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Abstract

Kate Gleason College of Engineering

Rochester Institute of Technology

Degree: Doctor of Philosophy Program: ECE PhD

Author: Celal Savur Advisor: Dr. Ferat Sahin

Dissertation Title: A Physiological Computing System to Improve Human-Robot Col-

laboration by Using Human Comfort Index

Fluent human-robot collaboration requires a robot teammate to understand, learn,
and adapt to the human’s psycho-physiological state. Such collaborations require a phys-
iological computing system that monitors human biological signals during human-robot
collaboration (HRC) to quantitatively estimate a human’s level of comfort, which we have
termed in this research as comfortability index (CI) and uncomfortability index (UnCI). We
proposed a human comfort index estimation system (CIES) that uses biological signals and
subjective metrics. Subjective metrics (surprise, anxiety, boredom, calmness, and com-

fortability) and physiological signals were collected during a human-robot collaboration
experiment that varied the robot’s behavior. The emotion circumplex model is adapted to
calculate the CI from the participant’s quantitative data as well as physiological data. This
thesis developed a physiological computing system that estimates human comfort levels
from physiological by using the circumplex model approach. The data was collected from
multiple experiments and machine learning models trained, and their performance was
evaluated. As a result, a subject-independent model was tested to determine the robot be-
havior based on human comfort level. The results from multiple experiments indicate that
the proposed CIES model improves human comfort by providing feedback to the robot.
In conclusion, physiological signals can be used for personalized robots, and it has the
potential to improve safety for humans and increase the fluency of collaboration.
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Chapter 1

Introduction

In this chapter, an overview of Physiological Computing and its application in Human-

Robot collaboration (HRC) is presented.

1.1 Physiological Computing in HRC

Physiological computing is an interdisciplinary field that focuses on human physiologi-

cal signals to simulate a human’s psycho-physiological state representation that can rec-

ognize, interpret, and process, to dynamically change user’s psycho-physiological state.

Human-computer interaction, brain-computer interaction, and affective computing are part

of physiological computing [5]. The motivation of physiological computing is to simulate

the psycho-physiological state of humans, and allow a program/robot to change its behavior

accordingly; act appropriately, and respond smartly.

Physiological computing affects many fields, such as Human-Computer Interaction, E-

learning, Automotive, Healthcare, Neuroscience, Marketing, and Robotics [5]. As an ex-

ample of E-learning, physiological computing can help the tutor to modify the presentation

style based on students’ affective states such as interest, boredom, and frustration. In the

automotive industry, HCI can be used as an alert system to alert unattentive drivers about

the danger surrounding their vehicles. In social robotics, physiological computing can help

robotic pets to understand human physiological states and improve their interaction.

According to NSF Research Statement for Cyber Human Systems (2018-2019), “im-

prove the intelligence of increasingly autonomous systems that require varying levels of

supervisory control by the human; this includes a more symbiotic relationship between hu-

man and machine through the development of systems that can sense and learn the human’s

cognitive and physical states while possessing the ability to sense, learn, and adapt in their

environments” [6]. Thus, to ensure trust and safety between the human and the robot in-

teractively, the robot should sense a human’s cognitive and physical state, which will help

build trust.

C. Savur 1



In a human-robot interaction setup, a change in a robot’s motion can affect the human

physiological state. Experiments such as [7] and [8] revealed that the robot’s trajectory has

an effect on human skin conductivity. The literature review in [9] highlights the use of the

‘psycho-physiological’ method to evaluate human response and behavior during human-

robot interaction. In our opinion, continuous monitoring of physiological signals during

human-robot tasks is the first step in quantifying human trust in automation. The inferences

from these signals and incorporating them in real-time to adapt robot motion can enhance

human-robot interaction. Such a system capable of ‘physiological computing’ will result

in a closed human-in-the-loop (also known as ‘biocybernetics loop’) system where both

human and robot in an HRC setup are monitored, and information is shared. This approach

could significantly improve robot interaction, which would improve trust in automation and

increase productivity.

According to Fairclough, physiological computing can be divided into two categories.

The first category is a system of sensory-motor function, which is related to extending

body schema [10]. In this category, the subject is aware that they are in control. For

example, an Electromyography (EMG) sensor placed on the forearm can be used as an

alternative method for typing [11], or it can control a prosthetic arm. Similarly, Brain-

Computer Interaction (BCI) provides an alternative way to type via Electroencephalogram

(EEG) headset.

The second category is about creating a representation of physiological state through

monitoring and responding to simultaneous data originating from psycho-physiological

interaction in the central nervous system [10]. This category is also known as biocybernet-

ics adaptation. The biocybernetics adaptation needs to detect spontaneous changes in the

user’s physiological state. Thus, the system can respond to this change. The biocybernet-

ics adaptation has many applications, such as emotional detection, anxiety detection, and

mental workload estimation. For example, based on mental workload, the amount of data

displayed can be filtered to reduce the workload in flight simulation. A computer game can

change difficulty levels based on the player’s anxiety levels.
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1.2 Human’s Comfort Index Estimation System (CIES)

There are various ways to tackle safety. The state-of-the-art technique is to use safety zones

(thresholds) such as laser ranging and pressure pads. Although these approaches provide

safety, it is not efficient in terms of productivity. Because the robot needs to stop at any

time a human enters the robot’s workspace.

In an alternative approach, Kumar et al. [12] proposed a Dynamic Speed and Separation

(DSS) that uses minimum speed and separation monitoring. The DSS has proven that it is

better than the state-of-the-art methods in terms of the efficiency of the robot. However,

since this method allows the robot to get close to the human, it may trigger discomfort in the

human due to its speed, acceleration, and size. The approaches discussed above can detect

a human when it enters its workspace; however, they cannot detect human comfortability.

The human comfort index estimation system (CIES) aims to estimate the human com-

fort index via physiological signals to control a robot’s speed and separation through com-

fort index. Fig. 1.1 shows the overall human in the loop system. This approach is also

called implicit communication between the human and the robot.

Figure 1.1: The figure shows the human in the loop system where the human and the robot
share the same workspace.
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As seen in Fig. 1.1, the robot can control its speed, acceleration, trajectory, and dis-

tance between human and robot (limited control). Any sudden change in these actions may

trigger discomfort in a human. Especially if the person does not have any prior experience

with robots. CIES is a physiological computing system that acquires physiological signals

from humans in real-time and processes these signals to estimate the comfort index, which

will provide a robot intelligence system to change its behavior (adaptation) to make people

comfortable.

This thesis aims to develop a physiological computing system that monitors human

physiological responses in real-time during a human-robot collaboration task to estimate

a human comfort index and provide this information to the robot as actionable feedback.

In addition, the model has to be adaptive because as human gets used to a task (“learning

curve [13]”) they feel more comfortable thus, such a system should not trigger a false alarm.

This research also highlights the aspects and challenges of collecting human-physiological

signals during a human-robot experiment. It underscores the importance of a controlled

HRC experiment design, event marker generation related to both the human and the robot,

and the synchronization of data collected. Detecting stress, anxiety, and cognitive load is

not in the scope of this research.
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Chapter 2

Background and Related Work

This chapter provides background information and a literature review of related research

on physiological computing for HRC in the industry. A brief summary of physiological

signals and their characteristics, data collection methods, and data labeling are presented.

Following these sections, a detailed categorization of related research in Human-Robot

Collaboration based on physiological computing is presented. Finally, dynamic speed and

separation algorithms are presented.

2.1 Physiological Signals

Representation of a human’s psycho-physiological state requires a complex analysis of

physiological signals. Hence, to estimate the psycho-physiological state a variety of physi-

ological signals were used such as Electrocardiogram (ECG), Photoplethysmography (PPG),

Galvanic Skin Response (GSR), Electroencephalography (EEG), Electromyography (EMG),

respiration rate (RSP), and Pupil dilation, as shown in Fig. 2.1.

ECG EEG

GSR

PPG Pupillometry

EMG

Physiological Signals

Others

Figure 2.1: Physiological signals
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2.1.1 Electroencephalogram

Electroencephalogram (EEG) is a method to measure the electric activity of the neurons

in the brain. EEG signal is a complex signal; thus, extensive research is presently being

conducted in the field of neuroscience psychology. The EEG signal can be collected using

invasive or non-invasive methods. The non-invasive method measures signal over the skin

which is widely used to collect the brain’s activity. The invasive method measures signal

under the skin (in some cases under the skull [14]) and it becomes more available and its

results are promising these days.

The researchers categorized EEG signals based on the frequency band: delta band (1-4

Hz), theta band (4-8 Hz), the alpha band (8-12 Hz), the beta band (13-25 Hz), and gamma

band (> 25 Hz). Results showed that the delta band has been used in several studies such

as sleeping [15]. The theta band is related to brain processes, mostly mental workload

[16, 17]. It has been shown that alpha waves are associated with relaxed wakefulness [18],

and beta waves are associated with focused attention or anxious thinking [19].

It can be argued that wearing an EEG cap while working can be uncomfortable. How-

ever, it must be noted that in industry, workers are required to wear a helmet or hat. With

the advent of IoT systems and wireless communication, small-scale EEG sensors can be

embedded into the headband [20].

2.1.2 Electrocardiogram

Electrocardiogram (ECG) is the method that records the electrical signal generated by the

heart. ECG is a non-invasive method that was developed in 1902 by Dr. Willem Einthoven

[21]. ECG signals can provide useful information about the heart and its diseases such as

Atrial Fibrillation, Ischemia, and Arrhythmia.

ECG signal is a repeated heartbeat that is defined by a QRS complex. The QRS is the

most visible part of the signal, and it lasts 0.06 to 0.10 seconds for adults [22]. Heart Rate

(HR) is the number of repeated R peaks in a minute. The ECG is not the only way to

determine the HR rate; however, it is the most accurate and trusted signal to calculate since

it is directly calculated from the polarization and depolarization of the heart. The other

valuable signal that is extracted from ECG is Heart Rate Variability (HRV). It is defined
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by the time elapsed between two consecutive R peaks. The HRV helps to indicate heart

disease such as Atrial Fibrillation (AF). The HRV varies based on human activity state;

for example, during exercise, HRV is low; in the contrast, it is high during resting state.

However, it is more important to pay attention to a sudden change in HRV since this can be

an indication of either heart disease or emotional change. Chio et al. showed that there is a

significant positive correlation between emotion and HRV; thus, they suggest HRV can be

used in emotional detection [23].

2.1.3 Photoplethysmography

Photoplethysmography (PPG) is a convenient and inexpensive method that is an alternative

to the ECG approach that measures heart rate and heart rate variability. PPG technology

uses a light source and photon detector on the human’s skin to measure the amount of light

reflection (volumetric variations of blood circulation). Unlike ECG signal PPG signal uses

inter-beat-interval (IBI) for heart rate and HRV calculation. ECG electrode placement is

complicated and is prone to noise from movement, Lu et al. showed that the PPG method

can be used for heart rate and heart rate variability [24].

2.1.4 Galvanic Skin Response/Electrodermal Activity

Galvanic Skin Response (GSR) or Electrodermal Activity (EDA) is a physiological signal

obtained by measuring skin conductivity. The conductivity of skin changes whenever sweat

glands are triggered. This phenomenon is an unconscious process controlled by the sym-

pathetic division of the autonomic nervous system. The sympathetic division is activated

when exposed to emotional moments (fear, happiness, joy) or undesirable situations [25].

Hence, it triggers the sweat glands, heart, lungs, and other organs; as a result, one’s hands

become sweaty, heart rate increases, and one begins breathing excessively.

The GSR signal is used in various fields such as physiological research, consumer

neuroscience, marketing, media, and usability testing. The GSR signal is a non-invasive

method that uses two electrodes to detect emotional arousal. It is commonly placed on the

palms of the hands, fingers, or foot soles.

The GSR signal has two components: tonic level, Skin Conductance Level (SCL), and
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phasic response, known as Skin Conductance Response (SCR). The tonic level changes and

varies slowly. It also may vary between individuals and their skin moisture level. Thus,

it does not provide valuable information about the sympathetic division. Unlike the tonic

level, the phasic response changes and alternates faster. These changes and deviations are

directly related to reactions coming from the sympathetic division under the autonomic

nervous system. The phasic response is sensitive to emotional and mental load [26, 27] and

has a delay of 1 to 5 seconds after the onset of event stimuli. The GSR signal is usually

used with other signals such as eye-tracking, heart rate, or respiration rate to interpret

the autonomic nervous system better [25]. Thus, the phasic response provides essential

information about the physiological state.

The GSR signal provides valuable information about the strength of arousal, whether

it is decreasing or increasing. However, positive and negative events (moments) may have

similar GSR signal output. Therefore, the GSR signal should be used with another sensor

such as EEG, ECG, EMG, or Pupil dilation [25].

2.1.5 Pupil Dilation/Gaze Tracking

Human visual attention can be detected by eye movement, and this information can be used

in many studies such as neuromarketing and psychological studies [28]. The gaze tracking

provides information about the subject’s field of view. This information also can be used

in other fields, such as robotics. For example, if the robot knows a person is not paying

attention to a sensitive operation, the collaborative robot can take some action to notify the

person.

The eyes do not only provide information about the direction of focus, but they also

provide information about pupil dilation, which is a measurement of change in pupil di-

ameter. Although pupil dilation can be caused by ambient or other light intensity changes

in the environment, it has been shown that it can dilate from emotional change as well

[29, 30, 31].
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2.1.6 Electromyography

Electromyography (EMG) is a non-invasive method that measures electrical activity gen-

erated by muscles. EMG has been used in biocybernetics loop applications as a control

input for a system or robot [32]. Another example of EMG is sudden emotional changes or

reactions [33, 34] from facial muscles.

2.1.7 Physiological Signal Features

Unlike deep learning models, classical Machine Learning (ML) algorithms usually need

features for training. Although deep learning algorithms can learn from the raw data, they

require large datasets, which are typically difficult to obtain. Classical ML algorithms

require features to be extracted from signals. There are different ways of extracting features

from a signal: time domain, frequency, and non-linear features. In this section, commonly

used features are listed in Table 2.1 based on signal types. Researchers also use discrete

wavelet transforms for feature extraction. Al-Qerem et al. provided extensive work that

discussed the usage of wavelet transforms for EEG signal [35].

2.2 Data Collection Methods

Data collection is the most important and time-consuming part of physiological computing

systems; high signal quality will be beneficial for extracting desired information from sig-

nals. There are a variety of ways to collect physiological signals. In this section, we cover

the most commonly used methods which are as shown in Fig. 2.2.

2.2.1 Baseline

The objective of the baseline method is to define what the normal is. The baseline is col-

lected before the experiment is started. Thus, the baseline information can be used during

the experiment for comparison or to create a rule that would capture target situations. For

example, anxiety estimations during computer games [36, 37]. The subject’s physiological

signals are recorded before the experiment that was marked as a baseline, then these signals
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Table 2.1: Commonly used physiological metrics extracted from the ECG, GSR, Pupillom-
etry, and EEG signals

Signal Type Feature Description

ECG

MeanNN The mean of the RR intervals.
SDNN The standard deviation of the RR intervals.

RMSSD
The square root of the mean of the sum of successive
differences between adjacent RR intervals.

SDSD
The standard deviation of the successive differences
between RR intervals.

pNN50
The proportion of RR intervals greater than 50ms,
out of the total number of RR intervals.

pNN20
The proportion of RR intervals greater than 20ms,
out of the total number of RR intervals.

LF The spectral power of low frequencies.
HF The spectral power of high frequencies.

GSR

Amp. Mean Mean value of peak amplitude
Amp. Std Standard deviation of peak amplitude
Phasic Mean Mean value of phasic signal
Phasic Std Standard deviation of phasic signal
Tonic Mean Mean value of tonic signal
Tonic Std Standard deviation of tonic signal
Onset Rate Number of onset per minute

Pupillometry
Pupil Mean Mean value of pupil signal
Pupil Std Standard deviation of pupil signal

EEG

MAV Mean Absolute Value
ZC Zero crossing
SSC Slope Sign Changes
SKE Skewness of EEG signal
Kurtosis Kurtosis of EEG signal
Entropy Entropy of EEG signal
SEntropy Spectral entropy of EEG signal

are used to create thresholds and make decisions during the game. For example, the level

of game difficulty will change automatically according to the anxiety felt by the players.

When the player feels anxiety, the game difficulty was reduced to make the experience

more desirable. This method is mostly used in biocybernetics adaptation applications.

2.2.2 Pre-Trial

Unlike the baseline data collection method, pre-trial data is collected for comparison before

each trial. This approach captures a physiological state before the trial. As an example,

Dobbins et al. [38] collected a questionnaire and physiological signals before-trial and
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1. Trial

Trial Start Trial End

Post/After Trial

Questionnaire

1 2 3 ... N

During Trial

Questionnaire

2. Trial

Trial Start

1 2

Time

Baseline

Pre-Trial

Questionnaire

Figure 2.2: Four data collection methods: Baseline, Pre, During, and Post/After trial.

after-trial for five working days from the participant to measure the stress level of the driver

during their commute. This allows the investigator to capture the difference between before

and after the trial. Hence, this information would provide useful information about the

daily ride. Although this approach helps in comparison, it requires data collection before

and after each trial. It is important to mention that this method can be overwhelming for

the participants to answer the same questions multiple times.

2.2.3 Post/After-Trial

The post/after trial data collection is the most used technique for data collection where a

visual stimulus is shown to the subject. The subject then evaluates the stimuli by answering

a post/after trial questionnaire. For example, data is collected while the subject performs

an action after the instruction was displayed on the screen [32].

2.2.4 During-Trial

During-trial is a method where the participant is asked the same question throughout the

ongoing trial as shown in Fig. 2.2. This type of data collection is useful when during-

trial progress is important. For example, Sahin et al. [4] collected perceived safety in two

methods: during-trial and after-trial. Their analysis showed that during-trial data collection

provides additional information compared to the after-trial method.

There are two important aspects of the during-trial data collection method. The first

C. Savur 11



one is to limit the number of questions. As the trial is still ongoing, asking many questions

may break the integrity of the experiment. The second is making data input methods easier.

Instead of using paper and pen to collect data from the participant, it would be easier to have

an application that allows participants to answer questions using a tablet. As an alternative

to using a tablet app for data collection, recording participant audio feedback during trials

may improve the data collection for the during-trial approach.

In conclusion, although collecting data during trials provide additional information, it

may result in participant boredom if there are many questions.

2.3 Data Labeling

After data collection, physiological signals need to be labeled. In some cases, the labeling

can be cumbersome, especially in biocybernetics adaptation. This section will discuss

commonly used data labeling techniques that are shown in Fig. 2.3.

Subjective
Response

Action Based Content Based

Data Labelling 

Methods

Figure 2.3: Data Labeling Methods

2.3.1 Content/Action Related

Content/Action related labeling is commonly used in a visual stimuli type of experiment

[39, 40, 41]. In the visual experiment, the exact time of the shown image or video is

known. Thus, the physiological signal can easily be labeled with a corresponding label.

Similarly, in the action-related experiment, the time the subject repeats the gesture/action

is known; thus, a window that captures the gesture can be labeled accordingly [11]. Savur

et al. [11] talked about the critical aspects of data collection and labeling in HRC settings.

They provided case studies for a human-robot collaboration experiment that has built signal

synchronization and automatic event generation.
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Content/action labeling is the simplest way of labeling, and it can be done during the

data collection process. Thus, this method is widely adopted in different fields including

physiological study, marketing, emotion detection, and other related factors.

2.3.2 Subjective Labeling

The questionnaire is very common in quantitative research; thus, it is widely used in HRC

studies. In human-robot collaboration research, questionnaires play a key role. For ex-

ample, Kumar et al. [12] used subjective response to evaluate their proposed speed and

separation monitoring methods with state-of-the-art methods. Similarly, in emotion detec-

tion research, one scene may trigger different emotions; thus, most of the researchers use

it for subjective evaluation [42]. Dobbins et al. [38] asked the subject to answer pre and

post-survey, where the subject answered a survey before and after each experiment. Then

both surveys were used quantitatively to subtract from each other, then based on the result,

the trial was marked as positive, negative, or neutral.

The questionnaire helps to quantify the subject’s preferences and evaluate the proposed

methodology. Although it is common to ask a questionnaire, there is not a common set

of questions that researchers follow [43]. In general, researchers create their own set of

questions or expand upon an existing one that targets their underlying hypothesis. Below

commonly used questionnaires in HRC are provided.

• Godspeed was designed to standardize measurement tools for HRI by Bartneck et

al. [44]. The Godspeed focused on five measurements: anthropomorphism, adap-

tiveness, intelligence, safety, and likability. The Godspeed is commonly used, and it

has been translated into different languages.

• NASA TLX was designed to measure subjective workload assessment. It is widely

used in cognitive experiments. The NASA TLX measures six metrics: mental de-

mand, physical demand, temporal demand, performance, effort, and frustration [45].

• BEHAVE-II was developed for the assessment of robot behavior [46]. It measures

the following metrics: anthropomorphism, attitude towards technology, attractive-

ness, likability, and trust.

C. Savur 13



• Multidimensional Robot Attitude Scale (MRAS) is a 12-dimensional question-

naire developed by Ninomiya et al. [47]. The MRAS measures a variety of metrics

such as familiarity, ease of use, interest, appearance, and social support.

• Self-Assessment Manikin Instrument (SAM) consists of 18 questions that measure

three metrics of pleasure, arousal, dominance [26]. Unlike most surveys, SAM uses

a binary selection of two opposite emotions: calm vs. excited, unhappy vs. happy,

etc.

• Negative Attitude toward Robots Scale (NARS) was developed to measure the

negative attitude toward robots in terms of a negative interaction with robots, social

influence, and emotions. In addition, NARS measures discomfort, anxiety, trust, etc.

[48].

• Robot Social Attributes Scale (RoSAS) is a survey that targets to extract metrics of

social perception of a robot such as warmth, competence, and discomfort [49].

• STAXI-2 consists of 44 questions that measure state anger, trait anger, and anger

expression[50].

2.4 Related Works

Table 2.2 shows some of the related works that are categorized in terms of stimuli type,

data collection method, data labeling technique, and the machine learning algorithm used

in the field of physiological computing.
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There are many studies that focus on estimating a person’s emotional state, stress level,

and cognitive state through physiological signals [7, 36, 70]. In addition, there are other

researchers investigating the psychological aspects of robot behavior [58].

Kulic et al. [7] present a method to calculate the danger index by using distance and

relative velocity between a human and robot, and the inertia of the closest point to the hu-

man as suggested in [71]. Then the real-time calculated danger index is used to control the

robot’s trajectory on a real robot. Similarly, the same authors [51] tried to detect anxiety

triggered by two trajectory planners. Biological signals and subjective responses were col-

lected from subjects during the experiment. The result of the subjective responses from the

experiment showed that the subjects felt less anxiety during a safe planner than the classi-

cal planner. Moreover, the researcher found that the corrugator EMG signal did not help to

estimate arousal and valence. However, they have found a strong positive correlation be-

tween anxiety and speed, surprise and speed, and a negative correlation between calm and

speed. Kulic and Croft in [72, 33] is an extension work of the previous study [51] showing

that the Hidden Markov Model (HMM) outperforms Fuzzy inference on estimating arousal

and valence from physiological signals.

Nomura et al. [48] investigated negative attitudes toward robots and developed a mea-

surement scale called “Negative Attitude towards Robot Scale” (NARS). An interesting

result from this study shows that male students have fewer negative attitudes toward inter-

actions with robots than female students in Japan. However, the authors propose a physio-

logical experiment to be conducted to understand the human’s mental state during human-

robot interaction. Also, the authors mention that this result may differ for other cultures

since proxemics preferences [73] are different from culture to culture.

Villani et al. [37] introduced a framework that takes human mental health into account

to simplify a task in an industrial setup to improve the interaction between humans and

robots. The authors used a smartwatch to measure heart rate variability (HRV) to estimate

stress by applying a threshold. In order to find the thresholds for stress and resting, a sub-

ject’s HRV signal was collected just before the experiment started. In the experiment, the

subject task was to navigate a mobile robot using hand gestures provided by the smartwatch

IMU (Roll, Pitch, Yaw). While the subject was controlling the robot, his/her mental state

was measured, and the robot’s speed halved when the subject was stressed. Reducing the

robot’s speed extended task completion time and, as a result, reduced efficiency.
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The authors of [52] analyzed the mental workload of an operator for an industrial setup

where the operator teleoperated the task. The authors collected HRV signals for 2.5 minutes

of resting state and 2.5 minutes of stress state (“creating stress by listening to loud music

and counting numbers”). The model was used in a teleoperated task where virtual fixtures

appear on the screen for the operator only based on the subject’s stress level. Their system

predicts stress every 2.5 minutes, which is a drawback of the system.

Villani et al. [37] tried to develop a system that estimates the affective state of a human

through wearable sensors. The authors used fuzzy inference, which uses features extracted

from ECG, EDA, and EMG signals. They also designed an experiment that allowed a user

to communicate with a mobile robot implicitly. As a result, they found that cardiac activity

is a strong indicator of anxiety.

Liu et al. [54] designed a system that used effective cues to improve human-robot

interaction. The authors used various biometrics such as ECG, EDA, and EMG, where

multiple features were extracted. The study consisted of two phases. The first phase was

developing a regression tree model for the classification of anxiety. In the second phase,

the model was used to set the game’s difficulty based on the player’s anxiety. As a result,

the participant reported a 71% increase in satisfaction while their model was active during

the task.

Rani et al. [74] compared the four most common learning algorithms, such as K-

Nearest Neighbor, Regression Tree (RT), Bayesian Network, and Support Vector Machine

(SVM), on biological signals to detect affect recognition. The result of the experiment

shows that SVM outperforms other algorithms with an 85.81% accuracy in classification.

However, RT was the fastest algorithm which makes it more suitable for real-time appli-

cations. Tan et al. [75] defined important aspects of human-robot collaboration in factory

settings. In addition, two experiments were proposed as a case study. The first case study

investigated the effect of robot motion speed. The second was conducted to see the effect of

the human-robot distance. Results of the experiment show that mental workload is directly

proportional to the robot’s speed and inversely proportional to distance.

Arai et al. [76] investigated the effects of the distance from a subject and the robot’s

speed on the subject’s mental state by using only skin conductivity sensors. As a result,

research suggests that the distance between an operator and a robot should be more than

two meters, and the speed of the end effector to be no more than 500 mm/s. In addition, Arai
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et al. also discovered that notifying the operator about robot speed reduces an operator’s

mental strain.

Schirner et al. [77] discussed the future of human-in-the-loop cyber-physical systems.

They gave possible applications and explained the framework they are working on. The

purpose of the framework is to receive biometrics and estimate human intention from sig-

nals where this kind of system is helpful for locked-in individuals. Hu et al. [55] experi-

mented on an estimated human trust index model using EEG and GSR sensors in real-time.

In their experiment, they asked users to evaluate a virtual sensor reading in simulation.

Based on sensor accuracy and the subject’s response, the result showed that using physio-

logical signals to estimate human trust level was promising.

The authors of [59] introduced a multi-modal emotional state detector using multiple

devices. Their experiment focused on short-term GSR and heart rate, short-term GSR and

EEG, and long-term GSR and heart rate characterization. Rani et al. [56, 78] tried to an-

alyze anxiety-based affective implicit communication between the human and the robot.

The researcher used ECG, EDA, EMG, and temperature signals in the regression tree and

a fuzzy inference engine. Their results showed that the detection of anxiety using physio-

logical signals was promising and might show better results in the future.

As computer games became more popular, Rani et al. [36] were trying to keep computer

games more engaging by utilizing physiological signals. The authors estimated a gamer’s

effective state in real-time and altered game difficulty. The results showed that performance

improves and creates lower anxiety during gameplay.

Erebak et al. [57] conducted an experiment among caregivers. Their result showed

that human-like robots and typical robots did not have a difference in terms of appearance.

There was a moderate correlation between trust in automation and intention to work with

robots. There was a weak positive correlation between trust in automation and preference

for automation.

Dobbins et al. [38] used a wristband that recorded GSR signal during the day. Their

study was to estimate negative emotions, such as stress. The GSR signal from 6 subjects

was collected during the day, with two daily surveys to be used for the labeling.

Ferrez et al. used EEG signals to detect error-related potentials (ErrP) when the subject

makes a mistake. Their results showed that estimation of ErrP was promising and could

be used in HRI [61]. Ehrlich et al. investigated the usage of EEG signals to detect the
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intention to initiate eye contact when a robot needs to engage with humans [62]. Val-

Calvo et al. proposed a framework that uses multiple signals of EEG, HR, and GSR to

estimate Emotions while the subject is watching TV that can be used in HRI applications

[63]. Mower et al. used physiological signals to estimate engagement implicitly. KNN with

GSR and Skin temperature signals were used to estimate user engagement with an accuracy

of 84.73%. The author suggested that implicit cues could be used in HRI applications [64].

Novak et al. used ECG, GSR, RPS, Skin Temperature, EEG, and Eye tracking signals to

estimate a human’s workload and effort. During trials, subjects were asked to fill a NASA-

TLX questionnaire [65]. Iturrate et al. [66] used physiological signals to detect ErrP from

EEG signals; they used both simulation and actual robots in their experiments. Their result

showed that the brain-computer interface could be used as a continuous adaptation when

there was no explicit information about the goal. Ehrlich et al. tried to validate robot

action implicitly by using EEG signals. In their proposed approach, they focused on ErrPs,

and their result showed a classification accuracy of 69.0% for the detection of an incorrect

robot’s actions [67]. Similarly, Salazar-Gome et al. [68] used EEG signals with error-

related potential to fix the robot’s mistake during the task. In the experiment, they used

a Baxter robot to make decisions based on EEG signals in real-time. Dehais et al. [69]

focused on hand-over tasks where a robot hand-over an item to a human. They collected the

physiological signals during the task. Their results showed that the physiological response

varies between the robot’s motions.

2.5 Dynamic Speed and Separation

Speed and Separation Monitoring (SSM) is one of the safety methods for a human operator

in industrial standards [79]. The SSM uses the minimum separation distance and the rela-

tive velocity between a human and a robot to control the robot to toggle between multiple

modes such as slow and stop to avoid a collision. The conventional industrial application

uses SSM with a LIDAR which is fixed at the base of the robot and measures the distance

between a human and the robot. Then it uses this distance information to change the mode,

as shown in Fig. 2.4. Although this approach increases safety, it is not productive when hu-

mans enter and exit many times during the task. As a result, the robot will stop many times,

which reduces productivity. In order to address this issue, an alternative approach called
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Dynamic Speed Separation Monitoring is implemented by Kumar et al. [1, 80, 81]. Unlike

the fixed threshold by static LIDAR approach, multiple time of flight (ToF) sensor rings are

placed on the robot to dynamically measure the distance based on robot pose and motion.

Kumar et al. [1] presented three flavors of the SSM algorithm: TriSSM-Vo, TriSSM-Vr,

and TriSM. These flavors toggle between three modes: normal, reduced, and stop. Hence,

they are called Tri-Modal.

Figure 2.4: A basic SSM setup in a simulation representing static 2D safety zones around
the robot. There are three safety zones, Danger, Warning and Safe, where the robot motion
stops, reduces speed (slows down), or moves normally, respectively, to ensure the safety of
the human [1]

• TriSSM-Vo is an SSM safety approach that takes into consideration the human/agent

and robot-directed speeds for calculating the Protective Safety Distance (PSD) and

Reduce Safety Distance (RSD) thresholds according to the SSM formulations in [82].

In the TriSSM-Vo, the human-agent/object is considered non-stationary. The directed

speed is calculated as the projection of the relative velocity of the robot link and the

human-agent/object onto the minimum distance vector [1].

• TriSSM-Vr is another dynamic SSM safety approach that takes into consideration

the robot-directed speed and distance for calculating the PSD and RSD thresholds

according to the SSM formulations. TriSSM-Vr considers the human agent/object is

stationary, and the directed speed is calculated in the same way as TriSSM-Vo [1].
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• Tri-Modal Separation Monitoring (TriSM) is an approach that does not consider the

directed speeds. It uses constant thresholds for PSD and RSD. This is a form of

dynamic SSM approach when used with on-robot ToF sensor arrays and a static

SSM while using a 2D LiDAR [1], as shown in Fig. 2.4.

2.6 Summary

This chapter presents a compilation of state-of-the-art methods for physiological comput-

ing, commonly used physiological signals, data collection techniques, data labeling tech-

niques, and various questionnaire methods. There might be other methods that are not

included in this thesis for their scope and unpopularity.

In HRC application, safety and fluency are critical in the industrial standard. Although

current standards address various aspects of safety, these are not sufficient. New personal

and adaptive methods need to be implemented. Physiological computing is a way to im-

plement personalized, safer, and fluent HRC applications. Therefore, in the near future,

multiple variations of physiological computing will improve human-robot applications.

As wearable technology advances, new sensors are available on the market, and their

cost will decrease. Hence, researchers and companies are taking advantage of this oppor-

tunity to develop better multi-modal sensor systems to improve human-robot collabora-

tion/interaction. Although data collection is challenging, it is an essential input for phys-

iological computing. The quality of the data is a key factor for physiological computing

systems. Therefore, widely used data collection techniques need to be preferred and new

innovative methods implemented. One drawback of the HRC application is the lack of

open-source datasets. Future researchers need to implement their experiments and collect

data. Public datasets will allow researchers to compare and improve existing physiological

computing applications while maximizing time and effort at the same time.

Similar to data collection methods, data labeling lacks standard procedure. Presently,

there is an absence of any standard protocol for data labeling. Researchers label their data

based on the experiment, making it difficult to reproduce and compare the results.

In conclusion, this chapter discussed the commonly used physiological signals, data

collection methods, data labeling methods, and questionnaires. We have also categorized
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physiological computing research in terms of stimuli and data collection type used dur-

ing experiments, data labeling methods, and machine learning algorithms. We hope this

research will provide a framework for future researchers to select a suitable approach for

future physiological computing systems.
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Chapter 3

Human Comfort Index Estimation System

In this chapter, the core contribution of this dissertation is presented. The exploration

of human comfort index estimation is discussed and the formulation and implementation

of a comfortability index estimation system are presented. Then physiological signals,

subjective data collection, data labeling, and machine learning algorithms are provided.

3.1 Exploration of Human Comfort Index Estimation in

HRC

Physiological computing is an interdisciplinary field that affects many research areas. In

this section, we are going to cover how physiological computing was used and how it can

be used in the field of human-robot collaboration. One method of physiological computing

is to have a dynamic representation of the user-state that is updated through physiologi-

cal signals. Then the representation of the user-state can be used to inform a system for

adaptation [5]. For example, a collaborative robot can reduce its velocity if a person is not

comfortable or recover its velocity if the person is starting to feel comfortable. This type

of physiological computing is known as ‘biocybernetic adaptation’.

As the physiological signals are the fundamentals of physiological computing, usually

an experiment is required to monitor the human responses. In section 2.2, the importance

of the data collection was explained. For simplicity, in this chapter, we will assume that

the physiological signals and subjective responses are collected during the HRC task that

triggers a variety of levels of comfortability. By using this data, we will present four bio-

cybernetic adaptation approaches that can be used in HRC.
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3.1.1 Machine Learning Approach

Machine learning and Deep learning have become popular in the last decade in various

applications, including physiological computing systems. A common approach is to map

physiological signals to the desired output, such as emotion. Here, we will provide an

overview of how it can be used in HRC applications.

Figure 3.1: Machine Learning Steps for Physiological Computing Applicationa

Fig. 3.1 shows how to use physiological signals in a machine learning application. This

approach is widely used in the field of physiological computing systems. The standard

ML steps are applied to signals: preprocessing, feature extraction, and based on the label

type, a classification or regression algorithm can be used to estimate the target. The signal

preprocessing and feature extraction methods are discussed in section 2.1.7.

Once the ML model is trained and its hyper-parameters are tuned, it can be used for

HRC applications. For example, an ML model can use extracted features from the signals

to estimate comfortability. Then the robot can use the comfortability signal (control signal)

to change its behavior, such as its velocity, trajectory, or acceleration. Researchers widely

use this approach. For example, Artal-Sevil et al. [40] used this approach to implement a

low-cost robotic arm controlled by an EMG signal. Similarly, Savur et al. [11] used surface

EMG signal to estimate American Sign Language alphabets.

Unlike classical ML models, deep learning approaches can learn from the raw data.

Thus, Fig. 3.1 can be simplified by removing the feature extraction block. It is important to

mention that deep learning approaches are data-hungry, and it is difficult to collect data for

HRC experiments. The HRC experiments require the programming of a robot, testing, get-

ting permission for human subject experiments from the institution, and calling for people

for data collection. This whole process takes a long time.
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3.1.2 Anomaly-Based Approach

The novelty-based approach is similar to the ML approach; however, the model learns what

the normal is and detects anomaly occurrences during a process. A good example of this

type of system would be one-class classification. Bowen et al. [83] presented an online

novelty detection system that uses a mixture of Gaussian with a one-class classification

method to estimate the stress level of an equine using equine’s motion data. Then the

system triggers an alert when a novelty is detected.

The machine learning algorithm suffers during training when the dataset is imbalanced

since it creates a bias towards a dominant class in the dataset. However, the imbalance in

the dataset between classes is not affected by the novelty detection methods. Therefore,

novelty detection algorithms are preferable when there is limited data for minority classes.

3.1.3 Rule-Based Approach

The Fuzzy Logic method was developed by Lotfi Zadeh in 1960. The fuzzy logic allows us

to define human-readable rules for reasoning between input and output signals via member

functions. It has been used in many fields, from control systems to machine learning algo-

rithms [84]. The fuzzy logic does not need a model; hence it does not need to be trained.

However, rules for the fuzzy logic system need to be defined.

Physiological Signals

Fuzzy Inference

L0 L1 L2 L3

Comfortability

Medium High

Medium High

Rules

Low

Low

Control Signal
.....

Figure 3.2: A simple Fuzzy logic system that can be used in physiological computing

Fig. 3.2 shows a simple diagram that can estimate comfortability using physiological
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signals. In Fig. 3.2, three-member functions are defined for signals and four-level mem-

bership functions are defined for comfortability (output). Even though there is no training

for such a system, it is challenging to define appropriate rules for the system and requires

expert knowledge in the field.

Fuzzy logic algorithms are used in many applications, such as stress level estimation

during commute [38], online stress detection during human-robot cooperation task [84],

human safety estimation during HRC task [8] and emotion estimation [85]. In addition,

researchers have used fuzzy logic for estimating the arousal and valence from physiological

signals and then can estimate emotion based on Russel’s circumplex model [2].

In general, fuzzy systems are easy to implement, and the system’s internal state can be

monitored. However, the number of member functions and the type of function that will

be used are based on trial and error. In addition, defining rules plays a critical role in fuzzy

systems and requires domain-specific knowledge.

3.1.4 Arousal and Valence-Based Approach

Figure 3.3: Russell’s Circumplex model with basic emotions
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A widely used circumplex model (aka emotion wheel) for basic emotions’ representa-

tion was proposed by Russel et al. [2] in 1980. The circumplex model allows each emotion

to be represented by arousal (y-axis) and valence (x-axis). The arousal value indicates

how calming or exciting the emotion is, and the valence value indicates how negative or

positive the feeling is. Thus, any emotion can be represented as a function of arousal and

valence [2]. The circumplex model can be divided into four quadrants, as shown in Fig.

3.3. For example, the emotion ‘happy’ is in the first quadrant of the graph where valence

is positive, and arousal is slightly greater than natural. On the other hand, ‘sad’ is in the

3rd quadrant where arousal is slightly greater than neutral, and valence is negative. The

strength of emotion is measured by the distance from the origin [3, 86], where the origin

represents no emotion.

Arousal and valence (AV) domain can be used in two ways: circumplex-based model

and distribution-based model.

Circumplex Model-Based

The circumplex model-based approach uses Russel’s circumplex approaches. In the Russell

model, emotions are in the unit circle, and based on arousal and valence; the emotions are

located in the 2D Cartesian systems. Here the origin represents a neutral, and as the emotion

goes away from the origin, the strength of the emotion increases [3].

Fig. 3.4 shows the circumplex model, where the y-axis (low to high) represents arousal,

and the x-axis (negative to positive) represents valence. To find the region of comfortabil-

ity on the circumplex model, we will need three things: arousal, valence, and perceived

comfortability. If we have sufficient data and we know what the perceived comfortability

value is for that AV point, we can fit a line with a margin to the data that has maximized

the comfortability, as shown in Fig. 3.4. Once the location of the comfortability axis is

detected, we can easily estimate the comfortability level by using only arousal and valence.

The comfortability is estimated based on how much the AV point is away from the

origin and by how close it is to the comfortability line (dashed region). The comfortability

gets smaller as the AV point gets close to the origin and gets larger when getting closer to

the edge of the circumplex model while staying in the cone.

AffectNet is a large dataset of images that are labeled by arousal, valence, and discrete

emotions [86]. Similarly, DEAP is another dataset containing physiological signal (EEG)
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Figure 3.4: The circumplex model estimation of comfortability

data that contains arousal and valence for basic emotions. There were multiple approaches

that attempted to use Fuzzy logic to estimate arousal and valence from physiological sig-

nals. Recently, Toisoul et al. [3] estimated continuous arousal and valence from the human

face and used this information to detect what emotion the person was experiencing. Du

et al. [87] examined the effects of emotion on takeover performance using the circumplex

model approach with the SAM questionnaire.

Density-Based

The circumplex model assumes that comfortability is an axis within the circumplex model.

However, the KDE-based approach does not make this assumption. The KDE-based ap-

proach uses arousal and valence space and then fits a 2D distribution based on comforta-

bility. Thus, the shape of the distribution looks like an ellipse, as shown in Fig. 3.5. The

KDE-based approach estimates comfortability based on how far the AV point is from the

center of the distribution. The comfortability increases as the AV point get closer to the

center and decreases when going away from the center of the distribution.

Unlike the fitting of distribution to the AV domain, Galvao et al. [88] divided the AV
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Figure 3.5: Density-based model

domain into four regions and tried to estimate arousal and valence from EEG signals.

This approach is simple and intuitive; however, it needs to know arousal and valence

beforehand.

3.2 Proposed Methodology

This thesis used the arousal and valence-based approach to estimate comfortability and

uncomfortability. In the proposed research, participants were asked to report their four

emotions and comfortability level during trials. The basic emotions are marked in the

circumplex model shown in Fig. 3.6 and the emotions used in this research are marked

with color (surprise, anxiety, boredom and calmness).

Redondo et al. [89] discussed the comfortability in HRI settings. Their experiment

results showed that comfortability differs from an emotional or affective state and can be

triggered by a combination of multiple emotions/affective states. Therefore, we used sur-

prise, anxiety, boredom and calmness emotions that locate in each quadrant in circumplex

model to estimate comfortability and uncomfortability.

C. Savur 29



Valence

Tired

Miserable

Sad

Depressed

Sleepy

Relaxed

Pleased

Happy

Excited

Fear

Disgust

Contempt

Anxiety Surprised

Calmness
Boredom

PositiveNegative

H
ig
h

Arousal

Lo
w

Neutral

Figure 3.6: Arousal and Valence circumplex model and a few discrete emotional classes
and their locations [2, 3].

We proposed two approaches, the first one is a circumplex model, and the second one

is a Kernel Density Estimation (KDE) model. Although both approaches use the same for-

mula for the AV Transformation, the estimation in CI/UnCI is different. The first approach

estimates the comfortability and uncomfortability axis location (angles) on the circumplex

model from perceived emotions reported by the participants. Unlike the first approach, the

second approach does not make any assumptions about the circumplex model. It uses AV

data points to estimate the distribution of the data points with reported comfortability or

uncomfortability values.

In addition to the proposed approaches, we estimate emotion from physiological signals

to be used in AV Transformation. Then, we evaluated both approaches with the estimated

emotion.

Next, we will explain both approaches and how to estimate emotions from physiological

signals.
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Figure 3.7: The proposed method uses reported emotions and pre-defined emotion loca-
tions to estimate arousal and valence. The first approach uses the circumplex model and
estimates comfortability and uncomfortability axes. The second approach is only using
arousal and valence to estimate the density of the reported comfortability and uncomforta-
bility.

3.3 Approach 1: Circumplex Model-Based

In this research, we estimate comfortability and uncomfortability separately since the emo-

tions that trigger both cases are different. For example, if a person feels anxiety, s/he cannot

be comfortable simultaneously. Similarly, a person cannot be uncomfortable and feel calm

at the same time. However, a participant can feel surprised, calm, and bored while being

comfortable and feel surprised, anxiety, and bored while being uncomfortable.

Here, the input (the perceived emotion reported from the participants) pe is obtained

for both comfortability and uncomfortability as shown in Fig. 3.7. The comfortability es-

timation uses calmness, surprise, and boredom emotions. The uncomfortability estimation

uses surprise, anxiety, and boredom emotions. We did not include the calmness emotion

in estimation uncomfortability, since a person cannot feel uncomfortable and calm at the

same time. Similarly, we did not include anxiety in the comfortability estimation.

Next, we selected the location of the surprise, anxiety, boredom, and calm emotions

from other research [2, 86, 3, 87] (surprise = 60◦, anxiety = 110◦, boredom = 240◦,

calmness = 290◦) as shown in Fig. 3.6. Then, ±5 degree noise was added to each emotion
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axis to create a range instead of a line, as shown in Fig. 3.6. An emotion location θe
vector is obtained using pre-defined emotion locations. Afterward, the arousal and valence

location AVloc is computed as

dvalence =
pe · cos(θe)∑

pe
(3.1)

darousal =
pe · sin(θe)∑

pe
(3.2)

AVloc = (dvalence, darousal) (3.3)

where the dvalence indicates the valence component of the AVloc, and darousal indicates the

arousal component of the AVloc.

Ar
ou
sa
l

Valence

Figure 3.8: Given a z axis on the circumplex model, how CI or UnCI is calculated.

Once the perceived emotion is transferred in the AV domain, there are multiple ways to

estimate CI/UnCI level. One way is to follow the circumplex model approach. In the cir-

cumplex model, the origin represents a natural/no feeling zone, and emotions get stronger

as they get close to the edge of the circumplex circle [3, 86]. Fig. 3.8 shows an z axis and

AVloc. By following the circumplex approach and given an axis location and an AVloc, we

estimate the strength of the CI/UnCI by using g(θ, AVloc) as

g(θ, AVloc) =

 d1 i f |β| ≤ 5◦,

d2 ∗ (1 − d3
2 )) otherwise

(3.4)
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where β is an angle that is calculated with absolute difference between z axis’ angle (θ)

and AVloc’s angle (α) as defined |θ − α|, d1 is the length of AVloc from the origin, d2 is the

length of projection of AVloc on axis from the origin, and d3 is the distance between AVloc

and the axis.

To find the optimal z axis that represents the CI and UnCI axes, we optimize θ the angle

that minimizes the mean squared error (MSE) shown in 3.5.

minimize = f0(θ)

=
1
n
∗

n∑
i=1

(yi − g(θ, ai)))2 (3.5)

where ai ∈ R2 represents one AVloc that’s estimated in 3.3, yi is the corresponding com-

fort/uncomfort value that was reported by the participant.

In summary, we used perceived subjective emotion from the participant to estimate

arousal and valence (AV domain) for both comfortability and uncomfortability. Then we

used the AV locations to fit the best axis that fit for comfortability and uncomfortability

separately by using 3.5. These two axes will be used to estimate the level of comfort and

uncomfort in the following section.

3.4 Approach 2: Kernel Density Estimation (KDE)

The underlying assumption for the circumplex model was that an emotion is an axis where

the emotion gets stronger as it moves to the edge of the circumplex circle. An alternative

method can be to fit a distribution to the data points in the AV domain as shown in Fig. 3.7.

Here, we used non-parametric kernel density estimation (KDE) to fit the data points in the

AV domain by using the scipy.stats.gaussian kde method with the weight parameter set to

the reported comfortability values [90]:

kernel = gaussian kde(AVlocs,weight = w) (3.6)

g(AVloc) = kernel(AVloc)/kernelmax (3.7)
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where kernel is a fitted Gaussian (distribution obtained by KDE), w is the weight vector of

perceived comfort or uncomfort levels, and kernelmax is the maximum value of kernel. We

divide the result by the maximum value in 3.7 to have a comfortability/uncomfortability

value that ranges [0, 1]. Fig. 3.9 shows the KDE fitted to both the comfortability and

uncomfortability levels.
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Figure 3.9: (a) Comfortability KDE plot, (b) UnComfortability KDE plot.

In summary, this approach does not make any assumptions and fits a non-parametric

KDE distribution to the reported data. We then used the fitted kernel to estimate the likeli-

hood of arousal and valence to estimate CI/UnCI.

3.5 Physiological Signals

In this research, we obtained ECG, GSR, and Pupillometry signals, and they were collected

during multiple trials. Brief information about the signals that were used is as follows:

• Electrocardiogram was first preprocessed to remove high-frequency noise; a But-

terworth low pass filter (cutoff=0.5, and order=5) was applied. Then power line noise

was removed from the ECG signal. After that ‘neurokit’ algorithm was applied to

extract RR intervals [91]. Then the time-domain metrics, shown in Table 2.1, were

used to quantify the ECG signal. Commonly used time-domain metrics are the mean

of heart-rate (mean HR), mean of the RR (Mean RR), the standard deviation of the
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NN intervals (SDNN), the root-mean-square of the difference of consecutive NN in-

tervals (RMSSD), and the proportion of the number of successive NN intervals that

differ by more than 50 msec divided by the total number of NN intervals.

• Galvanic Skin Response is used in the proposed system. A low pass filter with

order = 4 and Wn = 0.078 was applied to the GSR signal, and a ‘boxzen’ filter was

used to smoothen the signal [92]. Subsequently, the signal is decomposed into two

components known as phasic (SCR) and tonic response. The phasic signal was used

to detect onsets, peaks, peak amplitude, and recovery time. Gamboa’s algorithm [93]

was used to detect the onset in the phasic signal. Common features extracted from the

GSR signal are listed in Table 2.1. These features are the mean and standard deviation

of the tonic and phasic response, rate of onset event from the phasic response, mean

of the peak amplitude, mean of the rise time, and mean of the recovery time.

• Pupillometry signals were recorded from both eyes. A Butterworth low pass fil-

ter (cutoff=3, and order=2) was applied to the pupillometry signal to remove high-

frequency noise. Then, time-domain features (see Table 2.1) were extracted.

3.5.1 Extracted Features

There are multiple ways of extracting features from signals: time domain, frequency, and

non-linear features. In this research, the features listed in Table 3.1 were used.
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Table 3.1: Physiological metrics extracted from the ECG, GSR, and Pupillometry signals

Type Metric Unit Description

ECG

Mean HR bpm/min Mean of Heart rate
Mean RR ms Mean of RR/IBI intervals
SDNN ms Standard deviation of RR/IBI intervals

RMSSD ms
The root-mean-square of the difference
of consecutive RR/IBI intervals

pNN50 %
Percentage of successive RR/IBI
intervals that differ by more than 50 ms

GSR

Tonic Mean Micro-siemens Mean of tonic component of GSR signal
Tonic Std. Micro-siemens Standard deviation of tonic component of GSR
Phasic Mean Micro-siemens Mean of phasic component of GSR signal
Phasic Std. Micro-siemens Standard deviation of tonic component of GSR
Onset Rate onset/sec SCR onset rate per second
Peak Amp. Mean Micro-siemens Mean of Peak amplitude (SCR)
Rise Time Mean ms Mean of rise time (SCR)
Recovery Time Mean ms Mean of recovery time (SCR)

Pupil Pupil Mean pixel Mean of pupil size
Pupil Std. pixel Standard deviation of pupil size

3.6 Framework for Monitoring Human Physiological Sig-

nals during HRC Task

The block diagram of the proposed framework is shown in Fig. 3.10. The proposed frame-

work is a solution for concurrently and continuously monitoring the human and robot state

during an HRC task. The framework from a systems perspective can be conceptually cate-

gorized further into three sub-modules: Awareness, Intelligence and Compliance [94]. The

communication layer between these sub-modules is equally important as it is responsible

for data transformation and synchronization.

The sub-module Awareness is the perception of a system that is generated from phys-

ical world sensors and digitally represented in the virtual world. The physical world is

responsible for sensing the environment through sensor information such as PPG sensor,

GSR sensor, camera, motion capture system, etc. On the other hand, a virtual world is a

digital-twin representation of the physical world that mimics the environment of the HRC

task as well as the movements and behavior of the robot and human agents [95]. The digi-

tal twin can be used to calculate metrics such as human-robot minimum distance, directed

human-robot speeds, possible collisions, and changes in trajectory [96][97]. The virtual
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Figure 3.10: An overview block diagram of the proposed framework for monitoring Human
Physiological Response during a Human-Robot Collaborative Task.

world updates its state constantly based on the sensory data received from the physical

world to update itself and generate new data for the framework. Overall Awareness is re-

sponsible for sensing the physical and virtual world and providing this data to the rest of

the system. Such a setup helps digitally represent a combined human-robot state, which

can then be associated with the human physiological state.

The Intelligence represents the control of robot actions during an HRC experiment.

Programming an experiment is part of the Intelligence since it controls the robot’s speed,

acceleration, and trajectory. The Intelligence module processes the data from the Aware-

ness module to generate event markers as well as robot actions that can be used as stimuli to

elicit a human response. In addition to Awareness, it also receives input from Compliance

module, which is a form of interpretation of human expectation. The Intelligence module

interprets this human command/feedback into actionable robot commands.

Using human physiological signals as feedback to the robot or a form of actionable

control will help achieve a complete human-in-the-loop closed loop system. Here, the

Compliance sub-module is responsible for inference from the physiological signals or any

form of commands from the human that can be used to modify the robot’s behavior. Thus,

achieving a higher level of Compliance for the robot and managing the human expectation

by interpreting the human physiological state can be a gateway to a more interactive human-

robot collaboration.
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Awareness, Intelligence, and Compliance are the main parts of the framework [94],

however, to integrate these three modules a communication layer for data transformation

and synchronization is required. This is critical as many sensor devices and other systems

do not have the same frequency and timing clock. The communication layer is responsible

for transferring data in real-time and synchronizing the data from different sources such

as physiological signal collection devices, cameras, the representation of the human-robot

state in the digital twin, and robot state information.

When designing human physiological signal-related experiments, the following aspects

are critical.

• Experiment design

• Event markers generation

• Synchronization

The importance of these is elaborated in the following Sections.

3.6.1 Experiment Design

The experiment and its parameters need to be well-defined when designing an experiment.

The task needs to be real or as realistic as possible to maintain the integrity of the robot’s

motion to act as stimuli to elicit the human physiological response. For example, an in-

dustrial task is a good option for the experiment. Hence, the industrial task may improve

the involvement of the subject sharing human-robot collaboration workspace. In addition,

the tasks need to be simple and controlled to increase the repeatability of a human-robot

interaction scenario. A complex task may result in more uncertainty.

3.6.2 Event Marker Generation

The event marker generation is part of the experiment design. In the experiment, important

events need to be investigated and generated by the experiment. Having markers during

an experiment gives more intuition about the experiment, such as “Experiment Start/End”,

“Task Start/End”, “Robot Coming towards Human”, etc. The event markers help to syn-

chronize signals across different channels. For example, extracting Galvanic Skin Response
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and Heart Rate signal between “Experiment Start” and “Experiment End” is trivial when

the event markers are present during the signal recording. Thus, the markers can be used

during post-processing for efficient data segmentation and epoching.

The auto-generation of event markers during an HRC experiment is critical. The choice

of event markers depends on the experiment setup and the objective of the experiment. The

biggest advantage of auto-generation of event markers is the experiment can be performed

uninterrupted. These event markers can be used to effectively post-process and analyze the

data as data segmentation, and epoching of the collected signals becomes easier. A list of

events that are automatically generated during the HRC task for Case Studies I and II are

listed in Table 3.2.

Table 3.2: The table shows potential event-markers that can be used during experiments

Event Marker Definition

C
as

e
St

ud
y

Experiment start Experiment started

Task [n] init
nth task initialized but subject has not
complete loading yet

Task [n] start nth task started robot unloading all the parts
Task [n] end nth task unloading is done

Robot approaching
Each time robot comes toward human will
generate a event

Pick up successful Master pin is loaded
Pick up failed Master pin is not loaded
Experiment end Experiment is complete

3.6.3 Synchronization

Synchronization of signals from different sensors is crucial for the human physiological

response. All the signals from the human and robot need to be synchronized with event

markers. Thus, a central synchronization system is necessary. In the proposed framework

for the physiological computing system, Lab Stream Layer (LSL) is used for interfacing

subsystems, which integrates data from all different devices being used. The Lab Stream

Layer is a system for collecting time series data over a local network with built-in time

synchronization [98]. LSL stream is nearly real-time, and it is commonly used in biological

signal collection systems such as OpenBCI, Pupil Lab, etc. Therefore, the LSL layer is

selected as the central core of the data acquisition system in the proposed framework. In
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the framework, each device has an application node that is responsible for acquiring signals

from the device in real-time and pushing them to the LSL stream. A node is responsible

for recording all-time series data from the LSL stream into a local file for post-processing

and analysis. Along with LSL, Robot Operating System (ROS) and ZeroMQ are used to

monitor data in real-time during the experiment [94].

3.7 Subjective Data Collection

1. Trial

Trial Start Trial End

After Trial

Questionnaire

1 2 3 4 5 ... N

During Trial

Questionnaire

Time

2. Trial

Trial Start

1 2

Figure 3.11: Two data collection methods: During and After trial [4].

Fig. 3.11 demonstrates the two data collection methods that were evaluated in this

study. The first method is after-trial wherein participants reported their subjective re-

sponses only after the conclusion of the trial. This method is very common in the field. The

second method is during-trial where the participants reported their subjective responses

multiple times throughout the whole trial [4].

In order to minimize the time that the participants spent reporting the subjective re-

sponses, a custom Android app was developed, as shown in Fig. 3.12. The app allows the

participant to enter their subjective responses immediately after each part (iteration) assem-

bly on the tablet screen. This minimizes the duration of the data collection and maintains

the integrity of the experiment. The during-trial approach produces more data and will

provide a better idea of how the subjective responses change during the trials.
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Figure 3.12: The custom android app that participant enters the subjective metric by touch-
ing the bars on the screen. The blue circle on the screen is randomly selected; it does not
represent actual reporting.

3.8 Data Labelling

Supervised ML algorithms require labels for data during the training phase. In this research,

we used during trial subjective responses as the label for the corresponding signals that

were collected during the cycle, as shown in Fig. 3.11. Whenever the subject entered

their response, the signal was labeled for 6 seconds both before and after the response was

entered. Hence, 12 secs. of signals were labeled according to the subjective response. This

approach was applied to each trial, which resulted in the dataset for the ML algorithms.
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3.9 Emotion Estimation from Physiological Signals

Here, we estimate human emotion from physiological signals consisting of ECG, GSR,

and Pupillometery signals. The physiological signals were collected during the HRC task

and labeled based on subjective responses. As shown in Fig. 3.13, the signals were pre-

processed and windowed, after which features were extracted. The extracted features are

listed in Table 2.1.

Preprocessing

and


Feature Extraction
ML Model

Surprise

Anxiety

Boredom

Calmness

ECG

GSR

Pupillometery

Figure 3.13: Emotion estimation from physiological signals.

3.9.1 Random Forest Regressor

The Random Forest (RF) regressor is a tree-based learner that uses multiple sub-samples

of the dataset to train weak learners and uses majority voting among weak learners for

prediction [99]. An RF regressor was used for the estimation of surprise, anxiety, boredom,

and calmness. To find the best parameters, grid-search with cross-validation was applied

to the training dataset. The best parameters were selected as: the number of estimators

(n estimator = 100), criterion (mean squared error), and the max depth (max depth = 6).

The rest of the configuration in scikit-learn was kept as default.

3.9.2 Functional Neural Network

A functional Neural Network (NN) regression model that estimates surprise, anxiety, bore-

dom, and calmness from physiological signal was developed. All extracted features in table

2.1 were normalized before use in training. Each branch of the NN model consists of three

layers, which have 16, 8, and 1 neuron; respectively. To prevent over-fitting, two dropout

layers (0.3) were added between the hidden layers in Fig. 3.14. The number of layers was

C. Savur 42



selected by trial and error with the least complex model being selected. The Adam opti-

mizer with huber loss was used for training. Five-fold cross-validation was used during

training. The data were randomly divided into training (17 subjects’ data) and testing (3

subjects’ data). The test set was never used during training.

ECG GSR Pupillometry

Features

Network
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Dropout
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Dropout
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Figure 3.14: Functional Neural Network diagram that estimates emotions

In summary, we estimated emotions from physiological signals using ML models. Next

we used equation 3.3 to transform the emotion domain into the AV domain. Finally, equa-

tions 3.4 and 3.7 were used to estimate the CI/UnCI level.

3.10 Real-time Estimation

To begin, Fig. 3.15 shows the real-time estimation of the CIES systems. Here you will see

the raw signal streams are acquired by an independent thread for each signal. Each thread

has a ring buffer with a size of 30 secs signal. The threads are responsible for pushing new

data to the ring and removing the old data from the buffer by overwriting it.

ML pipeline retrieves data from all threads and applies preprocessing, feature extrac-

tion, and a transformation to the extracted feature. Then the input is provided to the pre-

trained ML models that estimate emotions which are required for calculating an AV point

(see section 3.3). After that, the AV point is used to estimate CI/UnCI based on the formula
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Figure 3.15: Real-time estimation of CIES system

in 3.4. Since we are estimating CI/UnCI every second, it would be beneficial to apply an

exponential filter to smooth the output. The exponential filter with α = 0.75 was used for

smoothing the output. The exact formula is shown in equation 3.8:

r = α ∗ rprev + (1 − α) ∗ rcurrent (3.8)

where r is either CI or UnCI, α is a smoothing constant.

Fig. 3.16 shows both estimated and filtered UnCI. The filtered UnCI was calculated by

equation 3.8.
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Figure 3.16: Estimated and filtered UnCI
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Chapter 4

Stationary Experiment with Sawyer Robot:

Results and Discussion

In this chapter, we provide information about the experiment setup, the data collection

protocol, and the statistics of people enrolled in the experiment. Then, the results of the

experiment and its limitation are discussed.

4.1 Sequential Collaboration Task

This experiment is a sequential collaboration since the participant waits for the robot to

provide a part for the assembly [100]. The data was collected from healthy college students

(N=20). The participants consisted of 17 male and 3 female subjects (Mean Age= 24.70,

SD= 2.99). The experiment setup consisted of a joint task between the robot and the human.

The joint task is an assembly task, where the robot provides a part from Table-1 and the

human picks up a part from Table-2 as shown in Fig. 4.1. The human is responsible for

picking up and screwing the two parts together while the robot is holding one of the parts.

In the experiment, the robot changes its behavior by changing its velocity, trajectory,

and sensitivity (three independent variables). The velocity was set to be in two levels:

normal and fast. These two modes were achieved by setting the global speed ratio to 0.7

for normal mode and to 1.0 for fast mode. The trajectory was defined as two modes: normal

and extreme. The normal trajectory was defined as the robot moving from Table-1 to Table-

2 with minimum joint movements. The normal trajectory was smooth and predictable. On

the other hand, the extreme behavior passes multiple waypoints between pick and place

locations, which makes the robot movements jerkier and less predictable.

The sensitivity was defined in two modes as well: normal and sensitive. The sensitivity

was measured by the amount of force applied to the robot’s end-effector during the time

the robot waits for the human to assemble the part. The sensitivity threshold was set to be

±11N/s2 and ±8N/s2 for normal and sensitive, respectively.
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Figure 4.1: The experiment diagram is shown in a bird view.

This experiment consisted of 11 trials and one baseline. The robot can provide up to

24 parts (iterations) in a trial. The robot picks a part from Table 1 and moves it in front

of the participant for assembling. The participant needs to pick an item from Table 2 and

assemble the part in five seconds, then the robot moves the assembled part to a drop-off

location and moves to Table 1 for the next part. While the robot is dropping the part, the

participant enters the subjective responses on the tablet where we asked the subject to report

surprise, anxiety, boredom, calmness, and comfortability level in a continuous value range

[0, 1]. The trial is completed when five minutes have elapsed, or there are no items left on

Table 1 for the robot to pick up. The participant had an option to tap the robot’s end effector

to notify the robot not to wait anymore during assembling time. Hence, the participant can

minimize the trial duration. Before the experiment started, all the participants were trained

for one trial so that they get used to the task and the tablet.

In this experiment, to have better signal labeling, a custom Android app was developed.

The app allows participants to enter their subjective responses immediately after each part

assembly (iteration). Hence, this approach produced more subjective data and a better idea

of how the dependent variables changed during the trials.

The experiment was approved by the Human Subject Research office at the Rochester

C. Savur 46



Institute of Technology. Informed consent from each participant was collected before the

experiment.

Next, we will discuss devices that were used during data collection.

4.2 Data Collection Devices

The devices used for experiments were the Shimmer 3 GSR, Pupil Lab headset, and the

Biopac BioHarness.

• BioHarness is a wireless chest strap that allows recording of an ECG signal. In

addition to the ECG, the device provides respiration rate, heart-rate, RR intervals,

acceleration (3-axes), and device information.

• Shimmer3 GSR+ is a widely used device in research due to its Bluetooth connectivity.

The device provides one GSR channel that measures the conductance of the skin and

one PPG channel that measures the amount of reflected light (volumetric variations

of blood circulation) from the vein [101]. The sensor sampling rate was set to 128

Hertz (Hz). During the experiment, we asked participants to minimize their motion

when using the hand on which the sensor was placed. This was critical since the GSR

signal is sensitive to motion artifacts and cannot be removed from the signal.

• Pupil labs headset is open-source hardware (eyeglasses) that has three cameras, two

of which look at the eyes and one point to the subject’s perspective [102]. The eye

cameras operate at 120 frames per second (fps), and the world camera records at

30 fps. This device is widely used in research and provides various signals such as

pupil diameters, gaze location, and a real-time camera stream. This research used the

headset to collect pupil dilation and gaze location.

Each sensor was calibrated for each subject independently. The subjects started with a

baseline recording where the subject sat in front of the robot and was asked to relax for

five minutes. The subjects who had glasses were asked to remove them for better pupil

signal quality. The pupil lab headset was connected to a Samsung S8 smartphone with a

Pupil Mobile app that transmits data to a local machine. The Shimmer3 GSR+ connects via

Bluetooth to a computer, and a custom application [94] developed to acquire these signals
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were used to send data using the Lab Stream Layer (LSL) protocol. The BioHarness was

connected over Bluetooth to a computer as well. All devices were synchronized using

the LSL stream library [98]. A modified version of the custom data collection app that

generates automated event markers (trial start/stop) and manual event markers during data

collection was used [103].

Figure 4.2: Overview of the Data collection system. The Controller UI is the main part
of the system where the experiment is controlled. It helps to gather subject information,
generate event markers, and launch all the other apps that record data, such as a USB Cam
recorder, Pupil Capture, etc. In addition, it toggles start/stop in LabRecorder to record LSL
streams. All the data in the experiment is recorded in XDF files except camera streams and
Pupil Camera streams.

4.3 During and After Trial Subjective Measurement Col-

lection

Before this experiment, we conducted two other experiments where we collected subjective

data only after trials. However, we learned from those experiments that the data collection

after-trial was insufficient; hence we developed a custom Android application that allows a

participant to enter the subjective response during the trial.

In addition to the traditional approach, we collected subjective data during trials as well.

The subjective responses were collected as continuous numbers between [0, 1], where 0 is
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strongly disagreed and 1 is strongly agreed. The subject touched the bar shown on the

tablet screen, which was converted to a continuous value. The questions were related to

surprise, anxiety, boredom, calmness, and comfortability level after each iteration during

the trial. In the traditional approach, the subjects filled out a questionnaire after each trial.

The questions were in the format (I felt calm while working with the robot) and the answer

was in a Likert scale consisting of strongly disagree, disagree, neutral, agree, and strongly

agree as a discrete value. These metrics were related to the overall interaction with the

robot. For example, if the robot’s motion/action surprised the subject, we expected the

participant to report agreeing or strongly agreeing with the corresponding question.

4.4 Data Collection System

Collecting signals from multiple devices and controlling the robot’s behavior is challeng-

ing. Multiple problems, such as synchronization, bandwidth, storage, and control, can

arise. We extend our previous approach for data collection [94] that can send commands

to the robot to change its behavior on the fly. Fig. 4.2 shows the command and data flow

between multiple systems. The controller UI program is the main program that controls

the entire data collection system. The controller is responsible for acquiring the partici-

pant’s information, trial selection, automated event generation, manual event generation,

and sending commands to the rest of the system. Lab Stream Layer (LSL) is a widely used

protocol in time series data collection that has built-in time synchronization and distributed

ability in the local network [98]. The LSL was used for signal transferring into the local

network. The custom Android app also sends the subjective response to the LSL stream.

The recording program (LabRecorder) can record all selected streams that are used for sig-

nal recording. For the video recording, we took another approach. The video from two

streams (USB cam and IP cam) are recorded as a rosbag. The video data was used only to

inspect a trial if necessary.
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4.5 Results and Discussion

This section discusses the results of our experiments. We evaluate the estimation of CIaxis

from the subjective response, calculating CI using the circumplex model, and estimating

emotions from physiological signals by using multiple ML models. Further, the perfor-

mance of the proposed approach models is tabulated and discussed.

4.5.1 Comparison of Comfortability During and After Trial Response

Fig. 4.3 shows the reported comfortability for during and after trial. The x-axis shows the

number of times the subject reported comfortability, and the y-axis shows the perceived

comfortability level range 0 to 1. The after-trial response is a value that the participant

reported at the end of the trial (dashed line). The during-trial responses were reported

multiple times during the ongoing trial (dotted line). As it can be seen from the figure,

the after-trial reporting cannot capture the variation in comfortability that happened during

the trial. Collecting subjective responses enabled us to capture these changes and label the

physiological signals more accurately.

The subject’s response shown in Fig. 4.3 indicates that at the beginning of the trial,

the subject was not comfortable as the time passed in the trial, the subject’s perceived

comfortability changed.

4.5.2 Correlation Between Comfortability and Emotions

In this section, we analyze the correlation between comfortability and emotions of anxiety,

surprise, boredom and calmness. Spearman correlation was used, and its results were pre-

sented with scatter plots as shown in Fig. 4.4. The test result shows that comfortability has

a high negative correlation with surprise (-0.64), a medium negative correlation with anxi-

ety (-0.48), a low negative correlation with boredom (-0.29), and a high positive correlation

with calmness (0.67). This supports the proposed idea from Redondo et al. where they

indicated comfortability is not an emotion, but a combination of multiple emotions [89].

C. Savur 50



0 5 10 15 20
# Times Perceived Comfortability Reported

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
ei

ve
d 

Co
m

fo
rta

bi
lit

y 
Le

ve
l During Trial Response

After Trial Response

Figure 4.3: Comparison of after and during trial response and how comfortability changes
during trial. The data shown here is taken from one trial from participant S13 from trial 7.

4.5.3 Analysis of Comfortability Axis

The subjective emotions (surprise, boredom, and calmness) are shown in Fig. 4.5a and

were transformed into points (arousal and valence values) using equation 3.3. They were

plotted in the AV domain as shown in Fig. 4.5b. Then, equation 3.5 was applied to the

AVlocs to estimate the best axis that represents the CI axis. As shown in Fig. 4.5b, the CI

axis is close to calmness, which is expected since the subject reported high comfortability

when they are calm.

4.5.4 Analysis of Uncomfortability Axis

Similar to the CI axis estimation, we used surprise, anxiety, and boredom (see Fig. 4.6a)

emotions in 3.3 to transform the emotions into the AV domain as shown in Fig. 4.6b. Then,

equation 3.5 was applied to the AVlocs to estimate the best axis that represents the UnCI

axis. As shown in Fig. 4.6b, the CI axis is close to anxiety, which is expected since the

subject reported high uncomfortability when they reported high anxiety.
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Figure 4.4: Correlation between reported comfortability and emotions

4.5.5 KDE Estimation

Two distributions obtained by KDE were fitted to the perceived comfortability and uncom-

fortability AV data points. Fig. 4.7 shows the fitted distribution in a heatmap. Unlike the

circumplex model, the distribution for uncomfortability spreads into both quadrants I and

II. The comfortability distribution stays in quadrant IV mostly.
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Figure 4.5: (a) shows the predefined emotion location for estimation of comfort axis, (b)
indicates estimated CI axis location from subjective responses.
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Figure 4.6: (a) shows the predefined emotion location for estimation of UnCI axis, (b)
indicates estimated UnCI axis location from subjective responses.

4.5.6 Emotion and CI/UnCI Estimation from Physiological Signals

The dataset consisting of 2388 samples was used to develop the ML models. The dataset

was divided into 70% and 30% for training and testing, respectively. Five-fold cross-

validation was used during training. Table 4.1 shows the root-mean-square error (RMSE)
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Figure 4.7: (a) shows the KDE fitted to comfortability AV data points (b) shows the KDE
fitted to uncomfortability AV data points.

and mean absolute error (MAE) of emotions, comfortability, and uncomfortability for the

Random Forest (RF) regressor, NN regressor, and Circumplex models.

Table 4.1: Performance of RF Regressor, NN, and Circumplex and KDE approaches.

Models
Surprise Anxiety Boredom Calmness Comfortability Uncomfortability

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

RF 0.20 0.15 0.16 0.12 0.14 0.11 0.13 0.10 0.16 0.11 0.15 0.11

NN 0.22 0.15 0.18 0.12 0.18 0.11 0.15 0.10 0.19 0.11 0.19 0.11

Circumplex (RF) - - - - - - - - 0.35 0.30 0.28 0.24

Circumplex (NN) - - - - - - - - 0.34 0.30 0.26 0.24

KDE(RF) - - - - - - - - 0.47 0.40 0.51 0.43

KDE(NN) - - - - - - - - 0.50 0.46 0.60 0.54

Table 4.1 shows the RMSE and MAE of emotions, comfortability, and uncomfortability

that estimates from the RF, NN, and Circumplex model approaches by using physiological

signals. The circumplex model is only used to estimate comfortability and uncomfortabil-

ity. The circumplex model approach uses estimated emotion from both RF and NN. From

the table, we can see that the RMSE and MAE are higher for the circumplex model than

for the RF and NN models. This is due to the estimation error that occurs when estimating

emotion from two models because we used the estimated emotions to calculate arousal and

valence using equation 3.2. Any error in emotion estimation can lead to a larger error in the
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circumplex model approach. Although the error is high for the circumplex model approach,

it is important to look at how it performs on trial data.

Next, we will analyze the performance of these four models on trial, which was ran-

domly selected from the dataset that was never used in training.

4.5.7 Uncomfortability Estimation for a Single Trial

In this test, we used the leave one out approach. We kept a trial and did not use it in the

training of the models. The x-axis shows the time elapsed in a trial, and the y-axis shows

the UnCI level. During the trial, the robot’s sensitivity was set to normal, the trajectory

was extreme, and the velocity was fast. The ground truth (reported by subjects) is shown

in blue. The blue line shows that the subject’s uncomfort level changed during the trial.

The data from a single trial fed into the ML models to estimate emotions, comfortability,

and uncomfortability. Fig. 4.8 shows the uncomfortability estimation from the two models

(RF and NN). From Fig. 4.8, the simple approach that estimates UnCI from physiological

was unable to estimate UnCI when it is high in three locations. The RF regressor is slightly

better than the NN model.

On the other hand, the circumplex and KDE approaches shown in Fig. 4.9 are better

at estimating UnCI. Even though the circumplex model has lower values, it captures the

overall shape of the prediction. The KDE approach made a high UnCI estimation where it

was supposed to be low. This occurred due to limited data, where the emotion estimation is

done only using approximately 20 seconds of data. The model improved estimation once

there was enough signal estimation. Although these two approaches had higher RMSE and

MAE values, their estimation is better when estimating the high uncomfortability values.

The proposed circumplex and KDE models use estimated emotion from the ML models

to estimate arousal and valence and then estimate CI and UnCI from them. However, it

would be better to estimate arousal and valence from the physiological signals. Since there

is no standard way of calculating these metrics, and we did not ask participants their arousal

and valence levels, we cannot estimate directly.

Although we estimated arousal and valence from emotion, this presents a huge oppor-

tunity as arousal and valence can be measured by physiological signals sensors and effi-

ciently mapped to comfortability used in the circumplex model we created through these
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Figure 4.8: Performance of simple RF and NN that estimate Uncomfortability directly from
physiological signals
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Figure 4.9: Performance of only Circumplex and KDE models that uses estimated emotions
from RF regressors.

experiments.

4.5.8 Real-Time Estimation of UnCI

Controlling a robot during an experiment requires real-time estimation of UnCI. Hence, a

real-time UnCI estimation system (CIES) that estimates UnCI from ECG, GSR, and pupil

dilation signals was developed. The system uses a ring buffer that adds new incoming

signals to the buffer and removes older ones as soon as the buffer is full. The estimation

of the UnCI does not start until the buffer is full. Once the buffer is full, the CIES makes

a copy of the buffer every second, cleans, preprocesses, and extracts features from each

signal separately. The extracted features are concatenated, then fed to the RF regressor

model for emotion estimation. To have a better estimation, the last ten predictions were

averaged. Thus, this allows the CIES to have smoother CI estimation. Fig. 4.10 shows
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Figure 4.10: The world camera in the top-left corner shows the participant’s view. The
external camera shows the participant. The gauges in the bottom corner show the subjective
responses reported during the trial. Input signals are the signal used in the CIES system
for real-time UnCI estimation from GSR, ECG, and Pupil dilation signals by using the
circumplex model with the RF regressor. The bottom-right corner shows the history of the
estimated UnCI with the perceived UnCI reported by the participant. The video for the trial
can be accessed from “https://youtu.be/qiTmN1ICVJo”.

the data streams of GSR, ECG, Pupil dilation, and the real-time estimation of UnCI and

perceived UnCI that was reported from the subject. As shown in Fig. 4.10 history plot,

the circumplex model with RF regressor estimates the perceived UnCI with a small error.

However, to validate the usefulness of the UnCI estimation system, a new experiment is

required where the participant will evaluate the robot with CIES systems.

4.6 Limitations

While the results provided show great promise, it should be noted that the study was con-

ducted in a lab room, which is a rather controlled environment. Subjects were essentially

sedentary and only used one hand for the most part. Because it is generally recognized that

motion artifacts affect physiological signals, data gathering in non-stationary conditions
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can be difficult. Future studies should consider motion artifacts and create algorithms to

eliminate them.

The proposed physiological computing system used multiple sensors for physiological

signals. This is necessary for the system to work; however, it may be difficult to use such

sensors sometimes. For example, the proposed system using pupillometry signals requires

the participant to wear special glasses. However, if the participant already uses glasses,

collecting the signals becomes challenging. However, as technology advances in the field

of wearable sensors, this kind of challenge should be easier to deal with.

In the proposed research, we estimated arousal and valence from emotions, and the

emotions’ location on a circumplex model was approximated based on literature. However,

it would be better to ask the participant to report arousal and valence during the trial. Then,

arousal and valence can be used to estimate CI/UnCI.

4.7 Summary

In this chapter, we proposed a novel approach for human comfortability and uncomforta-

bility index estimation by using subjective responses and physiological signals. One of the

proposed approaches was inspired by Russel’s circumplex model, which allows emotion to

be represented in terms of arousal and valence [2]. The second approach was estimating

CI/UnCI from arousal and valence by fitting a distribution obtained by KDE. To estimate

arousal and valence, emotions were estimated from physiological signals.

Twenty subjects participated in the experiment. Physiological signals and subjective

metrics were collected. The experiment was designed such that we collected the subjective

metrics during the trial to have better signal labeling. Our results showed that estimating

CI/UnCI from arousal and valence is a promising approach.

Our next experiment will focus on mimicking industrial settings. Hence, a conveyor

and multiple robots will be added to the experiment to work alongside the human subject.

This will help subjects to think he/she is in the factory floor working with robots.

In this research, arousal and valence were estimated from emotions, which is prone to

error since the emotion estimation has noise. A better approach would be to ask the subject

about their arousal and valence using a self-assessment manikin (SAM) approach [26]. In

future experiments, we will ask the user this information as well as shown in 4.11.
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Figure 4.11: A screenshot of the tablet where the participant will report arousal and valence
with a finger tap. The blue circle indicates reported valence and arousal by the subject.

In the next experiment, we will use the ML model trained in this research and validate it.

The estimated uncomfortability will be used to modify the robot’s velocity and cushioning

distance between the human and the robot. As the human becomes less comfortable, the

robot will reduce its velocity and increase the distance, and the robot will go to its default

settings as the human becomes comfortable.

In conclusion, physiological metrics can be used to estimate the human comfortability

index. The proposed method allows the CI and UnCI to be estimated only by two param-

eters: arousal and valence. In the current work, we calculated arousal and valence based

on emotions; however, a better approach would be to ask subjects about their arousal and

valence levels as it was done in [104]. In future experiments, we will ask participants to

report their arousal and valence level during trials. We will develop a biocybernetics adap-

tation system [5] that estimates human UnCI during an HRC task in real-time and provide

this information to the robot to adjust its behavior accordingly.
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Chapter 5

Human Subject Experiment for CIES Model:

Results and Discussion

The CIES model with dynamic SSM safety configurations is evaluated for an HRC setup

where the human agent performs an assembly task with the robot. The experiment is per-

formed with forty subjects and all the SSM safety configurations: TriSSM-Vo and TriSSM-

Vr. This human subject research was approved by the IRB from Rochester Institute of Tech-

nology. Subjective responses are collected using questionnaires and interviews following

each experiment. The human subjects are asked to rate the robot’s behavior for a given

SSM safety configuration in terms of comfortability, safety, emotions, and arousal-valence

level. The emotions tracked include surprise, anxiety, calmness, and boredom.

The objective of this chapter is twofold. First, can the CIES model estimate human

uncomfortability from the physiological signals? The second one is by using estimated

uncomfortability, can CIES model makes participants less uncomfortable by changing the

parameters of dynamic speed and separation monitoring. Our main hypotheses are to see

whether there is a difference between the robot’s behavior, the productivity of the partici-

pant and robot, and the effect of the distance vs. human estimated uncomfortability. The

list below presents our main hypotheses in a general form.

(i) CIES model modifies robot behavior by reducing directed velocity and increasing

cushioning distance. Therefore, the participants would feel more comfortable when

the dynamic speed and separation algorithms with the CIES model (VO UNCI and

VR UNCI) are enabled than when they are not (VO and VR).

(ii) The robot toggles between three modes (NORMAL, REDUCE, and STOP) based

on the velocity and the distance between the robot and the human, as a result, the

time spent in each mode would differ between robot behaviors. The time spent in

REDUCE mode would be higher when the CIES model is active.
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(iii) When a robot moves toward a human with a certain velocity, it would make the

human uncomfortable. Therefore, the minimum distance between the human and the

robot would affect perceived comfortability.

(iv) Similarly to the previous hypothesis if the robot increases the cushioning distance,

that would make the person feel more comfortable. As a result, the participants’

performance would be higher when the CIES model is active than when the CIES

model is not.

In this chapter, the CIES model that trained on the Sawyer robot was evaluated in a non-

stationary experiment. The robot’s behavior adaptation based on the CIES model output is

presented. The performance of the CIES model and its results are presented. In addition,

the learning rate and effect of comfort on gender are discussed.

5.1 Experiment Setup

Figure 5.1: Parts used in the experiment. Three parts need to be assembled to complete a
part.

The experimental setup consists of individual tasks for the robot and the human. The

human task during the experiment was to assemble a product consisting of three parts, as

shown in Fig. 5.1. One of the parts (Part-2) was provided by the robot and the other two

parts (Part 1 and Part 3) were available in bins. The Sawyer robot picked parts from pallets

(24 parts) and placed them on the conveyor, as shown in Fig. 5.2. Then the UR10 robot

picked parts from the conveyor and placed the part in the bin on Table-B one by one, as

shown in Fig. 5.2. The participant picked the components, in order from Table-A, Table-B,

and Table-C, and assembled the part, then place it in the bin on Table-D, as shown in Fig.

5.3. During this process, the participant works in the shared workspace as shown in Fig.
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5.4. After placing the part on Table-D, the subject was asked to record responses on the

form provided in the tablet located next to Table-D.

Figure 5.2: Sawyer and UR10 robots task, pick, and place location. There is a conveyor
between Sawyer and UR10 robot.

Figure 5.3: Human task is collecting parts from Table A, B, C and dropping the assembled
part at Table-D.

This experiment consisted of 8 trials and each trial consisted of multiple cycles. A

cycle is defined as a sequence of small tasks where a participant collects parts from Table-

A, Table-B, and Table-C, assembles them, and then drops it onto Table-D, as shown in Fig.

5.3. The trials were randomized to reduce the order effect. Each trial took 6 minutes at

max. In some cases, the experiment was taking less than 6 mins because the UR10 robot

was completing all the parts. Hence, the trial is terminated either at 6 minutes limit or when

there is no part left for the robot to pick up. Subjective responses of comfortability, safety,

surprise, anxiety, calmness, boredom, valence, and arousal level were collected after each

part was delivered to Table-D during each trial and after each trial.
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Figure 5.4: Overview of HRC experiment. The subject starts from Table-D and follows
the path indicated, picks a component from Table-A then moves to Table-B, picking up the
second component, and then crosses the robot workspace to go pick up the last component
from Table-C. The subject then assembles the three components and places the part on
Table-D. Finally, the subject answers the questionnaire on the Tablet. The subject repeats
this cycle for approximately six minutes.

This experiment was designed to test the dynamic speed and separation monitoring

(SSM) algorithm and CIES model with a time-of-flight sensor modality [12]. Table 5.1

lists the UR-10 robot behaviors. The TriSSM-Vo and TriSSM-Vr algorithms are explained

in detail in [82].
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Table 5.1: List of Robot’s behaviors

Robot Algorithm Description

TriSSM-Vo
A DSS algorithm taking into account
both the robot’s velocity and the human’s velocity.

TriSSM-Vo-with-UnCI
UnCI metric provided to the TriSSM-Vo algorithm
to adjust cushioning distance and directed speed.

TriSSM-Vr
A DSS algorithm taking into account
only the robot’s velocity, not the human’s velocity.

TriSSM-Vr-with-UnCI
UnCI metric provided to the TriSSM-Vr algorithm
to adjust cushioning distance and directed speed

5.1.1 Generalized Model (Subject Independent Model)

The CIES model was trained on the experiment conducted with the Sawyer robot (see

chapter 4). The dataset was collected from twenty people. In order to have a generalized

model (subject independent), the distribution of the output of the CIES model was used to

select lower and upper thresholds. The lower threshold was selected as the mean of the

distribution and the upper threshold was selected to be three standard deviations greater

than the mean as shown in Fig. 5.5. These thresholds were selected to have a general

model that works across multiple participants.

0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5
CIES output's distribution
lower limit: 0.33
upper limit: 0.76

Figure 5.5: Distribution of output from uncomfortability estimation from CIES model
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The mapped UnCI is calculated using equation 5.1

mappedunci = interp(estunci, [lowerlimit, upperlimit], [0, 1]) (5.1)

where mappedunci is the general output, estunci is estimated uncomfortability, lowerlimit is

the mean of the output distribution of the CIES model, and upperlimiut is three standard

deviations from the mean. The interp() is a function from NumPy [105] which applies

interpolation between two ranges, and it selects the lower or upper bound if the point is

not from the input range. For example, if we want to map 0.6 by using the lowerlimit

(0.5), upperlimit (0.8) and target range [0, 1] in interp() function. It will be evaluated as

interp(0.6, [0.5, 0.8], [0, 1]) and the result will be 0.33. However, if any input value is

greater than the upperlimit, the interp() function would evaluate as 1 which is the maximum

of the target range. Similarly, if any input value is less than lowerlimit would map to 0

(minimum of target range).

5.1.2 Robot Behavior Adaptation

TriSSM-Vo and TriSSM-Vr algorithms were kept the same as Kumar et al. [82]. The other

two algorithms (TriSSM-Vo-with-UncI and TriSS-Vr-with-UncI) were modified based on

estimated punci = mappedunci. Both algorithms were designed to reduce the directed veloc-

ity and increase the cushioning distance when a human is not feeling comfortable. Then as

the human feels comfortable the velocity and cushioning distance return to their original

value. Hence, the robot never increases its pace. The detail of TriSSM-Vo and TriSSM-Vr

can be found in Kumar’s thesis in [82].

Below is the formula for TriSMM-Vo-with-UnCI:

dC(t0) ≥ (1 + puncikvo)vo︸            ︷︷            ︸
directed speed

(TR + Tstop) + vRTR + B + (1 + puncikc)CdC︸              ︷︷              ︸
cushioning constant

(5.2)

where dC(t0) is critical distance with respect to time, vo is relative velocity between the

robot and the human where the human’s velocity is taken into account, TR and Tstop are time
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constants for robot to reduce and time to stop respectively, vR is velocity of the robot, CdC

is cushioning constant, punci is estimated uncomfortability, kvo and kc are constants set to

kvo = 0.5, kc = 0.5. This constant limits the effect of the CIES model on the DSS algorithm.

In other words, the CIES model max 50% affects directed velocity and cushioning distance.

As it can be seen in equation 5.3 the punci has a scalar effect on both directed speed and

cushioning distance. If the punci is low (close to 0.0), then there will not be any effect on the

calculation of TriSSM-Vo. However, if punci gets larger (close to 1.0), then it will amplify

both metrics. As a result, the robot will increase the cushioning distance and reduce the

directed velocity. Hence, this will make the robot’s cushioning distance more conservative

when a co-worker is uncomfortable.

For the TriSSM-Vr-with-UnCI, we kept the effect of the uncomfortability the same.

Below is the formula for TriSMM-Vr-with-UnCI:

dC(t0) ≥ (1 + puncikvr)vR︸             ︷︷             ︸
directed speed

(TR + Tstop) + vRTR + B + (1 + puncikc)CdC︸              ︷︷              ︸
cushioning constant

(5.3)

where dC(t0) is critical distance with respect to time, vR is robot’s velocity, TR and Tstop are

time constants for robot to reduce speed and time to stop respectively, vR is velocity of the

robot, CdC is cushioning constant, punci is estimated uncomfortability, and kvr and kc are

constant set to kvr = 0.5, kc = 0.5.

It is important to mention that the TriSSM-Vr algorithm assumes that the human is

stationary; thus, it only takes the robot’s velocity into account. This is the main difference

between TriSSM-Vr and TriSSM-Vo.
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5.2 Subjective Data Collection

In order to evaluate robot behaviors, a list of questions was presented to the human subject

after each cycle of a trial and after the trial. The questions are shown in Table 5.2. To make

data entry easier an Android tablet explained in section 3.7 was used.

Table 5.2: A list of questions asked to subjects during and after the trials. During the trial,
the subject response is recorded as a continuous number between [0, 1] based on a visual
scale shown in Fig. 4.11 and when reporting after the trial the subject is presented with a
Likert scale of [1, 9].

Question Response Type Description

Q1 Comfortability level?
Range [0,1]
Likert [1, 9]

How comfortable the subject felt
while working with the robot.
Subject informed that by comfortability,
we do not mean physical comfort.

Q2 Safety level?
Range [0,1]
Likert [1, 9]

How safe the subject felt while
working with the robot.

Q3 Surprise level?
Range [0,1]
Likert [1, 9]

How surprised the subject felt
while working with the robot.

Q4 Anxiety level?
Range [0,1]
Likert [1, 9]

What is the subject’s anxiety
level working with the robot?

Q5 Calmness level?
Range [0,1]
Likert [1, 9]

How calm the subject felt while
working with the robot.

Q6 Boredom level?
Range [0,1]
Likert [1, 9]

How bored the subject felt while
working with the robot. The
subject was explicitly told to reset
the boredom after each trial if they can.

Q7 Pleasantness level?
Range [0,1]
Likert [1, 9]

How pleasant was the experience
with the robot. This is indicating valence
and it ranges from 0 to 1 where
0 indicates negative valence
and 1 indicates positive valence.

Q8 Emotional intensity
level?

Range [0,1]
Likert [1, 9]

How much emotional intensity
the subject felt while working with
the robot. This is indicating
the arousal and it ranges from
LOW to HIGH.

Instead of directly asking arousal and valence levels, we rephrased the questions to

make it easier to understand for the participants [106]. Valence was rephrased as ‘pleas-

antness’ and arousal was rephrased as ‘emotional intensity’. Before the experiment, all
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the questions were explained to the participants one by one until they understood all of the

questions. The subject answered these questions at the end of each cycle during a trial via

the Android tabled. At the end of the trial, the same questions were given in a Google form

for the participants to evaluate their overall experience for the trial they had just completed

[4].

5.3 Human Subjects Summary

For this experiment, the data were collected from healthy participants (N=40). The par-

ticipants consist of 27 male and 13 female subjects. The demographics of the subjects

for the experiment, in terms of sex, age, and familiarity with the robot (machinery), are

shown in Table 5.3. The sample space consisted of people who had an average rating of 4.3

(SD=2.86) and self-reported in terms of experience and familiarity working with machin-

ery between 1 and 9.

Table 5.3: The subjects’ demographics regarding sex, age, and familiarity with ma-
chines/robots.

Subject Sex Count Avg. Age

Avg. rating in terms of experience
and familiarity working

with machinery such as CNC,
lathe or robots, on a Likert Scale

(1-Less Familiar to 9-very familiar)
Males 27 28.48 (±7.61) 5.07 (±2.85)
Females 13 26.61 (±7.83) 2.69 (±2.21)
Summary Total: 40 Avg: 27.87 (±7.63) Avg: 4.3 (±2.86)

5.4 Subjective Evaluation

This section will evaluate important hypotheses based on subjective responses and ML

algorithm results. The data is collected from forty participants, and each participant repeats
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eight trials, excluding baseline and training sessions. Table 5.4 shows number of trials per

robot algorithms for both original and post-processed datasets. Few experiments and trials

were removed due to sensor failure or technical problems during data collection. Thus,

three subjects’ data was removed due to sensor failure. For brevity, the robot behavior

(algorithm) is referred to from here on in this form: TriSSM-Vo as VO, TriSSM-Vo-with-

UnCi as VO UNCI, TriSSM-Vr and VR, and TriSSM-Vr-with-UnCI as VR UNCI.

Table 5.4 shows the number of trials per robot’s algorithm for original and post-processed

datasets. We will analyze our results with both datasets. In the original dataset, we kept

the trial algorithm (VO, VR, VU UNCI, and VR UNCI) the same as what was used dur-

ing data collection. Here we do not check whether the CIES model changes the robot’s

behavior or not. However, in the post-processing dataset, we can detect whether or not

the CIES model triggers the robot’s behavior; thus, we can correct the trial’s algorithm. In

the original dataset, in a few trials, either the CIES model did not trigger at all, or when it

triggered, it did not have any change in the robot behavior. For this reason, we will analyze

our results with the original and post-processed datasets separately.

Table 5.4: Number of trials per robot’s algorithm for both original and post-processed
datasets.

Robot Algorithm Number of Trials
(Original Dataset)

Number of Trials
(Post-Processed Dataset)

VO 66 78
VO UNCI 67 55
VR 64 72
VR UNCI 69 61

Total 266 266

When creating the post-processed dataset, two steps were used. The first step was to

fix the trial algorithm if the CIES output was always 0. For example, if a trial was set to

be VO UNCI and the CIES model output was 0, then the trial algorithm was set to VO. If

the CIES did not change the robot’s behavior, then it was VO, not VO UNCI. Second, we

detected all the locations where the CIES model provided an output value that was greater
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than 0 in the trial. Then we detected the range and added a ±1 second margin. Once we

had all the ranges, then we looked at the robot’s behavior for those ranges. If the robot’s

behavior changed between NORMAL, REDUCE, and STOP during any of the ranges, we

did not change the trial’s algorithm (kept the original); otherwise, the trial’s algorithm was

set to either VO or VR, depending on the algorithm. For example, if the CIES model

estimated uncomfortability only once during the trial (VO UNCI) and the robot did not

change its behavior, then the robot will behave as if its mode was VO. Therefore, setting

the trial’s mode to the VO would be logical.

In summary, Table 5.4 shows the number of trials for for original and post-processing

datasets. It is important to mention that the number of trials for VO UNCI and VR UNCI is

less for the post-processed dataset than for the original dataset. This happened because the

CIES model could not change robot behavior during the trial for VO UNCI and VR UNCI.

Thus, those trials were re-labeled as either VO or VR accordingly.

5.4.1 After Trial Rating for Robot’s Behaviors

The participants rate the robot’s behavior after each trial in terms of the question listed in

table 5.2 on a Likert scale between 1 and 9 (1 is lowest and 9 is highest) by using a Google

form. Each subject performs a series of trials that are randomized from Table 5.1.

The summary of the responses (37 participants) rating all the robot’s behaviors is shown

in Table 5.5 for the original and post-processed datasets. The ratings are averaged for a

comparison of the robot’s behavior. On average, both VO UNCI and VO were rated with

similar scores. However, VO UNCI (7.612) is slightly lower than VO (7.773). FIn the

second table, the difference between VO UNCI and VO get smaller.

On the other hand, the CIES improves the average reported comfortability since the

VR UNCI (7.638) is greater than VO (7.188) for original labels. We observe that average

comfortability is still higher for VR UNCI for the post-processed dataset.
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It is observed that for all robot behavior the overall perceived safety can be ordered

as VO UNCI > VO > VR UNCI > VR. Regarding average surprise, the most surprising

algorithm is VR. The algorithm that creates the least anxiety is VO UNCI, and the VO UNCI

was rated as the calmest algorithm for both the original and the post-processed dataset.

In summary, VO UNCI is the highest-rated algorithm in terms of comfortability and

safety. The highest rated algorithm for surprise and anxiety is VR. Although all the average

calmness levels are similar, the calmest algorithm was VO UNCI.
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Table 5.5: The summary of after-trial responses robot’s behavior in terms of subjective
metrics for Original and Post-Processed datasets

Original Dataset

Algorithm Statistic Comfort
level?

Safety
level?

Surprise
level?

Anxiety
level?

Boredom
level?

Calmness
level?

VO

AVG 7.773 7.727 3.136 2.515 5.000 7.258
STD 1.681 1.732 2.089 1.858 2.678 1.900
Median 8.000 8.000 3.000 2.000 5.000 8.000
STD-Error 0.207 0.213 0.257 0.229 0.330 0.234

VO UNCI

AVG 7.612 7.761 3.269 3.030 4.582 7.090
STD 1.907 1.587 2.384 2.342 2.595 2.179
Median 8.000 8.000 2.000 2.000 5.000 8.000
STD-Error 0.233 0.194 0.291 0.286 0.317 0.266

VR

AVG 7.188 7.312 3.859 3.047 4.531 7.344
STD 2.152 2.210 2.754 2.535 2.576 2.191
Median 8.000 8.000 3.000 2.000 4.500 8.000
STD-Error 0.269 0.276 0.344 0.317 0.322 0.274

VR UNCI

AVG 7.638 7.551 3.217 2.957 4.522 7.435
STD 1.706 1.937 2.242 2.464 2.518 1.851
Median 8.000 8.000 3.000 2.000 5.000 8.000
STD-Error 0.205 0.233 0.270 0.297 0.303 0.223

Post-Processed Dataset

Algorithm Statistic Comfort
level?

Safety
level?

Surprise
level?

Anxiety
level?

Boredom
level?

Calmness
level?

VO

AVG 7.705 7.603 3.205 2.615 4.923 7.205
STD 1.676 1.804 2.158 1.922 2.662 1.909
Median 8.000 8.000 2.500 2.000 5.000 8.000
STD-Error 0.190 0.204 0.244 0.218 0.301 0.216

VO UNCI

AVG 7.673 7.945 3.200 3.000 4.600 7.127
STD 1.963 1.407 2.360 2.380 2.608 2.228
Median 8.000 8.000 3.000 2.000 5.000 8.000
STD-Error 0.265 0.190 0.318 0.321 0.352 0.300

VR

AVG 7.278 7.347 3.750 2.958 4.528 7.472
STD 2.078 2.176 2.674 2.469 2.589 2.109
Median 8.000 8.000 3.000 2.000 4.500 8.000
STD-Error 0.245 0.256 0.315 0.291 0.305 0.249

VR UNCI

AVG 7.590 7.541 3.262 3.049 4.525 7.295
STD 1.764 1.946 2.301 2.533 2.494 1.909
Median 8.000 8.000 3.000 2.000 5.000 8.000
STD-Error 0.226 0.249 0.295 0.324 0.319 0.244

So far, we have looked at the average rating of reported metrics. Here we will define

our hypotheses and see if our claims are statistically significant. For all hypotheses, we
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are going to assume the mean difference is equal and we will only define expected outputs

as a hypothesis. The desired hypotheses are bolded in the following equations. We will

evaluate each hypothesis for both datasets.

H1
a : The median perceived comfortability rating for VO UNCI (µVO UNCI) is greater than

VO (µVo).

H1 =
{
H1

0 : µVO UNCI = µVO, H1
a : µVO UNCI > µVO

}
(5.4)

H2
a : The median perceived comfortability rating for VR UNCI (µVO UNCI) is greater than

VR (µVO).

H2 =
{
H2

0 : µVR UNCI = µVR, H2
a : µVR UNCI > µVR

}
(5.5)

H3
0 : The median perceived comfortability rating for VR UNCI (µVR UNCI) is as good as

VO (µVO).

H3 =
{
H3

0 : µVO = µVR UNCI , H3
a : µVO > µVR UNCI

}
(5.6)

In the H3
0 , we aim to see if VR UNCI is as good as VO in terms of comfortability.

As we defined the VO and the VR algorithm in Section 2.5, the VO algorithm uses the

relative velocity and distance between the human and the robot. And the VR algorithm

uses the robot-directed speed and the distance between the human and the robot. In the VO

algorithm, a human is a dynamic object in the workspace; however, in the VR algorithm,

the human is a static object in the workspace. For example, if a human is coming toward the

robot with a velocity, the VO algorithm will slow down and stop earlier than the VR since

the relative velocity will be high toward the robot. Conversely, if the human moves away

from the robot, the VO algorithm will not stop or slow down since the relative velocity

will be away from the robot; however, the VR algorithm will work in the same way as the

human coming toward the robot. By introducing the CIES model into the equation, would

it be possible to make the VR algorithm as comfortable as the VO?

In order to measure the statistical significance of the differences of the comfort, safety,
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surprise, anxiety, boredom, and calmness for the VO, VO UNCI, VR, and VR UNCI

robot’s behaviors, a one-tailed non-parametric (Wilcoxon) pairwise t-test for the two-sample

populations was performed. The statistics and the resulting p-value from the t-test are

shown in Table 5.6.

In this analysis, we used statistical significant value (α = 0.05). Our first hypothesis

(H1
a) is that the CIES model would improve the VO algorithm in terms of perceived com-

fortability. However, as the p-value is 0.305, which is greater than the significance value,

we failed to reject the null hypothesis (H1
0). In the second hypothesis (H2

0), we want to see

if the CIES model improves VR in terms of comfortability, the test result shows a p-value

of 0.037. Thus, we accepted the alternative hypothesis (H2
0). The CIES model improved

the VR algorithm and made it more comfortable based on after-trial data collection metrics

for the original dataset.

Kumar et al. [82] claimed that the VO algorithm is more comfortable than the VR

algorithm. Thus, we want to see whether the CIES model makes VR as comfortable as

the VO algorithm (VO without the CIES model), which is our null hypothesis (H3
a). From

the statistic, the p-value is 0.541; thus, we reject the alternative and fail to reject the null

hypothesis. This is interesting because VO is not more comfortable than VR UNCI statis-

tically. However, it is important to look at whether VO is more comfortable than VR as

well. The result shows a p-value of 0.060 for µVO > µVR. Although we cannot say that VO

is more comfortable than VR, what we can see is the p-value for VR UNCI is greater than

VR. This indicates that the CIES model improves the VR algorithm in terms of perceived

comfortability. It is important to mention these results are from the after-trial responses for

the original dataset.

In addition to perceived comfortability, we look into other metrics as well. The per-

ceived safety for VO UNCI is statistically significant, VR (µVO UNCI > µVR), with a p−val =

0.006. Although VO is not safer than VR, VO UNCI is safer than VR. Hence, we can see
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that the CIES model helps the VO algorithm to be perceived as safer by the participants.

When looking at the post-processed dataset, we observed a similar pattern. However,

there are a couple of differences in terms of statistical results. In the original dataset,

VR UNCI was more comfortable than VR. However, it was not since the p-value is greater

than the α value here. Similarly, VO was more boring than VR UNCI, but we cannot say

the same thing with the post-processed dataset. Finally, in the post-processed dataset, the

VO UNCI is safer than VR UNC. The rest of the analyses are the same as the original

dataset.

Table 5.6: The result of a non-parametric (Wilcoxon) pairwise test to measure the statistical
significance of the differences in medians of the after-trial ratings for robot behaviors for
original and post-processed datasets.

Original Dataset
A Cond. B Comfort Safety Surprise Anxiety Boredom Calmness

VO < VO UNCI 0.305 0.146 0.677 0.204 0.965 0.387
VO > VR 0.060 0.164 0.839 0.790 0.015 0.892
VO > VR UNCI 0.541 0.293 0.390 0.961 0.014 0.766
VO UNCI > VR 0.017 0.006 0.956 0.712 0.262 0.827
VO UNCI > VR UNCI 0.217 0.119 0.586 0.683 0.336 0.668
VR < VR UNCI 0.037 0.133 0.962 0.402 0.433 0.385

Post-Processed Dataset
A Cond. B Comfort Safety Surprise Anxiety Boredom Calmness
VO < VO UNCI 0.167 0.094 0.686 0.621 0.956 0.267
VO > VR 0.089 0.229 0.750 0.678 0.019 0.942
VO > VR UNCI 0.410 0.286 0.324 0.886 0.051 0.455
VO UNCI > VR 0.013 0.005 0.852 0.927 0.300 0.733
VO UNCI > VR UNCI 0.134 0.015 0.470 0.825 0.526 0.403
VR < VR UNCI 0.092 0.253 0.949 0.514 0.318 0.669
Significance (α = 0.05)

In terms of surprise, VO UNCI is less surprising than VR, and VR is more surprising

than VR UNCI. For anxiety, VO triggers less anxiety in comparison to both VR UNCI.

For boredom, the VO algorithm is more boring than VR and VR UNCI and less boring than

VO UNCI. Finally, there is no statistical significance for calmness between all the robot

behaviors. It is important to mention these results are based on the after-trial responses

(Original dataset) for which participants were evaluated six minutes (a full trial) with the
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original trial’s algorithm. In our previous research [4], we have seen that there might be

differences between after-trial responses vs. during-trial responses.

The during-trial responses are likely to yield a better result because the participant is

required to report multiple times while undergoing the trial. The responses capture more

information about the participant’s state throughout the trial. This is critical for capturing

perceived comfortability as it may change multiple times during the trial.

5.4.2 During Trial Rating for Robot’s Behaviors

During-trial responses were collected while undergoing the trial. The participant was asked

to report after each cycle (a cycle is defined as completing an assembled part shown in

5.3). Each cycle took 15 seconds on average. As the responses were collected during the

trial, it provides additional information about the progress of the human’s emotional and

physiological state [4].

Like after-trial responses, during-trial responses are summarized based on the robot’s

behavior and shown in Table 5.7 for both original and post-processed datasets. The rating

for during-trial is a range between 0 and 1. It can be observed that VO and VO UNCI

have similar average ratings in terms of comfort, safety, surprise, anxiety, boredom, and

calmness. Similarly, VR and VR UNCI have the same ratings. When we compare VOs

(VO and VO UNCI) with the VRs (VR and VR UNCI) algorithm, it is clear that VOs are

better in all reported metrics for both datasets. When we look at the median comfort level

for all four algorithms, the mean/median values for the CIES algorithm are higher. Hence,

this shows that participants felt more comfortable when CIES was active.

As we have seen there is a difference in average rating from the participants from Table

5.7. Table 5.8 shows the non-parametric (Wilcoxon) pairwise test to measure statistical

difference in medians. We are analyzing the same hypothesis (see hypothesis 5.4, 5.5,

5.6) with the alternative data collection method of during trial. In this analysis, we used
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Table 5.7: The summary of during-trial response robot’s behavior for Original and Post-
Processed datasets

Original Dataset

Algorithm Statistic Comfort
level?

Safety
level?

Surprise
level?

Anxiety
level?

Boredom
level?

Calmness
level?

VO

AVG 0.877 0.869 0.208 0.176 0.476 0.783
STD 0.149 0.162 0.185 0.175 0.313 0.192
Median 0.923 0.926 0.148 0.134 0.486 0.842
STD-Error 0.018 0.020 0.023 0.022 0.039 0.024

VO UNCI

AVG 0.863 0.866 0.229 0.193 0.436 0.774
STD 0.178 0.157 0.214 0.203 0.289 0.210
Median 0.922 0.908 0.169 0.146 0.443 0.826
STD-Error 0.022 0.019 0.026 0.025 0.035 0.026

VR

AVG 0.836 0.824 0.252 0.209 0.409 0.759
STD 0.201 0.207 0.222 0.222 0.308 0.233
Median 0.900 0.902 0.178 0.113 0.317 0.812
STD-Error 0.025 0.026 0.028 0.028 0.038 0.029

VR UNCI

AVG 0.856 0.850 0.230 0.191 0.429 0.775
STD 0.176 0.172 0.215 0.195 0.289 0.209
Median 0.895 0.898 0.157 0.136 0.420 0.810
STD-Error 0.021 0.021 0.026 0.023 0.035 0.025

Post-Processed Dataset

Algorithm Statistic Comfort
level?

Safety
level?

Surprise
level?

Anxiety
level?

Boredom
level?

Calmness
level?

VO

AVG 0.867 0.856 0.219 0.183 0.463 0.774
STD 0.150 0.171 0.188 0.182 0.312 0.194
Median 0.897 0.907 0.158 0.146 0.460 0.807
STD-Error 0.017 0.019 0.021 0.021 0.035 0.022

VO UNCI

AVG 0.875 0.883 0.219 0.186 0.446 0.785
STD 0.183 0.140 0.217 0.201 0.286 0.213
Median 0.940 0.918 0.165 0.121 0.456 0.844
STD-Error 0.025 0.019 0.029 0.027 0.039 0.029

VR

AVG 0.840 0.828 0.244 0.203 0.409 0.764
STD 0.194 0.202 0.216 0.215 0.309 0.225
Median 0.900 0.902 0.178 0.113 0.322 0.812
STD-Error 0.023 0.024 0.025 0.025 0.036 0.027

VR UNCI

AVG 0.855 0.849 0.236 0.196 0.432 0.770
STD 0.182 0.175 0.221 0.200 0.286 0.216
Median 0.895 0.898 0.157 0.136 0.420 0.810
STD-Error 0.023 0.022 0.028 0.026 0.037 0.028

a significant value (α = 0.05) as well. Our first hypothesis H1
a is that the CIES model

would improve the VO algorithm in terms of perceived comfortability. However, as the
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p-value is 0.541 which is greater than the significance value, we failed to reject the null

hypothesis (H1
0). Similarly, in the second hypothesis (H2

0)) we want to see if the CIES

model improves VR, the test result shows a p-value of 0.105, as a result, we failed to reject

the null hypothesis.

Before analyzing H3, it is important to consider whether the VO is more comfortable

than VR. From the table 5.8, the p-value is 0.011 for the original and 0.042 for the post-

processed datasets. Thus we rejected the null hypothesis. Now, we know that VO is more

comfortable than VR, but is this correct that the VO is more comfortable than VR UNCI?

In the H3
a , we check whether VO is better than VR UNCI algorithms in terms of comfort-

ability. The p-value is 0.124 for the original and 0.078 for the post-processed datasets.

Hence we cannot say VO is better than VR UNCI. As a result, we can conclude that the

CIES model improved the VR algorithm in terms of comfortability.

Table 5.8: The result of a non-parametric (Wilcoxon) pairwise test to measure the statistical
significance of the differences in medians of the during trial ratings for robot’s behavior

Original Dataset
A Cond. B Comfort Safety Surprise Anxiety Boredom Calmness

VO < VO UNCI 0.549 0.264 0.516 0.827 0.805 0.314
VO > VR 0.011 0.002 0.919 0.889 0.003 0.204
VO > VR UNCI 0.124 0.086 0.782 0.697 0.074 0.400
VO UNCI > VR 0.003 0.001 0.929 0.958 0.091 0.042
VO UNCI > VR UNCI 0.041 0.022 0.935 0.959 0.153 0.124
VR < VR UNCI 0.105 0.124 0.805 0.736 0.071 0.464

Post-Processed Dataset
A Cond. B Comfort Safety Surprise Anxiety Boredom Calmness

VO < VO UNCI 0.129 0.048 0.884 0.993 0.581 0.109
VO > VR 0.042 0.003 0.812 0.783 0.004 0.138
VO > VR UNCI 0.078 0.011 0.652 0.867 0.236 0.363
VO UNCI > VR 0.005 0.001 0.871 0.993 0.042 0.007
VO UNCI > VR UNCI 0.002 0.002 0.995 0.999 0.340 0.038
VR < VR UNCI 0.289 0.371 0.629 0.541 0.040 0.484
Significance (α = 0.05)

In addition, we can see that both VO and VO UNCI algorithms are better than VR

and VR INCI in terms of comfort and safety. The p-value is less than the significant
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value of α = 0.05. In terms of surprise, VR UNCI is more surprising than VO UNCI for

post-processed datasets, and there is no difference between other robots’ algorithms. Only

VO is more boring than VR for the original dataset, and there is no difference between

algorithms. However, for the post-processed dataset, VO > VR, VO UNCI > VR, and

VR UNCI > VR.

In conclusion, VO and VO UNCI algorithms are more comfortable and safer but trig-

ger more anxiety in comparison to VRs algorithms.

5.4.3 Analysis of Robot’s Modes

Tri-Modal DSS has three levels: NORMAL, REDUCE, and STOP modes. Here we are

going to analyze the duration of each mode during trials. The MAX trial time is set to six

minutes however, in some cases (when a subject is fast), the participant may finish the task

before the given time. Therefore, we will analyze the trial percentage time instead of the

average time. Thus, we used the formula in equation 5.7 to calculate the percentage of the

duration

p =
modetime

totaltime
(5.7)

where p is a percentage, modetime is the total amount of time in seconds that the robot

stays in one of the modes: NORMAL, REDUCE, and STOP, and totaltime is trial duration in

seconds.

Table 5.9 shows the summary of the average percent time spent in each mode for the

robot algorithms (DSS and DSS CIES) during trials for both original and post-processed

datasets. It can be observed that the REDUCE and STOP percent times are higher for

DSS CIES than DSS. The NORMAL average percent time is slightly higher for DSS for

both datasets. In order to see if these changes are statistically significant between robot

algorithms, we will need to test the hypothesis.

Our hypothesis for the robot’s percent time spent in each mode is listed below:
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Table 5.9: NORMAL, REDUCE, and STOP values as the percentage of the whole trial for
both datasets of original and post-processed.

Dataset Algorithm Statistic NORMAL REDUCE STOP

Original Dataset

DSS

AVG 0.839 0.070 0.090
STD 0.041 0.020 0.032
Median 0.842 0.066 0.088
STD-Error 0.004 0.002 0.003

DSS CIES

AVG 0.829 0.073 0.098
STD 0.046 0.024 0.035
Median 0.833 0.071 0.093
STD-Error 0.004 0.002 0.003

Post-Processed
Dataset

DSS

AVG 0.837 0.070 0.091
STD 0.041 0.021 0.031
Median 0.842 0.065 0.090
STD-Error 0.003 0.002 0.003

DSS CIES

AVG 0.830 0.073 0.097
STD 0.047 0.023 0.037
Median 0.834 0.072 0.090
STD-Error 0.004 0.002 0.003

H4
a : The median percent time in NORMAL mode for DSS (µDS S ) is greater than DSS CIES

(µDS S CIES ).

H4 =
{
H4

0 : µDS S = µDS S CIES , H4
a : µDS S > µDS S CIES

}
(5.8)

H5
a : The median percent time in REDUCE mode for DSS CIES (µDS S CIES ) is greater

than DSS (µDS S ).

H5 =
{
H5

0 : µDS S CIES = µDS S , H5
a : µDS S CIES > µDS S

}
(5.9)

H6
a : The median percent time in STOP mode for DSS (µDS S ) is greater than DSS CIES

(µDS S CIES ).

H6 =
{
H6

0 : µDS S = µDS S CIES , H6
a : µDS S > µDS S CIES

}
(5.10)

Table 5.10 shows the resulted p-values of the one way non-parametric (Wilcoxon) pair-

wise test for robot modes. In the first hypothesis H4
a , the claim is that the robot would

stay in NORMAL mode for DSS more than DSS CIES. The p-value for this hypothesis is

0.028 and 0.078 for the original dataset and post-processed datasets, respectively. Thus, we
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accepted the alternative for the original dataset and failed to reject the null hypothesis for

the post-processed dataset.

In the H5 hypothesis, we expect the percent REDUCE time to be higher for DSS CIES.

The p-value is lower than the α = 0.05 value for both datasets. As a result, we reject the

null hypothesis and accept the alternative hypothesis. This is expected because the CIES

model makes the robot switch to REDUCE mode by increasing the cushioning distance and

reducing the velocity; hence, this would have increased the time spent in REDUCE mode.

Finally, hypothesis H6 claims that the percent STOP time is higher for DSS CIES than

DSS. The p-values for STOP modes are 0.007 (original) and 0.042 (post-processed) for

datasets. Similar to the REDUCE mode, as the CIES model changes cushioning distance

and robot’s velocity, it stops more than DSS algorithms.

Table 5.10: The result of a non-parametric (Wilcoxon) pairwise test to measure the statisti-
cal significance of the differences in medians of the robot’s modes for the robot’s behavior

Dataset A Cond. B Mode p-value

Original Dataset
DSS > DSS CIES NORMAL 0.028
DSS CIES > DSS REDUCE 0.050
DSS CIES > DSS STOP 0.007

Post-Processed
Dataset

DSS > DSS CIES NORMAL 0.078
DSS CIES > DSS REDUCE 0.016
DSS CIES > DSS STOP 0.042

Significance (α = 0.05)

Box plots shown in Fig. 5.6 are the robot’s modes with respect to robot behaviors.

The top left subplot shows the robot’s NORMAL mode, and it can be seen that DS S and

DS S CIES algorithms have similar values. However, DS S CIES has less variance, and

there is no outlier. On the other hand, DS S algorithms have a large variance with multiple

outliers. The REDUCE subplot shows a variety of algorithms where the DS S has a low

median with few outliers and DS S CIES has a high median with no outliers. For the

STOP mode, both modes DS S and DS S CIES have a similar average median value.

There are commonly used robot metrics used to measure collaboration metrics, such as
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Figure 5.6: Box plots for percentage time of robot modes (NORMAL, REDUCE, and
STOP) for original dataset

robot idle time and human idle time, as discussed in [107]. Table 5.11 shows the average

time spent in robot modes of NORMAL, REDUCE, and STOP for four robot algorithms.

In this experiment, the robot idle time is designated as robot STOP time. The robot stop

time is VO UNCI > VO > VR UNCI > VR for both datasets. This order shows the effect

of the CIES model on the robot algorithm.

Next, we will discuss the effect of distance on estimated uncomfortability, which is

critical as we expect humans to feel less comfortable when facing the robot.

5.4.4 Estimated Uncomfortability vs. Robot’s Behavior

Presented here is analysis of estimated uncomfortability (see section 3.1.4) for robot be-

haviors. Table 5.12 shows non-parametric (Wilcoxon) pairwise test for filtered unci and

mapped unci during different algorithms.
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Table 5.11: Average time (seconds) spent in each robot’s modes

Label Type Algorithm NORMAL REDUCE STOP
AVG STD AVG STD AVG STD

Original Label

VO 301.311 12.135 21.045 5.047 35.061 10.659
VO UNCI 300.036 15.327 20.901 5.667 37.689 12.137
VR 298.372 16.029 28.844 6.780 29.029 11.610
VR UNCI 294.121 15.980 31.300 7.928 32.589 12.850

Post-Processed Label

VO 301.222 11.722 20.848 4.921 35.435 10.259
VO UNCI 299.883 16.382 21.149 5.945 37.732 12.955
VR 297.399 16.382 29.404 7.553 29.749 11.377
VR UNCI 294.712 15.737 30.960 7.348 32.207 13.386

H7
a : The VR algorithm would be less comfortable than VO algorithm.

H7 =
{
H7

0 : µVO = µVR, H7
a : µVR > µVO

}
(5.11)

H8
a : The VR UNCI algorithm would be as good as VO in terms of estimated comforta-

bility.

H8 =
{
H8

0 : µVR UNCI = µVO, H8
a : µVR UNCI > µVO

}
(5.12)

Table 5.12 shows the pairwise non-parametric Wilcoxon test results. In H7, we claimed

that the VR is less comfortable than the VO algorithm or that VR is more uncomfortable

since we are evaluating estimated uncomfortability. The result from the test showed that the

VR algorithm is not more uncomfortable than VO. Hence we cannot say that VR is more

uncomfortable as the p-value is 0.369. As a result, we failed to reject the null hypothesis

for H7.

In H8, we claimed that VR UNCI is as comfortable as VO. As we are focusing on

estimated uncomfortability, we can look at if VR UNCI is more uncomfortable than V0

(H8
a). The p-value for this analysis is 0.373, which is greater than the α value. Hence, we

cannot say that VR UNCI is more uncomfortable than VO. Before concluding this hypoth-

esis, looking at the VR algorithm is critical. The VR algorithm is less comfortable (more

uncomfortable) [82]. As shown in Table 5.12, there is no difference between the VO and

VR algorithm in terms of uncomfortability. Although we failed to reject the null hypothesis
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for H8
0 , it is difficult to say this happened due to the CIES model contribution to the VR al-

gorithm. Thus, we cannot conclude whether the CIES model improved the comfortability

of the VR algorithm. It is important to mention that these results were drawn from esti-

mated uncomfortability. There are two reasons that we cannot see any difference regarding

estimating uncomfortability. The first reason is that the subject did not feel the change in

the robot’s behavior, which did not trigger a physiological state change. The second reason

is there were limited instances where the subjects felt uncomfortable. Both VO and VR

algorithms are safe; we were trying to make them safer and more comfortable via the CIES

model. To evaluate the real performance of the CIES model, a custom experiment that

focuses on making humans uncomfortable is required.

Table 5.12: The result of a non-parametric (Wilcoxon) pairwise test to measure the statis-
tical significance of the differences in medians of the estimated uncomfortability (mapped)
for the robot’s behavior

A Cond. B Original Dataset Post-Processed
Dataset

UNCI UNCI
VO < VO UNCI 0.690 0.541
VO < VR 0.369 0.549
VO < VR UNCI 0.373 0.318
VO UNCI < VR 0.297 0.541
VO UNCI < VR UNCI 0.020 0.024
VR < VR UNCI 0.131 0.042
Significance (α = 0.05)

Table 5.12 shows that VR UNCI is more uncomfortable than VO UNCI for both datasets.

We also observed that for the post-processed dataset, VR UNCI is more uncomfortable than

VR. This is interesting because we expect the CIES model to make VR more comfortable.

5.4.5 Uncomfortability vs. Distance between Human and Robot

In non-stationary, both the human and the robot move during the trial, and the distance

changes. In addition, when the robot and the human are going toward each other, this
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creates a dangerous scene since the relative velocity is high. Therefore, we look at the

distance between the human and the robot versus estimated uncomfortability.

Fig. 5.7 shows distance versus uncomfortability during a trial. The y-axis shows the

distance between human and robot as measured by the ToF ring on the robot. The x-axis

shows the time elapsed during the trial in seconds. From the subjects’ responses, we can see

that whenever the robot comes close to the person, the person’s uncomfortability increases,

and while the robot is away from the person, their uncomfortability decreases.
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Figure 5.7: The estimated uncomfortability and distance between human and the robot
during one of the trials (the participant (P31) at trial 2)

In Fig. 5.7 we observed how a person’s uncomfortability changes throughout a trial.

Thus, we looked at all the trials where the distance between the human and the robot was

less than 0.5 meters, and we marked those events. Then we look at the estimated uncom-

fortability 2 secs before and 10 secs after the events and check whether the uncomfortability

is increased, not changed, or decreased as shown in Fig. 5.8. Once the 12-seconds win-

dow is selected, the estimated uncomfortability at the beginning and end of the window

are compared. These events are categorized into three groups: uncomfortability increased

more than 5%, decreased less than -5%, and the no change in uncomfortability and the
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events are labeled as ‘increased’, ‘decreased’, and ‘no changes’ respectively.
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Figure 5.8: An example of event processing based on the distance between the human and
the robot.

Table 5.13 shows there were 2543 total events for which the distance between human

and robot was less than 0.5 meters. Among all the events, 44.5% of these events, human

uncomfortability increased, 31.2% of times it decreased, and 24.3% times the change was

minimal (5% or less).

Table 5.13: Tally of uncomfortability events for which the distance between human and
robot was less than 0.5 meters.

Events Number of Events %
UnComfortability Increased (>5%) 1130 44.5%
UnComfortability Decreased (<5%) 795 31.2%
UnComfortability within (5%) 618 24.3%
Total 2543 100%

Fig. 5.7 shows that there is a correlation between estimated uncomfortability and dis-

tance between the human and the robot. This is expected since getting closer to the robot

will increase the chance of collision; thus, participants feel uncomfortable. Thus changing

robot trajectory to maximize the distance between human and robot would be one way of

making the human more comfortable. It is important to mention that in some cases, we

C. Savur 86



may not be able to change the robot’s trajectory due to limited space or other limitations.

5.4.6 AV Domain and Emotions

Unlike the stationary (Sawyer) experiment, arousal and valence data was collected from

the participant during the experiment. Here, we are going to discuss arousal and valence

regarding comfortability and emotions. First, we will evaluate the AV domain with com-

fortability, and then we will look at the emotions reported by the participants.
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Figure 5.9: Reported arousal and valence rating highlighted based on perceived comforta-
bility

Fig. 5.9 highlights AV points with respect to perceived comfortability. The high com-

fortability (yellow) points are mainly located in quadrant IV, and the low comfortability

points are in quadrant II close to the edge. In section 3.1.4, the arousal and valence-based

model was introduced. The result from the stationary (Sawyer) experiment showed that

comfortability is in quadrant IV.

Fig. 5.10 shows the emotions (anxiety, surprise, boredom, and calmness) with respect

to arousal and valence. The circle on the figures shows Russel’s circumplex model. As we

C. Savur 87



0.4 0.2 0.0 0.2 0.4
Valence

0.0

0.2

0.4

0.6

0.8

1.0
Ar

ou
sa

l
Anxiety

0.4 0.2 0.0 0.2 0.4
Valence

0.0

0.2

0.4

0.6

0.8

1.0

Surprise

0.4 0.2 0.0 0.2 0.4
Valence

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ou

sa
l

Boredom

0.4 0.2 0.0 0.2 0.4
Valence

0.0

0.2

0.4

0.6

0.8

1.0

Calmness

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.10: Reported arousal and valence rating highlighted with respect to perceived
surprise, anxiety, boredom, and calmness

disused basic emotion location in section 1.2, the surprise was in quadrant I and anxiety in

quadrant II close to the high arousal axis, boredom in quadrant III, and calmness in quadrant

IV close to the low arousal axis. It is clear to see the reported emotions are dominant in

those quadrants.

Although there are a few surprises in the second quadrant, many reports are greater than

0.8 in the first quadrant. It is important to note that these are subjective responses. Thus,
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the evaluation of emotions may vary between people.

In summary, we can see the pattern that these emotions are in different quadrants. Thus,

Russel’s circumplex model provides a framework to estimate emotion from only arousal

and valence.

5.4.7 Analysis of Emotions and Comfortability

In the previous section, we look at dominant emotions in the AV domain. Here we are

going to look at the correlation between comfortability and emotions.

Table 5.14 shows the Pearson correlation matrix. In the first row, comfortability has a

negative medium correlation with both surprise and anxiety, and this is expected since a

person cannot be comfortable and at the same time feel anxiety. On the other hand, it has a

high positive correlation with calmness and a weak correlation with boredom. Similarly, if

a person is comfortable, he is expected they feel calm.

Table 5.14: Correlation Matrix between emotion and comfort values reported after trial
from the participants

comfortability surprise anxiety boredom calmness
comfortability 1.00 -0.56 -0.56 0.12 0.61

surprise -0.56 1.00 0.55 -0.13 -0.41
anxiety -0.56 0.55 1.00 -0.12 -0.53

boredom 0.12 -0.13 -0.12 1.00 0.21
calmness 0.61 -0.41 -0.53 0.21 1.00

This subject reporting supports our assumption that we use calmness, boredom, and sur-

prise for comfortability estimation and anxiety, surprise, and boredom for uncomfortability

estimation.

5.4.8 Familiarity with Robot vs Comfortability

As experience and familiarity are important in human-robot collaboration, we want to see

if there is a correlation between familiarity with robots and comfortability. Before applying
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any test, we need to check if these two metrics follow a normal distribution. Hence, we plot

KDE plot in Fig. 5.11 for both metrics. As can be seen from the figure, both metrics do

not follow a normal distribution. Therefore, instead of applying Pearson correlation, we

applied Spearman, which does not make any assumption on the distribution.
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Figure 5.11: Distribution of both comfort and familiarity with the robot.

A Spearman’s correlation was run to determine the relationship between comfortability

and familiarity with robot values. There was a weak, positive monotonic correlation be-

tween comfortability and familiarity with robot (rs= .22, n = 270, p-value < 0.00). This

result indicates that people who have experience with robots tend to have a higher comfort-

ability with the robot. This is expected as we get to experience with a system we become

more comfortable.

Next, we will analyze how the performance of the participant change in learning through

the experiment.
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5.5 Objective Evaluation

The evaluation of experiments for all the configurations is done in terms of productivity

and learning rate. The productivity is calculated based on how many parts were assembled

divided by trial duration (in minutes) as shown in equation 5.13. For each trial, six minutes

is given to the subject to complete a trial, and as soon as the time is reached, the robot stops,

and the trial stops as well. The learning rate is calculated by the percentage change in the

number of assembled parts between the first and last trial.

The productivity formula is defined as

productivity =
num assembled parts

trialduration
(5.13)

where num assembled parts is a total number of parts assembled by the subject during

trials, and trialduration is the trial duration in minutes.

5.5.1 Analysis of Learning Rate

The human brain has a unique way of learning, changing from person to person. As we

practice a new concept or physical activity, we get better at it [13]. Researchers are working

on the human brain to understand the learning rate and integrate this with a system that can

adapt accordingly [108].

The experiment explained in 5.1 is a repetitive task where humans do the same task

multiple times. Hence, we measure the productivity of the human by the number of parts

assembled during the trial. The objective here is not to find a person learning rate; rather,

we want to see how much performance increased after eight trials.

Fig. 5.12 shows the cumulative percentage change with respect to the first trial for all

participants. The colored line shows the individual rate of change, and the dashed black

line is the average change. It is clear that the number of assembled parts increased in

general. However, there are some cases where the participant assembled fewer parts during
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Figure 5.12: Cumulative percentage with respect to the first trial across all the participants.

the second trial. This decrease can be due to the random robot behavior selection between

trials. For example, a subject may experience one of the VO algorithms in the first trial and

then experience VR in the second trial. As we know, the VR algorithm is more aggressive

than VO. In conclusion, the participant productivity (the number of assembled parts during

the trial) increased by 26%.

5.5.2 Analysis of Productivity

In this section, we analyze the productivity of the participants based on the robot’s algo-

rithm of VO, VO CIES, VR, and VR CIES for the post-processed dataset. Although the

trials during the experiment were randomized to reduce the order effect, we only selected

the last two trials since we know there is a learning rate effect. On average, a trial is approx-

imately 6 minutes. The average number of assembled parts for VO is 14.1 in comparison

to 14.6 for VO with CIES, as shown in 5.15. Although this difference is small, it is large if

extrapolated to a longer working period. On average, if a subject works with the robot for

an hour, the subject will complete 141 parts working with VO and 146 when working with
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VO with CIES active. Hence, productivity increased by 3.5%.

Similarly, the average number of assembled parts is 13.7 for the VR algorithm and 14.3

for VR with CIES from trials. If we run the experiment for an hour, the average completed

parts would be 137 and 143 for VR and VR CIES, respectively. We can conclude that the

CIES improves VR slightly with a 4.3% improvement in productivity and an increase in

comfortability.

Table 5.15: Summary of Robot’s algorithm regarding the trial duration, number of assem-
bled parts, and productivity for the last two trials for the Post-Processed dataset.

Algo # Trials Trial Duration (Sec.) # Assembled Part Productivity (Min.)
Mean STD Mean STD Mean STD

VO 18 357.505 2.949 14.141 3.444 2.373 0.577
VO UNCI 14 358.764 2.589 14.655 4.070 2.450 0.677
VR 15 357.880 3.246 13.736 3.369 2.302 0.561
VR UNCI 14 357.879 3.538 14.311 3.645 2.398 0.605

The mean of the algorithms differ from each other, and it looks like CIES increases pro-

ductivity; however, to conclude, we need to conduct a statistical test. Hence, we conducted

a pairwise Tukey HSD test.

H9
a : The productivity of VO is high in comparison to the VR (µVR).

H9 =
{
H9

0 : µnum parts
VO = µ

num parts
VR , H9

a : µnum parts
VO > µ

num parts
VR

}
(5.14)

H10
a : The productivity of VR UNCI is as good as the VO (µVO).

H10 =
{
H10

0 : µnum parts
VO = µ

num parts
VR UNCI , H10

a : µnum parts
VO > µ

num parts
VR UNCI

}
(5.15)

The statistics result in Table 5.16 shows that there is no statistical difference between

VO and VR algorithms. The p-values are greater than the α = 0.05 value; hence, we failed

to reject the null hypothesis for H9.

Similarly to the H9, we reject the alternative hypothesis as the p-value is larger than the

α value for H10
a . However, in the H10, we want to see whether the CIES model improves

the productivity of the VR algorithm. The result of the H9 hypothesis showed that we
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could not say that VO is better than VR interns in productivity. Hence, we cannot say that

VR UNCI improves the VR algorithm since both algorithms’ productivity may be as good

as VO.

In conclusion, although there is a mean difference between VR and VO with CIES and

without, the improvement of CIES is statistically not significant. Hence, with the existing

setup, CIES does not increase productivity.

Table 5.16: Pairwise Tukey test for last two trials from the participants.

A B mean(A) mean(B) diff se p-value
VO VO UNCI 2.548 2.869 -0.321 0.231 0.509
VO VR 2.548 2.484 0.064 0.226 0.992
VO VR UNCI 2.548 2.622 -0.073 0.231 0.989
VO UNCI VR 2.869 2.484 0.385 0.240 0.386
VO UNCI VR UNCI 2.869 2.622 0.248 0.245 0.743
VR VR UNCI 2.484 2.622 -0.137 0.240 0.940

Fig. 5.13 shows the scatter plot between the number of assembled parts and the mean

comfortability during trial responses. The red line shows the regression line that shows

there is a positive correlation between these two metrics. The correlation is calculated

using the “Spearman” correlation method, which is a non-parametric version of the “Per-

son” correlation for repeated measurements. The test showed that there is a 0.29 positive

correlation between these two metrics. This result indicates that the subject’s productivity

increases as they get comfortable. In other words, making the subject comfortable will

increase the productivity of humans.

5.5.3 Comfortability vs Gender

In this section, we investigate if there is a statistical difference between male and female

participants in terms of comfortability.

H10
a : There is a difference between male and female subjects regarding comfortability.
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Figure 5.13: Productivity vs. Reported Comfortability

H11 =
{
H11

0 : µcom f ort
MALE = µ

com f ort
FEMALE, H11

a : µcom f ort
MALE > µ

com f ort
FEMALE

}
(5.16)

Hence, we conducted an ANOVA test between two groups with the assumption of equal

variance. The test result shows there is a difference between the two groups with α = 0.008.

Then a Tukey-HSD post-hoc test was applied to see how these two groups differ from each

other. The p − value = 0.009 in Table 5.17 shows that there is statistical significance be-

tween two groups where male subjects feel more comfortable than female subjects. Thus,

we reject the null hypothesis (H11
0 ) for this analysis. This result is expected since the aver-

age familiarity robot for female participants is 2.69 and 5.07 for males. As we discussed in

5.4.8, familiarity positively affects perceived comfortability.

Table 5.17: Statistical significance between female and male participants

A B mean(Female) mean(Male) p-value
Female Male 7.12 7.765 0.009
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5.6 Stationary vs. Non-Stationary Experiments

In this section, we are comparing both stationary (Sawyer) and non-stationary (UR10) ex-

periments. We will compare comfortability and uncomfortability for both experiments in

terms of the axis and KDE approaches.

5.6.1 Analysis of Comfortability

For the comfortability axis estimation, surprise, boredom, and calmness emotions were

used to estimate the comfortability axis. In order to find the comfortability axis, we used

the responses that comfortability is greater than 0.8. Fig. 5.14 shows the estimated axis

from both experiments. For the stationary experiment the comfortability axis is estimated

to be 290.03◦ and for non-stationary is 278.65◦. Although there is a 12.62◦ slight difference,

both axes overlap and are located in the same quadrant. This shift can be explained by the

reported boredom level. As shown in Fig. 5.14, there are many responses that are reported

as comfortable and high boredom levels at the same time. Hence, as we used boredom in

the estimation of the axis, the boredom emotion pulls the comfortability axis towards the

third quadrant.

Fig. 5.15 shows estimated a distribution obtained by KDE for both experiments. In the

Fig. 5.15-b there is one main peak in the distribution, however, in the Fig. 5.15-c, there

are two peaks. Similar to the comfortability axis estimation, this can be explained by the

boredom level. It looks like some of the participants feel comfortable at the same time they

felt bored. Hence, the distribution differs between the two experiments. Although there is

a difference between KDE, both KDE locations are close to each other.
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Figure 5.14: Estimated comfortability axis location for stationary and non-stationary exper-
iments. (a) shows the emotion axis locations, (b) shows comfortability axis estimation from
the stationary experiment, and (c) shows the comfortability axis from the non-stationary ex-
periment.
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Figure 5.15: Estimated comfortability distribution obtained by KDE for stationary and
non-stationary experiments. (a) shows the emotion axis locations, (b) shows comfortability
KDE estimation from the stationary experiment, and (c) shows the comfortability KDE
from the non-stationary experiment.

5.6.2 Analysis of Uncomfortability

For the uncomfortability axis estimation, surprise, anxiety, and boredom emotions were

used. In order to find the uncomfortability axis, we used the responses that comfortability

is less than 0.4. Fig. 5.16 shows the estimated axis from both experiments. For the station-

ary experiment the uncomfortability axis is estimated to be 104.28◦ and for non-stationary
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is 88.32◦. There is a 15.96◦ difference between both axes. This difference can be ex-

plained by a number of uncomfortability responses. As shown in Fig. 5.16, there are many

uncomfortable responses for the stationary experiment and limited AV points for the non-

stationary experiment. Thus, we will need more AV points to estimate the uncomfortability

axis on the circumplex model for the non-stationary experiment.
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Figure 5.16: Estimated uncomfortability axis location for stationary and non-stationary
experiments. (a) shows the emotion axis locations, (b) shows uncomfortability axis esti-
mation from the stationary experiment, and (c) shows the uncomfortability axis from the
non-stationary experiment.

Fig. 5.17 shows estimated distribution obtained by KDE for both experiments. In Fig.

5.17-b the distribution is large as there are many AV points for uncomfortability, however,

in Fig. 5.15-c, the KDE is small due to a lack of AV points. Similar to the uncomfortability

axis estimation, the distribution needs more AV points to estimate better distribution for

uncomfortability.

5.7 Models Performance Evaluation

In this section, the performance of two CIES models (Random Forest) was evaluated. The

first model was trained on a stationary experiment dataset (see chapter 4). The second
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Figure 5.17: Estimated uncomfortability distribution obtained by KDE for stationary and
non-stationary experiments. (a) shows the emotion axis locations, (b) shows uncomforta-
bility KDE estimation from the stationary experiment, and (c) shows the uncomfortability
KDE from the non-stationary experiment.

model was trained on randomly selected twenty subjects’ data from a non-stationary exper-

iment (see chapter 5). The remaining dataset from seventeen subjects from non-stationary

was used as a test dataset to evaluate both models. The test dataset consists of 1961 sam-

ples.

Table 5.18 presents the performance of both the models for comfortability and uncom-

fortability. Since we used a non-stationary experiment dataset for the test. The CIES model

that trained on the same experiment our perform for both comfortability and uncomfortabil-

ity. However, the RMSE and MAE score of uncomfortability for the stationary experiment

is really close to the other model.

Table 5.18: Performance of two CIES models that trained on different experiment

Experiment Type Comfortability Uncomfortability
RMSE MAE RMSE MAE

Stationary Model (RF) 0.46 0.43 0.29 0.24
Non-Stationary Model (RF) 0.33 0.30 0.28 0.20

In conclusion, these results are expected since the comfortability and uncomfortability

axes are close to each other for both experiments.
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5.8 Circumplex Model using Arousal and Valence

During non-stationary experiment, arousal and valence rating were collected during the

ongoing trial from participants as subjective responses. Here, instead of estimating arousal

and valence from emotions, we used reported arousal and valence in circumplex model to

estimate the location of comfortability and uncomfortability axes. Fig. 5.18 shows both

axes locations on the circumplex model. The comfortability axis location is 298.50◦ and

uncomfortability is 120.38◦. When emotions were used to calculate these axes, they were

290.03◦, and 104.28◦ for comfortability and uncomfortability respectively. Although the

axes are slightly shifted, they are near to each other. This indicates that reported emotions

and arousal and valence are correlated.
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Figure 5.18: (a) shows circumplex model trained on reported arousal and valence rating
similarly (b) shows circumplex model for uncomfortability trained on AV points
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5.9 Limitations

While the results provided show great promise, it should be noted that the study was con-

ducted in a lab setting, which is a rather controlled environment. Subjects were essentially

sedentary and only used one hand for the most part. Because it is generally recognized that

motion artifacts affect physiological signals, data gathering in non-stationary conditions

can be difficult. Future studies should consider motion artifacts and create algorithms to

eliminate them.

The proposed physiological computing system used multiple sensors for physiological

signals. This is necessary for the system to work; however, it may be difficult to use such

sensors sometimes. For example, the proposed system using pupillometry signals requires

the participant to wear special glasses. However, if the participant already uses glasses,

then it becomes challenging to collect the signals. However, as technology advances in the

field of wearable sensors, this kind of challenge should be easier to deal with.

The proposed model was tested in a human subject experiment. The CIES models tested

here were trained on an entirely different experiment and data collected from different

people than this experiment. Hence, this is a major limitation for CIES models. However,

the model trained on another dataset the results are still promising. In addition, the previous

experiment was a stationary experiment where participants were sitting which reduces the

motion artifacts. However, the current experiment was non-stationary, which reduce the

quality of data in some cases.

The CIES model used in this experiment builds upon emotions that were used to esti-

mate arousal and valence, then the circumplex model is used to calculate CI/UnCI. Esti-

mation of arousal and valence from emotion has its own limitations since we are trying to

come from the emotion domain to the AV domain. However, it would be better if we asked

the participant to report arousal and valence during the trial. Then, arousal and valence can
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be used to estimate CI/UnCI.

For machine learning algorithms, the data and its quality are the most important part

of learning. The CIES model used in this experiment was trained on only twenty people’s

data. For this type of model, this data size is a limitation. Hence, having more data that

covers a variety of uncomfortability occurrences would make a great improvement for the

CIES model.

One of the challenges in ML algorithms is to generalize a model for multiple people.

Although we generalize the model based on twenty people from previous experiments, it

would be better to have an adaptive model that learns from human responses as it changes

from person to person.

Another limitation of this experiment is that we change only the robot’s velocity and

cushioning distance between human and robot. However, changing robot trajectory based

on human’s uncomfortability would further this work.

5.10 Summary

In this chapter, we evaluate the CIES system with the DSS system of VO and VR. Our

objective was to see if CIES has the potential to estimate uncomfortability by using this

estimated comfortability index and whether the robot behavior can be modified to make

the person more comfortable. Therefore, we designed an experiment that estimates human

uncomfortability in real-time. During the DSS algorithm, the estimated value was not used;

it was just recorded. However, during the DSS CIES configuration, the estimated value was

affecting the DSS algorithms where the directed velocity and cushioning distance were

modified. This adaptation is explained in detail in section 5.1.2. Table 5.19 shows all the

hypotheses from this chapter. The analyses were done on both original and post-processed

datasets.

In the H1 and H2, we observed how the CIES model improves comfortability and if this
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Table 5.19: Summary of all hypothesis proposed in chapter 5

Hypo. Statement Original Dataset
(p-value)

Post-Processed
Dataset (p-value)

H1
The median perceived comfortability rating
for VO UNCI (µVO UNCI)
is greater than VO (µVO).

0.549 0.129

H2
The median perceived comfortability rating
for VR UNCI (µVR UNCI)
is greater than VR (µVR).

0.105 0.289

H3*
The median perceived comfortability rating
for VR UNCI (µVR UNCI)
is as good as VO (µVO).

0.124 0.078

H4
The median percent time in NORMAL mode
for DSS (µDS S ) is greater
than DSS CIES (µDS S CIES ).

0.028 0.078

H5
The median percent time in REDUCE mode
for DSS CIES (µDS S CIES )
is greater than DSS (µDS S ).

0.050 0.016

H6
The median percent time in STOP mode
for DSS (µDS S ) is greater than
DSS CIES (µDS S CIES ).

0.007 0.042

H7 The VR algorithm would be less
comfortable than VO algorithm. 0.369 0.549

H8*
The VR UNCI algorithm would be
as good as VO. 0.373 0.318

H9 The productivity of VO is high
in comparison to the VR (µVR) - 0.992

H10*
he productivity of VR\ UNCI is
as good as the VO (µVO) - 0.989

H11 There is a difference between males and
female subjects in terms of comfortability. 0.009

* Unlike the rest of the hypotheses, this hypothesis supports the null hypothesis.
The value reported for H1, H2, and H3 from the trial responses.

comfortability is statistically significant. From the post-processed dataset, we can see the

p-value of 0.129 and 0.289 for VO UNCI and VR UNCI, respectively. This is important

since the p-value is not very large for these two analysis. Although we cannot say the

CIES improves VO and VR algorithms in terms of comfortability statistically, it is clear

that the CIES model is slightly improving both algorithms. In future research, it would be

beneficial to tune the effect of the CIES model on robot behavior.
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From hypothesis H3, we observed that the CIES model made the VR algorithm as

good as VO in terms of comfortability. We also observed that the productivity of VO is

not better than both VR and VR UNCI. In addition, the results from the experiment show

that CIES has the potential to estimate uncomfortability and the changes regarding the

minimum distance between human and robot (see section 5.4.5). We can see that as the

distance decreases, uncomfortability increases and vice versa.

In this experiment, the statistical analysis showed that there is no difference between

DSS and DSS with the CIES model regarding estimated uncomfortability. This happened

due to the adaptation of the CIES model to the DSS. The mean of mapped UnCI for all the

trials was 0.05 (0.09). The contribution of this mapped UnCI value on DSS (see section

5.1.2) is divided by half since we multiply with 0.5. Hence, the overall contribution of

the mapped UnCI on DSS was 0.025, which modified the directed speed and distance only

by 2.5%. This change may not be noticeable to the participant as the change is minimal.

However, in a few cases, the mapped UnCI was 0.64. as a result, the effect of UnCI goes

to 0.32, which means that the directed velocity will be reduced by 32% and cushioning

distance will increase by 32% at MAX. It should be noted that the number of this type of

trial was limited to see the statistical differences between modes.

The CIES model used in this experiment was from a previous experiment in which

the data was collected during an entirely different task. The upper and lower limit were

extracted from the previous experiment. Hence, the generalized models we used in this

experiment could not be generalized enough for all participants. An alternative solution

would be to use the subject-dependent model on UnCI and have control as to how much

the CIES would have an effect on DSS algorithms.

In conclusion, the CIES has the potential to estimate uncomfortability even though the

dataset was collected from a different experiment. The subject dependence on generaliza-

tion was insufficient to see the effect of the CIES with DSS. Having a personalized and
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adaptive model that modifies DSS would be a future direction of this research. In addition,

instead of modifying the velocity and distance between human and robot, changing the

robot’s trajectory may be more effective in making the human more comfortable.
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Chapter 6

Conclusion and Future Work

In this chapter, we present the conclusions and summary of this research, discuss the impact

of this research on other studies, and present the future direction of this research.

6.1 Conclusion

The research presented in this dissertation showed the implementation of human comfort

index estimation during human-robot collaboration tasks. We proposed a novel approach

for human comfortability and uncomfortability index estimation by using subjective re-

sponses and physiological signals. One of the proposed approaches was inspired by Rus-

sel’s circumplex model, which allows emotion to be represented in terms of arousal and

valence [2]. The second approach was the estimation of CI/UnCI from arousal and valence

by fitting a distribution obtained by KDE. To estimate arousal and valence, emotions were

estimated from physiological signals.

In the first experiment (see chapter 4), twenty subjects participated in the experiment,

where physiological signals and subjective metrics were collected. The experiment was

designed such that we collected the subjective metrics during the trial to have better sig-

nal labeling. Our results showed that estimating CI/UnCI from arousal and valence is a

promising approach.

In the following experiment (see chapter 5) where uncomfortability estimation from

the CIES model and robot behavior was controlled. The experiment focused on mimicking

industrial settings. Hence, a conveyor and multiple robots were added to the experiment to

work alongside the human subject. This helped the subject to think he/she is on the factory

floor working with robots.
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In the literature, it is known that the GSR signal is sensitive to emotional changes

[33, 56]. However, it is suggested to use the GSR signal in conjunction with other sig-

nals such as ECG, EEG, or EMG [25]. In this thesis, three physiological signals: GSR,

ECG, and Pupillometry were used. Our observation showed that the signals that provide

information about comfortability or uncomfortability can be ordered (high to low) as GSR,

ECG, and Pupillometry signals. We observed that removing the Pupillometry signal has

little effect on the accuracy of the CIES model. We did not analyze the contribution of each

signal independently since it is not the focus of this research.

There are two types of robots, industrial and collaborative. Industrial robots are in use

in cages, and they work fast, precisely, and robustly. Hence, this type of robot is more

productive and needs to be considered for mass production [82]. On the other hand, collab-

orative robots can work alongside humans. Thus, their productivity is less than industrial

robots since they need to work at a lower speed. The objective of the collaborative robot is

to maintain productivity while keeping humans safe. The CIES model aims to provide feed-

back to the collaborative robot to make humans more comfortable; as a result, productivity

will increase. The experimental result shows that although the mean of the robot modes

where CIES active had higher productivity, it is not statistically significant. This may hap-

pen due to multiple reasons; one of them is the generalized model used. The second reason

is the effect of the CIES model on the robot behavior was small when it changed velocity

and cushioning distance. The CIES model can improve if it has more power to modify

robot behavior and use a personalized model instead of a generalized model.

We used the ML model trained on the Sawyer experiment and validated on a non-

stationary experiment in which the UR-10 robot was used in collaboration. The estimated

uncomfortability was used to modify the robot’s velocity and cushioning distance between

humans and robots. Hence, as the human becomes less comfortable, the robot will reduce

its velocity and increase the distance. The robot will go to its default settings as the human
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becomes comfortable. The subjective and objective analyses were completed. Although the

CIES model estimated uncomfortability during the trial, the effect of the CIES model on

robot behavior change is limited. Hence, the CIES model was unable to make participants

comfortable in comparison to the DSS system.

In conclusion, physiological metrics can be used to estimate the human comfortability

index. The proposed method allows the CI and UnCI to be estimated only by two param-

eters: arousal and valence. In the current work, we calculated arousal and valence based

on emotions; however, a better approach would be to ask subjects about their arousal and

valence levels as it was done in [104]. In future work, we will use reported arousal and

valence level [26] to train a model to estimate these two metrics directly from physiological

signals without using emotions.

6.2 Future Work

In the last experiment, we modified only the robot’s velocity and cushioning distance. In

addition to these two parameters, it would be useful to change the robot trajectory on the

fly as the human becomes uncomfortable, as shown in figure 6.1. There are existing online

trajectory planners available for the arm robot [109, 110]. The robot path planner can

toggle between two modes, the first one is to minimize joint movement when a human is

comfortable, and the second one is selecting a path that maximizes the distance between

human and robot when a human is not comfortable.

In the final experiment (non-stationary) we used a generalized model (see 5.1.1). The

generalized model helps ML models to work across multiple participants; however, to

have a better estimation of comfortability or uncomfortability, a subject-dependent model

is needed. The CIES model can start estimation from a generalized model; however, as

the data is collected from a particular subject, the generalized model needs to be updated

for the subject hence the performance of the CIES model can be improved. When we get
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Figure 6.1: Robot’s behavior that can be modified by comfort index

used to a task, it is human nature to get comfortable doing it. When we get comfortable,

our physiological signals will go to normal since the sympathetic nervous system will be in

control. Thus, the CIES model would estimate accordingly. The CIES model may fail only

if the person has a different physiological response to the same stimulus, which is unlikely

to happen.

(v, a)Estimation of Arousal
and Valence

Human

image Cirumplex Model

Valence

A
ro

us
al

Figure 6.2: Arousal and valence estimation from image then the estimation of comfortabil-
ity and uncomfortability.
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In this research, we used emotions to estimate arousal and valence. Using reported

arousal and valence would be a good direction for future research. In addition, we used

three sensors (ECG, GSR, and Pupillometry) to estimate emotions. However, some new

researchers use only a camera to estimate continuous arousal and valence, which looks

promising [3]. Fig. 6.2 shows an overall diagram where a camera faces the human, and

a system uses these images to estimate arousal and valence. Then this can be used in

the circumplex model to estimate the comfortability and uncomfortability. Although this

approach does not require any physiological signal, it requires the subject’s face to be in the

camera view. Thus, this type of system can be useful for a stationary experiment where the

subject is sitting in front of the robot. A separate experiment is needed to test this system

in the HRC settings. Thus, this approach for a human-robot collaboration task would need

further research.

Human Field of View

Comfort LevelRobot
Mode: NORMAL
Velocity: 0.5 m/sec.

Figure 6.3: Augmented/Mixed reality sample view for CIES and robot’s information.

The current CIES model estimates a human comfortability/uncomfortability level and

provides this information to the robot. This information is valuable feedback for the robot

to adjust its immediate behavior. However, the human does not know what information

is being sent to the robot as feedback. This is a limitation of the CIES system. To tackle

this, augmented/mixed reality can be used to display information that is sent to the robot.

Thus, humans would know what is happening internally in the CIES system. In addition,

displaying the robot’s mode (NORMAL, REDUCE, and STOP), velocity, relative position,
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and distance between human and robot would be helpful, as shown in Fig. 6.3. However,

separate studies may need to be conducted to understand how the comfortability of a human

agent may change when receiving information from the robot by the means of augmented

reality devices in HRC.
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Chapter A

Appendix

A.1 Devices

The devices used in this study are listed below:

• Pupil Capture/Player is the tool provided by pupil dilation. The pupil headset used

to collect subject’s pupil dilation, gaze location and world camera stream recorded.

https://pupil-labs.com/products/core/

• Shimmer3 GSR is the device has capability to measure GSR and PPG signals. The

reason this device selected that it has Bluetooth capability and access to raw data

from device.

https://www.shimmersensing.com/products/shimmer3-wireless-gsr-sensor

• BioHarness is a wireless chest strap that allows recording of an ECG signal. In

addition to the ECG, the device provides respiration rate, heart-rate, RR intervals,

acceleration (3-axes), and device information.

https://tinyurl.com/yhx75k6c

• UR-10 is a cobot with 10 kg payload. It is a widely used robot that being used

in collaboration tasks. UR-10 used in minimum speed and separation monitoring

experiment.

https://www.universal-robots.com/products/ur10-robot/

• Sawyer Robot is another co-bot that developed using ROS. the Sawyer was used in

task planning and execution experiment.

https://www.rethinkrobotics.com/sawyer
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• OptiTrack is camera-based tracking system that gives millimetric precision in the

workspace, it is suitable for robotic application, in this research, the optitrack used to

track subject’s location and helmet position.

https://optitrack.com/

A.2 Software

The software used in this study are listed below, in addition, custom software developed as

well.

• VREP Simulation was used to create the digital-twin of the environment.

http://www.coppeliarobotics.com/

• LSL Stream was used to transfer data and save data.

https://github.com/sccn/labstreaminglayer

• ZMQ is messaging protocol that used communication between nodes.

https://zeromq.org/

• Qt Framework is used to develop tools.

https://www.qt.io/

• Rosbag is used to record and play back the recorded bags.

http://wiki.ros.org/rosbag

• PlotJuggler is used to plot the time-series data.

https://github.com/facontidavide/PlotJuggler

• Neurokit for physiological signal processing.

https://neurokit.readthedocs.io/
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