design, and overall

system levels.
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Chapter 1

Introduction

1.1 Motivation

One of the most effective ways to exploit any kind of system is to approach it from

a viewpoint other than that of the original designer. This strategy often exposes

weaknesses which were previously overlooked and have therefore not been protected

against. Side-channel attacks exploit this type of vulnerability, taking advantage

of information unintentionally transmitted through channels outside of the intended

interface for the system. This information can often reveal critical secrets, allowing

even a system which is perfectly secure in its original context to be attacked with

relative ease.

Cryptography is one of the largest areas to which side-channel attacks have been

applied; specifically, hardware implementations of cryptographic algorithms often ex-

hibit side-channel vulnerabilities. Many encryption schemes have been successfully

exploited using side-channel attacks, inspiring a significant amount of research both

on new methods for performing these attacks as well as on how they can be pre-

vented. Protection from side-channel attacks is achieved by applying algorithmic and

hardware-based modifications, called countermeasures, to the encryption algorithms

and their implementations [2, 3].

In general, there are many different side-channels which can be used to attack a
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Chapter 1. Introduction

system, such as the timing of various operations [2], electromagnetic emissions [2,4,5],

the results of inducing errors [6], or even sound. However, when studying electronic

encryption, power analysis is by far the most commonly-used type of side-channel. In

this form of side-channel attack, a device is made to perform a series of cryptographic

operations, and the power usage of the device during this process is recorded. Because

of the electrical properties of digital logic, the power usage of the device is related

to the data being used for the computations, including secret information such as an

encryption key. Therefore, by deducing the nature of this relationship, an attacker

can analyze the collected power data and obtain the secret information. If this is

an encryption key, for example, then the attacker becomes able to decrypt other

messages encrypted using the same key and cipher configuration. Additionally, in

some cases, messages can be captured, modified, re-encrypted, and then passed on to

the intended recipient without their knowledge.

There are two important functions which can be provided by an encryption scheme.

The first is confidentiality; this is the typical notion of encryption, which allows only

those who are in possession of the key to decrypt and read the encrypted message.

However, if an attacker is able to determine the key, they can then modify or produce

new messages without the destination being able to tell the difference. This issue is

resolved by the second function of authentication. Authentication, in contrast with

confidentiality, does not prevent the message from being read. Instead, it ensures that

a messages originates from the purported sender and that it has not been replaced or

modified along the way.

Many encryption schemes exist which provide both confidentiality and authen-

tication; these are called Authenticated Encryption (AE) schemes. One such AE

scheme, which will be the focus of this work, is the MK-3 scheme, proposed in [1, 7]

by Rochester Institute of Technology (RIT) and L3Harris Technologies. This scheme

has a number of advantages; it provides both encryption and authentication in a sin-

2



Chapter 1. Introduction

gle pass, is designed with a focus on hardware implementation, and provides a unique

customization architecture allowing many non-interoperable instances of the same

design to be used in different organizations or applications. However, compared with

other encryption schemes such as the Advanced Encryption Standard (AES), MK-3

has had little research performed on its side-channel attack resistance. In addition,

MK-3 makes use of the sponge construction, a design for cryptographic algorithms.

Because this construction is relatively new, there is less research on its resistance to

side-channel attacks in general compared to older constructions. The only analysis

so far of MK-3 regarding side-channel attacks was done by Daniel Stafford in [8],

in which simulation was used to attempt power analysis attacks and a survey was

performed of potential countermeasures which could be applied.

1.2 Contributions

This work investigates the MK-3 algorithm’s performance against hardware-based

side-channel attacks, as well as potential methods by which it can be protected. The

first goal was to determine the side-channel resistance of the MK-3 algorithm with

no countermeasures applied. This was done by implementing the MK-3 algorithm

in hardware on a field-programmable gate array (FPGA); in comparison with simu-

lation, hardware testing provides an environment much closer to that which would

be encountered in real-world applications. Using this implementation, Correlation

Power Analysis (CPA) side-channel attacks were performed against the algorithm by

collecting power usage data and attempting to perform the attacks directly. The

evaluation criterion for these attacks is the amount of power data required to suc-

cessfully perform the attack; a more effective attack requires less data to extract

the desired information, while a less effective attack requires more data or can only

provide partial information. In addition to directly performing power attacks, the

theoretical limitations of the developed attacks were determined, taking into account

3



Chapter 1. Introduction

the customization parameters supported by MK-3.

The second goal was to determine potential countermeasures and design tech-

niques which can be applied to the MK-3 algorithm in order to increase its resis-

tance to side-channel attacks. A survey of current implementation-level, algorithm-

level, and system-level countermeasures was performed, considering their use in both

application-specific integrated circuit (ASIC)-based and FPGA-based designs. Based

on this survey, as well as analysis of the FPGA implementation, several design recom-

mendations were developed for protecting MK-3 against power analysis attacks. This

includes aspects of physical product design, system design, customization, and hard-

ware implementation. A framework for performing Test Vector Leakage Assessment

(TVLA) was also developed to aid in the evaluation of any hardware countermeasures

implemented in the future.

The rest of this document is organized as follows. Chapter 2 begins with a detailed

description of the MK-3 encryption algorithm and its customization in Section 2.1, fol-

lowed by an overview of side-channels, power analysis attacks, and leakage assessment

in Sections 2.2 through 2.4. Section 2.5 then provides the details of many different

power analysis countermeasures at various levels of design. Next, Chapter 3 describes

the methods of implementation, data collection, and data analysis used to evaluate

the algorithm and perform hardware power attacks. Chapter 4 provides the results

of these methods, including the theoretical limitations of the developed attacks. Fi-

nally, Chapter 5 concludes the document, providing security recommendations for

field applications of MK-3 and ideas for future work.

4



Chapter 2

Background

2.1 The MK-3 Algorithm

The MK-3 encryption algorithm was developed in a collaboration between L3Harris

Technologies and RIT, and was first published in Matthew Kelly’s master’s thesis [1].

As described in Section 1.1, MK-3 is an authenticated encryption algorithm, meaning

that it provides both confidentiality and authenticity.

2.1.1 Sponge Construction

The MK-3 algorithm is based on a version of the sponge construction, which was

popularized by Keccak, the winner of the National Institute of Standards and Tech-

nology (NIST)’s SHA-3 competition [9, 10]. This construction, as used in MK-3, is

based on two main components. One is the 512-bit state, which is divided into the

rate (128 bits) and the capacity (384 bits). These 512 bits are also referred to using 32

16-bit partitions called words [1, 11]. The other main component is the permutation

function f , which is a bijective function applied to the 512 bits of the state.

In the standard sponge construction, there are two separate phases of functional-

ity called absorbing and squeezing, as shown in Figure 2.1 [10]. First is the absorbing

phase, in which inputs such as key or message blocks are absorbed into the state. Each

absorbed block consists of 128 bits. In each absorbing operation, the input block is

5
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rate
128 bits

capacity
384 bits

state
512 bits

0

0

I1 I2 I3

f

O1 O2

absorbing squeezing

f f f

Figure 2.1: Example of the sponge construction.

first combined with the rate portion of the state using an exclusive-or (XOR); the

entire state is then permuted by the function f , mixing in the new information and

making the state dependent on all the inputs that have been absorbed so far. This

continues until all input blocks have been absorbed, at which point the squeezing

phase begins. In this phase, the output block from each squeezing operation is the

rate portion of the current state. After each output block is produced, the permu-

tation function f is applied to bring out new information into the rate and continue

transforming the state as a whole. By continuing to perform squeezing operations,

an output of any desired length can be produced.

This construction has applications such as hash functions, message authentication

codes (MACs), and stream ciphers; however, because the absorbing and squeezing

phases are separated, multiple passes are required to provide authenticated encryp-

tion. Instead, the MK-3 algorithm uses a modified version of the sponge construction

called the duplex sponge [1, 10]. The main difference between the duplex sponge

construction and the standard sponge construction is the addition of a duplexing op-

eration, which allows both absorption and squeezing to be performed in one round.

Figure 2.2 shows a diagram of the duplex sponge construction as used in MK-3.

As seen in this diagram, each of the absorbing, squeezing, and duplexing opera-

tions are used in several different stages. First, a key K and initialization vector IV

6
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rate

128 bits

capacity

384 bits

state

512 bits

0

0

K IV A1 Am

f

M1

C1

Mn

Cn T

f f f f f

Figure 2.2: Duplex sponge construction used in the MK-3 algorithm (128-bit key).

are absorbed, followed by m blocks of additional authenticated data A1−Am such as

headers. In the case of a 256-bit key, two 128-bit key blocks are absorbed sequentially

before the IV. The additional authenticated data is not provided confidentiality, and

must be known at the time of decryption. The purpose of absorbing this data here

is to incorporate it into the state, ensuring that the final authentication tag will not

match if it has been modified in transit. Next, the message is absorbed, in 128-bit

blocks as before; however, in the duplex sponge construction, ciphertext blocks are

also produced each round by an XOR of the plaintext and rate. This is the duplexing

operation, which combines absorbing and squeezing into one action [1, 10]. Lastly,

a final squeezing operation with no additional input produces the tag. The value of

this tag is dependent on all previously-absorbed data, including the key, and thus

provides authentication for the encrypted message.

2.1.2 Architecture of MK-3

As described in Section 2.1.1, the high-level design of MK-3 is based on the sponge

construction. Therefore, the main contribution of MK-3 itself is the permutation

function f , composed of several iterations of a round function g. Within a single

application of the overall function f , g is applied repeatedly in a number of rounds

dependent on the key length; for a 128-bit key, 10 rounds are used, and for a 256-bit

key, 16 rounds are used. The round function g has four stages, as shown in Figure 2.3.

7
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S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

M M M M M M M M M M M M M M M M

16

512

32

512

512

Figure 2.3: Diagram of the MK-3 round function g. [1]

0

1

S-box

(x32)
Permutation

Mixer

(x16)

Add

Round

Constant

Round

State

Register

Round Function g

State

In
State

Out

Figure 2.4: Block diagram of the MK-3 permutation function f .

Pseudocode is presented in Algorithm 1 [12] to give a concise definition of the

overall permutation function f , along with the diagram shown in Figure 2.4. Sec-

tions 2.1.2.1 through 2.1.2.4 then provide detailed explanations of its functionality.

2.1.2.1 Substitution Stage

First is the substitution stage, which provides nonlinearity to the round function.

This stage is composed of 32 identical 16-bit bijective substitution boxes (S-boxes);

instead of a random mapping from inputs to outputs, these S-boxes use a design

based on the computation of a multiplicative inverse in a Galois field followed by

an affine transformation [13, 14]. The use of a known function instead of a random

mapping allows S-box results to be computed on the fly, instead of implementing a

resource-intensive lookup table. Thanks to this method of S-box construction, the

MK-3 algorithm is able to use S-boxes with 16-bit inputs and outputs, which are

believed at the time of writing to be the largest used in an encryption algorithm

to date [1, 13]. In the standard MK-3 implementation, each S-box computes the

multiplicative inverse of its input over the Galois field GF (216) modulo the irreducible

8



Chapter 2. Background

Algorithm 1 MK-3 Permutation Function f [12]

1: Nr ← 10 (or 16) ▷ number of rounds
2: Nb ← 512 ▷ number of bits in state
3: Nw ← 32 ▷ number of 16-bit words in state
4: function f(S)
5: for r ← 1, Nr do
6: g(S) ▷ permute state S in place
7: end for
8: end function
9: function g(S)

10: for i← 0, Nw − 1 do ▷ substitution step
11: S.word[i]← Sbox(S.word[i])
12: end for
13: S ′ ← S.copy()
14: for b← 0, Nb − 1 do ▷ permutation step
15: b′ ← (31b + 15) mod 512
16: Sb ← S ′

b′

17: end for
18: for j ← 0, Nw/2− 1 do ▷ mixing step
19: i← 2j
20: (S.word[i], S.word[i + 1])
21: ← mix(S.word[i], S.word[i + 1])
22: end for
23: S ← S ⊕RC[r] ▷ add round constant step
24: end function

9



Chapter 2. Background

polynomial p(x) = x16 + x5 + x3 + x + 1, followed by an affine transformation on the

result, as shown in Equation 2.1.

Sbox(x) =



0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1
0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0





x15
x14
x13
x12
x11
x10
x9
x8
x7
x6
x5
x4
x3
x2
x1
x0



−1

⊕



0
1
0
0
0
1
0
1
1
0
1
1
0
1
1
1


(2.1)

2.1.2.2 Permutation Stage

The next stage of g is the permutation stage. As described in [1], this stage provides

diffusion to the round function across the entire 512-bit state. This is accomplished us-

ing a 512-bit bitwise permutation, defined by the function π(x) = 31x+15 mod 512.

Specifically, the bit at position x in the output of the permutation stage is connected

to the bit at position π(x) in the input of the stage.

2.1.2.3 Mixing Stage

After the permutation stage is the mixing stage, which serves primarily to create

diffusion on a smaller scale than the previous step. In this stage, the 512-bit state

is distributed into 16 identical mixers, each of which has a 32-bit input and output.

Each mixer operates by dividing the 32-bit input into 16-bit words A and B, and

then performing the operation shown in Equation 2.2 to produce the output words

A′ and B′ [1]. [
A′

B′

]
=

[
1 x

x x + 1

][
A

B

]
(2.2)

This operation is performed in the Galois field GF (216), modulo the irreducible poly-

nomial q(x) = x16 + x5 + x3 + x2 + 1. The 32-bit output of the mixer is then the

concatenation of A′ and B′.
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In GF (216), addition can be implemented using a single XOR operation; multi-

plication by x corresponds to a left shift followed by a modulo operation, which can

also be implemented using a small number of XOR gates based on q(x) as shown

in Figure 2.5 [1]. Using these implementations of the mixer operations, an efficient

hardware design for the mixer can be created. Figure 2.6 shows a diagram of this de-

sign, where ∗x represents the multiplication-by-x operation and ⊕ represents a 16-bit

XOR.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 2.5: Multiplication by x in GF (216) modulo q(x).

A

A' B'

B

*x

*x

Figure 2.6: Diagram of mixer function for MK-3.

2.1.2.4 Add Round Constant Stage

The final stage of the round function g is the add round constant stage. This stage

simply performs a bitwise XOR of all 512 bits from the mixing stage with a 512-bit

round constant, which is produced by Keccak-512(ASCII(i)) where i is the current

round number (starting at 1 for the first round) [9]. Note that due to a padding

change during standardization, the SHA3-512 algorithm referenced in [1] and [7] does

not produce the same results as Keccak-512 [9, 15].
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2.1.3 MK-3 Customization

There are many ways to customize the MK-3 algorithm, each producing numerous

versions which are not interoperable with one another [1, 7, 11]. The available cus-

tomization modes can be divided into two categories: factory customization and field

customization. Factory customizations are modifications to the permutation function

which can be made by the manufacturer of the device implementing the encryption,

while field customizations are modifications which can be made after the device has

been produced and put to use.

Each of the four stages of the function can be modified by factory customizations,

while the mixing stage can also be modified by field customizations.

2.1.3.1 Substitution Stage

In the substitution stage, the S-boxes can be customized by modifying both the

irreducible polynomial p(x) used to compute the multiplicative inverse, as well as the

invertible matrix A and vector b which compose the affine transformation. In Kelly’s

and Wood’s theses [1,13], no specific values are assumed for these parameters on their

own when evaluating the security of the S-box design. Instead, the security analysis

is based on several characteristics of the S-box itself, as described in [11]:

• Has no fixed points (no input results in itself)

• Has no opposite fixed points (no input results in its bitwise inverse)

• Has a maximum differential probability of 2−14

• Has a maximum linear bias of 2−8

Therefore, when developing a customization, any selection of p(x), A, and b can be

used, so long as the resulting S-box meets or exceeds these specifications.
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2.1.3.2 Permutation Stage

Similarly, the security of the permutation stage is based on the following properties

of the bitwise permutation π, specified in [1]:

• The output of each S-box is evenly distributed across all mixers

• No input position is mapped to the same position in the output (π is a derange-

ment; π has no fixed points)

• When applied repeatedly, the original input pattern does not occur within the

number of rounds of the permutation function f (π is of high order)

• No individual bit returns to its original position in fewer applications than it

takes for the overall function to repeat (π has no low-order bits)

As with the substitution stage, any bitwise permutation can be used which satisfies

these properties. Kelly’s thesis [1] provides a listing of 384 candidate affine functions

which fulfill all the requirements.

2.1.3.3 Mixing Stage

The mixing stage can be customized both at the factory and in the field. In both

cases, the customization modifies the irreducible polynomial q(x) used in each mixer.

In total, there exist 4080 degree-16 irreducible polynomials; as described in [11], the

security analysis of MK-3 performed in [1] does not assume any particular polyno-

mial. Therefore, any polynomial can be selected without affecting the security of the

algorithm.

At the factory, the first part of mixer customization is performed by selecting

256 of the 4080 possible irreducible polynomials and placing their coefficients into a

lookup table. The mixers are then configured to use the results of this lookup table

instead of a fixed polynomial.
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Field customization of the mixers is then implemented using this lookup table.

Specifically, a 128-bit Field Customization Register (FCR) is created, which provides

separate 8-bit lookup table inputs for each mixer. This allows the irreducible poly-

nomial for each mixer to be individually chosen from the 256 options selected at the

factory, without making any modifications to the hardware of the device. Because

every lookup table input maps to a valid irreducible polynomial, any of the possible

values of the FCR will result in a valid mixing operation.

2.1.3.4 Add Round Constant Stage

Factory customization in the add round constant stage is fairly simple. The only

requirements are that the constants are unique in each round, and that they exhibit

no discernable structure [1, 11]. As long as these requirements are satisfied, any

round constants may be used. One method recommended by [11] is the use of a

cryptographic hash function to generate constants based on a counter incremented

each round.

2.2 Side-Channel Attacks

A side-channel is any form of information produced by an operation other than its

intended result; for example, the use of shared resources, the time between requesting

and receiving a result, or the amount of energy used to produce a result. Frequently,

side-channels can reveal information not available through typical means, such as the

internal state of a device during computation.

In the context of encryption, intermediate values between the input and the output

are rarely considered for security, unless for the purpose of preventing side-channel

attacks. Therefore, if a side-channel exposes intermediate values in an unprotected

implementation of an encryption algorithm, an attack could potentially be performed

regardless of the algorithm’s security in a traditional cryptographic sense.
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2.2.1 Power Side-Channels

There are a variety of side-channels which can be used to extract information from

a device. The most common and well-studied is power consumption, a side-channel

based on the fact that the changing of electrical signals in a device consumes en-

ergy, and that the amount of energy is dependent on the particular changes taking

place. This energy consumption can be observed from outside the device, revealing

otherwise-inaccessible information about the data being operated on, as well as the

nature and timing of the operations [2,16,17,18]. Power analysis will be the focus of

this work, and Section 2.3 describes several different attack methods which use power

side-channel information.

2.2.2 Electromagnetic Side-Channels

As with power usage, the electromagnetic (EM) emissions produced by computations

have a dependency on internal values and can be used to perform similar attacks.

EM measurements and attacks are very non-invasive, and can potentially be used

with no modifications at all to the target device [2, 4, 16]. However, in exchange,

electromagnetic emissions may be more difficult to measure than power usage, of-

ten subject to significant interference and typically requiring close proximity with

specialized measurement equipment.

2.2.3 Timing Side-Channels

Another common side-channel is timing, which is typically introduced by data-dependent

execution. Specifically, when the execution path of a software program or a hardware

circuit is determined based on a secret value, the difference in execution time for

the different paths can potentially be detected from outside the system, revealing

information about the secret value. There are a variety of ways to detect this time

difference. The simplest is to measure the overall time period between providing
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an input and receiving the corresponding output, which only requires observing the

intended output channel. Paul Kocher’s seminal paper [19] introduces this type of

attack on systems using modular exponentiation and reduction.

Additionally, a simple example of timing attacks on a software level is an attack on

a password verification routine which checks each character of the provided password

sequentially against the corresponding character of the correct password. As soon as

a character does not match, the routine knows that the given password is wrong, and

reports a failure. Because the characters are checked one by one, an attacker can mea-

sure the time taken for the system to report an incorrect password to determine how

many characters were checked, and therefore how many of the beginning characters

are correct. Based on this information, an attack is trivial, as the required number

of attempts changes from an exponential to a linear relationship (for example, 2610

becomes 26 ∗ 10 for a 10-character alphabetic password).

Timing is also very commonly used in conjunction with other side-channels. For

instance, the timing of various internal steps in an algorithm could be identified based

on the associated changes in power usage; this is the basis of Simple Power Analysis,

discussed in Section 2.3.1. Many shared-resource side-channels also rely on timing to

produce their results, as described in Section 2.2.4.

2.2.4 Shared-Resource Side-Channels

Shared-resource side-channels take advantage of systems where several different pro-

cesses are performed using the same shared resource. An excellent example of this

type of resource is the cache in a modern CPU, which holds the data from recently-

accessed memory locations to allow faster operation. Notably, the organization of the

cache is based only on partial memory addresses; this means that the access time for a

given address will depend on whether or not other conflicting addresses have recently

been accessed. The recent Meltdown attack [20], as well as one possible implementa-
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tion of the more general Spectre attack [21], take advantage of speculative execution

by first reading a protected memory location, then accessing a specific address de-

pendent on the read value, before the relatively-costly memory permission checks are

performed. Even though the speculatively executed read instruction is later cancelled

when the access checks are completed, it has still modified which addresses are present

in the cache. The resulting timing differences accessing those addresses later on can

then be detected by another process; this is the side-channel, allowing information to

pass between the normally-isolated speculative and non-speculative domains.

Another example of a common shared resource is a branch predictor, which could

be manipulated to reveal information about the control flow of an unrelated process.

An attack using this principle would be similar to the cache-based attack, forming a

side-channel to learn the results of a speculative branch.

2.3 Power Analysis Methods

Depending on the system being targeted, there are many different ways of using

information obtained through a power side-channel to perform a full-fledged power

analysis attack. The following sections highlight several common methods.

2.3.1 Simple Power Analysis

Simple Power Analysis (SPA) is a timing-based power analysis attack. In SPA, a

device’s power consumption is measured during a single operation, producing a list

of power values over time called a power trace. The timing characteristics of this

power trace are then analyzed to identify regions with different amounts of power

consumption, indicating that different sections of the computation are occurring [2,

16,18]. This can be thought of as an expansion of the pure timing attacks in [19], as

it provides more fine-grained information on the internal state as calculations occur,

rather than a single overall metric.

17



Chapter 2. Background

Typically, SPA is applied to processes where the execution path is directly de-

pendent on the desired secret information; the classic example is the RSA algorithm,

during decryption of a message with an unknown private key exponent d. In the

square-and-multiply process, each bit of d directly determines whether only a squar-

ing operation or both a square and multiply operation take place. When a particular

bit of d is 1, the corresponding square-and-multiply will produce a longer period of

high power usage when compared to the shorter period for only the squaring opera-

tion. Because of this difference, the bits of d can be directly read from a power trace

by identifying long and short periods of increased power usage [16].

2.3.2 Differential Power Analysis

Differential Power Analysis (DPA) is a more sophisticated method of power analysis

than SPA, based on statistical analysis of power traces. It allows the target values to

be determined by enumerating partial guesses of these values, and then determining

which of the partial guesses is correct [2, 17]. The key difference between DPA and

simple brute-forcing is that although both require enumerating possibilities for the

target value, brute-forcing requires the entire value to be guessed at once, while DPA

allows small portions of the value to be guessed independently. For example, instead

of testing all 2128 possibilities for a 128-bit encryption key, DPA could allow a byte-

by-byte approach, requiring only 16 ∗ 28 = 212 total guesses.

To perform DPA, power traces are collected from many encryptions, using the

same unknown key but different plaintexts each time. Either the plaintexts or the

resulting ciphertexts are considered to be known. The power traces are then divided

into two subsets based on the result of a selection function; given a plaintext or

ciphertext and a guess for part of the target value, the selection function computes

a property which is expected to be true at some point in the encryption process

[17,18,22]. This property is usually the value of a given bit of an intermediate value
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in the computation. All traces in each subset are then averaged together, and the

difference of these two averages is computed to produce a DPA trace for the given

guess.

If the guessed value is incorrect, then the bit computed by the selection function

will be different from that bit in the target device in approximately half of the traces

in each set; therefore, the difference between the averages of the sets will be approxi-

mately zero. On the other hand, if the guessed value is correct, then the power traces

will be correctly divided based on the value of the target bit. In this case, the effect

that this bit has on power consumption will not be evenly distributed between the

sets, causing their averages to differ. This difference causes the DPA trace for the

correct guess to stand out from the others, revealing the corresponding part of the

key [2,17,18]. Finally, this process can be repeated, guessing different sections of the

key with appropriate selection functions, to eventually determine the full value.

2.3.3 Correlation Power Analysis

Similarly to DPA, Correlation Power Analysis (CPA) allows guesses to be verified

separately for small parts of the target value. However, instead of dividing traces using

a selection function, CPA develops a model for the expected power consumption of the

target device given a particular guess g and known input value Ii [16,23]. Using this

model, the expected power usage at some point in the target operation is computed

for a given guessed value across all collected inputs; then, the Pearson correlation

coefficient between the modeled power and true power vectors is computed at each

time sample of the traces, as shown in Equation 2.3.

corr(X, Y ) = ρX,Y =
cov(X, Y )

σXσY

=
E[(X − µX)(Y − µY )]

σXσY

(2.3)
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As with DPA, the computations are then repeated for all possible values of the guessed

portion. Figure 2.7 shows a visual representation of this process.

Sample (Time)
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Input
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Figure 2.7: Diagram of correlation power analysis computations.

Once all correlation computations have been performed, the result is a matrix

of correlations, one for each guessed value at each of the original time samples. If

a particular guessed value is incorrect, then there will be minimal correlation be-

tween the actual and modeled power consumption across the entire time of the trace.

However, if a guess is correct, there will be a visible increase in absolute correlation

at the point in time where the modeled values appear in the physical computation.

With enough traces, the correct guess will have a strong enough correlation that it is

clearly separated from the other guesses. Specifically, the guess containing the highest

peak correlation at any point in time is considered the correct guess for the current

part of the target value [23]. Figure 2.8 illustrates how this selection process can be

performed visually, by plotting the correlation of each guess over time.

Algorithm 2 describes the overall CPA process in pseudocode, including the final

guess-selection step. The specifics of power modeling for MK-3 are described in

Section 3.3.
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Figure 2.8: Visual guess selection process for CPA.

Algorithm 2 Correlation Power Analysis

1: Ps,i ← measured power at sample s in trace i
2: Ii ← known input used to produce trace i
3: G← set of input bit positions to guess
4: function cpa(P, I,G)
5: for i← 1, |I| do ▷ model power usage
6: for g ← 0, 2|G| − 1 do
7: Qg,i ← ModelPower(Ii, g)
8: end for
9: end for

10: for s← 1, |P | do ▷ compute correlations
11: for g ← 0, 2|G| − 1 do
12: ρs,g ← corr(Ps, Qg)
13: end for
14: end for
15: return argmaxg(maxs(ρ)) ▷ identify guess with maximum correlation
16: end function
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In order to determine the entirety of the targeted value, one can repeat the analysis

process, making guesses on a different part of the target until it has been completely

covered. This analysis can be performed using the same power traces for each region

being guessed.

When developing an attack using CPA, the majority of the effort goes into pro-

ducing the power model. This involves two significant points in the algorithm. First

is the target value; this is the end goal of CPA, obtained by checking guesses for small

sections until the entire value is determined. Typically, the target is an encryption

key. The other significant point is the modeling location, at which the algorithm’s

power consumption is expected to relate to some internal variable. This relation-

ship can be detected through correlation, revealing the variable’s value. The model’s

function is to compute the expected power for a given value at the modeling location,

given some known input value and a guess for a part of the target value.

Generally, the model will be similar to the section of the original algorithm between

these two points; however, because only a part of the target value is guessed at a time,

the implementation must be able to produce a result even with significant missing

information. This is the primary factor making a power model difficult to produce. To

obtain useful data, one needs to select sets of bits in the modeled and target locations

such that the modeled bits are computable based on the targeted bits, while also

ensuring that the number of targeted bits remains small enough that performing

the correlation analysis remains computationally feasible. The following paragraphs

describe these selection requirements more rigorously.

Let G be a set of guessed bits; these are the bits in the target location for which

every possible value is tested and one value is determined to be correct. These possible

values are indexed by g, which ranges from 0 to 2|G|−1. For example, if G = {2, 5, 8},

then the index g = 310 = 0112 represents bit 2 having the value 1, bit 5 having the

value 1, and bit 8 having the value 0. Other bits in the target location are undefined.
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We also define the set V as the set of bits which are known and variable between

traces; at index i, the bits specified in V have their value determined by the bits of the

input Ii, with i ranging from 1 to |I|. Each input value in I also has a corresponding

power trace P∗,i, produced by setting the bits specified in V to match I. Please note

the distinction between a set of bits and the value represented by those bits.

Finally, we define the sets C and O. C is the set of bits which are known and

constant across all operations, and O is the set of all bits in the modeling location.

Note that not all bits in O will necessarily be calculated in the final power model.

Given the sets C, V , and G, there are several criteria for a bit b ∈ O in the

modeling location to be modelable:

1. b is calculable: Each dependency of b is included in any of C, V , or G

2. b is guess-dependent: b depends on at least one bit in G

3. b is variable across traces: b depends on at least one bit in V

Equations 2.4a through 2.4c state these criteria using set notation.

α(b) = deps(b) ⊆ (C ∪ V ∪G) (2.4a)

β(b) = deps(b) ∩G ̸= {∅} (2.4b)

γ(b) = deps(b) ∩ V ̸= {∅} (2.4c)

If (1) is not met, the value of b cannot be determined for use in the expected

power computation. If (2) is not met, b will have the same value for each guess of

the value of the bits in G, contributing no information about which guess is correct

and potentially creating a situation where two guesses have identical correlations.

Finally, if (3) is not met, b will have the same value across all traces for any given

guess, making its contribution to the modeled power constant with respect to i. The

correlation calculations are performed on vectors along i, and correlation is unaffected
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by constant offsets; therefore, any b not satisfying condition (3) will have no effect on

the result and should be excluded.

Using these criteria, for a given C, V , and G, we can define the set of all modelable

bits M ⊆ O as shown in Equation 2.5.

M = {b ∈ O : α(b) ∧ β(b) ∧ γ(b)} (2.5)

In a single attack formulation, the sets C and V remain constant. The difficult

part of power modeling is the selection of the guess sets G. The goal is to maximize

the number of modelable bits |M | corresponding to each G, while at the same time

keeping the size of each G small enough that performing correlation calculations for

all 2|G| possible values remains computationally feasible. Additionally, in order to

have a complete attack, the guess sets G must eventually cover the entire targeted

location when combined.

Once a G is chosen, the attack is performed as described earlier, testing all possible

values of the bits in G to determine which is correct. This is then repeated with the

remaining sets G until the entire target value is obtained.

For the application of CPA to MK-3, two different attacks are performed, each

requiring a different power model and selection process for G. See Section 3.3 for the

details of these attacks and their power models.

2.4 Leakage Assessment

Leakage assessment is a category of methods for identifying whether or not an imple-

mentation of a cryptographic operation is vulnerable to side-channel attacks without

attempting to perform such attacks [2,24,25,26,27]. This usually takes the form of sta-

tistical testing on captured power traces. On its own, a single leakage assessment test

has limited utility; the raw amount of leakage is highly implementation-dependent,
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making comparison with published results difficult. Instead, leakage assessment is

most useful for evaluating the effectiveness of implementation-level hardware coun-

termeasures, where the algorithm and environment are kept consistent and the same

test is run with several different countermeasures.

2.4.1 Test Vector Leakage Assessment

Test Vector Leakage Assessment (TVLA) is a leakage assessment method based on

testing the influence of intermediate values on power consumption. This is done by

collecting many power traces which are members of two sets; one set uses a fixed

input value, while the other set uses a randomized input value. Then, Welch’s t-test

is used to test whether the distributions of power consumption at each point in time

have the same mean; the amount of confidence that the distributions differ indicates

the amount of leakage detected at that point in the execution [2, 24, 26, 27]. The

measurements are then repeated several times, using different values for the fixed

input, to eliminate any dependence on the particular value which was selected.

2.4.2 Holistic Assessment Criterion

An alternative to TVLA is the Holistic Assessment Criterion (HAC), introduced

in [25]. This method has a similar basis to TVLA, attempting to quantify the mea-

surement of whether different inputs produce identifiably different power usage; how-

ever, in contrast to TVLA, traces are not only considered on a sample-by-sample

basis. Instead, HAC is based on comparing nearest neighbors, i.e., traces which have

the least difference along their entire length. Using this information, the exchange-

ability of traces is evaluated, and the final metric is presented as a value representing

this exchangeability with a confidence interval. By collecting and analyzing more

traces, the confidence interval can be reduced, obtaining a more precise indication of

the amount of leakage [25]. This is an advantage over TVLA, as it provides a way to
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identify when enough data has been collected to have a meaningful result.

2.5 Power Analysis Countermeasures

Many countermeasures have been proposed for eliminating side-channel information

leakage and mitigating the effectiveness of side-channel attacks. This section describes

several common countermeasures at various levels of the design process.

2.5.1 Implementation-Level Countermeasures

Implementation-level countermeasures are modifications made to protect a specific

hardware design against side-channel attacks. These often come in the form of hard-

ware architecture changes, which can be costly to implement and may need to be

tailored to the desired application. The following sections describe a selection of

these implementation-level countermeasures.

2.5.1.1 Amplitude Noise

When faced with the problem of power side-channel leakage, a common intuition is

to introduce noise into the measurements by adding a component which consumes

random amounts of power, such as a set of controllable ring oscillators [28]. This

technique is one of several related to introducing noise, collectively called hiding

techniques, which aim to reduce the signal-to-noise ratio of any power measurements

targeting secret information. In the case of simple power analysis, the introduction of

random additional power consumption can successfully prevent an attack; however,

with more sophisticated techniques such as DPA or CPA, random noise is generally

ineffective [2, 3, 8, 16, 17, 18, 22]. These methods of analysis are already designed

to extract the relatively-insignificant leaked information from noisy data; although

introducing random noise can increase the number or quality of power traces required

for a successful attack, it is typically incapable of complete prevention [2, 3, 17,18].
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An alternative to completely random power consumption is to equalize power con-

sumption over time, using a configuration such as current sensor controlling a shunt

transistor to consume unused power [3,8]. Theoretically, making the power consump-

tion perfectly constant would remove any possibility of power attacks; however, such

a device-wide component is effectively impossible to implement in practice. Other

methods of reducing the power usage data dependency, such as balancing, decou-

pling, and masking, are discussed in later sections.

One design technique which combines the benefits of these two methods is dynamic

voltage and frequency scaling (DVFS), which automatically modifies the operating

voltage and clock speed of a device to optimize its power consumption for the current

processing demand. Many systems already incorporate this technology for its energy

savings and efficiency gain, and with minor modifications, it could be adapted to

randomize power usage for the purpose of side-channel security [3, 16].

2.5.1.2 Temporal Noise

In addition to producing randomness in the amount of power being used, DVFS is

also valuable for its temporal characteristics. In order to perform DPA or CPA, the

power traces need to be aligned so that each sample corresponds to the same point in

the operation [23]. By modifying the clock frequency during operation, DVFS makes

this alignment much more difficult, as it is possible for the frequency to change in

the middle of a trace. Although this type of change can be identified fairly easily,

the frequency difference still introduces error when combining traces and requires an

attacker to guess at what exact points the target operations occur [3].

Other methods of introducing temporal noise exist aside from DVFS. For example,

a device can use a separate clock for critical operations, not accessible from the outside

and out of phase with the main clock; this prevents an attacker from using the external

clock for sample alignment, as well as offsetting the protected signal changes from the
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main clock edges [3, 8, 17, 18]. Alternatively, random delays can be inserted during

processing, causing trace alignment issues as with DVFS [3,17].

One particularly useful method of adding temporal noise is to interleave random

data with the true input data, discarding the irrelevant results after the fact. This has

the advantage of creating a similar power signature to the operations being performed

on real data, making it difficult to identify which power traces correspond to the fake

data [3,17,29]. If they are not correctly identified by the attacker, these traces could

potentially replace those corresponding with known inputs, interfering with the results

of DPA and CPA.

2.5.1.3 Balancing

As mentioned earlier, a theoretical device which always consumes exactly the same

amount of power is immune to power analysis attacks. Instead of a single chip-level

power compensation device, several different balanced logic styles have been proposed

which attempt to equalize power for individual operations at a gate or transistor level.

One approach to balancing power consumption is to design custom logic cells

which use the same amount of energy every clock cycle. This can be done using the

ideas of Dynamic and Differential Logic (DDL). Dynamic logic constructs gates by

replacing the pullup network of a standard Complementary Metal-Oxide Semicon-

ductor (CMOS) design with a precharge transistor or small precharge network, and

activating the resulting circuit in two phases. First, the precharge phase activates

the pullup network, charging the circuit’s inherent capacitance; then, in the evaluate

phase, the precharge network is switched off, and the pulldown network then dis-

charges the circuit if the inputs allow it to do so. This requires the circuit inputs

to be monotonically rising, because once the output has been discharged, it cannot

be recharged until the next precharge phase. Differential logic operates using gates

which use and produce the complement of each input and output, as well as the val-
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ues themselves. Both of these techniques were originally developed as methods for

improving the speed of digital logic, but they also have useful properties for reducing

power side-channel leakage [8].

Dynamic and differential logic techniques can be combined to form Dual-Rail

Precharged (DRP) logic, a type of logic design taking advantage of both techniques’

side-channel prevention properties. The key advantage of DRP is that each gate is

ensured to have exactly one logic transition per clock cycle [8,16,22,29,30]. A dynamic

circuit guarantees that there will be a maximum of one transition per cycle; either

the output will remain high during the evaluation phase, or it will be pulled low and

be incapable of returning to a high state until the next cycle. When combined with

differential logic, the possibility of no transition is eliminated. Both outputs become

high during the precharge phase; during evaluation, if the direct (non-complementary)

output remains high, then the complementary output must change to low, and vice

versa. The first implementation of DRP is Sense Amplifier Based Logic (SABL),

proposed in [30], which is designed to ensure that all internal nodes are eventually

discharged, using a cross-coupled inverter as a sense amplifier to generate the output

signals.

The main weakness of DRP is that only one of the outputs will make the transition

from high to low and back. The goal of equal power consumption independent of

the output value is only achieved if the capacitances of both outputs are perfectly

balanced, which is a difficult task requiring specialized routing techniques and design

tools [16]. In response to this issue, three-phase logic designs were developed such

as Three-phase Dual-rail Precharge Logic (TDPL), which extends DRP by adding a

discharge phase after evaluation. [3, 16, 31]. This third phase discharges all output

nodes before the following precharge phase, ensuring that both outputs make the

transition in every cycle. Because all outputs transition every time, the difference in

per-cycle power consumption caused by unbalanced output capacitances is eliminated,
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allowing the use of traditional routing techniques.

Balanced logic designs such as those described previously can be very effective at

reducing power side-channel leakage; however, they all require the use of customized

logic cells, which is a significant undertaking in ASIC designs and is impossible on

FPGAs. To address this, several logic designs have been proposed which make use

of standard cells, instead balancing power consumption by implementing DDL tech-

niques at the gate level [3, 16,22].

One such logic design is Simple Dynamic Differential Logic (SDDL). At this higher

level of implementation, differential gates are constructed by duplicating standard

gates and modifying the duplicates in accordance with De Morgan’s laws; for exam-

ple, a differential AND gate is constructed by combining a single-ended AND gate,

connected to the non-inverted inputs, with a single-ended OR gate, connected to the

inverted inputs [8, 32]. In this configuration, the combined differential AND gate is

able to produce both direct (by the AND gate) and complementary (by the OR gate)

results given direct and complementary inputs. Other types of differential gates are

constructed by the same method.

SDDL augments these gates by adding a single-ended AND gate after both com-

ponents of the differential unit, if the unit implements negative logic such as NAND or

XOR operations; these AND gates allow both outputs to be forced to zero, implement-

ing a “pre-discharge” phase where all nets are discharged before evaluation [3,8,22,32].

For consistency with DRP and dynamic logic terminology, the literature continues to

refer to this as a precharge phase. The precharge phase in SDDL has the same pur-

pose as in DRP; by discharging all nets to zero, it is guaranteed that at least one

transition from low to high will occur during the evaluation phase. However, unlike

DRP, the inclusion of negative logic introduces the possibility of glitches, which can

cause more than one transition to occur in a single evaluation phase and thus reveal

information via the power side-channel [3, 8, 22, 32,33].
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In order to correct this, [32] introduced Wave Dynamic Differential Logic (WDDL).

WDDL operates on the same basic techniques as SDDL, but restricts the implemen-

tation to use only positive logic (i.e., AND and OR gates); rather than implementing

negative gates, inversion is performed by swapping the differential inputs [3,8,32,33].

This restriction provides several benefits; most importantly, the removal of negative

logic eliminates glitches, guaranteeing that exactly one low-high-low transition will

occur per cycle [8,29,32,33]. In addition, WDDL significantly reduces the number of

precharge gates which need to be inserted. Because only positive logic is permitted,

setting the inputs of a combinational chain to zero will cause the first level of gates

to output zeros to the next level; this means that precharge gates are only necessary

at the beginning of each combinational section of the design. During the precharge

phase, the zeros will ripple through the entire combinational chain in a wave, the

phenomenon giving WDDL its name [8, 32].

Unfortunately, there are also several aspects of WDDL which make implementa-

tion difficult. Although it eliminates some of the precharge gates, WDDL still requires

more area than SDDL, and significantly more area than an unprotected implementa-

tion, especially on FPGAs [3,8,32,33]. This is primarily due to the translation of all

logic into only AND and OR gates, a task which also requires modifications to ASIC

and FPGA design tools [32, 33]. Additionally, replacing inverters with swapping of

differential pairs introduces significant complexity when trying to ensure that each

side of the differential operations is routed with equal capacitance, which is necessary

for maintaining data-independent power consumption.

One method for reducing this difficulty, also proposed in [32], is Divided Wave

Dynamic Differential Logic (DWDDL). This modification takes advantage of the fact

that in between inversions, there is no cross-connection between the direct and com-

plementary logic chains; i.e., they are completely independent from one another [32].

This allows the routing effort to be reduced by first placing and routing a positive-
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logic section of the original design, and then duplicating the routed section into a

different location. By exchanging AND gates for OR gates and vice versa, as well

as swapping the positive and negative inputs to the duplicate chain, a result iden-

tical to WDDL is achieved, but with identical routing between the two chains [32].

This method can be used on any section of the logic not including an inversion (a

swap of the differential pair), reducing the workload of differential routing to only the

interconnect between these larger sections [3, 8, 22, 32].

Overall, power-balancing countermeasures are a promising method for preventing

power side-channel leakage; however, this security comes with costs. With DRP and

TDPL, this cost primarily comes as the necessity of developing custom logic cells

and integrating them with the rest of the design [16]. In situations where this is not

possible, WDDL and DWDDL are good candidates, but have the downside of greatly

increasing area requirements and reducing maximum clock speeds [8,32]. In the case

of FPGAs, it may be desirable to use SDDL instead, as its inclusion of negative logic

simplifies implementation and allows for better utilization of FPGA features [33].

2.5.1.4 Decoupling

In ASIC designs, there is also the option of using power supply modifications to re-

move the association between power usage and data. One such method, presented

in [34], is to create a set of capacitors within the chip that are used to power cryp-

tographic circuitry in isolation from the main power supply. Before each operation,

these capacitors are charged, then disconnected from the power supply; the protected

circuit is then operated using only the energy stored in the capacitors. Finally, after

each operation is completed, the capacitors are discharged before being recharged

again, erasing any information on how much power was used over the entire oper-

ation. By decoupling the amount of power delivered into the chip from the actual

power consumption of the protected operations, power side-channel leakage is pre-
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vented [3, 22, 31]. Overall, this method is quite similar to TDPL, only implemented

at a larger scale. As with TDPL, there is still the possibility of some information

leakage if an attacker is able to identify the amount of unused energy discharged after

the fact; however, as shown in [34], the technique is quite effective in practice.

2.5.1.5 Low-Level Routing

When considering EM information leakage, implementation specifics such as inter-

connect routing can be much more significant than with power side-channels. As

determined in [5] by detailed modeling and simulation, it is the topmost few metal

layers which contribute the vast majority of electromagnetic emissions, due to their

larger size and proximity to the outside of the chip. In order to prevent the leakage of

secret information through these emissions, the proposed technique is to isolate crit-

ical cryptographic elements from these higher layers as much as possible by special

routing constraints. Although this presents some difficulty in routing complexity, as

well as potential speed limitations due to higher resistance of the lower layers, the

tests performed on the AES S-box in [5] showed a significant increase in the number

of EM traces needed to obtain the key; compared to fewer than 5,000 traces in an

unprotected implementation, low-level routing combined with EM noise injection was

able to raise the requirement to over 1 million traces.

2.5.2 Algorithm-Level Countermeasures

In addition to implementation-level countermeasures such as those described in the

previous section, side-channel leakage countermeasures can be created by modifying

the design of the algorithm being implemented or executed.
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2.5.2.1 Constant Control Flow

In the context of software, one of the most intuitive countermeasures to defend against

side-channel attacks is to remove any dependence of the control flow on the data

being processed [2,18,19]. For instance, in a timing attack on RSA done via SPA, the

square-and-multiply algorithm could be modified to always perform a multiplication

operation in addition to squaring, simply discarding the result of the multiplication if

it is not needed based on the current key bit. This eliminates the obvious differences in

the power trace, but necessarily comes with the performance reduction resulting from

multiplying in every iteration [19]. In order to completely eliminate data-dependent

execution, such as the conditional variable assignment described above, branches can

also be replaced with arithmetic expressions for assignments, as described in [2].

To extend this concept, memory access patterns can also leak information through

side-channels such as timing, from access latency, as well as shared-resource side-

channels manipulating the cache, such as the Meltdown attack discussed in Sec-

tion 2.2.4. Software could also be modified to prevent this leakage by removing

data-dependent memory accesses; for instance, if indexing into an array based on

part of a key (such as in an S-box), all possible indexes could be accessed, discarding

those results which are not needed in the computation [2]. However, this again comes

with a significant performance reduction. Additionally, as discussed in [35], successful

application of this type of modified program requires careful consideration of compiler

configuration, particularly with regard to optimization.

2.5.2.2 Masking

Masking is a very common method for reducing power side-channel leakage, focused

on preventing DPA, and can be applied to both hardware and software. The general

process of masking is to combine secret input values of potentially leaky operations

with random values, called masks, then perform the operations on the masked values
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and reconstruct the desired output value from the masked output. The effect of

this process is that the leaky operations are not performed directly on secret data;

because the inputs are combined with random data, any information leaked through

side-channels will not reveal the secrets without additional knowledge of the masks

used [2,3,8,16,17,19]. This requires attackers to use higher-order analysis techniques

which target both the secret data and the masks at once, significantly increasing

complexity and the amount of side-channel information needed.

Although masking can be applied in a variety of contexts, such as modular ex-

ponentiation as described in [2, 17, 19], the majority of use cases call for a Boolean

implementation in which the masks are combined with secret data using an XOR

operation.

For linear operations, such as bitwise permutation and XOR, conversion to a

masked implementation simply consists of duplicating the operation for the mask(s)

of the masked input(s); the masking is able to propagate through these operations

without issue, resulting in a successful reconstruction [17, 36]. Nonlinear operations,

such as AND or an S-box, require additional modifications to work with masked

inputs and outputs [3, 8, 16, 17,36].

A simple example of masking a nonlinear operation is to mask an n-bit AND

gate, as described in [37]. Given two masked input values X ′ and Y ′, with their

masks being rx and ry respectively, we can compute the masked result Z ′ = XY ⊕ rz

as shown in Equation 2.6.

Z ′ = X ′Y ′ ⊕ (rxY
′ ⊕ (ryX

′ ⊕ (rxry ⊕ rz))) (2.6)

This is logically equivalent to the simpler expression Z ′ = ((X ′ ⊕ rx)(Y ′ ⊕ ry))⊕ rz,

demonstrating that the end result is correct; however, the key difference between

this and the form shown in Equation 2.6 is that at no point in the computation of
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Equation 2.6 do the secret values X, Y , or Z appear as intermediate values which

could potentially be detected via first-order power analysis [37,38].

Masking individual gates to form a protected system without higher-level mod-

ification is technically possible, but comes at a high price; as seen in the previous

example, a single unprotected AND gate was expanded to eight separate gates with

masking. Because nonlinear operations such as S-boxes are substantially more dif-

ficult to adapt, a common technique is to approach masking from an algorithmic

standpoint, dividing nonlinear functions into several linear and nonlinear sections

which are simple enough to mask separately. However, this division is not an incon-

sequential task on its own [3,8, 16,17].

In addition to the theoretical complexity of designing a masking scheme, there are

several issues which make implementation difficult. These include a large increase

in area and reduction in performance, as well as the need for fast generation of ran-

dom data; each nonlinear operation requires a new set of masks, which can result in

masked implementations consuming several times the original inputs’ size worth of

random bits. These new masks need to be made available during the computations,

introducing complexity to the design; additionally, to ensure side-channel resistance,

the source and transmission of the masks must themselves be adequately protected

from analysis [2]. Another consideration is that when implementing masking in soft-

ware, one must pay close attention to compiler optimizations, as well as the use of

hardware registers in the resulting program, to ensure that the masking measures

are not nullified; this topic is covered in detail by [35]. Finally, this type of masking

does not consider glitches. If masked operations are performed only in the specified

order of evaluation, secret values do not appear as unprotected intermediate values;

however, glitches can violate this assumption, potentially revealing the secret values

even if they are no longer present once all signals have settled [2, 3, 38].

In [38], Nikova et al. introduce Threshold Implementations (TI), which is a mask-
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ing method designed to work despite glitches and only require random data at the

beginning of computations. The basis of TI is that secret values are XORed with

n − 1 masks in sequence to produce n shares; in order to recover the original value,

all n shares are XORed together, and it cannot be recovered using any set of n− 1 or

fewer shares. In this context, the simple masking scheme described earlier would be

a 2-share system, in which the original value can be obtained using the masked value

and the mask in combination, but not from one individually [38].

Linear operations in TI are implemented in the same way as before, by perform-

ing the operation on each share independently; because the operation is linear, the

combination of its individual outputs for each share is equivalent to the output of the

operation given the combination of the shares (i.e., the output of the operation given

the original value) [38].

The key difference between TI and simple masking is the method of implementing

nonlinear operations. In TI, a nonlinear operation is divided into a set of n functions

with two properties. First, each function must be incomplete; i.e., each function is

independent of at least one share of each input variable. Second, the set of functions

must be correct, in that the XOR of all function outputs provides the expected result.

As described in [38], this will require a minimum of s + 1 shares for a function of s

variables.

Because each function is independent of at least one share, any leakage from an

individual function is not capable of revealing the secret value on its own, even in the

presence of glitches [2,3,38]. This applies to the implementation of linear operations

as well; because each operation acts on only one share, it is incapable of revealing

the original value. Based on this property, the need to provide new random values

during computations is eliminated; processing shares in separated functions, even for

nonlinear operations, allows random values to be provided only at the beginning of

computations [38]. However, given the need to produce several shares per variable,
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the initial random data requirement is also increased.

There are also other concerns with TI. First, as with simple masking, nonlinear

operations still present a problem with complexity; in particular, creating the set of

incomplete functions for an operation is not a trivial problem [2, 38, 39, 40, 41, 42].

Second, the independence of functions implementing a nonlinear operation provides

side-channel protection with glitches given that an attacker can only target a single

function at a time [38]; although doing so increases the difficulty of the attack, this

assumption does not always hold true. This can be partially remedied by requiring

a third property of the set of functions; namely, that the distribution of the output

remains uniform given uniformity of the inputs. However, this additional restriction

exacerbates the problem of complexity, both in terms of developing a set of functions

as well as implementing it, significantly; instead, another option is to restore unifor-

mity by inserting a pipeline stage and re-masking some of the shares [38,39,40]. This

technique, in exchange, brings back the requirement of additional random data being

provided during computation. ASIC designs also have the option of using a logic style

which does not allow glitches, eliminating the issue altogether. Finally, based on the

application, TI can have a significant cost in terms of resources, especially if attempt-

ing to maintain uniformity directly; [40,41,42,43] show the costs of implementing TI

for various cryptography schemes.

2.5.3 System-Level Countermeasures

System-level countermeasures are implemented by modifying the environment or man-

ner in which the target device is operated, rather than the encryption algorithm or the

chip-level design of the device itself. Instead of attempting to completely eliminate

side-channel information leakage, these countermeasures assume that some degree of

leakage is inevitable, and instead seek to make the overall system robust despite this

leakage.
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2.5.3.1 Physical Security

Typically, power and EM side-channel attacks require close physical access to an oper-

ating device for an extended period of time. Power attacks in particular often require

physical modifications to the device in order to obtain measurements of high enough

quality to perform analysis; for example, a very common modification is the removal

of decoupling capacitors to enhance the effects of immediate power consumption on

the supply voltage. EM attacks are less invasive; depending on the specifics of the

target device, an attack could take place from up to several meters away, or may

require placement of a probe very close to the chip in question [4].

One method of preventing side-channel attacks is to design the system such that

it is not possible to gain the required access while still having a functioning device.

For power attacks, [16] describes several tamper-protection techniques; for example,

erasing any encryption keys from memory if the device detects that it has been phys-

ically opened, which would effectively prohibit an attacker from gathering data after

attempting to make any physical modifications. Many other such tamper-protection

schemes exist, most of which are variations on the device rendering itself inoperable if

it detects by some means that it has been modified or is in the hands of an attacker.

EM attacks are more difficult to prevent with this type of protection; typically, the

most one can do is to implement shielding in the physical design, such that long-range

attacks are not feasible [4,16,18]. If shielding is effective enough, it could potentially

force an attacker to open the device and attempt to remove it; this could then trigger

tamper-protection as described earlier.

2.5.3.2 Key Rolling / Key Transformation

An alternative to completely preventing access, as described in the previous section,

is to modify the system so that only a limited number of traces can be collected

with the same key [17, 18, 44]. If this number is small enough, then an attacker will
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not be able to gather enough traces to perform a successful attack before the key

changes; once the key has been changed, any newly collected traces are not usable in

combination with those collected previously [2,8,17,44]. This type of countermeasure

can only be effective if the device is protected well enough that techniques using a

very small number of traces, like SPA, are not possible; this level of resistance can be

accomplished fairly easily by applying one of the other countermeasures described in

previous sections, even one as simple as introducing random noise.

It is important to note that re-keying the operations targeted by side-channel

analysis does not necessarily imply a new round of key distribution to the devices

as a whole; all that matters is that there is no discernable relationship between the

inputs used as keys for the target operation, so that the resulting sets of traces are

rendered incompatible for analysis [2, 18,44].

A very simple example of this, mentioned in [18], is to first distribute an initial

master key, and then after every n messages, derive a new key by hashing the previous

key. Because modifying the key changes the relationship between inputs and power

consumption, the traces collected with each derived key are not usable in combination

with any others. In this system, the clear next choice of target for an attacker is the

hash function itself. However, the hash can also be protected from side-channel

attacks using countermeasures from the previous sections, potentially more easily

than the main cryptographic operation; additionally, the time required to collect

data is longer, as the hash is only computed when each key is produced rather than

for every invocation of the target operation.

Although this simple example has technical security against side-channel attacks,

it has several unaddressed problems when it comes to implementation, such as the

difficulty of synchronizing key changes between different devices and the method by

which key changes are enforced. However, a variety of rekeying schemes have been

developed and published which resolve these issues; for example, [44] proposes a
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scheme based on a skip-list structure, and [2,17] provide overviews of several others.

In combination with implementation-level and algorithm-level countermeasures to

provide basic protection, rekeying can effectively eliminate the security impact of any

remaining side-channel information leakage.
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Methodology

3.1 MK-3 Implementations

All versions of the permutation function are used in an abbreviated sponge construc-

tion, as shown in Figure 3.1. Because IV absorption is the target area, all later steps

can be removed with no effect other than a reduction in the time needed to collect

power traces. Additionally, because both attacks aim to recover the state after ab-

sorbing the key, it makes no difference whether a 128-bit or 256-bit key is used; in

either case, the state is 512 bits wide. For simplicity of the test architecture, this

work uses a 128-bit key for all attacks, and uses the default customization values in

all cases other than the theoretical capacity attack computations.

rate
128 bits

capacity
384 bits

state

512 bits

0

0

K IV

f f

Figure 3.1: High-level sponge configuration used for power analysis.

In total, there are three different environments in which MK-3 was implemented:

simulation, hardware, and software.
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3.1.1 Simulation

In [45], Werner et al. implemented the MK-3 permutation function using the Very

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL),

which can be synthesized to produce a hardware design for either ASIC or FPGA

applications. The implementation described in [7] was tested on an FPGA, but

uses an ASIC-optimized S-box design developed by Wood in [13]. Based on the

MK-3 implementation in [45], Stafford developed an alternative FPGA-optimized

implementation of the S-box, which is the focus of [46]. The resulting combined

design, with the S-box from [46] and the remaining implementation from [45], is the

design used by Stafford in [8] for simulation-based power analysis.

In the simulation environment, the main contributions of this work are a reproduc-

tion of Stafford’s results and updates to the implementation allowing the full number

of rounds to be used for analysis and providing access to the state register through

a wrapper. Reproduction of the simulations required several process updates due to

differences from the infrastructure used to perform the original work, but was even-

tually successful. The implementation update was fairly simple, only consisting of

minor changes to the interface and the timing of the round counter.

Although the simulation approach has the benefit of not requiring any special-

ized hardware, this comes at the cost of slow data collection and large file sizes,

significantly limiting the number of traces which can be acquired. Additionally, the

power consumption data produced by simulation requires preprocessing before it can

be used in CPA. Section 3.2.1 discusses the data collection process for simulation in

more detail.

3.1.2 ChipWhisperer

This work mainly focuses on power attacks using data collected from hardware. To

perform these attacks, a system is required which both implements the MK-3 algo-
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rithm and takes detailed measurements of its power consumption.

There are several options for creating this system. One option, described in [47],

uses two FPGA development boards as a target and a controller, in addition to a

USB oscilloscope and desktop computer for power measurement and processing. The

main advantage of this system is that it uses generic and readily available products,

providing a high degree of customization at a relatively low cost. However, it also

requires a significant amount of preparation, such as programming the interaction

between the oscilloscope and control board and removing filter capacitors from the

target to obtain cleaner power traces. This is in addition to implementing the en-

cryption algorithm and analysis software, which are steps required for attacking any

new design.

The data collection system used in this work is called the ChipWhisperer [48].

In contrast with the systems described earlier, this product provides a ready-made

framework for power analysis, including a specialized oscilloscope and target board

along with software for configuring the system and taking measurements. In the

ChipWhisperer system, the main tasks are integrating the desired algorithm into the

target’s programming and implementing the power analysis process.

For testing MK-3, the same base implementation was used as for simulation [8].

This was integrated into the target FPGA’s existing hardware design by adding a

wrapper which translates the control signals and manages the high-level absorbing

and squeezing process. Additionally, the implementation was modified by adding a

trigger signal, indicating when the computations have reached the desired point for

the oscilloscope to capture a trace. The specifics of the MK-3 hardware designs used

for testing are discussed in Section 3.1.4.

44



Chapter 3. Methodology

3.1.3 C++

The third and final implementation of MK-3 was a software implementation in C++,

primarily used to determine the expected results of power analysis so that its success

can be evaluated. The three implementations, in simulation, hardware, and software,

were also verified against one another to ensure that all were functioning correctly

and consistently with one another.

The C++ version of MK-3 was initially created in [13], which implemented only

the S-box. This was then extended to a full implementation of the algorithm in [1].

The full version was used in this work with only minor modifications. Specifically, the

software was edited to expose the internal state values targeted by the CPA attack,

as well as to accept command-line inputs rather than hard-coded values for use in

the analysis scripts.

3.1.4 Variants

This section provides details on the various modifications made to the base MK-3

VHDL implementation and where each modified version was used.

First is the base implementation itself, as created in [8]. Figure 3.2 shows a

Register-Transfer Level (RTL) diagram for this design, with all repeated components

combined into single elements.
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r_in
0:127

128:511
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Figure 3.2: Original single-round MK-3 implementation with register after S-box.

This diagram is fairly similar to Figure 2.4, the block diagram from Section 2.1.2

which shows the basic structure of the permutation function f . However, there are a

few differences to note. First, because this is an RTL diagram, the round state register

is shown in a more detailed style, and control signals and signal widths are included
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where appropriate. Second, there are several additional and missing components.

One new component is the register at the end of the function, used for keeping the

output stable while it is being read by the wrapper logic in the target. This output

register is only activated at the end of computations.

The other additional components are the multiplexer and register in between

the substitution and permutation stages. These were added to make power analysis

attacks easier to perform, as well as to help demonstrate the effect of design changes

on such attacks. The new register buffers the S-box outputs, synchronizing the inputs

to the next stages, while the multiplexer clears the register, improving the accuracy

of a Hamming weight power model. If the register is not reset, then the attack must

depend only on the difference in power consumption between setting a 0 or a 1 rather

than the difference between a bit changing or remaining the same.

Finally, because this is only a single-round implementation, the return path from

the round constant output to the state register input is not included. This connection

does exist in the VHDL code, but is never activated because the round counter code

is disabled and so has been omitted from the diagram.

In these RTL diagrams, the expressions in dashed boxes indicate that the con-

nected control signal is active when the state machine is in any of the listed states.

Figure 3.3 shows the state diagram for this single-round implementation.

idle en0
enable = '1'

enable = '0'

encrypting

encrypt_regencrypted

writetxt

Figure 3.3: State diagram for single-round MK-3 implementation.

As seen in this diagram, the system begins in its idle state. When the enable
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signal becomes active, it progresses through the other five states unconditionally

until reaching the idle state again, with each state controlling different components

as depicted in the RTL diagrams. The state machine component itself is omitted

from the single-round diagrams because for these cases, it has no inputs other than

the top-level reset, clock, and enable signals.

Figure 3.4 shows the next variant of MK-3. This variant is based on the original

design, modified by reenabling and adjusting the round counter to perform ten rounds

of encryption instead of one. The return path to the round function input is also added

back to the diagram.
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Figure 3.4: 10-round MK-3 implementation with register after S-box.

Enabling the round counter is particularly important to having a realistic imple-

mentation because if only one round is performed, then some bits of the state will

remain the same for any key, potentially introducing a bias to the analysis. This

happens because, within a single round, there is not enough diffusion present to make

every output bit depend on the rate. Section 3.3.2 discusses this concept in detail, as

it is also an important factor for the capacity attack.

As expected, increasing the number of rounds also increases the amount of time

required to collect data. This is not a problem for the hardware implementation

because the FPGA is able to run the algorithm in real-time at a high speed. For

simulation, however, the increase is a significant issue. As mentioned in Section 3.1.1,

simulations for power analysis need to record all signal transitions so that their energy

usage can be computed. This results in slow simulation speeds and large file sizes

even with only one round in use, so extending to 10 rounds makes it very difficult to

collect the required number of traces in any reasonable amount of time.
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Figure 3.5 shows the updated state diagram for this variant.

idle en0
enable = '1'

round = '1001'

enable = '0'

encrypting

encrypt_regencrypted

writetxt

else

Figure 3.5: State diagram for registered 10-round MK-3 implementations.

As seen in the diagram, the states no longer transition unconditionally all the way

back to idle. Instead, based on the current round number, a decision is made either

to continue encrypting for another two cycles or to leave the loop and save the state

in the output register.

Figure 3.6 shows a further modification to this design which resets the state reg-

ister before the start of each new round. This variant uses the same state machine,

shown in Figure 3.5, as before.
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Figure 3.6: 10-round MK-3 implementation with register after S-box, and with state
register cleared each round.

As with the S-box output register, this reset makes a Hamming weight power

model more effective, as it can rely on the more significant difference in energy con-

sumption between changing and not changing a bit, rather than only the difference

between setting a bit to 0 and setting it to 1. This improves the effectiveness of the

capacity attack.

Finally, Figure 3.7 shows an MK-3 variant which does not include any S-box

output register and does not reset the state register.

48



Chapter 3. Methodology

0

1c_in

r_in
0:127

128:511

512

D Q

en

rst

en

reset

s = en_0

s = encrypting

s = encrypting

S-box

(x32)
Permutation D Q

rst

reset

Mixer

(x16)

Add

Round

Constant

r_out

c_out

s = encrypted
state

Round

Counter

4

Figure 3.7: 10-round MK-3 implementation with no register after S-box.

This variant is meant to make testing more general by providing a realistic design

with no CPA-specific modifications. The S-box output register is not required for

implementing the algorithm, and was originally inserted in order to make power

attacks easier to perform. However, adding this register is also not an unreasonable

step for a designer wishing to increase the design’s clock speed through pipelining.

Because the S-box output register could potentially be included in a real design, most

testing is performed on both this variant and the variant in Figure 3.4, using the other

variants only where they are needed for simulation or the proof-of-concept capacity

attack.

Because this variant omits the S-box output register, the state machine needs to

be modified to match, as shown in Figure 3.8.

idle en0
enable = '1'

round = '1000'

enable = '0'

encrypting

encrypted

writetxt

else

Figure 3.8: State diagram for unregistered 10-round MK-3 implementation.

As seen in this diagram, the only differences between this and the previous state

machine are that each round requires only one clock cycle instead of two, and that

the round threshold has been modified to account for this timing difference.
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3.2 Data Collection

Using the implementations described in Section 3.1, power measurements were taken

as required for CPA. This section describes the processes used to collect these mea-

surements from simulations and from hardware.

3.2.1 Simulation

There are several steps required to obtain useful power data from simulation. The

first step is to synthesize the VHDL design to a netlist, which implements the design

in the form of logic gates. Next, the netlist is simulated, using a testbench file to

control the stimulus and configuring the simulator to record the transitions of all

signals in the design to a file. Once the simulation has completed, the recorded state

transitions are analyzed, resulting in discrete values for power consumption at times

determined by the defined delays of the logic gates. These steps were performed using

the Synopsys Design Compiler, VCS, and PrimeTime tools respectively.

The resulting power measurements form a single, long trace spanning the entire

length of the simulation. A Matlab script developed in [8] is then used to divide

and align the power traces for each individual operation. Additionally, the precise

point measurements produced by the simulation process cannot be used directly for

CPA. There are far too many samples to process individually, and the transitions

recorded in each sample are unlikely to correspond precisely with those from other

related operations. The Matlab script resolves this problem by consolidating the

power traces on a 1-nanosecond interval, where the value used for a given interval is

the maximum of the points it contains. After this preprocessing is completed, the

power traces are passed to the analysis script, described in Section 3.3.
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3.2.2 ChipWhisperer

Section 3.1.2 describes the integration of MK-3 into the target, while this section

provides details for the power measurement configuration and procedures.

In order to capture power data using the ChipWhisperer, the design first needs

to be synthesized and a bitstream needs to be produced for the FPGA on the target

board. This is done using the Xilinx Vivado tools. The resulting bitstream is then

programmed into the FPGA through an interface on the ChipWhisperer oscilloscope,

controlled by a Python script on a computer.

Another script is used to start testing and perform the measurements. This script

first configures the test parameters, selecting a 5 MHz clock for the target and a sample

rate of 90 MSamples/sec for the oscilloscope. In order to fit the longer runtime of a

10-round implementation with an S-box output register, 72 clock cycles are captured,

providing 1296 samples per trace. Almost all of these samples will go unused in CPA,

as the attacks only focus on the first round of IV absorption, but they are still useful

to capture for context when viewing the traces.

After configuring the clock and capture parameters, the stimulus is arranged.

The key is always a fixed value, only changed manually for entirely different test

runs. The IV is completely random, generated new for each trace collected. By

modifying this generation, multiple traces can be collected using identical inputs and

averaged to obtain more precise measurements. This is an alternative to obtaining

higher-resolution data and helps to eliminate noise. For the rate attack, 8x averaging

is used, which reduces the number of different IVs required. This reduction speeds

up the analysis process later on. The capacity attack, on the other hand, benefits

more from additional IVs than from higher-quality traces, and its analysis speed is

not as sensitive to the total number of traces. Therefore, no averaging is used when

capturing traces for the capacity. Note that in theory, the same sets of traces can be

used for both attacks; averaging simply helps to reduce the computational workload.
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When collecting hardware power traces using the ChipWhisperer [48], the results

are already in the expected arrangement and do not require preprocessing. Figures 3.9

and 3.10 show plots of 500 power traces produced by the 10-round registered design

without a state reset depicted in Figure 3.4, including the full capture length and

only the area used by CPA respectively.

Figure 3.9: Full plot of 500 power traces from 10-round registered design.

In these figures, the X-axis is the sample number, representing time. The time

between samples is approximately 11 ns, and there are 18 samples per clock period.

The Y-axis is the relative power supply voltage after the shunt resistor; this measure-

ment is AC-coupled, so constant offsets and low-frequency components are removed.

There is no calibrated scale for the Y axis. Because these examples are from the reg-

istered variant without reset, there is a downward voltage spike caused by the power

consumption of the S-box every two clock cycles.

After power traces have been collected, they are passed to the analysis scripts

discussed in Section 3.3 to perform the developed attacks.
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Figure 3.10: Plot of 500 power traces from 10-round registered design, CPA section only.

3.2.2.1 TVLA

As explained in Section 2.4, leakage assessment tests are primarily useful for evaluat-

ing implementation-level hardware countermeasures. In this work, no specific hard-

ware countermeasures were implemented. Nevertheless, in order to aid future work, a

small system was created for performing TVLA. This includes another Python script,

which captures power traces while randomly using either a fixed IV or a random-

ized IV, as well as a Matlab script, which runs Welch’s t-test at each sample of the

captured traces as described in Section 2.4.1. This work does not apply this system.

3.3 Analysis

Using the collected power information, CPA attacks were performed, attempting to

recover the 512-bit state after the absorption of the key. Due to the structure of

the permutation function f , two different attack formulations were required. Both

assume that the IVs supplied to the algorithm are known.
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3.3.1 Rate Attack

The first attack targets the rate portion of the state, modeling the corresponding bits

at the end of the substitution stage. As described in Section 2.3.3, any modeled bit

must depend on both the target value being guessed and the input value changing

for each trace. The rate is XORed with the IV before the start of the permutation

function, so at any point in the first round before the mixing stage, these first eight

16-bit words are the only bits fitting the criteria. The other 24 words, in the capacity,

are not affected by the IV and therefore cannot be modeled before the mixing stage.

Additionally, this attack does not attempt to directly model the state outside of the

permutation function. These values appear in parts of the overall FPGA design other

than the core algorithm, such as the wrapper and the ChipWhisperer components,

which will be different or missing in other applications of MK-3. Instead, this work

focuses only on the implementation of the permutation function itself, avoiding any

values whose results would be strongly influenced by the test infrastructure.

For this attack, the power modeling and guess set selection are straightforward.

Each of the 16 output bits of a given S-box depend only on the 16 inputs to that

S-box, and for the rate S-boxes, each input is a combination of a key bit and an IV

bit. Therefore, we can simply perform guesses word-by-word, modeling the outputs of

a single S-box at a time. Using the notation defined in Section 2.3.3, this means that

each G is one word of the rate input to the substitution stage, and its corresponding

M is the matching word of the substitution stage output. For this attack, V , the

variable set, is the 128 input bits for the IV; C, the constant set, is empty; and

O, the modeling location, is the full substitution stage output, a superset of M .

Algorithm 3 describes the power model for this attack in pseudocode, matching the

function signature defined in Algorithm 2.

To perform this attack, another Matlab script was used, originally created for the

analysis of simulation traces in [8]. This script implements the CPA process in Sec-
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Algorithm 3 Rate Power Model

1: w ← the index of the S-box being guessed [0, 7]
2: J ← a known IV ▷ value of the bits in V
3: g ← the guess index for this computation
4: function ModelPower(J, g)
5: IVIn ← J16w:16(w+1)−1

6: GuessIn ← the 16-bit binary value of g
7: SboxIn ← IVIn⊕GuessIn
8: SboxOut ← Sbox(SboxIn)
9: return HammingWeight(SboxOut)

10: end function

tion 2.3.3, using the power model which was just described. First, the original results

from [8] were reproduced using power measurements from the updated simulation

infrastructure. Then, the script was modified to support power traces obtained with

the ChipWhisperer. These measurements do not have the same degree of precision

as the simulation measurements, as described in Section 3.2, so more traces are re-

quired to perform a successful attack on the same MK-3 implementation. However,

when using the script on larger numbers of traces, the runtime started to become a

problem, with results taking several hours or more to produce. To alleviate this issue,

the analysis script was refactored to take advantage of Matlab’s matrix processing

performance, resulting in a speedup of approximately 34x compared to the original.

Another script was also created based on the first in order to determine how many

traces are required to successfully attack a given implementation. This runs the same

analysis process repeatedly, placing an artificial limit on the number of traces and

iteratively changing this limit to test a range of trace counts. The traces are randomly

selected from a larger pool of captured traces. For the rate attack, there are only

eight potential words to find, so the success information is quite coarse. Therefore, to

better evaluate the attack’s performance, the analysis is repeated ten times at each

trace count, using a different random selection each time. With this additional data,

the relationship between trace count and success rate is much more clear. Section 4.1
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describes the results of the rate attack, including these success rate metrics.

3.3.2 Capacity Attack

As described earlier, only the rate can be modeled based on the output of the sub-

stitution stage, because it is the only region depending on the IV at this point. In

order to attack the capacity, the model needs to be extended into the permutation

and mixing stages, where additional dependencies are introduced between the IV and

the input capacity. Unfortunately, these dependencies are not as simple as those in

the substitution stage.

3.3.2.1 Attack Formulation

The permutation stage ensures that for every mixer, each of the 32 inputs comes from

a different S-box output [1], so each mixer always has 8 IV-dependent bits to work

with. However, depending on the mixer polynomial used, a given capacity bit may

or may not be combined with any IV-dependent bits before reaching the end of the

mixing stage. The S-boxes also significantly limit the scope of a model involving the

mixers. Because each mixer input comes from a separate S-box, any mixer output

which does meet the criteria for modelability will need to depend on an output from

both a rate S-box and a capacity S-box. Every S-box output depends on all 16 inputs

of that S-box, and each mixer output depends on 2, 3, or 5 mixer inputs. Because at

least one dependency must come from the rate and one must come from the capacity,

even a single modelable mixer output bit will have 16, 32, or 64 dependencies at the

beginning of the round which would need to be guessed. The correlation with only

one bit is not very strong, so to get any satisfactory results, more than one mixer

output would need to be attacked, increasing the required number of guess bits to 32

or more. This means that the model would need to be applied 232 times per IV, in

addition to computing 232 correlations for every sample. These are very significant
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computational requirements, and are not feasible in the scope of this work.

Instead, the target point is moved to the output of the substitution stage, so that

S-box outputs are the bits being guessed. Although this does not directly provide

any bits of the capacity, it does reduce the potential search space of a brute-force

attack. Additionally, a Hamming weight power model is most effective when used

on a register. Therefore, the modeling point is set at the state register of the second

round, rather than directly at the mixer outputs. The round constant stage in between

these points does not interfere with the model or dependency calculations, as it only

applies an XOR with a constant. This new attack, targeting the capacity S-box

outputs and modeling the next round state register, is what this work refers to as the

capacity attack. Section 3.3.2.2 focuses on its implementation.

3.3.2.2 Attack Implementation

First, in order to model the power consumption of these bits, we need to be able to

compute their values given a guess and an IV. This involves traversing the permutation

and mixing stages. The permutation stage is fairly simple, as it only remaps the bit

positions of the S-box outputs and can be represented with a simple transformation.

The mixing stage, on the other hand, is more complex. Each mixer output bit can

depend on between 2 and 5 mixer input bits, and the particular bits depended on

are determined by the mixer polynomial as described in Section 2.1.2.3. Fortunately,

these mixer dependencies can also be represented fairly easily. A given mixer output

is simply computed as the XOR of these several input bits, and the round constant

stage adds one additional XOR with a constant value.

To use these dependencies in the CPA script, a Python program was implemented

which, given a choice of mixer polynomial, produces a list of sets of bit positions.

Each element in the list contains the S-box output bit positions depended on by

one round output, obtained by composing the dependency relationships of individual
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mixer components, along with mapping back through the permutation stage. The

base mixer dependencies are computed based on the definitions in Section 2.1.2.3,

parameterized by the selected mixer polynomial. In the set-based description of CPA,

this dependency list defines the deps() function, which takes a mixer/round output

bit position and returns the set of 2 to 5 S-box output bit positions it depends on.

Now, using these dependency relationships, the CPA script is able to compute

power model values based on guessed and/or known S-box output values. However,

there still remains the problem of selecting which bits to guess and which output bits

are truly modelable based on the selected guess set. This was the primary reason for

introducing the detailed set notation for CPA in Section 2.3.3. Using this notation,

the sets are defined as follows:

• guess bits, G: some selected set of capacity S-box outputs

• modeling location, O: all next-round state register inputs

• modelable bits, M ⊆ O: the truly modelable bits, given G

• known variable bits, V : the bits of the IV input

• known constant bits, C: the rate output from key absorption

Note the important assumption here that the rate output from absorbing the key is

known. This value is not exposed directly, and the attack does not work without it.

However, the assumption is still reasonable, as this value is exactly the target of the

rate attack, which is in turn based only on true known values. It is still important to

note that the capacity attack depends on the success of the rate attack, or of some

other method of obtaining the rate.

Before continuing on to the process of selecting G and M , pseudocode for the

capacity attack power model is shown in Algorithm 4, again matching the function

signature defined in Algorithm 2.
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Algorithm 4 Capacity Power Model

1: G← the set of bits being guessed
2: M ← the set of bits being modeled
3: R← the 128-bit key rate output ▷ value of the bits in C
4: RC ← the 512-bit round constant for round 1
5: J ← a known IV ▷ value of the bits in V
6: g ← the guess index for this computation
7: function ModelPower(J, g)
8: Rate← Sbox(R⊕ J)
9: GuessIn← the |G|-bit binary value of g

10: Capacity← 384 undefined bits ▷ sparse vector
11: for i← 0, |G| − 1 do
12: CapacityGi

← GuessIni ▷ distribute the guess bits
13: end for
14: State← Capacity ∥ Rate
15: HW← 0
16: for m ∈M do
17: x← 0 ▷ compute parity of mixer output m
18: for d ∈ deps(m) do
19: x← x⊕ Stated ▷ Stated must be defined
20: end for
21: HW← HW + (x⊕RCm)
22: end for
23: return HW
24: end function
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A key assumption to note in this algorithm is that Stated must be a defined value.

In order for this assumption to hold, G and M must be chosen so that, given G, every

bit in M is modelable by the three criteria defined in Section 2.3.3. This is not as

straightforward as it is in the rate attack.

We can start by creating a maximum set, identifying all bits which could poten-

tially be an element of any G. First, let M ′ be the set of all modelable bits in the case

that G encompasses the entire S-box output capacity. Then, construct the maximum

set G′ by combining all dependencies of the bits in M ′, excluding bits which are in

C and V and therefore cannot be guessed. This set G′ represents all S-box output

capacity bits which could possibly be recovered through the capacity attack.

The content of G′ depends on the particular irreducible polynomials chosen for

each mixer. Note that although every mixer is constructed identically, the permuta-

tion stage rearranges their inputs, giving each one a different pattern of known and

unknown inputs. This means that each mixer may potentially respond in a different

way to a given irreducible polynomial, so the 16 mixer locations must each be treated

separately. However, each mixer also makes its own individual contributions to G′, not

overlapping with any other mixer’s contributions; in other words, the configuration

of one mixer does not affect the bits contributed by any other mixers.

Based on this information, a Python program was created to calculate the size

of G′ with various combinations of mixer polynomials. This program provides 16

sets of information, one per mixer location, with each set containing the number

of recoverable bits that the mixer contributes to G′ for each of the 4080 possible

irreducible polynomials. This can then be used to evaluate a given customization by

simply looking up the number of bits contributed by each mixer with its configured

polynomial and taking the sum of the results. Section 4.2 goes over the results of

these upper-bound computations.

Ideally, we would perform the capacity attack using G = G′, but this is compu-
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tationally infeasible due to the number of guess possibilities. In order to reduce the

scope of each application of CPA, we can divide G′ into several subsets S, subject to

the following constraints:

1. The union of all S is of maximum size (ideally equal to G′).

2. For each subset S, |S| ≤ 16.

3. For each subset S, these exists no subset T ⊆ S for which every m ∈ modelables(T )

has odd | deps(m) ∩ T |.

where modelables(T ) is the set of all modelable bits where the set of guess bits, called

G in the criteria in Section 2.3.3, is equal to T .

Condition 1 must be true in order to make guesses on, and obtain a result for, the

greatest number of bits possible. Condition 2 is flexible, but some limit is needed for

computation reasons. Condition 3 is explained in the following paragraph.

As described earlier, due to the structure of the mixing stage, each mixer output

bit can depend on either two, three, or five mixer input bits. For a set of guess bits S,

if there exists some subset T ⊆ S for which every mixer output bit m ∈ modelables(T )

depends on an odd number of bits in T , then every guess of S will have a partner guess

where the values of all bits in T have been inverted, which produces a correlation of

exactly the same magnitude. This is because inverting all bits in T will invert every

output bit, producing a Hamming weight which is linearly related to the original

result across all IVs.

If two guesses will always have identical correlations, then we are not able to

determine which is the correct value. In order to obtain a unique result, it is necessary

to choose S so that no such set T exists, forming another constraint in addition to

those specified above. The optimization problem of finding several S following these

constraints, which in combination cover all of G′, is not solved in this work. It is
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possible that there are no S for which no T exist, limiting this type of attack to

providing multiple possibilities for the correct value rather than a definitive result.

In order to provide a proof-of-concept attack without having the solution to this

optimization problem, the following heuristic approach was used to select a G of

reasonable size (≤ 16 bits):

1. Sort G′ by total number of dependent end-of-round bits, in decreasing order.

This is not a deterministic process, as many bits have the same number of

dependents.

2. Take the top k bits as G′
k, and let M (necessarily ⊆ M ′) be all bits which are

modelable by the criteria in Section 2.3.3 given that G = G′
k.

3. Construct G by removing from G′
k any bits which are not depended on by any

bit in M .

4. Adjust k to maximize |M | in the previous steps, subject to the condition that

|G| ≤ 16 for computation reasons.

With all mixers using the default polynomial 0x002d, the largest k satisfying the

conditions was 28, resulting in |G| = 15 and |M | = 27. This G and M were used

to perform a proof-of-concept capacity attack, the results of which are detailed in

Section 4.2.
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Results

4.1 Rate Attack

After implementing the design variants, capture system, and analysis software, the

rate attack was applied to the registered and unregistered 10-round MK-3 variants

depicted in Figures 3.4 and 3.7. As an example, the registered implementation was

tested with the single-shot analysis script, using 5,000 traces captured with the Chip-

Whisperer. Figure 4.1 shows the correlation plots produced by this analysis.

Figure 4.1: Analysis results for 10-round registered variant using 5,000 traces.

In this figure, each of the eight subplots corresponds to one word of the rate
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being targeted. On the X-axis is the sample number, representing time. The Y-

axis is correlation; specifically, each line on a plot depicts the correlation results over

time for a particular guess of the plot’s word in the rate. Each word is 16 bits, so

there are 216 = 65536 possible guesses, and therefore 65536 lines on each plot. The

correlation for each of these guesses indicates the strength of the relationship between

its modeled power consumption and the true power consumption. In most cases, if

there are enough IVs used (i.e., enough traces collected), then one of the guesses

will have a strong enough relationship for the correlation to rise above the baseline,

producing a peak at the point in the algorithm’s execution where the power matches.

The guess with the highest peak for a word is considered to be the correct value of

that word. In the correlation plots, the truly correct value, determined from the real

key for evaluation purposes, is highlighted in green. If the highest peak belongs to

some guess other than the correct guess, then the plot of the other guess is highlighted

in red, and the analysis incorrectly identifies it as the value for that word.

Based on this figure, we can see that words 1, 3, and 7 were correctly identified by

CPA, while the other five words were not. Additionally, note the location of the peaks

for the correct results. These plots are over the same sample range depicted in Fig-

ure 3.10, and as expected, the points of maximum correlation occur at approximately

sample 80. Based on the plotted power traces, this point is where the S-box output

register is activated, which is indeed the location targeted by the power model.

Next, Figure 4.2 shows another test of the same design, this time using 20,000

IVs/traces rather than 5,000.

As seen in this figure, all eight words are correctly recovered by this version of

the attack. Notice that in most cases, the correlation of the correct guess has not

increased significantly. Instead, the baseline correlation has decreased, exposing the

peaks of the correct guesses which were previously indistinguishable from the others.

With more IVs, there are more points for the correlation metric to use, providing
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Figure 4.2: Analysis results for 10-round registered variant using 20,000 traces.

additional possibilities for the incorrect guesses to not match the true power and thus

reducing their correlation.

In order to characterize the success of CPA against the registered implementation

with respect to the number of traces captured, the repeating analysis script was used.

For this analysis, two different keys were tested through the same process. Figure 4.3

shows a plot summarizing the results of this testing.

In this plot, solid lines indicate the success rate when considering only the result

identified as most likely, while dashed lines indicate the success rate where the correct

value being in any of the top ten most likely candidates is considered as success. On

the Y-axis, the scale only goes up to 25%. This is because the rate is only 1/4 of the

total state bits, and this attack does not target the capacity section of the state. As

expected, increasing the number of traces increases the success rate, with the top-ten

success rate consistently remaining slightly higher than the perfect success rate. The

results between the two keys show no significant differences across the entire test. At

approximately 15,000 traces, both methods achieved the maximum success rate for
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Figure 4.3: Success rate results for 10-round registered variant at various trace counts.

this attack, meaning that in ten out of ten iterations, all eight words were correctly

identified.

Next, a similar test was performed on the unregistered implementation. Figure 4.4

shows the success rate plot for this test.

In comparison with the previous test, this version was much less successful, demon-

strating that this implementation of the algorithm is more resistant to the rate attack.

Even with the maximum trace count increased to 40,000, both keys hit plateaus and

did not progress any further with additional traces. Key 2387 hit this plateau with

only one out of the eight words correct, while Key a110 plateaued at two words.

The reason for this difference between keys is that, with the S-box output register

removed, there is no synchronized point at which the modeled values, the S-box out-

puts, are all changing. Instead, these transitions are spread out over several samples,

with their timing depending on the specific values used as inputs.
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Figure 4.4: Success rate results for 10-round unregistered variant at various trace counts.

4.2 Capacity Attack

This section discusses the results of the capacity attack, covering both the theoretical

computations of its limits and the proof-of-concept hardware attack.

First, Figure 4.5 shows the results of the hardware attack, performed against the

10-round registered implementation with the state register reset in between rounds

and using 150,000 non-averaged traces.

This plot is very similar to those in Figures 4.1 and 4.2, with the sample on the

X-axis and correlation on the Y-axis. Because this attack is not word-based, and the

15 target bits were attacked in a single group, there is only one plot. As before, the

correct result is highlighted in green, and if there were an incorrect peak, it would be

highlighted in red. The empty space under the correlation spikes is inconsequential;

there are still correlation measurements present, but they could not be rendered on

the plot due to the number of lines.

As seen from this result, the proof-of-concept capacity attack was able to recover

the 15 targeted bits. However, this particular set of bits does not meet Condition 3
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Figure 4.5: Capacity PoC results for 10-round registered variant with reset using 150,000
traces.

from Section 3.3.2.2; therefore, both the correct value and its inverse appeared with

identical peak correlations, independent of the number of traces used. There is still a

gap between these two values and the next-highest pair, so even with this limitation,

an attacker would be able to narrow down the results to two possible values.

After performing the proof-of-concept attack, computations were performed as

described in Section 3.3.2.2 to calculate the limits of this type of attack. Using the

relevant Python script, data was collected for all 4080 irreducible polynomials in

each of the 16 mixers. Table 4.1 provides a summary of these results, listing the

polynomials resulting in the lowest and highest numbers of recoverable bits in the

case that the same polynomial is applied to all 16 mixers.

As seen from this table, the number of recoverable bits is highly dependent on

the number of nonzero coefficients in the polynomial. This is because, as seen from

Section 2.1.2.3, each nonzero coefficient introduces one additional dependency to the

mixer outputs, potentially bringing together a rate and a capacity bit which previously
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Table 4.1: Mixer polynomials with lowest and highest upper bounds on potentially recov-
erable capacity bits, if all mixers are configured identically.

Polynomial (hex) Polynomial (formula) Recoverable Bits

0x9003 x16 + x15 + x12 + x + 1 102

0x5003 x16 + x14 + x12 + x + 1 104

0x8013 x16 + x15 + x4 + x + 1 105

0x6009 x16 + x14 + x13 + x3 + 1 108

0x200d x16 + x13 + x3 + x2 + 1 109
...

...
...

0xfefb
x16 +x15 +x14 +x13 +x12 +x11 +x10 +
x9 + x7 + x6 + x5 + x4 + x3 + x + 1

193

0xfefd
x16 +x15 +x14 +x13 +x12 +x11 +x10 +
x9 + x7 + x6 + x5 + x4 + x3 + x2 + 1

193

0xff5f
x16 +x15 +x14 +x13 +x12 +x11 +x10 +
x9 + x8 + x6 + x4 + x3 + x2 + x + 1

193

0xffeb
x16 +x15 +x14 +x13 +x12 +x11 +x10 +
x9 + x8 + x7 + x6 + x5 + x3 + x + 1

194

0xffed
x16 +x15 +x14 +x13 +x12 +x11 +x10 +
x9 + x8 + x7 + x6 + x5 + x3 + x2 + 1

194
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had no interaction. As described earlier, the exact number of recoverable bits also

depends on the specifics of how each mixer is connected to the S-box outputs through

the permutation stage and how this aligns with the bits from the polynomial. For

the default polynomial, q(x) = x16 + x5 + x3 + x2 + 1 (0x002d), the upper bound

of recoverable capacity bits is 119. The minimum upper bound occurs with the

polynomial 0x9003, while the maximum upper bound occurs with the two polynomials

seen at the end of Table 4.1.

In addition to the table, a histogram was also produced for the case where all

mixers use the same polynomial, shown in Figure 4.6.

Figure 4.6: Histogram of maximum recoverable capacity bits across all irreducible mixer
polynomials.

From this histogram, we can see that most polynomials will result in a relatively

large number of recoverable bits, while there are not as many with lower recoverable

bit counts. This is due to the fact that most of the irreducible polynomials do not have

a particularly low number of coefficients, as would be expected for even a randomly-

selected 16-bit polynomial.

It is not possible to enumerate all 408016 combinations of mixers using different
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polynomials, and even the full 4080x16 table is too large to include in this document.

However, because each mixer depends on a separate set of 32 S-box outputs, mixers

can be evaluated independently with each of the polynomials, and then the best

or worst results combined to find an overall maximum or minimum. For example,

when the mixer configurations are entirely unrestricted, the overall number of total

recoverable bits can range from 88 to 194. Table 4.2 shows the polynomials of the

arrangement with the smallest number of recoverable bits.

Table 4.2: Mixer configuration producing the lowest possible number of recoverable ca-
pacity bits.

Mixer Number Polynomial (hex) Recoverable Bits

0 0x04c1 5

1 0x0a81 5

2 0x0a03 5

3 0x0807 5

4 0x040b 5

5 0x0807 5

6 0x002b 5

7 0x002b 5

8 0x002b 5

9 0x002b 5

10 0x002b 5

11 0x3801 6

12 0x5003 6

13 0x200d 8

14 0x8013 7

15 0x002b 6

As expected, this configuration uses polynomials with very few nonzero coeffi-

cients, in total producing 88 recoverable capacity bits.
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Conclusions and Future Work

5.1 Conclusions

Overall, the power analysis attacks presented in this work do not pose a significant

threat to the security of MK-3. In the worst case, the rate attack is completely

successful, the mixers are configured in a way that produces the highest possible

number of recoverable bits, and the capacity attack is able to successfully recover all

of these bits. This results in a total of 128+194 = 322 bits of the state being revealed,

leaving 190 unknown bits which the attacker would need to obtain by another method,

likely brute-force attempts. Even in this worst case, the 190 remaining bits are still

more than the 128-bit key option of MK-3. If a 256-bit key is in use, then this scenario

provides a 66-bit advantage.

Because the number of recoverable bits is dependent on the mixer polynomials

specified in customization, careful selection of these polynomials can reduce the total

count from a perfectly successful attack down to 128 + 88 = 216 bits, leaving 296

bits of the state left unknown. This provides no advantage to an attacker even in

comparison to brute-forcing a 256-bit key.

As seen in Section 4.1, removing the S-box output register significantly reduces

the effectiveness of the rate attack with its current model. In a non-pipelined im-

plementation of MK-3, this register would not exist, and even in such a pipelined
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implementation, there would be no reason to reset the register in between each round.

Finally, there are several design constraints and countermeasures, at the hardware,

algorithm, and system levels, some of which can be easily applied even to existing

designs.

5.1.1 Security Recommendations

Power side-channel attacks typically require physical access to the device in question,

so one of the simplest ways to combat these attacks is to design the device to prevent

this physical access. For instance, a form of tamper protection could detect if the

device’s case is opened and erase any stored encryption keys from memory. With the

device unable to operate, and the desired information no longer present, these attacks

would no longer be possible.

Another possible countermeasure, specifically for CPA, is to implement a key

rolling or key derivation scheme in which the key provided to MK-3 is periodically

changed. CPA depends on the key to remain the same as many different IVs are

absorbed; if the key changes, then any previously collected traces cannot be used

with those collected with the new key. An important caveat to this method is that

the key change must be enforced from within the device. The objective is to prevent

more than a certain number of IVs from being absorbed with the same key, so if key

rolling is merely an operational policy rather than a hardware requirement, it does not

have any benefit against CPA as an attacker could simply choose to introduce extra

IVs. Additionally, if using a form of key derivation in hardware, then this hardware

should also be protected from side-channel attacks.

Creating only partially-random IVs, for example by using a counter, is also helpful

for preventing CPA. This obscures any key-power relationships based on the seldom-

changing bits until enough traces have been collected that all cases eventually occur.

As discussed in Section 4.2, the customization parameters can be tuned for resis-
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tance against the capacity attack. With mindful selection of the mixer polynomials,

even the theoretical maximum for this attack can be reduced past the point of being

useful for any attacker.

There are also several implementation aspects to consider. The use of registers

within the round function has the potential to make power side-channel attacks easier

to perform, especially if they are often reset. This should be avoided if possible.

A final suggestion is to remember that the attacks presented here focus on the

absorption of the IV specifically, not of any other block such as a message. This means

that longer messages are desirable, extending the time in between IV absorptions and,

if implemented, reducing the required frequency of key rolling.

5.2 Future Work

One large area of potential future work is the implementation and testing of coun-

termeasures. Section 2.5 describes many options; the majority of hardware counter-

measures focus on ASIC designs, but the FPGA hardware countermeasures as well

as higher-level options could be explored using the current infrastructure.

The analysis process is also not entirely complete, with the capacity attack only

developed as a proof-of-concept and the set selection problem still needing a solution

before it can be fully implemented. If this problem were solved, it would also provide

exact information on the limitations of the capacity attack and the ideal selection of

customization parameters, rather than only the upper bounds presented here.

There are also other potential improvements to the analysis process, such as reim-

plementing the analysis scripts in a different language to improve their performance

with high trace counts. Another possibility is to develop a power model optimized

for the unregistered MK-3 implementation, focusing more on the internal power con-

sumption of the S-box and mixer components and less on their inputs and outputs.
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