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PACIFIC JOURNAL OF MATHEMATICS
Vol 107, No. 1, 1983

EXPLICIT PL SELF-KNOTTINGS AND
THE STRUCTURE OF PL HOMOTOPY COMPLEX

PROJECTIVE SPACES

DOUGLAS MEADOWS

We show that certain piecewise-linear homotopy complex projective
spaces may be described as a union of smooth manifolds glued along
their common boundaries. These boundaries are sphere bundles and the
glueing homeomorphisms are piecewise-linear self-knottings on these
bundles. Furthermore, we describe these self-knottings very explicitly
and obtain information on the groups of concordance classes of such
maps.

A piecewise linear homotopy complex projective space CPn is a
compact PL manifold M2n homotopy equivalent to CPn. In [22] Sullivan
gave a complete enumeration of the set of PL isomorphism classes of these
manifolds as a consequence of his Characteristic Variety theorem and his
analysis of the homotopy type of G/PL. In [15] Madsen and Milgram
have shown that these manifolds, the index 8 Milnor manifolds, and the
differentiable generators of the oriented smooth bordism ring provide a
complete generating set for the torsion-free part of the oriented PL
bordism ring. Hence a study of the geometric structure of these exotic
projective spaces CPn, especially with regard to their smooth singularities,
may extend our understanding of the PL bordism ring. This paper begins
such a study in which we obtain a geometric decomposition of CPn

9 into
(for many cases) a union of smooth manifolds glued together by PL
self-knottings on certain sphere bundles. We also obtain information on
groups of concordance classes of PL self-knottings from these decomposi-
tions and a number of fairly explicitly constructed examples of self-knot-
tings. I would like to thank by thesis advisor R. J. Milgram for many
helpful discussions.

I. Sullivan's classification of PL homotopy CPn proceeds as follows:
Given a homotopy equivalence h: CPn -> CPn make h transverse regular
to CPJ C CPn

9 the standard inclusion. The restriction of h to the trans-
verse inverse image h~\CPj) = N2j C CPn is a degree one normal map
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190 DOUGLAS MEADOWS

with simply connected surgery obstruction

p =\z> 7 even'
°j 2j [Z/2Z, j odd

For j = 2,... ,/i — 1 these obstruction invariants yield a complete enumer-

ation— i.e. the set of PL isomorphism classes of CPn is set-isomorphic to

the product ZX Z2X ZX - X ^ ^ ^ with n - 2 factors.

We will use the following notation to specify elements with this

classification:

will denote the PL homotopy CPn with invariants σy E P 2 y in Sullivan's

enumeration.

We recall that a PL homeomorphism / : M -* M is a "self-knotting"

and M is said to be "self knotted" if / is homotopic but not PL isotopic to

the identity. Also, PL homeomorphisms/, g: M -> M are "PL concordant"

(pseudo-isotopic) if we have a PL homeomorphism i7: M X I -> M X I

with F(m,0) = (/(m),0) and F(m, 1) = (g(m), 1) for m E M. We then

define:

(2) SK(M) = " t h e group (under composition of maps) of PL concor-

dance classes of PL self-knottings of M."

Unless otherwise noted "CPJ C CPn" means the standard embed-

ding of CPJ onto the first (j + 1) homogeneous coordinates of CPn or a

smooth ambient isotope of this embedding. In this context we define:

(3) vN(CPj) = " t h e smooth tubular disc bundle neighborhood of the

embedding CPj C CPNr

Our results are as follows:

THEOREM A. For n>4 and σ2 = 0 (2) every CPn <-> (σ2, σ 3 ? . . . ,σπ_1)

is PL homeomorphic to the identification space

I s~i τ> n _y ί s~* τ> 1 \ I j j I . / /°> τ> 1 \ 1

where CPn <-> (σ2, σ3,... ,σn_2,0) β«J the identification is over a PL homeo-

morphism

We prove Theorem A in Part II by a careful description of Sullivan's

classification and an easy Λ-cobordism argument.
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An immediate consequence of Theorem A is the decomposition of

CPn+λ ~(0,. . . ,0,σjinto

CPn+ι = [CPn+ι - v(CP1)] Uφo[v(CP1)].

T H E O R E M B. For every n>4 and non-zero r E P2n there is a PL

self-knotting

which will suffice for the glueing homeomorphism in Theorem A.

We establish this theorem by an explicit construction of φτ in Part III.

II. Here we prove Theorem A by beginning with a construction

which shows how to obtain CPn+x «-> {ol9...9σn_λ9on) from CPn +*

(σ 2,. . .,σ n_ 1)forw > 4:

Let h: CPn -> CPn be a homotopy equivalence, and let M2n be the

compact (n — l)-connected Milnor or Kervaire manifold of Index 8σπ or

Kervaire-Arf invariant σn as the case may be [4]. Let r: M2n ~> S2n be a

degree one map. Then h#r: CPn#M2n -> CPn#S2n = CPn is a degree

one normal map with 1-connected surgery obstruction σn. We define H as

the D2 bundle over CPn#M2n induced by h#r from H, the disc bundle

associated to the complex line bundle over CPn. Let h: H -»H be the

bundle mapping. We note that the map h#r is (n — l)-connected with

homological kernel Kn = πn(M$n) where M0

2 n = M2n - D2n. The bundle

H is trivial over Af0

2n since M2n = (Λ#r)" 1(point). In Λf0

2" X D2 we can

represent πn(M$n) by disjointly embedded spheres Sn <* Mo

2" X Sλ with

trivial normal bundles. This follows by general position and the fact that

the normal bundles of the generating spheres Sn C MO

2/2 are the stably

trivial tangent disc bundles τ(Sn). We now attach a solid handle Z>"+1 X

DnJrλ along Sn X Z T + 1 C Λ/0

2n X Sι for each generator of πn(M2n) and

extend the map h across these bundles. This is possible since the em-

bedded spheres are in the homotopy kernel of h. Call the resulting PL

manifold H and the extended map h: H -> H. In the process of extending

h across the handles, we may guarantee that h is a map of pairs (H, 3) -»

(//, 9). We observe, then, the:

PROPOSITION, ίi: (ίϊ,d) -> (H,d) is a homotopy equivalence of pairs.
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This follows directly from the construction as H deformation retracts

onto CPn#M2n U {e%} where the n-cells en

a are attached so as to kill the

entire homology kernel of (h#r). Hence h: H -> H is a homology isomor-

phism, and as H is 1-connected we have by Whitehead's theorem that it is

a homotopy equivalence. The restriction of h to the boundary is likewise a

homology isomorphism as the boundaries, Dn+X X S£, of the solid han-

dles are precisely the surgeries needed to cobord h: dH -> dH to a

homotopy equivalence.

In particular as n >: 3 we note that the boundary manifold, 97/, is a

PL (2n + l)-sphere by the Poincare conjecture. Thus, we attach D2n+2 to

H as the PL cone on dH and define:

CPn+x = H U c(dH) and A: CPn+x -> C P " + 1 = AT U c ( 3 # )

by radial extension of h into c(3if).

Observe that A has 'built-in" transverse inverse image CPn#M2n —

h~\CPn) with surgery obstruction σn. Hence, this €PnJrλ +* (σ 2 , . . . ,
σw_ l5 σπ) is the space we require.

Now, given CPn <-> (σ 2 , . . . ,σπ_!) let us consider a bit more closely the
suspension and generalized suspension constructions described above.
First, assume the homotopy equivalence

h: CPn -+CPn

is the identity map on a disc D2n C CPn. Let CPo

n = CPn - D2\ M2n =
M2n - D2n and observe that CPn#M2n^ £Po

n UdM
2n. NoW, let €Pn+λ

<+> (σ 2 , . . . ,σπ_ l 5 0) be the suspension1 of CP" with homotopy equivalence

A: C P r t + 1 -> C P " + 1

and CP" <-> (σ 2 , . . . ,σn_ l9 on) be the general suspension of CPn with homo-

topy equivalence

h: CPn+λ - > C P n + 1 .

Let D2n C CP Λ be the image h(D2n) and let CP 1 = S2 C C P " + 1 be
represented as D j U c(ΘD^) in CPn+λ = HU c(dH) with D2 the fiber in
i/ over the center of the disc D2n. Then vn+ι(CP}) C CPn+x may be
represented as the set Dl X D2n U c(dH), a D2n bundle over the sphere
S2 = D2U c(dDl).

^ Now let V=h-\vn+ι(CP1)) and V= h~\vn+x(CPx)) in CPn+x and
^ i respectively. We observe directly from the constructions that

1 We say CPn+ι «+ (σ 2, σ 3,... ,σΛ_,,0) in the "suspension" of CPn^> (σ 2, σ 3,... ,σΛ_,) as
it is precisely the Thorn complex of the line bundle induced over CPn.
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\ _ y a n d c p " + i - j / are precisely the same spaces. To prove

Theorem A we must show that V and V are PL homeomorphic to

LEMMA 1. V = vn+x(CPx) ifσ2 is even.

We observe this from PL block bundle theory as follows: by construc-

tion V is the union of two discs D\ X D2n and c(dH) = D2"+2 along

S\ X D2n. Hence V is trivially a block bundle regular neighborhood of

CPλ — D\ U c(dDl). Assume the obstruction σ2 is even. Then as noted

by Sullivan ([23] p. 43) the splitting obstruction of the homotopy equiva-

lence

h: CPn+x -* CPn+x

along CPX vanishes as it is the mod 2 reduction of σ2. Hence, by a

homotopic deformation we may conclude that the transverse inverse

image of CPX by h is CPι C CPn+x. Moreover, as any two homotopic PL

embeddings of CPX C CPn+x are ambiently PL isotopic (for n > 2 by

Cor. 5.9 p. 65 [21]), we see by appeal to the uniqueness of normal block

bundles (regular neighborhoods) [20] that V is block bundle isomorphic to

the bundle induced from vn+λ(CPx) by h. Conversely, the same argument

on the homotopy inverse of h implies vn+λ(CPx) is block bundle induced

from V. As we are in the stable block and vector bundle range and

π2i?pL — ττ2B0 — Z 2 we can conclude that C and v(CPx) are block bundle

isomorphic; hence PL homeomorphic.

LEMMA 2. V — S2 (homotopy equivalent).

Proof. By construction V = D2 X M0

2" U X U c(dH) where X repre-

sents the solid handles we attached along Sx X M0

2" to kill the homology

kernel of h. The manifold D2 X M0

2 n U X is simply-connected with sim-

ply connected boundary and the homology of a point; hence by Smale's

theorem (Thm. 1.1 [22]) it is a PL disc D2n+2. Thus, V = D2n+2 ΌwD
2n+2

where W is the complement of the embedding

and iS 2 "" 1 = 3MQ W . By the Mayer-Vietoris sequence we know that Wis a

homology circle. Then, by a second application of the Mayer-Vietoris

sequence to the union D2n+2 U^Z) 2 / z + 2 wesee that F i s a homology S2.

Finally, by the Van Kampen theorem F i s 1-connected and we apply the

Whitehead theorem for CW complexes.
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LEMMA 3. V^pn+λ(CPι).

Proof. dV = 9[CP"+ 1 - V] = d[CPn+λ - V] = dV^dvn^x(CPl) by
Lemma 1. Let S2 C V be a homotopy equivalence and a PL embedding
via Whitney's embedding theorem. Then S 2 C F C C P n + 1 i s homotopic
to the standard embedding CPλ C CPn+\ and as before, the PL block
bundle neighborhoods of these two embeddings must be isomorphic. Let
v C V be this block bundle. We note that

dp = dpn+ι(CP]) = dV = dV

by the previous lemmas. Hence, if

V- p= Y

we have dY'= 3F U. 3jf, two copies of the same manifold.
We consider the Mayer-Vietoris sequence for the union V — Y U p

over dp = Y Π v:

• - Hι(dr)'ι'>Hx{v) Θ Hq{Y)Jx->HX{Ϋ) -

where

i, : dv =* P9 j\ : v ^ V,

Since P and V are homotopy 2-sρheres and j \ is a homotopy equivalence,
we see that for qΦ2, i2^ Hq(dp) -> Hq(Y) must be an isomorphism.
When q = 2 the sequence becomes:

*Z, A =H2(Y)

from which we obtain i2 are isomorphisms Z^>A-*Z. Thus, /2: 3^ C F
is a homology isomorphism, and in fact, a homotopy equivalence since
V — Y U P and F, Ϊ', dp are all 1-connected so that by Van Kampen's
theorem Yis 1-connected.

We show next that 3F C Y is a homology isomorphism so that Y is a

ordism from dp 1

(CPι) as required.

PL

Λ-cobordism from dp to 3F—i.e. Y = dp X / and F =
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We know already that 3 F ^ Y as 3 F = 3 P — Y. Moreover, dp ^
dvn+λ(CPλ) is an 5 2 " " 1 bundle over S2. Hence, by the Serre Spectral
Sequence we have

HP(Y) = H(dV) = j Z i ί p = 0, 2, 2* - 1, 2* + 1,
pK ' p 10 otherwise.

Then, the exact sequence of the pair (V9 dV) is:

0 = H3(V, W) -> H2{dV) -> H2(V) -> HX{V, dV) = 0

where the first and last groups are 0 by Poincare Duality. Thus, the
inclusion 3 F C Yd F i sa homology isomoφhism through/? = 2.

Now, consider the composition /: dV~>Y -^> dV where the second
map is a homotopy equivalence. Then/*: Hp(dV) -» Hp(dV) is an isomor-
phism for/? < 2, and by Poincare Duality so is/*: i/7(3K) -» i/7(3F) for
q — 2n~ 1, 2«, 2 « + 1. By the Universal Coefficient Theorem /% is an
isomorphism for p ~ In — 1, 2π, 2w + 1 and so for all p. Thus, / is a
homotopy equivalence, and so is i.

Theorem A is now an immediate consequence of the last lemma as we
have:

ι - Ϋ] U V,

where we have identified V with vn+λ(CPx) by Lemma 1, and the PL
homeomorphism

φσn: $[CPn+x - v{CPλj\ -> dv{CPλ)

comes from the restriction to the boundary of the PL homeomorphism
V-> vn+x{CPλ) of Lemma 3.

III. Construction of the self-knotting <pσ: Here we construct for
n > 4 a PL self-knotting

with the property that it extends to a homotopy equivalence
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which has a transverse-inverse image

on a fiber D2n. Clearly such a φσ will suffice for the map in Theorem A.

We begin the construction by defining

Σ 2 " " 1 C S 2 " + 1

to be the smooth Brieskorn knot represented as the link of the singularity

on the hyper surf ace in C"+ 1 defined by

z,0 -r z^ -r z,2 -r ^^ Λ > " even,

Zl + Z* + ••• + Z 2 , >zodd.

It is well-known that S 2 π + 1 — Σ ^ ' M s a smooth fiber bundle over the
circle with fiber MQ"9 the smooth Milnor or Kervaire manifold with
surgery invariant σ.

Now, let S] C 5 2 / ί + 1 be a fiber on the boundary of the smooth
tubular neighborhood D2 X Σ 2 " " 1 of the knot (a trivial bundle as
iτ2n_ι(SO(2)) = 0 for n > 1). Since n > 1 this circle Sι is smoothly un-
knotted in S2n+X so that the complement of a small tube S} X D2n about
it is diffeomorphic to D2 X S2n~\ Hence the knot Σ 2 " " 1 lies in this
complement with a trivial normal bundle and we can therefore define:

2n~λ ^D2X S2n~ι
β : D 2 X Σ σ ^ D X S

as this embedding. Let W2n^x be the complement of this smooth embed-
ding. Then we observe:

(a) dW= S] X S2n~ι U S] X Σ 2 "- 1 .
(b) W is a smooth fiber bundle over the circle Sι with fiber F2n =

M0

2rt - Z ) 2 a n d 3 i 7 = 5 r 2 " ~ 1 U Σ 2 " " 1 .
(c) the bundle projection is trivial on dW ^ S1.
Now, using the smooth embedding /? we define a piecewise-linear

embedding

yσ:D
2 X S2n~ι ^D2X S2n~ι

as the composite map

idXα β

D2 X S2n~λ -> °D2 X Σ 2 " " 1 ->D2 X S2n~]

where aσ: S2n~* -* Σ 2 " " 1 is a specific PL homeomorphism.
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We now describe the normal bundle vn+x{CPx) in CPn+x as:

vn+ι(Cpl) = D- XS2n~x UpD
2

+ XS2n~x

(*) where p: Sx X S2n~x -* Sx X S2"~x is a smooth bundle automorphism

representing an element in πλ(SO(2n)) = Z / 2 Z (n > 1). [We note in fact

that yn+ι(CPx) is trivial for n even and non-trivial for n odd as it is the

Whitney sum of n copies of the canonical line bundle over CPX = S2.]

In the above description we are expressing CPX a s S 2 — Dl UD+ .

Using this representation we will define the self-knotting φσ by showing

that the PL embedding

may be extended to a PL homeomorphism on all of Vn+λ{CPx). We will

show this using the very agreeable bundle structure on the complement W

of the embedding γσ.

The map

φ σ : D2_ XS2n~ι UpD
2

+ XS2n~ι -* Dl XS2n~ι U p Z) 2 X 5 2 " - 1

will in fact be defined as the union of three maps —

(1) yσ:Dl XS2n~x^Dl XS2n~\

(2) η: W2n+X -> W2n+\

(3) id X μ: D2 X Σ2!1'1 -> Dl XS2n~x

where η is a bundle homeomorphism of bundles over Sx and μ: Σl^""1 ->

S2n~x is a PL homeomorphism and

D2 X Σ2_n

σ-
χ U W2n+X = D2_

Essentially what we are producing in this construction is a map with the

symmetric property that φσ embeds a fiber (the core of D\XS2n~x)

piecewise linearly onto the smooth fibered knot Σ i ^ " 1 CZ>lXS' 2 "~ 1

while φ~x embeds a fiber (the core of D2_ XS2n~x) piecewise linearly onto

the smooth fibered knot Σ 2 " " 1 C Dl XS2n~x.

The construction will be completed by (a) defining the bundle W and

the bundle map η in (2), (b) showing that D2 X Σ2"'1 U W is in fact

D2 X S2n~x by a PL homeomorphism which is the identity on the

boundary, (c) showing that the maps (1), (2), (3) agree on boundaries after

taking the defining automorphism p into account, and finally by (d)

showing that φσ is homotopic to the identity.
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We define the bundle W over Sλ by defining its fiber F and its

monodromy map h: F -> F.

Recall that the 2«-manifold F (fiber of W) is (n — 1) connected and

that 9F = S2n~ι U ΣiΛ

σ~ where the smooth exotic sphere is defined as

Σin-ι = β 2 « - i U ( ^ Z ) 2 " + 1 and σ: 5 2 / ί " 2 -> S 2 "~ 2 is an exotic diffeomor-

phism.

Let / C F be a path connecting the centers of the discs D2+~x and

Dln~ι oΐΣ2

σ

n~ι and S 2 "- 1 . Then a tubular neighborhood of / i s / X D7?'1.

We define F as the smooth manifold

F = [F-IX Dln~ι] u [ / X D+ 1 1 " 1 ]

where the union is taken over the diffeomorphism

id7 X σ" 1 : / X S2n~2 -> / X S 2 " ' 2 .

Then ΘF = Σl"σ~ U S2n~ι as a smooth manifold and we can define a PL

homeomorphism

ή: F ^> F

where η is the identity on F — I X D+n~ι and is id 7 X (cone extension of

σ) onIX Dln~x.

Then we define the monodromy h: F -> -F as the composite map

Λ = T)" 1 ° h ° ή

where /r. F -» F is the monodromy map defining the bundle W. Since dW

is a trivial bundle we know that h is the identiy map on dF. Hence, h is the

identity on dF and the bundle W has the trivial boundary

^ = sι x Σiv u sι x s2""1.

Since T) ° Λ = Λ © γ) the PL homeomoφhism 7): F -> F induces a well-de-

fined bundle homeomoφhism

Restricted to the boundary η is a pair of bundle maps

5id5i X α l j : 5 1 X Σ i V -> 5 1 X S2n~ι

id 5. X α σ : 5 1 X S2n~λ -> 5 1 X Σ 2 " " 1

where the PL homeomorphism α_ σ and α σ are the identity on Dϊ?~ι and

the cone extension of σ""1 and σ respectively on Z ) 2 " " 1 .
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We next embed W in D2 X S2n~~ι as a knot complement which will

act as an inverse to W:

Recall the bundle isomorphism

(*) p:Sι XS2"-1 -> Sι XS2n~ι

which defines dvn+x(CPι). We define a PL bundle map

p:Sι XΣ2_n~x ^ S ]

_
~1

as the composite: p = (id5i X α_ σ) p (id sι X α _ σ ) ~ 1 . We consider the

PL manifold

where the union is over the appropriate component of dW and show:

PROPOSITION. The PL manifold D2 X Σ2ΓO~X U~ W2n+ι is isomorphic

to D2 X S2n~~λ by a PL homeomorphism Λ which restricted to the boundary

Sλ X S2n~] is an S2n~λ bundle isomorphism λ.

Proof, We recall from the definition of W2n+ x that Sι X D2n U W2n+ λ

is the knot complement of our original Brieskorn knot and so has the

homology of S1. A simple exercise with the Mayer-Vietoris sequence

implies then that the manifold W2n+λ Ό Sλ X D2n likewise is a homology

circle, and a second application of the sequence implies that the PL

manifold.

pln+\ = D2 χ Σ2n-\ U ? ^ U S1 X D2n

has the homology of ιS 2 π + 1 . Moreover, p2n+x is simply connected since

WU S] X D2n fibers over Sx with fiber F2n U D2n which is (n - 1)-

connected. Hence πλ{W U 5 1 X D2n) - Z and by the Van Kampen the-

orem on the union

[D2 X Σln~λ] U 5 i X Σ _ J f F U Sx X D2n]

we have iτλ{P2n*λ) — 0. By the Hurewicz and Whitehead theorems any

simply-connected homology sphere is a homotopy sphere, and by the

generalized Poincare conjecture (2n + 1 > 9 ) p 2 " + 1 is a PL sphere.

The identification D2 X Σ2!*'1 U WSι X D2n s S2n+λ provides a PL

embedding S] C S2n+λ and exhibits i(Sι X D2n) C S2n+λ as a representa-

tive for the PL normal microbundle to this embedding. We apply a
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theorem due to Lashof and Rothenberg (Thm. 7.3 in [13]) to obtain a

piecewise differentiable homeomorphism g: S2n+ι -> S2n+ι so that g ° i:

Sx X D2n -> S2n*1 is the smooth vector bundle to the smooth embedding

g ° i: Sx -* S2n+ι. By smoothly unknotting this circle and applying the

smooth tubular neighborhood theorem we obtain a diffeomorphism h:

S2n+X -> S2n+X so that

S 1 X D2n

commutes where j is the standard embedding and λ is a vector bundle

isomorphism. Hence, the restriction map

h o g I : S 2 " + 1 - /(5 1 X D2n) -> S 2 " + 1 - ^ ( S 1 X D2n)

II
2)2 χ £2,1-1

defines a piecewise differentiable homeomoφhism

A: [D2 X Σi r t

σ- U. W]-+D2X S2n~ι

which restricts as λ = λ on the boundary. Finally, we observe that (cf.

Cor. 10.13 in [19]) we may choose a smooth triangulation of/) 2 XS' 2 λ 2 ~ 1

so that Λ is PL. Now, using the homeomorphisms Λ and η we define a PL

homeomoφhism:

(1) Φσ- ί-^Vhl ίCP 1 )

where ξ is the S2n~ι bundle over CPι = S2 defined by λ~]:

ξ = Dl XS2n~ι U λ - . D 2 X S 2 " " 1

Λ-'Uid
— D2 X Σ2"'1 IJΛ W2n+ι U i d

 n 2 w c 2 " ~ ι

(idXα_σ)UηU(idXασ) ,
" 1 UpWU D2X Σ l

= Z)2 X S 2 " - 1 U p Z) 2 X 5 2 " " 1 - dvn+x(CPι).

From the next lemma to the effect that two non-isomorphic sphere

bundles over S2 cannot be PL homeomoφhic it follows that the existence

of the map <pσ itself guarantees that ξ and dvn+ι(CPλ) are the same bundle.

LEMMA. For m >3 the unique non-trivial orthogonal Sm bundle over S2,

I, is not PL homeomorphic to S2 X Sm.
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Proof. Suppose t: £ -> S2 X Sm is a PL homeomorphism. Let £ be the

non-trivial D m + 1 bundle over S2 with 9£ = £ and define the PL manifold

M m + 3 =: EUtD
3 X Sm

M is the union of simply connected spaces over a path connected intersec-

tion. Hence, τr,(M) = {1}. For ra > 3 the homotopy exact sequence of the

fibration 5 m -» 92? ->5 2 implies that p*: π2(dE) -» π2(S2) is an isomor-

phism, and by the Whitehead theorem so is the inclusion H2(dE) -> H2(E).

Hence, in the Mayer-Vietoris sequence

> ̂ . ( S 2 X Sm) ^Hj(E) θ # y(Z> 3 X Sm) ->

ψy- is an isomorphism for 7 < m + 1. Trivally, Hm+2(M) — 0, and again we

have an (m + 2)-connected (m + 3)-dimensional PL manifold which is

consequently a PL sphere.

Then, EUtD
3 X Sm = Sm+3 defines the vector bundle £ as a PL

normal micro-bundle to the embedding of its zero section S2 «=* 5 r m + 3 . By

Zeeman's PL unknotting theorem and the uniqueness [7] of stable PL

normal microbundles, we see that E and S2 X Dm^λ must be micro-bun-

dle isomorphic. Let S2 -* BO classify £ as a vector bundle. Then S2 -> BO

-» BPL is trivial, and as by smoothing theory the fiber PL/0 is 6-con-

nected we see that b is homotopically trivial. As E was assumed non-triv-

ial as a vector bundle the PL homeomorphism / cannot exist.

Thus, we define

Ψσ 9 * W i ( C i > I ) = £ -» ton+i(Cpl) f r o m (1) as required.

Next we show that the φσ just constructed is indeed a self-knotting

and that it will suffice for Theorem A.

Recalling from bundle theory that every SN bundle over S2 for N > 2

has a section, we show

PROPOSITION. Any orientation preserving PL homeomorphism φ: v -> v,

v an orthogonal SN bundle over S2, which embeds a section S2 <=* v homotopi-

cally to itself is homotopic to the identity.

Proof. A tubular neighborhood of the section j(S2) is a DN bundle U

in the same stable bundle class as v. φ(U) PL embeds this bundle in v

with an inherited smooth structure. By the main theorem of smoothing
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theory ([8] or [13], Thm. 7.3) and the uniqueness of smoothings on S2 we

can piecewise differentially isotope this embedding to a smooth embed-

ding of U -» v. We may easily make the isotopy ambient. Next, we

smoothly unknot the core sphere of U and apply the smooth tubular

neighborhood theorem. We have, therefore, P.D. isotoped φ so that

restricted to U it is a DN bundle isomorphism. Since ττ2(SO(iV)) = 0 we

can isotope this bundle mapping to the identity through bundle isomor-

phisms on U all of which extend to v as U is a sub-bundle. Thus, we have

isotoped φ so that it is the identity on U. Now, v — U = U as each fiber

of U is a hemisphere of a fiber in v. We isotope φrel(ί/) so that it is the

identity on the zero section of the bundle v — U. Finally, we homotope φ

to the identity by collapsing the fibers of v — U to the zero-section.

We observe that the φσ constructed above satisfies the hypothesis of

this last proposition as follows: φσ is orientation preserving by construc-

tion. Also, as the original Brieskorn knot embedded a fiber S2n+ι homo-

topically to the usual embedding, we know that φσ does also. That is

(ψo)ΛM = [9"] and (φσ)*(e2n~λ) = e2n"\ where eln~x E H2n~\dv) is
the class represented by inclusion of a fiber. By Poincare Duality, then,

(φσ)*(e2) — e2 for e2 E H2(dv) the class dual to e2n~ι. This implies by

the Hurewicz Theorem that φσ induces the identity homomorphism on

772(3^), which is generated by the inclusion of a section.

The map φσ constructed in section C embeds a fiber S2n~x onto the

image of the Brieskorn knot. Hence, in the decomposition

CP"+l =[CP«+1 - vn+ι(CP1)] UJ^+ 1(CP')]

the identification is in the order:

φ σ : 3 [ C P " + 1 - v] ^dv.

To show, therefore, that C P n + 1 <-> (0,.. . ,0, σ) we must extend φ~ ι to a

homotopy equivalence ψ~ι: v -> v with transverse-inverse image of a fiber

being the Milnor or Kervaire manifold M0

2". Note that any extension will

be a homotopy equivalence as v ^ S2 and φ~ι induces the identity on

π2(dv) = π2(v).

PROPOSITION. ThePLhomeomorphismφ~ι: dvN+x(CPι) -> dv^^CP1)

constructed above extends to φ ~ ι : p n + 1 ( C P ι ) -> vn+x(CPλ) with

transverse-inverse image
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Proof. (<p~x)~\S2n~x) = φσ(S2n~ι) = Σ2

σ

n~ C dv by the construction

of φσ. Moreover, the restriction φ~] | : D2 X Σ ^ ' 1 -> Dl XS2n~x is a

product map. Now, Σ2

σ

n~ι bounds a fiber F2n C W2nΛ~λ whose other

boundary component is a fiber S2n~x of dv. Let D2n C v be the fiber

whose boundary is this same sphere. Then, F2n U D2n — MQ" by the

definition of F2n. By pushing F2n into v along a vector field normal to dv

and smoothing the corner at S2n~x between F2n and D2n we obtain a

smooth embeddingM$n *=* v extending

dM2n = Σ2

σ"-] Cdv.

Moreover, this embedding will have trivial normal D2 bundle as

H\MQΠ, Z) — 0. Hence, we can extend the product map

φ~ι:D2 X Σ ^ " 1 -*D\ X S 2 " " 1

to a bundle map φ~x: D2 X Mo

2" -^ D2

+XD2n covering a degree one

extension M0

2" -» D 2 " . Since [1/ - D\ ] X 7)1 X D 2 " = D2n~2 there are no

cohomology obstructions to extending

φσ

ι U φσ

]toφσ

ι:v ->P

with the required transverse-inverse image built in.
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